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Abstract. Designing symmetric ciphers for particular applications be-
comes a hot topic. At EUROCRYPT 2020, Naito, Sasaki and Sugawara
invented the threshold implementation friendly cipher SKINNYe-64-256
to meet the requirement of the authenticated encryption PFB_Plus.
Soon, Thomas Peyrin pointed out that SKINNYe-64-256 may lose the
security expectation due the new tweakey schedule. Although the se-
curity issue of SKINNYe-64-256 is still unclear, Naito et al. decided to
introduce SKINNYe-64-256 v2 as a response.
In this paper, we give a formal cryptanalysis on the new tweakey sched-
ule of SKINNYe-64-256 and discover unexpected differential cancellations
in the tweakey schedule. For example, we find the number of cancella-
tions can be up to 8 within 30 consecutive rounds, which is significantly
larger than the expected 3 cancellations. Moreover, we take our new dis-
coveries into rectangle, MITM and impossible differential attacks, and
adapt the corresponding automatic tools with new constraints from our
discoveries. Finally, we find a 41-round related-tweakey rectangle attack
on SKINNYe-64-256 and leave a security margin of 3 rounds only.
As STK accepts arbitrary tweakey size, but SKINNY and SKINNYe-64-256
v2 only support up to 4n tweakey size. We introduce a new design of
tweakey schedule for SKINNY-64 to further extend the supported tweakey
size. We give a formal proof that our new tweakey schedule inherits the
security requirement of STK and SKINNY. We also discuss possible ways
to extend the tweakey size for SKINNY-128.

Keywords: SKINNY· TWEAKEY · Rectangle · Meet-in-the-middle · Im-
possible differential

1 Introduction
The design of symmetric cryptographic constructions for important security
goals and practical applications becomes more and more popular. Typical al-



2 Qin et al.

gorithms including LowMC [3], MiMC [2], etc., provide efficient implementation for
multi-party secure computing (MPC), fully homomorphic encryption (FHE),
and zero-knowledge proofs (ZK). Another important topic is to design sym-
metric ciphers that can be efficiently implemented against side-channel attacks
[30,14,49], especially because NIST lightweight cryptography competition op-
tionally takes into account the security of the cryptographic modules against
side-channel attack (SCA). Masking is by far the most common countermeasure
against SCA [42,54]. Threshold implementation (TI) introduced by Nikova et
al. [54] is a masking particularly popular for hardware implementation. Several
TI-friendly Sboxes [15,38] are proposed. At TCHES 2020, Naito and Sugawara
[53] discovered that for recently ciphers such as SKINNY [10] and GIFT [7], the
complexity of TI for the linear key schedule function is significantly smaller than
the nonlinear round function. With this asymmetry, Naito and Sugawara [53]
proposed a TBC-based scheme PFB which is particularly efficient with TI. To
further exploit this asymmetry, at EUROCRYPT 2020, Naito, Sasaki and Sug-
awara [50] invented tweakable block cipher (TBC) based AE modes PFB_Plus,
PFBw, as well as a new TBC, i.e. SKINNYe-64-256, which are very efficient in
threshold implementations.

At ASIACRYPT 2014, Jean, Nikolić and Peyrin introduced the TWEAKEY
framework [44] with the goal to unify the design of tweakable block ciphers and
allow to build a primitive with arbitrary tweak and key sizes. It treats the key in-
put and the tweak input in the same way as the tweakey. Towards simplifying the
security analysis when the tweakey size is large, Jean et al. identified a subclass
of TWEAKEY, named as STK construction, which updates the round tweakey by
the use of finite field multiplications on low hamming weight constants. SKINNY
[10] is a well-known lightweight block cipher family proposed by Beierle et al.
at CRYPTO 2016, which follows closely the STK construction [44]. However, in-
stead of using multiplications by non-zero constants in a finite field adopted by
STK construction, SKINNY updates the tweakey cells by the cheap 4-bit or 8-bit
LFSRs (depending on the size of the cell) to minimize the hardware cost, while
maintaining the cancellation behavior required by the STK construction: for a
given position, z − 1 cancellations can only happen every 15 rounds for TK-z6.

As a concrete STK-like design, SKINNY only supports TK-1/-2/-3, while for
STK construction, the size of tweakey can be of arbitrary length. However, in
practical applications, tweakable block ciphers with large tweakeys may be re-
quired, such as the TI-friendly AE modes PFB_Plus and PFBw proposed by
Naito, Sasaki and Sugawara [50]. Without TK-4 available for SKINNY, Naito et
al. decided to build the SKINNYe-64-256 to support zn = 4n tweakey with
n = 64. In order to inherit the numerous cryptanalytic efforts on SKINNY-64
[39,33,48,5,32,55,26], SKINNYe-64-256 does not modify any components to real-
ize TK1, TK2, and TK3, and only find a new LFSR for updating TK4. With the
expectation of keeping a similar security margin with 36-round SKINNY-64-128
and 40-round SKINNY-64-192, the authors decided to keep the same rate for
increasing the number of rounds, namely 44 rounds for SKINNYe-64-256. How-

6 For TK-z, if the size of internal state is n, the size of tweakey will be zn.
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ever, Thomas Peyrin found that the security claim of SKINNYe-64-256 may not
hold due to the tweakey schedule. Although the authors of SKINNYe-64-256
were unclear whether this issue causes some attacks against the whole cipher
[52, Section 7], they proposed an updated version of SKINNYe-64-256, named as
SKINNYe-64-256 v2 in Eprint 2020/542 [52].

Our Contributions. In this paper, we try to clarify the security issue of
SKINNYe-64-256 [50] by delving into its new tweakey schedule. There are some
previous works considered the relations of keys, such as the key-bridging tech-
nique [35,28]. The relations of subtweakeys for SKINNY and SKINNYe-64-256 are
mostly dependent on the LFSRm updating the cells of the tweakey states. For
LFSR2 used for TK2 and LFSR4 used for TK4 of SKINNYe-64-256, both of
them shift the 4-bit input to the left by 1 bit, while LFSR2 updates 1 output
bit with 1 XOR and LFSR4 updates 2 output bits with 3 XORs. Suppose for a
given cell of TK2 and TK4 with the initial value 0x8, then apply LFSR2 and
LFSR4 respectively to the given cell for 14 times and we get two sequences, i.e.,

[0x8, 0x1, 0x2, 0x4, 0x9, 0x3, 0x6, 0xd, 0xa, 0x5, 0xb, 0x7, 0xf, 0xe, 0xc],
[0x8, 0x1, 0x2, 0x5, 0x9, 0x3, 0x7, 0xc, 0xa, 0x4, 0xb, 0x6, 0xe, 0xf, 0xd].

For example, run LFSR2 or LFSR4 on 0x8 for 3 times, we get LFSR3
2(0x8)=0x4

and LFSR3
4(0x8)=0x5, respectively. Intuitively, the longest common subsequence

of the two sequences is [0x8,0x1,0x2,0x9,0x3,0xa,0xb] which is highlighted
with underlines. In other words, when the initial values (or differences) for a
given cell position of TK2 and TK4 are 0x8 and TK1 and TK3 are set to 0x0,
the difference cancellations can happen 7 times within 15 LFSR applications.

In order to further clarify the cancellation property of the new tweakey sched-
ule, we give a formal analysis of relations of subtweakeys. Since the tweakey
schedule of SKINNYe-64-256 is linear, each cell of subtweakeys can be derived
via multiplying some cells of the master tweakeys by certain binary matrix A,
which is determined by cell updating functions, i.e., LFSRs. The differential can-
cellation behavior means active input leads to zero output by multiplying A. We
analyze the properties of matrix A, especially for the influence of its rank on
the cancellations in the differential-like distinguishers, as well as the subtweakey
guessing strategy in the key-recovery phase. For the differential cancellation be-
havior, we find the number of cancellations can be up to 8 within 30 consecutive
rounds for SKINNYe-64-256 (a cell is updated by LFSR in every two rounds
in SKINNY), which is significantly larger than the expected 3 cancellations. By
exploring the properties of A in rectangle attack, meet-in-the-middle (MITM)
attack and impossible differential attack, we discover unexpected distinguishers
or key-recovery attacks:

– Related-tweakey rectangle attacks. The properties can not only extend
the rectangle distinguisher significantly, but also improve the key-recovery
phase. At EUROCRYPT 2022, Dong et al. [32] introduced the attacks on the
25-round SKINNY-64-128 with an 18-round distinguisher as well as the 31-
round SKINNY-64-192 with a 22-round distinguisher. With our discoveries
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on SKINNYe-64-256, we find a 30-round rectangle distinguisher, where the
gap between SKINNY-64-192 and SKINNYe-64-256 is significantly increased
to 30-22=8 rounds comparing to 22-18=4 rounds between SKINNY-64-128
and SKINNY-64-192. Moreover, in the key-recovery phase, we explore the key
relations in detail with the help of matrix A, and finally perform a 41-round
key-recovery attack on SKINNYe-64-256.
In order to find the optimal configurations of the rectangle attack, we tweak
Dong et al.’s automatic model by applying the properties of the new tweakey
schedule into the model. Our attack leaves only a 3-round security margin for
SKINNYe-64-256, which is significantly reduced comparing to the 11-round
and 9-round security margins for SKINNY-64-128 and SKINNY-64-192.

– MITM attacks in single-tweakey setting. Not only the differential can-
cellation property can be used to improve attacks, but also the non-full rank
property of A. The MITM attack explores two independent chunks that
overlap in a match point. Suppose A is of non-full rank, we compute the
solution space of Ax = c for given vector c. In SKINNYe-64-256, x is the
master tweakey bits and c is the subtweakey bits that will XORed into the
internal state. Denote solution set as {x : Ax = c}, if it is not empty, then
its size will be |{x : Ax = c}| > 1 due to non-full rank property of A. In the
MITM, those x ∈ {x : Ax = c} will have the same effect on the internal
states, i.e., the vector c. When building independent forward and backward
chunks in MITM, we may prefix c and c′ for these two chunks, then the
values in {x : Ax = c} and {y : A′y = c′} will have independent effects.
We adapt the previous automatic tools [8,31] for MITM attacks by tak-
ing the non-full rank properties of A into the model. Finally, we find 31-
round MITM attack on SKINNYe-64-256, while previous MITM attacks on
SKINNY-64-128 and SKINNY-64-192 reach 18 and 23 rounds, respectively. In
other words, the gaps of the attacked rounds increase from 23-18=5 rounds
between SKINNY-64-128 and SKINNY-64-192 to currently 31-23=8 rounds
between SKINNY-64-192 and SKINNYe-64-256.

– Related-tweakey impossible differential attack. With the differen-
tial cancellation properties, we find a 21-round impossible differential for
SKINNYe-64-256 based on a cancellation pattern, while previous impossible
differential reaches 16 rounds [48] for SKINNY-64-192 and 15 rounds [57] for
SKINNY-64-128, respectively.

Our cryptanalysis proves that SKINNYe-64-256 does not keep a similar security
margin to SKINNY-64-128 and SKINNY-64-192 as expected by the designers.
The non-trivial properties of the new tweakey schedule can be used to improve
the attacks from the distinguishers to key-recovery.

In addition, we also analyze the updated version, i.e., SKINNYe-64-256 v2
[52], and obtain a 37-round related-tweakey rectangle attack, a 27-round MITM
attack, as well as an 18-round impossible differential. Comparing to the attacks
on SKINNY-64-128 and SKINNY-64-192, the attacked rounds on SKINNYe-64-256
v2 keep the same rate as expected by the designers. We summarize results on
SKINNY-64 and SKINNYe-64-256 and its version 2 in Table 1 and Table 2.
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Table 1: Rectangle attacks on SKINNY-64 and SKINNYe-64-256 and its version 2
Version Rounds Data Time Memory Distinguisher Setting Ref.

SKINNY-64-128
23/36 260.54 2120.7 260.9 19 RK [39]
24/36 261.67 296.83 284 18 RK [55]
25/36 261.67 2118.43 264.26 18 RK [32]

SKINNY-64-192
29/40 262.92 2181.7 280 23 RK [39]
30/40 262.87 2163.11 268.05 22 RK [55]
31/40 262.78 2182.07 262.79 22 RK [32]

SKINNYe-64-256 41/44 262.24 2237.06 262.26 30 RK Sect. 4.3

SKINNYe-64-256 v2 37/44 262.8 2240.03 262.8 26 RK Sect. C.2

Table 2: MITM attacks on SKINNY-64 and SKINNYe-64-256 and its version 2
Version Rounds Data Time Memory Approach Setting Ref.

SKINNY-64-128 18/36 216 2124 24 MITM SK [41]

SKINNY-64-192 23/40 252 2188 24 MITM SK [31]

SKINNYe-64-256 31/44 252 2254 252 MITM SK Sect. D.3

SKINNYe-64-256 v2 27/44 252 2252 252 MITM SK Sect. D.4

Note that STK construction supports arbitrary length of tweakey, but SKINNY
and SKINNYe-64-256 v2 supports upto 4n-bit tweakey. As stated in [50, Page
5]: “... there is no consensus about the adequate tweak size to support”. SKINNY
with larger tweakey size may be useful in future applications, such as the TI-
friendly AE modes PFB_Plus and PFBw with SKINNYe-64-256 v2. Therefore,
as another contribution, we propose a uniformed design strategy for tweakey
schedule of SKINNY-n-zn for positive integer z ≤ 14. Our uniformed tweakey
schedule satisfies the security requirements of the STK construction with a formal
proof. Interestingly, our schedule will be reduced to SKINNY-64 when z = 1, 2, 3,
and to SKINNYe-64-256 v2 when z = 4. In addition, we also discuss possible
ways to extend the tweakey size for SKINNY-128.

2 Preliminaries

2.1 The TWEAKEY Framework

At ASIACRYPT 2014, Jean et al. [44] proposed a generic framework for tweak-
able block ciphers, named as the TWEAKEY framework. They consider the tweak
and key inputs in a unified manner, i.e., tweakey, that can be used to design a
tweakable block cipher with any key and any tweak sizes. The TWEAKEY frame-
work uses the tweakey scheduling algorithm. The ciphertext is computed from
the plaintext by applying the permutation f iteratively. Each round is composed
of three parts, a sub-tweakey extraction function g from the tweakey state, an
internal update permutation f and a tweakey state update function h. Based on
the TWEAKEY framework, many designs of tweakable block ciphers are proposed,
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including Deoxys [45], SKINNY [10], and CRAFT [13], etc. Moreover, Jean et al.
identified a subclass of tweakey for AES-like ciphers named as Superposition
TWEAKEY (STK) construction shown in Figure 1. In the STK construction, the n-
bit internal state and zn-bit tweakey state (denoted as TK-z) are partitioned into
n/c and zn/c c-bit cells respectively. The functions g and h become:

– the function g simply XORs all the z n-bit words of the tweakey state to the
internal state (AddRoundTweakey, denoted ART).

– the function h first applies the same cell position permutation function P
to each of the z n-bit words of the tweakey state, and then multiply each
c-bit cell of the j-th n-bit word by a nonzero coefficient αj in the finite field
GF (2c) (with αi ̸= αj for all 1 ≤ i ̸= j ≤ z).

P

P

...

P

α1

α2

αz

XOR C0

ART

f

P

P

...

P

α1

α2
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XOR C1
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. . .

. . .
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f

P

P
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P
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α2

αz

XOR Cr

ART

Fig. 1: The STK [44]. (Thanks to https://www.iacr.org/authors/tikz/)

2.2 SKINNY family and SKINNYe-64-256

SKINNY is a family of lightweight block cipher proposed by Beierle et al. at
CRYPTO 2016 [10]. Following the TWEAKEY framework and STK construction
[44], the round function of SKINNY that replaces the f function of STK in Figure
1 is given in Figure 2. There are six main versions SKINNY-n-zn: n = 64, 128, z =
1, 2, 3. The internal state is viewed as a 4×4 square arrays of cells. The tweakey
state is viewed as z 4× 4 square arrays of cells, denoted as (TK1) when z = 1,
(TK1, TK2) when z = 2, and (TK1, TK2, TK3) when z = 3. Denote the i-th cell
of TKm as TKm,i (1 ≤ m ≤ z, 0 ≤ i ≤ 15). An important difference between
the STK construction [44] and SKINNY is that in the tweakey schedule the cells
of the tweakey are updated by LFSRs for SKINNY instead of multiplying αj . As
shown in Figure 2, the round function applies 5 transformations: SubCells (SC),
AddConstants (AC), AddRoundTweakey (ART), ShiftRows (SR) and MixColumns
(MC). For the details, please refer to [10].

For the block size n = 64, SKINNY supports the tweakey sizes up to 192 bits.
At EUROCRYPT 2020, to support the TI-friendly AE modes PFB_Plus and
PFBw, Naito, Sasaki, and Sugawara [50] extended the design of SKINNY-64 to
support a 256-bit tweakey and derived SKINNYe-64-256, which applies the same
round function of SKINNY but a new tweakey schedule. However, Thomas Peyrin
found that the security claim of SKINNYe-64-256 may not hold due to the new

https://www.iacr.org/authors/tikz/
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Fig. 2: Round function of SKINNY

tweakey schedule. In response, Naito et al. decided to propose an updated version
of SKINNYe-64-256, i.e., SKINNYe-64-256 v2 in Eprint 2020/542 [52].

New Tweakey Schedule. The 256-bit tweakey state is viewed as 4 4 × 4
square arrays of nibbles as (TK1, TK2, TK3, TK4). Denote the tweakey arrays
as TK

(r)
1 , TK(r)

2 , TK(r)
3 and TK

(r)
4 in round r (r ≥ 0), where TK

(0)
m = TKm

(1 ≤ m ≤ 4). For r ≥ 1, TK(r)
m is generated in two steps.

First, apply the permutation P = [9, 15, 8, 13, 10, 14, 12, 11, 0, 1, 2, 3, 4, 5, 6, 7]
on each nibble of all tweakey arrays:

TK
(r)
m,i ← TK

(r−1)
m,P [i], 1 ≤ m ≤ 4, 0 ≤ i ≤ 15, r ≥ 1. (1)

Then, apply LFSRm to update each nibble of the first and second rows of
TK

(r)
m with 2 ≤ m ≤ 4. The LFSR for TK

(r)
4 used in SKINNYe-64-256 and

SKINNYe-64-256 v2 is different. The LFSRs are given in Table 3.

Table 3: The LFSRs used in SKINNYe-64-256 and SKINNYe-64-256 v2
TK LFSRs
TK2 (x3∥x2∥x1∥x0) → (x2∥x1∥x0∥x3 ⊕ x2)
TK3 (x3∥x2∥x1∥x0) → (x0 ⊕ x3∥x3∥x2∥x1)
TK4 (x3∥x2∥x1∥x0) → (x2∥x1∥x2 ⊕ x0∥x3 ⊕ x2 ⊕ x1)
TK4 v2 (x3∥x2∥x1∥x0) → (x1∥x0∥x3 ⊕ x2∥x2 ⊕ x1)

In the ART operation, only the first two rows of subtweakey STK(r) are xored
to the internal state, where

STK
(r)
i = TK

(r)
1,i ⊕ TK

(r)
2,i ⊕ TK

(r)
3,i ⊕ TK

(r)
4,i , 0 ≤ i ≤ 7, r ≥ 0. (2)

Lemma 1. For any given SKINNY S-box S and any two non-zero differences δin
and δout, the equation Si(y)⊕ Si(y ⊕ δin) = δout has one solution on average.
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3 Properties of the Tweakey Schedule of SKINNYe-64-256

In round r ≥ 0, each of the 64-bit tweakey TK
(r)
m ( 1 ≤ m ≤ 4) of SKINNYe-64-256

can be represented as a 4× 16 binary matrix TK
(r)
m (1 ≤ m ≤ 4, r ≥ 0) as

TK(r)
m =


x
(r)
m,0 x

(r)
m,4, . . . , x

(r)
m,60

x
(r)
m,1 x

(r)
m,5, . . . , x

(r)
m,61

x
(r)
m,2 x

(r)
m,6, . . . , x

(r)
m,62

x
(r)
m,3 x

(r)
m,7, . . . , x

(r)
m,63

 ,

with x
(r)
m,j ∈ {0, 1} (0 ≤ j ≤ 63). Denote TK

(r)
m [∗, i] as the i-th column of the

binary matrix TK
(r)
m . Then TK

(r)
m [∗, i] is actually the i-th nibble of TK(r)

m , i.e.,
TK

(r)
m,i (0 ≤ i ≤ 15), which is denoted as a binary vector tk

(r)
m,i ∈ F4

2,

tk
(r)
m,i = [x

(r)
m,4i, x

(r)
m,4i+1, x

(r)
m,4i+2, x

(r)
m,4i+3]

T , 0 ≤ i ≤ 15, 1 ≤ m ≤ 4, r ≥ 0.

Since TK
(0)
m = TKm, we also write tk

(0)
m,i = [xm,4i, xm,4i+1, xm,4i+2, xm,4i+3]

T

for simplicity. We can deduce the relations between the subtweakeys transformed
from the same nibble of the master tweakey. For TK1, only the permutation P
is applied in each round. Assume P r means to apply the permutation P for r

times. We have tk
(r)
1,i = tk

(0)
1,P r[i], 0 ≤ i ≤ 15.

For TK2, TK3 and TK4, after applying the permutation, a LFSR is applied
to update each cell of the 1st and 2nd rows in each round, which is equivalent
to multiplying the cell by a 4 × 4 binary matrix. For SKINNYe-64-256 and its
version 2, the LFSRs used for TK2 and TK3 are the same, whose corresponding
matrices are denoted as L2 and L3. The LFSRs used in TK4 for SKINNYe-64-256
and version 2 are different, which are denoted as L4 and L̃4. We have

L2 =


0 1 0 0
0 0 1 0
0 0 0 1
1 1 0 0

 , L3 =


1 0 0 1
1 0 0 0
0 1 0 0
0 0 1 0

 , L4 =


0 1 0 0
0 0 1 0
0 1 0 1
1 1 1 0

 , L̃4 =


0 0 1 0
0 0 0 1
1 1 0 0
0 1 1 0

 .

Since only the first two rows of subtweakey are XORed to the internal state,
the tweakey cells involved in the r-th round encryption will be involved again in
the (r+2)-th round according to P = [9, 15, 8, 13, 10, 14, 12, 11, 0, 1, 2, 3, 4, 5, 6, 7].
For simplicity, we first consider the formulas of subtweakeys for SKINNYe-64-256,
and for version 2, the formulas are different only for TK4. Assume Li

m repre-
sents the i-th power of matrix Lm in GF (2) and L0

m = I (2 ≤ m ≤ 4). Note
that the LFSRs for TK2 and TK3 in SKINNY and the new LFSR for TK4 in
SKINNYe-64-256 have the same cycle of 15, which lead to L15

m = I (2 ≤ m ≤ 4).
For SKINNYe-64-256 v2, although the update function for TK4 is not a LFSR,
it also has a cycle of 15, i.e., L̃15

4 = I. In the tweakey schedule, for each nibble
of TK(r)

m , the LFSR is applied in every two rounds, we deduce: ∀m ∈ {2, 3, 4},tk
(r)
m,i = L⌈r/2⌉

m · tk(0)
m,P r[i], 0 ≤ i ≤ 7,

tk
(r)
m,i = L⌊r/2⌋

m · tk(0)
m,P r[i], 8 ≤ i ≤ 15.
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Denote the nibble STK(r)
i (0 ≤ i ≤ 7) as a binary vector stk(r)

i = (y
(r)
4i , y

(r)
4i+1,

y
(r)
4i+2, y

(r)
4i+3)

T . Then we obtain stk
(r)
i =

⊕4
m=1 tk

(r)
m,i for 0 ≤ i ≤ 7. Considering

subtweakey cells stk
(r)
i derived from master tweakey, we get

stk
(r)
i = [I L

⌈r/2⌉
2 L

⌈r/2⌉
3 L

⌈r/2⌉
4 ] ·

(
tk

(0)

1,Pr [i], tk
(0)

2,Pr [i], tk
(0)

3,Pr [i], tk
(0)

4,Pr [i]

)T

. (3)

Without losing generality, we analyze the subtweakeys in the even rounds,
which are all transformed from the first two rows of master tweakeys. Let
P̄ = [8, 9, 10, 11, 12, 13, 14, 15, 2, 0, 4, 7, 6, 3, 5, 1] be the inverse permutation of
P . For a set Index = {r1, · · · , rt} (|Index| = t), which corresponding to a set
of subtweakeys {STK(2r1), STK(2r2) · · · , STK(2rt)}, we can get a set of linear
equations as 

stk
(2r1)

P̄2r1 [i]

stk
(2r2)

P̄2r2 [i]

...
stk

(2rt)

P̄2rt [i]

 =


I Lr1

2 Lr1
3 Lr1

4

I Lr2
2 Lr2

3 Lr2
4

...
...

...
...

I Lrt
2 Lrt

3 Lrt
4

 ·

tk

(0)
1,i

tk
(0)
2,i

tk
(0)
3,i

tk
(0)
4,i

 , 0 ≤ i ≤ 7. (4)

Because the tweakey schedule only contains the permutation and LFSRs,
Equation (4) is linear equation. Denote coefficient matrix as A and its rank as
rank(A) = a. The image space of A represents the solution space of {STK(2r1)

P̄ 2r1 [i]
,

STK
(2r2)

P̄ 2r2 [i]
· · · , STK(2rt)

P̄ 2rt [i]
} with arbitrary {tk(0)

1,i , tk
(0)
2,i , tk

(0)
3,i , tk

(0)
4,i }, whose size

is |Im(A)| = 2a. Let the kernel space of A be Ker(A) = {x ∈ F4t
2 : Ax = 0},

then the size of the kernel space is |Ker(A)| = 216−a. For example, assuming
Index = {0, 1, 2, 3}, we can obtain the equations of {STK(0), STK(2), STK(4),
STK(6)} as Equation (4). For i = 0, there is


stk

(0)
0

stk
(2)
2

stk
(4)
4

stk
(6)
6

 =


I L0

2 L0
3 L0

4

I L1
2 L1

3 L1
4

I L2
2 L2

3 L2
4

I L3
2 L3

3 L3
4



tk

(0)
1,0

tk
(0)
2,0

tk
(0)
3,0

tk
(0)
4,0

 =



1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0
0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0
0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0
0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1
1 0 0 0 0 1 0 0 1 0 0 1 0 1 0 0
0 1 0 0 0 0 1 0 1 0 0 0 0 0 1 0
0 0 1 0 0 0 0 1 0 1 0 0 0 1 0 1
0 0 0 1 1 1 0 0 0 0 1 0 1 1 1 0
1 0 0 0 0 0 1 0 1 0 1 1 0 0 1 0
0 1 0 0 0 0 0 1 1 0 0 1 0 1 0 1
0 0 1 0 1 1 0 0 1 0 0 0 1 1 0 0
0 0 0 1 0 1 1 0 0 1 0 0 0 0 1 1
1 0 0 0 0 0 0 1 1 1 1 1 0 1 0 1
0 1 0 0 1 1 0 0 1 0 1 1 1 1 0 0
0 0 1 0 0 1 1 0 1 0 0 1 0 1 1 0
0 0 0 1 0 0 1 1 1 0 0 0 1 0 1 1





x1,0

x1,1

x1,2

x1,3

x2,0

x2,1

x2,2

x2,3

x3,0

x3,1

x3,2

x3,3

x4,0

x4,1

x4,2

x4,3



. (5)

The rank of the coefficient matrix A in Equation (5) is 14. Therefore, the size
of its kernel space and image space is |Ker(A)| = 22 and |Im(A)| = 214.

Let Arj = [I L
rj
2 L

rj
3 L

rj
4 ], which is a 4 × 16 matrix. Then the coefficient

matrix of Equation (4) can be represented as A{r1,r2,··· ,rt} = [AT
r1 A

T
r2 · · · A

T
rt ]

T ,
which is a 4t × 16 matrix. Since L15

i = I for 2 ≤ i ≤ 4, we can assume that all
subscripts of A{r1,r2,··· ,rt} are mod 15. We call A{r1,r2,··· ,rt} a full rank matrix if
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and only if rank(A{r1,r2,··· ,rt}) = min{4t, 16}. We find that when t ≥ 4, certain
sets of Index lead to non-full rank coefficient matrices. Let K = {0, 1, 2, · · · , 14},
for any subset {r1, r2, · · · , rt} ⊂ K and 0 ≤ r′ ≤ 14, we have

A{r1+r′,r2+r′,··· ,rt+r′}

=


I Lr1+r′

2 Lr1+r′

3 Lr1+r′

4

I Lr2+r′

2 Lr2+r′

3 Lr2+r′

4
...

...
...

...
I Lrt+r′

2 Lrt+r′

3 Lrt+r′

4

 =


I Lr1

2 Lr1
3 Lr1

4

I Lr2
2 Lr2

3 Lr2
4

...
...

...
...

I Lrt
2 Lrt

3 Lrt
4

 ·

I

Lr′

2

Lr′

3

Lr′

4


= A{r1,r2,··· ,rt} · diag(I,L

r′

2 ,Lr′

3 Lr′

4 ).

(6)

Since L2, L3 and L4 are all 4× 4 full rank matrices, Dr′ = diag(I,Lr′

2 ,Lr′

3 Lr′

4 )
is a 16× 16 full rank matrix. Then we can deduce that

rank(A{r1+r′,r2+r′,··· ,rt+r′}) = rank(A{r1,r2,··· ,rt}). (7)

Since the rank of the coefficient matrix is our most concern, we introduce the
concept of rank-equivalent as follows.

Definition 1 (rank-equivalent). Given two subsets x = {r1, r2, . . . , rt}, y =
{r′1, r′2, . . . , r′t} ⊂ K, we say x and y are rank-equivalent if there exits an integer
r′ such that

ri ≡ r′i + r′ mod 15 for all 1 ≤ i ≤ t.

The rank-equivalence class of the subset x is defined by

[x] := {y ⊂ K : x and y are rank-equivalent}.

From Eq. (7), rank(Ax) = rank(Ay) holds for any rank-equivalent subsets x
and y.

For SKINNYe-64-256, we compute all the rank-equivalence classes whose cor-
responding coefficient matrix is non-full rank with Algorithm 1 in Supplementary
Material A and list the results in Table 4.

Similarly, for SKINNYe-64-256 v2, we set Ãrj = [I L
rj
2 L

rj
3 L̃

rj
4 ], which is also

a 4× 16 matrix. Then the coefficient matrix of Equation (4) can be represented
as Ã{r1,r2,··· ,rt} = [ÃT

r1 ÃT
r2 · · · Ã

T
rt ]

T , which is a 4t× 16 matrix. For arbitrary
{r1, r2, · · · , rt} ⊂ K, the matrix Ã{r1,r2,··· ,rt} is full rank. That is, when t ≤ 4,
the rank of Ã{r1,r2,··· ,rt} is 4t, otherwise the rank is 16.

The Subtweakey Difference Cancellations. For a given active tweakey cell,
z − 1 subtweakey difference cancellation happens every 30 rounds for SKINNY-
n-zn [10] with z = 2, 3. However, for SKINNYe-64-256, although z = 4, we
have more cancellations than z − 1 = 3. Since the tweakey schedule is lin-
ear, the differences of subtweakeys can be computed by the differences injected
in the master tweakey with Equation (4). Assume that there is at least one
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Table 4: Rank-equivalence class of non-full rank coefficient matrix for
SKINNYe-64-256
rank t Rank-equivalence class [{r1, r2, · · · , rt}]
14 4 [{0,1,2,3}],[{0,1,2,10}],[{0,1,3,4}],[{0,1,3,7}],[{0,1,3,13}],[{0,1,4,5}],[{0,1,4,12}],

[{0,1,5,6}],[{0,1,5,8}],[{0,1,5,11}],[{0,1,6,7}],[{0,1,6,10}],[{0,1,6,12}],[{0,1,7,8}],
[{0,1,7,9}],[{0,1,11,13}],[{0,2,4,6}],[{0,2,5,7}],[{0,2,5,12}],[{0,2,6,8}],[{0,2,6,11}],
[{0,2,7,9}],[{0,2,7,10}],[{0,2,7,11}],[{0,2,9,12}],[{0,3,6,9}],[{0,3,7,10}],[{0,3,7,11}]

15 4 [{0,1,2,4}],[{0,1,2,5}],[{0,1,2,6}],[{0,1,2,7}],[{0,1,2,8}],[{0,1,2,9}],[{0,1,2,11}],
[{0,1,2,12}],[{0,1,2,13}],[{0,1,3,5}],[{0,1,3,6}],[{0,1,3,8}],[{0,1,3,9}],[{0,1,3,10}],
[{0,1,3,11}],[{0,1,3,12}],[{0,1,4,6}],[{0,1,4,7}],[{0,1,4,8}],[{0,1,4,9}],[{0,1,4,10}],
[{0,1,4,11}],[{0,1,4,13}],[{0,1,5,7}],[{0,1,5,9}],[{0,1,5,10}],[{0,1,5,12}],[{0,1,5,13}],
[{0,1,6,8}],[{0,1,6,9}],[{0,1,6,11}],[{0,1,6,13}],[{0,1,7,10}],[{0,1,7,11}],[{0,1,7,12}],
[{0,1,7,13}],[{0,1,8,10}],[{0,1,8,11}],[{0,1,8,12}],[{0,1,8,13}],[{0,1,9,11}],[{0,1,9,12}],
[{0,1,9,13}],[{0,1,10,12}],[{0,1,10,13}],[{0,2,4,7}],[{0,2,4,8}],[{0,2,4,9}],[{0,2,4,10}],
[{0,2,4,11}],[{0,2,4,12}],[{0,2,5,8}],[{0,2,5,9}],[{0,2,5,10}],[{0,2,5,11}],[{0,2,6,9}],
[{0,2,6,10}],[{0,2,6,12}],[{0,2,7,12}],[{0,2,8,11}],[{0,2,8,12}],[{0,3,6,10}],[{0,3,6,11}]

5 [{0,1,2,3,7}],[{0,1,2,3,10}],[{0,1,2,3,11}],[{0,1,2,3,13}],[{0,1,2,4,5}],[{0,1,2,4,8}],
[{0,1,2,4,10}],[{0,1,2,5,8}],[{0,1,2,5,10}],[{0,1,2,6,9}],[{0,1,2,6,10}],[{0,1,2,6,12}],
[{0,1,2,7,10}],[{0,1,2,7,11}],[{0,1,2,7,13}],[{0,1,2,8,10}],[{0,1,2,9,10}],[{0,1,2,9,12}],
[{0,1,2,10,11}],[{0,1,2,10,12}],[{0,1,2,10,13}],[{0,1,2,11,13}],[{0,1,3,4,7}],[{0,1,3,4,9}],
[{0,1,3,5,6}],[{0,1,3,5,7}],[{0,1,3,5,8}],[{0,1,3,5,12}],[{0,1,3,6,7}],[{0,1,3,6,8}],
[{0,1,3,6,12}],[{0,1,3,7,8}],[{0,1,3,7,9}],[{0,1,3,7,10}],[{0,1,3,7,11}],[{0,1,3,7,12}],
[{0,1,3,7,13}],[{0,1,3,8,12}],[{0,1,3,10,11}],[{0,1,3,10,13}],[{0,1,3,11,13}],[{0,1,4,5,8}],
[{0,1,4,5,10}],[{0,1,4,6,11}],[{0,1,4,6,12}],[{0,1,4,6,13}],[{0,1,4,7,9}],[{0,1,4,8,10}],
[{0,1,4,11,13}],[{0,1,5,6,12}],[{0,1,5,7,8}],[{0,1,5,7,12}],[{0,1,5,8,9}],[{0,1,5,8,10}],
[{0,1,5,8,11}],[{0,1,5,8,12}],[{0,1,5,8,13}],[{0,1,5,9,11}],[{0,1,5,9,13}],[{0,1,5,11,13}],
[{0,1,6,7,12}],[{0,1,6,8,12}],[{0,1,6,9,12}],[{0,1,6,10,12}],[{0,1,6,11,13}],[{0,1,7,10,13}],
[{0,1,7,11,13}],[{0,1,8,11,13}],[{0,1,9,11,13}],[{0,2,4,6,11}],[{0,2,4,7,11}],[{0,2,4,8,10}],
[{0,2,4,9,12}],[{0,2,5,7,11}],[{0,2,5,8,10}],[{0,2,5,9,12}],[{0,2,6,9,12}]

6 [{0,1,2,3,7,10}],[{0,1,2,3,7,11}],[{0,1,2,3,7,13}],[{0,1,2,3,10,11}],[{0,1,2,3,10,13}],
[{0,1,2,3,11,13}],[{0,1,2,4,5,8}],[{0,1,2,4,5,10}],[{0,1,2,4,8,10}],[{0,1,2,5,8,10}],
[{0,1,2,6,9,10}],[{0,1,2,6,9,12}],[{0,1,2,6,10,12}],[{0,1,2,7,10,11}],[{0,1,2,7,10,13}],
[{0,1,2,7,11,13}],[{0,1,2,9,10,12}],[{0,1,2,10,11,13}],[{0,1,3,4,7,9}],[{0,1,3,5,6,8}],
[{0,1,3,5,6,12}],[{0,1,3,5,7,8}],[{0,1,3,5,7,12}],[{0,1,3,5,8,12}],[{0,1,3,6,7,12}],
[{0,1,3,6,8,12}],[{0,1,3,7,8,12}],[{0,1,3,7,10,11}],[{0,1,3,7,10,13}],[{0,1,3,7,11,13}],
[{0,1,4,5,8,10}],[{0,1,4,6,11,13}],[{0,1,5,7,8,12}],[{0,1,5,8,11,13}],[{0,1,5,9,11,13}]

7 [{0,1,2,3,7,10,11}],[{0,1,2,3,7,10,13}],[{0,1,2,3,7,11,13}],[{0,1,2,3,10,11,13}],
[{0,1,2,4,5,8,10}],[{0,1,2,6,9,10,12}],[{0,1,2,7,10,11,13}],[{0,1,3,5,6,8,12}],
[{0,1,3,5,7,8,12}]

8 [{0,1,2,3,7,10,11,13}]

1 ≤ m ≤ 4 that ∆TKm,i ̸= 0. Set A[{r1,r2,··· ,rt}] · [tk
(0)
1,i , tk

(0)
2,i , tk

(0)
3,i , tk

(0)
4,i ]

T = 0,
which means the subtweakey difference cancellations happen at {STK(2r1)

P̄ 2r1 [i]
· · · ,

STK
(2rt)

P̄ 2rt [i]
} if 0 ≤ i ≤ 7, or {STK(2r1+1)

P̄ 2r1+1[i]
· · · , STK

(2rt+1)

P̄ 2rt+1[i]
} if 8 ≤ i ≤

15. When rank(A[{r1,r2,··· ,rt}]) = 16, the size of its kernel space is 1. Then
[tk

(0)
1,i , tk

(0)
2,i , tk

(0)
3,i , tk

(0)
4,i ] has only one zero solution, which means ∆TKm,i = 0

for all m = 1, 2, 3, 4. When rank(A[{r1,r2,··· ,rt}]) < 16, we have non-zero solu-
tions for ∆TKm,i, i.e., the subtweakey difference cancellations happen. Obvi-
ously, when t ≤ 3, rank(A[{r1,r2,··· ,rt}]) = 4t ≤ 16. For t ≥ 4, we obtain all
rank-equivalence classes whose corresponding coefficient matrices are non-full
rank from Table 4. So each rank-equivalence class corresponds to a set of po-
sitions of the subtweakey difference cancellations. We find several properties of
the rank-equivalence classes:
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– When t = 4, we find the matrix A{r1,r2,r3,r4} with arbitrary {r1, r2, r3, r4} ⊂
K is non-full rank. That is, for the given active nibbles in the master key, the
subtweakey difference cancellations can happen four times in arbitrary round
for every 30 rounds. Especially for rank(A{0,1,2,3}) = 14 and |Ker(A{0,1,2,3})| =
22, there are 3 non-zero solutions of the difference for the active nibbles of the
master tweakey. For SKINNYe-64-256, there can be nine consecutive rounds
with fully inactive internal states.

– When t ≥ 5, for all [{r1, r2, · · · , rt}] in Table 4, rank(A[{r1,r2,··· ,rt}]) = 15.
For A[{r1,r2,··· ,rt]} · [tk

(0)
1,i , tk

(0)
2,i , tk

(0)
3,i , tk

(0)
4,i ]

T = 0, there is only one nonzero
solution. We find that for some different rank-equivalence classes, the solu-
tions are the same. For example, for rank-equivalence classes [{0, 1, 2, 7, 10}]
and [{0, 1, 3, 11, 13}], when 0 ≤ i ≤ 7 we set

A[{0,1,2,7,10}] · [tk
(0)
1,i , tk

(0)
2,i , tk

(0)
3,i , tk

(0)
4,i ]

T = 0, (8)

A[{0,1,3,11,13}] · [tk
(0)
1,i , tk

(0)
2,i , tk

(0)
3,i , tk

(0)
4,i ]

T = 0, (9)

where the cancellations happen at {STK(0)
i , STK

(2)

P̄ 2[i]
, STK

(4)

P̄ 4[i]
, STK

(14)

P̄ 14[i]
,

STK
(20)

P̄ 20[i]
} for Equation (8) and {STK(0)

i , STK
(2)

P̄ 2[i]
, STK

(6)

P̄ 6[i]
, STK

(22)

P̄ 22[i]
,

STK
(26)

P̄ 26[i]
} for Equation (9). The non-zero solutions of both two linear

equations are tk
(0)
1,i = [0, 0, 0, 1]T , tk

(0)
2,i = [0, 1, 1, 1]T , tk

(0)
3,i = [0, 0, 0, 0]T ,

tk
(0)
4,i = [0, 1, 1, 0]T . Namely, the cancellations happen at {STK(0)

i , STK
(2)

P̄ 2[i]
,

STK
(4)

P̄ 4[i]
, STK

(6)

P̄ 6[i]
, STK

(14)

P̄ 14[i]
, STK

(20)

P̄ 20[i]
, STK

(22)

P̄ 22[i]
, STK

(26)

P̄ 26[i]
} at the same

time, which corresponds to the rank-equivalence class [{0, 1, 2, 3, 7, 10, 11, 13}].
The situation for 8 ≤ i ≤ 15 is the same. Further, we find that for ar-
bitrary {r1, r2, · · · , rt} ⊂ {0, 1, 2, 3, 7, 10, 11, 13} (t ≥ 5), the solution of
A[{r1,r2,··· ,rt}]·[tk

(0)
1,i , tk

(0)
2,i , tk

(0)
3,i , tk

(0)
4,i ]

T = 0 is the same to A[{0,1,2,3,7,10,11,13}]·
[tk

(0)
1,i , tk

(0)
2,i , tk

(0)
3,i , tk

(0)
4,i ]

T = 0, which means that there is only one difference
cancellation behaviour for those rank-equivalence classes.

Remark. It is worth noting that there are some rank-equivalence classes
[{r1, r2, · · · , rt}] in Table 4, where {r1, r2, · · · , rt} is not directly the sub-
set of {0, 1, 2, 3, 7, 10, 11, 13} but corresponds to the same difference can-
cellation behaviour. Taking the rank-equivalence class [{0, 1, 2, 6, 9}] as an
example, we can assume A[{0,1,2,6,9}] · [t̄k

(0)
1,i , t̄k

(0)
2,i , t̄k

(0)
3,i , t̄k

(0)
4,i ]

T = 0, and
obtain t̄k

(0)
1,i = [0, 0, 0, 1]T , t̄k(0)

2,i = [1, 1, 1, 1]T , t̄k(0)
3,i = [0, 0, 0, 0]T , t̄k(0)

4,i =

[1, 1, 1, 0]T . Applying the same solution, we can also deduce A[{0,1,2,6,9,10,12,14}]·
[t̄k

(0)
1,i , t̄k

(0)
2,i , t̄k

(0)
3,i , t̄k

(0)
4,i ]

T = 0. Similarly, for arbitrary {r1, r2, · · · , rt} ⊂
{0, 1, 2, 6, 9, 10, 12, 14} (t ≥ 5), we deduce that there is only one differ-
ence cancellation behaviour. Further, due to rank-equivalence class in Defi-
nition 1, there is [{0, 1, 2, 3, 7, 10, 11, 13}] = [{0, 1, 2, 6, 9, 10, 12, 14}]. The two
sets {0, 1, 2, 3, 7, 10, 11, 13} and {0, 1, 2, 6, 9, 10, 12, 14} only represent the dif-
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ference cancellations starting from different rounds every 15 rounds for TK-z,
and actually show the same difference cancellation behaviour.
In summary, there are only two kinds of the difference cancellation be-
haviours:
• For rank-equivalence class [{0, 1, 2, 4, 5, 8, 10}], the subtweakey difference

cancellations happen 7 times in the fixed positions for the given active
nibble of the master key in every 30 rounds. Assuming A[{0,1,2,4,5,8,10}] ·
[tk

(0)
1,i , tk

(0)
2,i , tk

(0)
3,i , tk

(0)
4,i ]

T = 0, we can compute the only one nonzero so-
lution, where tk

(0)
1,i = [0, 0, 0, 0]T , tk(0)

2,i = [1, 0, 0, 0]T , tk(0)
3,i = [0, 0, 0, 0]T ,

tk
(0)
4,i = [1, 0, 0, 0]T .

• For rank-equivalence class [{0, 1, 2, 3, 7, 10, 11, 13}], the subweakey differ-
ence cancellations happen 8 times in the fixed positions every 30 rounds.
Assuming A[{0,1,2,3,7,10,11,13}]·[tk

(0)
1,i , tk

(0)
2,i , tk

(0)
3,i , tk

(0)
4,i ]

T = 0, the nonzero
solution is tk

(0)
1,i = [0, 0, 0, 1]T , tk(0)

2,i = [0, 1, 1, 1]T , tk(0)
3,i = [0, 0, 0, 0]T ,

tk
(0)
4,i = [0, 1, 1, 0]T .

For SKINNYe-64-256 v2, there is rank(Ã{r1,r2,r3,r4}) = 16 for arbitrary
{r1, r2, r3, r4} ⊂ K . That is, at most three difference cancellations can hap-
pen every 30 rounds for a given active tweakey nibble and there can be seven
rounds of fully inactive internal states at most.

Key Guessing Strategy Based on the Relations of Subtweakeys. In
key-recovery attacks, several rounds are added before and after the distinguisher
and the involved subtweakeys should be guessed to recover the master tweakey.
We can use the relations of subtweakeys to get more accurate and efficient key
guessing strategy following similar idea of the key-bridge technique [35,28]. For
example, assume that a set of subtweakeys {stk(2r1)

P̄ 2r1 [i]
, stk

(2r2)

P̄ 2r2 [i]
· · · , stk(2rt)

P̄ 2rt [i]
,

stk
(2rt+1)

P̄ 2rt+1 [i]
} derived from the same i-th (0 ≤ i ≤ 7) nibble of the master

tweakey are involved in the key-recovery phase. Suppose rank(A{r1,r2,··· ,rt}) = a
and rank(A{r1,r2,··· ,rt+1}) = b (b > a). The number of possible values for
{stk(2r1)

P̄ 2r1 [i]
, stk

(2r2)

P̄ 2r2 [i]
· · · , stk(2rt)

P̄ 2rt [i]
} is |Im(A{r1,r2,··· ,rt})| = 2a. After we guessed

{stk(2r1)

P̄ 2r1 [i]
, stk

(2r2)

P̄ 2r2 [i]
· · · , stk(2rt)

P̄ 2rt [i]
} ∈ Im(A{r1,r2,··· ,rt}), the number of possi-

ble guesses for the last nibble stk
(2rt+1)

P̄ 2rt+1 [i]
will be 2b−a.

4 Rectangle Attacks on SKINNYe-64-256 and Its Version 2

4.1 Preliminary for Boomerang and Rectangle Attacks

The boomerang attack proposed by Wagner [64] is a differential-based attack,
which uses two short differential characteristics instead of one long character-
istic as shown in Figure 3. The boomerang attack is developed into the ampli-
fied boomerang attack [46] and rectangle attack [19], which require only chosen
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plaintext queries. To clarify the probability of boomerang, Biryukov et al. [21]
introduced the boomerang switch technique, which is generalized by Dunkelman
et al. [36] as the sandwich attack. In the attack, the cipher Ed is considered
as Ẽ1 ◦ Em ◦ Ẽ0, where p̃ and q̃ are the probability of the differentials used
for the r0-round Ẽ0 and r1-round Ẽ1. The middle part rm-round Em handles
the dependence of the two short differentials. If the probability of generating a
right quartet for Em is ξ, the probability of the whole rectangle distinguisher
is 2−np̃2q̃2ξ. Then, Cid et al. [25] introduced the boomerang connectivity table
(BCT) to clarify the probability around the boundary of boomerang and com-
pute its probability more accurately. Further, various studies or improvements
[23,62,65,26] on BCT technique enrich boomerang attacks.

E1

E0

E1

E0

E1

E0

E1

E0

α

β

α

β
γ

γ

δ

δ

C1

C2

P1

P2

C3

C4

P3

P4

Fig. 3: Boomerang attack

Ef

Ef

X1

E1

E0

Eb

X2

E1

E0

Eb

X3

E1

E0

Eb

X4

E1

E0

Eb

α′

α

β

α′

α

β
γ

γ

δ

δ

δ′

δ′
C1

C2

P1

P2

C3

C4

P3

P4

Fig. 4: Rectangle attack on E
.

Related-key boomerang and rectangle attacks were proposed by Biham et
al. [20]. As shown in Figure 4, the cipher E is decomposed into Ef ◦ Ed ◦ Eb,
where Ed = E1 ◦ E0 is the related-key rectangle distinguisher and Eb and Ef

are the extended rounds before and after the distinguisher. Assuming we use a
related-key differential α → β over E0 under a key difference ∆K and δ → γ
over E1 under a key difference ∇K. If the master key K1 is known, the other
three keys are all determined, where K2 = K1 ⊕ ∆K, K3 = K1 ⊕ ∇K, and
K4 = K1⊕∆K⊕∇K. Denote rb as the number of unknown bits in the difference
α′ of plaintexts. Let kb be the set of subkey bits that involved in Eb while
encrypting the plaintext to the known difference α and decrypting to get the
corresponding plaintext. Denote the number mb = |kb|. Similarly, we have rf
and mf = |kf | for Ef .

There are several key-recovery frameworks of rectangle attacks [19,18,17,48]
in both single-key setting and related-key setting. As shown by Biham et al.
[17], when the key schedule is linear (e.g. SKINNY), the differences between the
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subkeys of K1, K2, K3 and K4 are all determined in each round. Exploring this
property, Dong et al. [32] proposed a new related-key rectangle attack for ciphers
with linear key schedule (see Supplementary Material B.1). They try to guess all
kb and part of kf , denoted as k′f before generating quartets. Then with partial
decryption, they may gain hf inactive bits (or bits with fixed differences) from
the internal state as filters. They also built a uniform automatic tool to search
for the entire rectangle key-recovery attack on SKINNY, which is based on a series
of automatic tools [39,26,55].

4.2 Automatic Search for Related-Tweakey Rectangle Attacks for
SKINNYe-64-256 and its Version 2

We apply Dong et al.’s automatic tool [32] by modifying the constraints of
the subtweakey to include more differential cancellation behaviours studied in
Section 3. For simplicity, we put Dong et al.’s automatic tool in Supplementary
Material B.2, and only list the differences of the modelling here.

In previous automatic models [10,26,39] for SKINNY-n-zn (z = 1, 2, 3), for a
given cell position in the tweakey schedule, the number of cancellations can only
be z − 1 within 30 consecutive rounds. The constraints for the cancellations are
given by the designers of SKINNY [12, Page 52], e.g., for 0-th nibble of the master
tweakey within the 30 consecutive rounds:

LANE0 − stk
(0)
0 ≥ 0, LANE0 − stk

(2i)
P 2i[0] ≥ 0, 1 ≤ i ≤ 14,

stk
(0)
0 + stk

(2)
P 2[0] + · · ·+ stk

(28)
P 28[0] − 15 · LANE0 ≥ −(z − 1),

(10)

where the binary variable LANE0 is 0 only if TKm,0 = 0 for all 1 ≤ m ≤ z, and
the binary variable stk

(r)
P r[0] is 0 if and only if the nibble STK

(r)
P r[0] is inactive.

Similar constraints are applied to other nibble positions.
However, for SKINNYe-64-256, although z = 4, we have more cancellations

than z − 1 = 3 according to Section 3. The possible number and positions of
cancellations are diverse, which needs to be modeled by new constraints for the
upper and lower differentials besides Constraint (10). According to Section 3, the
automatic models are divided into two cases according to different subtweakey
difference cancellation behaviours to search for the distinguisher suitable for
Dong et al.’s rectangle attack framework:

– t ≤ 4: When t ≤ 3, the rank of A{r1,··· ,rt} is 4t ≤ 16. When t = 4, the matrix
A{r1,r2,r3,r4} is non-full rank. That is, when t ≤ 4, rank(A{r1,··· ,rt}) < 16.
For a given active nibble in the master key, the subtweakey difference can-
cellations can happen at most four times in arbitrary 30 rounds. In this case,
we only need to modify the last constraint of Eq. (10) to be (z = 4):

stk
(0)
0 + stk

(2)
P 2[0] + · · ·+ stk

(28)
P 28[0] − 15 · LANE0 ≥ −z.

– t > 4: There are only two kinds of the difference cancellation behaviours
in Section 3, i.e., [{0, 1, 2, 4, 5, 8, 10}] and [{0, 1, 2, 3, 7, 10, 11, 13}]. For the
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rank-equivalence class [{0, 1, 2, 4, 5, 8, 10}], we fixed the positions of differ-
ence cancellations for the i-th active nibble of the master tweakey to build
the model. For each 0 ≤ r′ ≤ 14, we set the subtweakey differences to
0 in {2r′, 2(r′ + 1) mod 30, 2(r′ + 2) mod 30, 2(r′ + 4) mod 30, 2(r′ + 5) mod
30, 2(r′+8) mod 30, 2(r′+10) mod 30} rounds when 0 ≤ i ≤ 7, and in {2r′+
1, (2(r′+1)+1) mod 30, (2(r′+2)+1) mod 30, (2(r′+4)+1) mod 30, (2(r′+
5)+1) mod 30, (2(r′+8)+1) mod 30, (2(r′+10)+1) mod 30} rounds when
8 ≤ i ≤ 15 to run the model. Similar for case [{0, 1, 2, 3, 7, 10, 11, 13}].
Searching with different automatic models, we select a 30-round related-

tweakey (RTK) boomerang distinguisher for SKINNYe-64-256 in Table 5, where
the difference cancellation behaviour [{0, 1, 2, 3, 7, 10, 11, 13}] is used both in the
upper and lower differentials. We also experimentally verify the probabilities of
the middle part of the distinguishers, and list details of the distinguisher, the
experimental results and full figures in Table 12, Table 14 and Figure 12 in Sup-
plementary Material C.1 and I. Our source codes are based on the open source
in [26,32], which is provided in https://github.com/skinny64/Skinny64-256.

For SKINNYe-64-256 v2, we find a 26-round related-tweakey boomerang dis-
tinguisher in Table 11 and 13 in Supplementary Material C.1.

Table 5: The 30-round RTK boomerang distinguisher for SKINNYe-64-256.
r0 = 12, rm = 5, r1 = 13, p̃ = 2−3.46, ξ = 2−30.95, q̃ = 2−9.30, p̃2ξq̃2 = 2−56.47

∆TK1 = 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0
∆TK2 = 0, 0, 0, 0, 0, 0, 0, 0, 5, 0, 0, 0, 0, 0, 0, 0
∆TK3 = 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
∆TK4 = 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0
∆X(0) = 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4
∇TK1 = 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1
∇TK2 = 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 8
∇TK3 = 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
∇TK4 = 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 8
∇X(30) = 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1

4.3 Rectangle Attack on 41-round SKINNYe-64-256

We use the 30-round rectangle distinguisher for SKINNYe-64-256 in Table 5,
whose probability is 2−np̃2ξq̃2 = 2−64−56.47 = 2−120.47. The attack follows the
Dong et al.’s rectangle attack framework [32], which is also given in Algorithm
2 in Supplementary Material B.1 for completeness. Adding 4-round Eb and
7-round Ef , we attack 41-round SKINNYe-64-256, as illustrated in Figure 5.
For simplicity, let STK

(i)
j1,j2

be the j1-th and j2-th nibble of the i-th round
STK. In the first round, we use subtweakey ETK(0) = MC ◦ SR(STK(0)) in-
stead of STK(0), and there is ETK

(0)
i = ETK

(0)
i+4 = ETK

(0)
i+12 = STK

(0)
i for

https://github.com/skinny64/Skinny64-256
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0 ≤ i ≤ 3, and ETK
(0)
8 = STK

(0)
7 , ETK

(0)
9 = STK

(0)
4 , ETK

(0)
10 = STK

(0)
5 ,

ETK
(0)
11 = STK

(0)
6 . Construct the structures at W̄ (0) and rb = 12 · 4 = 48. The

cells need to be guessed in Eb are kb = {STK(2)
0,2,4, STK

(1)
0−3,5−7, STK

(0)
0−7} and

mb = 18·4 = 72. In Ef , we have rf = 16·4 = 64 and mf = 45·4 = 180 where kf =

{STK(34)
3,7 , STK

(35)
2−4,7, STK

(36)
1−7 , STK

(37)
0−7 , STK

(38)
0−7 , STK

(39)
0−7 , STK

(40)
0−7}. The sub-

tweakey cells guessed in advance are marked by red boxes, which are k′f =

{STK(37)
3,6,7, STK

(38)
0−2,4−7, STK

(39)
0−7 , STK

(40)
0−7}, and we have m′

f = 26 · 4 = 104.
Then, we get 7 cells in the internal states (marked by red boxes in W (37) and
W (36)) as additional filters with the guessed m′

f -bit key, i.e., hf = 7 · 4 = 28 as
{W (36)

6,11,15,W
(37)
5,6,11,12}.

Active cell Active cell with fixed difference 0aa Both the difference and the value are neededZero difference, but the value is needed Value is needed to fast filter quartets

STK(40) X(40) Y (40) Z(40) W (40)

⊕
SC
AC

ART

SR MC

STK(39) X(39) Y (39) Z(39) W (39)

⊕
SC
AC

ART

SR MC

STK(38) X(38) Y (38) Z(38) W (38)

1

⊕
SC
AC

ART

SR MC

STK(37) X(37) Y (37) Z(37) W (37)

1 ⊕
SC
AC

ART

SR MC

STK(36) X(36) Y (36) Z(36) W (36)

1

⊕
SC
AC

ART

SR MC

STK(35) X(35) Y (35) Z(35) W (35)

1
⊕

SC
AC

ART

SR MC

STK(34) X(34) Y (34) Z(34) W (34)

1

1

1

1 ⊕
SC
AC

ART

SR MC

30-round rectangle distinguisher of SKINNYe-64-256

STK(3) X(3) Y (3) Z(3) W (3)

4

4

4
⊕

4

4

4

4

4

4SC
AC

ART

SR MC

STK(2) X(2) Y (2) Z(2) W (2)

1

⊕
SC
AC

ART

SR MC

STK(1) X(1) Y (1) Z(1) W (1)

1 ⊕
SC
AC

ART

SR MC

ETK(0) X(0) Y (0) Z̄(0) W̄ (0)

SC
AC

SR MC
⊕

Fig. 5: The 41-round attack against SKINNYe-64-256.

Key bridges. To further accelerate our attack, we identify some tweakey re-
lations in Eb and Ef according to the analysis in Section 3 . We list the sub-
tweakeys transformed from the i-th (0 ≤ i ≤ 15) nibble of the master key
TK

(0)
m (1 ≤ m ≤ 4) in Table 6. For example in line 0 of Table 6, there are 5

subtweakeys in kb and kf transformed from the 0-th nibbles of TK
(0)
m , where(

stk
(0)
0 , stk

(2)
2 , stk

(36)
4 , stk

(38)
6 , stk

(40)
5

)T

= A{0,1,3,4,5} ·
(
tk

(0)
1,0, tk

(0)
2,0, tk

(0)
3,0, tk

(0)
4,0

)T

.

Since rank(A{0,1,3,4,5}) = 16, the number of possible values of {ETK
(0)
0 =

STK
(0)
0 , STK

(2)
2 , STK

(36)
4 , STK

(38)
6 , STK

(40)
5 } is |Im(A{0,1,3,4,5})| = 216. Simi-

larly, the number of possible values of {ETK
(0)
0 , STK

(2)
2 , STK

(38)
6 , STK

(40)
5 } ∈
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kb ∪ k′f is |Im(A{0,1,4,5})| = 214. In total, the key size involved in Eb and Ef is
only 224-bit due to the key relations although mb + mf = 72 + 180 = 252,
denoted as |kb ∪ kf | = 2224. Similarly, we have |kb ∪ k′f | = 2170 although
mb +m′

f = 72 + 104 = 176.

Table 6: Relations of the subtweakeys involved in the 41-round attack on
SKINNYe-64-256, where the subtweakeys marked in bold are among k′f .
i kb kf

0 ETK
(0)
0 , STK

(2)
2 STK

(36)
4 ,STK

(38)
6 ,STK

(40)
5 |Im(A{0,1,3,4,5})| = 216 |Im(A{0,1,4,5})| = 214

1 ETK
(0)
1 , STK

(2)
0 STK

(36)
2 ,STK

(38)
4 ,STK

(40)
6 |Im(A{0,1,3,4,5})| = 216 |Im(A{0,1,4,5})| = 214

2 ETK
(0)
2 , STK

(2)
4 STK

(36)
6 ,STK

(38)
5 ,STK

(40)
3 |Im(A{0,1,3,4,5})| = 216 |Im(A{0,1,4,5})| = 214

3 ETK
(0)
3 STK

(34)
7 , STK

(36)
1 ,STK

(38)
0 ,STK

(40)
2 |Im(A{0,2,3,4,5})| = 215 |Im(A{0,4,5})| = 212

4 ETK
(0)
9 STK

(36)
5 , STK

(38)
3 ,STK

(40)
7 |Im(A{0,3,4,5})| = 215 |Im(A{0,5})| = 28

5 ETK
(0)
10 STK

(34)
3 , STK

(36)
7 ,STK

(38)
1 ,STK

(40)
0 |Im(A{0,2,3,4,5})| = 215 |Im(A{0,4,5})| = 212

6 ETK
(0)
11 STK

(36)
3 ,STK

(38)
7 ,STK

(40)
1 |Im(A{0,3,4,5})| = 215 |Im(A{0,4,5})| = 212

7 ETK
(0)
8 STK

(38)
2 ,STK

(40)
4 |Im(A{0,4,5})| = 212 |Im(A{0,4,5})| = 212

8 STK
(1)
2 STK

(35)
4 ,STK

(37)
6 ,STK

(39)
5 |Im(A{1,3,4,5})| = 215 |Im(A{1,4,5})| = 212

9 STK
(1)
0 STK

(35)
2 , STK

(37)
4 ,STK

(39)
6 |Im(A{1,3,4,5})| = 215 |Im(A{1,5})| = 28

10 STK
(37)
5 ,STK

(39)
3 |Im(A{4,5})| = 28 |Im(A{5})| = 24

11 STK
(1)
7 STK

(37)
0 ,STK

(39)
2 |Im(A{1,4,5})| = 212 |Im(A{1,5})| = 28

12 STK
(1)
6 STK

(37)
3 ,STK

(39)
7 |Im(A{1,4,5})| = 212 |Im(A{1,4,5})| = 212

13 STK
(1)
3 STK

(35)
7 , STK

(37)
1 ,STK

(39)
0 |Im(A{1,3,4,5})| = 215 |Im(A{1,5})| = 28

14 STK
(1)
5 STK

(35)
3 ,STK

(37)
7 ,STK

(39)
1 |Im(A{1,3,4,5})| = 215 |Im(A{1,4,5})| = 212

15 STK
(1)
1 STK

(37)
2 ,STK

(39)
4 |Im(A{1,4,5})| = 212 |Im(A{1,5})| = 28

|kb ∪ kf | = 2224 |kb ∪ k′
f | = 2170

The details of our attack are given as follows:

1. Construct y =
√
s · 2n/2−rb/

√
p̃2ξq̃2 =

√
s · 212.24 structures of 2rb = 248

plaintexts each. For each structure, encrypt the 248 plaintexts under the
four related tweakeys K1, K2, K3 and K4 to get corresponding ciphertexts
and store the plaintext-ciphertext pairs in L1, L2, L3 and L4. The data and
memory complexity here is both

√
s · 2n/2+2/

√
p̃2ξq̃2 =

√
s · 262.24.

2. Guess 2x possible values of kb ∪ k′f (2x ≤ |kb ∪ k′f |):
(a) Initialize |kb ∪ kf |/2x = 2224−x counters with memory cost 2224−x.
(b) Guess all the remaining |kb ∪ k′f |/2x = 2170−x possible values in kb ∪ k′f :

i. For each structure, partially encrypt each plaintext P1 under the
guessed values of kb to Y

(3)
6,9,12. After xoring the known difference α,

partially decrypt it to get the plaintext P2. Do the same for each P3 to
get P4. Store the pairs in S1 and S2, whose sizes are y·2rb =

√
s·260.24.

ii. For each element in S1, partially decrypt (C1, C2) under guessed k′f

to get W
(36)
6,11,15∥W

(37)
5,6,11,12. Insert the element in S1 into a hash table

H indexed by the hf = 28-bit W
(36)
6,11,15∥W

(37)
5,6,11,12 of C1 and hf =

28-bit W̃
(36)
6,11,15∥W̃

(37)
5,6,11,12 of C2. For each element in S2, partially

decrypt (C3, C4) under guessed k′f to get the 2hf = 56 internal state
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bits, and check against H to find the pairs (C1, C2), where (C1, C3)
and (C2, C4) collide at the 2hf = 56 bits. The time complexity here is
T1 =

√
s·2|kb∪k′

f |+n/2+1/
√
p̃2ξq̃2 =

√
s·2170+32+1+28.24 =

√
s·2231.24.

We get s · 2|kb∪k′
f |−2hf−n+2rf /(p̃2ξq̃2) = s · 2170−56−64+128+56.47 =

s · 2234.47 quartets.
iii. For each of the s ·2234.47 quartets, determine the key candidates step

by step, whose time complexity is ε:
A: In round 38, guess 24 possible values of STK

(38)
3 . As shown

in Table 7, with other guessed k′f together, we compute Z
(37)
0,12 and

deduce ∆Y
(37)
0 and ∆X

(37)
12 . For the 1st column of X(37) of (C1, C3),

we obtain ∆X
(37)
0 = ∆X

(37)
12 by property of MC, and deduce STK

(37)
0

by Lemma 1. Similarly, we deduce STK
′(37)
0 for (C2, C4). Then the

fixed ∆STK
(37)
0 = STK

(37)
0 ⊕ STK

′(37)
0 is a 4-bit filter. s · 2234.47 ·

24 · 2−4 = s · 2234.47 quartets remain.
B: In round 37, guessing 24 possible values of STK(37)

2 , following
Table 7 we compute Z

(36)
3,15 and deduce ∆Y

(36)
3 and ∆X

(36)
15 . For the

4-th column of X(36) of (C1, C3), we deduce ∆X
(36)
3 = ∆X

(36)
15 by

MC and deduce STK
(36)
3 . Since the number of possible values7 of

STK
(36)
3 is only 23 as shown in Table 7, which acts as a filter of

23/24 = 2−1. Similarly, we deduce STK
′(36)
3 for (C2, C4). Then the

fixed ∆STK
(36)
3 is a 4-bit filter. s · 2234.47 · 24 · 2−1 · 2−4 = s · 2233.47

quartets remain.
C: Guessing 24 possible values of STK(37)

4 , we compute Z
(36)
7 and

deduce ∆Y
(36)
7 . For the 4-th column of X(36) of (C1, C3), we can

obtain ∆X36
7 = ∆X

(36)
15 by MC. With the known ∆X

(36)
15 in step B,

we deduce STK
(36)
7 . The number of possible values of STK

(36)
7 is

23, which can act as a filter of 23/24 = 2−1. Similarly, we deduce
STK

′(36)
7 for (C2, C4). Then the fixed ∆STK

(36)
7 is a 4-bit filter.

s · 2233.47 · 24 · 2−1 · 2−4 = s · 2232.47 quartets remain.
D: Guessing 24 possible values of STK

(37)
1 , we compute Z

(36)
6,10,14.

Then ∆Y
(36)
6 and ∆X

(36)
10,14 are deduced. For the 3rd column of X(36)

of (C1, C3), we can obtain ∆X
(36)
6 = ∆X

(36)
10 ⊕ ∆X

(36)
14 by MC and

deduce STK
(36)
6 . The number of possible values of STK

(36)
6 is 22,

which acts as a filter of 22/24 = 2−2. Similarly, we deduce STK
′(36)
6

7 The number of possible values of STK
(36)
3 is computed via Table 6. For example,

in line 6 of Table 6, {ETK
(0)
11 , STK

(38)
7 , STK

(40)
1 } ∈ kb ∪ k′

f derived from the 6-th
nibble have already been guessed, so the number of possible values of STK

(36)
3 is

|Im(A{0,3,4,5})|/|Im(A{0,4,5})| = 215−12 = 23. Similarly, we compute all the number
of possible values for subtweakey cells involved in the guess and filter procedure,
which are listed in Table 7.
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for (C2, C4) and ∆STK
(36)
6 can act as a 4-bit filter. s · 2232.47 · 24 ·

2−2 · 2−4 = s · 2230.47 quartets remain.
E: In round 36, guessing 24×22×22 possible values for (STK(37)

5 ,
STK

(36)
2 , STK

(36)
4 ), we compute Z

(35)
3,7,15 and deduce ∆Y

(35)
3,7 and

∆X
(35)
15 . For the 4-th column of X(35) of (C1, C3), we can obtain

∆X
(35)
3 = ∆X

(35)
7 = ∆X

(35)
15 by MC and deduce STK(35)

3 and STK
(35)
7 .

Both the numbers of possible values of STK
(35)
3 and STK

(35)
7 are

23, which acts as two filters of 23/24 = 2−1. Similarly, we deduce
STK

′(35)
3 and STK

′(35)
7 for (C2, C4). Then the fixed ∆STK

(35)
3 and

∆STK
(35)
7 can act as two 4-bit filters. Thereafter, in round 34, we

deduce Z
(34)
3 from Z

(35)
7 and STK

(35)
7 . Since STK

(34)
3 only has one

possible value8, we deduce X
(34)
3 . So ∆X

(34)
3 = 0x1 acts a 4-bit filter

both for (C1, C3) and (C2, C4). s · 2230.47 · 28 · 2−1 · 2−1 · 2−8 · 2−8 =
s · 2220.47 quartets remain.
F: Guessing 23×23×23×23 possible values of (STK(36)

1 , STK(36)
5 ,

STK
(35)
2 , STK(35)

4 ), compute Z(34)
7,15 and deduce X(34)

15 . Since STK(34)
7

only has one possible value, we can deduce X
(34)
7 . ∆X

(34)
7 = 0x1 and

∆X
(34)
15 = 0x1 are two 4-bit filters for both (C1, C3) and (C2, C4).

s · 2220.47 · 212 · 2−8 · 2−8 = s · 2216.47 quartets remain.
So for each quartet, ε = 24 · 4

41 +24 · 4
41 +2−1 · 24 · 4

41 +2−2 · 24 · 4
41 +

2−4 · 28 · 4
41 +2−14 · 212 · 4

41 ≈ 22.56 and T2 = s · 2234.47 · ε = s · 2237.03.

(c) (Exhaustive search) Select the top |kb ∪ kf | · 2−x−h = 2224−x−h hits in
the counter as the key candidates. Guess the remaining k− 224 = 32-bit
key to check the full key, and T3 = 2k−h.

Set s = 1, h = 32 and x = 168 (x ≤ 170, h ≤ 224 − x). We have T1 =
2231.24, T2 = 2237.03 and T3 = 2224. The memory complexity is 262.24 + 256 ≈
262.26. In total, for the 41-round attack on SKINNYe-64-256, the data complexity
is 262.24, the memory complexity is 262.26, and the time complexity is 2237.06.
The success probability is about 70.6%.

In addition, for SKINNYe-64-256 v2 we give a 37-round related-tweakey rect-
angle attack (given in the Supplementary Material C.2) based on the 26-round
related-tweakey boomerang distinguisher (Table 13). The data complexity is
262.8, the memory complexity is 262.8, and the time complexity is 2240.03. The
success probability is about 66.3%.

8 As shown in line 5 of Table 6, with STK
(36)
7 deduced in step C and other cells

guessed in kb ∪ k′
f , the number of possible values is only 1 for STK

(34)
3 .
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Table 7: Tweakey recovery for 41-round SKINNYe-64-256. The red cells are
among k′f or gained in the previous steps. D/G: deduced/guessed subtweakeys.

Step State Involved subtweakeys Number of values

A
Z

(37)
0 STK

(38)
4 , STK

(39)
5 , STK

(40)
0,6,7 G: STK

(38)
3 : 24

Z
(37)
12 STK

(38)
3 , STK

(39)
2,7 , STK

(40)
1,4,6 D: STK

(37)
0 : 24

B
Z

(36)
3 STK

(37)
7 , STK

(38)
4 , STK

(39)
3,5,6, STK

(40)
0−2,6,7 G: STK

(37)
2 : 24

Z
(36)
15 STK

(37)
2 , STK

(38)
1,6 , STK

(39)
0,5,7, STK

(40)
2−6 D: STK

(36)
3 : 23

C
Z

(36)
7 STK

(37)
4 , STK

(38)
3,5,6, STK

(39)
0−2,6,7, STK

(40)
0−7 G: STK

(37)
4 : 24

D: STK
(36)
7 : 23

D
Z

(36)
6 STK

(37)
7 , STK

(38)
2,4,5, STK

(39)
0,1,3,5,6, STK

(40)
0−7 G: STK

(37)
1 : 24

Z
(36)
10 STK

(37)
4 , STK

(38)
3,5 , STK

(39)
0,2,6,7, STK

(40)
1−4,6,7 D: STK

(36)
6 : 22

Z
(36)
14 STK

(37)
1 , STK

(38)
0,5 , STK

(39)
3,4,6, STK

(40)
1,2,4,5,7

E

Z
(35)
3 STK

(36)
7 , STK

(37)
4 , STK

(38)
3,5,6, STK

(39)
0−2,6,7, STK

(40)
0−7 G: STK

(37)
5 : 24

Z
(35)
7 STK

(36)
4 , STK

(37)
3,5,6, STK

(38)
0−2,6,7, STK

(39)
0−7 , STK

(40)
0−7 G: STK

(36)
2 : 22

Z
(35)
15 STK

(36)
2 , STK

(37)
1,6 , STK

(38)
0,5,7, STK

(39)
2−6 , STK

(40)
0−7 G: STK

(36)
4 : 22

Z
(34)
3 STK

(35)
7 , STK

(36)
4 , STK

(37)
3,5,6, STK

(38)
0−2,6,7, STK

(39)
0−7 , STK

(40)
0−7 D: STK

(35)
3 : 23

D: STK
(35)
7 : 23

D: STK
(34)
3 : 20

F

Z
(34)
7 STK

(35)
4 , STK

(36)
3,5,6, STK

(37)
0−2,6,7, STK

(38)
0−7 , STK

(39)
0−7 , STK

(40)
0−7 G: STK

(36)
1 : 23

Z
(34)
15 STK

(35)
2 , STK

(36)
1,6 , STK

(37)
0,5,7, STK

(38)
2−6 , STK

(39)
0−7 , STK

(40)
0−7 G: STK

(36)
5 : 23

G: STK
(35)
2 : 23

G: STK
(35)
4 : 23

D: STK
(34)
7 : 20

5 MITM and Impossible Differential Attacks on
SKINNYe-64-256 and its Version 2

5.1 The Meet-in-the-Middle Attack

The three-subset meet-in-the-middle attack was proposed by Bogdanov and
Rechberger [22] and was summarized by Isobe [43]. Several important tech-
niques significantly enhance and enrich the MITM methodology, including the
splice-and-cut technique [6], initial structure [60,59], (indirect-)partial matching
[60,59], sieve-in-the-middle [24], match-box technique [37], and dissection [29],
etc. Recently, several automatic tools [27,58,8,9,61,40] on MITM attacks are
presented. At CRYPTO 2021, Dong et al. [31] developed the MILP model for
MITM key-recovery attack on SKINNY. Combining Dong et al.’s model and our
new discoveries on tweakey schedule of SKINNYe-64-256, we develop MITM key-
recovery attacks on 31-round SKINNYe-64-256 and 27-round SKINNYe-64-256
v2 in Supplementary Material D.

5.2 Related-Tweakey Impossible Differential

The impossible differential attack is proposed by Biham et al. [16] and Knud-
sen [47] independently. It uses a differential with probability zero to act as
a distinguisher, named as the impossible differential. With several rounds ap-
pended before and after the impossible differential distinguisher, one partially
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encrypts/decrypts a given pair by a candidate key to the input and output of
the distinguisher. The key candidate that leads to the impossible differential
will be the wrong one and will be rejected. This technique provides a sieving
of the key space and the remaining candidates can be tested by exhaustive
search. There are several works analyzed the security of SKINNY family against
the impossible differential attacks [48,63,5,57,33], in both single-tweakey and
related-tweakey setting. We introduce related-tweakey impossible differentials
on 21-round SKINNYe-64-256 and 18-round SKINNYe-64-256 v2 in Supplemen-
tary Material E.

6 A Proposal for Tweakey Schedule of SKINNY Family

At ASIACRYPT 2014, Jean et al. [44] introduced the STK construction as shown
in Figure 1, which absorbs arbitrary length of tweakey. It updates each cell of the
tweakey states by multiplying a non-zero αj . For SKINNY-n-zn, the tweakey cells
are updated by dedicated chosen lightweight LFSRs, which guarantees at most
z − 1 cancellations within 30 consecutive rounds. However, SKINNY family [10]
only gives instances for z = 1, 2, 3. SKINNYe-64-256 [50] extends z to 4, but fails
to satisfy its expected security claim9. In the updated version SKINNYe-64-256
v2 [52], the designers fixed the issue and claimed that the LFSR for TK4 is the
only one to ensure at most 3 cancellations after exhaustively testing 216 choices.
It is not trivial to extend SKINNY to support arbitrary length of tweakey with
similar subtweakey difference cancellation property to STK construction: for a
given cell position, z− 1 cancellations can only happen every 15 rounds for TK-z
(or every 30 rounds for SKINNY-n-zn).

As stated by Naito et al. [50, Page 5] that PFB_Plus “... give new insight to
TBC designers considering that there is no consensus about the adequate tweak
size to support”. It is interesting to consider a uniformed tweakey schedule to
extend SKINNY to support larger tweakey size, while obeying the property of STK
construction, which may have potential application, such as SKINNYe-64-256 v2
in TI-friendly constructions.

For general z ≤ 14, the output nibbles can be represented by linear combi-
nations of the input nibbles as in equation (4), i.e.,

stk
(2×0)

P̄2×0[i]

stk
(2×1)

P̄2×1[i]

...
stk

(2×14)

P̄2×14[i]

 =


I L0

2 · · · L0
z

I L1
2 · · · L1

z

...
...

. . .
...

I L14
2 · · · L14

z

 ·

tk

(0)
1,i

tk
(0)
2,i

...
tk

(0)
z,i

 , 0 ≤ i ≤ 7. (11)

9 Similar issue happens to Lilliput-AE [1], one of the first-round candidates at the
NIST competition, specifies TBCs with up to z = 7. However, they also ignored the
rationale of the original tweakey framework to ensure the security, and were actually
attacked practically [34].
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To satisfy the subtweakey difference cancellation property, the coefficient matrix
in (11) must satisfy the ‘block-MDS’ property [44], i.e.,

det


I Lr1

2 · · · Lr1
z

I Lr2
2 · · · Lr2

z
...

...
...

...
I Lrz

2 · · · Lrz
z

 ̸= 0 (12)

for all 0 ≤ r1 < r2 < · · · < rz ≤ 14. In other words, the goal of our design
is to choose Li’s such that the ‘block-MDS’ property is guaranteed. Although
the coefficient matrix in (11) has a block Vandermonde form, there is no simple
formula to compute the determinant of its squared sub-matrices for general Li’s.
When the Li’s are pairwise commutable, a formula can be deduced for squared
block Vandermonde matrices, which we refer to Supplementary Material F.

6.1 The Choice of Li

Our construction can be viewed as an extension of the generator matrices of
Reed-Solomon codes to the block matrix form. Specifically, denoting L1 = I,
and we choose the Li’s to be consecutive powers of a matrix L, i.e.,

{Li}1≤i≤z = {Lα+1, · · · ,Lα+z} (13)

for some integer α ∈ [−z,−1]. Then we can show that the ‘block-MDS’ property
is guaranteed if the matrix L satisfies specific property.

Proposition 1. Suppose L is a 4 × 4 matrix over GF (2) such that the char-
acteristic polynomial pL(λ) is a primitive polynomial of degree 4 over GF (2).
Then L has cycle 15, and for any integer α,

det


(Lα+1)r1 (Lα+2)r1 · · · (Lα+z)r1

(Lα+1)r2 (Lα+2)r2 · · · (Lα+z)r2

...
...

. . .
...

(Lα+1)rz (Lα+2)rz · · · (Lα+z)rz

 ̸= 0 (14)

for all 0 ≤ r1 < r2 < · · · < rz ≤ 14.

Proof. Let λi, 1 ≤ i ≤ 4, be the eigenvalues of L, then λi is primitive in GF (24)
and Lr has eigenvalues λr

i , 1 ≤ i ≤ 4. For 1 ≤ r < 15, we have λr
i ̸= 1, 1 ≤ i ≤ 4,

and thus Lr ̸= I. For r = 15, note that pL(λ) | (λ15 − 1), and by the Cayley–
Hamilton theorem (see Section 9 of [56]) we have pL(L) = 0. Then it follows
that L15 − I = 0.

To show the determinant is nonzero, we observe that
(Lα+1)r1 · · · (Lα+z)r1

(Lα+1)r2 · · · (Lα+z)r2

...
. . .

...
(Lα+1)rz · · · (Lα+z)rz

 =


Lαr1

Lαr2

. . .
Lαrz

 ·

Lr1 · · · (Lr1)z

Lr2 · · · (Lr2)z

...
. . .

...
Lrz · · · (Lrz )z

 . (15)
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Then it suffices to show that det
(
(Lri)j

)
1≤i,j≤z

̸= 0 for all 0 ≤ r1 < r2 < · · · <
rz ≤ 14, which we refer to Supplementary Material F. ⊓⊔

Construction of L. One simple way to construct L is to take L to be the
companion matrix of a primitive polynomial. For example, for the primitive
polynomial λ4 + λ+ 1, we can take L to be the companion matrix

L =


0 1 0 0
0 0 1 0
0 0 0 1
1 1 0 0

 . (16)

It can be readily checked that the characteristic polynomial pL(λ) = λ4 + λ+ 1
and thus the eigenvalues of L are distinct primitive elements in GF (24). On the
other hand, taking companion matrices of primitive polynomials is not the only
way to obtain L. In fact, we perform an exhaustive search of all binary 4 × 4
binary matrices, and find totally 1344 distinct L whose characteristic polynomial
is primitive over GF (2).

An Example for z = 4. Taking α = −2 and L equals to that in (16), then

{Li}1≤i≤4 = {L−1,L0,L1,L2}. (17)

Without loss of generality, let

L2 = L1 =


0 1 0 0
0 0 1 0
0 0 0 1
1 1 0 0

 ,L3 = L−1 =


1 0 0 1
1 0 0 0
0 1 0 0
0 0 1 0

 ,L4 = L2 =


0 0 1 0
0 0 0 1
1 1 0 0
0 1 1 0

 . (18)

Considering the LFSRs defined by (18), we found that the LFSRs for TK2

and TK3 coincide with the original LFSRs in SKINNY, and the LFSRs for TK4

coincides with that constructed in SKINNYe-64-256 v2. From this point of view,
our construction can be viewed as a natural extension of the original SKINNY-64
and SKINNYe-64-256 v2.

For general z ≤ 14, the ‘block-MDS’ property of our construction guarantees
there are at most z−1 difference cancellations every 15 rounds for TK-z (or every
30 rounds SKINNY-n-zn). We derive the lower bounds of the number of active
S-boxes for SKINNY-n-zn (z ≤ 14) with our construction of the tweakey schedule
(see Supplementary Material G). The results (see Table 17) show that our new
tweakey schedule for TK-z (z ≤ 14) leads to a natural increase of the bounds
compared to TK-1, TK-2 and TK-3 in [10] and TK-4 in [52].

Efficiency Considerations. How to choose Li’s to optimize the implemen-
tation efficiency is also an important issue. As pointed in [50], one direction of
optimization is to minimize the total number of XORs required by the LFSRs.
For z = 4, the LFSRs constructed through (18) require only 4 XORs totally, i.e.,
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L2 and L3 require only 1 XOR respectively, and L4 requires 2 XORs. Note that
in [50] it was proved that there is no secure LFSRs for TK4 with only a single
XOR, therefore the LFSRs constructed through (18) is optimal with respect to
the number of XORs. For all 4 ≤ z ≤ 7, we enumerate all possible L and α, and
give the optimal number of XORs required in our construction in Table 8.

Table 8: Optimal number of XORs required in our construction.

z L {Li}2≤i≤z Number of XORs Total XORs

4
(

0 1 0 0
0 0 1 0
0 0 0 1
1 1 0 0

)
{L,L−1,L2} {1, 1, 2} 4

5
(

0 1 0 0
0 0 1 0
0 0 0 1
1 1 0 0

)
{L,L−1,L2,L−2} {1, 1, 2, 3} 7

6
(

0 1 0 0
0 0 1 0
0 0 0 1
1 1 0 0

)
{L,L−1,L2,L−2,L3} {1, 1, 2, 3, 3} 10

7
(

0 1 0 0
0 0 1 0
0 0 0 1
1 1 0 0

)
{L,L−1,L2,L−2,L3,L4} {1, 1, 2, 3, 3, 5} 15

Another direction of optimization is to minimize the circuit area of the LF-
SRs. In our construction, all Li’s are powers of a matrix L, therefore a minimal
area implementation can be supported by instantiating only one circuit of L
and computing each Li iteratively. For example, for z = 4 we take α = −1
and L2 = L,L3 = L2,L4 = L3. Then L2,L3 and L4 can be computed by
repeating L in 1, 2 and 3 times respectively, and the total latency is as 6 times
as that of a single L. On the other hand, we propose an area-latency trade-off
to reduce the latency by slightly increasing the area. Again we take z = 4 and
L2 = L,L3 = L2 and L4 = L3 for an example. In this case we instantiate a
circuit of L and a circuit of L2. Then taking x2,x3,x4 ∈ GF (2)4 as inputs,
the output states L2x2,L3x3,L4x4 can be computed in two steps, i.e., firstly
compute Lx2 and L2x4, then compute L(L2x4) and L2x3. As a result, the total
latency is reduced by a third at the cost of double area10. In Table 9 we list the
area-latency trade-off for our construction for 4 ≤ z ≤ 7.

A More Scalable Construction. Our construction can be naturally extended
to choose c× c (c ≥ 4) matrices Li’s such that the ‘block-MDS’ property in (12)
is satisfied. The discussion is given in Supplementary Material H, where possible
ways to extend the tweakey size for SKINNY-128 are introduced. Similar methods
can also be applied to Deoxys-BC to extend its tweakey size.

10 The area of the trade-off implementation mainly includes the circuit for L and L2

and two 4-bit registers. In area optimization implementation, the area is the circuit
of L and one 4-bit register. Assume the registers bound the area, we can say trade-off
method costs double area.
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Table 9: The area-latency trade-off for our construction.
z {Li}2≤i≤z Instantiated circuit Area Latency

4 {L,L2,L3} {L} 1 6

{L,L2,L3} {L,L2} 2 2

5
{L,L2,L3,L4} {L} 1 10

{L,L−1,L2,L−2} {L,L−1} 2 3

{L,L2,L3,L4} {L,L2,L3} 3 2

6

{L,L2,L3,L4,L5} {L} 1 15

{L,L2,L3,L4,L5} {L,L2} 2 4

{L,L2,L3,L4,L5} {L,L2,L4} 3 3

{L,L2,L3,L4,L5} {L,L2,L3,L4} 4 2

7

{L,L2,L3,L4,L5,L6} {L} 1 21

{L,L−1,L2,L−2,L3,L−3} {L,L−1} 2 6

{L,L2,L3,L4,L5,L6} {L,L2,L4} 3 3

{L,L−1,L2,L−2,L3,L−3} {L,L−1,L2,L−2} 4 2

7 Conclusion

The unexpected cancellations in the new tweakey schedule of SKINNYe-64-256
significantly enhances several attacks on SKINNYe-64-256 when compared to
that on SKINNY-64-128 and SKINNY-64-192, and leaves a security margin of 3
rounds in related-tweakey setting. Moreover, we give some cryptanalysis results
on the updated version 2, which indicates that the current version satisfies the
security claims of the designers. At last, we introduce a uniformed design strategy
for the tweakey schedule of SKINNY-n-zn (z ≤ 14), and prove that it satisfies the
security requirements of the STK construction.

At CRYPTO 2022, Naito, Sasaki, Sugawara further introduced a new tweak-
able block cipher SKINNYee [51] based on SKINNYe-64-256 version 2. It supports
128-bit key and a (256+3)-bit tweak with a 64-bit plaintext block. The method
to extend the tweakey size is different from what we suggest in Section 6. It is
an interesting open problem to explore its security margin.
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Supplementary Material

A The algorithm of computing the equivalence classes
with non-full rank coefficient matrix for SKINNYe-64-256

The algorithm of computing the equivalence classes with non-full rank coefficient
matrix for SKINNYe-64-256 is given in Algorithm 1.

Algorithm 1: Computing the equivalence classes with non-full rank
coefficient matrix

1 Input: K = {0, 1, 2, · · · , 14}
2 H ← [ ]
3 for all {r1, r2, · · · , rt} ⊂ K /* about 215 iterations */
4 do
5 Compute the rank of A{r1,r2,··· ,rt}, Flag ← 0
6 if rank(A{r1,r2,··· ,rt}) ̸= min{4t, 16} then
7 for 0 ≤ r′ ≤ 14 do
8 B ← {(r1 + r′) mod 15, (r2 + r′) mod 15, · · · , (rt + r′) mod 15}
9 if B ∈ H then

10 Flag ← 1
11 break
12 end
13 end
14 end
15 if Flag = 0 then
16 H ← {r1, r2, · · · , rt}
17 end
18 end
19 Output: H

B Automatic Rectangle Attack by Dong et al. At
EUROCRYPT 2022

This section gives the new rectangle attack framework in [32] and briefly intro-
duces their automatic model.

B.1 Dong et al.’s Rectangle Attack Framework [32]

At EUROCRYPT 2022, Dong et al. [32] introduce a new related-key rectangle
attack on ciphers with linear key schedule, which is listed in Algorithm 2.
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Algorithm 2: Related-key rectangle attack with linear key-schedule
[32]

1 Construct y structures of 2rb plaintexts each
2 For structure i (1 ≤ i ≤ y), query the 2rb plaintexts by encryption under K1,

K2, K3 and K4 and store them in L1[i], L2[i], L3[i] and L4[i]
3 for each of the x-bit key Kx, which is a part of (mb +m′

f )-bit K1 do
4 Kc ← [ ] /* Key counters of size 2mb+mf−x */
5 for each of (mb +m′

f − x)-bit Kx̃ of K1 involved in Eb and Ef do
6 S1 ← [ ], S2 ← [ ]
7 for i from 1 to y do
8 for (P1, C1) ∈ L1[i] do
9 /* Partially encrypt P1 to α under guessed K1 and

partially decrypt to get the plaintext P2 ∈ L2[i] */
10 P2 = E−1

bK1⊕∆K
(EbK1

(P1)⊕ α)

11 S1 ← (P1, C1, P2, C2)

12 end
13 for (P3, C3) ∈ L3[i] do
14 P4 = E−1

bK1⊕∆K⊕∇K
(EbK1⊕∇K (P3)⊕ α)

15 S2 ← (P3, C3, P4, C4)

16 end
17 end
18 /* S1={(P1,C1,P2,C2) : (P1,C1)∈L1,(P2,C2)∈L2,EbK1

(P1)⊕EbK2
(P2)=α}

S2={(P3,C3,P4,C4) : (P3,C3)∈L3,(P4,C4)∈L4,EbK3
(P3)⊕EbK4

(P4)=α} */
19 H ← [ ]
20 for (P1, C1, P2, C2) ∈ S1 do
21 /* Assuming the first hf-bit internal states of X1 and

X2 are derived by decrypting (C1, C2) with k′
f */

22 X1[1, · · · , hf ] = E−1
fK1

(C1), X2[1, · · · , hf ] = E−1
fK1⊕∆K

(C2)

23 /* Assume the inactive bits of δ′ are first n− rf bits */
24 τ=(X1[1,· · ·,hf ], X2[1,· · ·,hf ], C1[1,· · ·,n− rf ], C2[1,· · ·,n− rf ])
25 H[τ ]← (P1, C1, P2, C2)

26 end
27 for (P3, C3, P4, C4) ∈ S2 do
28 X3[1, · · · , hf ] = E−1

fK1⊕∇K
(C3), X4[1, · · · , hf ] = E−1

fK1⊕∆K⊕∇K
(C4)

29 τ ′=(X3[1,· · ·,hf ], X4[1,· · ·,hf ], C3[1,· · ·,n− rf ], C4[1,· · ·,n− rf ])
Access H[τ ′] to find (P1, C1, P2, C2) to generate quartet
(C1, C2, C3, C4).

30 for each generated quartet do
31 Determine the other (mf −m′

f )-bit key k′′
f involved in Ef

32 Kc[Kx̃∥k′′
f ]← Kc[Kx̃∥k′′

f ] + 1 /* Denote the time as ε */
33 end
34 end
35 end
36 /* Exhaustive search step */
37 Select the top 2mb+mf−x−h hits in the counter to be the candidates, which

delivers an h-bit or higher advantage. Guess the remaining k− (mb +mf )
bit keys combined with the guessed x subkey bits to check the full key.

38 end
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B.2 Dong et al.’s Model to Determine the Optimal Distinguisher

Following the previous automatic models [55,26,39], Dong et al. introduced a
uniform automatic model to search for the entire (Nb + Nd + Nf ) rounds of
the new rectangle attack framework in Algorithm 2, by adding new constraints
and new objective function. The notations used in the new constraints are listed
below:

– Xu
r and X l

r: the internal state before SubCells in round r of the upper and
lower differentials

– W l
r: the internal state before MixColumns in round r of the lower differential

– DXU[r][i]: active cells in the internal states Xu
r (0 ≤ r ≤ Nb + r0 + rm, 0 ≤

i ≤ 15)
– DXL[r][i]: active cells in the internal states X l

r (0 ≤ r ≤ rm + r1 + Nf , 0 ≤
i ≤ 15)

– KnownEnc[r][i]: the cells involved in the mb-bit subtweakeys in the Nb ex-
tended rounds (0 ≤ r ≤ Nb − 1, 0 ≤ i ≤ 15)

– DXFixed[r][i]: the cells with fixed differences in X l
r (0 ≤ r ≤ Nf − 1, 0 ≤ i ≤

15)
– DWFixed[r][i]: the cells with fixed differences in W l

r (0 ≤ r ≤ Nf − 1, 0 ≤ i ≤
15)

– DXFilter[r][i]: the cells can be used as filters in X l
r (0 ≤ r ≤ Nf − 1, 0 ≤

i ≤ 15)
– DWFilter[r][i]: the cells can be used as filters in W l

r (0 ≤ r ≤ Nf − 1, 0 ≤
i ≤ 15)

– DXisFilter[r][i]: the cells chosen as filters in X l
r (0 ≤ r ≤ Nf−1, 0 ≤ i ≤ 15)

– DWisFilter[r][i]: the cells chosen as filters in W l
r (0 ≤ r ≤ Nf−1, 0 ≤ i ≤ 15)

– DXGuess[r][i]: the cells need to know in the decryption from ciphertexts to
the filters in X l

r (0 ≤ r ≤ Nf − 1, 0 ≤ i ≤ 15)
– DWGuess[r][i]: the cells need to know in the decryption from ciphertexts to

the filters in W l
r (0 ≤ r ≤ Nf − 1, 0 ≤ i ≤ 15)

– KnownDec[r][i]: the cells need to know in the decryption from ciphertext to
the position of known δ in Y l

r (0 ≤ r ≤ Nf − 1, 0 ≤ i ≤ 15)
– Adv: the advantage h
– x: the bit size of Kx in Algorithm 2

Modelling propagation of cells with known differences in Ef . Since
certain cells of the internal state with fixed differences can be used to filter
quartets, the propagation of fixed differences are needed to be modelled in Ef .
For the first extended round after the lower differential, the difference of each
cell is fixed: ∀ 0 ≤ i ≤ 15, DXFixed[0][i] = 1.

In the propagation of the fixed differences, after the SC operation, only the
differences of inactive cells are fixed. In the ART operation, the subtweakey
differences do not affect whether the differences are fixed. Let permutation
PSR = [0, 1, 2, 3, 7, 4, 5, 6, 10, 11, 8, 9, 13, 14, 15, 12] represent the SR operation,

DWFixed[r][i] = ¬DXL[rm + r1 + r][PSR[i]], ∀ 0 ≤ r ≤ Nf − 1, 0 ≤ i ≤ 15.
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The constraints on the impact of the MC operation on the internal state are
given below: ∀ 0 ≤ r ≤ Nf − 2, 0 ≤ i ≤ 3,

DXFixed[r + 1][i] = DWFixed[r][i] ∧ DWFixed[r][i+ 8] ∧ DWFixed[r][i+ 12],

DXFixed[r + 1][i+ 4] = DWFixed[r][i],
DXFixed[r + 1][i+ 8] = DWFixed[r][i+ 4] ∧ DWFixed[r][i+ 8],

DXFixed[r + 1][i+ 12] = DWFixed[r][i] ∧ DWFixed[r][i+ 8].

Modelling cells that could be used to filter quartets in Ef . In Algorithm
2, m′

f -bit k′f of kf involved in Nf extended rounds are guessed to obtain a 2hf -bit
filter. For each cell in X l

r, if the difference is nonzero and fixed, it can be chosen
as a filter If the difference is fixed as zero, the cell is not a filter because it has
been used as filter in W l

r. The valid valuations of DXFixed, DXL and DXFilter
are given in Table 10.

Table 10: All valid valuations of DXFixed, DXL and DXFilter for SKINNY.
DXFixed[r][i] DXL[rm + r1 + r][i] DXFilter[r][i]

0 1 0
1 0 0
1 1 1

In the last round, W l
Nf−1 can be computed from the ciphertexts, and the

cells with fixed differences of W l
Nf−1 can be used as filters, i.e., the (n − rf )

inactive bits: ∀ 0 ≤ i ≤ 15, DWFilter[Nf − 1][i] = DWFixed[Nf − 1][i].
Since the Nf rounds is extended with probability 1 at the bottom of the

distinguisher, then the differences of W l
r are propagated to X l

r+1 with probability
1 with the MC operation, and there will be more cells of W l

r with fixed differences
than the cells of X l

r+1 with fixed differences. Hence, these extra cells with fixed
differences in W l

r can act as filters. The details and all valid valuations of DWFixed
and DWFilter please refer to the full version of [32]. Note that DXFixed is only
used as the intermediate variable to determine DWFilter, since DXFixed is fully
determined by DWFixed. Denoting the sets of all possible valuations listed in
Table 10 and Table 8 in the full version of [32] by Pi and Qi, there are

(DXFixed[r][i],DXL[rm + r1 + r][i], DXFilter[r][i]) ∈ Pi, ∀ 0 ≤ r ≤ Nf − 1, 0 ≤ i ≤ 15,

(DWFixed[r][i],DWFixed[r][i+ 4], DWFixed[r][i+ 8], DWFixed[r][i+ 12],

DWFilter[r][i],DWFilter[r][i+ 4], DWFilter[r][i+ 8], DWFilter[r][i+ 12]) ∈ Qi,

∀ 0 ≤ r ≤ Nf − 2, 0 ≤ i ≤ 3.

Then, ∀ 0 ≤ r ≤ Nf − 1, 0 ≤ i ≤ 15, there have DXisFilter[r][i] ≤
DXFilter[r][i] and DWisFilter[r][i] ≤ DWFilter[r][i].



Mind the TWEAKEY Schedule: Cryptanalysis on SKINNYe-64-256 35

Modeling the guessed subtweakey cells in Ef for generating the quar-
tets. For the round 0, only cells used to be filters in the internal state need to
be known: ∀ 0 ≤ i ≤ 15, DXGuess[0][i] = DXisFilter[0][i].

From round 0 to round Nf − 1, the cells in W l
r need to be known involve

two types: cells to be known from X l
r over the SR operation, and cells used to

be filters in W l
r:

DWGuess[r][i] = DWisFilter[r][i]∨DXGuess[r][PSR[i]], ∀ 0 ≤ r ≤ Nf−1, 0 ≤ i ≤ 15.

In round 0 to round Nf − 2, the cells in X l
r+1 need to be known involve two

types: cells to be known from W l
r over the MC operation, and cells used to be

filters in X l
r+1: ∀ 0 ≤ r ≤ Nb − 2, 0 ≤ i ≤ 3

DXGuess[r + 1][i] = DWGuess[r][i+ 12] ∨ DXisFilter[r + 1][i],

DXGuess[r + 1][i+ 4] = DWGuess[r][i] ∨ DWGuess[r][i+ 4] ∨ DWGuess[r][i+ 8]∨
DXisFilter[r + 1][i+ 4],

DXGuess[r + 1][i+ 8] = DWGuess[r][i+ 4] ∨ DXisFilter[r + 1][i+ 8],

DXGuess[r + 1][i+ 12] = DWGuess[r][i+ 4] ∨ DWGuess[r][i+ 8] ∨ DWGuess[r][i+ 12]∨
DXisFilter[r + 1][i+ 12].

So
∑

0≤r≤Nf−1, 0≤i≤7 DXGuess[r][i] indicates the m′
f -bit key guessed for gen-

erating quartets.

Modelling the advantage h in the key-recovery attack. In Algorithm
2, the advantage h determines the exhaustive search time, where h should be
smaller than the number of key counters, i.e. h ≤ mb + mf − x. The x-bit
guessed subkey should satisfy x ≤ mb + m′

f , and also determine the size of
memory 2mb+mf−x to store the key counters. So there needs a balance between
x and h to achieve a low time and memory complexities. In the first round
extended after the distinguisher, only the active cells need to be known: ∀ 0 ≤
i ≤ 15, KnownDec[0][i] = DXL[rm + r1][i].

In round 1 to round Nf − 1, the cells in Y l
r+1 need to be known involve two

types: cells to be known from W l
r over the MC and SB operation, and active cells

in X l
r+1: ∀ 0 ≤ r ≤ Nb − 2, 0 ≤ i ≤ 3

KnownDec[r + 1][i] = DXL[rm + r1 + r + 1][i] ∨ KnownDec[r][PSR[i+ 12]],

KnownDec[r + 1][i+ 4] = DXL[rm + r1 + r + 1][i+ 4] ∨ KnownDec[r][PSR[i]]∨
KnownDec[r][PSR[i+ 4]] ∨ KnownDec[r][PSR[i+ 8]],

KnownDec[r + 1][i+ 8] = DXL[rm + r1 + r + 1][i+ 8] ∨ KnownDec[r][PSR[i+ 4]],

KnownDec[r + 1][i+ 12] = DXL[rm + r1 + r + 1][i+ 12] ∨ KnownDec[r][PSR[i+ 4]]∨
KnownDec[r][PSR[i+ 8]] ∨ KnownDec[r][PSR[i+ 12]].

So
∑

0≤r≤Nf−1, 0≤i≤7 KnownDec[r][i] indicates the mf -bit key.
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The objective function. The time complexities of the attack framework in
Algorithm 2 involve three parts: Time I (T1), Time II (T2) and Time III
(T3).

The constraints for probability p̃2tq̃2 of the boomerang distinguisher are same
as [26], where DXU, DXL and DXU ∧ DXL are on behalf of p̃, q̃ and t. KnownEnc is
on behalf of mb.To describe T1, there is:

T1 =
∑

0≤r≤r0−1, 0≤i≤15

w0 · DXU[Nb + r][i] +
∑

0≤r≤r1−1, 0≤i≤15

w1 · DXL[rm + r][i]+

∑
0≤r≤rm−1, 0≤i≤15

wm · (DXU[Nb + r0 + r][i] ∧ DXL[r][i])+

∑
0≤r≤Nb−2, 0≤i≤7

wmb · KnownEnc[r][i] +
∑

0≤r≤Nf−1, 0≤i≤7

wmf · DXGuess[r][i] + cT1 ,

where cT1
indicates the constant factor 2n/2+1, and w0, w1, wm, wmb

, wmf
are

weights factors.
For describing T2 (let ε = 1), there is:

T2 =
∑

0≤r≤r0−1, 0≤i≤15

2w0 · DXU[Nb + r][i] +
∑

0≤r≤r1−1, 0≤i≤15

2w1 · DXL[rm + r][i]+

∑
0≤r≤rm−1, 0≤i≤15

2wm · (DXU[Nb + r0 + r][i] ∧ DXL[r][i])+

∑
0≤r≤Nb−2, 0≤i≤7

wmb · KnownEnc[r][i] +
∑

0≤r≤Nf−1, 0≤i≤7

wmf · DXGuess[r][i]−∑
0≤r≤Nf−1, 0≤i≤15

whf · (DXisFilter[r][i] + DWisFilter[r][i]) + cT2 ,

where
∑

0≤r≤Nf−1, 0≤i≤15 whf
·(DXisFilter[r][i]+DWisFilter[r][i]) corresponds

to the total filter 2(n− rf ) + 2hf , and cT2 indicates a constant factor 2n.
For T3, there is T3 = cT3

− Adv, where cT3
= ñ for SKINNY-n-ñ.

For the advantage h and x, there are:


x ≤

∑
0≤r≤Nb−2, 0≤i≤7

KnownEnc[r][i] +
∑

0≤r≤Nf−1, 0≤i≤7

DXGuess[r][i],

Adv+ x ≤
∑

0≤r≤Nb−2, 0≤i≤7

KnownEnc[r][i] +
∑

0≤r≤Nf−1, 0≤i≤7

KnownDec[r][i].

So the uniformed objective is

Minimize obj, obj ≥ T1, obj ≥ T2, obj ≥ T2.
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C The Boomerang Distinguishers and Rectangle Attack
on SKINNYe-64-256 and its version 2

C.1 The details of boomerang distinguishers of SKINNYe-64-256 and
its version 2

In this section, we give the 26-round related-tweakey boomerang distinguisher
for SKINNYe-64-256 v2 in Table 11. The differentials of the two boomerangs for
SKINNYe-64-256 and its version 2 are listed in Table 12 and Table 13.

Table 11: The 26-round RTK boomerang distinguisher for SKINNYe-64-256 v2.
r0 = 12, rm = 6, r1 = 8, p̃ = 2−19.05, ξ = 2−19.5, q̃ = 1, p̃2ξq̃2 = 2−57.6

∆TK1 = 0, 6, 0, 2, 0, 0, 0, 0, 0, 0, 0, d, 0, 0, 0, 0
∆TK2 = 0, 9, 0, 8, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0
∆TK3 = 0, c, 0, b, 0, 0, 0, 0, 0, 0, 0, 8, 0, 0, 0, 0
∆TK4 = 0, a, 0, 9, 0, 0, 0, 0, 0, 0, 0, 5, 0, 0, 0, 0
∆X(0) = 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
∇TK1 = 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2
∇TK2 = 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 6
∇TK3 = 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 9
∇TK4 = 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1
∇X(26) = 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0

Especially, we also experimentally verify the probabilities of the middle part
similar with [32,55]. The experiments use one computer equipped with one RTX
2080 Ti and the results are listed in Table 14. The source code of the experiments
can refer to https://github.com/skinny64/Skinny64-256.

C.2 Rectangle Attack on 37-round SKINNYe-64-256 v2

We use the 26-round related-tweakey rectangle distinguisher for SKINNYe-64-256
v2 given in Table 11, whose probability is 2−np̃2ξq̃2 = 2−64−57.6 = 2−121.6.

Adding 4-round Eb and 7-round Ef , we attack 37-round SKINNYe-64-256 v2
as illustrated in Figure 6, where rb = 12·4 = 48, mb = 18·4 = 72, rf = 16·4 = 64

and mf = 40 · 4 = 160. With k′f = {STK(33)
1,4,5, STK

(34)
0,1,3,5−7, STK

(35)
0−7 , STK

(36)
0−7}

and X
(32)
10 ∥W

(32)
4,5,13∥W

(33)
7,9,13 as internal filters, we have m′

f = 25 · 4 = 100 and
hf = 7 · 4 = 28. For SKINNYe-64-256 v2, the LFSR used for TK4 is different
from the one in SKINNYe-64-256. According to the property of Ã{r0,r1,··· ,rt−1}
analyzed in Section 3, we list the relations of the subtweakeys involved in Eb

and Ef in Table 15.
In the data collection process, there is y =

√
s · 2n/2−rb/

√
p̃2ξq̃2 =

√
s · 212.8

structures and the data complexity is
√
s · 2n/2+2/

√
p̃2ξq̃2 =

√
s · 262.8. The

time complexity of generating quartets is T1 =
√
s · |kb ∪ k′f | · 2n/2+1/

√
p̃2ξq̃2 =

https://github.com/skinny64/Skinny64-256
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Table 12: The differentials of the 30-round distinguisher for SKINNYe-64-256,
where R12 to R16 denote rm = 5-round middle part, u satisfies DDT[0x4][u] > 0
and DDT[u][0x1] > 0, and v and w satisfy DDT[0x2][v] > 0, DDT[v][w] > 0 and
DDT[w][0x1] > 0.

Upper differential Lower differential

R0
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,u

0,0,0,0,0,0,0,0

R1
0,0,u,0,0,0,0,0,0,0,0,0,0,0,0,0
0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0

0,0,1,0,0,0,0,0

R2-R10
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0

0,0,0,0,0,0,0,0

R11
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0

0,0,0,0,0,0,0,1

R12
0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0 -,-,-,-,-,-,-,-,-,-,-,-,-,-,-,-
0,0,0,0,0,0,0,0,*,0,0,0,0,0,0,0 -,-,-,-,-,-,-,-,-,-,-,-,-,-,-,-

0,0,0,0,0,0,0,0 0,0,0,0,0,0,0,0
R13-R15 middle part middle part

R16
-,-,-,-,-,-,-,-,-,-,-,-,-,-,-,- *,0,0,0,0,*,*,*,*,0,*,0,0,0,0,*
-,-,-,-,-,-,-,-,-,-,-,-,-,-,-,- 2,0,0,0,0,2,2,2,2,0,2,0,0,0,0,2

0,0,0,0,0,0,0,0 0,0,0,0,0,0,0,0

R17
0,0,0,0,2,0,0,0,0,0,0,2,0,0,2,0
0,0,0,0,v,0,0,0,0,0,0,v,0,0,v,0

0,0,0,0,0,0,0,0

R18
0,0,0,0,0,0,0,0,0,0,0,0,0,v,0,0
0,0,0,0,0,0,0,0,0,0,0,0,0,w,0,0

0,0,0,0,0,0,0,0

R19
w,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0

1,0,0,0,0,0,0,0

R20-R28
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0

0,0,0,0,0,0,0,0

R29
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0

0,0,0,1,0,0,0,0
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Table 13: The differentials of the 26-round distinguisher for SKINNYe-64-256 v2,
where R12 to R17 denote rm = 6-round middle part, u satisfies DDT[0x1][u] > 0
and DDT[u⊕ 0x9][0xb] > 0, v satisfies DDT[0x1][v] > 0 and DDT[v][0xb] > 0.

Upper differential Lower differential

R0
0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0
0,9,0,8,0,0,0,0,0,0,0,0,0,0,0,0

0,9,0,8,0,0,0,0

R1-R6
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0

0,0,0,0,0,0,0,0

R7
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0

0,0,d,0,0,0,0,0

R8
0,0,d,0,0,0,d,0,0,0,0,0,0,0,d,0
0,0,2,0,0,0,u,0,0,0,0,0,0,0,v,0

0,0,2,0,0,0,6,0

R9
0,v,0,0,0,0,0,0,0,0,0,u⊕ 0x6,0,0,0,0

0,4,0,0,0,0,0,0,0,0,0,4,0,0,0,0
0,0,0,0,4,0,0,0

R10
0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0
0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0

0,0,0,0,e,2,0,0

R11
0,0,0,0,0,0,0,0,0,e,0,0,0,0,0,0
0,0,0,0,0,0,0,0,0,9,0,0,0,0,0,0

0,0,0,0,0,0,9,0

R12
0,0,0,9,0,0,0,0,0,0,0,0,0,0,0,9 -,-,-,-,-,-,-,-,-,-,-,-,-,-,-,-
0,0,0,*,0,0,0,0,0,0,0,0,0,0,0,* -,-,-,-,-,-,-,-,-,-,-,-,-,-,-,-

0,0,0,4,0,0,c,0 0,0,0,0,0,0,0,0
R13-R16 middle part middle part

R17
-,-,-,-,-,-,-,-,-,-,-,-,-,-,-,- 0,*,0,0,0,0,0,0,0,0,0,0,0,0,0,0
-,-,-,-,-,-,-,-,-,-,-,-,-,-,-,- 0,8,0,0,0,0,0,0,0,0,0,0,0,0,0,0

0,0,0,0,0,0,0,8 0,8,0,0,0,0,0,0

R18-R24
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0

0,0,0,0,0,0,0,0

R25
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0

0,0,0,0,0,0,2,0
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Table 14: Experiments on the middle part of boomerang distinguishers for
SKINNYe-64-256 and its version 2.

Version Nd rm Probability ξ Complexity Time
SKINNYe-64-256 30 5 2−30.95 240 8405s

SKINNYe-64-256 v2 26 6 2−19.50 234 132s

Active cell Active cell with fixed difference 0aa Both the difference and the value are neededZero difference, but the value is needed Value is needed to fast filter quartets
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Fig. 6: The 37-round attack against SKINNYe-64-256 version 2.

√
s · 272+100+32+1+28.8 =

√
s · 2233.8. We get s · |kb ∪ k′f | · 2−2hf−n+2rf /(p̃2ξq̃2) =

s · 272+100−56−64+128+57.6 = s · 2237.6 quartets. The memory complexity is
√
s ·

262.8 + |kb ∪ kf |/2x =
√
s · 262.8 + 2212−x. For each of the s · 2237.6 quartets, the

key-recovery process is as follows, whose time complexity is ε:

1. In round 34: guessing 24 possible values of STK
(34)
2 , we compute Z

(33)
3,15

together with guessed k′f . Then ∆Y
(33)
3 and ∆X

(33)
15 are deduced. For the

4th column of X(33) of (C1, C3), we obtain ∆W
(32)
15 = ∆X

(33)
3 ⊕∆X

(33)
15 = 0.

Hence, we obtain ∆X
(33)
3 and deduce STK

(33)
3 by Lemma 1. Similarly, we

deduce STK
′(33)
3 for (C2, C4). ∆STK

(33)
3 can act as a 4-bit filter. s · 2237.6 ·

24 · 2−4 = s · 2237.6 quartets remain.
2. Guessing 24 possible values of STK

(34)
4 , we compute Z33[7] and peel off

round 34, 35 and 36. Then ∆Y
(33)
7 is deduced. For the 4th column of X(30)

of (C1, C3), we obtain ∆W
(32)
11 = ∆X

(33)
7 ⊕ ∆X

(33)
15 = 0, where ∆X

(33)
15 is

obtained in step 1. Hence, we obtain ∆X
(33)
7 and deduce STK

(33)
7 by Lemma

1. Similarly, we deduce STK
′(33)
7 for (C2, C4). Then fixed ∆STK

(33)
7 can act

as a 4-bit filter. s · 2237.6 · 24 · 2−4 = s · 2237.6 quartets remain.
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Table 15: Relations of the subtweakeys involved in the 37-round attack on
SKINNYe-64-256 v2, where the subtweakeys marked in bold are among k′f .
i kb kf

0 ETK
(0)
0 , STK

(2)
2 STK

(32)
0 , STK

(34)
2 ,STK

(36)
4 |Im(Ã{0,1,1,2,3})| = 216 |Im(Ã{0,1,3})| = 212

1 ETK
(0)
1 , STK

(2)
0 STK

(32)
1 ,STK

(34)
0 ,STK

(36)
2 |Im(Ã{0,1,1,2,3})| = 216 |Im(Ã{0,1,2,3})| = 216

2 ETK
(0)
2 STK

(34)
4 ,STK

(36)
6 |Im(Ã{0,2,3})| = 212 |Im(Ã{0,3})| = 28

3 ETK
(0)
3 STK

(32)
3 ,STK

(34)
7 ,STK

(36)
1 |Im(Ã{0,1,2,3})| = 216 |Im(Ã{0,2,3})| = 212

4 ETK
(0)
9 STK

(34)
6 ,STK

(36)
5 |Im(Ã{0,2,3})| = 212 |Im(Ã{0,2,3})| = 212

5 ETK
(0)
10 , STK

(2)
3 STK

(32)
5 ,STK

(34)
3 ,STK

(36)
7 |Im(Ã{0,1,1,2,3})| = 216 |Im(Ã{0,1,2,3})| = 216

6 ETK
(0)
11 STK

(32)
6 ,STK

(34)
5 ,STK

(36)
3 |Im(Ã{0,1,2,3})| = 216 |Im(Ã{0,2,3})| = 212

7 ETK
(0)
8 STK

(32)
7 ,STK

(34)
1 ,STK

(36)
0 |Im(Ã{0,1,2,3})| = 216 |Im(Ã{0,2,3})| = 212

8 STK
(1)
2 STK

(33)
2 ,STK

(35)
4 |Im(Ã{1,2,3})| = 212 |Im(Ã{1,3})| = 28

9 STK
(1)
0 STK

(31)
1 , STK

(33)
0 ,STK

(35)
2 |Im(Ã{1,1,2,3})| = 212 |Im(Ã{1,3})| = 28

10 STK
(1)
4 STK

(33)
4 ,STK

(35)
6 |Im(Ã{1,2,3})| = 212 |Im(Ã{1,2,3})| = 212

11 STK
(1)
7 STK

(33)
7 ,STK

(35)
1 |Im(Ã{1,2,3})| = 212 |Im(Ã{1,3})| = 28

12 STK
(33)
6 ,STK

(35)
5 |Im(Ã{2,3})| = 28 |Im(Ã{3})| = 24

13 STK
(1)
3 STK

(31)
5 , STK

(33)
3 ,STK

(35)
7 |Im(Ã{1,1,2,3})| = 212 |Im(Ã{1,3})| = 28

14 STK
(1)
5 STK

(33)
5 ,STK

(35)
3 |Im(Ã{1,2,3})| = 212 |Im(Ã{1,2,3})| = 212

15 STK
(1)
1 STK

(33)
1 ,STK

(35)
0 |Im(Ã{1,2,3})| = 212 |Im(Ã{1,2,3})| = 212

|kb ∪ kf | = 2212 |kb ∪ k′
f | = 2172

3. In round 33: guessing 24 possible values of STK(33)
2 , we compute Z

(32)
3,11,15.

Then ∆Y
(32)
3 and ∆X

(32)
11,15 are deduced. For the 4th column of X(32) of

(C1, C3), we can obtain ∆X
(32)
3 = ∆X

(32)
11 = ∆X

(32)
15 . Hence, we obtain

∆X
(32)
3 and deduce STK

(32)
3 . Similarly, we deduce STK

′(32)
3 for (C2, C4).

Then fixed ∆STK
(32)
3 which is a 4-bit filter. For both (C1, C3) and (C2, C4),

∆X
(32)
11 = ∆X

(32)
15 is a 4-bit filter. s · 2237.6 · 24 · 2−4 · 2−4 · 2−4 = s · 2229.6

quartets remain.

4. Guessing 24 possible values of STK(33)
0 and 24 possible values of STK(33)

6 ,
we compute Z

(32)
1,5,13 and peel off round 33. Since STK

(32)
1 and STK

(32)
5 has

only one solution, we can compute X
(32)
1,5,13. For the 4th column of X(32),

∆X
(32)
1 = ∆X

(32)
5 = ∆X

(32)
13 is a 8-bit filter for both (C1, C3) and (C2, C4).

s · 2229.6 · 24 · 24 · 2−8 · 2−8 = s · 2221.6 quartets remain.

5. In round 32: guessing 24 possible values of STK
(32)
6 , 24 possible values

of STK
(32)
7 and together with the one solution of STK

(32)
0 , we compute

Z
(31)
1,5,9,13 and peel off round 32. Then ∆X

(31)
9,13 are deduced. Since there is

only one solution of STK(31)
1 , we can compute X

(31)
1 and ∆X

(31)
1 . For the

2nd column of X(31), we can obtain ∆X
(31)
1 = ∆X

(31)
9 = ∆X

(31)
13 , which is a

8-bit filter for both (C1, C3) and (C2, C4). s ·2221.6 ·24 ·24 ·2−8 ·2−8 = s ·2213.6
quartets remain.
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6. In round 31: With the only one solution of STK(31)
5 , we decrypt one round

to get X
(30)
11 . ∆X

(30)
11 = 0x2 is a 4-bit filter for both (C1, C3) and (C2, C4).

s · 2213.6 · 2−8 = s · 2205.6 quartets remain.

So for each quartet, ε = 24· 437+24· 437+24· 437+2−8·28· 437+2−16·28· 437+2−24· 437 ≈
22.41 and T2 = s · 2237.6 · ε = s · 2240.01.

Set the excepted number of right quartets s = 1, the advantage h = 24 and
x = 168 (x ≤ 172, h ≤= 212 − x). Then we have T1 = 2233.8, T2 = 2240.01 and
T3 = 2232. In total, the data complexity is 262.8, the memory complexity is 262.8,
and the time complexity is 2240.03. The success probability is about 66.3%.

D MITM Attacks on SKINNYe-64-256 and its Version 2

D.1 Definitions and Symbols of MITM Attack

Key schedule

Encryption
SENC

Match
E+ E−

Public or Oracle computation

SKSA

Fig. 7: A high-level overview of the MITM attacks [31]

The high-level overview of the MITM attacks introduced by Dong et al. is
shown in Figure 7 and the notations are listed below.

– SENC: starting state in the encryption data path (contains n w-bit cells)
– SKSA: starting state in the key schedule data path (contains n̄ w-bit cells)
– E+: ending state of the forward computation
– E−: ending state of the backward computation
– N : N = {0, 1, · · · , n− 1}
– N : N = {0, 1, · · · , n̄− 1}
– BENC: subset of N , index of Blue cells in SENC, visualized by cells.
– BKSA: subset of N , index of Blue cells in SKSA, visualized by cells.
– RENC: subset of N , index of Red cells in SENC, visualized by cells.
– RKSA: subset of N , index of Red cells in SKSA, visualized by cells.
– GENC: subset of N , index of Gray cells in SENC, visualized by cells.
– GKSA: subset of N , index of Gray cells in SKSA, visualized by cells.
– M+: subset of N , index of cells in E+ which can be computed in the forward

computation
– M−: subset of N , index of cells in E− which can be computed in the back-

ward computation
– λ+: λ+ =| BENC | + | BKSA |, the initial degrees of freedom for the forward

computation, which is the number of in (SENC,SKSA).
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– λ−: λ− =| RENC | + | RKSA |, the initial degrees of freedom for the backward
computation, which is the number of in (SENC,SKSA).

– λ+
ENC: λ+

ENC = |BENC|, the initial degrees of freedom from the encryption data
path for the forward computation.

– λ+
KSA: λ+

KSA = |BKSA|, the initial degrees of freedom from the key schedule data
path for the forward computation.

– λ−
ENC: λ−

ENC = |RENC|, the initial degrees of freedom from the encryption data
path for the backward computation.

– λ−
KSA: λ−

KSA = |RKSA|, the initial degrees of freedom from the key schedule data
path for the backward computation.

– DoM: the degrees of matching
– f+

i : a function maps (SENC[GENC],SKSA[GKSA],SENC[BENC],SKSA[BKSA]) to a word
– f−

i : a function maps (SENC[GENC],SKSA[GKSA],SENC[RENC],SKSA[RKSA]) to a word
– f+: f+ = (f+

1 , · · · , f+
l+), l

+ constraints on the neutral words for the forward
computation

– f−: f− = (f−
1 , · · · , f−

l−), l
− constraints on the neutral words for the back-

ward computation
– DoF+: the degrees of freedom for the forward computation
– DoF−: the degrees of freedom for the backward computation

From (SENC,SKSA) leading to E+ and E− are the forward and backward
computations respectively. The cells of (SENC,SKSA) are partitioned into dif-
ferent subsets with different meanings. The cells (SENC[BENC],SKSA[BKSA]) and
(SENC[RENC],SKSA[RKSA]) are the neutral words for the forward and backward com-
putations respectively. The matching point is between E+ and E−, DoM = m if
E+[M+] and E−[M−] form an m-cell filter. If the values of (SENC[GENC],SKSA[GKSA])

are fixed, for any fixed c+ = (a1, · · · , al+) ∈ Fw·l+
2 and c− = (b1, · · · , bl−) ∈

Fw·l−
2 , the neutral words (SENC[BENC],SKSA[BKSA]) and (SENC[RENC],SKSA[RKSA]) ful-

fill the following systems of equations:
f+
1 (SENC[GENC],SKSA[GKSA],SENC[BENC],SKSA[BKSA]) = a1

f+
2 (SENC[GENC],SKSA[GKSA],SENC[BENC],SKSA[BKSA]) = a2

· · · · · ·
f+
l+
(SENC[GENC],SKSA[GKSA],SENC[BENC],SKSA[BKSA]) = al+

(19)

and 
f−
1 (SENC[GENC],SKSA[GKSA],SENC[RENC],SKSA[RKSA]) = b1

f−
2 (SENC[GENC],SKSA[GKSA],SENC[RENC],SKSA[RKSA]) = b2

· · · · · ·
f−
l−
(SENC[GENC],SKSA[GKSA],SENC[RENC],SKSA[RKSA]) = bl−

(20)

If there are 2w·(λ+−l+) and 2w·(λ−−l−) solutions of Equation (19) and (20) re-
spectively, we can get DoF+ = λ+ − l+ and DoF− = λ− − l−, which are the
degrees of freedom for the forward and backward computations. The overall time
complexity of MITM attack is

(2w)n−DoF+−DoF−
((2w)DoF+

+ (2w)DoF−
+ (2w)DoF++DoF−−m)

≈(2w)n−min{DoF+,DoF−,m}
(21)
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In order to find the MITM key-recovery attacks, Dong et al. [31] mentioned
that the degrees of freedom for the forward or backward computation from SENC
should be used up while the degrees of freedom for the forward or backward
computation from SKSA cannot be depleted. That means the degrees of freedom
from λ+

ENC and λ−
ENC must be consumed, so the remaining degrees of freedom are

λ+
KSA and λ−

KSA for forward and backward computations respectively. If there are
l+KSA and l−KSA degrees of freedom consumed from λ+

KSA and λ−
KSA, then we can get

DoF+ = λ+−λ+
ENC− l+KSA = λ+

KSA− l+KSA and DoF− = λ−−λ−
ENC− l−KSA = λ−

KSA− l−KSA.

D.2 MILP Model for MITM Attacks on SKINNYe-64-256

The MITM attack cuts the whole cipher into forward and backward computation
chunks, which overlaps in a common intermediate round (i.e. matching point). In
each of the chunks, the computation involves a set of key bits, such that they can
be computed over all values of the involved key bits independently from the key
bits involved in the other chunk (the distinct key bits are called neutral words).
In order to perform a successful MITM attack, both the number of possible
values of forward and backward neutral words (denoted as degrees of freedom
of forward and backward neutral words) must be larger than 1. In Dong et al.’s
model [31], the degree of freedom for forward and backward neutral words is
counted in cells, which is denoted as DoF+ and DoF−, respectively. Then, they
add the constraint DoF+ ≥ 1 and DoF− ≥ 1 in the model to ensure the number
of possible values of the neutral words to be larger than 1. The reason behind
is that for SKINNY when DoF+ = 0 or DoF− = 0, the linear constraints for the
neutral words will lead to a full-rank linear system (i.e., the Equation (19) or
(20) will have only one solution), which leads to the size of neutral words to be
1 and fails the MITM attack.

When applying Dong et al.’s model to SKINNYe-64-256, the situation be-
comes different due to the new tweakey schedule. For example, assume the ini-
tial degrees of freedom from the key schedule path as λ+

KSA = λ−
KSA = 4 and

the consumed degrees of freedom l+KSA = l−KSA = 4. In this case we will get
DoF+ = 4 − 4 = 0,DoF− = 4 − 4 = 0, which will never be the solutions of
Dong et al.’s MILP model (invalidate the constraints DoF+ ≥ 1,DoF− ≥ 1).
However, when building the linear constraint systems for the neutral key words
as Equation (19) and (20), the coefficient matrices (denoted as A) can be of
non-full rank even though DoF+ = 0 or DoF− = 0. More precisely, according
to Section 3 and Table 4, those coefficient matrices with rank = 14 will make
the degree of freedom for the neutral words be 22, which therefore validates the
MITM attack. In order to cover all the possible solutions for the MITM attacks
on SKINNYe-64-256, we build two different kinds of models:

– The first one maintain similar constraints from Dong et al.’s model including
the constraints DoF+ ≥ 1, DoF− ≥ 1.

– The second one takes the property in Section 3 into account. We only con-
sider those coefficient matrices with rank = 14 in Table 4, and discard
those with rank = 15 since they will lead to attacks with almost exhaus-
tive attack. Let st+, st− be the starting rounds of the degrees of freedom
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consumption for forward and backward chunks. Suppose for forward chunk
and backward chunk, the equivalence classes used are [{r+1 , r

+
2 , r

+
3 , r

+
4 }] and

[{r−1 , r
−
2 , r

−
3 , r

−
4 }] (selected from equivalence classes with rank = 14 in Ta-

ble 4), respectively. Then, the following constraints will be added to replace
DoF+ ≥ 1, DoF− ≥ 1:

DoF+ = 0, DoF− = 0,∑15
i=0 δ

(r+)
KSA [i] = 1, for r+ = st+ + 2r+j and j = 1, 2, 3, 4,∑15

i=0 δ
(r+)
KSA [i] = 0, otherwise,∑15

i=0 δ
(r−)
KSA [i] = 1, for r+ = st− + 2r−j and j = 1, 2, 3, 4,∑15

i=0 δ
(r−)
KSA [i] = 0, otherwise,

(22)

where Boolean variable δ
(r+/−)
KSA [i] = 1 if and only if the degrees of freedom of

the forward/backward neutral words are consumed in i-th cell in round r+ or
round r−. We build different MILP models for parameters (st+, st−, r+i , r

−
i )

with i = 1, 2, 3, 4.

The other parts of the model for SKINNYe-64-256 are similar with Dong et
al.’s model. The source code is provided in https://github.com/skinny64/
Skinny64-256. We run different kinds of the models to find optimal solutions.

D.3 MITM Attack on 31-Round SKINNYe-64-256

The best MITM attack we discover is based on the rank-equivalence class [{0, 1, 2, 3}]
for both forward and backward chunk, which is a 31-round single-key attack on
SKINNYe-64-256 as shown in Figure 8. The starting states are SENC = X(1) and
SKSA = (TK

(1)
1 , TK

(1)
2 , TK

(1)
3 , TK

(1)
4 ). The matching point is between Z(16) and

X(17), which forms a 1-cell filter. There are 4 cells and 4 cells in SKSA, so
λ+
KSA = λ−

KSA = 4 cells.
The highlevel procedures of the MITM key-recovery attack on SKINNYe-64-256

are given as follows:

1. Assign arbitrary compatible values to all bytes except those that depend on
the neutral bytes.

2. Collecting a structure of plaintext-ciphertext pairs and store them in a table
H.

3. Compute the solution spaces of and (neutral words for the forward and
backward computations) under the constraints on them.

4. For all possible values of , compute forward to the matching point to get
a table L1, whose indices are the values for matching and the elements are
the values of .

5. For all possible values of , compute backward to the matching point to get
a table L2, whose indices are the values for matching and the elements are
the values of .

https://github.com/skinny64/Skinny64-256
https://github.com/skinny64/Skinny64-256
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6. Check whether there is a match on indices between L1 and L2. If there is
a partial-matching, check for a full-state match. In case none of them are
fully matched, repeat the procedure by changing values assigned in Step 1
till find a full match.

To peform the detailed attack, we firstly need to compute the solution space
of and cells. For the forward computation with , we need to make the
Equation (23) hold:

TK
(6)
1,2 ⊕ TK

(6)
2,2 ⊕ TK

(6)
3,2 ⊕ TK

(6)
4,2 = a1,

TK
(8)
1,4 ⊕ TK

(8)
2,4 ⊕ TK

(8)
3,4 ⊕ TK

(8)
4,4 = a2,

TK
(10)
1,6 ⊕ TK

(10)
2,6 ⊕ TK

(10)
3,6 ⊕ TK

(10)
4,6 = a3,

TK
(12)
1,5 ⊕ TK

(12)
2,5 ⊕ TK

(12)
3,5 ⊕ TK

(12)
4,5 = a4,

(23)

where a1, a2, a3, a4 are constants. Assume {TK(6)
1,2 , TK

(6)
2,2 , TK

(6)
3,2 , TK

(6)
4,2} repre-

sents the master tweakey and c+ = (a1, a2, a3, a4) ∈ F16
2 . Using the notations in

Section 3, the Equation (23) can be rewritten as

A{0,1,2,3} · [tk
(6)
1,2, tk

(6)
2,2, tk

(6)
3,2, tk

(6)
4,2]

T = c+. (24)

For Equation (24), we can know rank(A{0,1,2,3}) = 14 from Table 4 and the size
of its image space |Im(A)| = 214. Therefore, if c+ ∈ Im(A), there will be 22

solutions of Equation (24). Otherwise, it will have no solution. Before the attack,
we precompute the image space of A{0,1,2,3} and store it in a table Im+

A{0,1,2,3}
.

In other words, for given c+ ∈ Im(A), the consumed degrees of freedom of
neutral words for is 14 bits. Therefore, the remaining degrees of freedom for
is 4λ+

KSA − 14 = 16− 14 = 2 bits, i.e., the solution space of neutral words is 22.
Similarly, for the backward computation with cells, there needs Equation

(25) to hold: 
TK

(23)
1,0 ⊕ TK

(23)
2,0 ⊕ TK

(23)
3,0 ⊕ TK

(23)
4,0 = b1,

TK
(25)
1,2 ⊕ TK

(25)
2,2 ⊕ TK

(25)
3,2 ⊕ TK

(25)
4,2 = b2,

TK
(27)
1,4 ⊕ TK

(27)
2,4 ⊕ TK

(27)
3,4 ⊕ TK

(27)
4,4 = b3,

TK
(29)
1,6 ⊕ TK

(29)
2,6 ⊕ TK

(29)
3,6 ⊕ TK

(29)
4,6 = b4.

(25)

Let c− = (b1, b2, b3, b4) ∈ F16
2 be constants, there is

A{0,1,2,3} · [tk
(23)
1,0 , tk

(23)
2,0 , tk

(23)
3,0 , tk

(23)
4,0 ]T = c−. (26)

Precompute the solution space of c− in table Im−
A{0,1,2,3}

before the attack. The
consumed degrees of freedom of neutral words for the backward computation is
14 bits. Therefore, the remaining degrees of freedom for the backward computa-
tion is 4λ−

KSA − 14 = 16− 14 = 2 bits, i.e., the solution space of neutral words
for the backward computation is 22.

We give the details of 31-round MITM key-recovery attack in Algorithm 3.
The data and memory complexity is 252, which is bounded by Line 3 in Algorithm
3. According to the Equation (21), we can get the time complexity is about 2254.
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Algorithm 3: The MITM key-recovery attack on SKINNYe-64-256
1 Compute the Im+A{0,1,2,3}

and Im−A{0,1,2,3}

2 X
(0)
0,10,14 ← 0, X(1)

2,3,9,11,13 ← 0, X(2)
2,8,10,12 ← 0, Y (2)

1 ← 0, X(3)
1,9 ← 0, Y (4)

0 ← 0.
3 Collecting structure of plaintext-ciphertext pairs and store them in table H,

which traverses the non-constant 16-3=13 cells in the plaintext

4 for All possible values of the cells in (TK
(1)
1 , TK

(1)
2 , TK

(1)
3 , TK

(1)
4 ) do

5 Compute all other unknown Gray cells according to the values assigned in
step 2 and step 3.

6 for (a1, a2, a3, a4) ∈ Im+A{0,1,2,3}
and (b1, b2, b3, b4) ∈ Im−A{0,1,2,3}

do
7 Derive the solution space of the cells by Eq. (23) and store it in T1.
8 Derive the solution space of the cells by Eq. (25) and store it in T2.
9 Initialize L to be an empty hash table.

10 for the values in T2 do
11 Compute X

(17)
11 along the backward computation path:

X(4) → X(0) → EK(X(0))→ X(17) by accessing H

12 Insert relative information into L indexed by X
(17)
11

13 end
14 for the values in T1 do
15 Compute Z

(16)
7 and Z

(16)
11 along the forward computation path:

X(1) → Z(16)

16 for Candidate keys in L[Z
(16)
7 ⊕ Z

(16)
11 ] do

17 Test the guessed key with several plaintext-ciphertext pairs.
18 end
19 end
20 end
21 end

D.4 MITM attack on 27-round SKINNYe-64-256 v2

As mentioned in Section 3, the corresponding coefficient matrices of equivalence
classes for SKINNYe-64-256 v2 are all full rank. So we can use Dong et al.’s
method directly which adds constraints DoF+ ≥ 1,DoF− ≥ 1 to the MILP
model to search attacks. Finally, we find a 27-round MITM attack as shown in
Figure 9.

The starting states are X(1) and (TK
(1)
1 , TK

(1)
2 , TK

(1)
3 , TK

(1)
4 ), and the match-

ing is between Z(14) and X(15). We can get λ+
KSA = 4, λ−

KSA = 4 and DoM= 1. For
the forward computation, we require Equation (27) hold:

Ã{0,1,2} · [tk
(6)
1,0, tk

(6)
2,0, tk

(6)
3,0, tk

(6)
4,0]

T = c+. (27)

Hence, l+KSA = 3, and DoF+ = 4 − 3 = 1. For the backward computation, we
require Equation (28) hold:

Ã{0,1,2} · [tk
(21)
1,4 , tk

(21)
2,4 , tk

(21)
3,4 , tk

(21)
4,4 ]T = c−. (28)
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Similarly, We can get DoF− = 1. The whole MITM attack on SKINNYe-64-256
v2 is shown in Algorithm 4. The time complexity is about 2252, the data and
memory complexity is 252.

Algorithm 4: The MITM key-recovery attack on SKINNYe-64-256 v2
1 X

(0)
1,11,15 ← 0, X(1)

0,8,10,14,15 ← 0, X(2)
3,9,11,13 ← 0, Y (2)

7 ← 0, X(3)
2,10 ← 0, Y (4)

1 ← 0

2 Collecting structure of plaintext-ciphertext pairs and store them in table H,
which traverses the non-constant 16-3=13 cells in the plaintext

3 for All possible values of the cells in (TK
(1)
1 , TK

(1)
2 , TK

(1)
3 , TK

(1)
4 ) do

4 Compute all other unknown Gray cells according to the values assigned in
step 1 and step 3.

5 for (a1, a2, a3, b1, b2, b3) ∈ F6×4
2 do

6 Derive the solution space of the cells by Equation (27) and store it in
a table T1.

7 Derive the solution space of the cells by Equation (28) and store it in
a table T2.

8 Initialize L to be an empty hash table.
9 for the values in T2 do

10 Compute X
(15)
8 along the backward computation path:

X(4) → X(0) → EK(X(0))→ X(15) by accessing H

11 Insert relative information into L indexed by X
(15)
8

12 end
13 for the values in T1 do
14 Compute Z

(14)
4 and Z

(14)
8 along the forward computation path:

X(1) → Z(14)

15 for Candidate keys in L[Z
(14)
4 ⊕ Z

(14)
8 ] do

16 Test the guessed key with several plaintext-ciphertext pairs
17 end
18 end
19 end
20 end

E Related-Tweakey Impossible Differential Attacks

For SKINNYe-64-256, applying the properties of subtweakey difference cancel-
lations introduced in Section 3 we construct a 21-round related-tweakey impos-
sible differential. The impossible differential is placed at Round 3 to Round
24 as illustrated in Figure 10, which has only one active nibble in the mas-
ter tweakey. For the active 9-th nibble of the master tweakey, the subtweakey
difference cancellations happen 6 times at Round 5, 7, 9, 13, 15 and 21, where
(stk(5)

4 , stk
(7)
6 , stk

(9)
5 , stk

(13)
7 , stk

(15)
1 , stk

(21)
4 )

T
= A{3,4,5,7,8,11}·

(
tk

(0)
1,9, tk

(0)
2,9, tk

(0)
3,9, tk

(0)
4,9

)T
=

0. With rank(A{3,4,5,7,8,11}) = rank(A{0,1,2,4,5,8}) = 15, we find the only one
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Active cell with fixed differencea

Active cell with any non-zero difference Inactive cell

Unknown difference

STK(14) X(14) Y (14) Z(14) W (14) X(15)

⊕
SC
AC

ART

SR MC

STK(13) X(13) Y (13) Z(13) W (13) X(14)

⊕
SC
AC

ART

SR MC

STK(12) X(12) Y (12) Z(12) W (12) X(13)

1 1

1

1 ⊕
SC
AC

ART

SR MC

STK(11) X(11) Y (11) Z(11) W (11) X(12)

1 ⊕ 1 1

1

1

1
SC
AC

ART

SR MC

STK(10) X(10) Y (10) Z(10) W (10) X(11)

⊕
SC
AC

ART

SR MC

STK(9) X(9) Y (9) Z(9) W (9) X(10)

⊕
SC
AC

ART

SR MC

STK(8) X(8) Y (8) Z(8) W (8) X(9)

⊕
SC
AC

ART

SR MC

STK(7) X(7) Y (7) Z(7) W (7) X(8)

⊕
SC
AC

ART

SR MC

STK(6) X(6) Y (6) Z(6) W (6) X(7)

⊕
SC
AC

ART

SR MC

STK(5) X(5) Y (5) Z(5) W (5) X(6)

⊕
SC
AC

ART

SR MC

STK(4) X(4) Y (4) Z(4) W (4) X(5)

1

⊕
SC
AC

ART

SR MC

STK(3) Y (3) Z(3) W (3) X(4)

1 1 ⊕
ART

SR MC

STK(23) X(23) Y (23) Z(23) W (23) X(24)

1
⊕

1 1

1

SC
AC

ART

SR MC

STK(22) X(22) Y (22) Z(22) W (22) X(23)

⊕
SC
AC

ART

SR MC

STK(21) X(21) Y (21) Z(21) W (21) X(22)

⊕
SC
AC

ART

SR MC

STK(20) X(20) Y (20) Z(20) W (20) X(21)

1

⊕
SC
AC

ART

SR MC

STK(19) X(19) Y (19) Z(19) W (19) X(20)

1 1 ⊕
SC
AC

ART

SR MC

STK(18) X(18) Y (18) Z(18) W (18) X(19)

1

⊕
SC
AC

ART

SR MC

STK(17) X(17) Y (17) Z(17) W (17) X(18)

1 1 ⊕
SC
AC

ART

SR MC

STK(16) X(16) Y (16) Z(16) W (16) X(17)

⊕
SC
AC

ART

SR MC

STK(15) X(15) Y (15) Z(15) W (15) X(16)

⊕
SC
AC

ART

SR MC

Contradiction

Fig. 10: The 21-round related-tweakey impossible differential of
SKINNYe-64-256.

nonzero solution, i.e., tk(0)
1,9 = [0, 0, 0, 0]T , tk(0)

2,9 = [1, 1, 1, 1]T , tk(0)
3,9 = [0, 0, 0, 0]T

and tk
(0)
4,9 = [1, 1, 1, 0]T . Then the subtweakey differences in each round can be

deduced. The impossible differential is represented as

(0010 0000 0000 0000) ↛ (0000 0000 0001 0000).

Remark. With the difference cancellation properties, we find a 21-round im-
possible differential for SKINNYe-64-256 based on a cancellation pattern, while
previous impossible differentials reach 16 rounds [48] for SKINNY-64-192 and 15
rounds [57] for SKINNY-64-128, respectively.

For SKINNYe-64-256 v2, the subtweakey cancellations only can happen three
times every 30 rounds. We find a 18-round related-tweakey impossible differential
placed at Round 4 to Round 22 as shown in Figure 11. For the active 3-th nibble
of the master tweakey, the subtweakey cancellations happen at Round 6, 8 and
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10, where  stk
(6)
0

stk
(8)
2

stk
(10)
4

 = Ã{3,4,5} ·


tk

(0)
1,3

tk
(0)
2,3

tk
(0)
3,3

tk
(0)
4,3

 = 0.

With rank(Ã{3,4,5}) = 12, there are totally (24−1) = 15 nonzero solutions of
[tk

(0)
1,3, tk

(0)
2,3, tk

(0)
3,3, tk

(0)
4,3]. Let ∆(r) denote the difference of subtweakey STK

(r)

P̄ 2r[3]

in round r. The 18-round impossible differential can be represented as

(0∆(4)00 0000 0000 0000) ↛ (0000 0000 00N0 0000),

where ∆(4) denotes a fixed non-zero difference and N denotes an arbitrary non-
zero difference.

Active cell with fixed differencea

Active cell with any non-zero difference Inactive cell

Unknown difference

STK(13) X(13) Y (13) Z(13) W (13) X(14)

∆(12)

∆(12)

⊕
SC
AC

ART

SR MC

STK(12) X(12) Y (12) Z(12) W (12) X(13)

∆(12)
⊕

∆(12) ∆(12)

∆(12)

SC
AC

ART

SR MC

STK(11) X(11) Y (11) Z(11) W (11) X(13)

⊕
SC
AC

ART

SR MC

STK(10) X(10) Y (10) Z(10) W (10) X(11)

⊕
SC
AC

ART

SR MC

STK(9) X(9) Y (9) Z(9) W (9) X(10)

⊕
SC
AC

ART

SR MC

STK(8) X(8) Y (8) Z(8) W (8) X(9)

⊕
SC
AC

ART

SR MC

STK(7) X(7) Y (7) Z(7) W (7) X(8)

⊕
SC
AC

ART

SR MC

STK(6) X(6) Y (6) Z(6) W (6) X(7)

⊕
SC
AC

ART

SR MC

STK(5) X(5) Y (5) Z(5) W (5) X(6)

∆(4)

⊕
SC
AC

ART

SR MC

STK(4) Y (4) Z(4) W (4) X(5)

∆(4) ∆(4) ⊕
ART

SR MC

STK(22) X(22) Y (22)

∆(22)

SC
AC

STK(21) X(21) Y (21) Z(21) W (21) X(22)

∆(20)

⊕
SC
AC

ART

SR MC

STK(20) X(20) Y (20) Z(20) W (20) X(21)

∆(20) ⊕
SC
AC

ART

SR MC

STK(19) X(19) Y (19) Z(19) W (19) X(20)

∆(18)

⊕
SC
AC

ART

SR MC

STK(18) X(18) Y (18) Z(18) W (18) X(19)

∆(18) ∆(18)
⊕

SC
AC

ART

SR MC

STK(17) X(17) Y (17) Z(17) W (17) X(18)

∆(16)

⊕
SC
AC

ART

SR MC

STK(16) X(16) Y (16) Z(16) W (16) X(17)

∆(16) ⊕
SC
AC

ART

SR MC

STK(15) X(15) Y (15) Z(15) W (15) X(16)

∆(14)

∆(14)

⊕
SC
AC

ART

SR MC

STK(14) X(14) Y (14) Z(14) W (14) X(15)

∆(14)
⊕

∆(14) ∆(14)

∆(14)

SC
AC

ART

SR MC

Contradiction

Fig. 11: The 18-round related-tweakey impossible differential of SKINNYe-64-256
v2
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F The Proofs of Proposition 1 and Proposition 2

F.1 The Determinant of Block Vandermonde matrix

Lemma 2. Suppose L1,L2, · · · ,Ln are pairwise commutable square matrices
over a field K. Then the determinant of the block Vandermonde matrix can be
computed by

det


I I · · · I
L1 L2 · · · Ln

...
... . . . ...

Ln−1
1 Ln−1

2 · · · Ln−1
n

 =
∏

1≤j<i≤n

det(Li −Lj). (29)

Proof. Observe that
I · · · I
L1 · · · Ln

... . . . ...
Ln−1

1 · · · Ln−1
n

 =


I
Ln I
...

... . . .
Ln−1

n Ln−2
n · · · I

 ·

I I · · · I
0 L2 −L1 · · · Ln −L1

...
... . . . ...

0 Ln−1
2 −Ln−2

2 L1 · · · Ln−1
n −Ln−2

n L1

 .

Thus it has

det


I · · · I
L1 · · · Ln

... . . . ...
Ln−1

1 · · · Ln−1
n

 = det


L2 −L1 · · · Ln −L1

... . . . ...
Ln−1

2 −Ln−2
2 L1 · · · Ln−1

n −Ln−2
n L1



= det


I · · · I
L2 · · · Ln

... . . . ...
Ln−2

2 · · · Ln−2
n

 ·
∏

2≤j≤n

det(Lj −L1).

Then the lemma follows directly by induction since

det

(
I I

Ln−1 Ln−2

)
= det(Ln−1 −Ln−2). (30)

F.2 The Proofs of Proposition 1 and Proposition 2

The determinant statements in Proposition 1 and Proposition 2 follows directly
from the following lemma. Let c ≥ 4 and 0 < z ≤ r ≤ 2c− 2 be postive integers.
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Lemma 3. Suppose L is a c × c matrix over GF (2) such that its eigenvalues
{λi}1≤i≤c satisfy λi ̸= 0 and λj

i ̸= 1 for 1 ≤ i ≤ c, 1 ≤ j ≤ r, then

det


Lr1 · · · (Lr1)z

Lr2 · · · (Lr2)z

... . . . ...
Lrz · · · (Lrz )z

 ̸= 0 (31)

for all 0 ≤ r1 < r2 < · · · < rz ≤ r.

Proof. Using the formula in Lemma 2, we have

det


Lr1 · · · (Lr1)z

Lr2 · · · (Lr2)z

... . . . ...
Lrz · · · (Lrz )z

 =
∏

1≤j<i≤z

det(Lri −Lrj ). (32)

Since the eigenvalues {λi}1≤i≤c satisfy λi ̸= 0 and λj
i ̸= 1 for 1 ≤ i ≤ c, 1 ≤ j ≤

r, then it has det(L) ̸= 0 and det(Lt − I) ̸= 0 for 1 ≤ t ≤ r. Therefore we have

det(Lri −Lrj ) = det(Lrj ) · det(Lri−rj − I) ̸= 0 (33)

for all 0 ≤ rj < ri ≤ r, and thus the lemma holds. ⊓⊔

F.3 List of Primitive Polynomials of degree 8

Table 16: Primitive polynomials of degree 8 over GF (2).
Number of nonzero terms Primitive Polynomials

5

1 + x2 + x3 + x4 + x8, 1 + x + x3 + x5 + x8, 1 + x2 + x3 + x5 + x8

1 + x2 + x3 + x6 + x8, 1 + x + x5 + x6 + x8, 1 + x2 + x5 + x6 + x8

1 + x3 + x5 + x6 + x8, 1 + x4 + x5 + x6 + x8, 1 + x + x2 + x7 + x8

1 + x2 + x3 + x7 + x8, 1 + x3 + x5 + x7 + x8, 1 + x + x6 + x7 + x8

7
1 + x + x2 + x3 + x4 + x6 + x8, 1 + x + x2 + x3 + x6 + x7 + x8

1 + x + x2 + x5 + x6 + x7 + x8, 1 + x2 + x4 + x5 + x6 + x7 + x8

G The Security Analysis of our New Tweakey Schedule
for SKINNY Family

Lower bounds on the number of active Sboxes. The designers of SKINNY
evaluated the tight bounds of the number of active S-boxes by MILP models
in [10]. Then Alfarano et al. updated tight bounds of the number of active S-
boxes for the single-tweakey setting [4]. The authors of SKINNYe-64-256 and its
version 2 extended the [10]’s model to derive the lower bounds in [50,52]. They
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also derived the tight bounds of the number of linear active Sboxes. Since the
difference cancellations can happen more than 3 times for SKINNYe-64-256, we
reevaluate the lower bounds of active S-boxes by extending the MILP model,
which is similar with Sect 4.2. In addition, for SKINNY-n-zn with our proposition
of the tweakey schedules (z ≤ 14), we also use the MILP models by modifying
the constraints of subtweakey difference cancellations to search the lower bounds
of active S-boxes. All our results of the lower bounds of the number of active
S-boxes are given in Table 17.

The results of these word-oriented models determines a lower bound on the
number of differential active Sboxes. As pointed out by the designers in [10], if
the Sbox can be chosen independently for every cell and every round, the bound
is tight. However, in the related-tweakey settings, it may be hard to achieve the
lower bounds as expected. So, the results we derived in Table 17 are only lower
bounds and not tight, where the actual bounds of active Sboxes may be higher.
We makes some experiments on the proved tight bounds in Table 18.

H A More Scalable Construction for Tweakey Schedule
of SKINNY Family

Our construction can be naturally extended to choose c×c (c ≥ 4) matrices Li’s
such that the ‘block-MDS’ property in (12) is satisfied. For large c, it is not always
essential for the index ri’s in (12) reaching up to 2c − 2. For example, SKINNY
uses cheap 8-bit LFSRs (i.e., c = 8) that only needs a single XOR to reduce
the implementation cost, and therefore the ‘block-MDS’ property in (12) can be
guaranteed for ri’s up to 14 [11]. To cover this consideration, in the following we
present a scalable construction that addresses general c × c sub-matrices and a
general upper constraint r on the ri’s.

Let c ≥ 4 and z ≤ r ≤ 2c − 2 be three positive integers. Again we choose
the Li’s to be consecutive powers of a c × c matrix L such that L1 = I, i.e.,
{Li}1≤i≤z = {Lα+1, · · · ,Lα+z} for some integer α ∈ [−z,−1]. Then the fol-
lowing property can be proved similar to Proposition 1 by making a weaker
assumption on the matrix L.

Proposition 2. Suppose L is a c×c matrix over GF (2) such that its eigenvalues
{λi}1≤i≤c satisfy λi ̸= 0 and λj

i ̸= 1 for 1 ≤ i ≤ c, 1 ≤ j ≤ r. Then for any
integer α, it has

det


(Lα+1)r1 (Lα+2)r1 · · · (Lα+z)r1

(Lα+1)r2 (Lα+2)r2 · · · (Lα+z)r2

...
...

. . .
...

(Lα+1)rz (Lα+2)rz · · · (Lα+z)rz

 ̸= 0 (34)

for all 0 ≤ r1 < r2 < · · · < rz ≤ r.

Proof. The proof is similar to the determinant statement in Proposition 1, which
we refer to Supplementary Material F. ⊓⊔
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Table 17: Lower bounds on the number of active Sboxes, where the bounds
with upper bar are upper bounds. The bounds for SK[10], TK-1[10], TK-2[10],
TK-3[10] and SK Lin[10] are given by the designers of SKINNY. SK[4] is updated
by Alfarano et al.. TK-4 v2 [52] and SK Lin’[50] are given by the designers of
SKINNYe-64-256 and its version 2. We reevaluate the bounds for TK-4 and search
for TK-z (5 ≤ z ≤ 14).

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

SK[10] 1 2 5 8 12 16 26 36 41 46 51 55 58 61 66
TK-1[10] 0 0 1 2 3 6 10 13 16 23 32 38 41 45 49
TK-2[10] 0 0 0 0 1 2 3 6 9 12 16 21 25 31 35
TK-3[10] 0 0 0 0 0 0 1 2 3 6 10 13 16 19 24
TK-4 0 0 0 0 0 0 0 0 0 0 1 2 3 6 9

TK-4 v2 [52] 0 0 0 0 0 0 0 0 1 2 3 6 9 12 16
TK-5 0 0 0 0 0 0 0 0 0 0 1 2 3 6 9
TK-6 0 0 0 0 0 0 0 0 0 0 0 0 1 2 3
TK-7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
TK-8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
TK-9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
TK-10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
TK-11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
TK-12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
TK-13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
TK-14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

SK Lin[10] 1 2 5 8 13 19 25 32 38 43 48 52 55 58 64

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

SK[10] 75 82 88 92 96 102 108 114 116 124 132 138 136 148 158
SK[4] 75 82 88 92 96 102 108 112 116 124 128 132 136 142 148

TK-1[10] 54 59 62 66 70 75 79 83 85 88 95 102 108 112 120
TK-2[10] 40 43 47 52 57 59 64 67 72 75 82 85 88 92 96
TK-3[10] 27 31 35 43 45 48 51 55 58 60 65 72 77 81 85
TK-4 13 16 19 21 24 29 32 35 39 43 46 49 53 55 58

TK-4 v2 [52] 19 21 24 30 35 39 41 43 46 50 54 58 62 66 72
TK-5 13 16 19 21 24 29 32 35 39 43 46 49 53 55 58
TK-6 6 9 12 15 17 20 23 26 29 32 36 39 42 46 51
TK-7 2 3 6 9 10 13 17 20 22 25 28 30 34 37 40
TK-8 0 1 2 4 4 6 10 13 15 18 21 24 26 29 33
TK-9 0 0 0 1 2 3 4 6 8 11 14 17 21 22 24
TK-10 0 0 0 0 0 1 2 3 4 6 8 11 14 17 21
TK-11 0 0 0 0 0 0 0 1 2 3 4 6 8 11 14
TK-12 0 0 0 0 0 0 0 0 0 1 2 3 4 6 8
TK-13 0 0 0 0 0 0 0 0 0 0 0 1 2 3 4
TK-14 0 0 0 0 0 0 0 0 0 0 0 0 0 1 2

SK Lin[10] 70 76 80 85 90 96 102 107 110 118 122 128 136 141 143
SK Lin’[50] 70 76 80 85 90 96 102 107 110 115 121 127 130 135 141
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Table 18: Proved lower bounds on the number of active Sboxes, where TK4 and
TK4 v2 use the tweakey schedules in [50] and [52], where the bounds marked
by bold have gaps with the results in Table 17.

6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

TK4 0 0 0 0 0 1 2 3 6 10 14 18 22 25 30
TK4 v2 0 0 0 1 2 3 6 9 12 16 21 26 29 34 37

If we choose c × c matrix L as in Proposition 1 such that its characteristic
polynomial is a primitive polynomial of degree c over GF (2), then clearly the re-
quirements of L in Proposition 2 can be met. Thus Proposition 2 makes a weaker
assumption on L due to the relaxation of the constraint r. In the following, we
focus on the specific choice of L for c = 8 (i.e., 8-bit LFSR).

Table 19: The choices of L for c = 8 and r = 254. The L’s are found by
enumerating all 8×8 matrices that require small number of XOR’s for the update.

z L {Li}2≤i≤z Number of XORs Total XORs

3


0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
1 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 1 0 1
1 0 0 0 0 0 0 0

 {L,L−1} {2, 2} 4

4


0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
1 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 1 0 1
1 0 0 0 0 0 0 0

 {L,L−1,L2} {2, 2, 4} 8

5


0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
1 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 1 0 1
1 0 0 0 0 0 0 0

 {L,L−1,L2,L−2} {2, 2, 4, 5} 13

6


0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
1 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 1 0 1
1 0 0 0 0 0 0 0

 {L,L−1,L2,L−2,L3} {2, 2, 4, 5, 7} 20

7


0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
1 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 1 0 1
1 0 0 0 0 0 0 0

 {L,L−1,L2,L−2,L3,L−3} {2, 2, 4, 5, 7, 9} 29

Construction of 8 × 8 Matrix L. For c = 8, taking L to be the companion
matrix of a primitive polynomial may still be the simplest way to meet the
conditions in Proposition 2. However, a primitive polynomial of degree 8 over
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GF (2) has at least 5 nonzero terms11, thus any L constructed via this approach
needs at least 4 XOR’s for the update. In fact, it is possible to find L with primitive
characteristic polynomial which needs less XOR’s for the update. In Table 19 we
list the choice of such L for 3 ≤ z ≤ 7. The characteristic polynomial of the L
in Table 19 is λ8+λ6+λ5+λ3+1, which is a primitive polynomial over GF (2).
Thus the ‘block-MDS’ property in (12) can be satisfied for all 0 ≤ r1 < r2 <
· · · < rz ≤ 2c − 2 = 254.

On the other hand, if we are interested in r that is strictly less than 2c − 2,
it is possible to find L satisfying the conditions in Proposition 2 which requires
even less XOR’s for the update. For example, for r = 14 (adopted by SKINNY [10]),
we give in Table 20 the choices of L for 3 ≤ z ≤ 7 such that the number of XOR’s
are optimized. We note that in Table 20, the characteristic polynomial of the L
is λ8+λ2+1 which is not primitive. Nevertheless, L can still meet the conditions
in Proposition 2 for r = 14, and thus the ‘block-MDS’ property is satisfied for
0 ≤ r1 < r2 < · · · < rz ≤ r = 14. Besides, it can be easily checked that the
LFSR’s for z = 3 coincides with the 8-bit LFSR constructed in SKINNY [10].
From this perspective, Proposition 2 can provide a theoretic support for the
construction of the the 8-bit LFSR in SKINNY.

Table 20: The choices of L for c = 8, r = 14. The L’s are found by enumerating
all 8× 8 matrices that require small number of XOR’s.

z L {Li}2≤i≤z Number of XORs Total XORs

3


0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
1 0 1 0 0 0 0 0

 {L,L−1} {1, 1} 2

4


0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
1 0 1 0 0 0 0 0

 {L,L−1,L2} {1, 1, 2} 4

5


0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
1 0 1 0 0 0 0 0

 {L,L−1,L2,L−2} {1, 1, 2, 2} 6

6


0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
1 0 1 0 0 0 0 0

 {L,L−1,L2,L−2,L3} {1, 1, 2, 2, 3} 9

7


0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
1 0 1 0 0 0 0 0

 {L,L−1,L2,L−2,L3,L−3} {1, 1, 2, 2, 3, 4} 13

11 In Table 16 of Supplementary Material F we listed all primitive polynomials of degree
8 over GF (2).
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For the area-latency trade-off, the scalable construction still utilizes consec-
utive powers of a matrix L, and thus Table 9 is applicable to general c.

I Automatically Produced Figures of the Rectangle
Attack on SKINNYe-64-256 and its version 2

Based on the open source of Delaune et al. [26], we automatically produce the
figures including the key-recovery phase and the distinguishers for the rectangle
attack on SKINNYe-64-256 and its version 2.

The full figure on 41-round key-recovery attack on SKINNYe-64-256 is shown
in Figure 12.

The full figure on 37-round key-recovery attack on SKINNYe-64-256 v2 is
shown in Figure 13.

We also refer the readers to https://github.com/skinny64/Skinny64-256/
tree/main/article_boom/pic to see the larger figures.

https://github.com/skinny64/Skinny64-256/tree/main/article_boom/pic
https://github.com/skinny64/Skinny64-256/tree/main/article_boom/pic
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Fig.12:
41-round

rectangle
attack

on
SKINNYe-64-256.

W
e
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the

readers
to

https://github.com/skinny64/
Skinny64-256/tree/main/article_boom/pic

to
see

the
larger

figures.

https://github.com/skinny64/Skinny64-256/tree/main/article_boom/pic
https://github.com/skinny64/Skinny64-256/tree/main/article_boom/pic
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Fig.13:
37-round

rectangle
attack

on
SKINNYe-64-256

v2.
W

e
encourage

the
readers

to
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to

see
the

larger
figures.
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