
Multi-key and Multi-input Predicate Encryption

from Learning with Errors∗

Danilo Francati1, Daniele Friolo2, Giulio Malavolta3, and Daniele Venturi2

1Aarhus University, Aarhus, Denmark
2Sapienza University of Rome, Rome, Italy

3Max Planck Institute for Security and Privacy, Bochum, Germany

February 24, 2023

Abstract

We put forward two natural generalizations of predicate encryption (PE), dubbed multi-
key and multi-input PE. More in details, our contributions are threefold.

• Definitions. We formalize security of multi-key PE and multi-input PE following the
standard indistinguishability paradigm, and modeling security both against malicious
senders (i.e., corruption of encryption keys) and malicious receivers (i.e., collusions).

• Constructions. We construct adaptively secure multi-key and multi-input PE sup-
porting the conjunction of poly-many arbitrary single-input predicates, assuming the
sub-exponential hardness of the learning with errors (LWE) problem.

• Applications. We show that multi-key and multi-input PE for expressive enough
predicates suffices for interesting cryptographic applications, including non-interactive
multi-party computation (NI-MPC) and matchmaking encryption (ME).

In particular, plugging in our constructions of multi-key and multi-input PE, under the
sub-exponential LWE assumption, we obtain the first ME supporting arbitrary policies with
unbounded collusions, as well as robust (resp. non-robust) NI-MPC for so-called all-or-
nothing functions satisfying a non-trivial notion of reusability and supporting a constant
(resp. polynomial) number of parties. Prior to our work, both of these applications required
much heavier tools such as indistinguishability obfuscation or compact functional encryption.

Keywords: predicate encryption, non-interactive MPC, matchmaking encryption, LWE.

∗An abridged version of this paper appears in the Proceedings of Advances in Cryptology–EUROCRYPT
2023: 42nd Annual International Conference on the Theory and Applications of Cryptographic Techniques.

Contents

1 Introduction 1
1.1 Our Contributions . 1
1.2 Technical Overview . 3
1.3 Applications . 13
1.4 Relation with Witness Encryption . 15

2 Related Work 16

3 Preliminaries 17
3.1 Notation . 17
3.2 Lockable Obfuscation . 18
3.3 Symmetric and Public Key Encryption . 19

3.3.1 Symmetric key encryption . 19
3.3.2 Public key encryption . 20

3.4 Predicate Encryption . 20

4 Multi-key and Multi-input Predicate Encryption 22
4.1 Multi-key PE . 22
4.2 Multi-input PE . 23

5 Constructions 26
5.1 Multi-key PE from PE and Lockable Obfuscation 27
5.2 Multi-input PE from PE, Lockable Obfuscation and SKE/PKE 28

A Matchmaking Encryption 36
A.1 Security of ME . 36
A.2 ME from 2-Key PE . 38

B Non-Interactive Multi Party Computation (with Correlated Randomness) 40
B.1 Security of CPA-1-sided reusable k-robust NI-MPC for all-or-nothing functions . 40
B.2 NI-MPC for all-or-nothing functions from multi-input PE 42

C Relating Multi-key PE and Multi-input PE 43
C.1 Multi-input PE in the ℓ-Hybrid Setting . 44
C.2 Multi-key PE from Multi-input PE . 45

D Relating Multi-key ABE and Multi-input ABE 46

E Missing Proofs 47
E.1 Proof of Theorem 4 (CPA-1-sided security of Π) 47
E.2 Proof of Theorem 4 (CPA-2-sided security of Π) 50
E.3 Proof of Theorem 5 (CPA-1-sided security of Π) 51
E.4 Proof of Theorem 5 (CPA-2-sided security of Π for n = O(log(λ))) 69
E.5 Proof of Theorem 6 (CPA-1-sided security of Π) 73
E.6 Proof of Theorem 6 (CPA-2-sided security of Π) 87

1 Introduction

Predicate encryption (PE) [BW07, KSW08, GVW15] is a powerful cryptographic primitive that
enriches standard encryption with fine-grained access control to the encrypted data. In PE, the
ciphertext is associated to both a message m and an attribute1 x, whereas the secret key is
associated to a predicate P, in such a way that the decryption process reveals the message
if and only if the attribute x satisfies the predicate P (i.e., P(x) = 1). Typically, security of
PE requires indistinguishability in the presence of collusion attacks, namely, for any pair of
attributes (x0, x1) and for any pair of messages (m0,m1), ciphertexts corresponding to (x0,m0)
and to (x1,m1) are computationally indistinguishable, even for an adversary possessing poly-
many decryption keys dkP, so long as P(x0) = P(x1) = 0 (otherwise it is easy to distinguish).

Recently, there has been a lot of progress in constructing PE supporting expressive pred-
icates under standard assumptions [BW07, KSW08, LOS+10, OT10, OT12, AFV11, Wat12,
Wee14, Att14, GVW15]. In particular, Gourbunov, Vaikuntanathan and Wee [GVW15] give a
construction of selectively secure PE (with unbounded collusions) for arbitrary predicates under
the learning with errors (LWE) assumption. Moreover, under sub-exponential LWE, the same
construction achieves adaptive security (this requires complexity leveraging).

1.1 Our Contributions

In this paper, we put forward two natural generalizations of PE which we dub multi-key PE and
multi-input PE. Furthermore, we construct both multi-key PE and multi-input PE for a par-
ticular class of predicates, under the LWE assumption. As we show, the class of predicates our
schemes can handle is powerful enough to yield interesting cryptographic applications, including
matchmaking encryption (ME) [AFNV19, AFNV21] for arbitrary policies and non-interactive
multi-party computation (NI-MPC) [HLP11] satisfying a weaker (but still non-trivial) notion
of reusability. We elaborate on these contributions in Section 1.3.

Prior to our work, all of the above applications required much stronger tools such as in-
distinguishability obfuscation (iO) [BGI+01]. While recent work made significant progress
towards basing iO on standard assumptions [JLS21, JLS22], these constructions are fairly
complex and still require a careful combination of multiple assumptions (i.e., learning par-
ity with noise, the SXDH assumption on bilinear groups, and the existence of pseudorandom
generators computable in constant depth). Furthermore, such constructions are not secure
in the presence of a quantum attacker. Candidate constructions of post-quantum iO also ex-
ist [GP21, WW21, BDGM22], but they are based on problems whose hardness is less understood.

Multi-key PE. In multi-key PE, we consider an ensemble of predicates P = {Pv} indexed
by a value v ∈ V which is uniquely represented as a sequence v = (v1, . . . , vn) ∈ V1 × . . .× Vn.
A sender can encrypt a message under an input x using the public-key encryption algorithm
Enc(mpk, x,m). A trusted authority generates decryption keys dkvi (using the corresponding
master secret key mski) for each i ∈ [n], with the guarantee that, given the decryption keys
dkv1 , . . . , dkvn , the receiver can decrypt successfully the ciphertext c (associated to plaintext m
and attributes x), so long as Pv(x) = Pv1,...,vn(x) = 1.

Security of multi-key PE says that, for any pair of attributes (x0, x1) and for any pair of
messages (m0,m1), ciphertexts c associated to (x0,m0) and (x1,m1) should be computationally
indistinguishable even under unbounded collusions, where the latter essentially means that
the adversary can obtain decryption keys for (poly-many) arbitrary values v1, . . . , vn which

1Sometimes, we also refer to x as the predicate input. Throughout the paper, we use the terms attribute and
input interchangeably.

1

correspond to predicates indexed by any value v = (v1, . . . , vn) such that Pv(x
0) = Pv(x

1) =
0. This yields so-called CPA-1-sided security. The stronger notion of CPA-2-sided security
additionally allows for predicates indexed by values v such that Pv(x

0) = Pv(x
1) = 1, so long

as m0 = m1. These notions mimic the corresponding notions that are already established for
standard PE.

Our first result is a construction of multi-key PE, from the sub-exponential LWE assumption,
supporting conjunctions of arbitrary predicates, i.e. for predicates of the form Pv(x) = Pv1(x1)∧
. . . ∧ Pvn(xn), where x = (x1, . . . , xn) and v = (v1, . . . , vn).

Theorem 1 (Informal). Assuming the sub-exponential hardness of LWE, there exists a CPA-
1-sided adaptively secure multi-key PE scheme supporting conjunctions of n = poly(λ) arbitrary
predicates with unbounded collusions.

Multi-input PE. In multi-input PE, we consider predicates P with n inputs, i.e. predicates of
the form P(x1, . . . , xn). A trusted authority produces encryption keys eki which are associated
to the i-th slot of an input for P; namely, given a (possibly secret)2 encryption key eki, a sender
can generate a ciphertext ci which is an encryption of message mi under attribute xi. At the
same time, the authority can produce a decryption key dkP associated to an n-input predicate
P, with the guarantee that the receiver can successfully decrypt c1, . . . , cn, and thus obtain
m1, . . . ,mn, so long as P(x1, . . . , xn) = 1.

As for security, we consider similar flavors as CPA-1-sided and CPA-2-sided security for
standard PE. Namely, for any pair of sequences of attributes (x01, . . . , x

0
n) and (x11, . . . , x

1
n) and

for any pair of sequences of messages (m0
1, . . . ,m

0
n) and (m1

1, . . . ,m
1
n), ciphertexts c1, . . . , cn cor-

responding to either (x01,m
0
1), . . . , (x

0
n,m

0
n) or (x

1
1,m

1
1), . . . , (x

1
n,m

1
n) should be computationally

indistinguishable. Here, we additionally consider two cases:

• In the setting with no corruptions (a.k.a. the secret-key setting), all of the encryption keys
eki are secret and cannot be corrupted (and thus all the senders are honest).

• In the setting with adaptive corruptions, the attacker can adaptively reveal some of the
encryption keys eki (and thus corrupt a subset of the senders).

Naturally, for both of these flavors, one can define CPA-1-sided and CPA-2-sided security with
or without collusions.

Our second result is a construction of multi-input PE, from the sub-exponential LWE as-
sumption, supporting conjunctions of n = poly(λ) arbitrary predicates with wildcards, i.e. for
predicates of the form P(x1, . . . , xn) = P1(x1) ∧ . . . ∧ Pn(xn) such that, for each i ∈ [n], there
exists a (public) wildcard input x⋆i for which Pi(x

⋆
i) = 1 for every i-th predicate Pi.

3 Our
multi-input PE construction retains its security only in the setting of no corruptions (i.e., the
encryption keys eki are kept secret) and no collusions (i.e., the adversary only knows a single
decryption key dkP for an adversarially chosen predicate P).

Theorem 2 (Informal). Assuming the sub-exponential hardness of LWE, there exists a CPA-1-
sided adaptively secure multi-input PE scheme supporting conjunctions of n = poly(λ) arbitrary
predicates with wildcards, without corruptions and without collusions.

2This is one of the differences between multi-key PE and multi-input PE: the former has a public-key encryp-
tion algorithm, whereas the latter could have a secret-key encryption algorithm.

3Note that, in the setting with no corruptions, assuming the presence of a (single) wildcard x⋆
i for each Pi

does not affect the expressiveness and the security guarantees of multi-input PE. This is because the i-th sender
can simply choose not to encrypt x⋆

i , which will not permit the receiver to evaluate Pi over x
⋆
i .

2

Our third result is a construction of multi-input PE, from the sub-exponential LWE assump-
tion, supporting the same class of predicates as above but tolerating adaptive corruptions of up
to n− 1 parties. However, this particular scheme only supports predicates with constant arity.

Theorem 3 (Informal). Assuming the sub-exponential hardness of LWE, there exists a CPA-
1-sided adaptively secure multi-input PE scheme supporting conjunctions of n = O(1) arbitrary
predicates with wildcards, under n− 1 adaptive corruptions and without collusions.

Finally, we anticipate that all our constructions are transformations that leverage single-
input PE schemes (e.g., [GVW15]) and lockable obfuscation [WZ17, GKW17] as building blocks.
Such transformations are general and achieve CPA-2-sided security if the underlying single-input
PE schemes are CPA-2-sided secure. In particular, we obtain (i) CPA-2-sided secure multi-key
PE with unbounded collusions for n = poly(λ), (ii) CPA-2-sided secure multi-input PE without
corruptions and without collusions for n = O(log(λ)),4 and (iii) CPA-2-sided secure multi-
input PE under n − 1 corruptions and without collusions for n = O(1). However, at the time
of this writing, the LWE assumption is not sufficient for CPA-2-sided security. Indeed, even for
single-input PE for arbitrary predicates, CPA-2-sided security implies iO [BV15]. The current
state-of-the-art constructions of iO require much stronger assumptions compared to standard
LWE.

1.2 Technical Overview

We now give a high level overview of our constructions. As explained above, both our multi-key
and multi-input PE constructions handle conjunctions of arbitrary predicates, i.e., predicates
of the form:

P(x1, . . . , xn) = P1(x1) ∧ . . . ∧ Pn(xn). (1)

We start by explaining how to build multi-key PE for the above class of predicates by combining
single-input PE and so-called lockable obfuscation [WZ17, GKW17]. Informally, a lockable
obfuscation scheme allows to obfuscate a circuit C under a lock y together with a message
m, in such a way that evaluating the obfuscated circuit, on input x, returns m if C(x) = y.
As for security, an obfuscated circuit can be simulated in a virtual black-box (VBB) fashion
whenever the lock is random and unknown to the adversary. Lockable obfuscation exists under
the standard LWE assumption.

Then, we explain how to build multi-input PE (for the same class of predicates) by addi-
tionally using SKE and PKE. Here, we consider two settings: without corruptions (a.k.a. the
secret-key setting) and with corruptions. The former assumes that all the encryption keys (each
corresponding to an input) are secret. The latter is a stronger model that allows the adversary
to leak one or more encryption keys (i.e., corruption of the senders). We achieve security in each
setting by changing the way lockable obfuscation is used. In particular, part of the contribution
of this paper is a new technique based on nested (lockable obfuscated) circuits that execute
each other. This technique allows us to construct a multi-input PE that can handle adaptive
corruptions. We provide a high-level overview in the remaining part of this section. For more
details, we refer the reader to Section 4 and Section 5.

Multi-key Predicate Encryption. An n-key PE allows a sender to encrypt a message m
under an attribute x, by running c←$ Enc(mpk, x,m). Similarly to single-input PE, a receiver
can correctly decrypt c if it has a decryption key for a predicate Pv, within a family P of pred-
icates indexed by values v ∈ V, such that Pv(x) = 1. The main difference between single-input

4Note that, in case of no corruptions, our CPA-1-sided construction supports n = poly(λ). However, to achieve
CPA-2-sided security we use complexity leveraging and this reduces n from poly(λ) to O(log(λ)).

3

PE and n-key PE is that in the latter the receiver must have n independent decryption keys
(dkv1 , . . . , dkvn) that uniquely represent the predicate Pv(·) = Pv1,...,vn(·), i.e., the decryption
key associated to a particular predicate is decomposed into n decryption keys. Each decryp-
tion key dkvi is generated by the authority via KGen(mski, vi) where (msk1, . . . ,mskn) are the
master secret keys generated during the setup. Hence, once obtained (dkv1 , . . . , dkvn) from
the authority, the receiver can decrypt the ciphertext c (encrypted under attribute x) by exe-
cuting Dec(dkv1 , . . . , dkvn , c). The message is returned if the predicate Pv1,...,vn(x) = 1, where
Pv1,...,vn(·) is the predicate represented by the combination of the n decryptions keys dkv1 , . . . ,
dkvn . The security of n-key PE is analogous to that of single-input PE, where the validity of
the adversary A is defined with respect to the (poly-many) tuples (dkv1 , . . . , dkvn) of n decryp-
tion keys that the adversary has access to. In particular, we consider the well-known notion
of CPA-1-sided security, i.e., the attacker cannot distinguish between Enc(mpk, x0,m0) and
Enc(mpk, x1,m1) so long as it only holds combinations of n decryption keys (dkv1 , . . . , dkvn)
such that Pv1,...,vn(x

0) = Pv1,...,vn(x
1) = 0 (i.e., the adversary cannot decrypt the challenge

ciphertext).5

As explained above, we focus on conjunctions of arbitrary predicates Pv1,...,vn(x) = Pv1,...,vn(
x1, . . . , xn) = Pv1(x1)∧· · ·∧Pvn(xn) as defined in Equation (1); hence, x = (x1, . . . , xn) and each
dkvi identifies the i-th predicate of the conjunction (and, in turn, any tuple of n decryption keys
uniquely identifies the global predicate). We build an n-key PE handling this class of predicates
by extending the technique of Goyal et al. [GKW17], that uses lockable obfuscation to transform
any CPA secure attribute-based encryption (ABE) (recall that ABE schemes only guarantee
the secrecy of the message) into a CPA-1-sided secure PE (i.e., secrecy of both message and
attribute). Let PEi = (Setupi,KGeni,Enci,Deci) for i ∈ [n] be n single-input PE schemes,
each with ciphertext expansion poly(λ) + |mi| where |mi| is the message length supported by
the i-th PE.6 In a nutshell, our n-key PE scheme kPE = (Setup,KGen,Enc,Dec) works as
follows. The setup algorithm Setup simply executes Setupi of each PEi and outputs the master
public key mpk = (mpk1, . . . ,mpkn) and n master secret keys (msk1, . . . ,mskn). To generate a
decryption key dkvi ←$ KGen(mski, vi) (representing the i-th predicate Pvi(·) of the conjunction),
the authority can use the key generation algorithm of the i-th PE, i.e., dkvi ←$ KGeni(mski,Pvi).
To encrypt a message m under an input x = (x1, . . . , xn), a sender samples a random lock y
and encrypts it n times using PE1, . . . ,PEn, i.e., c←$ Encn(mpkn, xn,Encn−1(mpkn−1, xn−1, · · · ,
Enc1(mpk1, x1, y))). Note that, for n = poly(λ), the final ciphertext will be of polynomial size
since each underlying i-th PE scheme has poly(λ) + |mi| ciphertext expansion where |mi| is the
message length supported by i-th scheme.

The final ciphertext of the n-key PE kPE will be the obfuscation of the circuit Cc un-
der the lock y together with the message m (i.e., C̃←$ Obf(1λ,Cc, y,m)), where Cc, on in-
put (dkv1 , . . . , dkvn), iteratively decrypts c and returns the last decrypted value, i.e., y =
Cc(dkv1 , . . . , dkvn) = Dec1(dkv1 , · · · ,Decn(dkvn , c)). Decryption is straightforward: the receiver
simply executes C̃ using its n decryption keys.

The CPA-1-sided security of our construction follows by the CPA security (i.e., secrecy of
the message) of PE1, . . . ,PEn and by the security of lockable obfuscation.7 Intuitively, the proof
works as follows. In order to be valid, an adversary A cannot hold a tuple of decryption keys

5Observe that the decryption keys can be interleaved. For example, starting from (dkv1 , . . . , dkvi , . . . dkvn)
representing the predicate Pv1,...,vi,...,vn , the adversary can ask for an additional i-th decryption key dkv′

i
and

rearrange the decryption keys as (dkv1 , . . . , dkv′
i
, . . . dkvn) in order to obtain the tuple representing a different

predicate Pv1,...,v
′
i,...,vn

̸= Pv1,...,vi,...,vn .
6By leveraging hybrid encryption, we can transform any PE into one with poly(λ)+ |m| ciphertext expansion,

i.e., Enc′(mpk, x,m) = Enc(mpk, x, s)||PRG(s)⊕m where s←$ {0, 1}λ.
7When we write CPA secure PE, without specifying 1-sided or 2-sided security, we refer to a PE scheme that

guarantees only the secrecy of the message. CPA secure PE is the same as CPA secure ABE.

4

(dkv1 , . . . , dkvn) such that Pv1,...,vn(x
b) = Pv1,...,vn(x

b
1, . . . , x

b
n) = 1, where xb = (xb1, . . . , x

b
n) is the

input chosen by A during the challenge phase, and b is the challenge bit. Since Pv1,...,vn(x
b
1, . . . ,

xbn) is a conjunction of arbitrary predicates (see Equation (1)), this implies that there exists
an i ∈ [n] such that Pvi(x

b
i) = 0 for every i-th decryption key dkvi obtained by A. We can

leverage this observation together with the CPA security of PEi to do a first hybrid in which the
challenger computes the i-th layer of the challenge ciphertext as Enci(mpki, x

b
i , 0 . . . 0). Now,

since the lock y is not encrypted anymore, we can use the security of lockable obfuscation to
do a second hybrid in which the challenge ciphertext C̃ is simulated by using the simulator of
lockable obfuscation. In this last hybrid, the challenge ciphertext does not depend on the bit b
sampled by the challenger.

Despite we focused the discussion on CPA-1-sided security, we stress that the same construc-
tion achieves CPA-2-sided security if the underlying n single-input PE schemes PE1, . . . ,PEn

are CPA-2-sided secure, i.e., Enc(mpk, x0,m0) and Enc(mpk, x1,m1) are indistinguishable even
when Pv1,...,vn(x

0) = Pv1,...,vn(x
1) = 1 and m0 = m1.

Multi-input Predicate Encryption. We now turn to the more challenging setting of multi-
input PE.8 Here, each of the n senders can use its corresponding encryption key to independently
encrypt messages under different inputs for the predicate. For this reason, the setup algorithm
of n-input PE outputs n encryption keys (ek1, . . . , ekn) and a master secret key msk. Each
encryption key eki is given to the i-th sender and allows the latter to handle the i-th slot of
a multi-input predicate. The i-th party encrypts a message mi under an input xi by using its
encryption key eki, i.e., ci←$ Enc(eki, xi,mi). On the other hand, a receiver can use the decryp-
tion key dkP associated to an n-input predicate P (recall that dkP is generated by the authority
via KGen(msk,P)) to execute Dec(dkP, c1, . . . , cn). Intuitively, the decryption algorithm returns
(m1, . . . ,mn) when P(x1, . . . , xn) = 1 where (mi, xi) are the message and the input associated
to the i-th ciphertext ci.

The CPA-1-sided security of n-input PE is similar to that of n-key PE, but adapted to the
multi-input setting. Informally, an adversary A must not be able to distinguish between ci-
phertexts (Enc(eki, x

0
i ,m

0
i))i∈[n] and (Enc(eki, x

1
i ,m

1
i))i∈[n] where (x01, . . . , x

0
n), (x

1
1, . . . , x

1
n) and

(m0
1, . . . ,m

0
n), (m

1
1, . . . ,m

1
n) are chosen by A. Naturally, this is subject to the usual validity

condition, informally saying that A should not be able to decrypt (part of) the challenge ci-
phertext. This condition can assume different meanings depending on whether the encryption
keys are all secret or some of them are public (or can be leaked). Because of this, we formalize
security with and without corruptions. Throughout the rest of this section, we describe how
CPA-1-sided security of n-input PE changes in these two settings, and give some intuition on
our constructions for each setting.

Security in the secret-key setting. Here, no corruptions are allowed and thus the en-
cryption keys are all secrets. Hence, an adversary A playing the CPA-1-sided security game has
adaptive oracle access to both the key generation oracle KGen(msk, ·) and to n encryption oracles
{Enc(eki, ·, ·)}i∈[n]. The latter oracles allow A to generate ciphertexts (associated to the i-th in-
put/sender) on adversarially chosen predicate inputs and messages. Since these ciphertexts are
created independently, the adversary has the power to interleave part of the challenge ciphertext
(c∗1, . . . , c

∗
n) with the ciphertexts obtained trough the encryption oracles. This has a huge impact

on the security of the a n-input PE scheme and on the validity condition that A must satisfy.
For example, during the challenge phase, A could choose two vectors of messages (m0

1, . . . ,m
0
n)

and (m1
1, . . . ,m

1
n) and two vectors of predicate inputs (x01, . . . , x

0
n) and (x11, . . . , x

1
n) such that for

8Indeed, as we discuss in Remark 3, CPA-1-sided (resp. CPA-2-sided) secure multi-input PE for arbitrary
predicates implies CPA-1-sided (resp. CPA-2-sided) secure multi-key PE.

5

every predicate P (submitted to oracle KGen(m, ·)) we have P(x01, . . . , x0n) = P(x11, . . . , x1n) = 0.
Although the vector (c∗1, . . . , c

∗
n) can not be directly decrypted, A could still be able to decrypt

part of it by leveraging the encryption oracles. In more details, A could: (i) adversarially choose
x′i such that P(x01, . . . , x′i, . . . x0n) = 1 and P(x11, . . . , x′i, . . . x1n) = 0; (ii) submit (x′i,m

′
i) to oracle

Enc(eki, ·, ·) and obtain c′i;and (iii) simply decrypt the vector (c∗1, . . . , c
′
i, . . . , c

∗
n). When b = 0

(resp. b = 1), the adversary knows that the challenge ciphertext must (resp. must not) decrypt
successfully. This allows it to easily win the CPA-1-sided security experiment of n-input PE. As
a consequence, the condition defining when A is valid depends on both the queries submitted
to KGen(msk, ·) and to the oracles {Enc(eki, ·, ·)}i∈[n]. More precisely, for every decryption key
dkP corresponding to a predicate P, for every vector of ciphertexts obtained by interleaving the
challenge ciphertext (c∗1, . . . , c

∗
n) with the ciphertexts generated trough any of the n encryption

oracles, we must have that P is not satisfied. This is formalized by the following condition:
∀P ∈ QKGen, ∀j ∈ [n], ∀i1 ∈ [k1 + 1], . . . ,∀in ∈ [kn + 1], it holds that

P(x(i1,0)1 , . . . , x
(ij−1,0)
j−1 , x0j , x

(ij+1,0)
j+1 , . . . , x(in,0)n) =

P(x(i1,1)1 , . . . , x
(ij−1,1)
j−1 , x1j , x

(ij+1,1)
j+1 , . . . , x(in,1)n) = 0, (2)

where QKGen are the queries submitted to oracle KGen(msk, ·), (x01, . . . , x0n), (x11, . . . , x1n) are the

predicate inputs chosen by A during the challenge phase, and Qb
i = {x

(1,b)
i , . . . , x

(ki,b)
i , x

(ki+1,b)
i =

xbi} is the ordered list composed of the ki predicate inputs submitted to oracle Enc(eki, ·, ·) and
the challenge input xbi for b ∈ {0, 1}, i ∈ [n] (observe that Q0

i and Q1
i are identical except for

the last element). The formal security definition appears in Section 4.2.

Construction in the secret-key setting. We propose a construction of n-input PE for
conjunctions of arbitrary predicates (see Equation (1)) with wildcards from single-input PE,
lockable obfuscation, and SKE. In particular, we start from single-input PE for arbitrary predi-
cates. Actually, it will suffice that the underlying PE itself supports the predicates P(x1, . . . , xn)
as defined in Equation (1), where we view (x1, . . . , xn) as a single input chosen by the sender.
In addition, the predicate must have a (efficiently computable) wildcard input (x⋆1, . . . , x

⋆
n) such

that x⋆i satisfies every i-th predicate of the conjunction, i.e., Pi(x
⋆
i) = 1. As we will describe

next, the n−1 subset of wildcards (x⋆1, . . . , x
⋆
i−1, x

⋆
i+1, . . . , x

⋆
n) will permit the i-th sender to put

a “don’t care” placeholder on the slots of the other senders. This will allow the construction to
deal with multiple inputs without compromising the evaluation of the predicate.

The main intuition behind our construction is to evaluate the conjunction of the predicates
inside lockable obfuscation in such a way that, as soon as one of the predicates (of the conjunc-
tion) is not satisfied, both the messages and the predicate inputs remain hidden (even if another
predicate Pi is satisfied). To accomplish that, we need to create a link between the indepen-
dently generated ciphertexts (each produced by different senders). This is done by leveraging
an SKE scheme as follows.

In a nutshell, the i-th secret encryption key has the form eki = (mpk, ki, ki+1) where mpk is
the master public key of the single-input PE, and ki for i ∈ [n] is a secret key for the SKE (we
also let ekn+1 = k1). In order to encrypt a messagemi under an input xi, the i-th sender samples
a random lock yi and encrypts (yi, ki+1) via the single-input PE, using the input made by all the
wildcards x⋆j except for the position j = i, where, instead, the sender places its real input xi,

i.e., c
(1)
i ←$ Enc(mpk, (x⋆1, . . . , x

⋆
i−1, xi, x

⋆
i+1, . . . , x

⋆
n), (yi, ki+1)). The final ciphertext ci will be

ci = (C̃i, c
(2)
i), where c

(2)
i ←$ Enc(ki, c

(1)
i) and C̃i is the obfuscation of the circuit C

c
(2)
i ,ki+1

under

the lock yi and messagemi. Similarly to the case of multi-key PE, the latter circuit is responsible

for the decryption. In particular, upon input the ciphertexts (c
(2)
i+1, . . . , c

(2)
n , c

(2)
1 , . . . , c

(2)
i−1)—note

6

the order of the ciphertexts—and the decryption key dkP for P(x1, . . . , xn), the circuit C
c
(2)
i ,ki+1

acts as follows:

1. Set k = ki+1 where ki+1 is the secret key hardcoded into the circuit.

2. For c
(2)
j ∈ {c

(2)
i+1, . . . , c

(2)
n , c

(2)
1 , . . . , c

(2)
i−1} do:

(a) Decrypt c
(2)
j using the secret key k, i.e., c

(1)
j = Dec(k, c

(2)
j).

(b) Decrypt c
(1)
j using dkP in order to get (yj , kj+1). If c

(1)
j decrypts correctly, kj+1 is the

secret key used to encrypt the next ciphertext c
(2)
j+1.

(c) Set k = kj+1.

3. Compute (yi, ki+1) = Dec(dkP,Dec(k, c
(2)
i)), where c

(2)
i is the ciphertext hardcoded into

the circuit.

4. Return yi (note that if none of the decryptions fails then yi is the lock used to obfuscate
the circuit).

By the above description, decryption is immediate: Upon input (ci)i∈[n], the receiver computes

mi = C̃i(c
(2)
i+1, . . . , c

(2)
n , c

(2)
1 , . . . , c

(2)
i−1, dkP) where ci = (C̃i, c

(2)
i) and dkP is the decryption key of

the underlying single-input PE for a predicate P(x1, . . . , xn). We highlight that the combination
of the SKE with the PE wildcards is what allows our construction to correctly implement the

predicates of Equation (1). This is because, when c
(1)
i correctly decrypts under the key dkP

(Item 2b), we are guaranteed that Pi(xi) = 1 (recall that xi is the input of the i-th sender).
In particular, the latter holds as, in any other slot, the i-th sender has used the wildcards.
By repeating this argument, we can conclude that P(x1, . . . , xn) = P1(x1) ∧ . . . ∧ Pn(xn) is
satisfied if the execution of each C

c
(2)
i ,ki+1

goes as expected. The formal construction is described

in Section 5.2.
As for security, we show that our construction satisfies CPA-1-sided security in the presence

of no collusions (i.e., the adversary can submit a single query to the oracle KGen) if the un-
derlying PE is CPA-1-sided secure, SKE is CPA secure, and the lockable obfuscation is secure.
Roughly, the proof works as follows. Let P∗ be the only predicate submitted to KGen by the
adversary. Starting from A’s validity condition, we infer that, for any choice of the challenge
bit b ∈ {0, 1}, then attacker A must maintain one of the following two conditions:

(i) either P∗1(xb1) = . . . = P∗n(xbn) = 0 (i.e., all the predicates of the conjunctions are false);

(ii) or (if at least one predicate P∗i is satisfied, i.e., P∗i (xbi) = 1) there exists j ̸= i such that, for
every xj ∈ Qb

j , it holds that P∗j (xj) = 0 where Qb
j is the ordered list composed of predicate

inputs submitted to the oracle Enc(ekj , ·, ·) and the challenge input xbj (see Equation (2)).9

When the first condition is satisfied, we can leverage the CPA-1-sided security of the single-
input PE to show that the every lock yi (encrypted using the PE), and every input xi (encrypted

in c
(2)
i), is completely hidden to the adversary. The latter allows us to use the security of lockable

obfuscation to move to a hybrid experiment in which all the (obfuscated) circuits are simulated
(including the messages).

On the other hand, when the second condition is satisfied, we can transition to a hybrid ex-
periment (this time by leveraging the security of the underlying PE scheme) in which Enc(ekj , ·, ·)

9If this condition is not satisfied, the adversary has obtained through the encryption oracles a set of ciphertexts
that can be interleaved with one (or more) parts of the challenge ciphertext in order to satisfy the predicate P∗.

7

computes c
(1)
j by encrypting the all-zero string (instead of (yj , kj+1)). Thus, we can use the se-

curity of lockable obfuscation to move to another hybrid in which Enc(ekj , ·, ·) simulates all
the obfuscations. At this point, the symmetric key kj+1 is not used anymore. Hence, we can

use the security of SKE to transition to another hybrid in which Enc(ekj+1, ·, ·) computes c
(2)
j+1

by encrypting the all-zero string (instead of c
(1)
j+1 that, in turn, contains the lock yj+1 and the

symmetric key kj+2). After this hybrid, we can again use the security of lockable obfuscation
to simulate all the obfuscations computed by Enc(ekj+1, ·, ·), and so on. By repeating these last
two hybrids, we reach an experiment whose distribution does not depend on the challenge bit.
We present the formal construction in Section 5.2.

We highlight that our scheme is not secure in the presence of collusions. In particular, the
fact that the adversary can obtain a single decryption key dkP is crucial in order to get the
validity condition (ii), i.e., for every b ∈ {0, 1} there exists a j such that for every predicate
(submitted to KGen(msk, ·)) we have Pj(x

b
j) = 0. In fact, in the case of collusions, the adversary

can ask for two decryption keys dkP and dkP′ such that for every b ∈ {0, 1}:

P1(x
b
1) = 0 and P2(x

b
2) = . . . = Pn(x

b
n) = 1

P′1(xb1) = 1 and P′2(xb2) = . . . = P′n(xbn) = 0.

Note that these are valid queries for the CPA-1-sided security experiment of n-input PE (the
ciphertext cannot be decrypted). However, such a unique j for every predicate (as per condition
(ii)) does not exist. When this happens, we are not able to conclude the proof by making a
reduction to the security of single-input PE (the reduction will make an invalid set of queries
to the KGen oracle of the single-input PE, making it invalid for the CPA-1-sided security of the
single-input PE).10

Lastly, we stress that since we start from a single-input PE supporting conjunctions of
arbitrary predicates with wildcards, we end up with an n-input PE for conjunctions of arbitrary
predicates (see Equation (1)) with wildcards. We highlight that wildcards do not play any role
in the security proof of our secret-key construction. In other words, wildcards are required
for functionality (correctness) and not for security. Indeed, in the secret-key setting (i.e., no
corruptions), wildcards can be easily removed. This is because we can transform any secure
multi-input PE for P(x1, . . . , xn) = P1(x1) ∧ . . . ∧ Pn(xn) with a single wildcard (x⋆1, . . . , x

⋆
n)

into a secure multi-input PE for the same class of predicates P(x1, . . . , xn) without the wildcard.
This can be done by requiring the senders not to encrypt the corresponding wildcard, i.e., for
each i ∈ [n], Enc(eki, x

⋆
i ,mi) outputs ⊥ whenever xi = x⋆i . We stress that this only works in the

case of no corruptions. In fact, as we will discuss later, in case of corruption, wildcards play
a role in the security of our corruption-resilient multi-input PE scheme, e.g., an adversary can
encrypt wildcards on its own using the leaked encryption keys.

Security under corruptions. Next, let us explain how to define security of multi-input PE
in the presence of corruptions. Here, the adversary has the possibility to corrupt a subset of
the senders and leak their encryption keys eki. We model this by introducing an additional
corruption oracle Corr(·) that, upon input an index i ∈ [n], returns eki. Note that, once
obtained eki, the adversary A has the possibility to produce arbitrary ciphertexts on any message
and predicate input, without interacting with the challenger during the CPA-1-sided security
game. As usual, the validity condition heavily depends on the queries submitted to both the
encryption oracles and the corruption oracle. More precisely, the validity condition now says

10As we discuss in Remark 5, our construction remains secure if we consider a weaker form of collusion in
which the adversary can only obtain multiple decryption keys for predicates P such that there is a unique j for
all predicates (submitted to KGen) that satisfies the validity condition (ii).

8

that, for every decryption key dkP, for every vector of ciphertexts that can be obtained by
interleaving the challenge ciphertext (c∗1, . . . , c

∗
n) with both the ciphertexts obtain trough any of

the (uncorrupted) encryption oracles and the ones that A may autonomously produce by using
the leaked encryption keys (trough oracle Corr(·)), we have that P is not satisfied. Hence, the
validity condition is identical to that of the secret-key setting (see Equation (2)), except that:

• If the i-th encryption key eki has been corrupted/leaked, then Qb
i of Equation (2) corre-

sponds to the i-th predicate input space. This is because the adversary can produce a
valid ciphertext on any input xi.

• Else (i.e., the i-th encryption key eki is still secret), Qb
i is defined as usual, i.e., it is the

ordered list of predicate inputs submitted to oracle Enc(eki, ·, ·) and challenge input xbi .

See Section 4.2 for the formal definition.

A simple attack. Before explaining our construction in details, let us show why the previous
construction is not secure under corruptions. For simplicity, we focus on the 2-input setting.
Suppose an adversary A has a single decryption key dkP for P(x1, x2) = P1(x1) ∧ P2(x2) and

a vector of ciphertexts (c∗1, c
∗
2) = ((C̃1, c

(2)
1), (C̃2, c

(2)
2)) encrypted under the predicate input

(x1, x2) such that P1(x1) = 0 and P2(x2) = 1. Note that this ciphertext should not decrypt
under dkP, since the conjunction of P1 and P2 evaluates to 0. If A can obtain ek2, then it can
easily determine the message m2 (and thus the bit b). Indeed, once A gets ek2 = (mpk, k2, k1), it

can compute a malicious ciphertext c̃
(1)
1 (using the single-input PE) by encrypting (ỹ, k2) (where

ỹ is a random lock) under the predicate input composed by (x′1, x
′
2) such that P1(x

′
1) = 1 and

P2(x
′
2) = 1. Then, it can compute c̃

(2)
1 ←$ Enc(k1, c̃

(1)
1) and execute C̃2(c̃

(2)
1 , dkP) to get m2. Note

that by definition the execution of C̃2 outputs the correct message, since P1(x
⋆
1) ∧ P2(x2) = 1

and c̃
(2)
1 contains the correct secret encryption key k2, allowing the circuit to correctly end

the computation. Also, note that this attack does not violate the validity condition. This is
because P1(x1) = 0, and A does not use the oracle Enc(ek1, ·, ·) at all. Hence, any interleaving
of the ciphertexts will involve the predicate input x1 that, in turn, will make the conjunction
P(x1, x′2) = P1(x1) ∧ P2(x

′
2) unsatisfied for every choice of the input predicate x′2.

In light of the above attack, we can identify what we need to do in order to extend our
techniques to handle corruptions:

• First, following the proof of the previous construction, it is important to hide the (plain)
single-input PE ciphertext that a particular sender produces (e.g., in the secret-key set-

ting we re-encrypt c
(1)
i using SKE). As we have described for the secret-key setting, this

allows us to claim that everything remains hidden whenever one of the predicate Pi of the
conjunction is not satisfied (even if a different Pj is satisfied).11

• Second, the leakage of one (or more) encryption keys should not allow to produce a mali-
cious ciphertext on behalf of the uncorrupted senders (or simply decrypt the ciphertexts
of other parties). Otherwise, the attacker can follow a strategy similar to the one above
to break security.

Construction under corruptions. In order to achieve the above properties, we propose a
new technique based on nested (lockable obfuscated) circuits that can be executed one inside
the other. This technique permits to make available secret information (e.g., secret keys) only

11The secret-key construction achieves this by linking multiple PE ciphertexts via SKE, and including the
secret key ki+1 into the PE ciphertext.

9

during nested execution. For the sake of clarity, we first present our approach for the case
of two inputs. As an initial attempt to deal with corruptions, we replace the SKE in our
previous construction with a PKE, so that the encryption key ek1 (resp. ek2) is now composed
of (mpk, sk1, pk1, pk2) (resp. (mpk, sk2, pk2, pk1)) where (ski, pki) is a secret/public key pair.
Each (ski, pki) is associated to the i-th sender (indeed, note that eki contains also the secret
key ski). From the perspective of the first sender, in order to encrypt a message m1 under
the input x1, it samples two random locks (yin1 , y

out
1) and encrypts them (using the single-input

PE) as before using the wildcard x⋆2, i.e., c
(0)
1 ←$ Enc(mpk, (x1, x

⋆
2), (y

in
1 , y

out
1)).12 At this point,

the PE ciphertext c
(0)
1 is re-encrypted twice using pk1 and pk2, i.e., c

(i)
1 ←$ Enc(pki, c

(i−1)
1) for

i ∈ [2]. Intuitively, the two layers of PKE have the role of hiding the PE ciphertexts (that
in turn contain the locks) even when the adversary leaks all encryption keys except one. The
final ciphertext is composed by the two obfuscations C̃out

1 , C̃in
1 of the circuits Cout

sk1,c
(2)
1

, Cin

sk1,c
(2)
1

,

respectively. The former is obfuscated under the lock yout1 and message m1, whereas the latter is
obfuscated under the lock yin1 and message sk1. The ciphertext produced by the second sender,

is identical, except that it uses sk2 (instead of sk1) and that c
(0)
2 is computed using the predicate

input (x⋆1, x2) (instead of (x1, x
⋆
2)).

The crux of our nesting technique comes from the definition of the circuits Cout

ski,c
(2)
i

. More

precisely, the outer circuit Cout

sk1,c
(2)
1

will take as input the obfuscation C̃in
2 of the inner circuit

Cin

sk2,c
(2)
2

and a decryption key dkP. Then, in order to securely check the conjunction inside the

lockable obfuscation, Cout

sk1,c
(2)
1

will execute C̃in
2 (sk1, dkP). At this point, C̃in

2 has everything it

needs to check the satisfiability of P2(·). It removes the PKE layers from c
(2)
2 by computing

c
(0)
2 = Dec(sk2,Dec(sk1, c

(2)
2)). Then, it decrypts the PE ciphertext (yin2 , y

out
2) = Dec(dkP, c

(0)
2)—

observe that the decryption succeeds if P2(x2) = 1—and returns yin2 . By correctness of lockable

obfuscation, if the computation of Cin

sk2,c
(2)
2

(sk1, dkP) goes as intended, then C̃in
2 (sk1, dkP) will

output sk2 (the message attached to the obfuscation). Once obtained sk2, the computation
of Cout

sk1,c
(2)
1

can continue and perform a similar computation to check the satisfiability of P1(·)

except that, if the PE ciphertext c
(0)
1 decrypts correctly, it returns yout1 . If all the decryptions

(performed by Cout

sk1,c
(2)
1

and Cin

sk2,c
(2)
2

) succeed, the execution of the obfuscation C̃out
1 of Cout

sk1,c
(2)
1

will output m1. A symmetrical argument holds for Cout

sk2,c
(2)
2

and Cin

sk1,c
(2)
1

, releasing m2.

We show that the above 2-input PE construction is CPA-1-sided secure under 1 corruption
(i.e., one encryption key remains secret) and no collusions if the underlying single-input PE
is CPA secure, PKE is CPA secure, and the lockable obfuscation is secure. The high level
intuition is that ski remains unknown to the adversary if Pi(·) = 0 (unless the adversary invokes
the oracle Corr(i)). This is reflected by the proof technique that is sketched below.

Let dkP∗ be the decryption key obtained by A for the predicate P∗(·, ·) = P∗1(·) ∧ P∗2(·)
(recall the presence of wildcards), and let QCorr be the queries submitted to the corruption
oracle. Starting from the validity condition, we can infer that for any choice of the challenge
bit b ∈ {0, 1} we have:

(i) either P∗1(xb1) = P∗2(xb2) = 0;

(ii) or (i.e., there exists an i ∈ [2] such that predicate Pi is satisfied) j ̸∈ QCorr such that
j ̸= i and, for every xj ∈ Qb

j , P∗j (xj) = 0 (recall that xbj ∈ Qb
j). Observe that this second

condition holds because of the following:

12Recall that wildcards must be efficiently computable.

10

• If there is xj ∈ Qb
j such that P∗j (xj) = 1, A can use the corresponding ciphertext to

decrypt the i-th part of the challenge ciphertext since P∗i (xbi) = 1.

• If j ∈ QCorr, A can simply use ekj to encrypt a random message under the wildcard
x⋆j (that always exists by design of our construction) and, again, decrypt the i-th part
of the challenge ciphertext. Note that, contrarily from our secret-key construction,
wildcards play an important role in the security of our multi-input PE construction
under corruptions (if an encryption key ekj gets leaked then a malicious adversary can
always encrypt itself the j-th wildcards x⋆j , satisfying the j-th predicate Pj). Hence,
in the corruption setting, wildcards are used for both functionality and security.

By leveraging the above two conditions, the security of our scheme follows by using a similar
argument to that of the secret-key setting. In particular, when the first condition is satisfied, we
can show that the locks (yin1 , y

out
1) and (yin2 , y

out
2) (used to encrypt the challenge) are completely

hidden. This, in turn, allows us to use the security of lockable obfuscation and simulate the
obfuscations of (Cout

sk1,c
(2)
1

,Cin

sk1,c
(2)
1

), (Cout

sk2,c
(2)
2

,Cin

sk2,c
(2)
2

), and the corresponding messages.

On the other hand, when the second condition is satisfied, we can move to a hybrid (by

leveraging the security of single-input PE) in which Enc(ekj , ·, ·) computes c
(0)
j by encrypting

the all-zero string (instead of (yinj , y
out
j)). Then, we can use the security of lockable obfuscation to

transition to another hybrid in which Enc(ekj , ·, ·) simulates all the obfuscations. At this point,
the secret key skj of the uncorrupted j-th sender is not used anymore (recall that j ̸∈ QCorr).
Hence, we can leverage the security of the PKE to remove the locks (yini , y

out
i) chosen by the i-th

sender (recall i ̸= j). In more details, we do another hybrid in which the j-th PKE layer c
(j)
i

of the challenge ciphertext is an encryption of zeroes (instead of c
(j−1)
i that, in turn, encrypts

the locks (yini , y
out
i)). After this hybrid, we can again use the security of lockable obfuscation

to simulate all the obfuscations (and the corresponding attached messages) that compose the
i-th component of the ciphertext. The distribution of this last hybrid does not depend on the
challenge bit b since all the ciphertexts are simulated by the simulator of the lockable obfuscation
scheme.

To sum up, we can observe that encrypting c
(0)
i (the PE ciphertext that contains the locks)

with the public keys (pk1, pk2) of both senders is crucial in order for our proof to work indepen-
dently of which encryption key the adversary decides to leak. So long as at least one encryption
key eki remains hidden, then there is a PKE layer that cannot be decrypted by the adversary.
This allows the proof to go through.

Generalizing the nesting technique to (n > 2) inputs. By carefully modifying the def-
inition of the outer and inner circuits, we can generalize the above technique to the case of
n > 2. The structure of the encryption keys and of the encryption algorithm is similar to the
case n = 2:

• Each encryption key eki is of the form (mpk, ski, pk1, . . . , pkn).

• To compute the i-th encryption of (xi,mi), the sender computes the initial PE cipher-

text as c
(0)
i ←$ Enc(mpk, (x⋆1, . . . , xi, . . . , x

⋆
n), (y

in
i , y

out
i)). Then, it re-encrypts n times the

ciphertext c
(0)
i using (pk1, . . . , pkn), i.e., c

(v)
i ←$ Enc(pkv, c

(v−1)
i) for v ∈ [n]. As usual, the

final ciphertext ci = (C̃out
i , C̃in

i) is composed of the obfuscations of Cout

ski,c
(n)
i

and Cin

ski,c
(n)
i

.

We now turn on the crucial point: the definition of the outer and inner circuits. Again,
for the sake of clarity, we only describe the outer circuit Cout

sk1,c
(n)
1

and of the inner circuits

11

(Cin

sk2,c
(n)
2

, . . . ,Cin

skn,c
(n)
n

) generated by the corresponding senders. The remaining circuits are

defined similarly. First off, the input space of these circuits is a follows:

• Cout

sk1,c
(n)
1

takes as input the n − 1 obfuscations of the circuits (Cin

sk2,c
(n)
2

, . . . ,Cin

skn,c
(n)
n

) and

a decryption dkP. These obfuscations are the inner circuits that needs to be executed in
order to return the message m1 attached to the obfuscation of Cout

sk1,c
(n)
1

.

• On the other hand, Cin

ski,c
(n)
i

, for i ∈ [n] \ {1}, takes as input a tuple of n secret keys

(sk1, . . . , skn) (where some can be set to ⊥), a decryption key dkP, and the obfuscations of
(Cin

ski+1,c
(n)
i+1

, . . . ,Cin

skn,c
(n)
n

). Intuitively, these obfuscations are the remaining inner circuits

that we need to still execute in order to complete the nested execution.

Intuitively, the decryption of m1 requires the nested execution of these circuits (starting from
the outer one) in order to get all the secret keys required to decrypt the PE ciphertext. This is
achieved as follows.

The outer circuit Cout

sk1,c
(n)
1

starts the nested execution by invoking the obfuscation of Cin

sk2,c
(n)
2

upon input (sk1,⊥, . . . ,⊥), dkP, and the remaining obfuscations of (Cin

sk3,c
(n)
3

, . . . ,Cin

skn,c
(n)
n

). In

turn, Cin

sk2,c
(n)
2

will do a similar thing: It executes the next obfuscated circuit Cin

sk3,c
(n)
3

upon input

(sk1, sk2,⊥, . . . ,⊥), dkP, and the remaining obfuscations (Cin

sk4,c
(n)
4

, . . . ,Cin

skn,c
(n)
n

). This process

is repeated until Cin

skn,c
(n)
n

is executed upon input (sk1, . . . , skn−1,⊥) and dkP. At this point, all

the secret keys are know (observe that skn is hardcoded). From c
(n)
n , we can remove the n PKE

layers, decrypt the PE ciphertext and, in turn, return yinn if the PE ciphertext decrypts correctly
(i.e., Pn(·) is satisfied). Once Cin

skn,c
(n)
n

terminates, the secret key skn is released and Cin

skn−1,c
(n)
n−1

performs the computation required to check if Pn−1(·) is satisfied. Indeed, Cin

skn−1,c
(n)
n−1

has been

executed on input (sk1, . . . , skn−2,⊥,⊥), it has skn−1 harcoded, and the execution of Cin

skn,c
(n)
n

has released skn. Hence, after the correct termination of Cin

skn,c
(n)
n

, all secret keys are known.

It may seems that this argument can be iterated. However, there is a problem. Even if
Cin

skn−1,c
(n)
n−1

correctly terminates, the circuit Cin

skn−2,c
(n)
n−2

that invokes it does not have access to

the secret key skn. This is because the latter circuit receives as input (sk1, . . . , skn−3,⊥,⊥,⊥),
it has skn−2 hardcoded, and the circuit Cin

skn−1,c
(n)
n

has returned skn−1. As a consequence,

Cin

skn−2,c
(n)
n−2

must re-run Cin

skn,c
(n)
n

on input (sk1, . . . , skn−1,⊥) in order to get skn and decrypt

every PKE layer. This needs to be done at any level of the nested execution, yielding an
asymptotic running time of O(nn). Hence, this technique only works assuming n = O(1), i.e.
for O(1)-input predicates. The formal construction is described in Section 5.2.

On achieving CPA-2-sided secure multi-input PE. Until now, we only focused the
discussion on achieving CPA-1-sided security. Our multi-input constructions achieve CPA-2-
sided security if the underlying single-input PE is CPA-2-sided secure (we highlight that, in our
secret-key multi-input PE construction, we need to reduce the n-arity from poly(λ) to O(log(λ))
since we use complexity leveraging). We just recall here that, already for the simple notion of
single-input PE for arbitrary predicates, CPA-2-sided security implies iO [BV15].

12

1.3 Applications

Finally, we explore applications of multi-key and multi-input PE. This question is particularly
relevant given the fact that we are only able to obtain multi-key and multi-input PE supporting
conjunctions of arbitrary predicates (with wildcards). Luckily, we can show that this class of
predicates is already expressive enough to yield interesting cryptographic applications which
previously required much stronger assumptions.

Matchmaking Encryption. Matchmaking encryption (ME) [AFNV19, AFNV21] allows a
sender to publicly encrypt a message m under some attributes σ and a policy R. On the other
hand, the receive can use the decryption keys dkρ and dkS (encoding the receiver’s attributes
and policy, respectively) to decrypt the message (i.e., Dec(dkρ, dkS, c) = m) if there is a mutual
match S(σ) = 1∧R(ρ) = 1. The main security guarantee of ME is defined by the following two
properties:

• In case of a mismatch, nothing is leaked except the fact that a match did not occur.

• Additionally, in case of a match, nothing is leaked except for the message and the fact
that a match occurred.

These properties are reminiscent to CPA-2-sided security of PE. Multi-key PE is a direct gener-
alization of ME: 2-key PE for conjunctions Pv1,v2(·, ·) = Pv1(·)∧Pv2(·) (i.e., the class of predicates
studied in this work) implies ME for arbitrary policies. In a nutshell, the construction works as
follows. To encrypt a message m under the sender’s attributes σ and the sender’s policy R, the
ME encryption algorithm corresponds to the public-key encryption algorithm of the 2-key PE
scheme, i.e., c←$ Enc(mpk, (x1, x2),m) where x1 = σ and x2 = R. Analogously, the ME decryp-
tion keys dkρ and dkS correspond to the decryption keys dkv2 and dkv1 of the 2-key PE scheme
where v1 = S and v2 = ρ. By setting Pv1,v2(x1, x2) = PS,ρ(σ,R) = Pσ(S) ∧ PR(ρ) = S(σ) ∧R(ρ),
we obtain the desired ME functionality during decryption. The security analysis is intuitive:
if the 2-key PE is CPA-1-sided secure then the ME scheme is secure only in case of mismatch.
In addition, if the 2-key PE is CPA-2-sided secure, then the ME security holds also in case of
a match. Hence, as a corollary of our results, we achieve the weaker notion of CPA-1-sided
secure (i.e., mismatch) ME supporting arbitrary policies and unbounded collusions from sub-
exponential LWE. We stress that the seminal works of ME [AFNV19, AFNV21] defined the
security of ME only in terms of CPA-2-sided security. Still, considering the weaker CPA-1-sided
security is meaningful and non-trivial to achieve. We provide more details in Appendix A.

Previous works construct CPA-2-sided secure ME with unbounded collusions for either very
restricted policies (i.e., for identity matching) using bilinear maps [FGRV21, CLWW22] (and
ROM [AFNV19]), or for arbitrary policies from much stronger assumptions such as 2-input
FE with one secret key and one public key (this notion of 2-input FE implies iO) [AFNV19,
AFNV21].

For completeness (see Section 4.1 and Appendix C), we highlight that we can build n-key
PE from (n + 1)-input PE supporting arbitrary predicates and tolerating 1 corruption (this is
required to implement the public-key encryption algorithm of n-key PE). As a consequence,
multi-input PE implies ME as well. However, recall that our multi-input PE constructions do
not support arbitrary predicates but only conjunctions of arbitrary predicates with wildcards.

Non-interactive MPC. Non-interactive MPC (NI-MPC) [BGI+14, HLP11] allows n par-
ties to evaluate a function f(v1, . . . , vn) on their inputs using a single round of communication

13

(i.e., each party sends a single message ci←$ Enc(crs, eki, vi)). This is achieved by assum-
ing a trusted setup (that may depend on the function itself) that generates (possibly corre-
lated) strings (e.g., common reference string crs and encryption keys eki) that can be later
used by the parties to perform function evaluation. Security of NI-MPC can be formulated
in two different settings, named non-reusable and reusable NI-MPC. The former retains secu-
rity only if the setup is executed after every round. The latter retains security even if par-
ties evaluate f on different inputs using the same setup (full-fledged reusability makes use of
session identifiers in order to avoid that an adversary can interleave messages from different
rounds [HLP11]). Both non-reusable and reusable NI-MPC provide the same security guaran-
tee, formalized using an indistinguishability-based definition: an adversary A cannot distinguish
between (Enc(crs, eki, v

0
i))i∈[n] and (Enc(crs, eki, v

1
i))i∈[n], so long as any combination of the mes-

sages known by the adversary (including the ones it can compute using the encryption key eki
of a corrupted party) yields the same function’s evaluation.13

As mentioned by several works [BGI+14, GGG+14, HIJ+16, HIJ+17], NI-MPC achieving
indistinguishability-based security implies iO even in very restricted settings. In particular, a
non-reusable 1-robust (i.e., one malicious party) NI-MPC for two parties implies iO. Intuitively,
by fixing the NI-MPC function to f(C, x) = C(x), we can obfuscate a circuit by simply setting
the input of the first (honest) party to C, compute c1←$ Enc(crs, ek1,C), and outputting C̃ =
(crs, c1, ek2) where ek1, ek2 are the key material required to encode the inputs of the NI-MPC
(note that 1-robustness is necessary since we reveal ek2). To evaluate the obfuscated circuit,
the evaluator only needs to compute c2←$ Enc(crs, ek2, x) and evaluate the NI-MPC function
f that will yield C(x). The security of this iO obfuscator follows from the security of NI-MPC
since the residual functions f(C0, ·) and f(C1, ·) are identical, as C0(x) = C1(x) for every input
x. Additionally, reusable, 0-robust (i.e., no malicious parties) NI-MPC for n = poly(λ) parties
implies iO. In this case, iO can be built using a similar construction to that of iO from secret-key
multi-input functional encryption (FE) [GGG+14].

Due to the similarities between multi-input PE and multi-input FE, we observe that multi-
input PE is enough to construct NI-MPC for all-or-nothing functions defined over the predicates
supported by the multi-input PE scheme. In more details, by leveraging our CPA-1-sided n-
input PE (for n = O(1)) secure under n − 1 corruptions and without collusions, we can build
an (n− 1)-robust NI-MPC for a constant number of parties for the following class of functions:

fP((x1,m1), . . . , (xn,mn)) =

{
(m1, . . . ,mn) if P(x1, . . . , xn) = 1

⊥ otherwise

where P(x1, . . . , xn) is a conjunctions of arbitrary independent predicates (with wildcards) as
defined in Equation (1). The resulting NI-MPC satisfies a weaker notion of reusability without
session identifiers (i.e., messages produced in different rounds can be interleaved by design)
specifically tailored for all-or-nothing functions, which we name CPA-1-sided reusability. In a
nutshell, CPA-1-sided reusable NI-MPC guarantees the usual indistinguishability-based security
only if fP outputs ⊥ (i.e., P(·) is not satisfied) for any combination of the honest messages and
the ones the adversary can maliciously compute using the encryption key eki of a corrupted
party.

The construction is intuitive. At setup, simply publish crs = dkP and distribute eki to the i-th
party where (msk, ek1, . . . ekn)←$ Setup(1λ) and dkP←$ KGen(msk,P). During evaluation, each
party can send the message ci←$ Enc(eki, xi,mi) and compute Dec(dkP, c1, . . . , cn) to evaluate

13Note that security of NI-MPC for general functions is formalized by an indistinguishability-based defini-
tion [HIJ+17, BGI+14]. This is because simulation-based NI-MPC implies virtual black-box (VBB) obfuscation
that is known to be impossible for certain classes of functions [BGI+01].

14

the function fP((x1,m1), . . . , (xn,mn)). The CPA-1-sided reusable security of k-robust NI-MPC
for fP follows readily from CPA-1-sided security of n-input PE under k corruptions and without
collusions.

By plugging in our results, we obtain either CPA-1-sided reusable (n − 1)-robust NI-MPC
with n = O(1), or CPA-1-sided reusable 0-robust NI-MPC with n = poly(λ) where the predicate
P of the function fP is a conjunctions of arbitrary predicates (i.e., P(x1, . . . , xn) = P1(x1)∧ . . .∧
Pn(xn)) with wildcards under the LWE assumption. Note that a CPA-1-sided reusable NI-
MPC for fP where P(x1, . . . , xn) = P1(x1) ∧ . . . ∧ Pn(xn) can be used to implement a voting
protocol with message passing, i.e., only when each parties’ vote xi satisfies its dedicated set
of requirements Pi(·) (i.e., Pi(xi) = 1 for every i ∈ [n]) the messages are revealed to all the
participants. Until this condition is not satisfied, everything remains secret. We provide the
formal definition of CPA-1-sided reusability and the construction of NI-MPC from multi-input
PE in Appendix B.

We stress that, nonetheless CPA-1-sided reusability is a weakening of the standard reusabil-
ity definition, our flavor of reusability is still non-trivial to achieve in the setting of general
functions. This is because we can build null iO (and, in turn, witness encryption) [GKW17,
WZ17, BJK+18] from CPA-1-sided reusable NI-MPC using the same constructions of iO from
(standard) reusable NI-MPC, i.e., CPA-1-sided reusable (resp. CPA-1-sided non-reusable) 0-
robust (resp. 1-robust) NI-MPC for n = poly(λ) parties (resp. n = 2 parties) and general
functions implies null iO.

1.4 Relation with Witness Encryption

In the following we recall the notion of witness encryption (WE) [GGSW13], and we discuss
its relation with both multi-input and multi-key schemes. We anticipate that such relations do
not require CPA-1-sided and CPA-2-sided security. Hence, the following discussion will focus
on multi-input and multi-key ABE schemes, i.e., predicate inputs can be public.

A WE scheme for a relation R, defined over a language L, allows a sender to encrypt a
message m using a statement x. A receiver, holding a witness w, can decrypt the message
m if (x,w) ∈ R. As for security, WE guarantees that the message remains hidden whenever
x ̸∈ L, i.e., the corresponding ciphertext can not be decrypted. WE has several disrupting
applications such as encrypting messages that can be decrypted in the future (i.e., whenever w
will be known). Moreover, WE does not require setup and is fully non-interactive.

As shown by Brakerski et al. [BJK+18], an n-input ABE (i.e., predicate inputs can be
public) for arbitrary predicates (or any predicate that “match” the desired NP relation), se-
cure in the secret-key setting and without collusions, implies WE for NP and n-size witnesses.
The construction is reminiscent to the one of iO from secret-key multi-input functional encryp-
tion [GGG+14] (see also Section 1.3). Unfortunately, we cannot use here our n-input scheme
since it only supports conjunctions of arbitrary predicates (see Equation (1)). Currently, it is
not know how to build n-input ABE (and thus PE), with n > 2, for arbitrary predicates without
iO (the only known construction is for n = 2 and it is due to the concurrent work of Agrawal
et al. [AYY22]. See Section 2 for a detailed discussion.

Also, we stress that multi-key ABE (i.e., a multi-key scheme where predicate inputs can be
public) for arbitrary predicates implies WE. The construction is similar to that of Brakerski et
al. [BJK+18], for obtaining WE from multi-input ABE. The only difference is that we substitute
the multiple inputs with the multiple decryption keys of multi-key ABE. For completeness,
we describe the construction below. Let Pv1,...,vn(x) = 1 if and only if (x,w) ∈ R, where
w = v1|| . . . ||vn defines the class of predicates supported by the multi-key ABE. To encrypt
a message m under a statement x ∈ L, the sender computes (mpk,msk1, . . . ,mskn)←$ Setup(

15

1λ) and sends to the receiver (c, (dkvi , dkvi)i∈[n]) where c←$ Enc(mpk, x,m) and dkvi ←$ KGen(
mski, 1) (resp. dkvi ←$ KGen(mski, 0)) for i ∈ [n]. To decrypt the ciphertext under a witness
w = v1|| . . . ||vn, the receiver simply executes Dec(dk′v1 , . . . , dk

′
vn , c) where dk′vi = dkvi if vi = 1,

and dk′vi = dkvi if vi = 0.14 Similarly to the case of multi-input, our multi-key construction
fails to imply WE since it does not support arbitrary predicates (we stress once again that
CPA-1-sided and CPA-2-sided security are not required).

It may seem that arbitrary predicates are a necessary condition in order to build WE
from multi-input schemes. However, we highlight that this is not necessarily the case if we
consider security under corruptions. In particular, a 2-input scheme for conjunctions under
1 corruption and no collusions, implies WE for any relation. This can be accomplished by
considering the predicate Px,R(·, ·) = P1(·) ∧ Px,R(·) such that P1(x

⋆
1) = 1 (for some wild-

card x⋆1) and Px,R(w) = 1 if and only if (x,w) ∈ R. Intuitively, to encrypt m using a
statement x, the sender can simply output (c1, ek2, dkPx,R) such that c1←$ Enc(ek1, x

⋆
1,m),

dkPx,R ←$ KGen(m,Px,R), and (msk, ek1, ek2)←$ Setup(1λ). Then, the receiver uses w to re-
trieve m by computing Dec(dkx,R, c1,Enc(ek2, w)).

15 Here, it is crucial the the underlying
2-input scheme can handle corruptions, since the latter allows the sender to disclose ek2 to the
(possibly malicious) receiver and give him the opportunity to try different witnesses.

Unfortunately, even in this case, our O(1)-input scheme under corruptions fails to imply
WE. This is because our construction supports conjunctions of arbitrary predicates each one
having a wildcard. In other words, the wildcard is a trivial witness for any statement.16

Given the above discussion, we identify two plausible approaches that could lead to a con-
struction of WE from standard assumptions:

• Enlarging the class of predicates of our secret-key n-input or n-key constructions: From
conjunction of arbitrary predicates (see Equation (1)) to arbitrary predicates (or any
restricted class of predicates that permits to implement a specific non-trivial WE relation
R).

• Supporting conjunctions of arbitrary predicates (without wildcards) in the setting of 2-
input with security under 1 corruption.

2 Related Work

Multi-input PE is a special case of multi-input FE [GGG+14]. It is well known that so-called
compact FE (supporting arbitrary functions) implies multi-input FE [AJ15, BV15], which in
turn implies iO. Constructions of multi-input FE from standard assumptions, in turn, exist for
restricted functions [BLR+15, AGRW17, DOT18, ACF+18, CDG+18, ABKW19, LT19, Tom19,
ABG19, AGT21, CSW21, AGT23]. Multi-input PE can also be seen as stronger form of multi-
input ABE [BJK+18], the difference being that the attributes are not private in the case of
ABE. Previously to our work, all (provably secure) constructions of n-input ABE with n > 2
required iO (the only exception is the concurrent work of Agrawal et al. [AYY22], which we
discuss in the next paragraph).

The multi-input and multi-key settings have also been considered in the context of fully-
homomorphic encryption [LTV12, CM15, MW16].

14Observe that the same construction works if we start from a multi-key PE whose encryption algorithm is
secret-key, i.e., the mpk (required to execute Enc) is replaced with an encryption key ek that is kept secret.

15A similar construction can be used to build iO from 2-input FE with security under 1 corruption and no
collusions.

16If wildcards exist, a malicious receiver can always decrypt the message by evaluating the predicate over the
wildcards.

16

Concurrent and independent work. The independent and concurrent work of Agrawal,
Yadav, and Yamada [AYY22] proposes two constructions of secret-key (i.e., no corruptions) 2-
input key-policy ABE for NC1 with unbounded collusions (recall that, in the ABE setting, only
the secrecy of the messages is guaranteed, i.e., inputs can be public). The first construction
is based on LWE and pairings, and it is provably secure in the generic group model. The
second construction is based on function-hiding inner-product FE, a variant of the non-falsifiable
KOALA knowledge assumption (which is proven to hold under the bilinear generic group model),
and LWE. However, this second construction achieves a weaker selective flavor of security in
which the adversary has to submit both the challenge and the decryption key queries before
the setup phase. Additionally, they propose two heuristic constructions. The first is a 2-input
ABE for P from lattices, and the second is a 3-input ABE for NC1 from pairings and lattices.
However, the security of these heuristic constructions remains unclear.

In comparison, our work directly focuses on the PE setting (i.e., CPA-1-sided security) and
provides the first secret-key n-input PE that supports n = poly(λ) inputs, with (adaptive) CPA-
1-sided security (i.e., secrecy of both inputs and messages) based solely on LWE. However, our
construction only supports a restricted class of predicates (i.e., conjunctions of arbitrary predi-
cates with wildcards) and it is secure only in the case of no collusions. Furthermore, differently
from [AYY22], we move away from the secret-key setting and propose a second construction of
n-input PE (still for conjunctions of arbitrary predicates) that supports n = O(1) inputs and
can tolerate n− 1 corruptions (i.e., up to n− 1 encryption keys can be adaptively revealed by
the adversary). Finally, we propose the notion of multi-key PE (not covered in [AYY22]), and
give the first construction of CPA-1-sided secure n-key PE for n = poly(λ), with unbounded
collusions and still supporting conjunctions of arbitrary predicates, based on LWE.

Regarding the techniques, we highlight that both our work and that of [AYY22] introduce
(albeit different) nesting techniques based on lockable obfuscation. In particular, the nesting
technique of [AYY22] permits to transform any secret-key n-input ABE into a secret-key n-input
PE (achieving CPA-1-sided security). We stress that their approach only works in the secret-
key setting. In contrast, we propose a different nesting technique which yields n-input PE for
n = O(1) while tolerating n− 1 corruptions. It is important to note that our nesting technique
is not generic, but it is specifically tailored to work with the class of predicates considered in
this work.

Turning to applications, we highlight that the multi-input schemes of [AYY22] fail to imply
ME, since their constructions are all in the secret-key setting (whereas ME requires a public-key
encryption algorithm). As for NI-MPC, the constructions in [AYY22] can be used to obtain
a CPA-1-sided 0-robust reusable NI-MPC for all-or-nothing functions defined over arbitrary
predicates, but only in the case of 2 parties (3 parties if we consider also the heuristic construc-
tions).

3 Preliminaries

3.1 Notation

We use the notation [n] = {1, 2, . . . , n}. Capital bold-face letters (such as X) are used to denote
random variables, small letters (such as x) to denote concrete values, calligraphic letters (such
as X) to denote sets, serif letters (such as A) to denote algorithms, and bold typeface letters
(such as C) to denote circuits. All of our algorithms are modeled as (possibly interactive) Turing
machines; if algorithm A has oracle access to some oracle O, we often implicitly write QO for
the set of queries asked by A to O.

For a string x ∈ {0, 1}∗, we let |x| be its length; if X is a set, |X | represents the cardinality

17

of X . When x is chosen uniformly in X , we write x←$ X . If A is an algorithm, we write
y←$ A(x) to denote a run of A on input x and output y; if A is randomized, y is a random
variable and A(x; r) denotes a run of A on input x and (uniform) randomness r. An algorithm
A is probabilistic polynomial-time (PPT) if A is randomized and for any input x, r ∈ {0, 1}∗
the computation of A(x; r) terminates in a polynomial number of steps (in the input size). We
write C(x) = y to denote the evaluation of the circuit C on input x and output y.

Negligible functions. Throughout the paper, we denote by λ ∈ N the security parameter
and we implicitly assume that every algorithm takes as input the security parameter. A function
ν(·) is called negligible in the security parameter λ ∈ N if it vanishes faster than the inverse
of any polynomial in λ, i.e. ν(λ) ∈ O(1/p(λ)) for all positive polynomials p(λ). We sometimes
write negl(λ) (resp. poly(λ)) to denote an unspecified negligible function (resp. polynomial
function) in the security parameter.

3.2 Lockable Obfuscation

A lockable obfuscator [GKW17, WZ17] permits to obfuscate a circuit C together with a “lock”
y and a message m. As a result, the obfuscator will output an obfuscated circuit C̃ that will
behave as follows:

C̃(x) =

{
m if C(x) = y

⊥ otherwise.

More formally, let n(·), s(·), d(·) be polynomials, and Cn,s,d(λ) be the family of circuits of depth
d(λ) with input size n(λ) and output size s(λ). A lockable obfuscator for the circuit family
Cn,s,d(λ) and message spaceM is composed of the following polynomial-time algorithms:

Obf(1λ,C, y,m): Upon input the security parameter 1λ, a circuit C ∈ Cn,s,d(λ), a lock y ∈
{0, 1}s(λ), and a message m ∈ M, the randomized lockable obfuscator algorithm outputs
a circuit C̃.

Eval(C̃, x): Upon input an obuscated circuit C̃ and an input x ∈ {0, 1}n(λ), the deterministic
evaluation algorithm outputs a message m ∈M∪ {⊥}.

Definition 1 (Semi-statistical correctness of lockable obfuscation [GKW17]). A lockable ob-
fuscator Π = (Obf,Eval) for the circuit family Cn,s,d(λ) and message space M satisfies semi-
statistical correctness if:

1. ∀λ ∈ N, ∀x ∈ {0, 1}n(λ), m ∈M, ∀C ∈ Cn,s,d(λ) such that C(x) = y, we have

P
[
Eval(Obf(1λ,C, y,m), x) = m

]
= 1.

2. ∀λ ∈ N, ∀x ∈ {0, 1}n(λ), ∀m ∈M, ∀C ∈ Cn,s,d(λ) such that C(x) ̸= y, we have

P
[
Eval(Obf(1λ,C, y,m), x) = m

]
≤ negl(λ).

As for security, lockable obfuscation must hide any information about the circuit C, the
message m and the lock y when the lock is randomly chosen. This is defined by requiring that
there exists a simulator S that simulates the obfuscated circuit C̃.

18

Glock-sim
Π,A,S (λ)

(C,m, α)←$ A0(1
λ)

b←$ {0, 1}, y←$ {0, 1}s(λ)

C̃0←$ Obf(1λ,C, y,m), C̃1←$ S(1λ, 1|C|, 1|m|)

b′←$ A1(1
λ, C̃b, α)

If (b′ = b): return 1

Else: return 0

Figure 1: Game defining security of lockable obfuscation.

Definition 2 (Security of lockable obfuscation). A lockable obfuscator Π = (Obf,Eval) for the
circuit family Cn,s,d(λ) and message space M is secure if there exists a PPT simulator S such
that for every PPT adversary A = (A0,A1) we have:∣∣∣∣P[Glock-sim

Π,A,S (λ) = 1
]
− 1

2

∣∣∣∣ ≤ negl(λ),

where Glock-sim
Π,A,S (λ) is depicted in Figure 1.

Remark 1. The definitions above are taken from [GKW17]. Wichs and Zirdelis [WZ17] proposed
a slightly more general notion of obfuscation for multi-bit compute-and-compare circuits in
which the lock is only required to be unpredictable. They also give an obfuscator for multi-bit
compute-and-compare circuits from the LWE assumption.

3.3 Symmetric and Public Key Encryption

3.3.1 Symmetric key encryption

A symmetric-key encryption (SKE) scheme with message spaceM is composed of the following
polynomial-time algorithms:

KGen(1λ): The randomized key generator takes as input the security parameter 1λ and outputs
a symmetric key k.

Enc(k,m): The randomized encryption algorithm takes as input a symmetric key k and a mes-
sage m ∈M, and outputs a ciphertext c.

Dec(k, c): The deterministic decryption algorithm takes as input a symmetric key k and a
ciphertext c, and outputs a message m.

We require a SKE to be correct and secure against chosen-plaintext attacks (CPA).

Definition 3 (Correctness of SKE). A SKE Π with message spaceM is correct if ∀λ ∈ N, ∀k
output by KGen(1λ), ∀m ∈M, we have

P[Dec(k,Enc(k,m)) = m] ≥ 1− negl(λ).

Definition 4 (CPA security of SKE). We say that a SKE Π is CPA secure if for all PPT
adversaries A = (A0,A1): ∣∣∣∣P[GCPA-ske

Π,A (λ) = 1
]
− 1

2

∣∣∣∣ ≤ negl(λ),

where game GCPA-ske
Π,A (λ) is depicted in Figure 2.

19

GCPA-ske
Π,A (λ)

k←$ KGen(1λ)

(m0,m1, α)←$ A
Enc(k,·)
0 (1λ)

b←$ {0, 1}, c←$ Enc(k,mb)

b′←$ A
Enc(k,·)
1 (1λ, c, α)

If (b′ = b): return 1

Else: return 0

GCPA-pke
Π,A (λ)

(pk, sk)←$ KGen(1λ)

(m0,m1, α)←$ A0(1
λ, pk)

b←$ {0, 1}, c←$ Enc(pk,mb)

b′←$ A1(1
λ, c, α)

If (b′ = b): return 1

Else: return 0

Figure 2: Game defining CPA security of SKE and PKE.

3.3.2 Public key encryption

A public-key encryption (PKE) scheme with message space M is composed of the following
polynomial-time algorithms:

KGen(1λ): The randomized key generator takes as input the security parameter 1λ and outputs
a public and a secret key pair (pk, sk).

Enc(pk,m): The randomized encryption algorithm takes as input a public key pk and a message
m ∈M, and outputs a ciphertext c.

Dec(sk, c): The deterministic decryption algorithm takes as input a secret key sk and a cipher-
text c, and outputs a message m.

We consider the usual definition of correctness and CPA security of PKE.

Definition 5 (Correctness of PKE). A PKE Π with message space M is correct if ∀λ ∈ N,
∀(pk, sk) output by KGen(1λ), ∀m ∈M, we have

P[Dec(sk,Enc(pk,m)) = m] ≥ 1− negl(λ).

Definition 6 (CPA security of PKE). We say that a SKE Π is CPA secure if for all PPT
adversaries A = (A0,A1): ∣∣∣∣P[GCPA-pke

Π,A (λ) = 1
]
− 1

2

∣∣∣∣ ≤ negl(λ),

where game GCPA-pke
Π,A (λ) is depicted in Figure 2.

3.4 Predicate Encryption

In PE, a trusted authority generates a decryption key for the receiver associated to an arbitrary
predicate of his choice. The receiver is able to decrypt a ciphertext if and only if the predicate
P (corresponding to its decryption key) is satisfied when evaluated with the predicate input x
used for encrypting the plaintext, i.e. P(x) = 1. Formally, a PE with message spaceM, input
space X , and predicate space P, is composed of the following polynomial-time algorithms:

Setup(1λ): Upon input the security parameter 1λ the randomized setup algorithm outputs the
master public key mpk and the master secret key msk.

KGen(msk,P): The randomized key generator takes as input the master secret key msk and a
predicate P ∈ P. The algorithm outputs a secret decryption key dkP for predicate P.

20

GCPA-PE
Π,A (λ)

(mpk,msk)←$ Setup(1λ)

(m0,m1, x, α)←$ A
KGen(msk,·)
0 (1λ,mpk)

b←$ {0, 1}, c←$ Enc(mpk, x,mb)

b′←$ A
KGen(msk,·)
1 (1λ, c, α)

If (b′ = b): return 1

Else: return 0

GCPA-t-PE
Π,A (λ)

(mpk,msk)←$ Setup(1λ)

(m0,m1, x0, x1, α)←$ A
KGen(msk,·)
0 (1λ,mpk)

b←$ {0, 1}, c←$ Enc(mpk, xb,mb)

b′←$ A
KGen(msk,·)
1 (1λ, c, α)

If (b′ = b): return 1

Else: return 0

Figure 3: Game defining CPA, CPA-1-sided, and CPA-2-sided security of PE.

Enc(mpk, x,m): The randomized encryption algorithm takes as the master public key mpk, an
input x ∈ X , and a message m ∈ M. The algorithm produces a ciphertext c linked to
both x and m.

Dec(dkP, c): The deterministic decryption algorithm takes as input a secret decryption key dkP
for predicate P ∈ P and a ciphertext c. The algorithm outputs either a message m or an
error ⊥.

Correctness of PE states that the receiver obtains the message with overwhelming probability
if P(x) = 1. On the other hand, if P(x) = 0, the decryption outputs ⊥ with overwhelming
probability.

Definition 7 (Correctness of PE). A PE with message space M, input space X , predicate
space P, is correct if ∀λ ∈ N, ∀(mpk,msk) output by Setup(1λ), ∀m ∈M, ∀x ∈ X ,∀P ∈ P, ∀dkP
output by KGen(msk,P) the following two conditions hold:

1. If P(x) = 1, then P[Dec(dkP,Enc(mpk, x,m)) = m] ≥ 1− negl(λ).

2. If P(x) = 0, then P[Dec(dkP,Enc(mpk, x,m)) = ⊥] ≥ 1− negl(λ).

Security of PE comes in different flavors. The standard CPA security requires the adversary
to distinguish between the encryption of two messages for the same predicate input. More
formally, the adversary is allowed to perform a polynomial number of queries to the key gen-
eration oracle. Then, the adversary chooses two messages m0 and m1 and an input x, and
wins the CPA security game if it can distinguish between an encryption of Enc(mpk, x,m0) and
Enc(mpk, x,m1) with non-negligible probability (a PE scheme that satisfy CPA security is also
called attribute-based encryption (ABE)).

Definition 8 (CPA security of PE). We say that a PE Π is CPA secure if for all valid PPT
adversaries A = (A0,A1): ∣∣∣∣P[GCPA-PE

Π,A (λ) = 1
]
− 1

2

∣∣∣∣ ≤ negl(λ),

where game GCPA-PE
Π,A (λ) is depicted in Figure 3. Adversary A is called valid if ∀P ∈ QKGen it

holds that P(x) = 0.

We also consider two stronger definitions of security, namely CPA-1-sided and CPA-2-sided
security, guaranteeing also the secrecy of the predicate input used during the encryption of a
message. In this security games, the adversary is allowed to choose two different inputs x0 and
x1 and the usual messages m0 and m1. CPA-1-sided security guarantees the privacy of the
input only when the predicates for which the adversary knows a decryption key (i.e. the ones
he received from the key generation oracle) are not satisfied, i.e. the receiver cannot decrypt
the message. On the other hand, CPA-2-sided security considers the same property also when
the predicate is satisfied, i.e., the receiver can decrypt the challenge ciphertexts.

21

Definition 9 (CPA-1-sided and CPA-2-sided security of PE). Let t ∈ [2]. We say that a PE Π
is CPA-t-sided secure if for all valid PPT adversaries A = (A0,A1):∣∣∣∣P[GCPA-t-PE

Π,A (λ) = 1
]
− 1

2

∣∣∣∣ ≤ negl(λ),

where game GCPA-t-PE
Π,A (λ) is depicted in Figure 3. Adversary A is called valid if ∀P ∈ QKGen,

Case t = 1: P(x0) = P(x1) = 0.

Case t = 2: Either P(x0) = P(x1) = 0 or P(x0) = P(x1) ∧m0 = m1.

Through the paper, we say Π is CPA-1-sided (resp. CPA-2-sided) secure without collusions
if |QKGen| = 1, i.e., the adversary can not get more than one decryption key.

Remark 2. PE schemes, satisfying CPA security (Definition 8) or CPA-1-sided security (Defini-
tion 9), can be built from different assumptions. Notably, [GVW15] proposes an LWE-based PE
scheme satisfying CPA-1-sided (and thus CPA) selective security, i.e., the adversary chooses the
challenge messages and predicate inputs before receiving the master public key. By using com-
plexity leveraging, the same construction achieves adaptive security (i.e., Definitions 8 and 9)
but this requires sub-exponential LWE.

4 Multi-key and Multi-input Predicate Encryption

We provide the formal definitions of multi-key PE and multi-input PE in the following Sec-
tions 4.1 and 4.2, respectively. In Appendix A, we build ME from multi-key PE. In Appendix B,
we build CPA-1-sided reusable robust NI-MPC for all-or-nothing functions from multi-input PE.

4.1 Multi-key PE

Formally, an n-key PE with message space M, input space X , and predicate space P =
{Pv1,...,vn(x)}(v1,...,vn)∈V indexed by V = V1× . . .×Vn, is composed of the following polynomial-
time algorithms:

Setup(1λ): Upon input the security parameter 1λ the setup algorithm outputs the master public
key mpk and the n master secret key (msk1, . . . ,mskn).

KGen(mski, vi): Let i ∈ [n]. The randomized key generator takes as input the i-th master secret
key mski and the i-th index vi ∈ Vi. The algorithm outputs the i-th secret decryption key
dkvi for the predicate index vi.

Enc(mpk, x,m): The randomized encryption algorithm takes as the master public key mpk, an
input x ∈ X , and a message m ∈M. The algorithm produces a ciphertext c.

Dec(dkv1 , . . . , dkvn , c): The deterministic decryption algorithm takes as input n secret decryp-
tion keys (dkv1 , . . . , dkvn) for the n indexes (v1, . . . , vn) ∈ V and a ciphertext c. The
algorithm outputs a message m.

Correctness is intuitive: given the decryption keys (dkv1 , . . . , dkvn) for (v1, . . . , vn) ∈ V, the
decryption algorithm returns the message m (encrypted under the input x) with overwhelming
probability, whenever Pv1,...,vn(x) = 1.

22

GCPA-t-kPE
Π,A (λ)

(mpk,msk1, . . . ,mskn)←$ Setup(1λ)

(m0,m1, x0, x1, α)←$ A
KGen(msk1,·),...,KGen(mskn,·)
0 (1λ,mpk)

b←$ {0, 1}, c←$ Enc(mpk, xb,mb)

b′←$ A
KGen(msk1,·),...,KGen(mskn,·)
1 (1λ, c, α)

If (b′ = b): return 1

Else: return 0

Figure 4: Game defining CPA-t-sided security of n-key PE.

Definition 10 (Correctness of n-key PE). A n-key PE with message spaceM, input space X ,
predicate space P = {Pv1,...,vn}v1,...,vn∈V indexed by V = V1 × . . . × Vn, is correct if ∀λ ∈ N,
∀(mpk,msk1, . . . ,mskn) output by Setup(1λ), ∀m ∈ M, ∀x ∈ X , ∀(v1, . . . , vn) ∈ V such that
Pv1,...,vn(x) = 1, we have:

P[Dec(dkv1 , . . . , dkvn ,Enc(mpk, x,m)) = m] ≥ 1− negl(λ),

where dkvi ←$ KGen(mski, vi) for i ∈ [n].

As for security, we adapt the standard CPA-1-sided and CPA-2-sided security of PE to
the n-key setting. In particular, an adversary (with oracle access to KGen(mski, ·) for i ∈ [n])
cannot distinguish between Enc(mpk, x0,m0) and Enc(mpk, x1,m1) except with non-negligible
probability. When considering CPA-1-sided security, the adversary is valid only if it cannot
decrypt the challenge ciphertext, i.e., it asks to the n key generation oracles indexes (v1, . . . , vn)
such that Pv1,...,vn(x

0) = Pv1,...,vn(x
1) = 0. Analogously, the CPA-2-sided security captures

the indistinguishability of Enc(mpk, x0,m0) and Enc(mpk, x1,m1) even when the adversary can
decrypt the challenge ciphertext, i.e., Pv1,...,vn(x

0) = Pv1,...,vn(x
1) = 1 and m0 = m1. These

security definitions are formalized below.

Definition 11 (CPA-1-sided and CPA-2-sided security of n-key PE). Let t ∈ [2]. We say that
a n-key PE Π is CPA-t-sided secure if for all valid PPT adversaries A = (A0,A1):∣∣∣∣P[GCPA-t-kPE

Π,A (λ) = 1
]
− 1

2

∣∣∣∣ ≤ negl(λ),

where game GCPA-t-kPE
Π,A (λ) is depicted in Figure 4. Adversary A is called valid if ∀v1 ∈

QKGen(msk1,·), . . . ,∀vn ∈ QKGen(mskn,·), we have

Case t = 1: Pv1,...,vn(x
0) = Pv1,...,vn(x

1) = 0.

Case t = 2: Either Pv1,...,vn(x
0) = Pv1,...,vn(x

1) = 0

or Pv1,...,vn(x
0) = Pv1,...,vn(x

1) ∧m0 = m1.

4.2 Multi-input PE

Formally, an n-input PE with message spaceM =M1×. . .×Mn, input space X = X1×. . .×Xn,
and predicate space P, is composed of the following polynomial-time algorithms:

Setup(1λ): Upon input the security parameter 1λ the setup algorithm outputs the encryption
keys (ek1, . . . , ekn) and the master secret key msk.

KGen(msk,P): The randomized key generator takes as input the master secret key msk and a
predicate P ∈ P. The algorithm outputs a secret decryption key dkP for predicate P.

23

Enc(eki, xi,mi): Let i ∈ [n]. The randomized encryption algorithm takes as input an encryption
key eki, an input xi ∈ Xi, and a message mi ∈ Mi. The algorithm produces a ciphertext
ci linked to xi.

Dec(dkP, c1, . . . , cn): The deterministic decryption algorithm takes as input a secret decryption
key dkP for predicate P ∈ P and n ciphertexts (c1, . . . , cn). The algorithm outputs n
messages (m1, . . . ,mn).

Correctness states that ciphertexts (c1, . . . , cn), each linked to an input xi, correctly decrypt
with overwhelming probability if P(x1, . . . , xn) = 1.

Definition 12 (Correctness of n-input PE). An n-input PE with message spaceM =M1×. . .×
Mn, input space X = X1× . . .×Xn, predicate space P, is correct if ∀λ ∈ N, ∀(ek1, . . . , ekn,msk)
output by Setup(1λ), ∀(m1, . . . ,mn) ∈M, ∀(x1, . . . , xn) ∈ X ,∀P ∈ P such that P(x1, . . . , xn) =
1, we have:

P[Dec(dkP, c1, . . . , cn) = (m1, . . . ,mn)] ≥ 1− negl(λ),

where dkP←$ KGen(msk,P) and ci←$ Enc(eki, xi,mi) for i ∈ [n].

Security with and without corruptions. The CPA-1-sided and CPA-2-sided security of
n-input PE capture the infeasibility in distinguishing between ciphertexts (Enc(ek1, x

0
1,m

0
1), . . . ,

Enc(ekn, x
0
n,m

0
n)) and (Enc(ek1, x

1
1,m

1
1), . . . ,Enc(ekn, x

1
n,m

1
n)). This is modeled by an adversary

having oracle access to a key generation oracle KGen(msk, ·) (allowing it to get decryption keys
dkP on predicates of its choice) and n encryption oracles Enc(ek1, ·, ·), . . . ,Enc(ekn, ·, ·) (allowing
it to get encryptions of arbitrary messages and inputs). Differently from the n-key setting,
we consider different models of security with respect to whether the encryption keys are secret
(i.e., no corruptions) or public/leaked (i.e., the adversary has the possibility to get one or
more encryption keys of its choice). The corruption of an encryption key is captured by giving
access to a corruption oracle Corr(·) to the adversary that, on input i ∈ [n], it returns eki.
Intuitively, the knowledge of eki impacts the validity condition that the adversary must satisfy
(e.g., the challenge ciphertext cannot be decrypted). Indeed, eki would allow the adversary to
produce arbitrary i-th ciphertexts on arbitrary i-th inputs xi and potentially decrypt part of
the challenge ciphertext. Concretely, as for CPA-1-sided security, the validity of the adversary
can be defined as follows:

• No corruptions (a.k.a. the secret-key setting). If all the encryption keys (ek1, . . . , ekn)
are secret the validity conditions of CPA-1-sided security is straightforward. It intu-
itively states that for every dkP (obtained through oracle KGen(msk, ·)) and any tuple
of ciphertexts (c1, . . . , cn) (each linked to an input xi) obtained through the interleaving
of part of the challenge ciphertext with the ciphertexts generated by invoking oracles
{Enc(eki, ·, ·)}i∈[n], we must have that P(x1, . . . , xn) = 0 (otherwise part of the challenge
ciphertext can be decrypted).

• With corruptions. If some of the encryption keys are known by the adversary (i.e., ob-
tained through the corruption oracle Corr(·)) then the validity condition now changes
according to which keys have been obtained. This is because the adversary can now au-
tonomously compute arbitrary ciphertext (for a particular slot i) using the leaked i-th
encryption key eki. Taking into account this observation, the validity of CPA-1-sided se-
curity with corruptions says that any tuple of ciphertexts (c1, . . . , cn) that can be obtained
by interleaving part of the challenge ciphertexts with both the ones generated through
oracles {Enc(eki, ·, ·)}i∈[n] and the ones that can be autonomously generated using the
leaked encryption keys, we must have that P(x1, . . . , xn) = 0.

24

Gℓ-CPA-t-iPE
Π,A (λ)

(ek1, . . . , ekn,msk)←$ Setup(1λ)

((m0
i)i∈[n], (m

1
i)i∈[n], (x

0
i)i∈[n], (x

1
i)i∈[n], α)←$ A

KGen(msk,·),Corr(·),{Enc(ekj ,·,·)}j∈[n]

0 (1λ)

b←$ {0, 1}, c1←$ Enc(ek1, x
b
1,m

b
1), . . . , cn←$ Enc(ekn, x

b
n,m

b
n)

b′←$ A
KGen(msk,·),Corr(·),{Enc(ekj ,·,·)}j∈[n]

1 (1λ, c1, . . . , cn, α)

If (b′ = b): return 1

Else: return 0

Figure 5: Game defining CPA-t-sided security of n-input PE in the ℓ-corruptions setting.
Oracle Corr(j) returns ekj for j ∈ [n].

The validity of CPA-2-sided security (with and without corruptions) can be easily obtained by
adapting the above discussion. Below, we provide the formal definition.

Definition 13 (ℓ-Corruptions CPA-1-sided and CPA-2-sided security of n-input PE). Let t ∈
[2]. We say that an n-input PE Π is CPA-t-sided secure in the ℓ-corruptions setting if for all
valid PPT adversaries A = (A0,A1):∣∣∣∣P[Gℓ-CPA-t-iPE

Π,A (λ) = 1
]
− 1

2

∣∣∣∣ ≤ negl(λ),

where game Gℓ-CPA-t-iPE
Π,A (λ) is depicted in Figure 5. Let Qi = {x|∃(x,m) ∈ QEnc(eki,·,·)}

for i ∈ [n] \ QCorr and Qi = Xi for i ∈ QCorr. Moreover, let Qd
i (for d ∈ {0, 1}) be the

ordered list composed of the predicate inputs Qi and the challenge input xdi , i.e., Qd
i =

{x(1,d)i , . . . , x
(ki,d)
i , x

(ki+1,d)
i = xdi } where ki = |Qi| and x(j,d) ∈ Qi for j ∈ [ki].

17 Adversary
A is called valid if |QCorr| ≤ ℓ and ∀P ∈ QKGen, ∀j ∈ [n], ∀i1 ∈ [k1 + 1], . . . ,∀in ∈ [kn + 1], we
have

Case t = 1: P(x(i1,0)1 , . . . , x
(ij−1,0)
j−1 , x0j , x

(ij+1,0)
j+1 , . . . , x(in,0)n) =

P(x(i1,1)1 , . . . , x
(ij−1,1)
j−1 , x1j , x

(ij+1,1)
j+1 , . . . , x(in,1)n) = 0.

Case t = 2: Either

P(x(i1,0)1 , . . . , x
(ij−1,0)
j−1 , x0j , x

(ij+1,0)
j+1 , . . . , x(in,0)n) =

P(x(i1,1)1 , . . . , x
(ij−1,1)
j−1 , x1j , x

(ij+1,1)
j+1 , . . . , x(in,1)n) = 0

or

P(x(i1,0)1 , . . . , x
(ij−1,0)
j−1 , x0j , x

(ij+1,0)
j+1 , . . . , x(in,0)n) =

P(x(i1,1)1 , . . . , x
(ij−1,1)
j−1 , x1j , x

(ij+1,1)
j+1 , . . . , x(in,1)n) ∧m0

j = m1
j .

Through the paper, for t ∈ [2], we say that Π is CPA-t-sided secure in the ℓ-corruptions
setting and without collusions if |QKGen| = 1 (i.e., the adversary asks for a single decryption
key). If |QCorr| = 0 (i.e., no corruptions), we say that Π is CPA-t-sided secure in the secret-key
setting. In case of both restrictions, we say that Π is CPA-t-sided secure in the secret-key setting
and without collusions (i.e., |QCorr| = 0 and |QKGen| = 1).

Remark 3 (Relation with multi-key PE). We notice that CPA-t-sided secure (n + 1)-input
PE, supporting arbitrary predicates and tolerating 1 corruption, naturally implies CPA-t-sided

17Observe that Q0
i and Q1

i are identical except for the last element.

25

secure n-key PE.18 The idea is to use the first n inputs of the predicate P(x1, . . . , xn+1) (of
(n+1)-input PE) to determine the indexes (v1, . . . , vn) ∈ V that define the predicate Pv1,...,vn(x)
of the n-key PE, i.e., P(x1, . . . , xn+1) = P(v1, . . . , vn, x) = Pv1,...,vn(x) where xi = vi for i ∈ [n]
and xn+1 = x. In a nutshell, the authority uses the Setup algorithm of the (n+ 1)-input PE to
generate n+1 encryption keys (ek1, . . . , ekn+1) together with the master secret key msk. Then,
it uses the latter to compute dkP←$ KGen(msk,P) and sets mpk = ekn+1 and mski = (dkP, eki)
for i ∈ [n]. To generate dkvi (for an index vi) the authority computes cvi ←$ Enc(eki, vi,⊥)
(using the encryption algorithm of (n + 1)-input PE) and outputs dkvi = (dkP, cvi). At this
point, the n-key PE encryption and decryption algorithms are straightforward. To encrypt a
message m under an input x, the sender computes c←$ Enc(mpk, x,m) where mpk = ekn+1.
On the other hand, the receiver decrypts the ciphertext c by executing Dec(dkP, cv1 , . . . , cvn , c)
where dkvi = (dkP, cvi) for i ∈ [n]. Intuitively, the CPA-t-sided security of this n-key PE follows
from the CPA-t-sided security in the 1-corruption setting of the (n+1)-input PE. Observe that
the (n+ 1)-input PE must tolerate 1 corruption since ekn+1 (i.e., the mpk of the n-key PE) is
made public.19 We refer the reader to Appendix C for more details.

On the other hand, if we consider restricted classes of predicates (as studied in this work),
the above implication does not to hold anymore, making multi-input and multi-key PE incompa-
rable. This is also reflected by the results achieved in this paper. For example, our multi-key PE
construction for conjunctions of arbitrary predicates tolerates unbounded collusions whereas our
multi-input PE constructions (for the same class of predicates with wildcards) are significantly
more complex and are secure only in the case of no collusions (see Section 5).

Lastly, in Appendix D, we discuss the relation between the multi-key and multi-input settings
when considering a weaker definition of security. In particular, if we drop the secrecy of the
predicate inputs, i.e., only the the messages remain secret (which is equivalent to ABE), then we
can show that multi-key ABE implies multi-input ABE only in the presence of no corruptions.

5 Constructions

In this section, we give different constructions of multi-key and multi-input PE (see also Sec-
tion 1.2) for predicates P(x1, . . . , xn) = P1(x1) ∧ . . . ∧ Pn(xn).

In particular, in Section 5.1 we give a construction of n-key PE from single-input PE and
lockable obfuscation for n = poly(λ). This construction is secure against unbounded collusions.

In Section 5.2, we give two constructions of n-input PE from single-input PE, lockable
obfuscation, and SKE/PKE. The first handles poly(λ)-arity and it is CPA-1-side secure without
collusions and in the secret-key setting. The second handles O(1)-airity and it is CPA-1-side
secure without collusions and in the (n − 1)-corruptions setting. This second construction
leverages a new nesting execution technique of (lockable obfuscated) circuits.

Both multi-input constructions support conjunctions of arbitrary predicates with wildcards,
i.e., for every i ∈ [n], there exists (possibly unique) a wildcard x⋆i such that for every i-th

18If we restrict the n-key PE’s encryption algorithm to be secret-key (i.e., Enc(ek, ·, ·) where ek is kept secret)
then we can start from a secret-key (n+ 1)-input PE, i.e., 0 corruptions.

19We highlight that the same construction works if we use an (n + 1)-input PE that satisfies a weaker flavor
of security under corruptions, named the ℓ-hybrid setting (see Appendix C). Here, the Setup algorithm takes
an additional parameter 1ℓ that determines the number of encryption keys that we want to make public (this
is equivalent to saying that the corruptions are known ahead of time and the construction can depend on this
information). Hence, in this setting the adversary does not have access to the corruption oracle Corr(·) but,
instead, it directly receives as input the public encryption keys generated on setup. Clearly, security in the ℓ-
hybrid setting is stronger than security in the secret-key setting but weaker than security in the (ℓ > 0)-corruptions
setting).

26

Cc(dk1, . . . , dkn)

Initialize: cn = c

For i from n to 1 do:

Deci(dki, ci) = ci−1

end for.

return c0

Cc,k(c1, . . . , cn−1, dkP)

Initialize: k1 = k, cn = c

For i from n to 1 do:

Dec1(dkP,Dec2(ki, ci)) = vi
If vi = ⊥: return ⊥
Else: let vi = (yi, ki+1)

end for.

return yn where vn = (yn, k1)

Figure 6: On the left, the definition of the circuit Cc of Construction 1. On the right, the
definition of the circuit Cc,k of Construction 2.

predicate Pi we have Pi(x
⋆
i) = 1 (in Remark 4 we discuss how to remove the wildcard when no

corruptions are in place).
Also, our constructions are generic and achieve CPA-2-sided security if the underlying single-

input PE is CPA-2-sided secure (in case of no corruptions, our CPA-2-sided secure multi-
input Construction 2 supports n = O(log(λ))).

5.1 Multi-key PE from PE and Lockable Obfuscation

Construction 1. Consider the following primitives:

1. For i ∈ [n], a PE scheme PEi = (Setupi,KGeni,Enci,Deci) with message spaceMi, input
space Xi, and predicate space Pi = {Pv(x)}v∈Vi indexed by Vi. Without loss of generality,
we assume that PEi has ciphertext space Yi, M1 = {0, 1}m(λ), and Mi = Yi−1 for every
i ∈ [n] \ {1}. In order to do not incur into an exponential ciphertext growth (e.g., for
n = poly(λ)), each i-th PE scheme must have a ciphertext expansion of poly(λ) + |mi|
where |mi| is the length of the messages mi ∈ Mi supported by the i-th PE scheme (this
can be obtained generically from any PE scheme by leveraging hybrid encryption, i.e.,
Enci(mpk, x, s)||PRG(s)⊕mi where s←$ {0, 1}λ).

2. A lockable obfuscation scheme LOBF = (Obf,Eval) with message space M for the family
of circuits Cn,s,d(λ) = {Cc} as defined in Figure 6, where n(λ), s(λ), d(λ) depends on the
schemes PE1, . . . ,PEn used, and the circuits Cn,s,d(λ).

We build a n-key PE scheme Π with message space M, input space X = X1 × . . . × Xn,
and predicate space P = {Pv1,...,vn(x1, . . . , xn) = Pv1(x1) ∧ . . . ∧ Pvn(xn)}(v1,...,vn)∈V indexed by
V = V1 × . . .× Vn (and Pvi ∈ Pi for i ∈ [n]), as follows:

Setup(1λ): Upon input the security parameter 1λ the randomized setup algorithm outputs mpk =
(mpk1, . . . ,mpkn) and msk1, . . . ,mskn where (mpki,mski)←$ Setupi(1

λ) for i ∈ [n].

KGen(mski, vi): Let i ∈ [n]. Upon input the i-th master secret key mski and the i-th predicate
index vi ∈ Vi, the randomized key generator outputs dkvi ←$ KGeni(msk1,Pvi) where Pvi ∈
Pi.

Enc(mpk, x,m): Upon input the master public key mpk = (mpk1, . . . ,mpkn), an input x =
(x1, . . . , xn) ∈ X , and a message m ∈M, the randomized encryption proceeds as follows:

1. Sample y←$ {0, 1}s(λ) and let c0 = y.

2. For i ∈ [n], compute ci←$ Enci(mpki, xi, ci−1).

Finally, it outputs c = C̃ where C̃←$ Obf(1λ,Ccn , y,m).

27

Dec(dkv1 , . . . , dkvn , c): Upon input n decryption keys dkv1 , . . . , dkvn and a ciphertext c = C̃, the
deterministic decryption algorithm outputs m = Eval(C̃, (dkv1 , . . . , dkvn)).

Correctness follows from the correctness of the underlying schemes. We establish the fol-
lowing result whose proof appears in Appendices E.1 and E.2

Theorem 4. Let n = poly(λ), PE1, . . . ,PEn and LOBF be as above.

1. If each PE1, . . . ,PEn is CPA secure (Definition 8) and LOBF is secure (Definition 2), then
the n-key PE scheme Π from Construction 1 is CPA-1-sided secure (Definition 11).

2. If each PE1, . . . ,PEn is CPA-2-sided secure (Definition 9) and LOBF is secure (Defini-
tion 2), then the n-key PE scheme Π from Construction 1 is CPA-2-sided secure (Defini-
tion 11).

5.2 Multi-input PE from PE, Lockable Obfuscation and SKE/PKE

Secret-key setting. First, we present our n-input PE construction that is CPA-1-sided secure
in the secret-key setting without collusions, for n = poly(λ). First, we present our n-input
PE construction that is CPA-1-sided secure in the secret-key setting without collusions, for
n = poly(λ). It leverages a CPA-1-sided secure single-input PE, lockable obfuscation, and SKE.
The same construction is CPA-2-sided secure in the secret-key setting without collusions for
n = O(log(λ)), if the initial single-input PE is CPA-2-sided secure.

Construction 2 (n-input PE in the secret-key setting). Consider the following primitives:

1. A PE scheme PE1 = (Setup1,KGen1,Enc1,Dec1) with message space M1 = {0, 1}m(λ) ×
M′1, input space X1 = X1,1 × . . . × X1,n, and predicate space P1 = {P(x1, . . . , xn)} =
{P1(x1) ∧ . . . ∧ Pn(xn)}. Without loss of generality, we assume that PE has ciphertext
spaceM2 and there exists a (single) wildcard input (x⋆1, . . . , x

⋆
n) ∈ X1 such that ∀(P1(x1)∧

. . . ∧ Pn(xn)) ∈ P1, ∀i ∈ [n],Pi(x
⋆
i) = 1.

2. A SKE scheme SKE = (KGen2,Enc2,Dec2) with message space M2. Without loss of
generality, we assume that SKE has key spaceM′1

3. A lockable obfuscation scheme LOBF = (Obf,Eval) with message spaceM3 for the family
of circuits Cn,s,d(λ) = {Cc,k} as defined in Figure 6, where n(λ), s(λ), d(λ) depends on
the schemes PE and SKE used, and the circuit depth of the circuits Cn,s,d(λ).

We build a n-input PE scheme with message spaceM =

n︷ ︸︸ ︷
M3 × . . .×M3, input space X = X1,

and predicate space P = P1 = {P(x1, . . . , xn)} = {P1(x1) ∧ . . . ∧ Pn(xn)} with wildcard (i.e.,
there exists a (single) wildcard (x⋆1, . . . , x

⋆
n) ∈ X such that ∀(P1(x1)∧ . . .∧Pn(xn)) ∈ P,∀i ∈ [n],

Pi(x
⋆
i) = 1), as follows:

Setup(1λ): Upon input the security parameter 1λ, the randomized setup algorithm outputs (ek1,
. . . , ekn) and msk where (mpk,msk)←$ Setup1(1

λ), eki = (mpk, ki, ki+1), kn+1 = k1, and
ki←$ KGen2(1

λ) for i ∈ [n].

KGen(msk,P): Upon input the master secret key msk and a predicate P ∈ P, the randomized
key generator outputs dkP←$ KGen1(msk,P).

28

Enc(eki, xi,mi): Let i ∈ [n]. Upon input an encryption key eki = (mpk, ki, ki+1), an in-
put xi ∈ X1,i, and a message mi ∈ M3, the randomized encryption algorithm samples

yi←$ {0, 1}s(λ) and compute c
(1)
i ←$ Enc1(mpk, (x1, . . . , xn), (yi, ki+1)) where xj = x⋆j for

any j ∈ [n] \ {i}. Finally, it outputs c = (C̃i, c
(2)
i) where C̃i←$ Obf(1λ,C

c
(2)
i ,ki+1

, yi,mi)

and c
(2)
i ←$ Enc2(ki, c

(1)
i).

Dec(dkP, c1, . . . , cn): Upon input a secret decryption key dkP for predicate P ∈ P, and n cipher-

texts (c1, . . . , cn) such that ci = (C̃i, c
(2)
i) for i ∈ [n]. The deterministic decryption returns

(m1, . . . ,mn) where mi = Eval(C̃i, (c
(2)
i+1, . . . , c

(2)
n , c

(2)
1 , . . . , c

(2)
i−1, dkP)) for i ∈ [n].

As usual, correctness follows from the correctness of the underlying primitives. Below, we
establish the following result whose proof appear in Appendices E.3 and E.4.

Theorem 5. Let PE, SKE, and LOBF be as above.

1. For n = poly(λ), if PE is CPA-1-sided secure without collusions (Definition 9), SKE is
CPA secure (Definition 4), and LOBF is secure (Definition 2), then the n-input PE scheme
Π from Construction 2 is CPA-1-sided secure in the secret-key setting without collusions
(Definition 13).

2. For n = O(log(λ)), if PE is CPA-2-sided secure without collusions (Definition 9), SKE
is CPA secure (Definition 4), and LOBF is secure (Definition 2), then the n-input PE
scheme Π from Construction 2 is CPA-2-sided secure in the secret-key setting without
collusions (Definition 13).

Corruption setting. We now move on to our construction of n-input PE that is CPA-1-
sided secure in the (n − 1)-corruptions setting without collusions. This construction handles
constant-arity (i.e., n ∈ O(1)) since the decryption running time is O(nn). It is based on CPA
secure single-input PE, lockable obfuscation, and PKE and it leverages the nested execution
technique described in Section 1.2. Also, the same construction achieves CPA-2-sided security
if the initial single-input PE is CPA-2-sided secure.

Construction 3 (n-input PE in the corruption setting). Consider the following primitives:

1. A PE scheme PE = (Setup1,KGen1,Enc1,Dec1) with message spaceM1 = {0, 1}m3(λ)+m4(λ),
input space X1 = X1,1 × . . .×X1,n, and predicate space P1 = {P(x1, . . . , xn)} = {P1(x1) ∧
. . .∧ Pn(xn)}. Without loss of generality, we assume that PE has ciphertext space Y1 and
there exists a (single) wildcard input (x⋆1, . . . , x

⋆
n) ∈ X1 such that ∀(P1(x1)∧ . . .∧Pn(xn)) ∈

P1, ∀i ∈ [n],Pi(x
⋆
i) = 1.

2. For i ∈ [n], a PKE scheme PKE2,i = (KGen2,i,Enc2,i,Dec2,i) with message space M2,i.
Without loss of generality, we assume that PKEi has ciphertext space Y2,i and secret-key
space K2,i. Moreover, we assume thatM2,1 = Y1, andM2,i = Y2,i−1 for every i ∈ [n]\{1}.

3. A lockable obfuscation scheme LOBF3 = (Obf3,Eval3) with message space M3 = (K2,1 ∪
. . .∪K2,n)×{0, 1}⌊log2(n)⌋+1 for the family of circuits C inn3,s3,d3

(λ) = {Cin
c,sk,i} defined in Fig-

ure 7, where n3(λ), s3(λ), d3(λ) depends on the schemes PE,PKE2,1, . . . ,PKE2,n used, and
the circuits C inn3,s3,d3

(λ).

4. A lockable obfuscation scheme LOBF4 = (Obf4,Eval4) with message space M4 for the
family of circuits Coutn4,s4,d4

(λ) = {Cout
c,sk,i} defined in Figure 7, where n4(λ), s4(λ), d4(λ)

depends on the schemes PE,PKE2,1, . . . ,PKE2,n, LOBF3 used, and the circuits Coutn4,s4,d4
(λ).

29

Cin
c,sk,i(C1, . . . ,Cn−2, sk1, . . . , skn, dkP)

Initialize:

cn = c, sk′i = sk,Cn−1 = ⊥, k = ⊥, ∀j ∈ [n] \ {i}, sk′j = skj

If ∃w ∈ [n− 2] such that Cw ̸= ⊥ and Cw+1 = ⊥: k = w

end initialize.

If k ̸= ⊥ do: // If k = ⊥, no circuit to execute.

// Execute each circuit received in input in order to retrieve the related secret key.

For t ∈ [k] do:

Eval3(Ct, (Ct+1, . . . ,Ck,

n−2+t−k︷ ︸︸ ︷
⊥, . . . ,⊥, sk′1, . . . , sk′n, dkP)) = r

If r = ⊥: return ⊥
Else: sk′h = sk where r = (sk, h) // Save the secret key returned by Ct.

end for.

end if.

// At this point, all secret keys are known.

For j from n to 1 do: Dec2,j(sk
′
j , cj) = cj−1

Dec1(dkP, c0) = v

If v = ⊥: return ⊥
Else: return yini where v = (yini , y

out
i)

Cout
c,sk,i(C1, . . . ,Cn−1, dkP)

Initialize: cn = c, sk′i = sk, ∀j ∈ [n] \ {i}, sk′j = ⊥
// Execute each circuit received in input in order to retrieve the related secret key.

For t from 1 to n− 1 do:

Eval3(Ct, (Ct+1, . . . ,Cn−1,

t−1︷ ︸︸ ︷
⊥, . . . ,⊥, sk′1, . . . , sk′n, dkP)) = r

If r = ⊥: return ⊥
Else: sk′h = sk where r = (sk, h) // Save the secret key returned by Ct.

end for.

// At this point, all secret keys are known.

For j from n to 1 do: Dec2,j(sk
′
j , cj) = cj−1

Dec1(dkP, c0) = v

If v = ⊥: return ⊥
Else: return youti where v = (yini , y

out
i)

Figure 7: Definitions of the circuits Cin
c,sk,i and Cout

c,sk,i supported by the lockable obfuscation
schemes LOBF3 and LOBF4 of Construction 3.

We build a n-input PE scheme with message spaceM =

n︷ ︸︸ ︷
M4 × . . .×M4, input space X = X1,

and predicate space P = P1 = {P(x1, . . . , xn)} = {P1(x1) ∧ . . . ∧ Pn(xn)} with wildcard (i.e.,
there exists a (single) wildcard (x⋆1, . . . , x

⋆
n) ∈ X such that ∀(P1(x1)∧ . . .∧Pn(xn)) ∈ P, ∀i ∈ [n],

Pi(x
⋆
i) = 1), as follows:

Setup(1λ): Upon input the security parameter 1λ the randomized setup algorithm outputs (ek1,
. . . , ekn) and msk where (mpk,msk)←$ Setup1(1

λ), eki = (mpk, ski, pk1, . . . , pkn), and
(ski, pki)←$ KGen2,i(1

λ) for i ∈ [n].

KGen(msk,P): Upon input the master secret key msk and a predicate P ∈ P, the randomized
key generator algorithm outputs dkP←$ KGen1(msk,P).

Enc(eki, xi,mi): Let i ∈ [n]. Upon input an encryption key eki = (mpk, ski, pk1, . . . , pkn), an
input xi ∈ X1,i, and a message mi ∈ M4, the randomized encryption algorithm samples
(yini , y

out
i)←$ {0, 1}s3(λ)+s4(λ) and proceeds as follows:

1. Compute c
(0)
i ←$ Enc1(mpk, (x1, . . . , xn), (y

in
i , y

out
i)) where xj = x⋆j for j ∈ [n] \ {i}.

30

2. For j ∈ [n], compute c
(j)
i ←$ Enc2,j(pkj , c

(j−1)
i).

Finally, it outputs ci = (C̃out
i , C̃in

i), where C̃out
i ←$ Obf4(1

λ,Cout

c
(n)
i ,ski,i

, youti ,mi) and C̃in
i ←$

Obf3(1
λ,Cin

c
(n)
i ,ski,i

, yini , (ski, i)).

Dec(dkP, c1, . . . , cn): Upon input a decryption key dkP for predicate P ∈ P, and n ciphertexts
(c1, . . . , cn) such that ci = (C̃out

i , C̃in
i) for i ∈ [n]. The deterministic decryption algorithm

returns (m1, . . . ,mn) where mi = Eval4(C̃out
i , (C̃in

1 , . . . , C̃in
i−1, C̃in

i+1, . . . , C̃in
n , dkP)) for i ∈

[n].

Correctness follows from the one of the underlying primitives (see also Figure 7 for the
definitions of Cin

c,sk,i and Cout
c,sk,i). Moreover, decryption is polynomial time when n ∈ O(1).

Below, we establish the following result whose proof appear in Appendices E.5 and E.6.

Theorem 6. Let n = O(1), PE, PKE2,1, . . . ,PKE2,n, LOBF3, and LOBF4 be as above.

1. If PE is CPA secure without collusions (Definition 8), each PKE2,i (for i ∈ [n]) is CPA
secure (Definition 6), and both LOBF3 and LOBF4 are secure (Definition 2), then the n-
input PE scheme Π from Construction 3 is CPA-1-sided secure in the (n− 1)-corruptions
setting without collusions (Definition 13).

2. If PE is CPA-2-sided secure without collusions (Definition 9), each PKE2,i (for i ∈ [n]) is
CPA secure (Definition 6), and both LOBF3 and LOBF4 are secure (Definition 2), then the
n-input PE scheme Π from Construction 3 is CPA-2-sided secure in the (n−1)-corruptions
setting without collusions (Definition 13).

Remark 4 (On wildcards). Wildcards affect the security guarantee and the expressiveness of
the multi-input PE construction depending on the presence of corruptions. In the case of
no corruptions (Construction 2) , the (single) wildcard can be removed by simply requiring
each i-th sender not to compute a ciphertext ci under the corresponding i-th wildcard x⋆i ,
i.e., Enc(eki, xi,mi) outputs ⊥ whenever xi = x⋆i . In other words, we can transform any secure
multi-input PE for P(x1, . . . , xn) = P1(x1)∧ . . .∧Pn(xn) with wildcard (x⋆1, . . . , x

⋆
n) into a secure

multi-input PE for the same predicate P(x1, . . . , xn) without the wildcard. On the other hand,
this cannot be done when corruptions are in place (Construction 3). Indeed, if the adversary
gets an encryption key eki, then it can use the latter to always produce a ciphertext ci under
x⋆i . This means that the adversary can always use eki (of the corrupted user) and satisfy the
i-th predicate Pi (this also affects the security proof of Construction 3. See Appendices E.5
and E.6).

Remark 5 (On unbounded collusions). For completeness, we highlight that if we start from an
initial single-input PE scheme PE (of Theorems 5 and 6) that is CPA-1-sided secure against
unbounded collusions, both our Construction 2 and Construction 3 are CPA-1-sided secure with
respect to a weaker form of unbounded collusions (but still stronger than no collusions). For
the sake of clarity, we focus on our secret-key Construction 2, but the same argument holds for
our Construction 3 against corruptions.

In case of no collusions, at the beginning of the proof of Theorem 5 (see Appendix E.3),
we show that the adversary’s validity condition (of Definition 13) is equivalent to satisfying at

31

least one of the following four conditions: for some j0, j1 ∈ [n],

Validity1 :

P∗1(x01) = 0 ∧ . . . ∧ P∗n(x0n) = 0 ∧ P∗1(x11) = 0 ∧ . . . ∧ P∗n(x1n) = 0 (3)

Validity2,j0,j1 : ∀x′j0 ∈ Qj0 , ∀x′j1 ∈ Qj1 ,

P∗j0(x
0
j0) = 0 ∧ P∗j0(x

′
j0) = 0 ∧ P∗j1(x

1
j1) = 0 ∧ P∗j1(x

′
j1) = 0 (4)

Validity3,j0 : ∀x′j0 ∈ Qj0 ,

P∗j0(x
0
j0) = 0 ∧ P∗j0(x

′
j0) = 0 ∧ P∗1(x11) = 0 ∧ . . . ∧ P∗n(x1n) = 0 (5)

Validity4,j1 : ∀x′j1 ∈ Qj1 ,

P∗1(x01) = 0 ∧ . . . ∧ P∗n(x0n) = 0 ∧ P∗j1(x
1
j1) = 0 ∧ P∗j1(x

′
j1) = 0 (6)

where P∗(x1, . . . , xn) = (P∗1(x1) ∧ . . . ∧ P∗n(xn)) ∈ QKGen is the single key generation query
submitted by the adversary A, ((x01, . . . , x

0
n), (x

1
1, . . . , x

1
n)) is the adversarial challenge inputs,

and Qi are the predicate inputs submitted to the encryption oracle Enc(eki, ·, ·) for i ∈ [n].
When working with CPA-1-sided security against (fully-fledged) unbounded collusions, a

valid adversary can obtain two decryption keys for P and P′ that satisfy Equation (4) (or Equa-
tions (5) and (6)) with respect to two different indexes j0, j1 ∈ [n] and j′0, j

′
1 ∈ [n], i.e.,

(j0, j1) ̸= (j′0, j
′
1). When this happens the proof fails since, as we discussed in Section 1.2,

our reduction will make an invalid set of queries to the KGen oracle of the single-input PE.
However, we observe that the exact same proof of Theorem 4 goes through when we allow A to
asking for multiple decryption keys under the restriction that: ∃j0, j1 ∈ [n], ∀P(x1, . . . , xn) =
(P1(x1)∧ . . .∧ Pn(xn)) ∈ QKGen, such that either one condition between Equations (3) to (6) is
satisfied (i.e., the same indexes j0, j1 for all predicates P ∈ QKGen).

Acknowledgements. The authors would like to thank the anonymous reviewers for useful
feedback. The first author was supported by the Carlsberg Foundation under the Semper Ardens
Research Project CF18-112 (BCM); the second and the fourth author were partially supported
by project SERICS (PE00000014) under the NRRP MUR program funded by the EU - NGEU
and by Sapienza University under the project SPECTRA; the third author was partially sup-
ported by the German Federal Ministry of Education and Research (BMBF) in the course of
the 6GEM research hub under grant number 16KISK038 and by the Deutsche Forschungsge-
meinschaft (DFG, German Research Foundation) under Germany’s Excellence Strategy - EXC
2092 CASA – 390781972.

References

[ABG19] Michel Abdalla, Fabrice Benhamouda, and Romain Gay. From single-input to
multi-client inner-product functional encryption. In Steven D. Galbraith and Shiho
Moriai, editors, ASIACRYPT 2019, Part III, volume 11923 of LNCS, pages 552–
582. Springer, Heidelberg, December 2019.

[ABKW19] Michel Abdalla, Fabrice Benhamouda, Markulf Kohlweiss, and Hendrik Waldner.
Decentralizing inner-product functional encryption. In Dongdai Lin and Kazue
Sako, editors, PKC 2019, Part II, volume 11443 of LNCS, pages 128–157. Springer,
Heidelberg, April 2019.

[ACF+18] Michel Abdalla, Dario Catalano, Dario Fiore, Romain Gay, and Bogdan Ursu.
Multi-input functional encryption for inner products: Function-hiding realizations

32

and constructions without pairings. In Hovav Shacham and Alexandra Boldyreva,
editors, CRYPTO 2018, Part I, volume 10991 of LNCS, pages 597–627. Springer,
Heidelberg, August 2018.

[AFNV19] Giuseppe Ateniese, Danilo Francati, David Nuñez, and Daniele Venturi. Match me
if you can: Matchmaking encryption and its applications. In Alexandra Boldyreva
and Daniele Micciancio, editors, CRYPTO 2019, Part II, volume 11693 of LNCS,
pages 701–731. Springer, Heidelberg, August 2019.

[AFNV21] Giuseppe Ateniese, Danilo Francati, David Nuñez, and Daniele Venturi. Match me
if you can: matchmaking encryption and its applications. Journal of Cryptology,
34(3):1–50, 2021.

[AFV11] Shweta Agrawal, David Mandell Freeman, and Vinod Vaikuntanathan. Functional
encryption for inner product predicates from learning with errors. In Dong Hoon
Lee and Xiaoyun Wang, editors, ASIACRYPT 2011, volume 7073 of LNCS, pages
21–40. Springer, Heidelberg, December 2011.

[AGRW17] Michel Abdalla, Romain Gay, Mariana Raykova, and Hoeteck Wee. Multi-input
inner-product functional encryption from pairings. In Jean-Sébastien Coron and
Jesper Buus Nielsen, editors, EUROCRYPT 2017, Part I, volume 10210 of LNCS,
pages 601–626. Springer, Heidelberg, April / May 2017.

[AGT21] Shweta Agrawal, Rishab Goyal, and Junichi Tomida. Multi-input quadratic
functional encryption from pairings. In Tal Malkin and Chris Peikert, editors,
CRYPTO 2021, Part IV, volume 12828 of LNCS, pages 208–238, Virtual Event,
August 2021. Springer, Heidelberg.

[AGT23] Shweta Agrawal, Rishab Goyal, and Junichi Tomida. Multi-input quadratic func-
tional encryption: Stronger security, broader functionality. In TCC 2022, pages
711–740. Springer, 2023.

[AJ15] Prabhanjan Ananth and Abhishek Jain. Indistinguishability obfuscation from com-
pact functional encryption. In Rosario Gennaro and Matthew J. B. Robshaw,
editors, CRYPTO 2015, Part I, volume 9215 of LNCS, pages 308–326. Springer,
Heidelberg, August 2015.

[Att14] Nuttapong Attrapadung. Dual system encryption via doubly selective security:
Framework, fully secure functional encryption for regular languages, and more. In
Phong Q. Nguyen and Elisabeth Oswald, editors, EUROCRYPT 2014, volume 8441
of LNCS, pages 557–577. Springer, Heidelberg, May 2014.

[AYY22] Shweta Agrawal, Anshu Yadav, and Shota Yamada. Multi-input attribute based
encryption and predicate encryption. In CRYPTO 2022, pages 590–621. Springer,
2022.

[BDGM22] Zvika Brakerski, Nico Döttling, Sanjam Garg, and Giulio Malavolta. Factoring
and pairings are not necessary for io: Circular-secure lwe suffices. In ICALP 2022.
Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 2022.

[BGI+01] Boaz Barak, Oded Goldreich, Russell Impagliazzo, Steven Rudich, Amit Sahai,
Salil P. Vadhan, and Ke Yang. On the (im)possibility of obfuscating programs. In
Joe Kilian, editor, CRYPTO 2001, volume 2139 of LNCS, pages 1–18. Springer,
Heidelberg, August 2001.

33

[BGI+14] Amos Beimel, Ariel Gabizon, Yuval Ishai, Eyal Kushilevitz, Sigurd Meldgaard,
and Anat Paskin-Cherniavsky. Non-interactive secure multiparty computation. In
Juan A. Garay and Rosario Gennaro, editors, CRYPTO 2014, Part II, volume 8617
of LNCS, pages 387–404. Springer, Heidelberg, August 2014.

[BJK+18] Zvika Brakerski, Aayush Jain, Ilan Komargodski, Alain Passelègue, and Daniel
Wichs. Non-trivial witness encryption and null-iO from standard assumptions. In
Dario Catalano and Roberto De Prisco, editors, SCN 18, volume 11035 of LNCS,
pages 425–441. Springer, Heidelberg, September 2018.

[BLR+15] Dan Boneh, Kevin Lewi, Mariana Raykova, Amit Sahai, Mark Zhandry, and Joe
Zimmerman. Semantically secure order-revealing encryption: Multi-input func-
tional encryption without obfuscation. In Elisabeth Oswald and Marc Fischlin, ed-
itors, EUROCRYPT 2015, Part II, volume 9057 of LNCS, pages 563–594. Springer,
Heidelberg, April 2015.

[BV15] Nir Bitansky and Vinod Vaikuntanathan. Indistinguishability obfuscation from
functional encryption. In Venkatesan Guruswami, editor, 56th FOCS, pages 171–
190. IEEE Computer Society Press, October 2015.

[BW07] Dan Boneh and Brent Waters. Conjunctive, subset, and range queries on encrypted
data. In Salil P. Vadhan, editor, TCC 2007, volume 4392 of LNCS, pages 535–554.
Springer, Heidelberg, February 2007.

[CDG+18] Jérémy Chotard, Edouard Dufour Sans, Romain Gay, Duong Hieu Phan, and David
Pointcheval. Decentralized multi-client functional encryption for inner product. In
Thomas Peyrin and Steven Galbraith, editors, ASIACRYPT 2018, Part II, volume
11273 of LNCS, pages 703–732. Springer, Heidelberg, December 2018.

[CLWW22] Jie Chen, Yu Li, Jinming Wen, and Jian Weng. Identity-based matchmaking en-
cryption from standard assumptions. In ASIACRYPT 2022. Springer, 2022.

[CM15] Michael Clear and Ciaran McGoldrick. Multi-identity and multi-key leveled FHE
from learning with errors. In Rosario Gennaro and Matthew J. B. Robshaw, ed-
itors, CRYPTO 2015, Part II, volume 9216 of LNCS, pages 630–656. Springer,
Heidelberg, August 2015.

[CSW21] Michele Ciampi, Luisa Siniscalchi, and Hendrik Waldner. Multi-client functional
encryption for separable functions. In Juan Garay, editor, PKC 2021, Part I,
volume 12710 of LNCS, pages 724–753. Springer, Heidelberg, May 2021.

[DOT18] Pratish Datta, Tatsuaki Okamoto, and Junichi Tomida. Full-hiding (unbounded)
multi-input inner product functional encryption from the k-Linear assumption. In
Michel Abdalla and Ricardo Dahab, editors, PKC 2018, Part II, volume 10770 of
LNCS, pages 245–277. Springer, Heidelberg, March 2018.

[FGRV21] Danilo Francati, Alessio Guidi, Luigi Russo, and Daniele Venturi. Identity-based
matchmaking encryption without random oracles. In INDOCRYPT 2021, pages
415–435. Springer, 2021.

[GGG+14] Shafi Goldwasser, S. Dov Gordon, Vipul Goyal, Abhishek Jain, Jonathan Katz,
Feng-Hao Liu, Amit Sahai, Elaine Shi, and Hong-Sheng Zhou. Multi-input func-
tional encryption. In Phong Q. Nguyen and Elisabeth Oswald, editors, EURO-

34

CRYPT 2014, volume 8441 of LNCS, pages 578–602. Springer, Heidelberg, May
2014.

[GGSW13] Sanjam Garg, Craig Gentry, Amit Sahai, and Brent Waters. Witness encryption
and its applications. In Dan Boneh, Tim Roughgarden, and Joan Feigenbaum,
editors, 45th ACM STOC, pages 467–476. ACM Press, June 2013.

[GKW17] Rishab Goyal, Venkata Koppula, and Brent Waters. Lockable obfuscation. In Chris
Umans, editor, 58th FOCS, pages 612–621. IEEE Computer Society Press, October
2017.

[GP21] Romain Gay and Rafael Pass. Indistinguishability obfuscation from circular secu-
rity. In Samir Khuller and Virginia Vassilevska Williams, editors, STOC ’21: 53rd
Annual ACM SIGACT Symposium on Theory of Computing, Virtual Event, Italy,
June 21-25, 2021, pages 736–749. ACM, 2021.

[GVW15] Sergey Gorbunov, Vinod Vaikuntanathan, and Hoeteck Wee. Predicate encryp-
tion for circuits from LWE. In Rosario Gennaro and Matthew J. B. Robshaw,
editors, CRYPTO 2015, Part II, volume 9216 of LNCS, pages 503–523. Springer,
Heidelberg, August 2015.

[HIJ+16] Shai Halevi, Yuval Ishai, Abhishek Jain, Eyal Kushilevitz, and Tal Rabin. Secure
multiparty computation with general interaction patterns. In Madhu Sudan, editor,
ITCS 2016, pages 157–168. ACM, January 2016.

[HIJ+17] Shai Halevi, Yuval Ishai, Abhishek Jain, Ilan Komargodski, Amit Sahai, and Eylon
Yogev. Non-interactive multiparty computation without correlated randomness. In
Tsuyoshi Takagi and Thomas Peyrin, editors, ASIACRYPT 2017, Part III, volume
10626 of LNCS, pages 181–211. Springer, Heidelberg, December 2017.

[HLP11] Shai Halevi, Yehuda Lindell, and Benny Pinkas. Secure computation on the
web: Computing without simultaneous interaction. In Phillip Rogaway, editor,
CRYPTO 2011, volume 6841 of LNCS, pages 132–150. Springer, Heidelberg, Au-
gust 2011.

[JLS21] Aayush Jain, Huijia Lin, and Amit Sahai. Indistinguishability obfuscation from
well-founded assumptions. In Samir Khuller and Virginia Vassilevska Williams, ed-
itors, STOC ’21: 53rd Annual ACM SIGACT Symposium on Theory of Computing,
Virtual Event, Italy, June 21-25, 2021, pages 60–73. ACM, 2021.

[JLS22] Aayush Jain, Huijia Lin, and Amit Sahai. Indistinguishability obfuscation from
LPN over Fp, DLIN, and PRGs in NC0. In Orr Dunkelman and Stefan Dziem-
bowski, editors, EUROCRYPT 2022, Part I, volume 13275 of LNCS, pages 670–699.
Springer, Heidelberg, May / June 2022.

[KSW08] Jonathan Katz, Amit Sahai, and Brent Waters. Predicate encryption supporting
disjunctions, polynomial equations, and inner products. In Nigel P. Smart, editor,
EUROCRYPT 2008, volume 4965 of LNCS, pages 146–162. Springer, Heidelberg,
April 2008.

[LOS+10] Allison B. Lewko, Tatsuaki Okamoto, Amit Sahai, Katsuyuki Takashima, and Brent
Waters. Fully secure functional encryption: Attribute-based encryption and (hier-
archical) inner product encryption. In Henri Gilbert, editor, EUROCRYPT 2010,
volume 6110 of LNCS, pages 62–91. Springer, Heidelberg, May / June 2010.

35

[LT19] Benôıt Libert and Radu Titiu. Multi-client functional encryption for linear func-
tions in the standard model from LWE. In Steven D. Galbraith and Shiho Mo-
riai, editors, ASIACRYPT 2019, Part III, volume 11923 of LNCS, pages 520–551.
Springer, Heidelberg, December 2019.

[LTV12] Adriana López-Alt, Eran Tromer, and Vinod Vaikuntanathan. On-the-fly mul-
tiparty computation on the cloud via multikey fully homomorphic encryption. In
Howard J. Karloff and Toniann Pitassi, editors, 44th ACM STOC, pages 1219–1234.
ACM Press, May 2012.

[MW16] Pratyay Mukherjee and Daniel Wichs. Two round multiparty computation via
multi-key FHE. In Marc Fischlin and Jean-Sébastien Coron, editors, EURO-
CRYPT 2016, Part II, volume 9666 of LNCS, pages 735–763. Springer, Heidelberg,
May 2016.

[OT10] Tatsuaki Okamoto and Katsuyuki Takashima. Fully secure functional encryption
with general relations from the decisional linear assumption. In Tal Rabin, editor,
CRYPTO 2010, volume 6223 of LNCS, pages 191–208. Springer, Heidelberg, August
2010.

[OT12] Tatsuaki Okamoto and Katsuyuki Takashima. Adaptively attribute-hiding (hier-
archical) inner product encryption. In David Pointcheval and Thomas Johansson,
editors, EUROCRYPT 2012, volume 7237 of LNCS, pages 591–608. Springer, Hei-
delberg, April 2012.

[Tom19] Junichi Tomida. Tightly secure inner product functional encryption: Multi-input
and function-hiding constructions. In Steven D. Galbraith and Shiho Moriai, edi-
tors, ASIACRYPT 2019, Part III, volume 11923 of LNCS, pages 459–488. Springer,
Heidelberg, December 2019.

[Wat12] Brent Waters. Functional encryption for regular languages. In Reihaneh Safavi-
Naini and Ran Canetti, editors, CRYPTO 2012, volume 7417 of LNCS, pages 218–
235. Springer, Heidelberg, August 2012.

[Wee14] Hoeteck Wee. Dual system encryption via predicate encodings. In Yehuda Lindell,
editor, TCC 2014, volume 8349 of LNCS, pages 616–637. Springer, Heidelberg,
February 2014.

[WW21] Hoeteck Wee and Daniel Wichs. Candidate obfuscation via oblivious LWE
sampling. In Anne Canteaut and François-Xavier Standaert, editors, EURO-
CRYPT 2021, Part III, volume 12698 of LNCS, pages 127–156. Springer, Hei-
delberg, October 2021.

[WZ17] Daniel Wichs and Giorgos Zirdelis. Obfuscating compute-and-compare programs
under LWE. In Chris Umans, editor, 58th FOCS, pages 600–611. IEEE Computer
Society Press, October 2017.

A Matchmaking Encryption

A.1 Security of ME

In ME, a trusted authority generates a decryption key for the receiver, associated to an arbitrary
policy of his choice. The receiver is able to decrypt the message if and only if a match occurs,

36

i.e. the sender’s attribute match the receiver policy, and vice-versa. Differently from [AFNV19,
AFNV21], we consider honest senders (i.e., we do not consider authenticity security). Hence,
the sender do not need to receive an encryption key from the authority, but can encrypt a
message directly with the sender’s attribute as an input. Security against malicious senders (i.e.,
authenticity) can be achieved by relying on similar techniques of [FGRV21, AFNV19, AFNV21],
by combining non-interactive zero-knowledge proofs and digital signatures.

Formally, an ME with message space M, sender’s policy and attribute spaces P1 and U1,
receiver’s policy and attribute spaces P2 and U2, is composed of the following polynomial-time
algorithms:

Setup(1λ): Upon input the security parameter 1λ the randomized setup algorithm outputs the
master public key mpk and the master secret key msk.

RKGen(msk, ρ): The randomized receiver-key generator takes as input the master secret key
msk, and attributes ρ ∈ U2. The algorithm outputs a secret decryption key dkρ for
attributes ρ.

PolGen(msk, S): The randomized receiver policy generator takes as input the master secret key
msk, and a policy S ∈ P2. The algorithm outputs a secret decryption key dkS for the
circuit S.

Enc(mpk, σ,R,m): The randomized encryption algorithm takes as input the master public key
mpk, attributes σ ∈ U1, a policy R ∈ P1, and a message m ∈M. The algorithm produces
a ciphertext c linked to both σ and R.

Dec(dkρ, dkS, c): The deterministic decryption algorithm takes as input a secret decryption key
dkρ for attributes ρ ∈ U2, a secret decryption key dkS for a circuit S ∈ P2, and a ciphertext
c. The algorithm outputs a message m.

Correctness states that the receiver can obtain the message with overwhelming probability if
a match occurs. As for security, we consider the standard definition of ME, namely CPA-1-sided
and CPA-2-sided security. Informally, CPA-1-sided security captures the secrecy of the sender’s
attributes, the sender’s policy, and the message when a match does not occur. On the other
hand, CPA-2-sided security extends this secrecy even when a match occurs.

Definition 14 (Correctness of ME). An ME with message space M, sender’s policy and at-
tribute spaces P1 and U1, receiver’s policy and attribute spaces P2 and U2, is correct if ∀λ ∈ N,
∀(mpk,msk) output by Setup(1λ), ∀m ∈ M, ∀σ ∈ U1,∀ρ ∈ U2, ∀R ∈ P1, ∀S ∈ P2 such that
S(σ) = 1 ∧ R(ρ) = 1:

P[Dec(dkρ, dkS,Enc(mpk, σ,R,m)) = m] ≥ 1− negl(λ),

where dkρ←$ RKGen(msk, ρ), and dkS←$ PolGen(msk,S).

Definition 15 (CPA-1-sided and CPA-2-sided security of ME). Let t ∈ [2]. We say that an
ME Π is CPA-t-sided secure if for all valid PPT adversaries A = (A0,A1):∣∣∣∣P[GCPA-t-ME

Π,A (λ) = 1
]
− 1

2

∣∣∣∣ ≤ negl(λ),

where gameGCPA-t-ME
Π,A (λ) is depicted in Figure 8. Adversary A is called valid if ∀ρ ∈ QRKGen, ∀S ∈

QPolGen,

37

GCPA-t-ME
Π,A (λ)

(mpk,msk)←$ Setup(1λ)

(m0,m1,R0,R1, σ0, σ1, α)←$ A
RKGen(msk,·),PolGen(msk,·)
0 (1λ,mpk)

b←$ {0, 1}, c←$ Enc(mpk, σb,Rb,mb)

b′←$ A
RKGen(msk,·),PolGen(msk,·)
1 (1λ, c, α)

If (b′ = b): return 1

Else: return 0

Figure 8: Games defining CPA-t-sided security of ME.

• Case t = 1 (mismatch only):

(R0(ρ) = R1(ρ) = 0) ∨ (S(σ0) = S(σ1) = 0)

∨ (R0(ρ) = S(σ1) = 0) ∨ (R1(ρ) = S(σ0) = 0); (7)

• Case t = 2 (mismatch and match): Either

(R0(ρ) = R1(ρ) = 0) ∨ (S(σ0) = S(σ1) = 0)

∨ (R0(ρ) = S(σ1) = 0) ∨ (R1(ρ) = S(σ0) = 0)

or (R0(ρ) = R1(ρ)) ∧ (S(σ0) = S(σ1)) ∧ (m0 = m1). (8)

We stress that CPA-1-sided and CPA-2-sided security reflects the “mismatch condition” and
“match condition” of the original work of Ateniese et al. [AFNV19, Definition 5]. We chose to
change their names to avoid confusion and make the notation consistent with respect to the
one of PE. Also, we stress that [AFNV19, Definition 5] defines security of ME only in term of
CPA-2-sided security (whereas, in this work, we also consider the weaker notion of CPA-1-sided
security).

A.2 ME from 2-Key PE

Construction 4. Let kPE = (Setup1,KGen1,Enc1,Dec1) be a 2-key PE scheme with message
space M, input space X = X1 × X2, and predicate space P = {Pρ,R(x1, x2)}(ρ,R)∈V indexed by
V = V1 × V2 such that

Pρ,R(σ, S) = Pρ(S) ∧ PR(σ) = S(ρ) ∧ R(σ),

where σ ∈ X1, S ∈ X2, ρ ∈ V1, and R ∈ V2. We build an ME scheme with message space M,
sender’s policy and attribute spaces X2 and X1, and receiver’s policy and attribute spaces V2 and
V1, in the following way:

Setup(1λ): Upon input the security parameter 1λ, the randomized setup algorithm outputs mpk =
mpk and msk = (msk1,msk2) where (mpk,msk1,msk2)←$ Setup1(1

λ).

RKGen(msk, ρ): Upon input the master secret key msk = (msk1,msk2) and attributes ρ ∈ V1,
the randomized receiver key generator outputs dkρ←$ KGen1(msk1, ρ).

PolGen(msk,S): Upon input the master secret key msk = (msk1,msk2) and a policy S ∈ V2, the
randomized receiver policy generator outputs dkS←$ KGen1(msk2, S).

38

Enc(mpk, σ,R,m): Upon input the master public key mpk, attributes σ ∈ X1, a policy R ∈ X2,
and a message m ∈M, the randomized encryption algorithm computes c←$ Enc1(mpk, (σ,
R),m).

Dec(dkρ, dkS, c): Upon input a secret decryption key dkρ for attributes ρ ∈ V1, a secret decryption
key dkS for a policy S ∈ V2, and a ciphertext c, the deterministic decryption algorithm
outputs m = Dec1(dkρ, dkS, c).

Correctness follows from the correctness of kPE. Below, we establish the following result.

Theorem 7. Let kPE be as above.

1. If kPE is CPA-1-sided secure (Definition 11) then the ME scheme Π from Construction 4
is CPA-1-sided secure (Definition 15).

2. If kPE is CPA-2-sided secure (Definition 11) then the ME scheme Π from Construction 4
is CPA-2-sided secure (Definition 15).

Proof. (CPA-1-sided security of Π) Suppose there exists a valid PPT adversary A with a non-
negligible advantage in breaking the CPA-1-sided security of Π. We build an adversary A′ that
breaks the CPA-1-sided security of kPE. A′ is defined as follows:

1. Receive mpk from the challenger and send it to A.

2. A′ answers to the incoming oracle queries as follows:

• On input ρ ∈ V1 for RKGen, forward the query ρ to KGen(msk1, ·) and return the
answer dkρ.

• On input R ∈ V2 from PolGen, forward the query R to KGen(msk2, ·) and return the
answer dkR.

3. Receive the challenge (m0,m1,R0,R1, σ0, σ1) from A′. Send the challenge (m0,m1, x0, x1)
where xi = (σi, Si) for i ∈ {0, 1}. Forward the challenge ciphertext c to A.

4. Answer to the incoming oracle queries as in Item 2.

5. Return the output of A.

Let d be the challenge bit sampled by the challenger. A′ perfectly simulates the view of A.
Moreover, A is a valid adversary, i.e., it satisfies the mismatch condition of Equation (7).
This implies that ∀ρ ∈ QKGen(msk1,·),R ∈ QKGen(msk2,·), Pρ,R(σ

0, S0) = S0(ρ) ∧ R(σ0) = 0 and

Pρ,R(σ
1,S1) = S1(ρ) ∧ R1(σ) = 0. Hence, A′ is a valid adversary for GCPA-1-kPE

kPE,A′ (λ). This
concludes the proof.

(CPA-2-sided security of Π) The reduction is identical. The only difference is the analysis
of the validity of A′. Since A is a valid adversary with respect to the CPA-2-sided security
experiment of kPE, i.e., it satisfies Equation (8). This implies that ∀ρ ∈ QKGen(msk1,·),R ∈
QKGen(msk2,·), either Pρ,R(σ

0,S0) = Pρ,R(σ
1, S1) = 0 or Pρ,R(σ

0,S0) = Pρ,R(σ
1,S1) ∧m0 = m1.

Hence, A′ is a valid adversary for GCPA-2-kPE
kPE,A′ (λ). This concludes the proof.

39

B Non-Interactive Multi Party Computation (with Correlated
Randomness)

B.1 Security of CPA-1-sided reusable k-robust NI-MPC for all-or-nothing
functions

A NI-MPC protocol for a function f : V1 × . . . × Vn → Y is a (non-interactive) protocol
between n parties and an evaluator.20 On initialization, a trusted party executes the setup
algorithm (crs, ek1, . . . , ekn)←$ Setup(1λ, f). Then, it publishes the common reference string
crs and sends the (possibly correlated) encryption keys to the corresponding parties, i.e., the
i-th party receives the i-th encryption key eki. After the setup phase, each party, owning an
input vi ∈ Vi, sends a single message ci←$ Enc(crs, eki, vi) to the evaluator. The latter will be
able to compute the output of the function f by executing f(v1, . . . , vn) = Eval(crs, c1, . . . , cn).
We focus on NI-MPC without session identifiers, i.e., the encryption algorithm do not takes in
input the unique identifier for the current round. Hence, messages computed in different rounds
can be interleaved by design (this will affect the security definition of NI-MPC).

Formally, a NI-MPC protocol Π for a function f : V1× . . .×Vn → Y consists of the following
algorithms:

Setup(1λ, f): Upon input the security parameter 1λ and a function f : V1 × . . . × Vn → Y,
the setup algorithm outputs the common reference string crs and n encryption keys
ek1, . . . , ekn.

Enc(crs, eki, vi): Upon input a common reference string crs, an input vi ∈ Vi, and an encryption
key eki, the randomized encryption algorithm outputs a ciphertext ci.

Eval(crs, c1, . . . , cn): Upon input a common reference string crs and n ciphertexts c1, . . . , cn, the
deterministic evaluation algorithm outputs a value y ∈ Y.

Correctness states that the evaluation of n ciphertext (c1, . . . , cn), computed over the inputs
(v1, . . . , vn), outputs f(v1, . . . , vn)

Definition 16 (Correctness of NI-MPC). A NI-MPC protocol for a function f : V1× . . .×Vn →
Y is correct if ∀λ ∈ N, ∀(crs, ek1, . . . , ekn) output by Setup(1λ, f), ∀(v1, . . . , vn) ∈ V1 × . . .×Vn,
we have:

P[Eval(crs, c1, . . . , cn) = f(v1, . . . , vn)] = 1− negl(λ),

where ci←$ Enc(crs, eki, vi) for i ∈ [n].

As for security, a k-robust NI-MPC guarantees the secrecy of the inputs of honest parties
even in the presence of an adversary that corrupts a set QCorr of k parties (when an adversary
corrupts the i-th party it obtains its encryption key eki and the latter gives to the adversary
the ability of producing adversarially chosen messages using eki). Following the blueprint of
Halevi et al. [HIJ+17] (see also [BGI+14]), this is formalized by an indistinguishability-based
definition that states the infeasibility of distinguishing between (Enc(crs, ek1, v

0
1), . . . ,Enc(crs,

ekn, v
0
n)) and (Enc(crs, ek1, v

1
1), . . . ,Enc(crs, ekn, v

1
n)),

21 so long as any interleaving of the honest
inputs with any adversarially chosen input v′i ∈ Vi, belonging to a corrupted party i ∈ QCorr,
produces the same function evaluation. In addition, security of NI-MPC can be formulated in
two different settings, named non-reusable and reusable NI-MPC:

20Depending on the scenario, the evaluator can be any of the parties running the NI-MPC protocol
21Simulation-based security of NI-MPC for general functions is impossible. Indeed, simulation-based NI-MPC

implies virtual black-box (VBB) obfuscation [GGG+14, BGI+14, HIJ+17] and the latter is impossible for certain
class of circuits/functions [BGI+01].

40

Gni-mpc
Π,A (λ)

(crs, ek1, . . . , ekn)←$ Setup(1λ, fP)

((v01 , . . . , v
0
n), (v

1
1 , . . . , v

1
n), α)←$ A

Corr(·),{Enc(crs,eki,·)}i∈[n]

0 (1λ, crs)

b←$ {0, 1}, c1←$ Enc(crs, ek1, v
b
1), . . . , cn←$ Enc(crs, ekn, v

b
n)

b′←$ A
Corr(·),{Enc(crs,eki,·)}i∈[n]

1 (1λ, c1, . . . , cn, α)

If (b′ = b): return 1

Else: return 0

Figure 9: Game defining (CPA-1-sided) reusable k-robust security of NI-MPC for all-or-
nothing functions and without session identifiers. On input i ∈ [n], the corruption oracle
Corr(·) returns the i-th encryption key eki.

• Non-reusable NI-MPC guarantees the secrecy of parties’ inputs only if the setup is exe-
cuted after each round (i.e., a single evaluation f(v1, . . . , vn) per setup is allowed).

• On the other hand, reusable NI-MPC provides a stronger security guarantees allowing
parties to use the same setup in multiple rounds. As defined in [HIJ+17], full-fledged
reusability NI-MPC makes use of session identifiers in order to block interleaving of mes-
sages produced in different rounds. In particular, in each round of computation, the
parties compute their messages c1, . . . , cn by attaching to them a unique session iden-
tifiers ℓ. Only messages c1, . . . , cn with the same identifier ℓ can be evaluated together
yielding f(v1, . . . , vn) = Eval(crs, c1, . . . , cn).

We focus on a weaker notion of reusability without session identifiers, specifically tailored
for all-or-nothing functions, that allows to re-use the same setup until a certain condition is
satisfied. An all-or-nothing function fP : V1 × . . . × Vn → (M1 × . . . ×Mn) ∪ {⊥} returns
parties’ messages (m1, . . . ,mn) ∈ M1 × . . .×Mn only if a predicate P(x1, . . . , xn) is satisfied,
i.e.,

fP(v1, . . . , vn) =

{
(m1, . . . ,mn) if P(x1, . . . , xn) = 1

⊥ otherwise
(9)

where vi = (xi,mi) ∈ Vi = Xi ×Mi for i ∈ [n]. We named our weaker notion of reusability
CPA-1-sided reusability and, in a nutshell, it allows parties to reuse the same setup (without
affecting the security of the protocol) so long as fP evaluates ⊥ for any combinations of the
honest inputs and every input associated to the corrupted parties.22 This condition resembles
the CPA-1-sided security of multi-input PE (Definition 13).

Definition 17 (CPA-1-sided reusable k-robust security of NI-MPC for all-or-nothing functions).
Let fP : V1 × . . . × Vn → (M1 × . . . ×Mn) ∪ {⊥} be an all-or-nothing function as defined
in Equation (9). We say that a NI-MPC protocol Π for fP is CPA-1-sided reusable k-robust
secure if for any valid PPT adversary A = (A0,A1) we have:∣∣∣∣P[Gni-mpc

Π,A (λ)
]
− 1

2

∣∣∣∣ ≤ negl(λ)

where Gni-mpc
Π,A (λ) is depicted in Fig. 9. Let Qi = QEnc(crs,eki,·) for i ∈ [n] \QCorr and Qi = Xi for

i ∈ QCorr. Adversary A is called valid if |QCorr| ≤ k and ∀d ∈ {0, 1}, ∀j ∈ [n], ∀(v′1, . . . , v′n) ∈
Q1 ∪ {vd1} × . . .×Qn ∪ {vdn}, we have that

fP(v
′
0, . . . , v

′
j−1, v

d
j , v
′
j+1, . . . , v

′
n−1) = ⊥.

22We consider every combination of the inputs due to the lack of session identifiers.

41

We stress that both the flavors of corruption and challenge selection considered in our Defi-
nition 17 are stronger than the one of Halevi et al. [HIJ+17]. In Definition 17, the adversary
can both choose which parties want to corrupt and the challenge adaptively. On the other
hand, [HIJ+17] only covers selective security on both aspects.

Remark 6 (On the relation between NI-MPC, iO, and null iO). As note by previous works [HIJ+17,
BGI+14], NI-MPC has strong relations with iO. Taking into account full-fledged reusability,
indistinguishability-based 0-robust NI-MPC for general functions that supports n = poly(λ)
parties implies iO. The construction is reminiscent to that of iO from multi-input functional
encryption [GGG+14]. Analogously, we can translate the above implications to the setting of
CPA-1-sided reusability and null iO (and, in turn WE) [GKW17, WZ17, BJK+18], i.e., CPA-1-
sided reusable 0-robust NI-MPC for general functions that supports n = poly(λ) parties implies
null iO. This shows that nonetheless CPA-1-sided reusability is a weakening of standard reusabil-
ity, it is non-trivial to achieve for general functions. Moreover, if we consider 1-robustness, we
can get rid of both the (CPA-1-sided) reusability and n = poly(λ) parties requirements. In
particular, as described in Section 1.4, we can build iO (resp. null iO) from indistinguishability-
based (resp. CPA-1-sided) non-reusable 1-robust NI-MPC supporting n = 2 parties.23

B.2 NI-MPC for all-or-nothing functions from multi-input PE

In this section, we build a CPA-1-sided reusable k-robust NI-MPC protocol for fP : V1 × . . .×
Vn → (M1× . . .×Mn)∪{⊥} (defined as in Equation (9)) from any CPA-1-sided secure n-input
PE in the k-corruptions setting without collusions.

Construction 5. Let iPE1 = (Setup1,KGen1,Enc1,Dec1) be a n-input PE scheme with mes-
sage space M = M1 × . . . × Mn, input space X = X1 × . . . × Xn, and predicate space
P1 = {P(x1, . . . , xn)}. Let Vi = Xi ×Mi for i ∈ [n]. For every P ∈ P1, we build a NI-MPC
protocol for the function fP : V1×. . .×Vn → (M1×. . .×Mn)∪{⊥} (as defined in Equation (9))
in the following way:

Setup(1λ, fP): Upon input the security parameter 1λ and a function fP, the randomized setup
algorithm computes (ek1, . . . , ekn,msk)←$ Setup1(1

λ) and dkP = KGen1(msk,P) where P ∈
P1 is the predicate defining the function fP. Finally, it returns crs = dkP and ek1, . . . , ekn.

Enc(crs, eki, vi): Let i ∈ [n]. Upon input the common reference string crs = dkP, the encryption
key eki, and the input vi = (xi,mi) ∈ Vi, the randomized encryption algorithm outputs
ci←$ Enc1(eki, xi,mi).

Eval(crs, c1, . . . , cn): On input the common reference string crs = dkP and n ciphertexts c1, . . . , cn,
the evaluation algorithm outputs Dec1(dkP, c1, . . . , cn).

Correctness follows from that of the underlying n-input PE iPE1. In particular, correctness
for the case fP((x1,m1), . . . , (xn,mn)) = ⊥ (i.e., P is not satisfied) can be obtained by extending
the iPE1’s correctness to the case of P is not satisfied, i.e., Dec(dkP, c1, . . . , cn) = ⊥ whenever
P(x1, . . . , xn) = 0.24

23Non-reusable 1-robust security of NI-MPC means that the honest encryption key eki is used only once (i.e.,
to compute a single message) whereas ek1−i is revealed to the adversary (i.e., the adversary can use it multiple
times without breaking the security of the NI-MPC protocol).

24Correctness for the case P(x1, . . . , xn) = 0 can be seamlessly added to any multi-input PE scheme by applying
an efficiently computable and invertible padding Φ(·) (e.g., Φ(m) = m||1||0λ where λ is the security parameter)
before encrypting the message mi, i.e., Enc(eki, xi,Φ(mi)). On decryption, the n-input PE scheme will return ⊥
whenever the padding is invalid.

42

Security of Construction 5 is formalized by Theorem 8. By combining Theorems 5 and 8
(and [GVW15]), we obtain a CPA-1-sided reusable 0-robust NI-MPC protocol for n = poly(λ)
parties (based on the LWE assumption) for all-or-nothing functions fP (Equation (9)) where P
is a conjunctions of arbitrary predicates with wildcards. Similarly, by combining Theorems 6
and 8, we obtain a CPA-1-sided reusable (n− 1)-robust NI-MPC protocol for n = O(1) parties
for the same class of functions. Both settings are non-trivial and they both imply null iO (and
WE) in the case of NI-MPC for general functions (see Section 1.3 and Remark 6).

Theorem 8. Let iPE1 as above. If iPE1 is CPA-1-sided secure in the k-corruptions setting
without collusions (Definition 13), then Π of Construction 5 is CPA-1-sided reusable k-robust
secure (Definition 17).

Proof. Suppose there exists a valid PPT adversary A with a non-negligible advantage in breaking
the partial reusability k-robust security of NI-MPC. we build an adversary A′ that breaks the
CPA-1-sided security in the k-corruptions setting without collusions of iPE1. A′ proceeds as
follows:

1. Send P to the oracle KGen1(msk, ·) and receive dkP.

2. Send crs = dkP to A.

3. A′ answers the incoming oracle queries as follows:

• On input vi = (x,m) ∈ Vi for Enc(crs, eki, ·) where i ∈ [n], forward the query (x,m)
to Enc1(eki, ·, ·) and return the answer ci to A.

• On input i ∈ [n] for Corr(·), forward the query i to oracle Corr1(·) and return the
answer eki to A.

4. Receive the challenge (v01 = (x01,m
0
1), . . . , v

0
n = (x0n,m

0
n)) and (v11 = (x11,m

1
1), . . . , v

1
n =

(x1n,m
1
n)).

5. Send ((m0
1, . . . ,m

0
n), (x

0
1, . . . , x

0
n)) and ((m1

1, . . . ,m
1
n), (x

1
1, . . . , x

1
n)) to the challenger.

6. Receive the ciphertexts (c1, . . . , cn) and forward them to A.

7. Answer to the incoming oracle queries as in Item 3.

8. Return the output of A.

The adversary A′ perfectly simulates the view of A. Moreover, by combining |QKGen1 | = 1 (A
submits a single query to the KGen1 oracle) and A’s validity, we can easily conclude that A′

is a valid adversary for the experiment Gk-CPA-1-iPE
iPE,A′ (λ) without collusions. This concludes the

proof.

C Relating Multi-key PE and Multi-input PE

Here, we show a construction of n-key PE from (n+1)-input PE supporting arbitrary predicates
and tolerating 1 corruption. In more details, it suffices that the (n + 1)-input PE satisfies a
weaker flavor of security under corruptions, named ℓ-hybrid setting.

43

Gℓ-hyb-CPA-1-iPE
Π,A (λ)

(ek1, . . . , ekn,msk)←$ Setup(1λ, 1ℓ), pub = (ekn−ℓ+1, . . . , ekn)

((m0
i)i∈[n], (m

1
i)i∈[n], (x

0
i)i∈[n], (x

1
i)i∈[n], α)←$ A

KGen(msk,·),{Enc(ekj ,·,·)}j∈[n−ℓ]

0 (1λ, pub)

b←$ {0, 1}, c1←$ Enc(ek1, x
b
1,m

b
1), . . . , cn←$ Enc(ekn, x

b
n,m

b
n)

b′←$ A
KGen(msk,·),{Enc(ekj ,·,·)}j∈[n−ℓ]

1 (1λ, c1, . . . , cn, α)

If (b′ = b): return 1

Else: return 0

Figure 10: Game defining CPA-t-sided security of n-input PE in the ℓ-hybrid setting.

C.1 Multi-input PE in the ℓ-Hybrid Setting

A multi-input PE in the hybrid setting allows to generate (during setup) some encryptions keys
that can be made public. The main difference between the hybrid setting and the corruption
setting is that in the former the setup needs to know a priori which ones will be public (in
other words, the setup depends on the keys that the adversary wants to leak/obtain). For
this reason, it is easy to see that the hybrid setting is stronger than the secret-key one but
significantly weaker than the corruption setting (in which the keys are leaked by the adversary
in an adaptively fashion).

We assume that the Setup algorithm takes as input an additional parameter 1ℓ denoting
the number of keys that will be made public. Without loss of generality, we assume that the
first n − ℓ keys (ek1, . . . , ekn−ℓ) are kept secret whereas the last ℓ keys (ekn−ℓ+1, . . . , ekn) are
published. Observe that, for ℓ = 0, the hybrid setting corresponds to the secret-key setting
(see Section 4.2).

Definition 18 (ℓ-Hybrid CPA-1-sided and CPA-2-side security of n-input PE). Let t ∈ [2].
We say that a n-input PE Π is CPA-t-sided secure in the ℓ-hybrid setting if for all valid PPT
adversaries A = (A0,A1): ∣∣∣∣P[Gℓ-hyb-CPA-1-iPE

Π,A (λ) = 1
]
− 1

2

∣∣∣∣ ≤ negl(λ),

where game Gℓ-hyb-CPA-1-iPE
Π,A (λ) is depicted in Figure 10. Let Qi = {x|∃(x,m) ∈ QEnc(eki,·,·)}

for i ∈ [n − ℓ] and Qi = Xi for i ∈ [n] \ [n − ℓ]. Moreover, let Qd
i (for d ∈ {0, 1}) be

the ordered list composed of the predicate inputs Qi and the challenge input xdi , i.e., Qd
i =

{x(1,d)i , . . . , x
(ki,d)
i , x

(ki+1,d)
i = xdi } where ki = |Qi| and x(j,d) ∈ Qi for j ∈ [ki]. Adversary A is

called valid if |QCorr| ≤ ℓ and ∀P ∈ QKGen, ∀j ∈ [n], ∀i1 ∈ [k1 + 1], . . . ,∀in ∈ [kn + 1], we have

Case t = 1: P(x(i1,0)1 , . . . , x
(ij−1,0)
j−1 , x0j , x

(ij+1,0)
j+1 , . . . , x(in,0)n) =

P(x(i1,1)1 , . . . , x
(ij−1,1)
j−1 , x1j , x

(ij+1,1)
j+1 , . . . , x(in,1)n) = 0.

Case t = 2: Either

P(x(i1,0)1 , . . . , x
(ij−1,0)
j−1 , x0j , x

(ij+1,0)
j+1 , . . . , x(in,0)n) =

P(x(i1,1)1 , . . . , x
(ij−1,1)
j−1 , x1j , x

(ij+1,1)
j+1 , . . . , x(in,1)n) = 0

or

P(x(i1,0)1 , . . . , x
(ij−1,0)
j−1 , x0j , x

(ij+1,0)
j+1 , . . . , x(in,0)n) =

P(x(i1,1)1 , . . . , x
(ij−1,1)
j−1 , x1j , x

(ij+1,1)
j+1 , . . . , x(in,1)n) ∧m0

j = m1
j .

44

C.2 Multi-key PE from Multi-input PE

Here, we build a n-key PE from (n + 1)-input PE that tolerates 1 public encryption key,
i.e., 1-hybrid setting (Definition 18). The idea is to use the first n inputs of the predicate
P(x1, . . . , xn+1) (of (n + 1)-input PE) to determine the indexes (v1, . . . , vn) ∈ V that define
the predicate Pv1,...,vn(x) of the n-key PE, i.e., P(x1, . . . , xn+1) = P(v1, . . . , vn, x) = Pv1,...,vn(x)
where xi = vi for i ∈ [n] and xn+1 = x.

Construction 6. Let iPE = (Setup1,KGen1,Enc1,Dec1) be a (n + 1)-input PE scheme with
message space M =M1 × . . .×Mn+1, input space X = X1 × . . .× Xn+1, and predicate space
P1 = {P(x1, . . . , xn+1)} such that

P(x1, . . . , xn+1) = Px1,...,xn(xn+1),

where xi ∈ Xi for i ∈ [n+1]. We build a n-key PE scheme with message spaceM =Mn+1, input
space X = Xn+1, and predicate space P = {Pv1,...,vn(x)}(v1,...,vn)∈V indexed by V = X1× . . .×Xn,
in the following way:

Setup(1λ): Upon input the security parameter 1λ the randomized setup algorithm outputs mpk =
ekn and msk1 = (ek1, dkP), . . . ,mskn = (ekn, dkP) where (mpk′, ek1, . . . , ekn+1)←$ Setup1(
1λ) and dkP←$ KGen1(msk′,P) for P ∈ P1.

KGen(mski, vi): Let i ∈ [n]. Upon input the i-th master secret key mski = (eki, dkP), and the
i-th predicate index vi ∈ Xi, the randomized key generator outputs dkvi = (cvi , dkP) where
cvi ←$ Enc1(eki, vi,⊥).

Enc(mpk, x,m): Upon input the master public key mpk = ekn+1, an input x ∈ Xn+1, and a mes-
sage m ∈Mn+1, the randomized encryption algorithm computes c←$ Enc1(ekn+1, x,m).

Dec(dkv1 , . . . , dkvn , c): Upon input n secret decryption keys dkv1 = (cv1 , dkP), . . . , dkvn = (cvn , dkP)
and a ciphertext c, the deterministic decryption algorithm outputs mn+1 where (m1, . . . ,
mn+1) = Dec1(dkP, cv1 , . . . , cvn , c).

Correctness follows from the correctness of iPE. As for security, we establish the following
result.

Theorem 9. Let iPE be as above. For t ∈ [2], if iPE is CPA-t-sided secure in the 1-hybrid
model without collusions (Definition 18) then the n-key PE scheme Π from Construction 6 is
CPA-t-sided secure (Definition 11).

Proof. (CPA-1-sided security of Π) Without loss of generality, we assume that the adversary
A submits (at least) one query to each key generation oracle KGen(msk1, ·), . . . ,KGen(mskn, ·)
(proving the security of Π against this adversary implies the security of Π against any other
adversary that does not query an oracle KGen(mskj , ·, ·) for a j ∈ [n]). Suppose there exists a
valid PPT adversary A with a non-negligible advantage in breaking the CPA-1-sided security of
Π. We build an adversary A′ that breaks the 1-hybrid CPA-1-side security (without collusions)
of iPE. A′ is defined as follows:

1. Receive ekn+1 from the challenger and send it to A.

2. Send the query P (i.e., the predicate supported by iPE) to the KGen1 oracle and receive
dkP.

3. Initialize Li = {∅} for i ∈ [n]. A′ answers to the incoming oracle queries as follows:

45

• On input vi ∈ Xi for KGen(mski, ·), forward the query (vi,⊥) to oracle Enc1(eki, ·, ·)
and receive the answer cvi . Add vi to Li and return dkvi = (cvi , dkP).

4. Receive the challenge (m0,m1, x0, x1) from A. A′ sends the challenge ((m0
1, . . . ,m

0
n), (m

1
1,

. . . ,m1
n), (x

0
1, . . . , x

0
n), (x

1
1, . . . , x

1
n)) where mi

1 = . . . = mi
n = ⊥, mi

n+1 = mi, xij = x1−ij =

x̄j ←$ Lj , and xin+1 = xi, for j ∈ [n] and i ∈ {0, 1}.

5. Receive the challenge ciphertexts c1, . . . , cn+1 and forward cn+1 to A.

6. Answer to the incoming oracle queries as in Item 3.

7. Return the output of A.

Let d be the challenge bit sampled by the challenger. A′ perfectly simulates the view of A.
Moreover, since A is a valid adversary, we have that ∀v1 ∈ QKGen(msk1,·), . . . ,∀vn ∈ QKGen(mskn,·),
we have Pv1,...,vn(x

0) = Pv1,...,vn(x
1) = 0. In order to be valid, A′ needs to satisfy the condition

of Definition 18. Let Qb
i as defined in Definition 18. First, note that, for i ∈ [n], we have

that Q0
i = Q1

i = QKGen(mski,·) = Li since xdi = x1−di = x̄i are sampled from Li (i.e., Qi does
not contain any value that depends on the challenge bit d). Hence, the only case in which the
adversary A′ may evaluate the predicate P on an input that depends on the challenge bit d (i.e.,
the cases captured by Definition 18) is when A′ uses the challenge ciphertext cn+1. However,
when cn+1 is used, the validity of A implies that ∀(v1, . . . , vn) ∈ Qb

1× . . .×Qb
n (recall Qb

i = Q
1−b
i

for i ∈ [n]),

P(v1, . . . , vn, x0n+1) = Pv1,...,vn(x
0) = Pv0,...,vn(x

1) = P(v1, . . . , vn, x1n+1) = 0,

where xin+1 = xi for i ∈ {0, 1}. Hence, A′ submits only a single query to oracle KGen1 and is

also a valid adversary for Gℓ-hyb-CPA-1-iPE
iPE,A′ (λ). This concludes the proof.

(CPA-2-sided security of Π) The reduction is identical. The only difference is the analysis of
the validity of A′. By definition A is a valid adversary with respect to the CPA-2-sided security
of iPE, i.e., ∀v1 ∈ QKGen(msk1,·), . . . ,∀vn ∈ QKGen(mskn,·), we have

Either Pv1,...,vn(x
0) = Pv1,...,vn(x

1) = 0 or

Pv1,...,vn(x
0) = Pv1,...,vn(x

1) ∧m0 = m1.

If A satisfies the first part of the above condition, then the analysis of A’s validity is identical
to that of CPA-1-sided security. On the other hand, if A satisfies the second part of the above
condition, then the validity of A follows by using an similar argument to that of CPA-1-sided
security and, in addition, observing that

P(v1, . . . , vn, x0n+1) = Pv1,...,vn(x
0) = Pv1,...,vn(x

1) = P(v1, . . . , vn, x1n+1),

and m0
n+1 = m0 = m1 = m1

n+1. This concludes the proof.

D Relating Multi-key ABE and Multi-input ABE

This work focuses on the definition of multi-key and multi-input PE whose security guarantees
the secrecy of both the messages and the predicate inputs, i.e., CPA-t-sided security for t ∈ [2].
For completeness, we discuss also the relation between multi-key and multi-input schemes when
moving to the weaker attribute-based encryption (ABE) setting, i.e., only the secrecy of the
messages is guaranteed (inputs can be public).

46

First, we note that the discussion of Remark 3 and Appendix C naturally extends to the
ABE setting, i.e., multi-input ABE, supporting arbitrary predicates and tolerating 1 corruption,
implies multi-key ABE.

Second, we show that also multi-key ABE (for arbitrary predicates) implies secret-key multi-
input ABE, i.e., no corruptions.25 This follows by the following two observations:

1. We can first use an n-key ABE scheme, for arbitrary predicates, to build a secret-key
n-input ABE such that only the i-th sender (for i ∈ [n]) can encrypt a message mi (as
considered in [AYY22]).

2. Then, as discussed in [AYY22], we can generalize the construction to support n messages
by instantiating multiple times the n-input ABE and rotating the slot which contains the
message.

Regarding Item 1, let Π = (Setup,KGen,Enc,Dec) be a n-key ABE, supporting the following
class of predicates P = {Pv1,...,vn(x)}:

Pv1,...,vn(x) = Pvi(v1, . . . , vi−1, x, vi+1, . . . , vn) = Pvi(x1, . . . , xn), (10)

where x = xi, vj = xj for j ∈ [n] \ {i}. We can build a secret-key n-input ABE Π∗ =
(Setup∗,KGen∗,Enc∗,Dec∗) for P∗ = {Pvi(x1, . . . , xn)} as follows. Setup∗ outputs msk∗ = mski,
eki = mpk, and ekj = mskj for j ∈ [n] \ {i} where (mpk,msk1, . . . ,mskn)←$ Setup(1λ). To
generate the decryption key dkPvi

for Pvi , KGen
∗ executes dkPvi

= dkvi ←$ KGen(mski, vi) where
Pvi as defined in Equation (10). The i-th sender can encrypt (xi,mi) by executing Enc∗(eki, xi,
mi) = Enc(mpk, xi,mi). On the other hand, for j ∈ [n] \ {i}, the j-th sender can encrypt its
input xj (recall only the i-th can encrypt a message) by computing cj = dkxj ←$ KGen(mskj , xj).
Finally, on decryption, the receiver executes

Dec∗(dkPvi
, c1, . . . , cn) = Dec(dkx1 , . . . , dkxi−1 , dkvi , dkxi+1 , . . . , dkxn , ci)

where cj = dkxj for j ∈ [n]\{i} and dkPvi
= dkvi . Intuitively, the security of the above secret-key

n-input ABE scheme follows from that of the n-key ABE.
By leveraging the above construction and Item 2, we obtain a standard secret-key n-input

ABE supporting n messages.

E Missing Proofs

E.1 Proof of Theorem 4 (CPA-1-sided security of Π)

Consider the predicate space P of Construction 1, i.e.,

P = {Pv1,...,vn(x1, . . . , xn)}(v1,...,vn)∈V
= {Pv1(x1) ∧ . . . ∧ Pvn(xn)}(Pv1 ,...,Pvn)∈P1×...×Pn

. (11)

Also, consider the validity condition of GCPA-1-kPE
Π,A (Definition 11). We can write such a validity

condition for the predicate space P as follows: ∀v1 ∈ QKGen(msk1,·), . . . , vn ∈ QKGen(mskn,·),

Pv1,...,vn(x
0
1, . . . , x

0
n) = Pv1,...,vn(x

1
1, . . . , x

1
n) =(

Pv1(x
0
1) ∧ . . . ∧ Pvn(x

0
n)
)
= 0 ∧

(
Pv1(x

0
1) ∧ . . . ∧ Pvn(x

0
n)
)
= 0,

25Observe that multi-key does not imply multi-input when considering the PE setting, i.e., CPA-t-sided security.

47

where x0 = (x01, . . . , x
0
n) and x1 = (x11, . . . , x

1
n) are the two input challenges output by the

adversary. The above equation can be rewritten as follows: ∃j0, j1 ∈ [n], ∀vj0 ∈ QKGen(mskj0 ,·),
∀vj1 ∈ QKGen(mskj1 ,·),

Pvj0
(x0j0) = 0 ∧ Pvj1

(x1j1) = 0.

Hence, in order to be valid with respect to GCPA-1-kPE
Π,A , A needs to satisfy the above equation.

Let Validityj0,j1 the validity condition (as defined in Appendix E.1) with respect to some
j0, j1 ∈ [n]. By taking into account the above point, the CPA-1-sided security of Construction 1
follows by proving the following lemma.

Lemma 1. Let j0, j1 ∈ [n]. If both PEj0 and PEj1 are CPA secure (Definition 8) and LOBF is
secure (Definition 2), then∣∣∣∣P[GCPA-1-kPE

Π,A (λ) = 1
∣∣∣Validityj0,j1

]
− 1

2

∣∣∣∣ ≤ negl(λ).

Proof. Consider the following hybrid experiments:

Hb
0(λ): This is exactly the experiment GCPA-1-kPE

Π,A conditioned to Validityj0,j1 where the chal-
lenge bit is b.

Hb
1(λ): Same as Hb

0, except that the challenger computes cjb ←$ Encjb(mpkjb , x
b
jb
, w) where

w←$Mjb (instead of cjb ←$ Encjb(mpkjb , x
b
jb
, cjb−1).

Hb
2(λ): Same as Hb

1, except that the challenger simulates the challenge ciphertext c = C̃ using

the simulator of the lockable obfuscation scheme LOBF, i.e., C̃←$ S(1λ, 1|Cc|, 1|mb|).

Claim 1. Hb
0(λ) ≈c H

b
1(λ).

Proof. Suppose there exists a PPT distinguisher D that distinguishes between Hb
0(λ) and Hb

1(λ)
with non-negligible probability. We build an adversary A that breaks the CPA security of PEjb .
A is defined as follows:

1. Receive mpkjb from the challenger.

2. Send mpk = (mpk1, . . . ,mpkn) to D where (mpki,mski)←$ Setupi(1
λ) for i ∈ [n] \ {jb}.

3. A answers to the incoming oracle queries as follows:

• On input vi ∈ Vi for KGen(mski, ·), A proceeds as follows: If jb = i, it forwards the
query Pvi ∈ Pjb to KGenjb and returns the answer dkvi . Otherwise (if jb ̸= i), it
returns dkvi ←$ KGeni(mski,Pvi) for Pvi ∈ Pi.

4. Receive the challenge (m0,m1, (x01, . . . , x
0
n), (x

1
1, . . . , x

1
n)) from D.

5. Sample y←$ {0, 1}s(λ) and set c0 = y.

6. For i ∈ [jb − 1], compute ci←$ Enci(mpki, x
b
i , ci−1).

7. Send the challenge (m0
∗,m

1
∗, x

b
jb
) where m0

∗ = cjb , m
1
∗←$Mjb and receive the challenge

ciphertext c∗.

8. For i ∈ [n] \ [jb], compute ci←$ Enci(mpki, x
b
i , ci−1) where cjb = c∗.

9. Finally, send c = C̃←$ Obf(1λ,Ccn , y,m
b) to D.

48

10. Answer to the incoming oracle queries as in Item 3.

11. Return the output of D.

Let d be the challenge bit sampled by the challenger. The adversary A perfectly simulates
the view of D. In particular, if d = 0, A simulates Hb

0(λ). On the other hand, if d = 1, A
simulates Hb

1(λ). In addition, since D is conditioned to the event Validityj0,j1 , we conclude
that ∀vj0 ∈ Vj0 ,Pvj0

(x0jb) = 0. This implies that ∀P ∈ QKGenjb
, P(x0jb) = 0. Hence, A is a valid

adversary with the same advantage of D. This concludes the proof.

Claim 2. Hb
1(λ) ≈c H

b
2(λ).

Proof. Suppose there exists a PPT distinguisher D that distinguishes between Hb
1(λ) and Hb

2(λ)
with non-negligible probability. We build an adversary A that breaks the security of lockable
obfuscation LOBF. A is defined as follows:

1. Send mpk = (mpk1, . . . ,mpkn) to D where (mpki,mski)←$ Setupi(1
λ) for i ∈ [n].

2. A answers to the incoming oracle queries as follows:

• On input vi ∈ Vi for RKGen(mski, ·), A returns dkvi ←$ KGeni(mski,Pvi) for Pvi ∈ Pi.

3. Receive the challenge (m0,m1, (x01, . . . , x
0
n), (x

1
1, . . . , x

1
n)) from D.

4. For i ∈ [n] \ [jb], compute ci←$ Enci(mpki, x
b
i , ci−1) where cjb ←$Mjb .

5. The adversary A send (Ccn ,m
b) to the challenger and receives back the obfuscated circuit

C̃ from the challenger.

6. A returns c = C̃ to D.

7. Answer to the incoming oracle queries as in Item 2.

8. Return the output of D.

Let d be the challenge bit sampled by the challenger. When d = 0, A simulatesHb
1(λ); otherwise,

if d = 1, A simulates Hb
2(λ). Thus, A has the same non-negligible advantage of D with respect

to the experiment Glock-sim
LOBF,A,S(λ). This concludes the proof.

Claim 3. Hb
2(λ) ≡ H1−b

2 (λ).

Proof. The claim follows by observing that these experiments do not depend on the challenge
bit b.

Lemma 1 follows by combining Claims 1 to 3.

By leveraging Lemma 1 we conclude that Π of Construction 1 is CPA-1-sided secure.

49

E.2 Proof of Theorem 4 (CPA-2-sided security of Π)

Consider the validity condition of GCPA-2-kPE
Π,A (Definition 11). This can be rewritten with respect

to the definition of P (Equation (11)) as follows: ∃j0, j1 ∈ [n], ∀vj0 ∈ QKGen(mskj0 ,·), ∀vj1 ∈
QKGen(mskj1 ,·), ∀(v1, . . . , vn) ∈ QKGen(msk1,·) × . . .×QKGen(mskn,·),

Either Pvj0
(x0j0) = 0 ∧ Pvj1

(x1j1) = 0

or Pv1(x
0
1) = Pv1(x

1
1) ∧ . . . ∧ Pvn(x

0
n) = Pvn(x

1
n) ∧m0 = m1 (12)

Consider the following conditions:

Validity0,j0,j1 : ∀vj0 ∈ QKGen(mskj0 ,·),∀vj1 ∈ QKGen(mskj1 ,·),

Pvj0
(x0j0) = 0 ∧ Pvj1

(x1j1) = 0

Validity1 : ∀(v1, . . . , vn) ∈ QKGen(msk1,·) × . . .×QKGen(mskn,·),

Pv1(x
0
1) = Pv1(x

1
1) ∧ . . . ∧ Pvn(x

0
n) = Pvn(x

1
n) ∧m0 = m1.

By leveraging the above validity conditions we can rephrase Equation (12) as follows: ∃j0, j1 ∈
[n] such that

Either Validity0,j0,j1 or Validity1.

Hence, in order to be valid with respect to GCPA-2-kPE
Π,A , A needs to satisfy the above equation.

By taking into account the above point, the CPA-2-sided security of Construction 1 follows by
proving the following lemmas.

Lemma 2. Let j0, j1 ∈ [n]. If both PEj0 and PEj1 are CPA-2-sided secure (Definition 9) and
LOBF is secure (Definition 2), then∣∣∣∣P[GCPA-2-kPE

Π,A (λ) = 1
∣∣∣Validity0,j0,j1

]
− 1

2

∣∣∣∣ ≤ negl(λ).

Proof. The lemma follows by using an identical argument to that of Lemma 1.

Lemma 3. If each PE1, . . . ,PEn are CPA-2-sided secure (Definition 9), then∣∣∣∣P[GCPA-2-kPE
Π,A (λ) = 1

∣∣∣Validity1

]
− 1

2

∣∣∣∣ ≤ negl(λ).

Proof. Consider the following hybrid experiments:

Hb
0(λ): This is exactly the experiment GCPA-2-kPE

Π,A conditioned to Validity1 where the challenge
bit is b.

Hb
i(λ) for i ∈ [n]: Same asHb

i−1, except that the challenger computes ci←$ Enci(mpki, x
1−b
i , ci−1)

(instead of ci←$ Enci(mpki, x
b
i , ci−1).

Claim 4. For i ∈ [n], Hb
i−1(λ) ≈c H

b
i(λ).

Proof. Suppose there exists a PPT distinguisher D that distinguishes between Hb
i−1(λ) and

Hb
i(λ) with non-negligible probability. We build an adversary A that breaks the CPA-2-sided

security of PEi. A is defined as follows:

1. Receive mpki from the challenger.

2. Send mpk = (mpk1, . . . ,mpkn) to D where (mpkj ,mskj)←$ Setupi(1
λ) for j ∈ [n] \ {i}.

50

3. A answers to the incoming oracle queries as follows:

• On input vj ∈ Vj for RKGen(mskj , ·), A proceeds as follows: If j = i, it forwards the
query Pvj ∈ Pi to KGeni and returns the answer dkvj . Otherwise (if j ̸= i), it returns
dkvj ←$ KGenj(mskj ,Pvj) for Pvj ∈ Pj .

4. Receive the challenge (m0,m1, (x01, . . . , x
0
n), (x

1
1, . . . , x

1
n)) from D.

5. Sample y←$ {0, 1}s(λ) and set c0 = y.

6. For j ∈ [i− 1], compute cj ←$ Encj(mpkj , x
1−b
j , cj−1).

7. Send the challenge (m0
∗,m

1
∗, x

0 = xbi , x
1 = x1−bi) where m0

∗ = m1
∗ = ci−1, and receive the

challenge ciphertext c∗.

8. For j ∈ [n] \ [i], compute cj ←$ Encj(mpkj , x
b
j , cj−1) where ci = c∗.

9. Finally, send c = C̃←$ Obf(1λ,Ccn , y,mb) to D.

10. Answer to the incoming oracle queries as in Item 3.

11. Return the output of D.

Let d be the challenge bit sampled by the challenger. The adversary A perfectly simulates
the view of D. In particular, if d = 0, A simulates Hb

i−1(λ). On the other hand, if d = 1, A
simulates Hb

i(λ). In addition, since D is conditioned to the event Validity1, we conclude that
∀vi ∈ QKGen(mski,·),Pvi(x

0
i) = Pvi(x

1
i). Hence, A is a valid adversary with the same advantage of

D. This concludes the proof.

Claim 5. Hb
n(λ) ≡ H1−b

n (λ).

Proof. Conditioned to Validity1, we know that m0 = m1. Hence, these experiments are iden-
tically distributed.

Lemma 3 follows by combining Claims 4 and 5.

By combining Lemmas 2 and 3 we conclude that Π of Construction 1 is CPA-2-sided secure.

E.3 Proof of Theorem 5 (CPA-1-sided security of Π)

Consider the predicate space P = {P(x1, . . . , xn)} of Construction 2 where P(x1, . . . , xn) =
P1(x1) ∧ . . . ∧ Pn(xn). Let P∗ ∈ P be the only predicate for which the adversary will ask
the decryption key dkP∗ during the experiment G0-CPA-1-iPE

Π,A (recall that we prove the security
of Construction 2 in the scenario without collusions, i.e., |QKGen| = 1). Also, consider the
validity condition of G0-CPA-1-iPE

Π,A . We can write such a validity condition with respect to P∗ ∈
QKGen = {P∗} as follows: ∀j ∈ [n], ∀i1 ∈ [k1 + 1], . . . ,∀in ∈ [kn + 1],

P∗(x(i1,0)1 , . . . , x
(ij−1,0)
j−1 , x0j , x

(ij+1,0)
j+1 , . . . , x(in,0)n) =

P∗(x(i1,1)1 , . . . , x
(ij−1,1)
j−1 , x1j , x

(ij+1,1)
j+1 , . . . , x(in,1)n) =

P∗1(x
(i1,0)
1) ∧ . . . ∧ P∗j−1(x

(ij−1,0)
j−1) ∧ P∗j (x0j) ∧ P∗j+1(x

(ij+1,0)
j+1) ∧ . . . ∧ P∗in(x

(in,0)
n) =

P∗1(x
(i1,1)
1) ∧ . . . ∧ P∗j−1(x

(ij−1,1)
j−1) ∧ P∗j (x1j) ∧ P∗j+1(x

(ij+1,1)
j+1) ∧ . . . ∧ P∗n(x(in,1)n) = 0,

51

where Qb
i = {x

(1,b)
i , . . . , x

(ki,b)
i , x

(ki+1,b)
i = xbi} is the ordered list composed of the ki predicate in-

puts Qi submitted to oracle Enc(eki, ·, ·) and the challenge input xbi (as defined in Definition 13).
The above equation can be rewritten as follows: ∃j0, j1 ∈ [n], ∀(x′1, . . . , x′n) ∈ Q1 × . . .×Qn,((

P∗1(x01) = 0 ∧ . . . ∧ P∗n(x0n) = 0
)
∨
(
P∗j0(x

0
j0) = 0 ∧ P∗j0(x

′
j0) = 0

))
∧((

P∗1(x11) = 0 ∧ . . . ∧ P∗n(x1n) = 0
)
∨
(
P∗j1(x

1
j1) = 0 ∧ P∗j1(x

′
j1) = 0

))
. (13)

Note that in the above equation we made explicit the challenge inputs and the inputs submitted
to the encryption oracles. For this reason, it is enough to quantify over all (x′1, . . . , x

′
n) ∈

Q1 × . . . × Qn where Qi = {x(1)i , . . . , x
(ki)
i } are the inputs submitted to oracle Enc(eki, ·, ·).

Hence, in order to be valid, A needs to satisfy the condition defined by Equation (13). These
conditions are defined by the events below: for some j0, j1 ∈ [n],

Validity1 :

P∗1(x01) = 0 ∧ . . . ∧ P∗n(x0n) = 0 ∧ P∗1(x11) = 0 ∧ . . . ∧ P∗n(x1n) = 0.

Validity2,j0,j1 : ∀x′j0 ∈ Qj0 ,∀x′j1 ∈ Qj1 ,

P∗j0(x
0
j0) = 0 ∧ P∗j0(x

′
j0) = 0 ∧ P∗j1(x

1
j1) = 0 ∧ P∗j1(x

′
j1) = 0.

Validity3,j0 : ∀x′j0 ∈ Qj0 ,

P∗j0(x
0
j0) = 0 ∧ P∗j0(x

′
j0) = 0 ∧ P∗1(x11) = 0 ∧ . . . ∧ P∗n(x1n) = 0.

Validity4,j1 : ∀x′j1 ∈ Qj1 ,

P∗1(x01) = 0 ∧ . . . ∧ P∗n(x0n) = 0 ∧ P∗j1(x
1
j1) = 0 ∧ P∗j1(x

′
j1) = 0.

For the sake of clarity, in the rest of this proof, we use the notation Vi
def
= C

c
(2)
i ,ki+1

where c
(2)
i

and ki+1 will be clear from the context. Also, [a : b]+n = {a, a+ 1, . . . , n, 1, 2, . . . , b}. If 1 ≤ a ≤
b ≤ n, we have [a : b]+n = {a, a+ 1, . . . , b}. Similarly, [a : b]−n = {a, a− 1, . . . , 1, n, n− 1, . . . , b}.
If 1 ≤ b ≤ a ≤ n, we have [a : b]−n = {a, a− 1, . . . , b}.

Lemma 4. If PE is CPA-1-sided secure without collusions (Definition 9) and LOBF is secure
(Definition 2), then∣∣∣∣P[G0-CPA-1-iPE

Π,A (λ) = 1 ∧ |QKGen| = 1
∣∣∣Validity1

]
− 1

2

∣∣∣∣ ≤ negl(λ).

Proof. Consider the following hybrid experiments:

Hb,0
0 (λ): This is exactly the experiment G0-CPA-1-iPE

Π,A (λ) conditioned to the event Validity1

where the challenge bit is b.

Hb,i
0 (λ) for i ∈ [n]: Same as Hb,i−1

0 , except that the challenger changes how it computes the

challenger ciphertext ci. The value c
(1)
i challenge ciphertext ci = (C̃i, c

(2)
i) is computed

as c
(1)
i ←$ Enc1(mpk, (x1, . . . , xn), 0

s(λ)+k(λ)) (instead of c
(1)
i ←$ Enc1(mpk, (x1, . . . , xn), (yi,

ki+1))) where 0
s(λ)+k(λ) ∈M1 (for some function k), xi = x0i , and xj = x⋆j for j ∈ [n]\{i}.

Observe that c
(1)
i is computed by fixing xi = x0i (instead of xi = xbi), i.e., the input

(x1, . . . , xn) used to compute the i-th challenge ciphertext is fixed and does not depend
on the challenge bit b.

Hb,0
1 (λ): Identical to Hb,n

0 (λ).

52

Hb,i
1 (λ) for i ∈ [n]: Same as Hb,i−1

1 , except that the challenger changes how it computes the

challenger ciphertext ci. Formally, the value C̃i of challenge ciphertext ci = (C̃i, c
(2)
i) is

simulated by the challenger using the simulator of the lockable obfuscation scheme LOBF,
i.e., C̃i←$ Sim(1λ, 1|Vi|, 1|m

b
i |).

Claim 6. Hb,i−1
0 (λ) ≈c H

b,i
0 (λ) for i ∈ [n].

Proof. Suppose there exists a PPT distinguisher D that distinguishes between Hb,1−i
0 (λ) and

Hb,i
0 (λ) with non-negligible probability. We build an adversary A that breaks the CPA-1-sided

security without collusions of PE. A is defined as follows:

1. Receive mpk from the challenger.

2. Computes kj ←$ KGen2(1
λ) for j ∈ [n]. Let eki = (mpk, ki, ki+1) for i ∈ [n] where kn+1 =

k1.

3. A answers to the incoming oracle queries as follows:

• On input P∗ ∈ P for KGen, forward the query P∗ to KGen1 and return the answer
dkP.

• On input (x,m) ∈ X1×M3 for Enc(ekj , ·, ·), return cj = (C̃j , c
(2)
j)←$ Enc(ekj , x,m).

4. Receive the challenge ((m0
1, . . . ,m

0
n), (m

1
1, . . . ,m

1
n), (x

0
1, . . . , x

0
n), (x

1
1, . . . , x

1
n)) from D.

5. For any j ∈ [n], A proceeds as follows:

Case j < i: Sample yj ←$ {0, 1}s(λ). Execute c
(1)
j ←$ Enc1(mpk, (x1, . . . , xn), 0

s(λ)+k(λ))

where xj = x0j , and xj′ = x⋆j′ for j
′ ∈ [n] \ {j}.

Case j = i: Send the challenge (m0
∗ = (yi, ki+1),m

1
∗ = 0s(λ)+k(λ), x0∗ = (x0∗1, . . . , x

0
∗n),

x1∗ = (x1∗1, . . . , x
1
∗n)) where yi←$ {0, 1}s(λ), 0s(λ)+k(λ) ∈ M1, x0∗i = xbi , x1∗i = x0i ,

and x0∗j = x1∗j = x⋆j for j ∈ [n] \ {i}. Receive the challenge ciphertext c∗ from the

challenger. Set c
(1)
i = c∗.

Case j > i: Sample yj ←$ {0, 1}s(λ) and compute c
(1)
j ←$ Enc1(mpk, (x1, . . . , xn), (yj , kj+1))

where xj = xbj , and xj′ = x⋆j′ for j
′ ∈ [n] \ {j}.

6. Compute cj = (C̃j , c
(2)
j) where c

(2)
j ←$ Enc2(ekj , c

(1)
j) and C̃j ←$ Obf(1λ,Vj , yj ,m

b
j) for any

j ∈ [n].

7. Send the challenge ciphertexts (c1, . . . , cn) to D.

8. Answer to the incoming oracle queries as in Item 3.

9. Return the output of D.

Let d be the challenge bit sampled by the challenger. The adversary A perfectly simulates the
view of D. In particular, if d = 0, A simulates Hb,i−1

0 (λ). On the other hand, if d = 1, A

simulates Hb,i
0 (λ). Moreover, conditioned to the event Validity1, we know that D asks for a

single decryption key dkP∗ for P∗ and P∗i (x0i) = 0 ∧ P∗i (x1i) = 0. Because of this, A submits
a single query P∗ to oracle KGen(msk, ·) and it is also a valid adversary for the experiment
GCPA-1-PE

PE,A (λ) with the same advantage of D. This concludes the proof.

Claim 7. Hb,i−1
1 (λ) ≈c H

b,i
1 (λ) for i ∈ [n].

53

Proof. Suppose there exists a PPT distinguisher D that distinguishes between Hb,1−i
1 (λ) and

Hb,i
1 (λ) with non-negligible probability. We build an adversary A that breaks the security of

the lockable obfuscation scheme LOBF. A is defined as follows:

1. Computes (ek1, . . . , ekn,msk)←$ Setup(1λ) where ekj = (mpk, kj , kj−1) for j ∈ [n]. Let
kn+1 = k1.

2. A answers to the incoming oracle queries as follows:

• On input P∗ ∈ P for KGen, return dkP∗ ←$ KGen(msk,P∗).

• On input (x,m) ∈ X1 ×M3 for Enc(ekj , ·, ·) where j ∈ [n], return cj = (C̃j , c
(2)
j)←$

Enc(ekj , x,m).

3. Receive the challenge ((m0
1, . . . ,m

0
n), (m

1
1, . . . ,m

1
n), (x

0
1, . . . , x

0
n), (x

1
1, . . . , x

1
n)) from D.

4. For any j ∈ [n], compute c
(1)
j ←$ Enc1(mpk, (x1, . . . , xn), 0

s(λ)+k(λ)) and c
(2)
j ←$ Enc2(kj ,

c
(1)
j) where xj = x0j , and xj′ = x⋆j′ for j

′ ∈ [n] \ {j}.

5. For any j ∈ [n] \ {i}, A proceeds as follows:

Case j < i: Compute C̃j ←$ Sim(1λ, 1|Vj |, 1|m
b
j |).

Case j = i: Send the challenge (Vi,m
b
i) to the challenger and receive C̃. Set C̃i = C̃.

Case j > i: Compute C̃j ←$ Obf(1λ,Vj , yj ,m
b
j) where yj ←$ {0, 1}s(λ).

6. Set cj = (C̃j , c
(2)
j) for j ∈ [n] and send the challenge ciphertexts (c1, . . . , cn) to D.

7. Answer to the incoming oracle queries as in Item 2.

8. Return the output of D.

Let d be the challenge bit sampled by the challenger. The adversary A perfectly simulates the
view of D. In particular, if d = 0, A simulates Hb,i−1

1 (λ). On the other hand, if d = 1, A

simulates Hb,i
1 (λ). Hence, A has the same advantage of D. This concludes the proof.

Claim 8. Hb,n
1 (λ) ≡ H1−b,n

1 (λ).

Proof. The distribution of these two experiments do not depend on the bit b.

By combining Claims 6 to 8 and conditioned to the event Validity1, we conclude that

Hb,0
0 ≈c . . . ≈c H

b,n
0 ≡ Hb,0

1 ≈c . . . ≈c H
b,n
1 ≡ H1−b,n

1 .

This concludes the proof.

Lemma 5. Let j0, j1 ∈ [n]. If PE is CPA-1-sided secure without collusions (Definition 9), SKE
is CPA secure (Definition 4), and LOBF is secure (Definition 2), then∣∣∣∣P[G0-CPA-1-iPE

Π,A (λ) = 1 ∧ |QKGen| = 1
∣∣∣Validity2,j0,j1

]
− 1

2

∣∣∣∣ ≤ negl(λ).

Proof. Without loss of generality, let q = |Q1| = . . . = |Qn| ∈ poly(λ). Consider the following
hybrid experiments:

54

Hb
0(λ): This is exactly the experiment G0-CPA-1-iPE

Π,A (λ) conditioned to the event Validity2,j0,j1
where the challenge bit is b.

Hb
1(λ): Same as Hb

0, except that the challenger changes how it computes the challenger cipher-

text cjb . Formally, the value c
(1)
jb

of the challenge ciphertext cjb = (C̃jb , c
(2)
jb

) is computed as

c
(1)
jb
←$ Enc1(mpk, (x1, . . . , xn), 0

s(λ)+k(λ)) (instead of c
(1)
jb
←$ Enc1(mpk, (x1, . . . , xn), (yjb ,

kjb+1))) where 0s(λ)+k(λ) ∈ M1 (for some function k), xjb = xbjb , and xj = x⋆j for

j ∈ [n] \ {jb}. Note that c
(1)
jb

still depends on the challenge bit b since it is computed

over the input (x1, . . . xn) where xjb = xbjb . We will remove this dependency in Hb,0,0,0
5+n−1.

26

Hb,0
2 : Identical to Hb

1(λ).

Hb,i
2 (λ) for i ∈ [q]: Same as Hb,i−1

2 (λ) except that the challenger changes how it answers to the
first i queries for oracle Enc(ekjb , ·, ·). Formally, on input the i′-th query (x,m) such that

i′ ≤ i, the challenger computes c
(1)
jb
←$ Enc1(mpk, (x1, . . . , xn), 0

s(λ)+k(λ)) where xjb = x,

and xj = x⋆j for j ∈ [n] \ {jb}. Finally, the challenger returns cjb = (C̃jb , c
(2)
jb

) where

c
(2)
jb
←$ Enc2(kjb , c

(1)
jb

), yjb ←$ {0, 1}s(λ), and C̃jb ←$ Obf(1λ,Vjb , yjb ,m). Otherwise, on in-
put the i′-th query (x,m) such that i′ > i, the challenger answers as usual, i.e., as defined

in Hb,0
2 .

Hb
3(λ): Same as Hb,q

2 , except that the challenger changes how it computes the challenger ci-

phertext cjb . Formally, the value C̃jb of challenge ciphertext cjb = (C̃jb , c
(2)
jb

) is simu-
lated by the challenger using the simulator of the lockable obfuscation scheme LOBF, i.e.,

C̃jb ←$ Sim(1λ, 1|Vjb
|, 1
|mb

jb
|
).

Hb,0
4 : Identical to Hb

3(λ).

Hb,i
4 (λ) for i ∈ [q]: Same as Hb,i−1

4 (λ) except that the challenger changes how it answers to the
first i queries for oracle Enc(ekjb , ·, ·). Formally, on input the i′-th query (x,m) such that

i′ ≤ i, the challenger returns cjb = (C̃jb , c
(2)
jb

) where C̃jb is computed using the simulator

of the lockable obfuscator scheme LOBF, i.e., C̃jb ←$ Sim(1λ, 1|Vjb
|, 1|m|). Otherwise, on

input the i′-th query (x,m) such that i′ > i, the challenger answers as usual, i.e., as

defined in Hb,0
4 .

Hb,q,q,1
4 : Identical to Hb,q

4 (λ).

Hb,0,0,0
5+i for i ∈ {0} ∪ [n− 1]: Same as Hb,q,q,1

5+i−1 except that the challenger changes how it com-

putes the challenger ciphertext cv where v = (jb + i mod n) + 1. Formally, the value c
(1)
v

is computed as c
(1)
v ←$ Enc1(mpk, (x1, . . . , xn), 0

s(λ)+k(λ)) where 0s(λ)+k(λ) ∈M1 (for some

function k), xv = x0v, and xj = x⋆j for j ∈ [n] \ {v}. Observe that c
(1)
v is computed by

fixing xv = x0v (instead of xv = xbv), i.e., the predicate input (x1, . . . , xn) used to compute
the v-th challenge ciphertext is fixed and does not depend on the challenge bit b.

Hb,t1,0,0
5+i for t1 ∈ [q], i ∈ {0} ∪ [n− 2]: Same asHb,t1−1,0,0

5+i (λ) except that the challenger changes
how it answers to the first t1 queries for oracle Enc(ekv, ·, ·) where v = (jb+ i mod n)+1.

On input the t′1-th query (x,m) such that t′1 ≤ t1, the challenger computes c
(1)
v ←$ Enc1(mpk,

26This allow us to reuse the proof in Lemmas 6 and 7.

55

(x1, . . . , xn), 0
s(λ)+k(λ)) where xv = x, and xj = x⋆j for j ∈ [n] \ {v}. Finally, the chal-

lenger returns cv = (C̃v, c
(2)
v) where c

(2)
v ←$ Enc2(kv, c

(1)
v), C̃v←$ Obf(1λ,Vv, yv,m), and yv

←$ {0, 1}s(λ). Otherwise, on input the t′1-th query (x,m) such that t′1 > t1, the challenger

answers as usual, i.e., as defined in Hb,0,0,0
5+i .

Hb,q,t2,0
5+i for t2 ∈ [q],i ∈ {0} ∪ [n− 2]: Same as Hb,q,t2−1,0

5+i (λ) except that the challenger changes
how it answers to the first t2 queries for oracle Enc(ekv, ·, ·) where v = (jb+ i mod n)+1.
Formally, on input the t′2-th query (x,m) such that t′2 ≤ t2, the challenger returns cv =

(C̃v, c
(2)
v) where C̃v is computed using the simulator of the lockable obfuscator scheme

LOBF, i.e., C̃v←$ Sim(1λ, 1|Vv |, 1|m|). Otherwise, on input the t′2-th query (x,m) such

that t′2 > t2, the challenger answers as usual, i.e., as defined in Hb,q,0,0
5+i .

Hb,q,q,1
5+i for i ∈ {0} ∪ [n− 2]: Same as Hb,q,q,0

5+i (λ) except that the challenger computes the chal-

lenger ciphertext cv differently for v = (jb + i mod n) + 1. Formally, the value C̃v of

challenge ciphertext cv = (C̃v, c
(2)
v) is simulated by the challenger using the simulator of

the lockable obfuscation scheme LOBF, i.e., C̃v←$ Sim(1λ, 1|Vv |, 1|m
b
v |).

Claim 9. Hb
0(λ) ≈c H

b
1(λ).

Proof. Suppose there exists a PPT distinguisher D that distinguishes between Hb
0(λ) and Hb

1(λ)
with non-negligible probability. We build an adversary A that breaks the CPA-1-sided security
without collusions of PE. A is defined as follows:

1. Receive mpk from the challenger.

2. Computes kj ←$ KGen2(1
λ) for j ∈ [n]. Let ekj = (mpk, kj , kj+1) for j ∈ [n] where

kn+1 = k1.

3. A answers to the incoming oracle queries as follows:

• On input P∗ ∈ P for KGen, forward the query P∗ to KGen1 and return the answer
dkP∗ .

• On input (x,m) ∈ X1 ×M3 for Enc(ekj , ·, ·) where j ∈ [n], return cj = (C̃j , c
(2)
j)←$

Enc(ekj , x,m).

4. Receive the challenge ((m0
1, . . . ,m

0
n), (m

1
1, . . . ,m

1
n), (x

0
1, . . . , x

0
n), (x

1
1, . . . , x

1
n)) from D. Send

the challenge (m0
∗ = (yjb , kjb+1),m

1
∗ = 0s(λ)+k(λ), x0∗ = (x0∗1, . . . , x

0
∗n), x

1
∗ = (x1∗1, . . . , x

1
∗n))

where yjb ←$ {0, 1}s(λ), 0s(λ)+k(λ) ∈ M1, x0∗jb = x1∗jb = xbjb and x0∗j = x1∗j = x⋆j for
j ∈ [n] \ {jb}.

5. Receive the challenge ciphertext c∗ from the challenger. Set c
(1)
jb

= c∗.

6. For any j ∈ [n] \ {jb}, compute c
(1)
j ←$ Enc1(mpk, (x1, . . . , xn), (yj , kj+1)) where yj ←$

{0, 1}s(λ), xj = xbj , and xj′ = x⋆j′ for j
′ ∈ [n] \ {j}.

7. Compute cj = (C̃j , c
(2)
j) where c

(2)
j ←$ Enc2(ekj , c

(1)
j) and C̃j ←$ Obf(1λ,Vj , yj ,m

b
j) for any

j ∈ [n].

8. Send the challenge ciphertexts (c1, . . . , cn) to D.

9. Answer to the incoming oracle queries as in Item 3.

56

10. Return the output of D.

Let d be the challenge bit sampled by the challenger. The adversary A perfectly simulates the
view of D. In particular, if d = 0, A simulates Hb

0(λ). On the other hand, if d = 1, A simulates
Hb

1(λ). Moreover, D submits a single query P∗ to oracle KGen(msk, ·) and, conditioned to the
event Validity2,j0,j1 , we know that P∗jb(x

b
jb
) = 0. Because of this, A submits only a query to

oracle KGen1(msk, ·) (i.e., security without collusions) and, it is also a valid adversary for the
experiment GCPA-1-PE

PE,A (λ) with the same advantage of D. This concludes the proof.

Claim 10. Hb,i−1
2 (λ) ≈c H

b,i
2 (λ) for i ∈ [q].

Proof. Suppose there exists a PPT distinguisher D that distinguishes between Hb,i−1
2 (λ) and

Hb,i
2 (λ) with non-negligible probability. We build an adversary A that breaks the CPA-1-sided

security without collusions of PE. A is defined as follows:

1. Receive mpk from the challenger.

2. Computes kj ←$ KGen2(1
λ) for j ∈ [n]. Let kn+1 = k1.

3. A answers to the incoming oracle queries as follows:

• On input P∗ ∈ P for KGen, forward the query P∗ to KGen1 and return the answer
dkP∗ .

• On input i′-th query (x,m) ∈ X1 ×M3 for Enc(ekj , ·, ·) where j ∈ [n], A proceeds as
follows:

Case j ̸= jb: Sample yj ←$ {0, 1}s(λ). Compute c
(1)
j ←$ Enc1(mpk, (x1, . . . , xn), (yj ,

kj+1)) where xj = x and xj′ = x⋆j′ for j
′ ∈ [n] \ {j}.

Case j = jb and i′ < i: Sample yj ←$ {0, 1}s(λ). Compute c
(1)
j ←$ Enc1(mpk, (x1,

. . . , xn), 0
s(λ)+k(λ)) where xjb = x and xj′ = x⋆j′ for j

′ ∈ [n] \ {jb}.
Case j = jb and i′ = i: Sample yjb ←$ {0, 1}s(λ) and send (m0

∗ = (yjb , kjb+1),m
1
∗ =

0s(λ)+k(λ), x0∗ = (x0∗1, . . . , x
0
∗n), x

1
∗ = (x1∗1, . . . , x

1
∗n)) to the challenger where x

0
∗jb =

x1∗jb = x and x0∗j′ = x1∗j′ = x⋆j′ for j
′ ∈ [n]\{jb}. Receive the challenge ciphertext

c∗ and c
(1)
jb

= c∗.

Case j = jb and i′ > i: Sample yjb ←$ {0, 1}s(λ). Compute c
(1)
jb
←$ Enc1(mpk, (x1,

. . . , xn), (yjb , kjb+1)) where xjb = x and xj′ = x⋆j′ for j
′ ∈ [n] \ {jb}.

Finally, return cj = (C̃j , c
(2)
j) where c

(2)
j ←$ Enc2(kj , c

(1)
j) and C̃j ←$ Obf(1λ,Vj ,

yj ,m).

4. Receive the challenge ((m0
1, . . . ,m

0
n), (m

1
1, . . . ,m

1
n), (x

0
1, . . . , x

0
n), (x

1
1, . . . , x

1
n) from D.

5. For every j ∈ [n] \ {jb}, sample yj ←$ {0, 1}s(λ) and compute c
(1)
j ←$ Enc1(mpk, (x1, . . . ,

xn), (yj , kj+1)) where xj = xbj and xj′ = x⋆j′ for j
′ ∈ [n] \ {j}.

6. Sample yjb ←$ {0, 1}s(λ) and compute the ciphertext c
(1)
jb
←$ Enc1(mpk, (x1, . . . , xn), 0

s(λ)+k(λ))

where xjb = xbjb and xj′ = x⋆j′ for j
′ ∈ [n] \ {jb}.

7. Compute the ciphertext cj = (C̃j , c
(2)
j) where c

(2)
j ←$ Enc2(kj , c

(1)
j) and C̃j ←$ Obf(1λ,Vj ,

yj ,m
b
j) for any j ∈ [n].

57

8. Send the challenge ciphertexts (c1, . . . , cn) to D.

9. Answer to the incoming oracle queries as in Item 3.

10. Return the output of D.

Let d be the challenge bit sampled by the challenger. The adversary A perfectly simulates
the view of D. In particular, if d = 0, A simulates Hb,i−1

2 (λ). On the other hand, if d = 1, A

simulates Hb,i
2 (λ). Moreover, we know that D submits a single query P∗ to oracle KGen(msk, ·)

and, conditioned to the event Validity2,j0,j1 , we know that ∀x′jb ∈ Qjb ,P∗jb(x
′
jb
) = 0. Because

of this, A submits a single query to oracle KGen1(msk, ·) and it is also a valid adversary for the
experiment GCPA-1-PE

PE,A (λ) with the same advantage of D. This concludes the proof.

Claim 11. Hb,q
2 (λ) ≈c H

b
3(λ).

Proof. Suppose there exists a PPT distinguisher D that distinguishes between Hb,q
2 (λ) and

Hb
3(λ) with non-negligible probability. We build an adversary A that breaks the security of the

lockable obfuscation scheme LOBF. A is defined as follows:

1. Computes (ek1, . . . , ekn,msk)←$ Setup(1λ) where ekj = (mpk, kj , kj+1) for j ∈ [n]. Let
kn+1 = k1.

2. A answers to the incoming oracle queries as follows:

• On input P∗ ∈ P for KGen, return dkP∗ ←$ KGen(msk,P∗).
• On input (x,m) ∈ X1 ×M3 for Enc(ekj , ·, ·), A proceeds as follows:

Case j = jb: Sample yjb ←$ {0, 1}s(λ). Compute c
(1)
jb
←$ Enc1(mpk, (x1, . . . , xn), 0

s(λ)+k(λ))
where xjb = x, xj′ = x⋆j′ for any j′ ∈ [n] \ {jb}.

Case j ̸= jb: Run c
(1)
j ←$ Enc1(mpk, (x1, . . . , xn), (yj , kj+1)) where yj ←$ {0, 1}s(λ),

xj = x, xj′ = x⋆j′ for any j′ ∈ [n] \ {j}.

Finally, return cj = (C̃j , c
(2)
j) where c

(2)
j ←$ Enc2(kj , c

(1)
j) and C̃j ←$ Obf(1λ,Vj ,

yj ,m).

3. Receive the challenge ((m0
1, . . . ,m

0
n), (m

1
1, . . . ,m

1
n), (x

0
1, . . . , x

0
n), (x

1
1, . . . , x

1
n)) from D.

4. Compute c
(1)
jb
←$ Enc1(mpk, (x1, . . . , xn), 0

s(λ)+k(λ)) and c
(2)
jb
←$ Enc2(kj , c

(1)
jb

) where xjb =

xbjb , and xj = x⋆j for j ∈ [n] \ {jb}.

5. For any j ∈ [n] \ {jb}, sample yj ←$ {0, 1}s(λ) and compute c
(1)
j ←$ Enc1(mpk, (x1, . . . ,

xn), (yj , kj+1)), c
(2)
j ←$ Enc2(kj , c

(1)
j), and C̃j ←$ Obf(1λ,Vj , yj ,m

b
j) where xj = xbj , and

xj′ = x⋆j′ for j
′ ∈ [n] \ {j}.

6. Send the challenge (Vjb ,m
b
jb
) to the challenger and receive C̃. Set C̃jb = C̃.

7. Set cj = (C̃j , c
(2)
j) for j ∈ [n] and send the challenge ciphertexts (c1, . . . , cn) to D.

8. Answer to the incoming oracle queries as in Item 2.

9. Return the output of D.

58

Let d be the challenge bit sampled by the challenger. The adversary A perfectly simulates the
view of D. In particular, if d = 0, A simulates Hb,q

2 (λ). On the other hand, if d = 1, A simulates
Hb

3(λ). Hence, A has the same advantage of D. This concludes the proof.

Claim 12. Hb,i−1
4 (λ) ≈c H

b,i
4 (λ) for i ∈ [q].

Proof. Suppose there exists a PPT distinguisher D that distinguishes between Hb,i−1
4 (λ) and

Hb,i
4 (λ) with non-negligible probability. We build an adversary A that breaks the security of

the lockable obfuscation scheme LOBF. A is defined as follows:

1. Computes (ek1, . . . , ekn,msk)←$ Setup(1λ) where ekj = (mpk, ekj , ekj−1) for j ∈ [n]. Let
kn+1 = k1.

2. A answers to the incoming oracle queries as follows:

• On input P∗ ∈ P for KGen, return dkP∗ ←$ KGen(msk,P∗).
• On input the i′-th query (x,m) ∈ X1 ×M3 for Enc(ekj , ·, ·), A proceeds as follows:

Case j = jb and i′ < i: Run C̃jb ←$ Sim(1λ, 1|Vjb
|, 1|m|), c

(2)
jb
←$ Enc2(kjb , c

(1)
jb

), and

c
(1)
jb
←$ Enc1(mpk, (x1, . . . , xn), 0

s(λ)+k(λ)) where xjb = x, xj′ = x⋆j′ for any j′ ∈
[n] \ {jb}.

Case j = jb and i′ = i: Compute c
(2)
jb
←$ Enc2(kjb , c

(1)
jb

) and c
(1)
jb
←$ Enc1(mpk, (x1,

. . . , xn), 0
s(λ)+k(λ)) where xjb = x, xj′ = x⋆j′ for any j′ ∈ [n] \ {jb}. Send the

challenge (Vjb ,m) to the challenger and receive the answer C̃∗. Set C̃jb = C̃∗.
Case j = jb and i′ > i: Compute C̃jb ←$ Obf(1λ,Vjb ,m), c

(2)
jb
←$ Enc2(kjb , c

(1)
jb

), and

c
(1)
jb
←$ Enc1(mpk, (x1, . . . , xn), 0

s(λ)+k(λ)) where yjb ←$ {0, 1}s(λ), xjb = x, xj′ =
x⋆j′ for any j′ ∈ [n] \ {jb}.

Case j ̸= jb: Compute C̃j ←$ Obf(1λ,Vj , yj ,m), c
(2)
j ←$ Enc2(kj , c

(1)
j), and c

(1)
j ←$

Enc1(mpk, (x1, . . . , xn), (yj , kj+1)) where yj ←$ {0, 1}s(λ), xj = x, xj′ = x⋆j′ for
any j′ ∈ [n] \ {j}.

Finally, return cj = (C̃j , c
(2)
j).

3. Receive the challenge ((m0
1, . . . ,m

0
n), (m

1
1, . . . ,m

1
n), (x

0
1, . . . , x

0
n), (x

1
1, . . . , x

1
n)) from D.

4. Run C̃jb ←$ Sim(1λ, 1|Vjb
|, 1
|mb

jb
|
), c

(1)
jb
←$ Enc1(mpk, (x1, . . . , xn), 0

s(λ)+k(λ)), and c
(2)
jb
←$

Enc2(kj , c
(1)
jb

) where xjb = xbjb , and xj = x⋆j for j ∈ [n] \ {jb}.

5. For any j ∈ [n]\{jb}, sample yj ←$ {0, 1}s(λ) and compute c
(1)
j ←$ Enc1(mpk, (x1, . . . , xn),

(yj , kj+1)), c
(2)
j ←$ Enc2(kj , c

(1)
j), and C̃j ←$ Obf(1λ,Vj , yj ,m

b
j) where xj = xbj , and xj′ =

x⋆j′ for j
′ ∈ [n] \ {j}.

6. Set cj = (C̃j , c
(2)
j) for j ∈ [n] and send the challenge ciphertexts (c1, . . . , cn) to D.

7. Answer to the incoming oracle queries as in Item 2.

8. Return the output of D.

59

Let d be the challenge bit sampled by the challenger. The adversary A perfectly simulates the
view of D. In particular, if d = 0, A simulates Hb,i−1

4 (λ). On the other hand, if d = 1, A

simulates Hb,i
4 (λ). Hence, A has the same advantage of D. This concludes the proof.

Claim 13. Hb,q,q,1
5+i−1(λ) ≈c H

b,0,0,0
5+i (λ) for i ∈ {0} ∪ [n− 1].

Proof. Let v = (jb+i mod n)+1. Suppose there exists a PPT distinguisher D that distinguishes

between Hb,q,q,1
5+i−1(λ) and Hb,0,0,0

5+i (λ) with non-negligible probability. We build an adversary A
that breaks the CPA security of SKE. A is defined as follows:

1. Computes (mpk,msk)←$ Setup1(1
λ) and ekj = (ek, kj , kj−1) for j ∈ [n] \ {v}. If v ̸= 1, let

kn+1 = k1.

2. A answers to the incoming oracle queries as follows:

• On input P∗ ∈ P for KGen, return dkP∗ ←$ KGen1(msk,P∗).
• On input (x,m) ∈ X1 ×M3 for Enc(ekj , ·, ·), A proceeds as follows:

Case j ∈ [jb : v − 1]+n : Compute C̃j ←$ Sim(1λ, 1|Vj |, 1|m|), c
(2)
j ←$ Enc2(kj , c

(1)
j), and

c
(1)
j ←$ Enc1(mpk, (x1, . . . , xn), 0

s(λ)+k(λ)) where xj = x, xj′ = x⋆j′ for any j′ ∈
[n] \ {j}.

Case j = v: Run c
(1)
v ←$ Enc1(mpk, (x1, . . . , xn), (yv, kv+1)) where yv←$ {0, 1}s(λ),

xv = x, xj′ = x⋆j′ for any j′ ∈ [n] \ {v}. Send the query c
(1)
v to the oracle

Enc2 and receive the answer c
(2)
v . Compute C̃v←$ Obf(1λ,Vv, yv,m).

Case i < n− 2 (hence, v ̸∈ {jb − 1, jb}) and j ∈ [v + 1 : jb − 1]+n : Run C̃j ←$ Obf(

1λ,Vj , yj ,m), the ciphertext c
(2)
j ←$ Enc2(kj , c

(1)
j), and c

(1)
j ←$ Enc1(mpk, (x1, . . . ,

xn), (yj , kj+1)) where yj ←$ {0, 1}s(λ), xj = x, xj′ = x⋆j′ for any j′ ∈ [n] \ {j}.

Finally, return cj = (C̃j , c
(2)
j).

3. Receive the challenge ((m0
1, . . . ,m

0
n), (m

1
1, . . . ,m

1
n), (x

0
1, . . . , x

0
n), (x

1
1, . . . , x

1
n)) from D.

4. Case i < n− 1 (hence, v ̸= jb): For every j ∈ [n], the adversary A proceeds as follows:

Case j ∈ [jb, v − 1]+n : Run c
(1)
j ←$ Enc1(mpk, (x1, . . . , xn), 0

s(λ)+k(λ)) where xj = xbj , and

xj′ = x⋆j′ for j′ ∈ [n] \ {j}. Finally, compute C̃j ←$ Sim(1λ, 1|Vj |, 1|m
b
j |) and c

(2)
j ←$

Enc2(kj , c
(1)
j).

Case j = v: Run c
(1,0)
v ←$ Enc1(mpk, (x0∗1, . . . , x

0
∗n), (yv, kv+1)) and c

(1,1)
v ←$ Enc1(mpk, (x1∗1,

. . . , x1∗n), 0
s(λ)+k(λ)) where yv←$ {0, 1}s(λ), x0∗v = xbv, x

1
∗v = x0v, and x0∗j′ = x1∗j′ = x⋆j′

for j′ ∈ [n] \ {v}. Send the challenge (m0 = c
(1,0)
v ,m1 = c

(1,1)
v) to the challenger and

receive the answer c∗. Set c
(2)
v and compute C̃v←$ Obf(1λ,Vv,m

b
v).

Case i < n− 2 (hence, v ̸∈ {jb − 1, jb}) and j ∈ [v + 1 : jb − 1]+n : Run c
(1)
j ←$ Enc1(mpk,

(x1, . . . , xn), (yj , kj+1)) where yj ←$ {0, 1}s(λ), xj = xbj , and xj′ = x⋆j′ for j
′ ∈ [n]\{j}.

Finally, compute C̃j ←$ Obf(1λ,Vj , yj ,m
b
j) and c

(2)
j ←$ Enc2(kj , c

(1)
j).

5. Otherwise, case i = n− 1 (hence, v = jb): For every j ∈ [n], the adversary A proceeds
as follows:

60

Case j ∈ [jb + 1 : jb − 1]+n : Execute c
(1)
j ←$ Enc1(mpk, (x1, . . . , xn), 0

s(λ)+k(λ)) where xj =

xbj , and xj′ = x⋆j′ for j′ ∈ [n] \ {j}. Finally, compute C̃j ←$ Sim(1λ, 1|Vj |, 1|m
b
j |) and

c
(2)
j ←$ Enc2(kj , c

(1)
j).

Case j = jb: Run c
(1,0)
jb
←$ Enc1(mpk, (x0∗1, . . . , x

0
∗n), 0

s(λ)+k(λ)) and c
(1,1)
jb
←$ Enc1(mpk, (x1∗1,

. . . , x1∗n), 0
s(λ)+k(λ)) where x0∗jb = xbjb , x1∗jb = x0jb , and x0∗j′ = x1∗j′ = x⋆j′ for j′ ∈

[n] \ {jb}. Send the challenge (m0 = c
(1,0)
jb

,m1 = c
(1,1)
jb

) to the challenger and receive

the answer c∗. Set c
(2)
jb

. Finally, compute C̃jb ←$ C̃j ←$ Sim(1λ, 1|Vjb
|, 1
|mb

jb
|
).

6. Set cj = (C̃j , c
(2)
j) for j ∈ [n] and send the challenge ciphertexts (c1, . . . , cn) to D.

7. Answer to the incoming oracle queries as in Item 2.

8. Return the output of D.

Let d be the challenge bit sampled by the challenger. The adversary A perfectly simulates the
view of D. In particular, if d = 0, A simulates Hb,q,q,1

5+i−1(λ). On the other hand, if d = 1, A

simulates Hb,0,0,0
5+i (λ). Hence, A has the same advantage of D. This concludes the proof.

Claim 14. Hb,t1−1,0,0
5+i (λ) ≈c H

b,t1,0,0
5+i (λ) for t1 ∈ [q] and i ∈ {0} ∪ [n− 2].

Proof. Let v = (jb+i mod n)+1 Suppose there exists a PPT distinguisher D that distinguishes

between Hb,t1−1,0,0
5+i (λ) and Hb,t1,0,0

5+i (λ) with non-negligible probability. We build an adversary
A that breaks the CPA security of SKE. A is defined as follows:

1. Computes (mpk,msk)←$ Setup1(1
λ) and ekj = (ek, kj , kj−1) for j ∈ [n] \ {v}. If v ̸= 1, let

kn+1 = k1.

2. A answers to the incoming oracle queries as follows:

• On input P∗ ∈ P for KGen, return dkP∗ ←$ KGen1(msk,P∗).
• On input the t′1-th query (x,m) ∈ X1 ×M3 for Enc(ekj , ·, ·), A proceeds as follows:

Case j ∈ [jb : v − 1]+n : Execute C̃j ←$ Sim(1λ, 1|Vj |, 1|m|), c
(2)
j ←$ Enc2(, kj , c

(1)
j), and

c
(1)
j ←$ Enc1(mpk, (x1, . . . , xn), 0

s(λ)+k(λ)) where xj = x, xj′ = x⋆j′ for any j′ ∈
[n] \ {j}.

Case j = v and t′1 < t1: Sample yv←$ {0, 1}s(λ). Run c
(1)
v ←$ Enc1(mpk, (x1, . . . ,

xn), 0
s(λ)+k(λ)) where xv = x, xj′ = x⋆j′ for any j′ ∈ [n] \ {v}. Send the query

c
(1)
v to the oracle Enc2 and receive the answer c

(2)
v . Compute C̃v←$ Obf(1λ,Vv,

yv,m).

Case j = v and t′1 = t1: Compute c
(1,0)
v ←$ Enc1(mpk, (x1, . . . , xn), (yv, kv+1)) and c

(1,1)
v

←$ Enc1(mpk, (x1, . . . , xn), 0
s(λ)+k(λ)) where yv←$ {0, 1}s(λ), xv = x, and xj′ =

x⋆j′ for j′ ∈ [n] \ {v}. Send the challenge (m0 = c
(1,0)
v ,m1 = c

(1,1)
v) to the

challenger and receive the answer c∗. Set c
(2)
v . Finally, compute C̃v←$ Obf(1λ,

Vv, yv,m).

Case j = v and t′1 > t1: Sample yv←$ {0, 1}s(λ). Run c
(1)
v ←$ Enc1(mpk, (x1, . . . ,

xn), (kv, kv+1)) where xv = x, xj′ = x⋆j′ for any j′ ∈ [n] \ {v}. Send the query

c
(1)
v to the oracle Enc2 and receive the answer c

(2)
v . Compute C̃v←$ Obf(1λ,Vv,

yv,m).

61

Case i < n− 2 (hence, v ̸= jb − 1) and j ∈ [v + 1 : jb − 1]+n : Run C̃j ←$ Obf(1λ,Vj ,

yj ,m), c
(2)
j ←$ Enc2(kj , c

(1)
j), and c

(1)
j ←$ Enc1(mpk, (x1, . . . , xn), (yj , kj+1)) where

yj ←$ {0, 1}s(λ), xj = x, xj′ = x⋆j′ for any j′ ∈ [n] \ {j}.

Finally, return cj = (C̃j , c
(2)
j).

3. Receive the challenge ((m0
1, . . . ,m

0
n), (m

1
1, . . . ,m

1
n), (x

0
1, . . . , x

0
n), (x

1
1, . . . , x

1
n)) from D.

4. For every j ∈ [n], the adversary A proceeds as follows:

Case j ∈ [jb : v − 1]+n : Run c
(1)
j ←$ Enc1(mpk, (x1, . . . , xn), 0

s(λ)+k(λ)) where xj = x0j , and

xj′ = x⋆j′ for j′ ∈ [n] \ {j}. Finally, compute C̃j ←$ Sim(1λ, 1|Vj |, 1|m
b
j |) and c

(2)
j ←$

Enc2(kj , c
(1)
j).

Case j = v: Sample yv←$ {0, 1}s(λ)+k(λ) and compute c
(1)
v ←$ Enc1(mpk, (x1, . . . , xn), 0

s(λ)+k(λ))

where yv←$ {0, 1}s(λ), xv = x0v, and xj′ = x⋆j′ for j
′ ∈ [n] \ {v}. Send the query c

(1)
v

to the oracle Enc2 and receive the answer c
(2)
v . Compute C̃v←$ Obf(1λ,Vv, yv,m).

Case i < n− 2 (hence, v ̸= jb − 1) and j ∈ [v + 1 : jb − 1]+n : Run c
(1)
j ←$ Enc1(mpk, (x1,

. . . , xn), (yj , kj+1)) where yj ←$ {0, 1}s(λ), xj = xbj , and xj′ = x⋆j′ for j′ ∈ [n] \ {j}.
Finally, compute C̃j ←$ Obf(1λ,Vj , yj ,m

b
j) and c

(2)
j ←$ Enc2(kj , c

(1)
j).

5. Set cj = (C̃j , c
(2)
j) for j ∈ [n] and send the challenge ciphertexts (c1, . . . , cn) to D.

6. Answer to the incoming oracle queries as in Item 2.

7. Return the output of D.

Let d be the challenge bit sampled by the challenger. The adversary A perfectly simulates the
view of D. In particular, if d = 0, A simulates Hb,t1−1,0,0

5+i (λ). On the other hand, if d = 1, A

simulates Hb,t1,0,0
5+i (λ). Hence, A has the same advantage of D. This concludes the proof.

Claim 15. Hb,q,t2−1,0
5+i (λ) ≈c H

b,q,t2,0
5+i (λ) for t2 ∈ [q] and i ∈ {0} ∪ [n− 2].

Proof. Let v = (jb+i mod n)+1. Suppose there exists a PPT distinguisher D that distinguishes

between Hb,q,t2−1,0
5+i (λ) and Hb,q,t2,0

5+i (λ) with non-negligible probability. We build an adversary
A that breaks the security of the lockable obfuscator scheme LOBF. A is defined as follows:

1. Computes (ek1, . . . , ekn,msk)←$ Setup(1λ) where ekj = (mpk, kj , kj+1) for j ∈ [n]. Let
kn+1 = k1.

2. A answers to the incoming oracle queries as follows:

• On input P∗ ∈ P for KGen, return dkP∗ ←$ KGen1(msk,P∗).
• On input the t′2-th query (x,m) ∈ X1 ×M3 for Enc(ekj , ·, ·), A proceeds as follows:

Case j ∈ [jb : v − 1]+n : Execute C̃j ←$ Sim(1λ, 1|Vj |, 1|m|), c
(2)
j ←$ Enc2(kj , c

(1)
j), and

c
(1)
j ←$ Enc1(mpk, (x1, . . . , xn), 0

s(λ)+k(λ)) where xj = x, xj′ = x⋆j′ for any j′ ∈
[n] \ {j}.

Case j = v and t′2 < t2: Run C̃v←$ Sim(1λ, 1|Vv |, 1|m|), c
(2)
v ←$ Enc2(kv, c

(1)
v), c

(1)
v

←$ Enc1(mpk, (x1, . . . , xn), 0
s(λ)+k(λ)) where xv = x, xj′ = x⋆j′ for any j′ ∈

[n] \ {v}.

62

Case j = v and t′2 = t2: Compute c
(2)
v ←$ Enc2(kv, c

(1)
v) and c

(1)
v ←$ Enc1(mpk, (x1,

. . . , xn), 0
s(λ)+k(λ)) where xv = x, and xj′ = x⋆j′ for j′ ∈ [n] \ {v}. Send the

challenge (Vv,m) to the challenger and receive the answer C̃∗. Set C̃v = C̃∗.
Case j = v and t′2 > t2: Sample yv←$ {0, 1}s(λ). Compute c

(1)
v ←$ Enc1(mpk, (x1,

. . . , xn), 0
s(λ)+k(λ)) where xv = x, xj′ = x⋆j′ for any j′ ∈ [n]\{v}. Send the query

c
(1)
v to the oracle Enc2 and receive the answer c

(2)
v . Compute C̃v←$ Obf(1λ,

C
c
(2)
v ,kv+1

, yv,m).

Case i < n− 2 (hence, v ̸= jb − 1) and j ∈ [v + 1 : jb − 1]+n : Run C̃j ←$ Obf(1λ,Vj ,

yj ,m), c
(2)
j ←$ Enc2(kj , c

(1)
j), and c

(1)
j ←$ Enc1(mpk, (x1, . . . , xn), (yj , kj+1)) where

yj ←$ {0, 1}s(λ), xj = x, xj′ = x⋆j′ for any j′ ∈ [n] \ {j}.

Finally, return cj = (C̃j , c
(2)
j).

3. Receive the challenge ((m0
1, . . . ,m

0
n), (m

1
1, . . . ,m

1
n), (x

0
1, . . . , x

0
n), (x

1
1, . . . , x

1
n)) from D.

4. For every j ∈ [n], the adversary A proceeds as follows:

Case j ∈ [jb : v − 1]+n : Run c
(1)
j ←$ Enc1(mpk, (x1, . . . , xn), 0

s(λ)+k(λ)) where xj = x0j , and

xj′ = x⋆j′ for j′ ∈ [n] \ {j}. Finally, compute C̃j ←$ Sim(1λ, 1|Vj |, 1|m
b
j |) and c

(2)
j ←$

Enc2(kj , c
(1)
j).

Case j = v: Sample yv←$ {0, 1}s(λ)+k(λ) and compute c
(1)
v ←$ Enc1(mpk, (x1, . . . , xn), 0

s(λ)+k(λ))
where yv←$ {0, 1}s(λ), xv = x0v, and xj′ = x⋆j′ for j′ ∈ [n] \ {v}. Finally, compute

C̃j ←$ Obf(1λ,Vv, yv,m
b
v) and c

(2)
v ←$ Enc2(kv, c

(1)
v).

Case i < n− 2 (hence, v ̸= jb − 1) and j ∈ [v + 1 : jb − 1]+n : Run c
(1)
j ←$ Enc1(mpk, (x1,

. . . , xn), (yj , kj+1)) where yj ←$ {0, 1}s(λ), xj = xbj , and xj′ = x⋆j′ for j′ ∈ [n] \ {j}.
Finally, compute C̃j ←$ Obf(1λ,Vj , yj ,m

b
j) and c

(2)
j ←$ Enc2(kj , c

(1)
j).

5. Set cj = (C̃j , c
(2)
j) for j ∈ [n] and send the challenge ciphertexts (c1, . . . , cn) to D.

6. Answer to the incoming oracle queries as in Item 2.

7. Return the output of D.

Let d be the challenge bit sampled by the challenger. The adversary A perfectly simulates the
view of D. In particular, if d = 0, A simulates Hb,q,t2−1,0

5+i (λ). On the other hand, if d = 1, A

simulates Hb,q,t2,0
5+i (λ). Hence, A has the same advantage of D. This concludes the proof.

Claim 16. Hb,q,q,0
5+i (λ) ≈c H

b,q,q,1
5+i (λ) for i ∈ {0} ∪ [n− 2].

Proof. Let v = (jb+i mod n)+1. Suppose there exists a PPT distinguisher D that distinguishes

betweenHb,q,q,0
5+i (λ) andHb,q,q,1

5+i (λ) with non-negligible probability. We build an adversary A that
breaks the security of the lockable obfuscator scheme LOBF. A is defined as follows:

1. Computes (ek1, . . . , ekn,msk)←$ Setup(1λ) where ekj = (mpk, kj , kj+1) for j ∈ [n]. Let
kn+1 = k1.

2. A answers to the incoming oracle queries as follows:

63

• On input P∗ ∈ P for KGen, return dkP∗ ←$ KGen1(msk,P∗).
• On input (x,m) ∈ X1 ×M3 for Enc(ekj , ·, ·), A proceeds as follows:

Case j ∈ [jb : v]
+
n : Run C̃j ←$ Sim(1λ, 1|Vj |, 1|m|), c

(2)
j ←$ Enc2(kj , c

(1)
j), and c

(1)
j ←$

Enc1(mpk, (x1, . . . , xn), 0
s(λ)+k(λ)) where xj = x, xj′ = x⋆j′ for any j′ ∈ [n] \ {j}.

Case i < n− 2 (hence, v ̸= jb − 1) and j ∈ [v + 1 : jb − 1]+n : Run C̃j ←$ Obf(1λ,Vj ,

yj ,m), c
(2)
j ←$ Enc2(kj , c

(1)
j), and c

(1)
j ←$ Enc1(mpk, (x1, . . . , xn), (yj , kj+1)) where

yj ←$ {0, 1}s(λ), xj = x, xj′ = x⋆j′ for any j′ ∈ [n] \ {j}.

Finally, return cj = (C̃j , c
(2)
j).

3. Receive the challenge ((m0
1, . . . ,m

0
n), (m

1
1, . . . ,m

1
n), (x

0
1, . . . , x

0
n), (x

1
1, . . . , x

1
n)) from D.

4. For every j ∈ [n], the adversary A proceeds as follows:

Case j ∈ [jb : v − 1]+n : Run c
(1)
j ←$ Enc1(mpk, (x1, . . . , xn), 0

s(λ)+k(λ)) where xj = x0j , and

xj′ = x⋆j′ for j′ ∈ [n] \ {j}. Finally, compute C̃j ←$ Sim(1λ, 1|Vj |, 1|m
b
j |) and c

(2)
j ←$

Enc2(kj , c
(1)
j).

Case j = v: Run c
(2)
v ←$ Enc2(kv, c

(1)
v) and c

(1)
v ←$ Enc1(mpk, (x1, . . . , xn), 0

s(λ)+k(λ)) where
xv = x0v and xj′ = x⋆j′ for j

′ ∈ [n]\{v}. Send the challenge (Vv,m
b
v) to the challenger

and receive the answer C̃∗. Set C̃v = C̃∗.
Case i < n− 2 (hence, v ̸= jb − 1) and j ∈ [v + 1 : jb − 1]+n : Run c

(1)
j ←$ Enc1(mpk, (x1,

. . . , xn), (yj , kj+1)) where yj ←$ {0, 1}s(λ), xj = xbj , and xj′ = x⋆j′ for j′ ∈ [n] \ {j}.
Finally, compute C̃j ←$ Obf(1λ,Vj , yj ,m

b
j) and c

(2)
j ←$ Enc2(kj , c

(1)
j).

5. Set cj = (C̃j , c
(2)
j) for j ∈ [n] and send the challenge ciphertexts (c1, . . . , cn) to D.

6. Answer to the incoming oracle queries as in Item 2.

7. Return the output of D.

Let d be the challenge bit sampled by the challenger. The adversary A perfectly simulates the
view of D. In particular, if d = 0, A simulates Hb,q,q,0

5+i (λ). On the other hand, if d = 1, A

simulates Hb,q,q,1
5+i (λ). Hence, A has the same advantage of D. This concludes the proof.

Claim 17. H1−b,q,q,q
5+n (λ) ≡ Hb,q,q,1

5+n (λ).

Proof. The distributions of these two experiments do not depend on the bit b.

By combining Claims 9 to 17 and conditioned to the event Validity2,j0,j1 , we conclude that

Hb
0 ≈c H

b
1 ≡ Hb,0

2 ≈c . . . ≈c H
b,q
2 ≈c H

b
3 ≡ Hb,0

4 ≈c . . . ≈c H
b,q
4 ≡

Hb,q,q,1
4 ≈c H

b,0,0,0
5 ≈c . . . ≈c H

b,q,0,0
5 ≈c . . . ≈c H

b,q,q,0
5 ≈c

Hb,q,q,1
5 ≈c . . . ≈c H

b,0,0,0
5+n−1 ≡ H1−b,0,0,0

5+n−1 .

This concludes the proof.

64

Lemma 6. Let j0 ∈ [n]. If PE is CPA-1-sided secure without collusions (Definition 9), SKE is
CPA secure (Definition 4), and LOBF is secure (Definition 2), then∣∣∣∣P[G0-CPA-1-iPE

Π,A (λ) = 1 ∧ |QKGen| = 1
∣∣∣Validity3,j0

]
− 1

2

∣∣∣∣ ≤ negl(λ).

Proof. Without loss of generality, let q = |Q1| = . . . = |Qnim| ∈ poly(λ). Consider the hybrid
experiments of Lemma 4 and Lemma 5. Formally,

• Let H1,i
0 (λ) and H1,i

1 (λ) for i ∈ {0} ∪ [n] be the hybrids of Lemma 4 (for the challenge bit
b = 1) except that are conditioned to the event Validity3,j0 (instead of Validity1)

• LetH0
0(λ),H

0
1(λ),H

0,i
2 (λ),H0

3(λ),H
0,i
4 (λ),H0,q,q,1

4 (λ),H0,i,0,0
5+j (λ),H0,q,i,0

5+j (λ),H0,q,q,k
5+j (λ), and

H0,0,0,0
5+n−1(λ), for (i, j, k) ∈ ({0} ∪ [q])× ({0} ∪ [n− 2])× {0, 1}, be the hybrids of Lemma 5

(for the challenge bit b = 0) except that are conditioned to the event Validity3,j0 (instead
of Validity2,j0,j1).

In addition, consider the following additional hybrids experiments:

H0,q,q
5+n : Identical to H0,0,0,0

5+n−1.

H0,0,0
5+n+i for i ∈ [n]: Identical to H0,q,q

5+n+i−1.

H0,0,t2
5+n+i for t2 ∈ [q], i ∈ [n]: Same as H0,0,t2−1

5+n+i except that the challenger changes how it an-
swers to the first t2 queries for oracle Enc(ekv, ·, ·) where v = (j0 − i − 1 mod n) + 1.
Formally, on input the t′2-th query (x,m) such that t′2 ≤ t2, the challenger returns

cv = (C̃v, c
(2)
v) where C̃v←$ Obf(1λ,Vv, yv,m) where yv←$ {0, 1}s(λ). Otherwise, on input

the t′2-th query (x,m) such that t′2 > t2, the challenger answers as usual, i.e., as defined
in H0,0,0

5+n+i.

H0,t1,q
5+n+i for t1 ∈ [q], i ∈ [n]: Same asH0,t1−1,q

5+n+i except that the challenger changes how it answers
to the first t1 queries for oracle Enc(ekv, ·, ·) where v = (j0−i−1 mod n)+1. Formally, on

input the t′1-th query (x,m) such that t′1 ≤ t1, the challenger computes c
(1)
v ←$ Enc1(mpk,

(x1, . . . , xn), (yv, kv+1)) where yv←$ {0, 1}s(λ), xv = x, and xj = x⋆j for j ∈ [n] \ {v}.
Finally, the challenger returns cv = (C̃v, c

(2)
v) where c

(2)
v ←$ Enc2(kv, c

(1)
v), C̃v←$ Obf(1λ,

Vv, yv,m). Otherwise, on input the t′1-th query (x,m) such that t′1 > t1, the challenger
answers as usual, i.e., as defined in H0,0,q

5+n+i.

Claim 18. H0
0(λ) ≈c H

0,0,0,0
5+n−1(λ).

Proof. The proof of Claim 18 is identical to that of Lemma 5 where the challenge bit is b = 0.

Claim 19. H0,0,t2−1
5+n+i (λ) ≈c H

0,0,t2
5+n+i(λ) for t2 ∈ [q] and i ∈ [n].

Proof. Let v = (j0 − i − 1 mod n) + 1. Suppose there exists a PPT distinguisher D that
distinguishes between H0,0,t2−1

5+n+i (λ) and H0,0,t2
5+n+i(λ) with non-negligible probability. We build an

adversary A that breaks the security of the lockable obfuscator scheme LOBF. A is defined as
follows:

1. Computes (ek1, . . . , ek1,msk)←$ Setup(1λ) where ekj = (mpk, kj , kj+1) for j ∈ [n]. Let
kn+1 = k1.

2. A answers to the incoming oracle queries as follows:

65

• On input P∗ ∈ P for KGen, return dkP∗ ←$ KGen1(msk,P∗).
• On input the t′2-th query (x,m) ∈ X1 ×M3 for Enc(ekj , ·, ·), A proceeds as follows:

Case i > 1 and j ∈ [j0 − 1 : v + 1]−n : Compute C̃j ←$ Obf(1λ,Vj , yj ,m), c
(2)
j ←$ Enc2(

kj , c
(1)
j), and c

(1)
j ←$ Enc1(mpk, (x1, . . . , xn), (yj , kj+1)) where yj ←$ {0, 1}s(λ), xj =

x, xj′ = x⋆j′ for any j′ ∈ [n] \ {j}.

Case j = v and t′2 < t2: Compute C̃j ←$ Obf(1λ,Vv, yv,m), c
(2)
v ←$ Enc2(kv, c

(1)
v), and

c
(1)
v ←$ Enc1(mpk, (x1, . . . , xn), 0

s(λ)+k(λ)) where yv←$ {0, 1}s(λ), xv = x, xj′ =
x⋆j′ for any j′ ∈ [n] \ {v}.

Case j = v and t′2 = t2: Compute c
(2)
v ←$ Enc2(kv, c

(1)
v), and c

(1)
v ←$ Enc1(mpk, (x1,

. . . , xn), 0
s(λ)+k(λ)) where xv = x, xj′ = x⋆j′ for any j′ ∈ [n] \ {v}. Send the

challenge (C
c
(2)
v ,kv+1

,m) to the challenger and receive C̃∗. Set C̃v = C̃∗.

Case j = v and t′2 > t2: Run C̃v←$ Sim(1λ, 1|Vv |, 1|m|), c
(2)
v ←$ Enc2(kv, c

(1)
v), c

(1)
v ←$

Enc1(mpk, (x1, . . . , xn), 0
s(λ)+k(λ)) where xv = x, xj′ = x⋆j′ for any j′ ∈ [n] \ {v}.

Case i ̸= n and j ∈ [v − 1 : j0]
−
n : Compute C̃j ←$ Sim(1λ, 1|Vj |, 1|m|), c

(2)
j ←$ Enc2(

kj , c
(1)
j), and c

(1)
j ←$ Enc1(mpk, (x1, . . . , xn), 0

s(λ)+k(λ)) where xj = x, xj′ = x⋆j′
for any j′ ∈ [n] \ {j}.

Finally, return cj = (C̃j , c
(2)
j).

3. Receive the challenge ((m0
1, . . . ,m

0
n), (m

1
1, . . . ,m

1
n), (x

0
1, . . . , x

0
n), (x

1
1, . . . , x

1
n)) from D.

4. For every j ∈ [n], the adversary A computes c
(1)
j ←$ Enc1(mpk, (x1, . . . , xn), 0

s(λ)+k(λ))

where xj = x0j , and xj′ = x⋆j′ for j
′ ∈ [n]\{j}. Finally, compute C̃j ←$ Sim(1λ, 1|Vj |, 1|m

0
j |)

and c
(2)
j ←$ Enc2(kj , c

(1)
j).

5. Set cj = (C̃j , c
(2)
j) for j ∈ [n] and send the challenge ciphertexts (c1, . . . , cn) to D.

6. Answer to the incoming oracle queries as in Item 2.

7. Return the output of D.

Let d be the challenge bit sampled by the challenger. The adversary A perfectly simulates the
view of D. In particular, if d = 0, A simulates H0,0,t2

5+n+i(λ). On the other hand, if d = 1, A

simulates H0,0,t2−1
5+n+i (λ). Hence, A has the same advantage of D. This concludes the proof.

Claim 20. H0,t1−1,q
5+n+i (λ) ≈c H

0,t1,q
5+n+i(λ) for t1 ∈ [q] and i ∈ [n− 1].

Proof. Let v = (j0 − i − 1 mod n) + 1. Suppose there exists a PPT distinguisher D that
distinguishes between H0,t1,q

5+n+i(λ) and H0,t1−1,q
5+n+i (λ) with non-negligible probability. We build an

adversary A that breaks the CPA security of SKE. A is defined as follows:

1. Computes (mpk,msk)←$ Setup1(1
λ) and ekj = (mpk, ekj , ekj−1) for j ∈ [n]\{v}. If v ̸= 1,

let kn+1 = k1.

2. A answers to the incoming oracle queries as follows:

• On input P∗ ∈ P for KGen, return dkP∗ ←$ KGen1(msk,P∗).

66

• On input the t′1-th query (x,m) ∈ X1 ×M3 for Enc(ekj , ·, ·), A proceeds as follows:

Case i > 1 and j ∈ [j0 − 1 : v + 1]−n : Run C̃j ←$ Obf(1λ,Vv, yj ,m), c
(2)
j ←$ Enc2(kj ,

c
(1)
j), and c

(1)
j ←$ Enc1(mpk, (x1, . . . , xn), (yj , kj+1)) where yj ←$ {0, 1}s(λ), xj =

x, xj′ = x⋆j′ for any j′ ∈ [n] \ {j}.

Case j = v and t′1 < t1: Run c
(1)
v ←$ Enc1(mpk, (x1, . . . , xn), (yv, kv+1)) where yv←$

{0, 1}s(λ), xv = x, xj′ = x⋆j′ for any j′ ∈ [n] \ {v}. Send the query c
(1)
v to the

oracle Enc2 and receive the answer c
(2)
v . Compute C̃j ←$ Obf(1λ,Vv, yv,m).

Case j = v and t′1 = t1: Run c
(1,0)
v ←$ Enc1(mpk, (x1, . . . , xn), 0

s(λ)+k(λ)) and c
(1,1)
v

←$ Enc1(mpk, (x1, . . . , xn), (yv, kv+1)) where yv←$ {0, 1}s(λ), xv = x, and xj′ =

x⋆j′ for j
′ ∈ [n]\{v}. Send the challenge (m0 = c

(1,0)
v ,m1 = c

(1,1)
v) to the challenger

and receive the answer c∗. Set c
(2)
v and compute C̃v←$ Obf(1λ,Vv, yv,m).

Case j = v and t′1 > t1: Run c
(1)
v ←$ Enc1(mpk, (x1, . . . , xn), 0

s(λ)+k(λ)) where xv =

x, xj′ = x⋆j′ for any j′ ∈ [n] \ {v}. Send the query c
(1)
v to the oracle Enc2 and re-

ceive the answer c
(2)
v . Compute C̃j ←$ Obf(1λ,Vv, yv,m) where yv←$ {0, 1}s(λ).

Case j ∈ [v − 1 : j0]
−
n : Run C̃j ←$ Sim(1λ, 1|Vv |, 1|m|), c

(2)
j ←$ Enc2(kj , c

(1)
j), and c

(1)
j

←$ Enc1(mpk, (x1, . . . , xn), 0
s(λ)+k(λ)) where xj = x, xj′ = x⋆j′ for any j′ ∈ [n] \

{j}.

Finally, return cj = (C̃j , c
(2)
j).

3. Receive the challenge ((m0
1, . . . ,m

0
n), (m

1
1, . . . ,m

1
n), (x

0
1, . . . , x

0
n), (x

1
1, . . . , x

1
n)) from D.

4. For every j ∈ [n], the adversary A proceeds as follows:

Case j = v: Computes c
(1)
v ←$ Enc1(mpk, (x1, . . . , xn), 0

s(λ)+k(λ)) where xv = x0v, and

xj′ = x⋆j′ for j′ ∈ [n] \ {v}. Send the query c
(1)
v to the oracle Enc2 and receive

the answer c
(2)
v . Finally, compute C̃j ←$ Sim(1λ, 1|Vj |, 1|m

0
j |).

Case j ̸= v: Computes c
(1)
j ←$ Enc1(mpk, (x1, . . . , xn), 0

s(λ)+k(λ)) where xj = x0j , and xj′

= x⋆j′ for j
′ ∈ [n]\{j}. Finally, run C̃j ←$ Sim(1λ, 1|Vj |, 1|m

0
j |) and c

(2)
j ←$ Enc2(kj , c

(1)
j).

5. Set cj = (C̃j , c
(2)
j) for j ∈ [n] and send the challenge ciphertexts (c1, . . . , cn) to D.

6. Answer to the incoming oracle queries as in Item 2.

7. Return the output of D.

Let d be the challenge bit sampled by the challenger. The adversary A perfectly simulates the
view of D. In particular, if d = 0, A simulates H0,t1−1,q

5+n+i (λ). On the other hand, if d = 1, A

simulates H0,t1,q
5+n+i(λ). Hence, A has the same advantage of D. This concludes the proof.

Claim 21. H0,t1−1,q
5+2n (λ) ≈c H

0,t1,q
5+2n(λ) for t1 ∈ [q].

Proof. Suppose there exists a PPT distinguisher D that distinguishes between H0,t1,q
5+2n(λ) and

H0,t1−1,q
5+2n (λ) with non-negligible probability. We build an adversary A that breaks the CPA-1-

sided security without collusions of PE. A is defined as follows:

1. Receive mpk from the challenger.

67

2. Computes kj ←$ KGen2(1
λ) for j ∈ [n]. Let kn+1 = k1.

3. A answers to the incoming oracle queries as follows:

• On input P∗ ∈ P for KGen, forward the query P∗ to KGen1 and return the answer
dkP∗ .

• On input t′1-th query (x,m) ∈ X1×M3 for Enc(ekj , ·, ·) where j ∈ [n], A proceeds as
follows:

Case j ̸= j0: Sample yj ←$ {0, 1}s(λ) and compute c
(1)
j ←$ Enc1(mpk, (x1, . . . , xn),

(yj , kj+1)) where xj = x and xj′ = x⋆j′ for j
′ ∈ [n] \ {j}.

Case j = j0 and t′1 < t1: Compute c
(1)
j0
←$ Enc1(mpk, (x1, . . . , xn), (yj0 , kj0+1)) where

xj0 = x and xj′ = x⋆j′ for j
′ ∈ [n] \ {j0}.

Case j = j0 and t′1 = t1: Sample yj0 ←$ {0, 1}s(λ) and send the challenge (m0
∗ =

0s(λ)+k(λ),m1
∗ = (yj0 , kj0+1), x

0
∗ = (x0∗1, . . . , x

0
∗n), x

1
∗ = (x1∗1, . . . , x

1
∗n)) to the chal-

lenger where x0∗j0 = x1∗j0 = x and x0∗j′ = x1∗j′ = x⋆j′ for j′ ∈ [n] \ {j0}. Receive

the challenge ciphertext c∗ and c
(1)
j0

= c∗.

Case j = j0 and t′1 > t1: Sample yj0 ←$ {0, 1}s(λ) and compute c
(1)
j0
←$ Enc1(mpk,

(x1, . . . , xn), 0
s(λ)+k(λ)) where xj0 = x and xj′ = x⋆j′ for j

′ ∈ [n] \ {j0}.

Finally, return cj = (C̃j , c
(2)
j) where c

(2)
j ←$ Enc2(kj , c

(1)
j) and C̃j ←$ Obf(1λ,Vj ,

yj ,m).

4. Receive the challenge ((m0
1, . . . ,m

0
n), (m

1
1, . . . ,m

1
n), (x

0
1, . . . , x

0
n), (x

1
1, . . . , x

1
n) from D.

5. For every j ∈ [n], the adversary A computes c
(1)
j ←$ Enc1(mpk, (x1, . . . , xn), 0

s(λ)+k(λ))

where xj = x0j and xj′ = x⋆j′ for j
′ ∈ [n] \ {j}.

6. For every j ∈ [n], the adversary A computes c
(2)
j ←$ Enc2(ekj , c

(1)
j) and C̃j ←$ Sim(1λ,

1|Vj |, 1|m
0
j |).

7. Set cj = (C̃j , c
(2)
j) for j ∈ [n] and send the challenge ciphertexts (c1, . . . , cn) to D.

8. Answer to the incoming oracle queries as in Item 3.

9. Return the output of D.

Let d be the challenge bit sampled by the challenger. The adversary A perfectly simulates the
view of D. In particular, if d = 0, A simulates H0,t1−1,q

5+2n (λ). On the other hand, if d = 1,

A simulates H0,t1,q
5+2n(λ). Moreover, D submits a single query P∗ to oracle KGen(msk, ·) and,

conditioned to the event Validity3,j0 , we know that ∀x′j0 ∈ Qj0 ,P∗j0(x
′
j0
) = 0. Because of

this, A submits a single query to oracle KGen1(msk, ·) and it is also a valid adversary for the
experiment GCPA-1-PE

PE,A (λ) with the same advantage of D. This concludes the proof.

Claim 22. H1,0
0 (λ) ≈c H

1,q
1 (λ).

Proof. The proof of Claim 22 is identical to that of Lemma 4 where the challenge bit is b = 1.

Claim 23. H0,q,q
5+2n(λ) ≡ H1,q

1 (λ).

68

Proof. Claim 23 follows by observing that experiments H0,q,q
5+2n(λ) and H1,q

1 (λ) are identical (and
does not depend on the bit b).

By combining Claims 18 to 23 and conditioned to the event Validity3,j0,, we conclude that

H0
0 ≈c H

0,0,0,0
5+n−1 ≡ H0,q,q

5+n ≡ H0,0,0
5+n+1 ≈c . . . ≈c H

0,0,q
5+n+1 ≈c . . . ≈c

H0,q,q
5+n+1 ≡ H0,0,0

5+n+2 ≈c . . . ≈c H
0,0,q
5+2n ≈c . . . ≈c H

0,q,q
5+2n ≡ H1,q

1 ≈c H
1,0
0

This concludes the proof.

Lemma 7. Let j1 ∈ [n]. If PE is CPA-1-sided-secure without collusions (Definition 9), SKE is
CPA-secure (Definition 4), and LOBF is secure (Definition 2), then∣∣∣∣P[G0-CPA-1-iPE

Π,A (λ) = 1 ∧ |QKGen| = 1
∣∣∣Validity4,j1

]
− 1

2

∣∣∣∣ ≤ negl(λ).

Proof. Lemma 7 follows by using a symmetrical argument to that of Lemma 6.

By combining Lemmas 4 to 7 we conclude that Π is CPA-1-sided secure without collusions.

E.4 Proof of Theorem 5 (CPA-2-sided security of Π for n = O(log(λ)))

As usual, consider the predicate space P = {P(x1, . . . , xn)} of Construction 2 where P(x1, . . . , xn)
= P1(x1) ∧ . . . ∧ Pn(xn). Let P∗ ∈ P be the only predicate for which the adversary will ask for
the decryption key dkP∗ during the experiment G0-CPA-2-iPE

Π,A (recall that we prove the security
of Construction 2 in the scenario without collusions, i.e., |QKGen| = 1). Also, consider the
validity condition of G0-CPA-2-iPE

Π,A and consider the following observations:

1. Suppose that ∀j ∈ [n],∀i1 ∈ [k1 + 1], . . . ,∀in ∈ [kn + 1], we have

P∗(x(i1,0)1 , . . . , x
(ij−1,0)
j−1 , x0j , x

(ij+1,0)
j+1 , . . . , x(in,0)n) =

P∗(x(i1,1)1 , . . . , x
(ij−1,1)
j−1 , x1j , x

(ij+1,1)
j+1 , . . . , x(in,1)n) = 0,

where Qb
i = {x(1,b)i , . . . , x

(ki,b)
i , x

(ki+1,b)
i = xbi} for i ∈ [n], b ∈ {0, 1} as defined in Def-

inition 13. This means that the adversary cannot decrypt any part of the challenge
ciphertext.

2. Otherwise, if ∃j ∈ [n],∃i1 ∈ [k1 + 1], . . . ,∃in ∈ [kn + 1] such that

P∗(x(i1,0)1 , . . . , x
(ij−1,0)
j−1 , x0j , x

(ij+1,0)
j+1 , . . . , x(in,0)n) =

P∗(x(i1,1)1 , . . . , x
(ij−1,1)
j−1 , x1j , x

(ij+1,1)
j+1 , . . . , x(in,1)n) = 1, (14)

we are guaranteed that the adversary can retrieve the message mb
j contained into the

j-th challenge ciphertext cj . By taking into account the definition of P∗(x1, . . . , xn) =
P∗1(x1) ∧ . . . ∧ P∗n(xn), Equation (14) implies that, for any j′ ∈ [n] \ [j], the adversary can
satisfy the i-th predicate P∗i for i ∈ [n] \ [j′] (e.g., by taking the ciphertexts corresponding
to the indexes i1, . . . , ij−1, ij+1, . . . , in and the j-th challenge ciphertext cj). Hence, the
secrecy of the challenge message mb

j′ solely depends on the evaluation of P∗j′ over the

challenge input xbj′ .

69

By taking into account the following observations, we can rewrite the validity condition of
G0-CPA-2-iPE

Π,A (Definition 13) in the following way:

Either Validity1 or Validity2

where Validity1 and Validity2 formalize the observations of Items 1 and 2 respectively, i.e.,

Validity1 : ∀j ∈ [n],∀i1 ∈ [k1 + 1], . . . ,∀in ∈ [kn + 1],

P∗(x(i1,0)1 , . . . , x
(ij−1,0)
j−1 , x0j , x

(ij+1,0)
j+1 , . . . , x(in,0)n) =

P∗(x(i1,1)1 , . . . , x
(ij−1,1)
j−1 , x1j , x

(ij+1,1)
j+1 , . . . , x(in,1)n) = 0

Validity2 : ∀j ∈ [n],Either P∗j (x0j) = P∗j (x1j) = 0 or P∗j (x0j) = P∗j (x1j) ∧m0
j = m1

j

where Qb
i = {x

(1,b)
i , . . . , x

(ki,b)
i , x

(ki+1,b)
i = xbi} for i ∈ [n], b ∈ {0, 1} as defined in Definition 13.

Hence, the CPA-2-sided security of Construction 2 follows by proving the following lemmas.

Lemma 8. If PE is CPA-1-sided secure without collusions (Definition 9), SKE is CPA secure
(Definition 4), and LOBF is secure (Definition 2), then∣∣∣∣P[G0-CPA-2-iPE

Π,A (λ) = 1 ∧ |QKGen| = 1
∣∣∣Validity1

]
− 1

2

∣∣∣∣ ≤ negl(λ).

Proof. Note that Validity1 is equivalent to the validity condition of CPA-1-sided security.
Hence, the lemma follows by leveraging an identical argument to that of the CPA-1-sided case
(Appendix E.3).

Lemma 9. If PE is CPA-2-sided secure without collusions (Definition 9) and LOBF is secure
(Definition 2), then∣∣∣∣P[G0-CPA-2-iPE

Π,A (λ) = 1 ∧ |QKGen| = 1
∣∣∣Validity2

]
− 1

2

∣∣∣∣ ≤ negl(λ).

Proof. In this lemma, we restrict the adversary to submit the (single) query to KGen only before
the challenge phase, i.e., the oracle KGen is not available after the challenge phase. Under this
restriction, we prove Lemma 9 for any n = poly(λ). Then, we use complexity leveraging to show
that the lemma holds when n = O(log(λ)) and the oracle KGen is available after the challenge
phase. Without loss of generality, we assume the adversary always submit a query to KGen.
Finally, for the sake of clarity, in the rest of this proof we use the notation Vi

def
= C

c
(2)
i ,ki+1

where

c
(2)
i and ki+1 will be clear from the context.

Consider the following hybrid experiments:

Hb,0
0 (λ): This is exactly the experiment G0-CPA-2-iPE

Π,A (λ) conditioned to the event Validity2

where the challenge bit is b. Recall that the oracle KGen is not available after the challenge
phase.

Hb,i
0 (λ) for i ∈ [n]: Same as Hb,i−1

0 , except that the challenger changes how it computes the
challenger ciphertext ci. Let P∗ ∈ QKGen and ((x01, . . . , x

0
n), (x

1
1, . . . , x

1
n)) be the pred-

icate submitted to the oracle KGen before the challenge phase and the challenge in-

puts chosen by the adversary. If P∗i (x0i) = P∗i (x1i) = 0, the value c
(1)
i challenge ci-

phertext ci = (C̃i, c
(2)
i) is computed as c

(1)
i ←$ Enc1(mpk, (x1, . . . , xn), 0

s(λ)+k(λ)) where
0s(λ)+k(λ) ∈ M1 (for some function k) xi = x0i , and xj = x⋆j for j ∈ [n] \ {i}. Otherwise,

70

if P∗i (x0i) = P∗i (x1i) = 1, the value c
(1)
i challenge ciphertext ci = (C̃i, c

(2)
i) is computed as

c
(1)
i ←$ Enc1(mpk, (x1, . . . , xn), (yi, ki+1)) where yi←$ {0, 1}s(λ), xi = x0i , and xj = x⋆j for

j ∈ [n] \ {i}. Observe that c
(1)
i is computed by fixing xi = x0i (instead of xi = xbi), i.e.,

the input (x1, . . . , xn) used to compute the i-th challenge ciphertext is fixed and does not
depend on the challenge bit b.

Hb,0
1 (λ): Identical to Hb,n

1 (λ).

Hb,i
1 (λ) for i ∈ [n]: Same as Hb,i−1

1 , except that the challenger changes how it computes the
challenger ciphertext ci. Let P∗ ∈ QKGen and ((x01, . . . , x

0
n), (x

1
1, . . . , x

1
n)) be the predicate

submitted to the oracle KGen before the challenge phase and the challenge inputs chosen by

the adversary. If P∗i (x0i) = P∗i (x1i) = 0, the value C̃i of challenge ciphertext ci = (C̃i, c
(2)
i)

is simulated by the challenger using the simulator of the lockable obfuscation scheme
LOBF, i.e., C̃i←$ Sim(1λ, 1|Vi|, 1|m

b
i |). Otherwise, if P∗i (x0i) = P∗i (x1i) = 1, the value C̃i is

computed as in Hb,0
1 (λ).

Claim 24. Hb,i−1
0 (λ) ≈c H

b,i
0 (λ) for i ∈ [n].

Proof. Suppose there exists a PPT distinguisher D that distinguishes between Hb,1−i
0 (λ) and

Hb,i
0 (λ) with non-negligible probability. We build an adversary A that breaks the CPA-2-sided

security without collusions of PE. A is defined as follows:

1. Receive mpk from the challenger.

2. Computes kj ←$ KGen2(1
λ) for j ∈ [n]. Let eki = (mpk, ki, ki+1) for i ∈ [n] where kn+1 =

k1.

3. A answers to the incoming oracle queries as follows:

• On input P∗ ∈ P for KGen, forward the query P∗ to KGen1 and return the answer
dkP.

• On input (x,m) ∈ X1×M3 for Enc(ekj , ·, ·), return cj = (C̃j , c
(2)
j)←$ Enc(ekj , x,m).

4. Receive the challenge ((m0
1, . . . ,m

0
n), (m

1
1, . . . ,m

1
n), (x

0
1, . . . , x

0
n), (x

1
1, . . . , x

1
n)) from D.

5. Let P∗(x1, . . . , xn) = P∗1(x1) ∧ . . . ∧ P∗n(xn) be the predicate submitted by A to the oracle
KGen. For any j ∈ [n], A proceeds as follows:

Case j < i and P∗(x0j) = P∗(x1j) = 0: Compute c
(1)
j ←$ Enc1(mpk, (x1, . . . , xn), 0

s(λ)+k(λ))

where xj = x0j , and xj′ = x⋆j′ for j
′ ∈ [n] \ {j}.

Case j < i and P∗(x0j) = P∗(x1j) = 1: Sample yj ←$ {0, 1}s(λ) and execute c
(1)
j ←$ Enc1(

mpk, (x1, . . . , xn), (yj , kj+1)) where xj = x0j , and xj′ = x⋆j′ for j
′ ∈ [n] \ {j}.

Case j = i and P∗(x0j) = P∗(x1j) = 0: Send the challenge (m0
∗ = (yi, ki+1),m

1
∗ = 0s(λ)+k(λ),

x0∗ = (x0∗1, . . . , x
0
∗n), x

1
∗ = (x1∗1, . . . , x

1
∗n)) where yi←$ {0, 1}s(λ), 0s(λ)+k(λ) ∈ M1,

x0∗i = xbi , x
1
∗i = x0i , and x0∗j = x1∗j = x⋆j for j ∈ [n] \ {i}. Receive the challenge

ciphertext c∗ from the challenger. Set c
(1)
i = c∗.

Case j = i and P∗(x0j) = P∗(x1j) = 1: Send the challenge (m0
∗ = (yi, ki+1),m

1
∗ = (yi, ki+1),

x0∗ = (x0∗1, . . . , x
0
∗n), x

1
∗ = (x1∗1, . . . , x

1
∗n)) where yi←$ {0, 1}s(λ), x0∗i = xbi , x

1
∗i = x0i ,

and x0∗j = x1∗j = x⋆j for j ∈ [n] \ {i}. Receive the challenge ciphertext c∗ from the

challenger. Set c
(1)
i = c∗.

71

Case j > i: Sample yj ←$ {0, 1}s(λ) and compute c
(1)
j ←$ Enc1(mpk, (x1, . . . , xn), (yj , kj+1))

where xj = xbj , and xj′ = x⋆j′ for j
′ ∈ [n] \ {j}.

6. Compute cj = (C̃j , c
(2)
j) where c

(2)
j ←$ Enc2(ekj , c

(1)
j) and C̃j ←$ Obf(1λ,Vj , yj ,m

b
j) for any

j ∈ [n].

7. Send the challenge ciphertexts (c1, . . . , cn) to D.

8. Answer to the incoming oracle queries for Enc(ekj , ·, ·) as in Item 3.

9. Return the output of D.

Let d be the challenge bit sampled by the challenger. The adversary A perfectly simulates the
view of D. In particular, if d = 0, A simulates Hb,i−1

0 (λ). On the other hand, if d = 1, A

simulates Hb,i
0 (λ). Moreover, conditioned to the event Validity2, we know that D asks for a

single decryption key dkP∗ for P∗ and either P∗i (x0i) = P∗i (x1i) = 0 or P∗i (x0i) = P∗i (x1i)∧m0
i = m1

i .
This implies that A is a valid adversary for the experimentGCPA-2-PE

PE,A (λ) with the same advantage
of D. This concludes the proof.

Claim 25. Hb,i−1
1 (λ) ≈c H

b,i
1 (λ) for i ∈ [n].

Proof. Suppose there exists a PPT distinguisher D that distinguishes between Hb,1−i
1 (λ) and

Hb,i
1 (λ) with non-negligible probability. We build an adversary A that breaks the security of

the lockable obfuscation scheme LOBF. A is defined as follows:

1. Compute (ek1, . . . , ekn,msk)←$ Setup(1λ) for j ∈ [n] where ekj = (mpk, kj , kj+1). Let
kn+1 = k1.

2. A answers to the incoming oracle queries as follows:

• On input P∗ ∈ P for KGen, return dkP←$ KGen(msk,P).

• On input (x,m) ∈ X1×M3 for Enc(ekj , ·, ·), return cj = (C̃j , c
(2)
j)←$ Enc(ekj , x,m).

3. Receive the challenge ((m0
1, . . . ,m

0
n), (m

1
1, . . . ,m

1
n), (x

0
1, . . . , x

0
n), (x

1
1, . . . , x

1
n)) from D.

4. Let P∗(x1, . . . , xn) = P∗1(x1) ∧ . . . ∧ P∗n(x) be the predicate submitted by A to the oracle
KGen. For any j ∈ [n], A proceeds as follows:

Case j < i and P∗(x0j) = P∗(x1j) = 0: Compute c
(1)
j ←$ Enc1(mpk, (x1, . . . , xn), 0

s(λ)+k(λ))

where xj = x0j , and xj′ = x⋆j′ for j′ ∈ [n] \ {j}. Finally, set cj = (C̃j , c
(2)
j) where

c
(2)
j ←$ Enc2(kj , c

(1)
j) and C̃j ←$ Sim(1λ, 1|Vj |, 1|m

b
j |).

Case j = i and P∗(x0j) = P∗(x1j) = 0: Compute c
(1)
i ←$ Enc1(mpk, (x1, . . . , xn), 0

s(λ)+k(λ))

and c
(2)
j ←$ Enc2(ki, c

(1)
i) where xi = x0i , and xj′ = x⋆j′ for j′ ∈ [n] \ {i}. Send the

challenge (Vi,m
b
i) to the challenger and receive C̃i. Set ci = (C̃i, c

(2)
i).

Case j > i and P∗(x0j) = P∗(x1j) = 0: Compute c
(1)
j ←$ Enc1(mpk, (x1, . . . , xn), 0

s(λ)+k(λ))

where xj = x0j , and xj′ = x⋆j′ for j′ ∈ [n] \ {j}. Finally, set cj = (C̃j , c
(2)
j) where

c
(2)
j ←$ Enc2(kj , c

(1)
j) and C̃j ←$ Obf(1λ,Vj , yj ,m

b
j) where yj ←$ {0, 1}s(λ).

Case P∗(x0j) = P∗(x1j) = 1: Compute cj ←$ Enc(ekj , x
0
j ,m

b
j).

5. Send the challenge ciphertexts (c1, . . . , cn) to D.

72

6. Answer to the incoming oracle queries for Enc(ekj , ·, ·) as in Item 2.

7. Return the output of D.

Let d be the challenge bit sampled by the challenger. The adversary A perfectly simulates the
view of D. In particular, if d = 0, A simulates Hb,i−1

1 (λ). On the other hand, if d = 1, A

simulates Hb,i
1 (λ). Hence, A retains the same advantage of D. This concludes the proof.

Claim 26. Hb,n
1 (λ) ≡ H1−b,n

1 (λ).

Proof. The claim follows by leveraging the validity condition Validity2. Indeed, for every
i ∈ [n], if P∗i (x0i) = P∗i (x1i) = 0 we have that the j-th ciphertext cj does not depend on the bit
b. On the other hand, if P∗i (x0i) = P∗i (x1i) = 1, we have that the j-th ciphertext cj depends on
either m0

j or m1
j . However, by the validity condition Validity2 we have that m0

j = m1
j . Hence,

Hb,n
1 (λ) and H1−b,n

1 (λ) are identically distributed. This concludes the proof.

By combining Claims 24 to 25 and conditioned to the event Validity2, we conclude that
H0,0

0 ≈c . . . ≈c H0,n
0 ≡ H0,0

1 ≈c . . . ≈c H0,n
1 ≡ H1,n

1 . Note that this holds if n = poly(λ) and
the adversary is restricted to submitting the (single) key generation query before the challenge
phase, i.e., KGen oracle not available after challenge phase. By using complexity leveraging, we
conclude that the same result holds also when the KGen oracle is available after the challenge
phase when n = O(log(λ)). This concludes the proof.

By leveraging Lemmas 8 and 9, we conclude that Π of Construction 1 is CPA-2-sided secure
for n = O(log(λ)).

E.5 Proof of Theorem 6 (CPA-1-sided security of Π)

Consider the predicate space P = {P(x1, . . . , xn)} of Construction 3 where P(x1, . . . , xn) =
P1(x1) ∧ . . . ∧ Pn(xn). Let P∗ ∈ P be the only predicate for which the adversary will ask the

decryption key dkP∗ during the experiment G
(n−1)-CPA-1-iPE
Π,A (recall that we prove the security

of Construction 3 in the ℓ-corruptions setting without collusions (i.e., |QKGen| = 1). Consider the

validity condition of G
(n−1)-CPA-1-iPE
Π,A and let Qi = {x|∃(x,m) ∈ QEnc(eki,·,·)} for i ∈ [n] \ QCorr,

and Qi = X1,i for i ∈ QCorr (recall that |QCorr| ≤ n − 1) as defined in Definition 13. We
can write such a validity condition with respect to P∗ ∈ QKGen = {P∗} as follows: ∀j ∈ [n],
∀i1 ∈ [k1 + 1], . . . ,∀in ∈ [kn + 1],

P∗(x(i1,0)1 , . . . , x
(ij−1,0)
j−1 , x0j , x

(ij+1,0)
j+1 , . . . , x(in,0)n) =

P∗(x(i1,1)1 , . . . , x
(ij−1,1)
j−1 , x1j , x

(ij+1,1)
j+1 , . . . , x(in,1)n) =

P∗1(x
(i1,0)
1) ∧ . . . ∧ P∗j−1(x

(ij−1,0)
j−1) ∧ P∗j (x0j) ∧ P∗j+1(x

(ij+1,0)
j+1) ∧ . . . ∧ P∗in(x

(in,0)
n) =

P∗1(x
(i1,1)
1) ∧ . . . ∧ P∗j−1(x

(ij−1,1)
j−1) ∧ P∗j (x1j) ∧ P∗j+1(x

(ij+1,1)
j+1) ∧ . . . ∧ P∗n(x(in,1)n) = 0,

where Qb
i = {x(1,b)i , . . . , x

(ki,b)
i , x

(ki+1,b)
i = xbi} is the ordered list composed of the ki predicate

inputs Qi and the challenge input xbi (as defined in Definition 13). Note that Construction 3
has input space X1 = X1,1× . . .×X1,n (that is identical to the one of the underlying PE). Hence,
we can conclude that for each X1,i for i ∈ [n] there exists x⋆i ∈ X1,i such that P∗i (x⋆i) = 1. As a
consequence, an adversary is valid only if there exists j0, j1 ∈ [n] \ QCorr such that P∗j0(x

0
j0
) =

P∗j1(x
1
j1
) = 0. Otherwise, an adversary is able to decrypt at least one out the two challenges by

73

leveraging the corrupted encryption keys {eki}i∈QCorr
and computing |QCorr| ciphertexts, each

under the i-th predicate wildcard x⋆i ∈ X1,i for i ∈ QCorr.
According to the above observation, the A’s validity can be rewritten as follows: ∃j0, j1 ∈

[n] \ QCorr, ∀(x′1, . . . , x′n) ∈ Q1 × . . .×Qn,((
P∗1(x01) = 0 ∧ . . . ∧ P∗n(x0n) = 0

)
∨
(
P∗j0(x

0
j0) = 0 ∧ P∗j0(x

′
j0) = 0

))
∧((

P∗1(x1) = 0 ∧ . . . ∧ P∗n(x1n) = 0
)
∨
(
P∗j1(x

1
j1) = 0 ∧ P∗j1(x

′
j1) = 0

))
. (15)

Note that in the above equation we made explicit the challenge inputs and the inputs of Qi.
For this reason, it is enough to quantify over all (x′1, . . . , x

′
n) ∈ Q1 × . . . × Qn where Qi is

equal to the inputs {x(1)i , . . . , x
(ki)
i } submitted to oracle Enc(eki, ·, ·), if i ̸∈ QCorr. Otherwise

(if i ∈ QCorr), Qi is equal to the i-th input space X1,i. Hence, in order to be valid, A needs
to satisfy the condition defined by Equation (15). This is equivalent to considering the events
below: For some j0, j1 ∈ [n] \ QCorr,

27

Validity1 :

P∗1(x01) = 0 ∧ . . . ∧ P∗n(x0n) = 0 ∧ P∗1(x11) = 0 ∧ . . . ∧ P∗n(x1n) = 0.

Validity2,j0,j1 : ∀x′j0 ∈ Qj0 ,∀x′j1 ∈ Qj1 ,

P∗j0(x
0
j0) = 0 ∧ P∗j0(x

′
j0) = 0 ∧ P∗j1(x

1
j1) = 0 ∧ P∗j1(x

′
j1) = 0.

Validity3,j0 : ∀x′j0 ∈ Qj0 ,

P∗j0(x
0
j0) = 0 ∧ P∗j0(x

′
j0) = 0 ∧ P∗1(x11) = 0 ∧ . . . ∧ P∗n(x1n) = 0.

Validity4,j1 : ∀x′j1 ∈ Qj1 ,

P∗1(x01) = 0 ∧ . . . ∧ P∗n(x0n) = 0 ∧ P∗j1(x
1
j1) = 0 ∧ P∗j1(x

′
j1) = 0.

For the sake of clarity, in the rest of this proof, we use the notation Vin
i

def
= Cin

c
(n)
i ,ski,i

(resp.

Vout
i

def
= Cout

c
(n)
i ,ski,i

) where c
(n)
i , ski, and i will be clear from the context. Also, [a : b]+n =

{a, a+ 1, . . . , n, 1, 2, . . . , b}. If 1 ≤ a ≤ b ≤ n, we have [a : b]+n = {a, a+ 1, . . . , b}.

Lemma 10. If PE is CPA secure without collusions (Definition 8), LOBF3 and LOBF4 are
secure (Definition 2), then∣∣∣∣P[G(n−1)-CPA-1-iPE

Π,A (λ) = 1 ∧ |QKGen| = 1
∣∣∣Validity1

]
− 1

2

∣∣∣∣ ≤ negl(λ).

Proof. Consider the following hybrid experiments:

Hb,0
0 (λ): This is exactly the experiment G

(n−1)-CPA-1-iPE
Π,A (λ) conditioned to the validity event

Validity1 where the challenge bit is b.

Hb,i
0 (λ) for i ∈ [n]: Same as Hb,i−1

0 , except that the challenger changes how it computes the

challenger ciphertext ci. Formally, it computes value c
(0)
i ←$ Enc1(mpk, (x1, . . . , xn), 0

s3(λ)+s4(λ))

(instead of c
(0)
i ←$ Enc1(mpk, (x1, . . . , xn), (y

in
i , y

out
i))) where c

(0)
i is the value used to com-

pute the challenge ciphertext xi = x0i , and xj = x⋆j for j ∈ [n] \ {i}. Observe that ci is

computed by fixing xi = x0i (instead of xi = xbi), i.e., the predicate input (x1, . . . , xn) used
to compute the i-th challenge ciphertext is fixed and does not depend on the challenge bit
b.

27Since we are in the (n− 1)-corruptions setting (i.e, |QCorr| ≤ n− 1) such as j0, j1 ∈ [n] \ QCorr always exist.

74

Hb,0
1 (λ): Identical to Hb,n

0 (λ).

Hb,i
1 (λ) for i ∈ [n]: Same as Hb,i−1

1 , except that the challenger changes how it computes the

challenger ciphertext ci. Formally, the value C̃in
i of challenge ciphertext ci = (C̃in

i , C̃out
i) is

simulated by the challenger using the simulator Sim3 of the lockable obfuscation scheme
LOBF3, i.e., Sim(1λ, 1|V

in
i |, 1|(ski,i)|).

Hb,0
2 (λ): Identical to Hb,n

1 (λ).

Hb,i
2 (λ) for i ∈ [n]: Same as Hb,i−1

2 , except that the challenger changes how it computes the

challenger ciphertext ci. Formally, the value C̃out
i of challenge ciphertext ci = (C̃in

i , C̃out
i)

is simulated by the challenger using the simulator Sim4 of the lockable obfuscation scheme
LOBF4, i.e., Sim(1λ, 1|V

out
i |, 1|m

b
i |).

Claim 27. Hb,i−1
0 (λ) ≈c H

b,i
0 (λ) for i ∈ [n].

Proof. Suppose there exists a PPT distinguisher D that distinguishes between Hb,1−i
0 (λ) and

Hb,i
0 (λ) with non-negligible probability. We build an adversary A that breaks the CPA security

without collusions of PE. A is defined as follows:

1. Receive mpk from the challenger.

2. Compute (skj , pkj)←$ KGen2,j(1
λ) and set ekj = (mpk, skj , pk1, . . . , pkn) for j ∈ [n].

3. A answers to the incoming oracle queries as follows:

• On input P∗ ∈ P for KGen, forward the query P∗ to KGen1 and return the answer
dkP∗ .

• On input j ∈ [n] for Corr, return ekj .

• On input (x,m) ∈ X1,j ×M4 for Enc(ekj , ·, ·) where j ∈ [n], return cj ←$ Enc(ekj ,
x,m).

4. Receive the challenge ((m0
1, . . . ,m

0
n), (m

1
1, . . . ,m

1
n), (x

0
1, . . . , x

0
n), (x

1
1, . . . , x

1
n)) from D.

5. For any j ∈ [n], A proceeds as follows:

Case j < i: Sample (yinj , y
out
j)←$ {0, 1}s3(λ)+s4(λ). Compute c

(0)
j ←$ Enc1(mpk, (x1, . . . ,

xn), 0
s3(λ)+s4(λ)) where xj = x0j , and xj′ = x⋆j′ for j

′ ∈ [n] \ {j}.

Case j = i: Send the challenge (m0 = (yini , y
out
i),m1 = 0s3(λ)+s4(λ), x = (x1, . . . , xn))

where (yinj , y
out
j)←$ {0, 1}s3(λ)+s4(λ), xi = xbi , and xj = x⋆j for j ∈ [n] \ {i}. Receive

the challenge ciphertext c∗ from the challenger. Set c
(0)
i = c∗.

Case j > i: Sample (yinj , y
out
j)←$ {0, 1}s3(λ)+s4(λ). Compute c

(−1)
j ←$ Enc1(mpk, (x1, . . . ,

xn), (y
in
j , y

out
j)) where xj = x0j , and xj′ = x⋆j′ for j

′ ∈ [n] \ {j}.

6. For every j ∈ [n], compute c
(v)
j ←$ Enc2,v(pkv, c

(v−1)
j) for v ∈ [n].

7. Compute cj = (C̃in
j , C̃out

j) where C̃in
j ←$ Obf3(1

λ,Vin
j , y

in
j , (skj , j)) and C̃out

j ←$ Obf4(1
λ,

Vout
j , youtj ,mb

j) for any j ∈ [n].

8. Send the challenge ciphertexts (c1, . . . , cn) to D.

9. Answer to the incoming oracle queries as in Item 3.

75

10. Return the output of D.

Let d be the challenge bit sampled by the challenger. The adversary A perfectly simulates the
view of D. In particular, if d = 0, A simulates Hb,i−1

0 (λ). On the other hand, if d = 1, A

simulates Hb,i
1 (λ). Moreover, conditioned to the event Validity1, we know that D asks for a

single decryption key dkP∗ for P∗ and P∗i (x0i) = 0 ∧ P∗i (x1i) = 0. Because of this, A submits a
single query P∗ to oracle KGen1 and it is also a valid adversary for the experiment GCPA-PE

PE,A (λ)
with the same advantage of D. This concludes the proof.

Claim 28. Hb,i−1
1 (λ) ≈c H

b,i
1 (λ) for i ∈ [n].

Proof. Suppose there exists a PPT distinguisher D that distinguishes between Hb,1−i
1 (λ) and

Hb,i
1 (λ) with non-negligible probability. We build an adversary A that breaks the security of

the lockable obfuscation scheme LOBF3. A is defined as follows:

1. Computes (ek1, . . . , ekn,msk)←$ Setup(1λ) where ekj = (mpk, skj , pk1, . . . , pkn) for j ∈ [n].

2. A answers to the incoming oracle queries as follows:

• On input P∗ ∈ P for KGen, return dkP∗ ←$ KGen(msk,P∗).
• On input j ∈ [n] for Corr, return ekj .

• On input (x,m) ∈ X1,j ×M4 for Enc(ekj , ·, ·) where j ∈ [n], return cj ←$ Enc(ekj ,
x,m).

3. Receive the challenge ((m0
1, . . . ,m

0
n), (m

1
1, . . . ,m

1
n), (x

0
1, . . . , x

0
n), (x

1
1, . . . , x

1
n)) from D.

4. For every j ∈ [n], run c
(0)
j ←$ Enc1(mpk, (x1, . . . , xn), 0

s3(λ)+s4(λ)) where xj = x0j , and
xj′ = x⋆j′ for j

′ ∈ [n] \ {j}.

5. For every j ∈ [n], compute c
(v)
j ←$ Enc2,v(pkv, c

(v−1)
j) for v ∈ [n].

6. For any j ∈ [n], A proceeds as follows:

Case j < i: Compute C̃in
j ←$ Sim3(1

λ, 1|V
in
j |, 1|(skj ,j)|).

Case j = i: Send the challenge (Vin
i , (ski, i)) to the challenger and receive C̃in

i .

Case j > i: Compute C̃in
j ←$ Obf3(1

λ,Vin
j , y

in
j , (skj , j)) where yinj ←$ {0, 1}s3(λ).

7. For every j ∈ [n], compute C̃out
j ←$ Obf4(1

λ,Vout
j , youtj ,mb

j) where youtj ←$ {0, 1}s4(λ).

8. Set cj = (C̃in
j , C̃out

j) for j ∈ [n] and send the challenge ciphertexts (c1, . . . , cn) to D.

9. Answer to the incoming oracle queries as in Item 2.

10. Return the output of D.

Let d be the challenge bit sampled by the challenger. The adversary A perfectly simulates the
view of D. In particular, if d = 0, A simulates Hb,i−1

1 (λ). On the other hand, if d = 1, A

simulates Hb,i
1 (λ). Hence, A has the same advantage of D. This concludes the proof.

Claim 29. Hb,i−1
2 (λ) ≈c H

b,i
2 (λ) for i ∈ [n].

76

Proof. Suppose there exists a PPT distinguisher D that distinguishes between Hb,1−i
2 (λ) and

Hb,i
2 (λ) with non-negligible probability. We build an adversary A that breaks the security of

the lockable obfuscation scheme LOBF4. A is defined as follows:

1. Computes (ek1, . . . , ekn,msk)←$ Setup(1λ) where ekj = (mpk, skj , pk1, . . . , pkn) for j ∈ [n].

2. A answers to the incoming oracle queries as follows:

• On input P∗ ∈ P for KGen, return dkP∗ ←$ KGen(msk,P∗).
• On input j ∈ [n] for Corr, return ekj .

• On input (x,m) ∈ X1,j ×M4 for Enc(ekj , ·, ·) where j ∈ [n], return cj ←$ Enc(ekj ,
x,m).

3. Receive the challenge ((m0
1, . . . ,m

0
n), (m

1
1, . . . ,m

1
n), (x

0
1, . . . , x

0
n), (x

1
1, . . . , x

1
n)) from D.

4. For every j ∈ [n], compute c
(0)
j ←$ Enc1(mpk, (x1, . . . , xn), 0

s3(λ)+s4(λ)) where xj = x0j , and
xj′ = x⋆j′ for j

′ ∈ [n] \ {j}.

5. For every j ∈ [n], run c
(v)
j ←$ Enc2,v(pkv, c

(v−1)
j) for v ∈ [n].

6. For every j ∈ [n], compute C̃in
j ←$ Sim3(1

λ, 1|V
in
j |, 1|(skj ,j)|).

7. For every j ∈ [n], A proceeds as follows:

Case j < i: Compute C̃out
j ←$ Sim4(1

λ, 1|V
out
j |, 1|m

b
j |).

Case j = i: Send the challenge (Vout
i ,mb

i) to the challenger and receive C̃out
i .

Case j > i: Compute C̃out
j ←$ Obf4(1

λ,Vout
j , youtj ,mb

j) where youtj ←$ {0, 1}s4(λ).

8. Set cj = (C̃in
j , C̃out

j) for j ∈ [n] and send the challenge ciphertexts (c1, . . . , cn) to D.

9. Answer to the incoming oracle queries as in Item 2.

10. Return the output of D.

Let d be the challenge bit sampled by the challenger. The adversary A perfectly simulates the
view of D. In particular, if d = 0, A simulates Hb,i−1

2 (λ). On the other hand, if d = 1, A

simulates Hb,i
2 (λ). Hence, A has the same advantage of D. This concludes the proof.

Claim 30. Hb,n
2 (λ) ≡ H1−b,n

2 (λ).

Proof. The distribution of these two experiments do not depend on the bit b.

By combining Claims 27 to 30 and conditioned to the event Validity1, we conclude that

Hb,0
0 ≈c . . . ≈c H

b,n
0 ≡ Hb,0

1 . . . ≈c H
b,n
1 ≡ Hb,0

2 ≈c . . . ≈c H
b,n
2 ≡ H1−b,n

2 .

This concludes the proof.

Lemma 11. Let j0, j1 ∈ [n] \ QCorr. If PE is CPA secure without collusions (Definition 8),
PKE2,j0 and PKE2,j1 are CPA secure (Definition 6), LOBF3 and LOBF4 are secure (Definition 2),
then ∣∣∣∣P[G(n−1)-CPA-1-iPE

Π,A (λ) = 1 ∧ |QKGen| = 1
∣∣∣Validity2,j0,j1

]
− 1

2

∣∣∣∣ ≤ negl(λ).

77

Proof. Without loss of generality, let q = |Qj0 | = |Qj1 | ∈ poly(λ) (recall j0, j1 ̸∈ QCorr). Consider
the following hybrid experiments:

Hb
0(λ): This is exactly the experiment G

(n−1)-CPA-1-iPE
Π,A (λ) conditioned to the validity event

Validity2,j0,j1 where the challenge bit is b.

Hb
1(λ): Same as Hb

0, except that the challenger changes how it computes the challenge jb-th ci-

phertext cjb . Specifically, it computes c
(0)
jb
←$ Enc1(mpk, (x1, . . . , xn), 0

s3(λ)+s4(λ)) (instead

of c
(0)
jb
←$ Enc1(mpk, (x1, . . . , xn), (y

in
i , y

out
i))) where the value c

(0)
jb

is used to compute the

challenge ciphertext, xi = xbi , and xj = x⋆j for j ∈ [n] \ {jb}.

Hb,0
2 : Identical to Hb

1(λ).

Hb,i
2 (λ) for i ∈ [q]: Same as Hb,i−1

2 (λ) except that the challenger changes how it answers to the
first i queries for oracle Enc(ekjb , ·, ·). Formally, on input the i′-th query (x,m) such that

i′ ≤ i, the challenger computes c
(0)
jb
←$ Enc1(mpk, (x1, . . . , xn), 0

s3(λ)+s4(λ)) where xjb = x,

and xj = x⋆j for j ∈ [n] \ {jb}. Finally, the challenger returns cjb = (C̃in
jb
, C̃out

jb
) where

c
(v)
jb
←$ Enc2,v(pkv, c

(b−1)
jb

) for v ∈ [n], (yinjb , y
out
jb

)←$ {0, 1}s3(λ)+s4(λ), C̃in
jb
←$ Obf3(1

λ,Vin
jb
,

yinjb , (skjb , jb)), and C̃out
jb
←$ Obf4(1

λ,Vout
jb

, youtjb
,mb

jb
). Otherwise, on input the i′-th query

(x,m) such that i′ > i, the challenger answers as usual, i.e., as defined in Hb,0
2 .

Hb
3(λ): Same as Hb,q

2 , except that the challenger changes how it computes the challenge jb-th

ciphertext cjb . Formally, the value C̃in
jb

of challenge jb-th ciphertext cjb = (C̃in
jb
, C̃out

jb
) is

simulated by the challenger using the simulator Sim3 of the lockable obfuscation scheme

LOBF3, i.e., C̃in
jb

is computed by executing Sim3(1
λ, 1
|Vin

jb
|
, 1|(skjb ,jb)|).

Hb
4(λ): Same as Hb

3, except that the challenger changes how it computes the challenge jb-th

ciphertext cjb . Formally, the value C̃out
jb

of challenge jb-th ciphertext cjb = (C̃in
jb
, C̃out

jb
) is

simulated by the challenger using the simulator Sim4 of the lockable obfuscation scheme

LOBF4, i.e., C̃out
jb

is computed by executing Sim4(1
λ, 1
|Vout

jb
|
, 1
|mb

jb
|
).

Hb,0
5 : Identical to Hb

4(λ).

Hb,i
5 (λ) for i ∈ [q]: Same as Hb,i−1

5 (λ) except that the challenger changes how it answers to the
first i queries for oracle Enc(ekjb , ·, ·). Formally, on input the i′-th query (x,m) such that

i′ ≤ i, the challenger returns cjb = (C̃in
jb
, C̃out

jb
) where C̃in

jb
is computed using the simulator

Sim3 of the lockable obfuscator scheme LOBF3, i.e., C̃in
jb
←$ Sim3(1

λ, 1
|Vin

jb
|
, 1|(skjb ,jb)|). Oth-

erwise, on input the i′-th query (x,m) such that i′ > i, the challenger answers as usual,

i.e., as defined in Hb,0
5 .

Hb,0
6 : Identical to Hb,q

5 (λ).

Hb,i
6 (λ) for i ∈ [q]: Same as Hb,i−1

6 (λ) except that the challenger changes how it answers to
the first i queries for oracle Enc(ekjb , ·, ·). Formally, on input the i′-th query (x,m) such

that i′ ≤ i, the challenger returns cjb = (C̃in
jb
, C̃out

jb
) where C̃out

jb
is computed using the

simulator Sim4 of the lockable obfuscator scheme LOBF4, i.e., C̃out
jb
←$ Sim4(1

λ, 1
|Vout

jb
|
, 1|m|).

Otherwise, on input the i′-th query (x,m) such that i′ > i, the challenger answers as usual,

i.e., as defined in Hb,0
6 .

78

Hb,1,1
6 : Identical to Hb,q

6 (λ).

Hb,0,0
7+i for i ∈ {0} ∪ [n− 2]: Same as Hb,1,1

7+i−1 except that the challenger changes how it com-

putes the challenge ciphertext cr where r = (jb + i mod n) + 1. Formally, the value c
(jb)
r

is computed as c
(jb)
r ←$ Enc2,jb(pkjb , w) where w←$M2,jb .

Hb,1,0
7+i for i ∈ {0} ∪ [n− 2]: Same as Hb,1,0

7+i (λ) except that the challenger changes how it com-

putes the challenge ciphertext cr where r = (jb+ i mod n)+1. Formally, the value C̃in
v of

challenge ciphertext cr = (C̃in
r , C̃out

r) is simulated by the challenger using the simulator of

the lockable obfuscation scheme LOBF3, i.e., C̃in
v is computed by executing Sim3(1

λ, 1|V
in
r |,

1|(skr,r)|).

Hb,1,1
7+i for i ∈ {0} ∪ [n− 2]: Same as Hb,1,0

7+i (λ) except that the challenger changes how it com-

putes the challenge ciphertext cr where r = (jb+i mod n)+1. Formally, the value C̃out
v of

challenge ciphertext cr = (C̃in
r , C̃out

r) is simulated by the challenger using the simulator of
the lockable obfuscation scheme LOBF4, i.e., C̃out

v is computed by executing Sim4(1
λ, 1|V

out
r |,

1|m
b
r|).

Claim 31. Hb
0(λ) ≈c H

b
1(λ).

Proof. Suppose there exists a PPT distinguisher D that distinguishes between Hb
0(λ) and Hb

1(λ)
with non-negligible probability. We build an adversary A that breaks the CPA security without
collusions of PE. A is defined as follows:

1. Receive mpk from the challenger.

2. Compute (skj , pkj)←$ KGen2,j(1
λ) and set ekj = (mpk, skj , pk1, . . . , pkn) for j ∈ [n].

3. A answers to the incoming oracle queries as follows:

• On input P∗ ∈ P for KGen, forward the query P∗ to KGen1 and return the answer
dkP∗ .

• On input j ∈ [n] for Corr, return ekj .

• On input (x,m) ∈ X1,j ×M4 for Enc(ekj , ·, ·) where j ∈ [n], return cj ←$ Enc(ekj ,
x,m).

4. Receive the challenge ((m0
1, . . . ,m

0
n), (m

1
1, . . . ,m

1
n), (x

0
1, . . . , x

0
n), (x

1
1, . . . , x

1
n)) from D. Send

the challenge (m0 = (yinjb , y
out
jb

),m1 = 0s3(λ)+s4(λ), x = (x1, . . . , xn)) where (yinjb , y
out
jb

)←$

{0, 1}s3(λ)+s4(λ), xjb = xbjb and xj = x⋆j for j ∈ [n] \ {jb}.

5. Receive the challenge ciphertext c∗ from the challenger. Set c
(0)
jb

= c∗.

6. For every j ∈ [n]\{jb}, compute c
(0)
j ←$ Enc1(mpk, (x1, . . . , xn), (y

in
j , y

out
j)) where (yinj , y

out
j)

←$ {0, 1}s3(λ)+s4(λ), xj = xbj , and xj′ = x⋆j′ for j
′ ∈ [n] \ {j}.

7. For every j ∈ [n], compute c
(v)
j ←$ Enc2,v(pkv, c

(v−1)
j) for v ∈ [n].

8. Compute cj = (C̃in
j , C̃out

j) where C̃in
j ←$ Obf3(1

λ,Vin
j , y

in
j , (skj , j)) and C̃out

j ←$ Obf4(1
λ,

Vout
j , youtj ,mb

j) for any j ∈ [n].

9. Send the challenge ciphertexts (c1, . . . , cn) to D.

79

10. Answer to the incoming oracle queries as in Item 3.

11. Return the output of D.

Let d be the challenge bit sampled by the challenger. The adversary A perfectly simulates the
view of D. In particular, if d = 0, A simulates Hb

0(λ). On the other hand, if d = 1, A simulates
Hb

1(λ). Moreover, D submits a single query P∗ to oracle KGen and, conditioned to the event
Validity2,j0,j1 , we know that P∗jb(x

b
jb
) = 0. Because of this, A submits a single query to oracle

KGen1 and, it is also a valid adversary for the experiment GCPA-PE
PE,A (λ) with the same advantage

of D. This concludes the proof.

Claim 32. Hb,i−1
2 (λ) ≈c H

b,i
2 (λ) for i ∈ [q].

Proof. Suppose there exists a PPT distinguisher D that distinguishes between Hb,i−1
2 (λ) and

Hb,i
2 (λ) with non-negligible probability. We build an adversary A that breaks the CPA security

without collusions of PE. A is defined as follows:

1. Receive mpk from the challenger.

2. Compute (skj , pkj)←$ KGen2,j(1
λ) and set ekj = (mpk, skj , pk1, . . . , pkn) for j ∈ [n].

3. A answers to the incoming oracle queries as follows:

• On input P∗ ∈ P for KGen, forward the query P∗ to KGen1 and return the answer
dkP∗ .

• On input j ∈ [n] for Corr, return ekj .

• On input i′-th query (x,m) ∈ X1,j ×M4 for Enc(ekj , ·, ·) where j ∈ [n], A proceeds
as follows:

Case j ̸= jb: Sample (yinj y
out
j)←$ {0, 1}s3(λ)+s4(λ). Run c

(0)
j ←$ Enc1(mpk, (x1, . . . , xn),

(yinj , y
out
j)) where xj = x and xj′ = x⋆j′ for j

′ ∈ [n] \ {j}.

Case j = jb and i′ < i: Sample (yinjb , y
out
jb

)←$ {0, 1}s3(λ)+s4(λ). Compute c
(0)
jb
←$ Enc1(

mpk, (x1, . . . , xn), 0
s3(λ)+s4(λ)) where xjb = x and xj′ = x⋆j′ for j

′ ∈ [n] \ {jb}.
Case j = jb and i′ = i: Sample (yinjb , y

out
jb

)←$ {0, 1}s3(λ)+s4(λ). Send the challenge

(m0 = (yinjb , y
out
jb

),m1 = 0s3(λ)+s4(λ), x = (x1, . . . , xn)) to the challenger where
xjb = x and xj′ = x⋆j′ for j

′ ∈ [n] \ {jb}. Receive the challenge ciphertext c∗ and

set c
(0)
jb

= c∗.

Case j = jb and i′ > i: Sample (yinj , y
out
j)←$ {0, 1}s3(λ)+s4(λ). Compute c

(−1)
jb
←$

Enc1(mpk, (x1, . . . , xn), (y
in
j , y

out
j)) where xjb = x and xj′ = x⋆j′ for j

′ ∈ [n] \ {jb}.

Finally, return cj = (C̃in
j , C̃out

j) where c
(v)
j ←$ Enc2,v(pkv, c

(v−1)
j) for v ∈ [n], C̃in

j ←$

Obf3(1
λ,Vin

j , y
in
j , (skj , j)) and C̃out

j ←$ Obf4(1
λ,Vout

j , youtj ,m).

4. Receive the challenge ((m0
1, . . . ,m

0
n), (m

1
1, . . . ,m

1
n), (x

0
1, . . . , x

0
n), (x

1
1, . . . , x

1
n)) from D.

5. Compute c
(0)
jb
←$ Enc1(mpk, (x1, . . . , xn), 0

s3(λ)+s4(λ)) where xjb = xbjb , xj′ = x⋆j′ for j′ ∈
[n] \ {jb}, and (yinjb , y

out
jb

)←$ {0, 1}s3(λ)+s4(λ).

6. Compute c
(v)
jb
←$ Enc2,v(pkv, c

(v−1)
jb

) for v ∈ [n].

80

7. Compute cjb = (C̃in
jb
, C̃out

jb
) where C̃in

jb
←$ Obf3(1

λ,Vin
jb
, yinjb , (skjb , jb)) and C̃out

jb
←$ Obf4(1

λ,

Vout
jb

, youtjb
,mb

jb
).

8. For every j ∈ [n] \ {jb}, compute cj ←$ Enc(ekj , x
b
j ,m

b
j).

9. Send the challenge ciphertexts (c1, . . . , cn) to D.

10. Answer to the incoming oracle queries as in Item 3.

11. Return the output of D.

Let d be the challenge bit sampled by the challenger. The adversary A perfectly simulates the
view of D. In particular, if d = 0, A simulatesHb,i−1

2 (λ). On the other hand, if d = 1, A simulates

Hb,i
2 (λ). Moreover, we know that D submits a single query P∗ to oracle KGen and, conditioned

to the event Validity2,j0,j1 , we know that jb ̸∈ QCorr and ∀x′jb ∈ Qjb ⊂ X1,jb ,P∗jb(x
′
jb
) = 0.

Because of this, A submits a single query to oracle KGen1 and it is also a valid adversary for
the experiment GCPA-PE

PE,A (λ) with the same advantage of D. This concludes the proof.

Claim 33. Hb,q
2 (λ) ≈c H

b
3(λ).

Proof. Suppose there exists a PPT distinguisher D that distinguishes between Hb,q
2 (λ) and

Hb
3(λ) with non-negligible probability. We build an adversary A that breaks the security of the

lockable obfuscation scheme LOBF3. A is defined as follows:

1. Compute (ek1, . . . , ekn,msk)←$ Setup(1λ) where ekj = (mpk, skj , pk1, . . . , pkn) for j ∈ [n].

2. A answers to the incoming oracle queries as follows:

• On input P∗ ∈ P for KGen, return dkP∗ ←$ KGen(msk,P∗).
• On input j ∈ [n] for Corr, return ekj .

•
• On input (x,m) ∈ X1,j ×M4 for Enc(ekj , ·, ·), A proceeds as follows:

Case j = jb: Sample (yinjb , y
out
jb

)←$ {0, 1}s3(λ)+s4(λ). Run c
(0)
jb
←$ Enc1(mpk, (x1, . . . ,

xn), 0
s3(λ)+s4(λ)) where xjb = x, xj′ = x⋆j′ for any j′ ∈ [n] \ {jb}.

Case j ̸= jb: Compute c
(0)
j ←$ Enc1(mpk, (x1, . . . , xn), (y

in
j , y

out
j)) where (yinj , y

out
j)←$

{0, 1}s3(λ)+s4(λ), xj = x, xj′ = x⋆j′ for any j′ ∈ [n] \ {j}.

Finally, return cj = (C̃in
j , C̃out

j) where c
(v)
j ←$ Enc2,v(pkv, c

(v−1)
j) for v ∈ [n], C̃in

j ←$

Obf3(1
λ,Vin

j , y
in
j , (skj , j)) and C̃out

j ←$ Obf4(1
λ,Vout

j , youtj ,m).

3. Receive the challenge ((m0
1, . . . ,m

0
n), (m

1
1, . . . ,m

1
n), (x

0
1, . . . , x

0
n), (x

1
1, . . . , x

1
n)) from D.

4. Compute c
(0)
jb
←$ Enc1(mpk, (x1, . . . , xn), 0

s3(λ)+s4(λ)) where xjb = xbjb and xj′ = x⋆j′ for
j′ ∈ [n] \ {jb}.

5. Compute c
(v)
jb
←$ Enc2,v(pkv, c

(v−1)
jb

) for v ∈ [n].

6. Send the challenge (Vin
jb
, (skjb , jb)) to the challenger and receive C̃. Compute cjb =

(C̃in
jb
, C̃out

jb
) where C̃in

jb
= C̃, C̃out

jb
←$ Obf4(1

λ,Vout
jb

, youtjb
,mb

jb
) and youtjb

←$ {0, 1}s4(λ).

7. For every j ∈ [n] \ {jb}, compute cj ←$ Enc(ekj , x
b
j ,m

b
j).

81

8. Send the challenge ciphertexts (c1, . . . , cn) to D.

9. Answer to the incoming oracle queries as in Item 2.

10. Return the output of D.

Let d be the challenge bit sampled by the challenger. The adversary A perfectly simulates the
view of D. In particular, if d = 0, A simulates Hb,q

2 (λ). On the other hand, if d = 1, A simulates
Hb

3(λ). Hence, A has the same advantage of D. This concludes the proof.

Claim 34. Hb,i−1
4 (λ) ≈c H

b,i
4 (λ).

Proof. Claim 34 follows by leveraging a similar argument to that of Claim 33.

Claim 35. Hb,i−1
5 (λ) ≈c H

b,i
5 (λ) for i ∈ [q].

Proof. Suppose there exists a PPT distinguisher D that distinguishes between Hb,i−1
5 (λ) and

Hb,i
5 (λ) with non-negligible probability. We build an adversary A that breaks the security of

the lockable obfuscation scheme LOBF3. A is defined as follows:

1. Compute (ek1, . . . , ekn,msk)←$ Setup(1λ).

2. A answers to the incoming oracle queries as follows:

• On input P∗ ∈ P for KGen, forward the query P∗ to KGen1 and return the answer
dkP∗ .

• On input j ∈ [n] for Corr, return ekj .

• On input i′-th query (x,m) ∈ X1,j ×M4 for Enc(ekj , ·, ·) where j ∈ [n], A proceeds
as follows:

Case j ̸= jb: Return cj = (C̃in
j , C̃out

j)←$ Enc(ekj , x,m).

Case j = jb and i′ < i: Sample youtjb
←$ {0, 1}s4(λ). Run c

(0)
jb
←$ Enc1(mpk, (x1, . . . ,

xn), 0
s3(λ)+s4(λ)) where xjb = x and xj′ = x⋆j′ for j′ ∈ [n] \ {jb}. Return cjb =

(C̃in
jb
, C̃out

jb
) where c

(v)
jb
←$ Enc2,v(pkv, c

(v−1)
jb

) for v ∈ [n], C̃in
jb
←$ Sim3(1

λ, 1
|Vin

jb
|
,

1|(skjb ,jb)|), and C̃out
jb
←$ Obf4(1

λ,Vout
jb

, youtjb
,m).

Case j = jb and i′ = i: Sample youtjb
←$ {0, 1}s4(λ). Run c

(0)
jb
←$ Enc1(mpk, (x1, . . .

, xn), 0
s3(λ)+s4(λ)) where xjb = x and xj′ = x⋆j′ for j′ ∈ [n] \ {jb}. Send the

challenge (Vin
jb
, (skjb , jb)) to the challenger where c

(v)
jb
←$ Enc2,v(pkv, c

(v−1)
jb

) for

v ∈ [n]. Receive the challenge ciphertext C̃ and set C̃in
jb

= C̃. Return cjb =

(C̃in
jb
, C̃out

jb
) where C̃out

jb
←$ Obf4(1

λ,Vout
jb

, youtjb
,m).

Case j = jb and i′ > i: Sample (yinj , y
out
j)←$ {0, 1}s3(λ)+s4(λ). Compute c

(0)
jb
←$ Enc1(

mpk, (x1, . . . , xn), 0
s3(λ)+s4(λ)) where xjb = x and xj′ = x⋆j′ for j

′ ∈ [n]\{jb}. Re-
turn cjb = (C̃in

jb
, C̃out

jb
) where c

(v)
jb
←$ Enc2,v(pkv, c

(v−1)
jb

) for v ∈ [n], C̃in
jb
←$ Obf3(1

λ,

Vin
jb
, yinjb , (skjb , jb)), and C̃out

jb
←$ Obf4(1

λ,Vout
jb

, youtjb
,m).

3. Receive the challenge ((m0
1, . . . ,m

0
n), (m

1
1, . . . ,m

1
n), (x

0
1, . . . , x

0
n), (x

1
1, . . . , x

1
n)) from D.

82

4. Compute cjb = (C̃in
jb
, C̃out

jb
) where C̃in

jb
←$ Sim3(1

λ, 1
|Vin

jb
|
, 1|(skjb ,jb)|) and C̃out

jb
←$ Sim4(1

λ,

1
|Vout

jb
|
, 1
|mb

jb
|
).

5. For every j ∈ [n] \ {jb}, compute cj ←$ Enc(ekj , x
b
j ,m

b
j).

6. Send the challenge ciphertexts (c1, . . . , cn) to D.

7. Answer to the incoming oracle queries as in Item 2.

8. Return the output of D.

Let d be the challenge bit sampled by the challenger. The adversary A perfectly simulates the
view of D. In particular, if d = 0, A simulates Hb,i−1

5 (λ). On the other hand, if d = 1, A

simulates Hb,i
5 (λ). Hence, A has the same advantage of D. This concludes the proof.

Claim 36. Hb,i−1
6 (λ) ≈c H

b,i
6 (λ) for i ∈ [q].

Proof. Claim 36 follows by leveraging a similar argument to that of Claim 35.

Claim 37. Hb,1,1
7+i−1(λ) ≈c H

b,0,0
7+i (λ) for i ∈ {0} ∪ [n− 2].

Proof. Let r = (jb+i mod n)+1. Suppose there exists a PPT distinguisher D that distinguishes

between Hb,1,1
7+i−1(λ) and Hb,0,0

7+i (λ) with non-negligible probability. We build an adversary A that
breaks the CPA security of PKE2,jb . A is defined as follows:

1. Compute (mpk,msk)←$ Setup1(1
λ) and (skj , pkj)←$ KGen2,j(1

λ) for j ∈ [n] \ {jb}.

2. Receive pkjb from the challenger.

3. Set ekj = (mpk, skj , pk1, . . . , pkn) for j ∈ [n] \ {jb}.

4. A answers to the incoming oracle queries as follows:

• On input P∗ ∈ P for KGen, return dkP∗ ←$ KGen1(msk,P∗).
• On input j ∈ [n] for Corr, return ekj .

• On input (x,m) ∈ X1,j ×M4 for Enc(ekj , ·, ·), A proceeds as follows:

Case j = jb: Run cj = (C̃in
j , C̃out

j) where C̃in
j ←$ Sim3(1

λ, 1|V
in
j |, 1|(skj ,j)|) and C̃out

j ←$

Sim4(1
λ, 1|V

out
j |, 1|m|).

Case j ̸= jb: Compute cj ←$ Enc(ekj , x,m).

Finally, return cj .

5. Receive the challenge ((m0
1, . . . ,m

0
n), (m

1
1, . . . ,m

1
n), (x

0
1, . . . , x

0
n), (x

1
1, . . . , x

1
n)) from D.

6. For every j ∈ [n], the adversary A proceeds as follows:

Case j ∈ [jb : r − 1]+n : Compute cj = (C̃in
j , C̃out

j) where C̃in
j ←$ Sim3(1

λ, 1|V
in
j |, 1|(skj ,j)|) and

C̃out
j ←$ Sim4(1

λ, 1|V
out
j |, 1|m

b
j |).

83

Case j = r: Sample (yinr , y
out
r)←$ {0, 1}s3(λ)+s4(λ) and compute c

(0)
r ←$ Enc1(mpk, (x1, . . . ,

xn), (y
in
r , y

out
r)) where xr = xbr, xj′ = x⋆j′ for any j′ ∈ [n]\{r}. Compute c

(v)
r ←$ Enc2,v(

pkv, c
(v−1)
r) for v ∈ [jb− 1]. Send the challenge (m0 = c

(v)
r ,m1 = w) to the challenger

where w←$M2,jb . Receive the answer c∗ and set c
(jb)
r = c∗. Compute c

(v)
r ←$

Enc2,v(pkv, c
(v−1)
r) for v ∈ [n] \ [jb]. Set cr = (C̃in

r , C̃out
r) where C̃in

r ←$ Obf3(1
λ,

Vin
r , y

in
r , (skr, r)) and C̃out

r ←$ Obf4(1
λ,Vout

r , youtr ,mb
r).

Case i < n− 2 and j ∈ [r + 1 : jb − 1]+n : Compute cj ←$ Enc(ekj , x
b
j ,m

b
j).

7. Send the challenge ciphertexts (c1, . . . , cn) to D.

8. Answer to the incoming oracle queries as in Item 4.

9. Return the output of D.

Let d be the challenge bit sampled by the challenger. The adversary A perfectly simulates
the view of D. This is because, by the Validity2,j0,j1 we have that jb ̸∈ QCorr, i.e., A can
simulate the view of D without knowing skjb (sampled by the challenger). Moreover, if d = 0,

A simulates Hb,1,1
7+i−1(λ). On the other hand, if d = 1, A simulates Hb,0,0

7+i (λ). Hence, A has the
same advantage of D. This concludes the proof.

Claim 38. Hb,0,0
7+i (λ) ≈c H

b,1,0
7+i (λ) for i ∈ {0} ∪ [n− 2].

Proof. Let r = (jb+i mod n)+1. Suppose there exists a PPT distinguisher D that distinguishes

between Hb,0,0
7+i (λ) and Hb,1,0

7+i (λ) with non-negligible probability. We build an adversary A that
breaks the security of the lockable obfuscation scheme LOBF3. A is defined as follows:

1. Compute (ek1, . . . , ekn,msk)←$ Setup(1λ).

2. A answers to the incoming oracle queries as follows:

• On input P∗ ∈ P for KGen, return dkP∗ ←$ KGen1(msk,P∗).
• On input j ∈ [n] for Corr, return ekj .

• On input (x,m) ∈ X1,j ×M4 for Enc(ekj , ·, ·), A proceeds as follows:

Case j = jb: Run cj = (C̃in
j , C̃out

j) where C̃in
j ←$ Sim3(1

λ, 1|V
in
j |, 1|(skj ,j)|) and C̃out

j ←$

Sim4(1
λ, 1|V

out
j |, 1|m|).

Case j ̸= jb: Compute cj ←$ Enc(ekj , x,m).

Finally, return cj .

3. Receive the challenge ((m0
1, . . . ,m

0
n), (m

1
1, . . . ,m

1
n), (x

0
1, . . . , x

0
n), (x

1
1, . . . , x

1
n)) from D.

4. For every j ∈ [n], the adversary A proceeds as follows:

Case j ∈ [jb : r − 1]+n : Compute cj = (C̃in
j , C̃out

j) where C̃in
j ←$ Sim3(1

λ, 1|V
in
j |, 1|(skj ,j)|) and

C̃out
j ←$ Sim4(1

λ, 1|V
out
j |, 1|m

b
j |).

Case j = r: Compute c
(v)
r ←$ Enc2,v(pkv, c

(v−1)
r) for v ∈ [n] \ [jb − 1] where c

(jb−1)
r =

w←$M2,jb . Send the challenge (Vin
r , (skr, r)) to the challenger and receive the answer

C̃∗. Set cr = (C̃in
r , C̃out

r) where C̃in
r = C̃∗, youtr ←$ {0, 1}s4(λ), and C̃out

r ←$ Obf4(1
λ,

Vout
r , youtr ,mb

r).

84

Case i < n− 2 and j ∈ [r + 1 : jb − 1]+n : Compute cj ←$ Enc(ekj , x
b
j ,m

b
j).

5. Send the challenge ciphertexts (c1, . . . , cn) to D.

6. Answer to the incoming oracle queries as in Item 2.

7. Return the output of D.

Let d be the challenge bit sampled by the challenger. The adversary A perfectly simulates the
view of D. In particular, if d = 0, A simulates Hb,0,0

7+i (λ). On the other hand, if d = 1, A

simulates Hb,1,0
7+i (λ). Hence, A has the same advantage of D. This concludes the proof.

Claim 39. Hb,1,0
7+i (λ) ≈c H

b,1,1
7+i (λ) for i ∈ {0} ∪ [n− 2].

Proof. Claim 39 follows by leveraging a similar argument to that of Claim 38.

Claim 40. H1−b,1,1
7+n−2 (λ) ≈c H

b,1,1
7+n−2(λ).

Proof. The distribution of these two experiments do not depend on the bit b.

By combining Claims 31 to 40 and conditioned to the event Validity2,j0,j1 , we conclude
that

Hb
0 ≈c H

b
1 ≡ Hb,0

2 ≈c . . . ≈c H
b,q
2 ≈c H

b
3 ≈c H

b
4 ≡ Hb,0

5 ≈c . . . ≈c H
b,q
5 ≡

Hb,0
6 ≈c . . . ≈c H

b,q
6 ≡ Hb,1,1

6 ≈c H
b,0,0
7 ≈c . . . ≈c H

b,1,1
7+n−2 ≡ H1−b,1,1

7+n−2 .

This concludes the proof.

Lemma 12. Let j0 ∈ [n]\QCorr. If PE is CPA secure without collusions (Definition 8), PKE2,j0

is CPA secure (Definition 6), LOBF3 and LOBF4 are secure (Definition 2), then∣∣∣∣P[G(n−1)-CPA-1-iPE
Π,A (λ) = 1 ∧ |QKGen| = 1

∣∣∣Validity3,j0

]
− 1

2

∣∣∣∣ ≤ negl(λ).

Proof. Without loss of generality, let q = |Qj0 | ∈ poly(λ) (recall j0 ̸∈ QCorr). Consider the
hybrid experiments of Lemma 4 and Lemma 11. Formally,

• Let H1,i
0 (λ),H1,i

1 (λ),H1,i
2 (λ) for i ∈ [n] be the hybrid of Lemma 10 (for the challenge bit

b = 1) except that are conditioned to the event Validity3,j0 (instead of Validity1)

• LetH0
0(λ),H

0
1(λ),H

0,t
2 (λ),H0

3(λ),H
0
4(λ),H

0,t
5 (λ),H0,t

6 (λ),H0,1,1
6 (λ),H0,k1,k2

7+j (λ), for i ∈ [n],

t ∈ [q], j ∈ {0}∪[n−2], (k1, k2)×{0, 1}2, be the hybrids of Lemma 11 (for the challenge bit
b = 0) except that are conditioned to the event Validity3,j0 (instead of Validity2,j0,j1).

In addition, consider the following additional hybrids experiments:

H0,0
7+n−1: Identical to H0,1,1

7+n−2.

H0,i
7+n−1 for i ∈ [q]: Same as H0,i−1

7+n−1 except that the challenger changes how it answers to the
first i queries for oracle Enc(ekj0 , ·, ·). Formally, on input the i′-th query (x,m) such

that i′ ≤ i, the challenger returns cj0 = (C̃in
j0
, C̃out

j0
) where C̃out

v ←$ Obf4(1
λ,Vout

j0
, youtj0

,m)

where youtj0
←$ {0, 1}s4(λ). Otherwise, on input the i′-th query (x,m) such that i′ > i, the

challenger answers as usual, i.e., as defined in H0,0
7+n−1.

85

H0,0
7+n: Identical to H0,q

7+n−1.

H0,i
7+n for i ∈ [q]: Same as H0,i−1

7+n except that the challenger changes how it answers to the
first i queries for oracle Enc(ekj0 , ·, ·). Formally, on input the i′-th query (x,m) such that

i′ ≤ i, the challenger returns cj0 = (C̃in
j0
, C̃out

j0
) where C̃in

j0
←$ Obf3(1

λ,Vin
j0
, yinj0 , (skj0 , j0))

where yinj0 ←$ {0, 1}s3(λ). Otherwise, on input the i′-th query (x,m) such that i′ > i, the

challenger answers as usual, i.e., as defined in H0,0
7+n.

H0,0
7+n+1: Identical to H0,q

7+n.

H0,i
7+n+1 for i ∈ [q]: Same as H0,i−1

7+n+1 except that the challenger changes how it answers to the
first i queries for oracle Enc(ekj0 , ·, ·). On input the i′-th query (x,m) such that i′ ≤ i, the

challenger samples (yinj0 , y
out
j0

)←$ {0, 1}s3(λ)+s4(λ) and computes c
(0)
j0
←$ Enc1(mpk, (x1, . . . ,

xn), (y
in
j0
, youtj0

)) where xj0 = x, and xj = x⋆j for j ∈ [n] \ {j0}. Finally, the challenger

returns cj0 = (C̃in
j0
, C̃out

j0
) where c

(v)
j0
←$ Enc2,v(pkv, c

(v−1)
j0

) for v ∈ [n], C̃in
j0
←$ ←$ Obf3(1

λ,

Vin
j0
, yinj0 , (skj0 , j0)) , C̃out

v ←$ Obf4(1
λ,Vout

j0
, youtj0

,m). Otherwise, on input the i′-th query

(x,m) such that i′ > i, the challenger answers as usual, i.e., as defined in H0,0
7+n+1.

Claim 41. H0
0(λ) ≈c H

0,1,1
7+n−2(λ).

Proof. The proof of Claim 41 is identical to that of Lemma 5 where the challenge bit is b = 0.

Claim 42. H0,i−1
7+n−1(λ) ≈c H

0,i
7+n−1(λ) for i ∈ [q].

Proof. Claim 42 follows by leveraging a similar argument to that of Claim 36.

Claim 43. H0,i−1
7+n (λ) ≈c H

0,i
7+n(λ) for i ∈ [q].

Proof. Claim 43 follows by leveraging a similar argument to that of Claim 35.

Claim 44. H0,i−1
7+n+1(λ) ≈c H

0,i−1
7+n+1(λ) for i ∈ [q].

Proof. Claim 44 follows by leveraging a similar argument to that of Claim 32.

Claim 45. H1,0
0 (λ) ≈c H

1,q
2 (λ).

Proof. The proof of Claim 45 is identical to that of Lemma 4 where the challenge bit is b = 1.

Claim 46. H0,q
7+n+1(λ) ≡ H1,q

2 (λ).

Proof. Claim 46 follows by observing that experiments H0,q
7+n+1(λ) and H1,q

2 (λ) are identical
(and does not depend on the bit b).

By combining Claims 41 to 46 and conditioned to the event Validity3,j0,, we conclude that

H0
0 ≈c H

0,1,1
7+n−2 ≡ Hb,0

7+n−1 ≈c . . . ≈c H
b,q
7+n−1 ≡ Hb,0

7+n ≈c . . . ≈c H
b,q
7+n

≡ Hb,0
7+n+1 ≈c . . . ≈c H

b,q
7+n+1 ≡ H1,q

2 ≈c H
1,0
0 .

This concludes the proof.

86

Lemma 13. Let j1 ∈ [n]\QCorr. If PE is CPA secure without collusions (Definition 8), PKE2,j1

is CPA secure (Definition 6), LOBF3 and LOBF4 are secure (Definition 2), then∣∣∣∣P[G(n−1)-CPA-1-iPE
Π,A (λ) = 1 ∧ |QKGen| = 1

∣∣∣Validity4,j1

]
− 1

2

∣∣∣∣ ≤ negl(λ).

Proof. Lemma 13 follows by using a symmetrical argument to that of Lemma 12.

By combining Lemmas 10 to 13 we conclude that Π is CPA secure in the (n−1)-corruptions
setting without collusions.

E.6 Proof of Theorem 6 (CPA-2-sided security of Π)

As usual, consider the predicate space P = {P(x1, . . . , xn)} of Construction 3 where P(x1, . . . , xn)
= P1(x1) ∧ . . . ∧ Pn(xn). Let P∗ ∈ P be the only predicate for which the adversary will ask for

the decryption key dkP∗ during the experiment G
(n−1)-CPA-2-iPE
Π,A (recall that we prove the secu-

rity of Construction 3 in the scenario without collusions, i.e., |QKGen| = 1). We can leverage a
similar argument to that used to prove Theorem 5 for the CPA-2-sided case (see Appendix E.4)

in order to rewrite the validity condition of G
(n−1)-CPA-2-iPE
Π,A (Definition 13) as follows:

Either Validity1 or Validity2

where

Validity1 : ∀j ∈ [n],∀i1 ∈ [k1 + 1], . . . ,∀in ∈ [kn + 1],

P∗(x(i1,0)1 , . . . , x
(ij−1,0)
j−1 , x0j , x

(ij+1,0)
j+1 , . . . , x(in,0)n) =

P∗(x(i1,1)1 , . . . , x
(ij−1,1)
j−1 , x1j , x

(ij+1,1)
j+1 , . . . , x(in,1)n) = 0

Validity2 : ∀j ∈ [n],Either P∗j (x0j) = P∗j (x1j) = 0 or P∗j (x0j) = P∗j (x1j) ∧m0
j = m1

j

for Qb
i = {x(1,b)i , . . . , x

(ki,b)
i , x

(ki+1,b)
i = xbi} for i ∈ [n], b ∈ {0, 1} as defined in Definition 13.

Recall that, if i ̸∈ QCorr, then Qb
i is the ordered list composed of the inputs submitted to the

oracle Enc(eki, ·, ·) and the challenge input xbi . Otherwise, if i ∈ QCorr, then Qb
i is equal to the

i-th input space X1,i that, in turn, contains also the challenge input xbi . Hence, the CPA-2-sided
security of Construction 3 follows by proving the following lemmas.

Lemma 14. If PE is CPA secure without collusions (Definition 8), SKE is CPA secure (Defi-
nition 4), and LOBF is secure (Definition 2), then∣∣∣∣P[G(n−1)-CPA-2-iPE

Π,A (λ) = 1 ∧ |QKGen| = 1
∣∣∣Validity1

]
− 1

2

∣∣∣∣ ≤ negl(λ).

Proof. Note that Validity1 is equivalent to the validity condition of CPA-1-sided security.
Hence, the lemma follows by leveraging an identical argument to that of the CPA-1-sided case
(Appendix E.5).

Lemma 15. If PE is CPA-2-sided secure without collusions (Definition 9) and LOBF is secure
(Definition 2), then∣∣∣∣P[G(n−1)-CPA-2-iPE

Π,A (λ) = 1 ∧ |QKGen| = 1
∣∣∣Validity2

]
− 1

2

∣∣∣∣ ≤ negl(λ).

87

Proof. Let P∗ ∈ QKGen and ((x01, . . . , x
0
n), (x

1
1, . . . , x

1
n)) be the predicate submitted to the oracle

KGen and the challenge inputs chosen by the adversary, respectively. Despite P∗ is chosen
adaptively, we assume that the values {zi}i∈[n] such that P∗i (x0i) = P∗i (x1i) = zi are known
before the challenge phase. Indeed, {zi}i∈[n] can be guessed with non-negligible probability
since n = O(1).

Consider the following hybrid experiments:

Hb,0
0 (λ): This is exactly the experiment G

(n−1)-CPA-2-iPE
Π,A (λ) conditioned to the event Validity2

where the challenge bit is b.

Hb,i
0 (λ) for i ∈ [n]: Same as Hb,i−1

0 , except that the challenger changes how it computes the
challenge ciphertext ci with respect to zi. If zi = 0 (i.e., P∗i (x0i) = P∗i (x1i) = 0), the value

c
(0)
i is computed as c

(0)
i ←$ Enc1(mpk, (x1, . . . , xn), 0

s3(λ)+s4(λ)) where xi = x0i , and xj = x⋆j

for j ∈ [n]\{i}. Otherwise, if zi = 1 (i.e., P∗i (x0i) = P∗i (x1i) = 1), the value c
(0)
i is computed

as c
(0)
i ←$ Enc1(mpk, (x1, . . . , xn), (y

in
i , y

out
1)) where (yini , y

out
i)←$ {0, 1}s3(λ)+s4(λ), xi = x0i ,

and xj = x⋆j for j ∈ [n] \ {i}. Observe that c
(0)
i is computed by fixing xi = x0i (instead of

xi = xbi), i.e., the input (x1, . . . , xn) used to compute the i-th challenge ciphertext is fixed
and does not depend on the challenge bit b.

Hb,0
1 (λ): Identical to Hb,n

1 (λ).

Hb,i
1 (λ) for i ∈ [n]: Same as Hb,i−1

1 , except that the challenger changes how it computes the
challenger ciphertext ci with respect to zi. If zi = 0 (i.e., P∗i (x0i) = P∗i (x1i) = 0), the

value C̃out
i of challenge ciphertext ci = (C̃in

i , C̃out
i) is simulated by the challenger using the

simulator of the lockable obfuscation scheme LOBF4, i.e., C̃out
i ←$ Sim4(1

λ, 1|V
out
i |, 1|m

b
i |)

where Vout
i = Cout

c
(n)
i ,ski,i

. Otherwise, if zi = 1 (i.e., P∗i (x0i) = P∗i (x1i) = 1), the value C̃out
i is

computed as in Hb,0
1 (λ).

We can prove that the indistinguishability of the above hybrids by leveraging similar techniques
to that of Appendices E.4 and E.5.

Claim 47. Hb,i−1
0 (λ) ≈c H

b,i
0 (λ) for i ∈ [n].

Proof. Note that the values {zi}i∈[n] (i.e., P∗i (x0i) = P∗i (x1i) = zi), can be correctly guessed with
non-negligible probability since n = O(1). Conditioned to the above, the claim follows from the
CPA-2-sided security of PE.

Claim 48. Hb,i−1
1 (λ) ≈c H

b,i
1 (λ) for i ∈ [n].

Proof. As usual, the values {zi}i∈[n] (i.e., P∗i (x0i) = P∗i (x1i) = zi), can be correctly guessed with
non-negligible probability since n = O(1). Conditioned to the above, the claim follows from the
security of the lockable obfuscation scheme LOBF4.

Claim 49. Hb,n
1 (λ) ≡ H1−b,n

1 (λ).

Proof. The claim follows by leveraging the validity condition Validity2 and observing that
the values {zi}i∈[n] (i.e., P∗i (x0i) = P∗i (x1i) = zi), can be correctly guessed with non-negligible
probability since n = O(1). Conditioned to the above, for every i ∈ [n], if P∗i (x0i) = P∗i (x1i) =
zi = 0 we have that the j-th challenge ciphertext cj does not depend on the bit b. On the other
hand, if P∗i (x0i) = P∗i (x1i) = zi = 1, we have that the j-th challenge ciphertext cj depends on
either m0

j or m1
j . However, by the validity condition Validity2 we have that m0

j = m1
j . Hence,

Hb,n
1 (λ) and H1−b,n

1 (λ) are identically distributed. This concludes the proof.

88

By combining Claims 47 to 49 and conditioned to the event Validity2, we conclude that
H0,0

0 ≈c . . . ≈c H
0,n
0 ≡ H0,0

1 ≈c . . . ≈c H
0,n
1 ≡ H1,n

1 . This concludes the proof.

By leveraging Lemmas 14 and 15, we conclude that Π of Construction 3 is CPA-2-sided
secure.

89

	Introduction
	Our Contributions
	Technical Overview
	Applications
	Relation with Witness Encryption

	Related Work
	Preliminaries
	Notation
	Lockable Obfuscation
	Symmetric and Public Key Encryption
	Predicate Encryption

	Multi-key and Multi-input Predicate Encryption
	Multi-key PE
	Multi-input PE

	Constructions
	Multi-key PE from PE and Lockable Obfuscation
	Multi-input PE from PE, Lockable Obfuscation and SKE/PKE

	Matchmaking Encryption
	Security of ME
	ME from 2-Key PE

	Non-Interactive Multi Party Computation (with Correlated Randomness)
	Security of CPA-1-sided reusable k-robust NI-MPC for all-or-nothing functions
	NI-MPC for all-or-nothing functions from multi-input PE

	Relating Multi-key PE and Multi-input PE
	Multi-input PE in the -Hybrid Setting
	Multi-key PE from Multi-input PE

	Relating Multi-key ABE and Multi-input ABE
	Missing Proofs
	Proof of thm:multi-key-pe-security (CPA-1-sided security of)
	Proof of thm:multi-key-pe-security (CPA-2-sided security of)
	Proof of thm:n-multi-PE-security-wildcard (CPA-1-sided security of)
	Proof of thm:n-multi-PE-security-wildcard (CPA-2-sided security of for n=O(()))
	Proof of thm:n-client-PE-security (CPA-1-sided security of)
	Proof of thm:n-client-PE-security (CPA-2-sided security of)

