A 2.1 KHz Zero-Knowledge Processor
with BubbleRAM

David Heath and Vladimir Kolesnikov
heath.davidanthony@gatech.edu, kolesnikov@gatech.edu

Abstract

Zero-Knowledge (ZK) proofs (ZKP) are foundational in cryptography.
Most recent ZK research focuses on non-interactive proofs (NIZK) of small
statements, useful in blockchain scenarios. Another line, and our focus,
instead targets proofs of large statements that are useful, e.g., in proving
properties of programs in ZK.

We specify a zero-knowledge processor that executes arbitrary pro-
grams written in a simple instruction set, and proves in ZK the correct-
ness of the execution. Such an approach is well-suited for constructing ZK
proofs of large statements as it efficiently supports complex programming
constructs, such as loops and RAM access.

We propose several novel ZK improvements that make our approach
concretely efficient: (1) an efficient arithmetic representation with conver-
sions to/from Boolean, (2) an efficient read-only memory that uses 2logn
OTs per access, and (3) an efficient read-write memory, BubbleRAM, which
uses % log? n OTs per access. BubbleRAM beats linear scan for RAM of size
> 3 elements! Prior ZK systems used generic ORAM costing orders of
magnitude more.

We cast our system as a garbling scheme that can be plugged into the
ZK protocol of [Jawurek et al, CCS’13].

Put together, our system is concretely efficient: for a processor instan-
tiated with 512KB of main memory, each processor cycle costs 24KB of
communication. We implemented our approach in C++. On a 1Gbps LAN
our implementation realizes a 2.1KHz processor.

1 Introduction

Zero-Knowledge (ZK) proofs (ZKP) allow an untrusted prover P to convince
an untrusted verifier V' that a statement is true while revealing no other infor-
mation. ZKP are fundamental cryptographic tools that are useful in a variety
of settings. Recently, blockchain applications have encouraged intense research
focus on succinct proofs of small statements. This focus has left proofs of large
statements less explored, especially in concrete terms. Large statements are
useful; for example, they capture properties of programs such as ‘this program
has a bug’.

1.1 Contribution

‘We construct a concretely efficient Zero-Knowledge processor, well-
suited for proving large statements. It incorporates several technical con-
tributions:

1. BubbleRAM, a novel ZK oblivious RAM (ORAM), of amortized cost %log2 n
Oblivious Transfers (OT) per access. Critically, OT's for all accesses can run
in parallel, resulting in constant round complexity. BubbleRAM is best for
tiny arrays too, beating linear scan for RAM sizes > 3 elements!

2. ZK oblivious ROM of amortized cost 2logn OTs per access.

3. Arithmetic representation for authenticated values with efficient support for
both arithmetic operations and converting to/from Boolean. Its efficiency
is essential in memory operations, allowing for quick oblivious reshuffles.

We implemented our system in C++. On a 1Gbps LAN, our implementation
realizes a 2.1KHz processor.

Our system proves bugs in generalized code snippets from [HK20] (e.g.,
we allow unbounded loops, which was fundamentally unsupported in [HK20])
and achieves comparable performance. For programs that exercise arbitrary
memory access, we improve on [HK20] by severals orders of magnitude. Prior
works implementing von Neumann architectures focused on NIZK [BCTV14b,
BSCTV13]; our total proof time is better by ~ 3 orders of magnitude or more
than their reported numbers.

Outline. We present our processor, arithmetic representation, ROM and RAM
both informally (Sections 1.4 and 4) and in technical detail (Section 6). Security
proofs are in Section 7. We discuss our implementation in Section 8 and evaluate
its performance in Section 9.

1.2 High Level Intuition

The prover P can precompute in cleartext all intermediate values appearing
during the computation of the processor. We allow P to choose message au-
thentication codes (MACs) for all intermediate values via (many) OTs: each of
her MACs is a proof that she has a particular value on a particular processor
“wire”.

P’s proof task is to demonstrate that all of the MACs that she chose are
related to one another by the processor’s semantics. She does so by performing
simple algebra, enabled by our MAC representation’s support for communication-
free homomorphic operations. This algebra allows P to construct a large col-
lection of MACs that each authenticate the value 0. If P cheats in her OT
selection and takes a MAC that does not correspond to the cleartext processor
execution, she will be unable to construct a MAC of 0. P sends as proof a
digest (computed by a hash) of all of these ‘proofs of zero’ to the verifier V,
who precomputes the his own copy of the hash and checks the two are equal.

Because the sent MACs each encode 0 regardless of P’s input, the transmitted
digest conveys no information to V: the protocol is Zero Knowledge.

1.3 ZKP from Garbling Schemes via [JKO13]

We cast our system as a garbling scheme (GS) [BHR12]; it becomes a malicious-
verifier ZKP system when used with the JKO framework [JKO13]. It keeps
the constant round complexity of JKO. Thus, we construct an efficient GS
that satisfies the preconditions required to interface with [JKO13]: correctness,
soundness and verifiability.

1.4 Zero Knowledge Processor Architecture

Our central design choice is to implement a processor architecture. This choice
is not standard: most ZK tools focus on direct circuit representations (either
Boolean or arithmetic). In a direct circuit representation, program operations
are implemented as circuits (for example, addition might be built from full 1-
bit adders that are respectively built from AND and XOR gates), and then an
overall circuit is wired together from these smaller circuits. Direct circuit repre-
sentations are often efficient: small program circuits can be tuned to minimize
computation and/or communication.

However, circuit representations have one significant downside: circuits do
not adequately represent control flow. A circuit must implement all control
paths in the program; thus, a naive direct translation may result in exponential
circuit size. Recent research has shown how to avoid the communication over-
head of conditional branching [HK20], but the core representational problem
remains. In particular, [HK20] does not scale to large numbers of execution
paths. In contrast, typical programming models assume that the underlying
system need only execute the taken control path.

An alternative to direct circuit representations, which we adopt, is to im-
plement programs from arbitrarily composable building blocks. Each building
block, implemented as a circuit, evaluates a single cycle of a low-level proces-
sor. More precisely, building blocks conditionally implement all instructions
in a target instruction-set-architecture (ISA)!. The circuit (1) fetches the next
instruction from memory, (2) decodes the instruction to determine which oper-
ation to perform, and (3) executes the required operation to update processor
state. To execute an end-to-end program, we glue together many such cycles.
The benefit of an indirect ISA representation is that the number of required
building blocks is proportional to the cleartext running time, regardless of con-
trol flow.

This approach leads to a significant problem that must be addressed: the
building block models all instructions and accesses memory, and hence incurs
corresponding communication and computation costs. This work’s technical

IThis case of conditional branching does not lead to control-flow blow-up: the number of
instructions is a small constant.

goal is to significantly reduce these costs. We focus on the following subprob-
lems:

e Each cycle reads an instruction from memory. Thus, we implement a read-
only memory (ROM) suitable for holding instructions. The ROM uses only
2logn OTs per read.

e Each cycle implements the possibility of reading/writing to main memory.
RAM access in the oblivious setting motivates research on Oblivious RAM
(ORAM). We design and implement a custom ZK ORAM, BubbleRAM, which
incurs no extra rounds of communication and uses only %log2 n OTs per
access.

The RAM and ROM introduce a residual problem: both are based heavily
on the oblivious permutation of values, but unfortunately permuting a value en-
coded in a Boolean representation incurs overhead proportional to the number
of bits in the value. Thus, we introduce and implement an arithmetic represen-
tation that is friendly to permutation. Our RAM/ROM store cells with 32-bit
values and thus the arithmetic representation gives a factor 32 improvement
in RAM/ROM operations. The arithmetic representation also allows efficient
arithmetic (e.g. addition and multiplication), while supporting efficient Boolean
operations. While our focus is constructing an efficient ZK processor, our sub-
components, especially our arithmetic representation and BubbleRAM, may be
of independent interest.

2 Related Work

We build an efficient ZK technique for proving large statements encoded in a
low-level instruction set. In our review of related work, we focus on concretely
efficient protocols.

ZK ZK proofs [GMR85, GMW091] are fundamental cryptographic primitives.
ZK proofs of knowledge (ZKPoKs) [GMR85, BG93, DP92] allow a prover to
convince a verifier, who holds a circuit C, that the prover knows an input, or
witness, w for which C(w) = 1.

Early practical ZK protocols, motivated by signatures and identification
schemes, focused on algebraic relations, e.g. [Sch90, CDS94]. More recently,
ZK research has shifted focus to proofs of arbitrary statements: our work is in
this more recent line. We next highlight works that prove arbitrary statements.

ZKP from garbling schemes The most closely related works allow an inter-
acting prover P to convince V of a satisfying assignment to a circuit by evaluat-
ing a Garbled Circuit (GC) [JKO13,FNO15,HK20]. [JKO13] was the first work
to construct concretely efficient proofs of arbitrary circuits. It also establishes a
garbling scheme (GS)-based ZKP framework relying on verifiable GS: by satisfy-
ing a few GS requirements, new schemes can be plugged into [JKO13]’s protocol

to obtain malicious-verifier ZK. [FNO15] improved the [JKO13] framework and
proved that common GC techniques are compatible.

Although our work is not immediately recognizable as a GC or GS technique
(we use a custom algebraic representation, not standard GC), it fits neatly in
the [JKO13] framework. Hence, we review [JKO13] in Section 3 as background
to our approach.

[HK20] modernized verifiable GS by showing an efficient technique for cir-
cuits that include conditional branching, e.g. as the result of if program state-
ments. Their technique’s communication cost scales with the longest execution
path, not with the size of the circuit. In addition, [HK20] presented a motivating
use-case for verifiable GCs: proving the existence of a program bug in ZK. The
authors argue that the community’s intense focus on NIZK, motivated largely
by blockchain applications, has left (interactive) proofs of larger statements less
explored. Verifiable GSs scale elegantly to arbitrarily sized proofs, and so are
well suited to the larger statements resulting from the ZK bugs use-case.

Our work is similarly well-suited for this use case: our costs scale linearly
with the program execution time. In Section 9 we compare to [HK20] wrt their
ZK bugs use case. Our evaluation demonstrates that while [HK20] is slightly
faster than ours for small, simple programs, (1) our approach is more general,
since it need not explicitly annotate loops with hard-coded upper bounds and
(2) our approach scales to more realistic programs due to our efficient RAM
representation.

Succinct and non-interactive ZK Ishai et al. [IKOS07], introduced the
‘MPC-in-the-head’ paradigm: here, P emulates in her head an MPC evaluation
of the proof statement among virtual players. V inspects random portions of the
evaluation transcript and thus gains confidence that the prover has a witness.
By allowing V' to inspect transcripts of only some virtual players, the protocol
protects P’s secret. This groundbreaking work spurred a flurry of subsequent
MPC-in-the-head advances [GMO16,CDG'17, KKW18 AHIV17].

Succinet non-interactive arguments of knowledge (SNARK) techniques con-
struct extremely small proofs with fast verification time [GGPR13, PHGR13,
BCG™13,CFH™ 15, Grol6]. Early SNARKSs require the use of a semi-trusted
party, and thus more recent works have developed STARKS (succinct transpar-
ent arguments of knowledge) [BBHR18]. STARKS do not require trusted setup
and rely on more efficient primitives.

[HK20] extensively compares verifiable garbling schemes with many of the
works above: namely [KKW18], Ligero, Aurora, Bulletproofs, STARK, and
Libra [KKW18, AHIV17, BCR*19, BBBT18, BBHR19, XZZ"19]. Their analysis
demonstrates that while these works have excellent ZK performance in certain
settings (e.g., small proof size, fast verification time, non-interactivity), they
struggle to handle large proofs motivated by problems like the ZK bugs use-case.
Thus, we focus our comparison on [HK20], whose focus (and interactivity) is
similar to ours.

ZK Processors A number of works also implement ZK processors [BCTV14b,
BCTV14a,BCGT13]. These works build succinct, non-interactive proof engines.
Thus, in a sense these approaches are more general than ours: our approach is
interactive and requires proportional work from both the prover and verifier.
The trade-off is efficiency. These works yield processors that run in the 10Hz
range and hold only hundreds of bits of memory. In contrast, our processor
operates in the KHz range and manipulates hundreds of kilobytes of memory.

ORAM A key contributor to the efficiency of our processor is a novel RAM
built for ZK. To the best of our knowledge, no prior work has built RAM with
this explicit use case in mind. Instead, prior ZK works that interface with
large RAM use standard oblivious RAM (ORAM) as a black box, e.g. [MRS17,
HMR15]. Thus, we provide performance comparison to state-of-the-art concrete-
efficiency ORAMs. We examine ‘Floram’, a recent ORAM that scales well to
large memory sizes [Dsl7], and a recent state-of-the-art square-root ORAM
that is preferable for smaller memory sizes [RS19]. Comparing to these ap-
proaches is somewhat of an apples-to-oranges comparison: these approaches
are generic ORAM tools well-suited to a number of scenarios. We compare
to demonstrate the relative efficiency of BubbleRAM. Our analysis (Section 9)
shows that BubbleRAM is orders of magnitude faster than the state-of-the-art
ORAMs. Furthermore, BubbleRAM is directly embedded in a circuit and hence
does not require extra rounds of communication to perform RAM lookup.

MPC Processors A number of works build processors in the MPC set-
ting. [LO13] were the first to formalize how a GC can interface with an ORAM
in their Garbled RAM construction. While groundbreaking, Garbled RAM is a
theoretical construction and to the best of our knowledge no implementations
exist. More recently, [WGMK16,SHS™15] execute machine code, implementing
a MIPS processor as a Boolean circuit. This approach achieves impressive per-
formance, but suffers from the high cost of memory and arithmetic operations.
Our work also achieves a processor, but does so in the ZK setting. We take ad-
vantage of this more relaxed setting to achieve high performance, in particular
with respect to RAM access.

3 ZKP from Garbling Schemes

Jawurek et al. [JKO13] based the first efficient arbitrary-ZK construction on
GS. Prior to this breakthrough, ZK research focused on proofs of algebraic
statements. Our system is built on OT, not on GC, but we can naturally cast
it as a GS and reuse the [JKO13] machinery. We review [JKO13], for simplicity
casting it as GC-based, and keeping in mind that [JKO13] works with more
general schemes:

In a GC protocol, one player, the generator, encrypts the circuit and sends
the encryption to the second player. This second player, the evaluator, evaluates

this encrypted circuit gate by gate under encryption. Finally, the players jointly
decrypt the output. There are two properties of GC that are critical for ZK:

1. GC protocols produce authentic output. That is, even a malicious evalua-
tor cannot construct an output that successfully decrypts except by running
the protocol as specified. Authenticity is a formal property of all garbling
schemes [BHR12].

2. GC protocols hide intermediate values from the circuit generator. Indeed,
after the generator sends the circuit encryption, he receives no messages
from the evaluator until it is time to decrypt the output.

[JKO13] builds a ZK construction on top of GC as follows:

V and P agree on a proof statement encoded as a Boolean circuit, C. To-
gether, they run a GC protocol, where V acts as the generator and P acts as
the evaluator. Since C encodes a ZK statement, only P provides input and C
has only one output wire.

V encrypts C and sends the encryption to P. A malicious V can cheat by
sending an invalid circuit encryption that leaks P’s inputs. Therefore, [JKO13]
requires the following steps:

1. P evaluates the GC and commits to the output encryption.
2. V sends to P all randomness used to encrypt the circuit.

3. P re-encrypts C to check that V’s encryption is valid.

4. P opens her commitment to the output.

Because of the added check, even a malicious V' cannot cause P to open a
commitment to an output computed on an invalid circuit garbling. Further,
GC properties protect P’s private input and ensure that the protocol is ZK: V
learns nothing except that C outputs 1.

[JKO13] established and [FNO15] subsequently updated a framework for
verifiable GSs. A verifiable GS must (1) satisfy Bellare et al.’s definitions of cor-
rectness and authenticity (renamed soundness in the ZK setting) [BHR12]
and (2) be verifiable, which informally allows P to check that V' did not
cheat. [JKO13] provides a ZK protocol generic to all verifiable GSs. While
our approach does not manipulate GC, it fits cleanly in the verifiable GS frame-
work. Thus, we formalize our work in this framework and rely on [JKO13]’s
protocol. We provide their protocol as reference in Appendix E.

4 Technical Overview

We construct a highly generic and efficient ZK proof engine. Since generality
is a core goal, we designed our solution as a ZK processor. To support it, we
construct an efficient ZK ROM and RAM, as well as an arithmetic representa-
tion that efficiently supports both arithmetic and Boolean operations. In this
overview section, we informally present the core ideas of our constructions.

Arithmetic Representation for Verifiable Garbling We implement the
individual processor cycle building blocks using an arithmetic circuit representa-
tion. In Section 6.5 we present the representation in technical detail; we discuss
it at a high level here. Recall that in the interactive ZK setting, the two players
are the Verifier V' and the Prover P. Recall also that only P has input and
hence P can precompute all intermediate values in the program.

At a high level, our scheme ensures that for each intermediate circuit wire
(1) P holds the cleartext value on the wire and (2) P and V hold additive shares
of a message authentication code (MAC) on the wire. These MACs have two
high level attributes:

e MACs are ‘unforgeable’ in the sense that P cannot efficiently find a MAC
corresponding to a different cleartext value on the same wire. Thus each
MAC proves that P has a particular value on a particular wire. Critically,
the MAC on the program output wire thus authenticates the output value.

e To operate on arithmetic shares (e.g. to multiply), P asks V for additional
input via OT. MACs are used to ensure that P asks for the correct input
(i.e. does not cheat).

In more detail, let ¢ be a large prime; the following arithmetic is done modulo
g. V holds a secret uniform value A € Z, that is global to the protocol. For
each wire plaintext value a € Z,;, P holds a MAC share a - A — A and V holds
A, where A € Zg is also a secret drawn by V. A acts as a mask on P’s share:
since P knows neither A nor A, she cannot with high probability construct a
MAC corresponding to a different value, say (a +1) - A — A.

Implementing Operations The arithmetic representation features additive
homomorphism, and thus addition, subtraction, and multiplication by a public
constant require no communication. Other operations are implemented by OT:

As an example, suppose the players wish to decompose an arithmetic value
into binary, where each bit is itself authenticated by an arithmetic MAC. That
is, they wish to convert a 32-bit value into 32 1-bit values. To do so, P simply
asks for the binary decomposition via OT. V’s inputs to each OT are the two
possible MACs for the corresponding bit. Thus P receives a MAC on each
bit. Of course, P could cheat and ask for an arbitrary collection of bits. P
proves she did not cheat as follows: First note that the binary MACs can be
combined together using addition and multiplication by a public constant to
form a new MAC of the decomposed value. P subtracts this combined MAC
from her original MAC. If P did not cheat, then the result is a MAC of the
value 0. P presents this MAC to V as proof that she did not cheat in the OTs.
This MAC maintains ZK, because V receives the same message regardless of
the decomposed value. In our approach, P constructs many of these ‘proofs of
0’ (zerosActual, MACs that authenticate a 0 value). For efficiency, P does not
send these proofs individually, but instead accumulates them and at the end of
the protocol sends a single hash of all proofs. V checks this hash against her
own zerosExpected and is convinced P has a witness if they match.

Arithmetic MACs support other operations, such as multiplication. Perhaps
the most significant operation is multiplication where one multiplicand is known
to be either 0 or 1, which is achieved with only a single OT. This low cost is
important because this binary multiplication is used extensively in permuting
the processor’s ROM and RAM. We discuss arithmetic in detail in Section 6.5.

Round Complexity The arithmetic representation relies heavily on receiv-
ing inputs via OT. However, it does not incur multiple rounds of communication.
This is because we ensure that all of P’s OT inputs are her cleartext values.
Thus P precomputes all inputs at the beginning of the protocol and issues all
OT inputs at once. Our round complexity is the same as the underlying protocol

of [JKO13].

ROM The ZK processor stores program instructions in a read-only memory
(ROM) such that on each cycle the processor can obliviously read the next
instruction.

Our ROM is based on oblivious permutation [Wak68]. At a high level, we
allow P to freely permute the ROM, and then check that that the indexes she
accesses are consistent with the provided index value. Because P can predict, by
executing in cleartext, the state of the processor over time, she can arrange the
ROM favorably such that the elements are in the order that they are needed.
Additional work is needed to ensure that instructions can appear more than
once, but this modification is easily achieved by a clever circuit construction
in [KS08b]. Altogether, each ROM access incurs only O(logn) amortized com-
munication. The construction is described in Appendix C.

BubbleRAM The ZK processor stores the registry and main memory in prac-
tically efficient ZK ORAMs. Like our ROM, BubbleRAM is based heavily on
oblivious permutation. P freely permutes the RAM over time, such that ele-
ments that will be accessed soon are close to the front of the RAM (elements
bubble up). That is, a given element’s distance from index 0 is related to the
number of RAM accesses before that element is next needed. By continually re-
arranging the RAM, P ensures that each access need only look at index 0. The
RAM incurs amortized % log? n communication per access. The construction is
described in Section 6.8.

5 Notation

x 2 y denotes that x is defined as y.

e 7, denotes the integers modulo n.

o is the statistical security parameter (e.g. 40).

H is a collision resistant hash function.

V' is the verifier. We refer to V' as he, him, his, etc.

P is the prover. We refer to P as she, her, hers, etc.

(x,y) denotes a pair where V knows z and P knows y.

a =, b denotes that a is congruent to b modulo n.

We denote the type of arrays with elements of type type and fixed length n
by [type ; n]. We initialize a fixed size array where each index is filled with
a value z by writing [z ; n].

6 Technical Approach

Our contribution is a generic and practically efficient Zero Knowledge processor
that proves statements encoded as programs in a small instruction set. In this
section, we present our construction, ZKM (ZK Machine), in technical detail.

We formalize our approach as a verifiable garbling scheme [BHR12,JKO13,
FNO15]. Garbling schemes are typically understood as tools used to construct
GC protocols, and so our approach at first glance may seem incompatible. How-
ever, on closer inspection our approach does fit with the formal notion of gar-
bling.

A verifiable garbling scheme is a 6-tuple of algorithms:

(ev,Gb,En,Ev,De, Ve)

At a high level, ev provides the cleartext semantics for the construction: i.e.,
it specifies whether or not P’s private input causes the program to output 1.
Gb, En, Ev, and De allow the two players to achieve the same result in an honest
verifier ZK protocol. In particular, Gb specifies how V sets up all of his OT
inputs?, En specifies which OT outputs P receives based on her input, Ev speci-
fies how P constructs her authentic output, and De specifies how V checks that
P’s output is correct. Finally, Ve facilitates malicious verifier ZK protocols:
it specifies how P checks that all messages received from V were constructed
correctly.

Construction 1. ZKM is a privacy-free® verifiable garbling scheme expressed as
the following 6-tuple:

(ZKM.ev, ZKM.Gb, ZKM.En, ZKM.Ev, ZKM.De, ZKM.Ve)

All algorithms except En and De are based on running a fixed number T of
processor cycles (runtime T is agreed on in advance):

2In typical garbling schemes, Gb provides encryptions of programs. Our scheme features
no such encryptions, so we accordingly simplify our presentation by adjusting the [BHR12]
notation to omit program encryptions.

3Privacy-free schemes do not protect V’s input (V has no input in the ZK setting). Thus
our approach is not suited for the secure 2PC setting.

10

1. ZKM.ev executes processor steps in cleartext. After T steps, ev outputs
whether the processor’s first register holds the value 1.

2. ZKM.Gb garbles individual processor steps and, as it goes, generates the MACs
that are V’s OT inputs. The algorithm also accumulates the expected code,
zerosExpected, that V expects to receive from P.

3. ZKM.En specifies which MAC input values P should receive as a function of
her input. In our scheme, all of P’s inputs are binary choices implemented by
1-out-of-2 OT. Formally, ZKM is a projective garbling scheme. Thus ZKM.En
is a simple mapping: It specifies that if P’s ith input bit is 0 she receives the
0 OT secret, else the 1 OT secret. For reference, an algorithm for ZKM.En is
given in Appendix F.

4. ZKM.Ev executes processor steps using P’s MAC values and accumulates
authentication codes that are to be sent to V.

5. ZKM.De is a straightforward comparison of the MACs expected by V and
sent by P. If they match, the algorithm outputs 1, else 0. A specification of
ZKM.De is given in Appendix F.

6. ZKM.Ve allows P to rerun ZKM.Gb to reconstruct the messages received from
V. Thus, P can check that all V’s messages were correctly constructed.

In the remainder of this section, we describe ZKM.ev, ZKM.Gb, and ZKM.Ev in
detail. Section 7 formalizes the security of ZKM (proofs are in Appendix A). In
particular, ZKM satisfies the security definitions specified in [FNO15]. Theorems
in Section 7 imply the following:

Theorem 1. ZKM is correct, sound, and verifiable.
This fact, combined with theorems from [JKO13], implies:

Theorem 2. The protocol mzx of [JKO13] instantiated with ZKM is a secure
protocol that achieves malicious verifier Zero Knowledge.

6.1 Cleartext Processor Specification

We start by explaining the cleartext specification, ZKM.ev. In many garbling
schemes, ev is implicit: typical schemes operate over circuits with a small fixed
set of gate types and their semantics are clear. In contrast, our approach fea-
tures a relatively complex processor architecture. Therefore, we carefully specify
ZKM.ev such that we have a reference against which to check correctness.

Our processor is similar to a hardware processor and is a state machine that
includes the following components:

e A small collection of registers that hold local memory.

e A large main memory.

11

e The program text, held in a read-only memory (ROM).
e A program counter that indexes the ROM.
e A collection of the prover’s private input.

The core task in specifying cleartext semantics is to show how the processor
steps from one state to the next.

We thus formalize program state. Our machine manipulates 32 bit integers,
a typical choice in cleartext machines. We define the space of values (i.e., the
types of objects held by memory and registers and manipulated by low-level

operations) as 32 bit integers:
v = 2232

The low-level operations of the machine primarily focus on manipulating reg-
isters, each of which hold a single value. We choose to implement 32 registers
and refer to the registers collectively as the registry. We formalize a registry as
an array of 32 values:

registry = [v ; 32]

The processor manipulates the registry and the main memory by executing
program instructions. On each state transition, the processor reads a single
instruction from the program and performs the indicated state transforma-
tion. An instruction is a 4-tuple of an op-code and 3 arguments. Formally,
let srcg, srey, tar € v. The space of instructions is defined:

. A
instr £ (op, srco, srey, tar)

The space of program op-codes is a finite list of symbols:

op2 add|mul |1t]|--- arithmetic/comparisons on registers
| beqgz branch to srep if sreg is zero
| load load memory at srcy to register tar
| store store register srcg to address srcy
| input read P’s input value into register tar

We include op-codes that perform register arithmetic/comparisons, that condi-
tionally branch, that read/write main memory, and that receive input from P.
As an example, on an add instruction the processor (1) reads register srco, (2)
reads register srcy, (3) adds together these two values, and (4) writes the result
to register tar.

A program text is an indexed collection of instructions. On each cycle, the
processor reads from this collection based on the program counter. Formally, a
program counter is a value and a program text is an array of instructions:

pc=v text £ [instr]

12

While small amounts of memory can be stored in the registry, complex pro-
grams require large amounts of space. Thus, the processor includes a large main
memory. Programs move values into and out of main memory using load and
store instructions. Formally, a memory of size space € Zos2 is an array of
values of size space:

memory(space) = [v ; space]

Finally, we specify how the processor loads in P’s private input. The input
op-code instructs the processor to read in a single value from P’s input. Since
P might have more than 32 bits of input, we allow the processor to read in each
of P’s values one by one. Formally, the input is a read-only stack of values:

inp £ stack(v)

We assume read-only stacks come equipped with a method pop that pops the
top of the stack and returns the popped value.

We now formalize processor state. The state fully specifies all information
needed to perform each instruction. Formally, a state with memory size size is
a tuple of (1) a program, (2) a program counter, (3) a registry, (4) a memory,
and (5) an input stack:

state(size) = (text,pc, registry, memory(size), inp)

We define the semantics of our language in terms of a stepping operation.
That is, step (Figure 1) is a procedure that mutates the program state according
to the current instruction.

A program is a 3-tuple of (1) a program text, (2) a space parameter (i.e., the
size of the main memory), and (3) a time parameter. Formally, let space, time €
Ligz2:

program = (text, space, time)

We repeatedly step to run a program prog on P’s private input I:

eval(prog,I) :
(T, space, time) < prog
> initialize the state with the program text,
> P’s input, and an empty registry /memory.
s+« (P,0,[0; 32],[0; space],I)
for i € [0..time) :
step(s)
return s.registry[0] ==

We establish a convention that program execution constitutes a valid proof if
register 0 contains 1 at termination.

13

step(s) :

> Decompose the state into its parts.

(T,pc, R, M,I) + s

> Read the instruction from the program text.

(op, sreg, srey, tar) « Tpc]

> Read from the source registers.

argo < R[srco]

argy < R[srcq]

> Conditionally dispatch on the op-code.

switch(op) :
case(add) : R[tar] « argo + arg;
case(mul) : R[tar] « argo - arg
case(1lt) : Rltar] « argo < arg

> Other arithmetic/comparisons.

case(load) : R[tar] < MJargo]
case(store) : Margi] «+ argo
case(input) : R[tar] < I.pop()

> Update the program counter.

if op == beqz AN argy ==
then pc < arg;
else pc < pc+1

Figure 1: step, the core of the cleartext specification for the authenticated proces-
sor. step takes as an argument and mutates a program state. To perform a step of
computation, the processor (1) reads an instruction, (2) reads the registry, (3) per-
forms computation according to the op-code, including possibly reading/writing main
memory, and (4) (possibly) writes the resulting value to the registry.

6.2 The Authenticated Processor

Now that we have established cleartext semantics, we specify the authenticated
processor which performs the same task. Our goal is to specify ZKM.Gb and
ZKM.Ev, the actions respectively taken by V and P. The details of these two
procedures are nearly identical. Only the low-level operations (e.g. how to
multiply two values) differ. Thus, we begin our discussion at a higher level,
defining authentic constructions that both P and V" use. Later, we differentiate
the actions of the two players.

The following definitions closely reflect the specification in Section 6.1. We
distinguish authentic types from their cleartext variants by marking them with
a hat. The differences between the authentic specification and its cleartext
variant are two-fold: in the authentic setting (1) it is infeasible for P to forge

14

intermediate values and (2) V’s view is independent of P’s input.

The authenticated processor manipulates authentic values. We discuss the
details of authentic values carefully in Section 6.5. For now, assume that there
exists a type ¥ that encodes an integer in a field Z, where ¢ is a o-bit prime.
We assume (and later show) that this type supports algebraic operations, com-
parisons, and an operation mod32 which computes mod 232.

Like cleartext instructions, authentic instructions are 4-tuples of an op-code
and arguments. Authentic op-codes are simply authentic values. Formally, let
srcg, srey, tar € Ut

A A T A~
=0 instr £ (op, srco, srey, tar)

op
To read instructions in the authenticated setting, we use an authentic read-
only memory. We defer the discussion of the authentic ROM to Appendix C.
For now, assume that there exists a type rom and that for a ROM of size n
there exists (1) a procedure initROM which initializes the ROM from a cleartext
array and (2) a procedure readROM that returns the element stored at an index
specified by an authentic value. An authentic program text is an encrypted read-
only memory of instructions. We use an authentic program counter to index
the program text:

s A

text

/\A

rom(instr) pc=v

To represent the registry and main memory, we use an authentic RAM that
we specify in Section 6.8. For now, assume that there exists a type ram equipped
with the following two procedures: (1) initRAM which initializes a RAM of a
specified size filled with Os, and (2) accessRAM which reads from and optionally
(based on an authentic flag argument) writes to a RAM index. An authentic
registry is an authentic RAM of 32 values, and an authentic memory is an
authentic RAM of a parameterized number of values:

registry £ ram(p ; 32) memory(space) = Tam(i ; space)

Finally, we represent P’s input. It turns out that the handling of P’s input
is perhaps the most complicated digression from the cleartext specification. For
now, assume that there exists an efficient algorithm readInput that takes an
authentic flag as an argument. If the flag encodes 1, then P’s next 32 bit input is
returned as an authentic value, and otherwise the authentic value 0 is returned.
We discuss the subtleties of P’s input in Section 6.4.

With the subcomponents defined, we can specify authentic state. An authen-
tic state of size size is a tuple of an authentic program text, program counter,
registry, and memory.

—

state(size) 2 (text, pc, registry, memory(size))

With the definitions we have, we specify the authentic variant of step,
step (Figure 2). Again, step summarizes the actions taken by both V' and

15

Step(s)
> Decompose the state into its parts.
(T,pc, R, M) + s
> Read the next instruction from ROM.
(op, srco, srey, tar) < readROM(T), pe)
> Read the inputs from the registry.
> 0 flags indicate these accesses are not writes.
argo < accessRAM(R, 0, srcp, 0)
arg, < accessRAM(R, 0, srcy,0)
> Read cell inpg, and if opcode is store, write arg; to cell argg.
m < accessRAM(M, op == store, argg, arg:)
> Conditionally get next input value from prover
inp < readInput(op == input)
> conditionally assign val based on op
val < inp
((op == add) - (argo + arg1))
val < val + ((op ==mul) - (argo - argy))
((op ==1t) - (argo < argy))
val < val + ((op == load) - m)

val <+ val +
val < val +

> other operations
> Ensure val is in range of ISA values.
val + mod32(val)
> Write the output val to the output register tar.
R < accessRAM(R, ((op # beqz) - (op # store)), tar,val)
> if op = beqz and argy = 0, branch to arg;; else proceed.
pe < pe+ 1+ (((op ==beqz) - (argo == 0)) - argy — (pc+ 1))
Figure 2: step, the authentic variant of step (Figure 1). step is the high level

specification of both V’s and P’s actions when running the authenticated processor.
We emphasize that all values manipulated in this algorithm are authentic values.

16

ZKM.Gb(17, prog) :
> set the global mode so that verifier actions are taken.
mode < VERIFIER
(T, space, time) < prog
> Initialize the processor state.
s 4+ (initROM(T'),0, initRAM(32), initRAM(space))
for i € [0..time)
step(s)
> Read the output from register 0
out < accessRAM(s.registry,0,0,0)
> Check that the program output is 1.
zerosExpected.push(1 — out)
return (otInputs, H(zerosExpected))

Figure 3: V’s actions when running a program. P’s actions in ZKM.Ev are extremely
similar, so we postpone that algorithm to Appendix F. Both players set relevant global
variables, call step time times, and compute a digest of the expected output/actual
output.

P in order to run a proof. The key difference between step and step is (1) that
s/te\p uses the authentic variants of values, value operations, and data structures
and (2) that s/t-e\p does not conditionally dispatch, but instead performs all op-
erations and uses algebra to select the result. Informally, because st/QD performs
all operations, V' learns nothing about P’s input by running the steps.

6.3 Processor Modes

Thus far, we have presented st/e\p as a generic description of both V’s and P’s ac-
tions. However, the low-level operations that step uses are different depending
on the player. For example, V' multiplies two authentic values differently than
P. In this section, we set up an infrastructure that formalizes the differences
between these actions.

Our key tool is a mode variable, which is inspected to decide which low-level
actions should be taken. We specify that there is a global variable mode that
can have one of following values:

mode € {VERIFIER, PROVER, INPUT}

The VERIFIER and PROVER modes are respectively used by V and P to perform
their respective tasks. The INPUT mode is used by P to convert her cleartext
input into a list of OT selection bits. We discuss INPUT mode more in Section 6.4.

17

In addition to mode, we specify a number of other global variables that the
players need:

e otInputs is a list of V’s OT inputs: i.e., they are the values that P chooses
between during OT. Formally, otInputs is a list of pairs of pairs of integers
in Zq. For each entry in the list, P chooses between the left pair and the
right pair.

e otChoices is a list of P’s OT selection bits. This list is derived from the
program and P’s cleartext input (see Section 6.4).

e otOutputs is a list of P’s OT outputs: i.e., they are the values in otInputs
that P chose according to otChoices. Formally, otInputs is a list of pairs
of integers in Zj.

e The eventual proof that P sends to V is a list of authentic values that each
encode 0. Both players maintain a list of these authentic 0 values: V' main-
tains a list zerosExpected while P maintains a list zerosActual. V is con-
vinced when P can produce a value H(zerosActual) = H(zerosExpected).

We now formalize ZKM.Gb and ZKM.Ev. Both algorithms set the mode, set the
initial state, and call step time times (Figure 3).

ZKM.Ve allows P to check that messages sent by V were correctly constructed.
ZKM.Ve is defined similarly to Gb and Ev. Specifically, ZKM.Ve is given access to
all of V’s OT inputs. The algorithm allows P to re-garble in the same manner as
Gb except that, instead of drawing random values, P draws values from V’s OT
inputs and checks they are consistent with low-level operations. For example, P
checks that OT choices are correctly separated by a global A value. In formal
detail, ZKM.Ve requires an additional CHECK mode. For brevity and clarity we
omit CHECK mode from our presentation. The algorithm for ZKM.Ve is provided
in Appendix F.

6.4 Expanding P’s Inputs

Upon close inspection, there are two mismatches between our cleartext spec-
ification eval (Section 6.1) and the verifiable garbling scheme infrastructure
of [JKO13]:

1. [JKO13] requires the garbling scheme to be projective. In a projective
scheme, P’s input must be binary. This requirement allows a ZK protocol
built on top of 1-out-of-2 OT. In eval, P’s inputs are 32-bit integers, not
individual bits. Thus we must transform P’s input into its binary represen-
tation.

2. In our scheme, P uses OT not only for her input, but also to perform
low-level operations like multiplication (as we show shortly). To fit with
the [JKO13] framework, we formalize these ‘auxiliary’ OTs as part of P’s
binary input. I.e, P’s input not only includes her independently chosen
values, but also many dependent bits used to compute low-level operations.

18

Thus, we provide a procedure that ‘expands’ P’s input into all of her OT selec-
tion bits. It may on the surface appear that this is simply an extra step needed
to interface with [JKO13]. However, this same procedure also plays a critical
role in implementing our scheme: for efficiency, we precompute all OT inputs
such that all OTs can be completed in constant rounds.

This ‘input expansion’ motivates the inclusion of INPUT mode. To expand
her input, P runs the authentic processor in INPUT mode, storing her selection
bits in the list otChoices. Formally, this step happens as a preprocessing step
by P and is outside the scope of our garbling scheme: from the perspective of
our formal garbling scheme, P ‘just knows’ her expanded input ahead of time.

This subtlety is also significant to our formalism ZKM.ev, the cleartext spec-
ification. To be pedantic, ev must operate over this same expanded input.
However, our cleartext specification defined in Section 6.1 instead uses only P’s
cleartext input encoded as a stack of 32 bit integers. Therefore, the formal
cleartext specification ZKM.ev is identical to eval (Section 6.1) except:

e ZKM.ev discards unneeded auxiliary input bits.

e Upon an input instruction, ZKM.ev reads in 32 input bits and composes them
into a 32 bit value.

Therefore, ZKM.ev performs the same computation on P’s expanded input as
eval performs on P’s unexpanded inputs.

6.5 Arithmetic representation

We represent authentic values © as message authentication codes (MACs) of
integers modulo ¢ where g is a o-bit prime. Let a € Z, be an arbitrary value.
Let A,A € Z4 be uniform values drawn by V, except that A must not be 0.
The MAC of a, [a] is as follows:

[a] £ (A,a-A — A)

Recall, this notation indicates V' holds A and P holds a - A — A. Therefore, the
players hold additive shares of a - A. A is global to all MACs and is analogous
to a Garbled Circuit free XOR offset of [KS08a] and the follow-up arithmetic
offset of [BMR16].

Under this representation, addition is a homomorphism:

[a] + [b] =4 (A,a-A—A)+ (B,b-A - B)
=, (A+B,(a-A—-A)+(b-A—-B))
=, (A+B,(a+b)-A—(A+B))
=, [a+10]
Subtraction and multiplication by a public constant are similarly homomor-

phisms. Public constants can also be easily encoded: for a given constant ¢, the
players use [c] =, (¢- A,0).

19

muli([a], [0]) :
(av,ap) < [a]
(bv,bp) < [b]
> ap=qa-A—ay
> bp =q b-A—by
switch(mode) :
case(VERIFIER) :
ay <5 {0,¢ — 1}
aby s {0,q — 1}
otInputs.push((0 — ay,,0 — aby), (A —ay,, by — aby))
zerosExpected.push(ay — a’v)
case(INPUT) :
otChoices.push(a)
case(PROVER) :
(ap,) + otOutputs.pop()
> ap=4a-A—ay
> d=4a- by —aby
zerosActual.push(ap — ap)
> dp —ap =, ay — al,
abp < a-bp+96
> abp =qa-(b-A—by)+a-by —aby
> abp =4 (a-b) - A —aby
return (aby,abp)
Figure 4: The special case MAC multiplication procedure where the first argument
a € {0,1}. In the input phase, P uses a as an OT input. The OT has two functions:
(1) it allows P to obtain § which is used to compute the product and (2) it allows P

to obtain a second copy of a MAC for a and thus prove she did not cheat in her OT
input.

20

Other operations on authentic values are performed by having P and V
perform OT. We explain these operations next.

6.6 Non-homomorphic operations
6.6.1 Boolean multiplication

We start by presenting multiplication where the left multiplicand is known to
be a MAC of either 0 or 1 (Figure 4). We begin with this operation because
it is simple and because its key ideas carry over to other non-homomorphic
operations. Consider a multiplication of [a] by [b] where a € {0,1}. Informally,
we use the fact that P knows the value a. Thus, P can locally multiply her
share of [b] by a. Unfortunately, this does not line up with our representation.
In particular, P now holds:

a-(b-A—=B)=,(a-b-A)—(a-B)

The term a - B is not a valid mask since V' does not know (and must not learn)
a. To account for this, we have V and P communicate via OT. Specifically, we
allow P to choose a value (a - B) — C' where C is a fresh mask: V allows P
to choose between 0 — C' and B — C via OT. P chooses based on a and hence
receives the desired value. The two players can now locally compute a valid
MAC:

(Ci(a-b-A)—=0C)

However, the protocol we have specified is not secure: there is no guarantee
that P chose her OT input correctly! Therefore, we add extra values to V’s
OT inputs that allow P to prove her OT selection is made according to a.
Specifically, V' chooses another fresh mask A’ and allows P to choose between
the following pairs:

0-A,0-C) (A—A,B-C)

Notice that when P selects based on a, she will receive a - A — A’: i.e., she will
receive a new MAC for a. This allows her to authenticate her OT input to V:
she computes (a- A —A) —(a-A—-A") =, A’ — A, ie. a MAC of 0. She can
present this MAC of 0 as proof that she selected her OT input according to the
protocol.

Figure 4 formalizes the previous discussion as a procedure mull. Note that
P’s tasks are broken into two phases: the INPUT phase where she provides her
OT inputs and the PROVER phase where she computes her share and the zero
MAC. mul1l requires only 1 OT.

6.6.2 32-bit multiplication

mul32 (see Appendix F) presents a 32-bit variant of multiplication. This imple-
mentation is more general than mull, but requires more OTs. Our construction
uses both variants to efficiently implement the processor specification. In step,

21

we use overloaded notation: by a-b where a,b € ¥ we mean an operation which
intelligently selects 1-bit multiplication if a can be statically deduced to hold
either 0 or 1 (for example, a is the output of a comparison) and otherwise uses
32-bit multiplication.

The implementation of 32-bit multiplication is a natural generalization of
1-bit multiplication. Instead of choosing only 1 OT output, P must choose 32
OT outputs, each based on a bit in a. Like mull, these OTs allow P to both
construct a new MAC for a that authenticates her OT selection and to construct
a MAC for a - b.

6.6.3 Projection and comparisons

We implement comparisons on top of low-level Boolean operations (note that
we can implement Boolean operations using 1-bit multiplication, addition, and
subtraction). The implementation of comparisons is typical.

However, we must show how to convert an authentic value into its binary
representation. project (see Appendix F for full algorithm) projects an n-bit
value into n 1-bit values. The implementation of project is similar in flavor to
both mull and mul32. Specifically, let P’s MAC share of a be a- A — A. P uses
the bits of a as her n OT selection bits. As OT output, she receives a projection
of a. She rebuilds this projection of a into a new MAC a - A — A’ using only
homomorphic operations and then proves that this new MAC indeed encodes a
by including A" — A in her proof.

6.6.4 Mod 232

st/a) performs operations on authentic values that can cause them to escape
Zos2. Thus, after we perform all operations, we must clamp the output back
to Zgs2 before writing it to the registry. mod32 (see Appendix F) performs
this operation. With project available, mod32 is trivial: First, the procedure
projects its argument a into 64 bits. Then, it reconstructs a MAC for the high
32 bits using homomorphic operations, subtracts this reconstruction from a,
and outputs the clamped result.

6.6.5 Reading P’s input

P’s independent input (i.e. her proof witness) is read in by multiple OTs. Recall
in our cleartext semantics, P’s input is a stack of 32 bit numbers. readInput
(see Appendix F) uses the top of this stack to choose 32 OTs.

readInput takes as an argument an authentic value that is either 0 or 1. This
flag indicates if P ‘actually’ provides her independent input or not (recall, the
processor attempts to read P’s input every cycle, whether or not it is currently
needed). If the flag is 0, then P does not pop her input stack and the procedure
returns a MAC of 0.

22

6.7 2logn ROM

For lack of space, we defer the full presentation of the ROM to Appendix C.
The ROM is a relatively simple component based on an idea in [KS08b] and
that we briefly explain at a high level in Section 4.

6.8 BubbleRAM: %loan RAM access

We now explain the construction that we use to represent both the registry and
main memory: BubbleRAM. BubbleRAM features excellent concrete performance:
each access costs amortized %10g2 n OTs. BubbleRAM is based on allowing P to
look ahead at the access order and using this knowledge to permute memory.

A permutation can be achieved in a circuit using a Waksman permutation
network [Wak68]. Permutation networks are recursive constructions where the
base case of permuting two elements is achieved using an individual ‘swap’ gate
that conditionally swaps two elements. The full recursive construction includes
nlogn — 5 swap gates. Due to our algebraic representation, a swap gate of two
32 bit elements is implemented by a 1 bit multiplication based on P’s private
input and requires only a single OT. Specifically, to swap x,y € ¥ based on P’s
private bit b, the players compute:

d<b-(z—vy)
return (z — 6,y + 9)

Thus, a permutation can be achieved by nlogn — 5 OTs.

BubbleRAM’s key primitive is an oblivious partition on the first ¢ RAM el-
ements. An oblivious partition of size ¢ allows P to select half of the first i
elements in RAM and move them to the first % slots in RAM. An oblivious
partition is a special case of permutation, and hence can be implemented using
ilogi — & OTs [Wak68].

A factor 2 more efficient algorithm permutes only the front half of the parti-
tion, then pairwise oblivious swaps elements in the front and back halves. This
algorithm computes a partition on 2i elements (i.e. it moves i elements forward)
using ¢ log e + % OTs.

Informally, we describe elements that are needed ‘soon’ (i.e. within a small
number of accesses) as ‘hot’ and elements that are not needed for many accesses
as ‘cold’. P repeatedly partitions memory such that hot elements tend to be
close to the front of the array. Moreover, an element’s distance from slot 0 is
related to how hot it is: an element that is cold might be far from slot 0, an
element that is warm will likely be close to slot 0, and the hottest element (i.e.
the element needed next) will be in slot 0. The overall goal is to ensure that
memory slot 0 holds the hottest element before each access. Thus, to perform
each access, the players need only look at index 0. To maintain this ‘temperature
gradient’, P uses her private bits to partition RAM.

Formally, BubbleRAM’s correctness invariant is as follows:

23

rearrange(t,array) :
for i € [log|array| — 1..0] :
if (2°|t) : partition(array[0..2°1), selection)
Figure 5: rearrange formalizes the strategy for rearranging a RAM whose elements
are stored in array before the access at timestep ¢. The procedure partition on an
array of n elements and a set selection of up to 5 selected indexes permutes the array
such that the selected elements appear in the first 3 indexes. selection is chosen by

P, who precomputes the set based on her private input.

Invariant 1. For alli € [0..logn], at time-step t (i.e., aftert memory accesses)
the next 28 — (t mod 2°) memory indezes to be accessed are located in the first
20 RAM slots.

Invariant 1 formalizes the ‘temperature gradient’. An immediate corollary
is that at each time-step, the hottest element is in slot 0.

To maintain Invariant 1, P partitions the memory before each access in order
to move hot elements towards the front of RAM. Precisely, at each time-step ¢,
for each i € [logn — 1,logn — 2,..,0], P programs a partition of size 2! if 2¢
divides t. For example, at time-step 4, P programs a partition on the first 8
RAM elements, on the first 4 RAM elements, and on the first 2 RAM elements.
At time-step 5, P programs a partition on the first 2 elements only.

Theorem 3 (RAM Correctness). By applying rearrange (Figure 5) to the
RAM at each timestep, P maintains Invariant 1. Hence, on each access slot 0
holds the next element to be accessed.

Proof. By induction on time-steps. Informally, partitions are precisely the tool
needed to maintain Invariant 1: a partition of size 21! selects 2° elements and
moves them to first 2 memory slots.

e Consider time-step 0, the induction base case. Because every integer divides
0, in this step P applies partitions of all sizes 2+! such that 2! < n. Thus,
Invariant 1 is established.

e Suppose that Invariant 1 holds for time-step t. By partitioning the array
according to rearrange, Invariant 1 also holds in time-step ¢ + 1.

Notice that t + 1 overflows some size 2¢. In particular, consider some ¢ such
that 27 = ¢ 4+ 1. Invariant 1 in time-step ¢ guarantees nothing about these
first 2¢ elements (2! — (t mod 2¢) = 1, and this 1 element might no longer be
needed in step ¢ + 1). However, we do still know something about the first
2i+1 glots: Invariant 1 guarantees that there must be 2i*1 — (2¢ mod 2°+!) =
2 hot elements in the first 21! slots. Partitioning precisely takes advantage
of this fact: by partitioning, P moves the 2¢ hottest elements into the first 2°
slots. Thus, by partitioning we ensure that Invariant 1 holds in time-step
t+1.

24

RAM is correct. O
The RAM provides 2 operations:

e initRAM takes as an argument the desired RAM size. It initializes an array
of the specified size where each slot contains a pair of a constant authentic
index and 0 (the element and its index are permuted together). ILe., the
RAM is 0 initialized. The RAM maintains a persistent time-step ¢ that is
used to decide when to repartition. ¢ is initialized to O.

e accessRAM takes 4 arguments: (1) the RAM to read from/write to, (2) an
authentic flag which indicates whether or not to write, (3) an authentic in-
dex, and (4) an authentic value to write. accessRAM first applies rearrange
to move hot items closer to the front of RAM. Then, it reads the item in
slot 0 and increments ¢t. If the flag argument is set, then it overwrites the
element in slot 0. accessRAM forces P to prove that her argument index is
equal to the stored index (i.e. P includes the difference between the two
indices in zerosActual) and returns the looked up element.

We prove the following theorem in Appendix B:

Theorem 4 (BubbleRAM Communication). BubbleRAM with n elements incurs
%log2 n amortized OTs per call to accessRAM.

We emphasize the high concrete efficiency of BubbleRAM: at only 4 elements,
BubbleRAM already exceeds the performance of a linear scan RAM. Linear scans
incur costly index comparisons, while BubbleRAM does not. Instead, P provides
a single MAC confirming that she placed the correct element in front.

Informally, it is easy to see that BubbleRAM is secure, since the entire RAM
is implemented as a circuit. We do allow P to freely partition RAM, but we
(1) store each element alongside its index, (2) partition elements and indexes
together, and (3) check that the accessed index matches the stored index. This
ensures the integrity of RAM operations. We elaborate on security in Ap-
pendix A.

7 Security

ZKM is a secure verifiable projective garbling scheme [JKO13,FNO15, BHR12].
Specifically, it satisfies the following required properties: ZKM is correct, sound,
and verifiable. In this section we formally present these properties and state
the relevant theorems. For a lack of space, we defer the proofs of these theorems
to Appendix A.

Definition 1 (Correctness). A garbling scheme is correct if for all programs
p € program and all inputs i € inp where ev(p,i) = 1:

(e,d) =Gb(1°,p) = Ev(p,En(e,i),i) =d

25

Correctness formally states that our approach implements the processor de-
scribed in Section 6.1.

Theorem 5 (Correctness). If the prime modulus q is greater than (232 —1)2,
then ZKM is correct.

Definition 2 (Soundness). A garbling scheme is sound if for all programs
p € program, all inputs i € inp such that ev(p,i) = 0, and all probabilistic
polynomial time adversaries A the following probability is negligible in o:

Pr(A(p,En(e,i)) = d: (e,d) + Gb(17,p))

Soundness ensures that a cheating prover cannot win: a prover who does
not have a witness cannot construct the secret d.

Theorem 6 (Soundness). ZKM is sound.

Definition 3 (Verifiability). A garbling scheme is verifiable if for all programs
p € program, all i € inp such that ev(p,i) = 1, and all probabilistic polynomial
time adversaries A there exists an expected polynomial time algorithm Ext such
that the following probability is negligible in o:

Pr(Ext(p,e) # Ev(p,En(e,) : (c,) + A(1%, p), Ve(p,) = 1)

Verifiability ensures that the garbling scheme supports malicious verifier Zero
Knowledge. The prover P uses the procedure Ve to verify that V' did not cheat
when constructing the encoding e. Additionally, the property ensures that V'
learns nothing from running the protocol, since he knows the secret d ahead of
time: Ext extracts d from e in polynomial time.

Theorem 7 (Verifiability). ZKM is verifiable.

8 Instantiation

We implemented our ZK processor in 1900 lines of C++. We set the prime
modulus ¢ to 264 — 59, the largest 64 bit prime. Hence, our statistical security
parameter o is 64. We choose this ¢ for two reasons: (1) it is greater than
(232 — 1)% and hence satisfies the correctness requirement of our construction
and (2) MAC:s fit into 64 bit integers, yielding high computational performance.

We instantiate OT with the state-of-the-art malicious OT extension protocol
of [KOS15] using the implementation provided by [WMK16]. Thus, each OT
communicates 48 bytes: 16 to send a random OT and 32 to transfer both secret
pairs.

Optimizations s?e\p (Figure 2) focuses on clarity. However, it is also some-
what inefficient. For example, the specification repeatedly compares values to
op. Each performed comparison requires a bit decomposition, and therefore
incurs many OTs. Appendix D lists some small but critical optimizations that
improve performance.

26

Component Cost (OTs)

Decode instruction 86
Registry RAM read (amortized) 26
Read P input 32
Multiplication/project argg 32
Bitwise multiplication/project arg; 32
Comparisons 65
Misc. Boolean multiplications 25
Registry RAM write (amortized) 14
Mod 232 64
Total (amortized) 376

Figure 6: The OT costs per cycle of processor components.

Benchmark hardware and network In Section 9, we evaluate our approach
with benchmarks. All benchmarks were run on a commodity laptop: a Mac-
Book Pro with an Intel Dual-Core 15 3.1 GHz processor and 8GB of RAM. All
experiments were run on a simulated 1Gbps LAN with 2ms latency.

9 Evaluation

Subcomponent cycle costs We exercised the ZKM machinery on a simple
program computing the factorial of P’s private input n and comparing the out-
put to a fixed value. We ran ZKM for 32 cycles to fully exercise partitioning
of the registry RAM (see Section 6.8) and amortized the OTs across cycles.
Figure 6 tabulates the cost of the various components in the optimized st/aa
algorithm, ignoring main memory. This table shows that our ZK RAM pays
dividends: register accesses are among the cheapest operations in each cycle. It
also highlights the costly parts of our system: decoding instructions, compar-
ison, and computing mod 232 stand out. The total cycle cost is 376 OTs, or
around 17.6KB of communication, per cycle.

We next analyze the efficiency of BubbleRAM. For this experiment, we ran
ZKM on the same factorial benchmark, but varied the size of main memory
(recall that RAM is accessed every cycle). We ran ZKM for enough cycles to
fully exercise the partitioning of main memory (i.e., for RAM size n we ran n
cycles). Figure 7 shows the amortized OT and communication cost per cycle as
a function of main memory size. The results emphasize the excellent concrete
efficiency of BubbleRAM: even with 2'7 memory cells (i.e. a 512KB RAM), the
memory access cost was less than half of the cycle cost.

ZK bugs benchmark [HK20] presents an exciting use-case: ZKP that a pro-
gram contains a bug. More precisely, P proves knowledge of an input that causes
V’s program to trigger a specific behavior, for example accessing an array out

27

530 25440
© 500 24000 5
S S
U S
5 470 22560 g
Q (%]
2)
o 440 21120 =
o o
4 3
S 410 19680 ~
o] £
E o
< 380 18240 £

<

350 16800

0 2 4 6 8 10 12 14 16
log(Cells in Main Memory)

Figure 7: Total amortized OTs and corresponding communication cost per cycle as a
function of main memory size. Each proof incurs a one-time communication cost of
150 KB due to base OTs.

of bounds. While [HK20] efficiently handles limited conditional branching, our
architecture handles fully general control flow. We evaluate our performance
on the example benchmark in [HK20], which is a snippet of C code (cf. Ap-
pendix G) that dereferences unallocated memory on specific inputs. We adapted
this snippet to our instruction set. The full proof takes 0.42s, slower than the
0.1s of [HK20]. However, our approach is significantly more general. For in-
stance, the snippet contains usages of the C standard library functions strlen
and strncmp. Both of these functions iterate over C character strings. However,
because [HK20] encodes the circuit directly, they explicitly bound these loops
to a fixed number of iterations. Our versions of these C standard functions are
not bounded and hence more precisely model their behavior.

Our approach has another significant advantage over [HK20]: our efficient
ZK RAM. This is critical as typical programs access RAM frequently. We
explore this with a new benchmark (code is in Appendix G) that aggressively
uses RAM: we modify [HK20] code to first sort an array of random values using
the quick_sort algorithm?. After sorting, P provides an input triggering the
invalid dereference.

Our sorting benchmark (and others with unstructured memory access) are
extremely expensive to directly encode as circuits: the quick_sort circuit has
cubic size because (1) we must be maximally pessimistic about partitioning and
(2) due to linear-scan RAM accesses. Back-of-the-napkin math suggests that

41t is possible to substitute quick_sort by an efficient oblivious sorting algorithm, but
the purpose of this benchmark is to show how ZKM scales with RAM-heavy programs, not
specifically to sort arrays.

28

160 180

140 157.5

120 135 g
— 100 1125 S
— o
v 80 0 %
S »
= 60 67.5 &

40 45 9

20 22.5

0 0

0 100 200 300 400 500 600 700

Number of Sorted Elements

Time —e—Cycles

Figure 8: Time and cycle cost of sorting random integers, then proving the existence
of an invalid memory dereference. Wall-clock time is the end-to-end time for P to
expand her input (Section 6.4) and then for V' and P to run the protocol. In each
experiment, the main memory has 2'2 cells (i.e. 16KB). Measurements were averaged
over 5 runs and fresh random arrays were chosen for each run.

to sort an array of 500 elements, [HK20] requires ~ 500GB of communication.
Further, an expert must annotate each loop with an explicit upper bound. In
contrast, while ZKM individual cycles are relatively costly, we can represent pro-
grams like quick_sort far more efficiently and without expert annotations.

Figure 8 shows the efficiency of our approach as a function of the array size.
Peak performance occurs in the 100, 200, and 300 element instances. In these
benchmarks, ZKM achieves 2.1KHz. For 500 elements, our proof uses 101K cycles
and 2GB of communication.

In Figure 8, wall-clock time grows faster than the numbers of cycles. This
discrepancy is caused by computational overhead associated with storing large
numbers of OT inputs/outputs. We believe future work will improve the com-
putation of our approach.

Comparing BubbleRAM to existing ORAM To our knowledge, BubbleRAM
is the first ZK-specific ORAM construction. Prior ZK works interface with
ORAM in a black-box manner [MRS17,HMR15]. Thus, we compare BubbleRAM to
existing concretely efficient ORAMs. Of course, while ours turns out to be sig-
nificantly cheaper than existing ORAM, ours is specific to the ZK setting.
Floram is the state-of-the-art in concrete efficiency for large ORAMs [Ds17].
Floram outperforms Circuit ORAM and a square-root ORAM for RAMs with
more than 2! entries [Ds17, WCS15, ZWRT16]. For smaller sizes, Lookahead

29

n BubbleRAM Floram [Dsl17] Lookahead RAM [RS19]

95 0.61 ~ 600/ 980x ~5] 8x
o7 1.05 ~610 / 580 ~ 25 / 23x
29 177 ~620 / 350 ~ 50 / 28x
911 269 ~ 640 / 240x ~ 90 / 33x
213 3.82 ~ 670/ 175x ~ 160 / 42x
215 513 ~ 700/ 135x no data provided
217 6.63 ~ 730 /110x% no data provided

Figure 9: Comparing BubbleRAM to state-of-the-art ORAMs. n is the number of ele-
ments in RAM. We tabulate communication per access in KB. Communication factor
improvement over related work is given. Related work performance is approximated
from plots respectively in [Ds17] and [RS19].

ORAM, a recent square-root technique, is preferable [RS19]. We compare the
communication cost of BubbleRAM to these two works in Figure 9. We tabu-
late [Ds17)’s computation-expensive but communication-cheap ‘CPRG Floram’.
The results show that BubbleRAM outperforms these works in communication
by large factors. This large improvement is possible because BubbleRAM is de-
signed with ZK in mind. BubbleRAM also performs all accesses in constant
rounds. Compared works require rounds of communication to access content.

Comparing ours to existing ZK processors A persistent line of work has
constructed succinct non-interactive ZK proofs in a processor model similar to
ours [BCTV14b, BCTV14a, BCG*13]. Because of non-interactivity and suc-
cinctness, these works are applicable to more problems than our approach. In
exchange, our approach is vastly more efficient. These approaches attain a clock
rate less than 10Hz on powerful hardware and manipulate memories contain-
ing hundreds of bits. Ours runs at 2.1KHz on commodity hardware and can
manipulate a main memory holding hundreds of KBs of data.

Acknowledgement. This work was supported in part by NSF award #1909769
and in part by Sandia National Laboratories, a multi-mission laboratory man-
aged and operated by National Technology and Engineering Solutions of Sandia,
LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S.
Department of Energy’s National Nuclear Security Administration under con-
tract DE-NA-0003525.

References

[AHIV17] Scott Ames, Carmit Hazay, Yuval Ishai, and Muthuramakrishnan
Venkitasubramaniam. Ligero: Lightweight sublinear arguments
without a trusted setup. In Bhavani M. Thuraisingham, David
Evans, Tal Malkin, and Dongyan Xu, editors, ACM CCS 2017,
pages 2087-2104. ACM Press, October / November 2017.

30

[BBB+13]

[BBHR18]

[BBHR19)]

[BCG*13]

[BCR*19]

[BCTV14a)

[BCTV14b]

[BGY3]

[BHR12]

Benedikt Biinz, Jonathan Bootle, Dan Boneh, Andrew Poelstra,
Pieter Wuille, and Greg Maxwell. Bulletproofs: Short proofs for
confidential transactions and more. In 2018 IEEE Symposium
on Security and Privacy, pages 315-334. IEEE Computer Society
Press, May 2018.

Eli Ben-Sasson, Iddo Bentov, Yinon Horesh, and Michael Ri-
abzev. Scalable, transparent, and post-quantum secure compu-
tational integrity. Cryptology ePrint Archive, Report 2018/046,
2018. https://eprint.iacr.org/2018/046.

Eli Ben-Sasson, Iddo Bentov, Yinon Horesh, and Michael Ri-
abzev. Scalable zero knowledge with no trusted setup. In Alexan-
dra Boldyreva and Daniele Micciancio, editors, CRYPTO 2019,
Part III, volume 11694 of LNCS, pages 701-732. Springer, Heidel-
berg, August 2019.

Eli Ben-Sasson, Alessandro Chiesa, Daniel Genkin, Eran Tromer,
and Madars Virza. SNARKs for C: Verifying program executions
succinctly and in zero knowledge. In Ran Canetti and Juan A.
Garay, editors, CRYPTO 2013, Part II, volume 8043 of LNCS,
pages 90-108. Springer, Heidelberg, August 2013.

Eli Ben-Sasson, Alessandro Chiesa, Michael Riabzev, Nicholas
Spooner, Madars Virza, and Nicholas P. Ward. Aurora: Transpar-
ent succinct arguments for R1CS. In Yuval Ishai and Vincent Rij-
men, editors, FUROCRYPT 2019, Part I, volume 11476 of LNCS,
pages 103-128. Springer, Heidelberg, May 2019.

Eli Ben-Sasson, Alessandro Chiesa, Eran Tromer, and Madars
Virza. Scalable zero knowledge via cycles of elliptic curves. In
Juan A. Garay and Rosario Gennaro, editors, CRYPTO 2014,
Part II, volume 8617 of LNCS, pages 276—294. Springer, Heidel-
berg, August 2014.

Eli Ben-Sasson, Alessandro Chiesa, Eran Tromer, and Madars
Virza. Succinct non-interactive zero knowledge for a von neumann
architecture. In Kevin Fu and Jaeyeon Jung, editors, USENIX
Security 2014, pages 781-796. USENIX Association, August 2014.

Mihir Bellare and Oded Goldreich. On defining proofs of knowl-
edge. In Ernest F. Brickell, editor, CRYPT0’92, volume 740 of
LNCS, pages 390-420. Springer, Heidelberg, August 1993.

Mihir Bellare, Viet Tung Hoang, and Phillip Rogaway. Founda-
tions of garbled circuits. In Ting Yu, George Danezis, and Virgil D.
Gligor, editors, ACM CCS 2012, pages 784-796. ACM Press, Oc-
tober 2012.

31

[BMR16]

[BSCTV13]

[CDG*17]

[CDS94]

[CFH*15]

[DP92]

[Ds17]

[FNO15]

[GGPR13]

Marshall Ball, Tal Malkin, and Mike Rosulek. Garbling gadgets
for boolean and arithmetic circuits. In Edgar R. Weippl, Stefan
Katzenbeisser, Christopher Kruegel, Andrew C. Myers, and Shai
Halevi, editors, ACM CCS 2016, pages 565-577. ACM Press, Oc-
tober 2016.

Eli Ben-Sasson, Alessandro Chiesa, Eran Tromer, and Madars
Virza. Succinct non-interactive zero knowledge for a von neumann
architecture. Cryptology ePrint Archive, Report 2013/879, 2013.
https://eprint.iacr.org/2013/879.

Melissa, Chase, David Derler, Steven Goldfeder, Claudio Orlandi,
Sebastian Ramacher, Christian Rechberger, Daniel Slamanig, and
Greg Zaverucha. Post-quantum zero-knowledge and signatures
from symmetric-key primitives. In Bhavani M. Thuraisingham,
David Evans, Tal Malkin, and Dongyan Xu, editors, ACM CCS
2017, pages 1825-1842. ACM Press, October / November 2017.

Ronald Cramer, Ivan Damgard, and Berry Schoenmakers. Proofs of
partial knowledge and simplified design of witness hiding protocols.
In Yvo Desmedt, editor, CRYPTO’9/, volume 839 of LNCS, pages
174-187. Springer, Heidelberg, August 1994.

Craig Costello, Cédric Fournet, Jon Howell, Markulf Kohlweiss,
Benjamin Kreuter, Michael Naehrig, Bryan Parno, and Samee Za-
hur. Geppetto: Versatile verifiable computation. In 2015 IEEE
Symposium on Security and Privacy, pages 253-270. IEEE Com-
puter Society Press, May 2015.

Alfredo De Santis and Giuseppe Persiano. Zero-knowledge proofs of
knowledge without interaction (extended abstract). In 33rd FOCS,
pages 427-436. IEEE Computer Society Press, October 1992.

Jack Doerner and abhi shelat. Scaling ORAM for secure compu-
tation. In Bhavani M. Thuraisingham, David Evans, Tal Malkin,
and Dongyan Xu, editors, ACM CCS 2017, pages 523-535. ACM
Press, October / November 2017.

Tore Kasper Frederiksen, Jesper Buus Nielsen, and Claudio Or-
landi. Privacy-free garbled circuits with applications to efficient
zero-knowledge. In Elisabeth Oswald and Marc Fischlin, editors,
EUROCRYPT 2015, Part II, volume 9057 of LNCS, pages 191-219.
Springer, Heidelberg, April 2015.

Rosario Gennaro, Craig Gentry, Bryan Parno, and Mariana
Raykova. Quadratic span programs and succinct NIZKs without
PCPs. In Thomas Johansson and Phong Q. Nguyen, editors, FU-
ROCRYPT 2013, volume 7881 of LNCS, pages 626—645. Springer,
Heidelberg, May 2013.

32

[GMO16]

[GMRSS5]

[GMWO1]

[Grol6]

[HK20]

[HMR15]

[IKOS07]

[JKO13]

[KKW18]

[KOS15]

Irene Giacomelli, Jesper Madsen, and Claudio Orlandi. ZKBoo:
Faster zero-knowledge for boolean circuits. In Thorsten Holz and
Stefan Savage, editors, USENIX Security 2016, pages 1069-1083.
USENIX Association, August 2016.

Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The knowl-
edge complexity of interactive proof-systems (extended abstract).
In 17th ACM STOC, pages 291-304. ACM Press, May 1985.

Oded Goldreich, Silvio Micali, and Avi Wigderson. Proofs that
yield nothing but their validity or all languages in np have zero-
knowledge proof systems. J. ACM, 38(3):690-728, July 1991.

Jens Groth. On the size of pairing-based non-interactive argu-
ments. In Marc Fischlin and Jean-Sébastien Coron, editors, FU-
ROCRYPT 2016, Part II, volume 9666 of LNCS, pages 305-326.
Springer, Heidelberg, May 2016.

David Heath and Vladimir Kolesnikov. Stacked garbling for dis-
junctive zero-knowledge proofs. Cryptology ePrint Archive, Report
2020/136, 2020. https://eprint.iacr.org/2020/136.

Zhangxiang Hu, Payman Mohassel, and Mike Rosulek. Efficient
zero-knowledge proofs of non-algebraic statements with sublinear
amortized cost. In Rosario Gennaro and Matthew J. B. Robshaw,
editors, CRYPTO 2015, Part II, volume 9216 of LNCS, pages 150—
169. Springer, Heidelberg, August 2015.

Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, and Amit Sahai.
Zero-knowledge from secure multiparty computation. In David S.
Johnson and Uriel Feige, editors, 39th ACM STOC, pages 21-30.
ACM Press, June 2007.

Marek Jawurek, Florian Kerschbaum, and Claudio Orlandi. Zero-
knowledge using garbled circuits: how to prove non-algebraic state-
ments efficiently. In Ahmad-Reza Sadeghi, Virgil D. Gligor, and
Moti Yung, editors, ACM CCS 2013, pages 955-966. ACM Press,
November 2013.

Jonathan Katz, Vladimir Kolesnikov, and Xiao Wang. Improved
non-interactive zero knowledge with applications to post-quantum
signatures. In David Lie, Mohammad Mannan, Michael Backes,
and XiaoFeng Wang, editors, ACM CCS 2018, pages 525-537.
ACM Press, October 2018.

Marcel Keller, Emmanuela Orsini, and Peter Scholl. Actively secure
OT extension with optimal overhead. In Rosario Gennaro and
Matthew J. B. Robshaw, editors, CRYPTO 2015, Part I, volume
9215 of LNCS, pages 724-741. Springer, Heidelberg, August 2015.

33

[KS08a]

[KSO8b)

[LO13]

[MRS17]

[PHGR13]

[RS19]

[Sch90]

[SHS*15]

[Wak68]

[WCS15]

Vladimir Kolesnikov and Thomas Schneider. Improved garbled
circuit: Free XOR gates and applications. In Luca Aceto, Ivan
Damgard, Leslie Ann Goldberg, Magnis M. Halld6rsson, Anna
Ingolfsdéttir, and Igor Walukiewicz, editors, ICALP 2008, Part II,
volume 5126 of LNCS, pages 486—498. Springer, Heidelberg, July
2008.

Vladimir Kolesnikov and Thomas Schneider. A practical universal
circuit construction and secure evaluation of private functions. In
Gene Tsudik, editor, F'C' 2008, volume 5143 of LNCS, pages 83-97.
Springer, Heidelberg, January 2008.

Steve Lu and Rafail Ostrovsky. How to garble RAM programs.
In Thomas Johansson and Phong Q. Nguyen, editors, EURO-
CRYPT 2013, volume 7881 of LNCS, pages 719-734. Springer,
Heidelberg, May 2013.

Payman Mohassel, Mike Rosulek, and Alessandra Scafuro. Sub-
linear zero-knowledge arguments for RAM programs. In Jean-
Sébastien Coron and Jesper Buus Nielsen, editors, EURO-
CRYPT 2017, Part I, volume 10210 of LNCS, pages 501-531.
Springer, Heidelberg, April / May 2017.

Bryan Parno, Jon Howell, Craig Gentry, and Mariana Raykova.
Pinocchio: Nearly practical verifiable computation. In 2013 IEEE
Symposium on Security and Privacy, pages 238-252. IEEE Com-
puter Society Press, May 2013.

Michael Raskin and Mark Simkin. Perfectly secure oblivious ram
with sublinear bandwidth overhead. 11922, 2019.

Claus-Peter Schnorr. Efficient identification and signatures for
smart cards. In Gilles Brassard, editor, CRYPTO’89, volume 435
of LNCS, pages 239-252. Springer, Heidelberg, August 1990.

Ebrahim M. Songhori, Siam U. Hussain, Ahmad-Reza Sadeghi,
Thomas Schneider, and Farinaz Koushanfar. TinyGarble: Highly
compressed and scalable sequential garbled circuits. In 2015 IEEFE
Symposium on Security and Privacy, pages 411-428. IEEE Com-
puter Society Press, May 2015.

Abraham Waksman. A permutation network. J. ACM,
15(1):159-163, January 1968.

Xiao Wang, T.-H. Hubert Chan, and Elaine Shi. Circuit ORAM:
On tightness of the Goldreich-Ostrovsky lower bound. In Indra-
jit Ray, Ninghui Li, and Christopher Kruegel, editors, ACM CCS
2015, pages 850-861. ACM Press, October 2015.

34

[WGMK16] Xiao Shaun Wang, S. Dov Gordon, Allen McIntosh, and Jonathan
Katz. Secure computation of MIPS machine code. In Ioannis G.
Askoxylakis, Sotiris Toannidis, Sokratis K. Katsikas, and Cather-
ine A. Meadows, editors, ESORICS 2016, Part II, volume 9879 of
LNCS, pages 99-117. Springer, Heidelberg, September 2016.

[WMK16] Xiao Wang, Alex J. Malozemoff, and Jonathan Katz. EMP-toolkit:
Efficient MultiParty computation toolkit. https://github.com/
emp-toolkit, 2016.

[XZZ*19] Tiancheng Xie, Jiaheng Zhang, Yupeng Zhang, Charalampos Pa-
pamanthou, and Dawn Song. Libra: Succinct zero-knowledge
proofs with optimal prover computation. In Alexandra Boldyreva
and Daniele Micciancio, editors, CRYPTO 2019, Part III, volume
11694 of LNCS, pages 733-764. Springer, Heidelberg, August 2019.

[ZWR*16] Samee Zahur, Xiao Shaun Wang, Mariana Raykova, Adria Gascén,
Jack Doerner, David Evans, and Jonathan Katz. Revisiting square-
root ORAM: Efficient random access in multi-party computation.
In 2016 IEEE Symposium on Security and Privacy, pages 218-234.
IEEE Computer Society Press, May 2016.

A Security - Extended

This section extends the abbreviated discussion of security in Section 7. We
prove that ZKM is a secure verifiable projective garbling scheme [JKO13,FNO15,
BHRI12]. Specifically, ZKM is correct, sound, and verifiable.

We now prove Theorem 5.

Proof. By induction on the processor state over steps and the correctness of the
individual components used in step.
The correctness of step relies on the correctness of the following:

e The homomorphic value operations of addition, subtraction, and multipli-
cation by a public constant. An algebraic argument for the correctness of
addition is given in Section 6.5. The other two operations can be proven
correct similarly.

e The non-homomorphic value operations of multiplication, bit decomposition,

and mod 232. Arguments for the correctness of each of these is given in
Section 6.6.
e Value comparison operations (e.g. ==, <). These operations are imple-

mented by first performing bit decomposition on both inputs, then imple-
menting the comparisons via Boolean operations. We explain the translation
of Boolean operations to arithmetic operations in Section 6.6.

35

e The procedure readInput. Correctness of this procedure is argued in Sec-
tion 6.6.

e The ROM. Correctness of the ROM is argued in Section 6.7.
e The RAM. Correctness of the RAM is argued in Section 6.8.

Now, since the inputs to st/e\p are assumed correct by induction and each compo-
nent used in step is correct, we need only argue that step (Figure 2) accurately
carries out the behavior in step (Figure 1). By inspecting the two procedures,
two key differences stand out:

1. step conditionally dispatches over the instruction whereas step does not.
However, step uses algebra to encode the same conditional behavior.

2. step manipulates 32 bit values directly, and hence all intermediate values
are 32 bit values. In contrast, step manipulates values in Z,. Note that
before writing values into the registry, st/a) first computes mod32. Thus,
all authentic values in the registry and memory encode 32 bit integers. It
remains only to show that no intermediate values ‘overflow’ ¢; an overflow
would lose precision and compromise correctness. However, the only opera-
tions which can escape this range are add and mul, of which multiplication
can overflow more. However, given that both inputs to multiplication are
32 bit values, the highest possible product is (232 — 1)2. But we assumed g
is greater than this maximum product, and so an overflow is impossible and
hence multiplication is correct.

ZKM is correct. O
We now prove Theorem 6.

Proof. By the security of the arithmetic representation and induction on the
overall circuit.

Recall that the key property of the arithmetic representation is that the two
players maintain shares of MACs for each wire. In particular for a wire with
value a, the two players maintain the following shares:

(Aya- A — A)

where A, A g Z, and ¢ is a o-bit prime. Since A, A are uniform and ¢ is
prime, the share a - A — A is uniform. Suppose that P wishes to cheat and
forge a different value a’ # a on the same wire. Then P must find the value
a’ - A — A. But the value A is chosen independently for each wire and hence is
independent of all other messages received. Furthermore, the value A is always
masked. Thus, P can correctly select a value a’ - A — A with probability %, and
therefore has negligible probability of choosing such a value.

Next, we show that low level operations preserve the authenticity of MACs
by induction. For example, when the parties compute mod32 we ensure that the
output MAC depends on the input MAC (which is authentic by induction). In

36

this and other operations (multiplication, projecting to bitwise representation),
P is forced to demonstrate that her choices add together to a MAC equal to the
input MAC by appending to zerosActual. Thus, the output MAC is deter-
mined completely by the input MACs and hence the output MAC is authentic.

RAM and ROM operations are an exception to this: we allow P to arbitrarily
permute memory without checking authenticity of the permutation. However,
when memory is accessed, we check that the given index (which is authentic by
induction) is equal to the index stored in the memory.

Thus, the resulting read/write is authentic. ZKM is sound. O

We now prove Theorem 7.

Proof. By constructing a polynomial time algorithm Ext.

First, note that e stores all randomness drawn by V: for all processor wires
whose value is determined by OT, e holds both P’s share of a 0 MAC and
of a 1 MAC. 0 MACs are randomly drawn, and furthermore, constitute all of
the random choices made by V. Thus, Ext can use e to extract all of Vs
randomness. Now, Ext simply runs the processor in VERIFIER mode, except
that when a procedure indicates to draw randomness, Ext instead uses the
corresponding randomness in e. Finally, Ext outputs d = H(zerosExpected).
At a high level, the above shows that d is based only on V’s randomness, and
thus V learns nothing when P sends the proof.

Now, we show that even if V is adversarial, this extraction still succeeds.
This is based on the correctness of ZKM.Ve. ZKM.Ve allows P to check that e is
consistent with the protocol. In our case, ZKM.Ve is nearly identical to the ex-
traction algorithm: It runs the processor in CHECK mode, using the randomness
in e. As it runs, it checks each entry in e by ensuring the difference between
the O choice and the 1 choice is consistent with the processor operations, e.g.
checking that the OT's are all consistent with a single global A.

Note that regardless of the value of e, if ZKM.Ve outputs 1, then Ext will
output a value d consistent with evaluation. This is because both algorithms
are based on running the processor using the randomness in e.

ZKM is verifiable. O

B BubbleRAM Concrete Efficiency

Section 6.8 deferred the proof of concrete communication cost. We prove The-
orem 4:

Proof. By amortizing the costs of partitions to accesses.

Consider a partition of size 2i; i.e., a partition that places the next ¢ elements
at the front of RAM. This partition costs ilogi + % OTs. This cost can be
amortized across the next ¢ accesses: the partition has no goal other than to
place the next i elements at the front of RAM. Thus for this partition, each of
the next i accesses incurs amortized cost logi + %

37

Now, consider a single element as it moves closer to the front of the array in
order to be accessed. To ensure that this element ends up in slot 0 such that it
can be accessed, the ORAM uses logn partitions: a partition of size n to place
it in the first 5 elements, a partition of size 5 to place it in the first 7 elements,
..., and a partition of size 2 to place it in index 0. That is, the total amortized
OT cost is expressed by the following summation:

logn—1

. 1 1
Z (log(2z) + 2) =3 log?n

=0

C 2logn ROM

In this section we explain the amortized 2logn ROM that implements our pro-
gram texts. At a high level, the ROM uses the fact that P knows ahead of
time the order in which instructions will be accessed. We use this to plan ahead
many instructions and to amortize costly reordering algorithms.

In more detail, we allow P to choose an arbitrary permutation of the ROM
such that instructions appear in their access order. Two problems remain: (1)
we are not yet checking that P’s permutation is correct and (2) the next n
instructions to be executed might contain repeated instructions (i.e. a given
instruction might be needed more than once). We solve these problems as
follows:

1. Instead of storing just elements in ROM, we store each element paired with
its index. That is, we explicitly store an index value i € U in the ROM
alongside each element. During permutation, we permute both the element
and its index together. Then, to read the ROM, we check that the provided
index matches the stored index. P must include the difference between these
two indexes as part of her proof. Since the provided index is authentically
computed, the result of reading the ROM is also authentic.

2. We account for repeated instructions by using a construction in [KS08b]:
namely a selection block. A selection block is an oblivious construction that
allows the ‘permutation with copies’ that we need. It is built from 4 steps:
(1) Determine which of the n elements are needed and which are unneeded
in the next n accesses. (2) Permute the ROM such that each needed element
that requires ¢ copies is followed by ¢ — 1 unneeded elements. (3) Linearly
scan the ROM, replacing unneeded elements by the preceding element based
on a bit provided by P. Thus, the ROM now contains sufficient copies of
each needed element. Note that conditional replacement can be achieved
with a swap gate, and hence conditionally replacing a 32 bit value requires
a single OT. (4) Permute the copies into the access order.

We apply a selection block to the ROM content every n reads. Thus, to
prepare for n reads, the ROM requires 2 permutations and 1 linear scan
(which costs n OTs).

38

Overall, n read-only memory accesses cost 2nlogn OTs and thus each access
costs amortized 2logn OTs.
The operations on the ROM are defined as follows:

e initROM takes as an argument a cleartext array of values. Then, it (1) pairs
each element with that element’s index, (2) converts both items in the pair
to authentic values using our representation’s support for encoding public
constants, and (3) outputs the resulting array.

e readROM takes as an argument an authentic index. Internally, readROM main-
tains a persistent counter c¢ that specifies which entry in the ROM to read
next. ¢ is initially set to the ROM’s size (this causes the ROM to be rear-
ranged on the first access). readROM checks if ¢ is equal to the ROM’s size. If
so, then the ROM is rearranged using a selection block programmed by P’s
private input and c is reset to 0. Then, the cth index is read from the ROM
array. Recall that this entry includes a pair of an authentic index and the
element itself. readROM forces P to prove that the provided index argument
is equal to this stored index (i.e. P includes the difference between the two
indices in zerosActual), increments ¢, and returns the accessed element.

D Implementation Optimizations

Our core specification s@ performs many redundant operations to maintain
clarity. Here, we list some of the simple optimizations we use to improve overall
performance:

e Instead of repeatedly comparing values to op, we instead implement a binary
decoder circuit that efficiently generates a bit-map where exactly one bit in
the output is 1. The 1 bit indicates which operation to perform, and thus
prevents us from needing to repeatedly compare op against constants.

o We amortize low-level bit operations where possible. In our formalization,
we present < as the only comparator, but in our implementation we perform
all comparisons as well as other bitwise operations. Bit operations are highly
redundant across each of these comparisons/bitwise operations, so we reuse
them to reduce communication cost.

e We amortize the project operation with multiplication and with bitwise
multiplication. Notice that mul32 and mull both already require us to per-
form a binary decomposition in order to check the validity of P’s OT selec-
tions. Therefore, we can combine multiplication/bitwise multiplication with
project to save OTs.

39

P sends x to Feor
Fcor sends chosen to V'
V runs (e, d) < Gb(1"%, prog)
V sends e to Feor
Fcor sends En(e, z) to P
P runs Y < Ev(prog, X) ; if Ev aborts, Y + L
P sends (commit, 1,Y) to Fooum
Fcoom sends (committed, 1, H(Y)) to V
V sends open-all to Foor
Fcor sends (transfer,i,e) to V
P runs b + Ve (prog, e)
if b # 1 then
P aborts
P sends reveal to Foom
Fceom sends Y to V
if De(Y,d) then
V outputs accept
Figure 10: The protocol for garbling scheme based ZK. Fcowm is the committing OT
functionality.

E Malicious Verifier ZK Protocol

Our approach is formalized as a verifiable garbling scheme. Thus, we can use
the malicious verifier Zero Knowledge protocol of [JKO13] directly. For com-
pleteness, we provide their algorithm in Figure 10.

F Additional Algorithms

We formalize algorithms that were deferred from the main paper.

Figure 11 lists the algorithm for computing 32-bit multiplication. The algo-
rithm is similar to mull (Figure 4) except that 32 OTs are involved and 32-bit
values are reconstructed via homomorphic addition and constant multiplication.

Figure 12 lists the algorithm for projecting an n-bit value into n 1-bit values.
The algorithm is similar in flavor to multiplication algorithms: P simply asks
for the correct projection, then proves that the projection matches the input by
applying homomorphic operations to the projection.

Figure 13 provides the algorithm for reading P’s private input. Here, P asks
for a bitwise representation of her input via OT. Note that if flag is 0 (indicating
the current processor cycle does not need P’s input), then the INPUT code does
not pop the top of P’s input stack. Instead, it ‘waits’ and asks for a MAC of 0
via OTs.

Figure 14 depicts a helper procedure, inject, which reconstructs a collection

40

mul32([a], [8]) :
(av,ap) < [a]
(bv,bp) « [b]
switch(mode) :
case(VERIFIER) :
aby <+ 0
ay, <0
for i € [0..32) :
a; <5 {0,¢ — 1}
ab; +5 {0,q — 1}
otInputs.push(
(0—a},0—ab;), (2" - A —al, 2" by — ab;))
aby < aby + ab;
ay, + al, + a;
zerosExpected.push(ay — aQ/)
case(INPUT) :
for i € [0..32)
> Choose the 7th bit of a.
otChoices.push((a&2%) > 0)
case(PROVER) :
abp < a-bp
ap <0
for i € [0..32)
(a},d;) < otOutputs.pop()
ap + adp +a
abp + abp + 6;
zerosActual.push(ap — ap)

return (aby,abp)

Figure 11: The MAC multiplication procedure where the first argument a € Zy32.

41

project(n,[a]) :
(av,ap) < [d]
switch(mode) :
case(VERIFIER) :
ay, + 0
for i€ [0..n):
Vi<s{0,¢—1}
otInputs.push((0 — V;,0), (A —V;,0))
aiy +ay, +2°-V,
zerosExpected.push(ay — af,)
case(INPUT) :
for i € [0..n)
> Choose the ith bit of a.
otChoices.push((a&2") > 0)
case(PROVER) :
ap + 0
for i € [0..n)
(P;,-) + otOutputs.pop()
ap —adp+2°- P
zerosActual.push(as — ap)
> Initialize an array of n bit MACs.
out < [(0,0) ; n]
for i € [0..n)
out[i] < (V;, P;)
return out
Figure 12: The projection procedure project which converts an authenticated value

a € Zy: into i authenticated values in {0, 1}. That is, project computes the authentic
binary decomposition of the input into n bits.

42

readInput(flag) :
switch(mode) :
case(VERIFIER) :
ay < 0
for i€ [0..n):
a; <3 {0,q— 1}
otInputs.push((0 — a;,0), (A — a;,0))
ay < ay + 20 q,
case(INPUT) :
> Convert P’s 32 bit input into binary OT choices.
if flag #0:a + I.pop()
> When flag is false, P fakes an additional input 0
else:a <+ 0
for i € [0..n)
> Choose the ith bit of a.
otChoices.push((a&2") > 0)
case(PROVER) :
ap < 0
for i € [0..n)
(a;,) < otOutputs.pop()
ap +— ap + 20 . a;

return mull(flag, (ay,ap))

Figure 13: The procedure readInput allows P to choose her independent input values
via OT.

of n 1-bit values into a single n-bit value using homomorphic operations.

Figure 15 explains how to compute mod23? in our arithmetic representa-
tion. The algorithm is based off of our project procedure and simple arith-
metic.

Figure 16 lists ZKM.En and ZKM.De that respectively explain which MACs P
receives based on her input bits and how V' checks that the proof is valid. ZKM.En
is a straightforward mapping of bits into pairs. ZKM.De is a simple comparison.

Figure 17 lists ZKM.Ev and ZKM.Ve, two of the key algorithms in ZKM. We defer
these algorithms to the appendix because they are nearly identical to ZKM.Gb.
Both set the global mode, set some global variables, and defer to s/te\p.

43

inject(bits) :
out < 0
for i € [0..|bits|)
out « out + 2° - bits|i]

return out

Figure 14: The injection procedure inject which converts an array of authenticated
values in {0,1} into a single value. That is, inject reconstructs a value from its

binary decomposition. inject is the conceptual dual to project. Note that inject is
computed using only homomorphic operations.

mod32(a) :
> Project a into its binary decomposition.
bits « project(64,a)
> Collect the high 32 bits into an array.
hi «+ bits[32..64]

> Subtract off the high bits.
return a — (232 - inject(hi))

Figure 15: The mod32 procedure computes mod 2%? on an authentic value. In practice,
we use mod32 to clamp values back into the cleartext value range. The most ‘extreme’
clamping is needed after a 32 bit multiplication: in this case, the argument a can

encode a value as high as (2°2 — 1)2. Thus, mod32 is designed for up to 64 bit values.

We omit CHECK mode in the main body of our paper for brevity. For refer-

ence, Figure 18 includes the modified mull procedure that includes CHECK mode.
Other procedures are similar.

44

ZKM.En(otInputs, otChoices) :

n < |otChoices]|

> Initialize an empty array of outputs.

otOutputs « [0 ; n]

for i € [0..n)]
if otChoicesl]i]
then otOutputs[i] < otInputs[i].right
else otOutputs[i] + otInputsli].left

return otOutputs

ZKM.De(zerosExcepted, zerosActual) :

return zerosExpected == zerosActual

Figure 16: ZKM.En and ZKM.De, the procedures that respectively explain how P’s input
bits are converted to MACs and how V' checks the the proof object sent by P.

45

ZKM.Ev(prog, 1) :
> set the global mode so that prover actions are taken.
mode < PROVER
> The input I contains all of P’s OT outputs.
otOutputs < [
(T, space, time) <+ prog
> Initialize the processor state.
s 4 (initROM(T"), 0, initRAM(32), initRAM(space))
for i € [0..time)
Step(s)
> Read the output from register 0
out + accessRAM(s.registry,0,0,0)
> Check that the program output is 1.
zerosExpected.push(1 — out)

return H(zerosActual)

ZKM.Ve(prog, e) :
> set the global mode so that checking actions are taken.
mode < CHECK
(T, space, time) < prog
> Initialize the global encoding variable.
> Its contents are inspected in low level operations.
encoding < e
> Initialize the processor state.
s+ (initROM(T'),0,initRAM(32), initRAM(space))
for i € [0..time)
step(s)
> Read the output from register 0
out accessRAM(s.reﬁry, 0,0,0)
> If no low level actions failed, output 1.

return 1

Figure 17: P’s actions when running a program and when checking V’s messages.
Both procedures set relevant global variables and call step time times.

46

mull(fa], [b]) :

(av,ap) < [a]

(bv,bp) < [b]

switch(mode) :

case(VERIFIER) :

ay <5 {0,¢ — 1}
aby <3 {0,q — 1}
otInputs.push((0 — ai,,0 — aby), (A — al,, by — aby))
zerosExpected.push(ay — a@v)

case(CHECK) :
((aVh, dp), (aV4,01)) < encoding.pop()
if (Aguess == 0)
> P does not initially know A.
> Thus on the first OT that uses A, we must set up A
> to check consistency with other messages.
then Agyess = aVh —alp
else if (Agyess # aVi —alp)
then ABORT
if (61 — 0o # by)
then ABORT
aby < 0 — g

return (aby,abp)

Figure 18: The modified mull procedure that checks the correctness of V’s messages.

47

G ZK Bugs Benchmark

We provide the C snippets which we adapted to our instruction set. Fig-
ure 19 lists the snippet from [HK20]. In this snippet, a malicious user can input
particular values that cause an invalid memory dereference.

In our evaluation, we test our approach’s main memory. To do so, we mod-
ify Figure 19 to first sort an array of values using quick_sort. Figure 20 lists the
source code which we adapted to our instruction set. The snippet is interesting
because it forces extensive use of random access memory: the inner partition
algorithm has random array accesses which our approach excels at modeling.

48

static const char*x SMALL_BOARD = "small_board_vi1l";

int* alloc resources(const char* board_type) {
int block_size;
// The next line has a bug!!
if (!strncmp(board_type, SMALL_BOARD,
sizeof (SMALL_BOARD))) {
block_size = 10;
} else {
block_size=100;
}
return malloc(block_size * sizeof(int));

}

int incr_clock(const char* board_type,
int* resources) {
int clock_loc;
if (!strncmp(board type, SMALL_BOARD,
strlen(SMALL_BOARD))) {
clock_loc = O;
} else {
clock_loc = 64
}
(*(resources + clock_loc))++;
return resources[clock_loc];

3

void snippet(const char* board_type) {
int* res = alloc_resources(board_type);
incr_clock(board_type, res);

3

Figure 19: The C code snippet provided by [HK20]. This snippet contains a logic
error that causes an invalid memory dereference when provided a specific input such
as "small_boaERROR". We can run this snippet in our ZK processor. P demonstrates
there is a bug in 0.42s (Section 9).

49

int* partition(int* arr, int 1, int h) {
int x = arr[h];
int 1 = 1;
int j = 1;
while (j < h) {
if (arr[jl <= x) {
int t = arr[i];

arr[i] = arr[j];
arr[j] = t;
++1;

}

++j;

}

int t = arrl[i];
arr[i] = arr[h];
arr [h] t;
return i;

3

void quick_sort(int* arr, int 1, int h) {
int size = h -1 + 1;
int* stack = malloc(size);
int top = 0;
stack[0] = 1;
stack[1] h;
top = 2;
while (top != 0) {
top—-;
h = stack[top];
top——;
1 = stack[top];
int p = partition(arr, 1, h);
if (p>1+ 1) {
stack[top++] = 1;
stack[top++] = p - 1;

}
if (p+1<h){
stack[top++] = p + 1;
stack[top++] = h;
}
}
}

Figure 20: The C code for quick_sort that we adapted to our instruction set. Notice
that the algorithm heavily depends on RAM usage by its arbitrary array accessing.

50

