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Abstract. Creating a good deep learning (DL) model is an art which requires expertise
in DL and a large set of labeled data for training neural networks. Neither is readily
available. In this paper, we introduce a method which enables us to achieve good
results with bad DL models. We use simple multilayer perceptron (MLP) networks,
trained on a small dataset, which make strongly biased predictions if used without
the proposed method. The core idea is to extend the attack dataset so that at
least one of its traces has the ground truth label to which the models are biased
towards. The effectiveness of the presented method is demonstrated by attacking
an ARM Cortex-M4 CPU implementation of Saber KEM, a finalist of the NIST
post-quantum cryptography standardization project, on a nRF52832 system-on-chip
supporting Bluetooth 5, using amplitude-modulated EM emanations. Previous
amplitude-modulated EM emanation-based attacks on Saber KEM could not recover
its messages with a sufficiently high probability. We recover messages with the
probability 1 from the profiling device and with the probability 0.74 from a different
device. Using messages recovered from chosen ciphertexts, we extract the secret key
of Saber KEM.

Keywords: Public-key cryptography · Post-quantum cryptography · Saber KEM ·
LWE/LWR-based KEM · Side-channel attack · EM analysis

1 Introduction
Amplitude-modulated electromagnetic (EM) emanations are a type of side-channels which
occur in mixed-signal chips with an on-board antenna. As a result of various coupling
effects, signals from computations in the digital part of the chip may be modulated
by the CPU clock signal, leak to the analog part of the chip, modulated again by the
radio-frequency block, and eventually transmitted by the antenna.

Side-channel attacks based on amplitude-modulated EM emanations are more stealthy
than power or near-field EM attacks because the signal transmitted by the on-chip
antenna escapes hardware-level countermeasures like decoupling capacitors (used to smooth
sharp changes in power supply voltage) and Faraday shields (used to block EM fields).
Furthermore, since amplitude-modulated EM emanations are intertwined into the carrier
signal, they can be captured at a considerably farther distance than the near-field EM
side-channels. For example, in [CFS20], a successful attack on AES on 15 m distance from
the device under attack was demonstrated.

However, amplitude-modulated EM emanations are much weaker than power and
near-field EM side-channels. They require expensive equipment to capture and typically
need post-processing by averaging multiple repeated measurements to increase the signal-

mailto:{ruize,kngo,dubrova}@kth.se


2
Making Biased DL Models Work: Message and Key Recovery Attacks on Saber Using

Amplitude-Modulated EM Emanations

to-noise ratio. For example, 500 and 1000 measurements representing the same encryption
were averaged in the attacks on AES presented in [CPM+18] and [CFS20], respectively.

Such excessive repetitions are undesirable in profiling deep learning (DL)-based side-
channel attacks because they increase the size of training and attack sets by the correspond-
ing factor. While the attack set is typically small, the training set is large. Minimizing
the size of the latter is particularly important in the attacks on public key encryption
algorithms since, in this case, the device under attack can be used for profiling [NDGJ21]
(since the public key is known). Profiling on the device under attack eliminates the problem
of device intra-variability and maximizes the prediction accuracy of DL models. If the
secret to be recovered is large, achieving high prediction accuracy is crucial. For example,
the secret messages of Saber KEM, a finalist of NIST post-quantum cryptography (PQC)
project [NIS16], which is the focus of this paper, is 256-bit. So, if the message recovery
is performed bit-by-bit, the model prediction accuracy should be at least 0.997 in order
to get 0.997256 = 0.51 message recovery probability. It is very difficult to achieve 0.997
prediction accuracy unless the model is trained on the device under attack, or a device
manufactured in the same batch [NDGJ21].

If access time to the device under attack is an issue, the attacker who wants to use
the device under attack for profiling faces the problem of training DL models on a small
dataset. This is not an easy task, especially if the the number of classes to be distinguished
is large, e.g. 256 classes in a byte-level classification with one-hot encoding. In such cases,
training on a small dataset usually results in biased models which predict different classes
non-uniformly. It has been observed that some labels might be strongly preferred [BF19].
Our contributions: In this paper, we introduce a method which makes it possible to
recover messages of Saber KEM with a high probability using biased DL models trained
on a small dataset. To recover the message m encrypted into a ciphertext c, we extend the
attack set from a single trace, captured with c as input, to 256 traces, captured with ce as
inputs, for all e ∈ {0, 1, . . . , 255}. The modified ciphertexts ce are constructed so that they
decrypt to messages me in which the error e is injected into each byte of m. As a result,
at least one of the traces in the attack set has the ground truth label to which the DL
models are biased. The errors are injected using the bit-flipping technique from [RBRC21].

Our experimental results on a software implementation of Saber KEM in an ARM
Cortex-M4 CPU in the nRF52832 system-on-chip supporting Bluetooth 5 show that the
presented multiple-bit error injection method allows us to recover complete messages with
the probability 1 from the profiling device and with the probability 0.74 from a different
device. Using messages recovered for chosen ciphertexts constructed by method [NDGJ21],
we successfully extract the secret key of Saber KEM. This is a significant improvement over
the first amplitude-modulated EM emanation-based attack on Saber KEM [WND22]. The
attack [WND22] recovers each message bit with the average probability of 0.91. Hence, it
cannot recover the complete message successfully in the majority of cases.
Paper organization: The rest of this paper is organized as follows. Section 2 describes
previous work related to the side-channel analysis of Saber KEM. Section 3 gives background
on Saber design and its known vulnerabilities. Section 4 presents the experimental setup.
Sections 5 and 6 describe how we train neural networks and perform message and secret key
recovery attacks. Experimental results are summarized in Section 7. Section 8 concludes
the paper.

2 Previous work
Since the launch of NIST PQC standardization project in 2016 [NIS16], timing, power
and near field EM side-channel attacks on software and hardware implementations of
NIST PQC candidates have received considerable attention. Three out of four finalists
of NIST PQC are based on lattice problems: an NTRU-based scheme NTRU [C+20], a
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Saber.PKE.KeyGen()
1: seedA ← U({0, 1}256)
2: A = gen(seedA) ∈ Rl×l

q

3: r ← U({0, 1}256)
4: s← βµ(Rl×1

q ; r)
5: b = ((AT s+h) mod q)≫ (ϵq−ϵp) ∈ Rl×1

p

6: return (pk := (seedA, b), sk := s)

Saber.PKE.Dec(s, (cm, b′))
1: v = b′T (s mod p) ∈ Rp

2: m′ = ((v+h2−2ϵp−ϵT cm) mod p)≫ (ϵp−
1) ∈ R2

3: return m′

Saber.PKE.Enc((seedA, b), m; r)
1: A = gen(seedA) ∈ Rl×l

q

2: if r is not specified then
3: r ← U({0, 1}256)
4: end if
5: s′ ← βµ(Rl×1

q ; r)
6: b′ = ((As′ + h) mod q)≫ (ϵq− ϵp) ∈ Rl×1

p

7: v′ = bT (s′ mod p) ∈ Rp

8: cm = ((v′ + h1 − 2ϵp−1m) mod p)≫ (ϵp −
ϵT ) ∈ RT

9: return (c := (cm, b′))

Figure 1: Pseudocode of Saber.PKE [D+20].

Saber.KEM.KeyGen()
1: (seedA, b, s) = Saber.PKE.KeyGen()
2: pk = (seedA, b)
3: pkh = F(pk)
4: z ← U({0, 1}256)
5: return (pk := (seedA, b), sk := (z, pkh, pk, s))

Saber.KEM.Encaps((seedA, b))
1: m← U({0, 1}256)
2: (K̂, r) = G(F(pk), m)
3: c = Saber.PKE.Enc(pk, m; r)
4: K = H(K̂, c)
5: return (c, K)

Saber.KEM.Decaps((z, pkh, pk, s),c)
1: m′ = Saber.PKE.Dec(s, c)
2: (K̂′, r′) = G(pkh, m′)
3: c′ = Saber.PKE.Enc(pk, m′; r′)
4: if c = c′ then
5: return K = H(K̂′, c)
6: else
7: return K = H(z, c)
8: end if

Figure 2: Pseudocode of Saber.KEM [D+20].

Learning With Errors (LWE)-based scheme Kyber [S+20], and a Learning With Rounding
(LWR)-based scheme Saber [D+20]. The fourth finalist, Classic McEliece [BCL+17], is
based on decoding problems for error correcting codes (ECC). These problems are believed
to be difficult for large-scale quantum computers.

In [SKL+20], a message recovery attack using a single power trace from an unprotected
encapsulation part of several round 3 candidates, including Saber, was presented. In
[RSRCB20], near field EM message recovery attacks on some round 3 candidates, including
Saber, were described. In [GJN20], timing attacks were considered.

In [RBRC21], near field EM secret key recovery attacks on unprotected implementations
of three NIST PQ finalists, including Saber, were presented. It was shown how masked
implementations can be broken by attacking each share individually. In [NDGJ21], message
and secret key recovery attacks on a first-order masked implementation of Saber KEM
through DL-based power analysis were demonstrated. In [NDJ21], it was shown that
it is possible to recover Saber secret key from 61,680 power traces even if masking is
complemented with a shuffling countermeasure. In [UXT+22], power/near field EM secret
key recovery attacks on some round 3 candidates, including Saber, was described. This
attack uses side-channel leakage during execution of the re-encryption step of decapsulation
as a plaintext-checking oracle that tells whether the PKE decryption results are equivalent
to the reference plaintext, or not.

The resistance of NIST PQC finalists to amplitude-modulated EM emanations has
been investigated much less compared to timing, power and near-field EM side-channles.
The first attack on Saber KEM has been recently presented in [WND22]. This attack
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uses the same C implementation of Saber KEM and the same target device as in our
experiments. The C implementation is compiled with the optimization level -O0. Using
amplitude-modulated EM emanations during the PKE decryption step of decapsulation,
each bit of a message is recovered with probability of 0.91 on average if the profiling and
the attack devices are the same. So, the probability to recover a complete message is very
small, 0.91256 = 0.33 · 10−12. In contrast, for the optimization level -O0, the presented
multiple-bit error injection method can recover a complete message with the probability 1
from the profiling device and with the probability 0.74 from a different device. We also
show successful results for -O3 optimization level.

The presented multiple-bit error injection method makes use of the bit-flip technique
introduced in [RBRC21] for breaking implementations of LWE/LWR-based PKE/KEMs
protected by the shuffling countermeasure. In [RBRC21], single message bits are flipped
in order to quantify the effect of the change on the message Hamming weight (HW).
The decrease/increase of the HW implies that the original message bit has the value 1/0.
Note that the purpose of flipping bits in [RBRC21] is quite different from the one in the
presented method. We inject multiple-bit errors to match the modified message bytes with
labels preferred by the DL models.

3 Background
This section describes Saber design and vulnerabilities discovered in its software imple-
mentations so far.

3.1 Saber design
Saber consists of a CPA-secure public key encryption scheme, Saber.PKE, and a CCA-
secure key encapsulation mechanism, Saber.KEM, which is based on a post-quantum
version of the Fujisaki-Okamoto transform [FO99]. The security of Saber algorithms relies
on the Module Learning With Rounding (Mod-LWR) problem’s difficulty [D+20].

Fig. 1 and 2 show pseudocodes of Saber.PKE and Saber.KEM algorithms, respec-
tively. We use the same notation as in [NDGJ21]. Saber.PKE contains three algo-
rithms: key generation, Saber.PKE.KeyGen; encryption, Saber.PKE.Enc; and decryption,
Saber.PKE.Dec, as shown in Fig. 1. Saber.KEM also contains three algorithms: key
generation, Saber.KEM.KeyGen; encapsulation, Saber.KEM.Encaps; and decapsulation,
Saber.KEM.Decaps, as shown in Fig. 2.

Let Zq be the ring of integers modulo a positive integer q and Rq be the quotient ring
Zq[X]/(Xn + 1). The rank of the module and the rounding modulus are denoted by p and
l, respectively.

The term x ← χ(S) denotes sampling x from a distribution χ over a set S. The
uniform distribution is denoted by U . The centered binomial distribution with parameter
µ is denoted by βµ, where µ is an even positive integer. The samples of βµ are in the
range [−µ/2, µ/2]. Its probability mass function is given by P [x] = µ!

(µ/2+x)!(µ/2−x)!2−µ.
The term βµ(Rl×k

q ; r) induces a matrix in Rl×k
q in which the coefficients of polynomials of

Rq are sampled deterministically from βµ using seed r.
The functions F , G, and H are SHA3-256, SHA3-512 and SHA3-256 hash functions,

respectively. The gen is an extendable output function used to generate a pseudorandom
matrix A ∈ Rl×l

q from seedA. It is instantiated with SHAKE-128.
The bitwise right shift operation is denoted by “≫”. By performing the shift coefficient-

wise, it is extended to polynomials and matrices. To enable for an efficient implementation,
Saber design uses power of two moduli q, p, and T , namely q = 2ϵq , p = 2ϵp , and T = 2ϵT .
Three constants are used to implement rounding operations through a bit shift: polynomials
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void indcpa_kem_dec(char *sk, char *ct, char m[])
uint16_t v[N];
uint16_t sksv[K][N];
1: BS2POLVECq(sk,sksv);
2: SABER_un_pack(&ct, v);
3: for (i = 0; i < N; ++i) do
4: v[i] = h2-(v[i]<<(EP-ET));
5: end for
6: VectorMul(ciphertext,sksv,v);
7: for (i = 0; i < N; ++i) do
8: v[i] = (v[i]&(P-1))>>(EP-1);
9: end for

/* pack decrypted message m */
10: POL2MSG(v,m);

void POL2MSG(uint16_t *v, char *m)
1: for (j = 0; j < BYTES; j++) do
2: m[j] = 0;
3: for (i = 0; i < 8; i++) do
4: m[j] = m[j]|(v[8*j+i]<<i);
5: end for
6: end for

Figure 3: C code of Saber.PKE.Dec [BDK+21].

h1 ∈ Rq and h2 ∈ Rq with all coefficients being 2ϵq−ϵp−1 and 2ϵp−2 − 2ϵp−ϵT −1 + 2ϵq−ϵp−1,
respectively, and a constant vector h ∈ Rl×1

q in which each polynomial is equal to h1.
In the final round of NIST PQC project, three sets of parameters are proposed in Saber

documentation [D+20] for the security levels of NIST-I, NIST-III, and NIST-V: LightSaber,
Saber and FireSaber, respectively. In this paper we focus on Saber which has parameters
n = 256, l = 3, q = 213, p = 210, T = 24, and µ = 8. Its decryption failure probability is
bounded by 2−136.

3.2 Vulnerabilities in Saber
Several vulnerabilities have been discovered in software implementations of Saber, in-
cluding Incremental-Storage vulnerability [RBRC21], weakness of re-encryption opera-
tion in Fujisaki-Okamoto transform [UXT+22] and weakness of polynomial multiplica-
tion [MBB+22].

In [RBRC21], two different types of Incremental-Storage vulnerabilities in two proce-
dures of Saber were reported:

• Bitwise-Storage in message decoding operation (line 2 of Saber.PKE.Decrypt() in
Fig. 1), in which the message bits are computed and stored in the memory location
v[i] in an unpacked fashion (line 8 of indcpa_kem_dec() in Fig. 3).

• Bytewise-Storage in POL2MSG() procedure in which every eight message bits are
packed into a byte and stored in memory (line 4 of POL2MSG() in Fig. 3).

In this paper, we exploit the Bytewise-Storage vulnerability of POL2MSG() procedure
and demonstrate that it allows us to recover messages and the secret key of Saber from
the amplitude-modulated EM emanations.

4 Trace acquisition
This section describes how we captured amplitude-modulated EM emanations, pre-
processed resulting traces, and selected intervals of interest.

4.1 Experimental setup
The experimental setup is shown in Fig. 4. We use the same target device and the same
equipment for traces acquisition as in the side-channel attack presented in [WND22].
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Figure 4: Equipment for acquiring amplitude-modulated EM emissions.

The target device is an nRF52832 chip mounted on a Nordic Semiconductors nRF52
DK development board. The chip supports Bluetooth 5 with a data transmission rate of
2Mbps. The option nRF5_SDK_14.2.0_17b948a is used for the radio setup.

The 32-bits ARM Cortex-M4 CPU contained in nRF52832 is programmed to the C
implementation of SABER from [BDK+21] without any countermeasures against power/EM
analysis. The C implementation is using gcc-arm-none-eabi-8-2018-q4-major with two
different optimization options: -O0 (no optimization) and -O3 (highest level of optimization).
The CPU runs at 64MHz.

The receiver is an Ettus Research USRP N210 software defined radio (SDR). The center
receiving frequency is set to 2fclock + fBluetooth = 2.528GHz, where fBluetooth = 2.4GHz is
the Bluetooth channel center frequency and fclock = 64MHz is the frequency of the CPU
clock.

The signals are sampled with the sampling frequency 25MHz, which is the maximum
sampling frequency of USRP N210 SDR 25MHz, limited by interface. The signals are
transmitted from the target device to the receiver through an SMA coaxial cable.

4.2 Trace pre-processing
Amplitude-modulated EM emanations are very noisy and thus need to be pre-processed
to increase the signal-to-noise (SNR) ratio. Similarly to [WND22], we pre-process all
traces by averaging 100 repeated measurements. This improves the SNR by a factor of
ten,

√
100 = 10.

In our experiments, we carry out the attacks on both, the profiling device and a different
device, shown in Fig. 4. To reduce the negative effect of device intra-variability in the
latter case, we apply two scaling methods: min-max scaling and standardization (also
known as variance scaling) [ZC18].

Let R denote the set of real numbers. Given a set of traces T with elements of type
T = (τ1, . . . , τw) ∈ Rw, each trace T ∈ T is scaled to T ′ = (τ ′

1, . . . , τ ′
w) ∈ Rw such that

τ ′
i =


τi − τmin

τmin − τmax
, for min-max scaling

τi − µi

σi
, for standardization,

where τmin and τmax are the minimum and the maximum data points in T , and µi and
σi are the mean and standard deviation of traces in T at the ith trace point, for all
i ∈ {1, . . . , w}.
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Figure 5: (a) A trace representing the message decoding and POL2MSG() procedures (top)
and t-test for 32 message bytes (bottom) for 30K traces; (b) A zoomed-in view of the first
four message bytes in POL2MSG() (top) and their t-test (bottom).

4.3 Selecting intervals of interest
To exploit the Bytewise-Storage vulnerability in POL2MSG() procedure, we first locate the
part of traces representing the execution of POL2MSG() during the decapsulation of the
message. The message is decapsulated at the step 1 of Saber.KEM.Decaps() in Fig. 2,
when the ciphertext c is decrypted by Saber.PKE.Dec().

According to the C implementation of POL2MSG() in Fig. 3, we expect to see 32 similarly
looking patterns representing the packing of each block of eight message bits into a byte.
The top part of Fig. 5(a) shows a segment of trace containing both, message decoding and
POL2MSG() procedures. The top part of Fig. 5(b) shows a zoomed-in view of the first four
message bytes in POL2MSG().

Once the approximate position of POL2MSG() is determined, we apply test vector
leakage assessment (TVLA) to locate the intervals corresponding to the processing of each
message byte more precisely. These intervals are used for training of the neural networks
at the profiling stage.

The TVLA [GJJR11] is a well-known statistical method for evaluating side-channel
leakage qualitatively. It applies Welch’s t-test [Wel47] to compare the means of two sets of
measurements, T0 and T1:

t = µ0 − µ1√
σ2

0
n0

+ σ2
1

n1

,

where µi, σi and ni are the mean, standard deviation and cardinality of the set T i,
for i ∈ {0, 1}. The null hypothesis (that the difference in means is zero) is rejected
with a confidence of 99.9999% if the absolute value of the t-test score is higher than
4.5 [Wel47]. This means that T0 and T1 have noticeable differences and hence may leak
some side-channel information.

The bottom part of Fig. 5(a) shows t-test results for all 32 message bytes corresponding
to the trace segment in the above plot. The t-test was carried out on a set of 30K traces
captured for random messages and random keys. Each trace in the set is an average of
100 repeated measurements. We can clearly see 32 peaks in POL2MSG() part of the trace.
In the message decoding part, the leakage is much weaker.

In the zoomed-in view of POL2MSG() leakage in Fig. 5(b) bottom, we can see that the
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Table 1: The MLP architecture; w = 160 (20) for -O0 (-O3).

Layer (Type) Output Shape Parameter #

Input w 0
BatchNormalization1 w 4w
Dense1 (ReLU) 512 82432
Dense2 (ReLU) 256 131328
Dense3 (ReLU) 256 65792
Dropout1 256 0
Output (Softmax) 256 65792

t-test peaks are located at the end of the corresponding byte processing. This is reasonable
since, according to the implementation of POL2MSG() (see line 4 of POL2MSG() in Fig. 3),
the packed byte value is stored in memory after the inner for-loop is completed.

5 Profiling stage
This section describes how we train neural networks at the profiling stage.

Let I denote the set of real numbers within the interval [0,1], I := {x ∈ R | 0 ≤ x ≤ 1}.
We use w-point segments of traces containing the execution of the ith message byte by

POL2MSG() to train neural networks of type Ni : Rw → I256 which predict the value of the
ith message byte, for all i ∈ {0, 1, . . . , 31}. The set of training traces, TT , is captured for
random messages and random keys. Message byte values are used as labels for traces.

Table 1 shows the architecture of neural networks in our experiments. The input size
of the network is w = 160 and w = 20 points for the Saber implementation compiled with
-O0 and -O3 optimization levels, respectively.

During training, we use Nadam optimizer with the learning rate of 0.0001 and numerical
stability constant epsilon=1e-8. Categorical cross-entropy is used as a loss function to
evaluate the network classification error. The number of epoch is set to 100 with a batch
size 128. The dropout rate is set to 0.2. 10% traces are used for validation. Only the
model with the highest validation accuracy is saved.

6 Attack stage
In this section, we present the new message recovery method based on multiple-bit error
injection and describe how we use it to obtain Saber’s secret and session keys.

6.1 Multiple-bit error (MBE) method for message recovery
Let m = (m[0], m[1], . . . , m[31]) be a message of Saber KEM to be recovered, where m[i] is
the ith message byte, and c = (cm, b′) be a properly generated ciphertext which contains
m.

We create 255 modified versions of c, denoted by ce, such that Saber.PKE.Dec()
decrypts ce to

me = (m[0]⊕ e, m[1]⊕ e, . . . , m[31]⊕ e), (1)

where e ∈ {1, 2, . . . , 255} is the error. The same error is injected into all message bytes in
parallel. The original ciphertext c corresponds to the error-free case, c = c0.

The modified ciphertexts ce are created by changing the coefficients of cm so that, for
every message byte i ∈ {0, 1, . . . , 31}, all bits of m[i] in which the 8-bit binary expansion of
e has the value 1 are flipped. To flip a message bit j, the value of the center of the integer
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ring Zq is subtracted from the jth coefficient of cm, for any j ∈ {0, 1, . . . , 255}. Since the
message polynomial is only additively hidden within cm (see line 8 of Saber.PKE.Enc()),
this results in a ciphertext decrypting to a message equal to the original message m with
the jth bit flipped [RBRC21].

Next we acquire 256 attack traces TA = {T0, T1, . . . , T255} captured during the decap-
sulation of the chiphertext ce by the device under attack, for all e ∈ {0, 1, . . . , 255}. For
each message byte i ∈ {0, 1, . . . , 31}, the w-point segments containing the execution of
m[i] by POL2MSG() are located in TA and extracted. The extracted trace segments are
given as input to the MLP model Ni trained at the profiling stage.

For each Te ∈ TA, the model Ni outputs a score vector Si,e = Ni(Te) in which the value
of the lth element, Si,e[l], is the probability that me[i] = l in Te, for l, e ∈ {0, . . . , 255}.

The most likely label for m[i] among 256 candidates is decided as:

l̃ = arg max
l∈{0,1,...,255}

(
255∏
e=0

Si,e[l ⊕ e]).

If l̃ = m[i], the classification is successful. The condition l̃ = m[i] can be verified by
checking if the rank of the message byte i, ranki, is zero.

Since we inject all possible multiple-bit errors into each message byte i ∈ {0, 1, . . . , 31},
for every i, the ground truth labels of 256 traces of TA are mutually disjoint. Therefore,
at least one of the traces of TA has the label preferred by the model Ni for every i.

6.2 Secret key recovery
The secret key is recovered as follows:

1. Use the method from [NDGJ21] described later in this section to construct 24 chosen
ciphertexts c1, . . . , c24.

2. For each ci, i ∈ {1, . . . , 24}, use the multiple-bit error injection method to construct
255 modified versions of ci which decrypt to messages defined by eq. (1)

3. Capture from the device under attack a set of attack traces for 24× 256 resulting
ciphertexts.

4. Use the attack traces to recover the messages m1, . . . , m24 contained in the ciphertexts
c1, . . . , c24 using the message recovery algorithm described in Section 6.1.

5. Derive the secret key s from 24 recovered messages m1, . . . , m24 as described below.

Following the method [NDGJ21], the ciphertexts are constructed as ci = (cm, b′) where
cm = k0

∑255
j=0 xj ∈ RT and

b′ =


(k1, 0, 0) ∈ R3×1

p for i = {1, . . . , 8},
(0, k1, 0) ∈ R3×1

p for i = {9, . . . , 16},
(0, 0, k1) ∈ R3×1

p for i = {17, . . . , 24},

where the pairs (k0, k1) are defined in Table 2. The coefficients of the secret key s are
mapped into codewords of the [8, 4, 4]2 extended Hamming code composed from the bits
of eight messages. The first group of 256 secret key coefficients is derived from messages
recovered from c1, . . . , c8, the second group of 256 coefficients - from from messages
recovered from c9, . . . , c16, and the last group of 256 coefficients - from messages recovered
from c17, . . . , c24.
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Table 2: The mapping of bits of eight messages into secret key coefficients [NDGJ21].

Coef.
of s

The message bit value for the pair (k1, k0)
(186,0)(293,7)(311,7)(615,2)(613,2)(890,4)(903,4)(199,0)

-4 0 1 1 1 1 0 0 0
-3 1 1 1 0 0 0 0 1
-2 1 0 0 1 1 0 0 1
-1 0 0 0 0 0 0 0 0
0 0 1 1 0 0 1 1 0
1 0 0 0 1 1 1 1 0
2 1 0 0 0 0 1 1 1
3 1 1 1 1 1 1 1 1
4 1 1 0 1 0 0 1 0

Figure 6: The distribution of (a) ground truth labels and (b) labels predicted by the model
N0 trained on a 30K set. Results of a single-trace attack on the same device (the average
of 3K traces captured for random messages).

6.3 Session key recovery

Given a properly generated ciphertext c, the session key can be trivially extracted by first
recovering the message m contained in c from 256 traces using the presented multiple-
error injection method. Then, the session key is computed as K = H(K̂ ′, c) where
(K̂ ′, r′) = G(pkh, m) (see lines 2 and 4 of Saber.KEM.Encaps()).

7 Experimental results

In the experiments, we use two identical nRF5283 devices, D1 and D2, shown in Fig. 4.
D1 is used for capturing training traces for the profiling stage. Both D1 and D2 are used
for capturing test traces for the attack stage. All training and test traces are pre-processed
by averaging 100 repeated measurements.

The experiments in Sections 7.1-7.3 are carried out on devices programmed to the Saber
implementation compiled with -O0 optimization level. In Section 7.4, we show results for
the implementation compiled with -O3 optimization level.
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Figure 7: The rank of m[0] in a repetition attack using 256 traces with the same ciphertext.

7.1 Bias in neural networks
In this section, we demonstrate that multi-class neural networks which are trained on a
small dataset may be strongly biased towards certain classes in their predictions. This
phenomenon has been observed in previous side-channel attacks, e.g. [BF19].

We trained an MLP model N0 with the architecture listed in Table 1 on 30K traces
captured for random messages (with 10% left for validation). The model was trained on
the segment of POL2MSG() corresponding to the processing of the first message byte, m[0].

After training, we tested N0 on 3K traces from the same device captured for random
messages. Each prediction was done based on a single trace (single-trace attack). Fig. 6
illustrates the results. The top plot shows the distribution of ground truth labels in the 3K
attack set. We can see that the labels are more or less uniform. The bottom plot shows
the distribution of labels predicted by N0. There is a strong bias towards one label, 128,
which is predicted correctly with 75% probability. In the rest of the section, we call such
labels preferred. We can also see that, the majority of labels, 96.5%, are predicted with
0% probability. We refer to them as non-preferred.

We believe that the strong bias of N0 is due to the fact that the 256-class model was
trained on a small dataset in which each class appears only roughly 100 times. This
does not seem sufficient. For a comparison, in the single-trace attack on Saber presented
in [NDGJ21], using power side-channels, a 1.6M dataset was used for training 2-class
MLP models which achieve 0.997% message bit prediction accuracy. In their training
dataset, each class from {0, 1} appears 0.8M times. This is four orders of magnitude
larger compared to the number of occurrences of each class from {0, 1, . . . , 255} in the
30K dataset in our experiment. Another reason can be that MLP models are quite simple.
More complex DL models, e.g. transformers [VSP+17], may achieve better results [Bri21].

The key idea of the presented multiple-bit error injection method is that, instead of
increasing the training set by several orders of magnitude to get unbiased models, we
increase the attack set 256 times and achieve high prediction accuracy with biased models.
Since the the attack set is several orders of magnitude smaller than the training set, the
presented method minimizes the total number of training plus attack traces required for a
successful attack.

One can ask if a similar improvement in the success rate can be achieved by a repetition
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Figure 8: The rank of m[0] in an attack using 256 traces of MBE method.

attack which uses 256 traces captured for the same ciphertext c. Fig. 7 and 8 show that
the repetition method is not as good as the multiple-bit error injection. For both methods,
we used the model N0 from the previous experiment for predicting labels in two scenarios:

1. The ground truth label of a trace in the attack set captured with c as input is a
preferred label of N0 (blue plot).

2. The ground truth label of a trace in the attack set captured with c as input is a
non-preferred label of N0 (orange plot).

From Fig. 7 we can see that, in the repetition attack, N0 successfully recovers the former
and fails to recover the latter. Contrary, Fig. 8 shows that, in the attack using multiple-bit
error injection method, N0 successfully recovers labels in both cases. This is not surprising
since the injected errors assure that at least one of the 256 traces in the attack set has a
label preferred by the model.

7.2 Message recovery attack
In this section, we evaluate how scaling, ensemble learning and repetitions affect the success
rate of a message recovery attack based on the multiple-bit error injection method.

7.2.1 Scaling

First, we evaluate the impact of different scaling methods on the probability of message
recovery from a different second device.

At the profiling stage, we captured from the profiling device, D1, a set of 30K traces
for random messages, TT . Then we scaled TT using two different methods: min-max
normalization and standardization. Using the profiling strategy described in Section 5, for
each message byte i ∈ {0, 1, . . . , 31}, we trained models Ni on each of these three training
sets.

At the attack stage, we selected at random five different messages and computed the
corresponding ciphertexts using the public key of the device under attack, D2. These five
ciphertexts, together with their 255 mutiple-bit error injected versions, were applied as
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Table 3: The impact of scaling on the average empirical probability of recovering a message
byte from 256 traces of MBE method captured from a different device.

Scaling method Message Average1 2 3 4 5

No scaling 0.6652 0.8135 0.6865 0.6647 0.7891 0.7238
Min-max normalization 0.7649 0.8412 0.7781 0.7315 0.8576 0.7947

Standardization 0.8958 0.9271 0.8698 0.9167 0.9323 0.9083

Figure 9: The preferred labels of two models trained on the same 30K set with a different
order of elements. Results of a single-trace attack on the same device (the average of 3K
traces for random messages).

inputs to D2 to capture the set of attack traces, TA. The set TA was scaled using the
same two methods as TT .

Table 3 lists the average empirical probabilities of recovering a message byte from
TA for each of the five messages. We calculate the probabilities as pi = 1

1+ranki
, where

i ∈ {0, 1, . . . , 31} is the byte number.
We can see that both min-max normalization and standardization scaling methods

improve the message byte recovery probability. For the standardization, the average
probability is by 18.45% larger than the one for non-scaled traces. In the rest of experiments,
we use traces scaled with the standardization method.

7.2.2 Ensemble learning

Next, we evaluate if the probability of message recovery can be further improved by using
an ensemble of models. It is known that, if the models make independent errors, the
ensemble can perform considerably better than its members [GBC16].

Since we randomly shuffle traces in a training set for each training session and set aside
10% of the set for validation, at each training session the models are trained on a slightly
different set. In addition, data in the beginning of the training set seem to have a higher
impact on the model than the data at the end. Due to these and other factors, two models
trained on the same dataset may have different preferred labels, as illustrated in Fig. 9.
It shows the results of a single-trace attack for two models trained on the same 30K set.
We can see that some of their preferred labels are different. This implies that the models
may be making different errors on the same attack set and, hence, the ensemble approach
might be beneficial.

To verify the latter, we used the same 30K training set to train 10 different models for
each message byte i ∈ {0, 1, . . . , 31} and used an ensemble of k of these models to recover
the bytes using the multiple-bit error injection method. Table 4 summarizes the results.
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Table 4: The average empirical probability of recovering a message byte from 256 traces
of MBE method captured from a different device using an ensemble of k models.

Number of models, k 1 2 3 4 5

Average probability 0.9083 0.9370 0.9469 0.9573 0.9458

Number of models, k 6 7 8 9 10

Averaged probability 0.9385 0.9448 0.9510 0.9510 0.9417

Table 5: The average empirical probability of recovering a message byte and the complete
message from 256×N traces of MBE method captured from a different device.

Message Average Complete
message1 2 3 4 5

N = 1 0.9688 0.9844 0.9323 0.9375 0.9635 0.9573 0.2475
N = 2 0.9844 0.9688 1.0000 0.9531 1.0000 0.9813 0.5459
N = 3 1.0000 0.9688 1.0000 0.9844 1.0000 0.9906 0.7401

Table 6: The average empirical probability of recovering a message byte and the complete
message from 256×N traces of MBE method captured from the same device.

Message Average Complete
message1 2 3 4 5

N = 1 0.9688 1.0000 1.0000 0.9844 0.9844 0.9875 0.6691
N = 2 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
N = 3 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

We can see that combining four models into an ensemble is the best choice. In the rest of
experiments, we use an ensemble of four models.

7.2.3 Repetitions

Finally, we investigate if the probability of message recovery can be further improved if
each trace in the attack set is captured with N repetitions.

Table 5 shows the results for N = 1, 2 and 3 for the case when the device under attack
is different from the profiling device. We can see that, by raising the degree of repetition
N to 3, we can boost the average probability of recovering a message byte to 0.9906 and
hence the likelihood of recovering the complete message to 0.7401. We believe that, by
raising N , the latter can be further improved.

Table 6 presents similar results for the case when the device under attack is the same
as the profiling device. We can see that, in this case, the probability of recovering the
message is 1 for N ≥ 2. We show both tables to emphasize the significant impact of device
intra-variability and justify the advantage of profiling on the device under attack (and
hence the need for minimizing the training set).

7.3 Secret key recovery attack

It follows from Tables 5 and 6 that we may recover messages with some errors. For this
reason, for secret key recovery, we use the ECC-based approach for constructing chosen
ciphertexts presented in [NDGJ21] rather then the methods from [RBRC21,RSRCB20].
The methods [RBRC21,RSRCB20] use half as many ciphertexts as the method [NDGJ21] to
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Table 7: The statistic on different types of errors in a secret key recovery attack using
24× 256×N traces of MBE method from a different device.

Correct predictions Errors

N No errors Errors corrected
by ECC

Detected
errors

Undetected
errors

1 665 84 17 2
2 744 22 2 0
3 758 10 0 0
4 766 2 0 0
5 766 2 0 0

recover the key. However, they cannot correct any error. The ECC approach of [NDGJ21]
can correct 1-bit error in every coefficient of the secret key s.

The secret key recovery attack follows the steps (1)-(5) described in Section 6.2. First,
24 messages m1, . . . , m24 contained in the chosen ciphertexts c1, . . . , c24 are recovered
using the message recovery attack based on the multiple-bit error injection method. These
messages are used to derive 768 coefficients of secret key s based on the mapping in Table 2.

To evaluate the attack, we group possible outcomes into four cases:

1. No errors: The recovered coefficient matches the ground truth key coefficient.

2. Errors corrected by the ECC: There is exactly one error in the eight message bits.
This error is corrected by the ECC.

3. Detected errors: ECC detects more than one errors in the eight message bits and
this combination of bits is not in Table 2. These errors are detected by the ECC.

4. Undetected errors: The combination of the eight message bits is in Table 2, but the
recovered coefficient does not match the ground truth secret key coefficient.

The case (4) implies a failed secret key recovery because any number of wrong coefficients
makes the recovered key useless. The errors in case (3) may be fixed by key enumeration
if their number is small, since the location of the error is known. The complexity of key
enumeration is 9n, where n is the number of detected errors. Table 7 list the statistic on
the number of occurrences of each of the four cases for different degrees of repetitions N .

For N = 1, there are 2 undetected errors, so the attack fails. For N = 2, there are no
undetected errors and only 81 enumerations are required to find the secret key. Therefore,
the attack is successful. For N ≥ 3, the secret key can be recovered without any key
enumeration.

7.4 Higher optimization level
All experiments in the previous sections are made on the devices programmed with the
implementation of Saber compiled with -O0 optimization level. In this section, we present
the results for the implementation compiled with the highest optimization level, -O3.

First, we compared side-channel leakage in both implementations. Table 8 lists the
maximum t-test score for all message bytes. We can see that, on average, the leakage from
-O3 is 4.3 times weaker than the one from -O0.

Next, we trained models Ni for each message byte i ∈ {0, 1, . . . , 31} using same size
of the training set, 30K, captured from D1 and the same training strategy as in the
experiments with -O0 optimization level. Fig. 10 shows the ranks for all message bytes
recovered using an ensemble of four models from 256×N traces with the degree of repetition
N = 15 captured from a different device, D2.
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Table 8: Maximum t-test scores for all message bytes in -O0 and -O3 implementations.

Byte 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

-O0 22.5 23.4 24.4 27.9 25.7 27.7 32.6 29.5 29.1 30.2 29.8 30.4 22.4 22.5 23.7 27.6
-O3 7.2 5.3 7.2 6.1 6.4 4.3 7.1 5.9 6.2 3.8 6.4 5.6 6.6 5.8 7.0 7.1

Byte 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 Avg

-O0 26.0 27.2 31.6 28.8 27.5 29.9 30.6 33.1 25.5 21.1 25.1 25.1 23.7 27.4 29.0 29.2 27.2
-O3 5.8 5.6 6.2 6.0 6.8 6.3 6.4 7.9 6.8 5.7 6.9 6.2 6.2 5.3 5.1 8.9 6.3

Figure 10: The rank of m[i] in an attack by an ensemble of four modelsNi, i ∈ {0, 1, . . . , 31},
based on 256×N traces of MBE method from a different device for N = 15.

Even though the leakage from -O3 implementations is much weaker than the one from
-O0, the ranks of all bytes reach 0 with a higher degree of repetition N = 15. Therefore,
the message recovery attack attack successfully recovers a complete message from traces
captured from a different device.

We have not tried to recover the secret key from the implementation complied with
-O3 optimization level, but there should be no principle difference from -O0 case since the
message recovery attack for -O3 optimization level is successful.

8 Conclusion
We presented the first side-channel attack which can successfully recover messages of
Saber KEM from its software implementation using amplitude-modulated EM emanations.
Previous amplitude-modulated EM emanation-based attacks on Saber KEM were not able
to recover complete messages with a sufficiently high probability. We also demonstrate a
successful secret key recovery attack on Saber KEM from messages extracted for chosen
ciphertexts.

The presented multiple-bit error injection method is not specific for Saber KEM. It can
be applied to other LWE/LWR-based PKE/KEMs, or, more generally, to any cryptographic
algorithm in which a secret can be manipulated by modifying input data controlled by the
attacker. It is also applicable to any type of side-channels, but seems to be most valuable
in situations where the leakage is weak.
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