
Improved Preimage Attacks on Round-Reduced
Keccak-384/512

Le He1, Xiaoen Lin1, Hongbo Yu1, and Jian Guo2

1 Department of Computer Science and Technology, Tsinghua University,
Beijing, China

{he-l17,lxe21,yuhongbo}@tsinghua.edu.cn
2 School of Physical and Mathematical Sciences, Nanyang Technological University,

Singapore, Singapore
guojian@ntu.edu.sg

Abstract. This paper provides improved preimage analysis on round-
reduced Keccak-384/512. Unlike low-capacity versions, Keccak-384/512
outputs from two parts of its state: an entire 320-bit plane and a 64/192-
bit truncation of a second plane. Due to lack of degrees of freedom, most
existing preimage analysis can only control the first 320-bit plane and
achieve limited results. By thoroughly analyzing the algebraic structure
of Keccak, this paper proposes a technology named “extra linear depen-
dence”, which can construct linear relations between corresponding bits
from two planes. To apply the technology, this paper inherits pioneers’
attack thoughts that convert output bits to linear or quadratic equations
of input variables. When solving the final equation system, those linear
relations can lead to extra restricting equations of output, exceeding the
limit of matrix rank. As a result, the complexity of preimage attacks on
2-round and 3-round Keccak-384/512 can be decreased to 239/2204 and
2270/2424 Keccak calls respectively, which are all the best known results
so far. To support the theoretical analysis, this paper provides the first
preimage of all ‘0’ digest for 2-round Keccak-384, which can be obtained
in one day with single core on an ordinary PC.

Keywords: Keccak · Preimage attack · Linear dependence

1 Introduction

The Keccak function, designed by Bertoni et al. [1,2], was selected as the winner
of SHA-3 competition in 2012 and finally standardized in 2015 by NIST. Since
Keccak was proposed in 2008, there have been kinds of security cryptanalysis
from the public research community, including preimage [3,4,5], collision [6,7,8],
distinguishing [9,10,11], keyed modes [12,13,14], and many other unmentioned
security settings. Those advanced attack methods work well even with practical
results in low-capacity Keccak: round-reduced Keccak-224/256. Yet for round-
reduced Keccak-384/512, due to lack of freedom in message block setting, most
methods cannot work as efficiently as they do in low-capacity versions.

2 He et al.

In this paper, we mainly focus on preimage attacks on round-reduced Keccak-
384/512 — more specifically, linear analysis. Our research is inspired by several
creative works as summarized below. In 2016, Guo et al. [15] pioneered a strategy
named linear structure in preimage attacks on round-reduced Keccak versions.
Their idea is to linearize the whole state after several rounds with freedom space
partially left. Yet for Keccak-384/512, their linear structures can pass through
only 1 round and thus they had to adopt other advanced technologies to achieve
good results, which are not required in this paper. Then in 2019, Li and Sun [16]
improved the linear structure through a technology named allocating model: the
first message block aims to generate a restricted middle state satisfying specific
conditions, so that the second message block (XORed with the restricted middle
state) can obtain extra freedom space in preimage searching. They applied this
model merely on round-reduced Keccak-224/256, while it can also be applied on
3-round Keccak-384 (we will give a simple design in Section 3.1). Rajasree [17]
made an improvement from another perspective. He noticed the number of de-
grees of freedom left is much less than the number of (linear) output equations.
Thus he allowed non-linear parts to exist in the structure and just constructed
output equations on linear parts. This idea would not enlarge the freedom space,
but enlarge the space of random constants, which is also a noticeable problem of
high-capacity versions. In 2021, He et al. [18] proposed a technology named zero
coefficient. It refers to some linear-dependent bit pairs in Keccak’s state. Using
this technology, they successfully satisfied 173 equations with only 162 degrees
of freedom, obtaining 11 linear-dependent bit pairs. This value is limited mainly
because their analysis object is Keccak-224/256. For Keccak-384/512 (with two
output planes), the number can be increased to lane-level.

The latest preimage analysis on round-reduced Keccak-384/512 is Liu et al.’s
research [19], mainly from which we inherit the attack frameworks. They also
allowed non-linear parts to exist in the structure — unlike [17], they can indeed
enlarge the freedom space, but must deal with an entirely-quadratic output state.
Fortunately, they found that benefiting from the algebraic structure of Keccak,
the relinearization technique can be applied to the final equation system. This
technique is only suitable for a special case of quadratic equation system, where
the number of equations is much larger than the number of different quadratic
terms. Using this technique, the freedom space can bring an equivalent gain in
preimage searching. In other words, n degrees of freedom can bring a gain of
2n in preimage searching, identical to the case of linear equation system. Those
preimage analysis results on round-reduced Keccak-384/512 mentioned above3

are summarized in Table 1.

Our contributions. This paper proposes a new technology named extra linear
dependence to improve preimage attacks on round-reduced Keccak-384/512. The
technology aims to construct linear relations between corresponding bits from
3 It is worth mentioning that the best preimage analysis result on 2-round Keccak-384

so far is Kumar et al.’s [20] time-memory trade-offs, with time complexity 289 and
memory cost 287. Yet their attack frame is completely different from linear analysis.

Improved Preimage Attacks on Round-Reduced Keccak-384/512 3

two output planes, so that the final equation system can be solved even when
the number of equations is more than the number of variables. Under this case,
n degrees of freedom can bring a gain even larger than 2n in preimage searching.
To apply the technology, we inherit (and slightly modify) the latest quadratic
structures in [19]. As a result, we successfully construct 128 linear-dependent bit
pairs in 2-round Keccak-384/512 and 24 linear-dependent bit pairs in 3-round
Keccak-384, which can decrease the searching complexity (guessing times) by
264/212. As for 3-round Keccak-512, due to lack of controllable column sums,
extra linear dependence can hardly be applied. Yet we still make a progress by
rectifying an omission in applying the relinearization technique and improving
the quadratic structure. To support our analysis, we firstly provide an actual
preimage (matching the padding rule) of all ‘0’ digest for 2-round Keccak-384.
Comparisons between our results and previous results are displayed in Table 1.

Table 1. Summary of preimage analysis on round-reduced Keccak-384/512.

Variant Guessing Sizea Solving Final Reference
Times Time Complexity

2-round Keccak-384

2129 \ \ \ [15]b
2113 \ \ \ [17]b
293 384 211 2104 [19]c
228 320 211 239 Sect. 5.1

2-round Keccak-512

2384 \ \ \ [15]b
2321 \ \ \ [17]b
2258 448 212 2270 [19]c
2193 384 211 2204 Sect. 5.2

3-round Keccak-384

2322 \ \ \ [15]b
2321 \ \ \ [17]b
2271 460 212 2283 [19]c
2258 460 212 2270 Sect. 5.3

3-round Keccak-512

2482 \ \ \ [15]b
2475 \ \ \ [17]b
2440 494 212 2452 [19]c
2412 448 212 2424 Sect. 5.4

4-round Keccak-384 2371 \ \ \ [17]b
2366 175 29 2375 [19]c

a“Size” is the total number of variables in the equation system after applying
the relinearization technique. For better comparison, we will use the same way
to calculate “Size” and “Solving Time” is then estimated according to [19].
bThe cited results refer to guess times instead of Keccak calls, which do not
include the complexity of solving the final equation system.
cThe authors made a mistake in matching Keccak’s padding rule. Their results
in “Guessing Times” and “Final Complexity” should all be cut down by 21.

4 He et al.

Organization. This paper starts with some preliminaries and notations about
Keccak in Section 2. An overview about the attack thoughts of linear analysis on
round-reduced Keccak is given in Section 3. The core technology of extra linear
dependence is explained in Section 4. Improved preimage attacks on 2-round and
3-round Keccak-384/512 are provided in Section 5. Conclusions are summarized
in Section 6.

2 Preliminaries

This section gives the descriptions about sponge construction, Keccak-f permu-
tation, SHA-3 standard, properties of S-box inversion, and the meanings of the
notations used in this paper.

2.1 Sponge Construction

The Keccak function adopts a new iterative construction named sponge, which
involves three parameters r, c, d and a permutation Keccak-f [b] with b = r + c
(as depicted in Fig. 1). This construction processes a message in two phases —
absorbing phase and squeezing phase. In absorbing phase, the message M (after
padding) is split into r-bit blocks. Starting with a b-bit all ‘0’ IV, its first r bits
are XORed with the first message block, followed by an execution of Keccak-f .
After all message blocks are similarly processed, it comes to the squeezing phase.
In squeezing phase, the construction outputs an r-bit digest and mixes its state
by executing Keccak-f , repeating until the digest length reaches d. Finally, the
digest is truncated to the first d bits.

0

0

pad�

� �!

"

#

⋯

⋯

�%

⋯

truncate

�

absorbing squeezing

� � � � � �

Fig. 1. The sponge construction.

2.2 Keccak-f Permutation

The core of Keccak-f calculation is its b-bit state. In [2], the designers provided
seven Keccak-f permutations where b ∈ {25, 50, 100, 200, 400, 800, 1600}. NIST
finally chose b = 1600 as SHA-3 standard [21]. In this paper, we also consider
the case of b = 1600 only.

Improved Preimage Attacks on Round-Reduced Keccak-384/512 5

In the case of b = 1600, the state of Keccak-f can be regarded as 5×5 64-bit
lanes (as depicted in Fig. 2). Each bit is denoted as Ax,y,z, where x varies from
0 to 4, y varies from 0 to 4, and z varies from 63 to 0 (counting from the most
significant bit) as directed by arrows in Fig. 2. The r-bit part of the state piles in
order of A0,0,0 ∼ A0,0,63, A1,0,0 ∼ A1,0,63, . . . , A4,0,0 ∼ A4,0,63, A0,1,0 ∼ A0,1,63 . . .
Furthermore, the designers defined some components of the state (also depicted
in Fig. 2). Among these components, a momentous one in this paper is “plane”,
which consists of 5 lanes or 64 rows.

�

row column

�

lane

�

slice

�

�

!

plane

�

!

state

bit

Fig. 2. The state and its components of Keccak-f .

As for the Keccak-f calculation, it consists of 24 rounds of function R, and
each R consists of five steps R = ι ◦ χ ◦ π ◦ ρ ◦ θ, where:

θ : Ax,y,z = Ax,y,z ⊕
⊕

j=0∼4
(Ax−1,j,z ⊕Ax+1,j,z−1)

ρ : Ax,y,z = Ax,y,z−rx,y

π : Ax,y,z = Ax+3y,x,z

χ : Ax,y,z = Ax,y,z ⊕ (Ax+1,y,z ⊕ 1) ·Ax+2,y,z

ι : A0,0,z = A0,0,z ⊕RCz

(1)

In the formulas above, “⊕” means bit-wise XOR and “·” means bit-wise AND.
Indices x and y are calculated modulo 5 and index z is calculated modulo 64.
Besides, rx,y refers to a lane-dependent rotation constant as shown in Table 2.
RC is a round-dependent constant. We omit the details of RC here since those
constants do not affect our attack methods.

Table 2. The offsets of ρ.

x = 0 x = 1 x = 2 x = 3 x = 4
y = 0 0 1 62 28 27
y = 1 36 44 6 55 20
y = 2 3 10 43 25 39
y = 3 41 45 15 21 8
y = 4 18 2 61 56 14

6 He et al.

2.3 SHA-3 Standard

Any Keccak variant can be denoted as Keccak[r, c, d] with bitrate r, capacity c
and digest length d. In [21], NIST standardized four SHA-3 versions that have
r = 1600− 2d and c = 2d, where d ∈ {224, 256, 384, 512}. Therefore, we can use
Keccak-d or SHA-3-d to denote a SHA-3 version for short.

The only difference between Keccak-d and SHA-3-d is padding rule: Keccak
pads the message by 10∗1 while SHA-3 pads the message by 0110∗1. This means
for both Keccak and SHA-3, the last bit of message block Mw must be ‘1’ and
for only SHA-3, the penultimate ‘1’ must follow “01”. Therefore, matching the
padding rule of Keccak4 or SHA-3 will further increase the searching complexity
by 21 or 23.

2.4 Properties of S-Box Inversion

According to Keccak-f calculation, the digest of Keccak is finally truncated from
the state after the last ι step, which is just a simple constant-XOR and can be
directly inversed. One step backwards, the state before the last χ step can also
be partially recovered from the digest. Inversing the last χ step can effectively
decrease the algebraic degree of output equations and make preimage attacks
much easier.

Since step χ processes on different rows, it can be regarded as a 5-bit S-box,
where input a0a1a2a3a4 and output b0b1b2b3b4 are calculated by (the subscript
is calculated modulo 5):{

bi = ai ⊕ (ai+1 ⊕ 1) · ai+2

ai = bi ⊕ (bi+1 ⊕ 1) · (bi+2 ⊕ (bi+3 ⊕ 1) · bi+4)
(2)

Most properties of S-box inversion have been thoroughly discussed in previous
works [15,16,17,18,19]. For simplicity, here we just state some properties related
to this paper without any proof.

I. Matching the first 320-bit plane with b0b1b2b3b4 all known.
In this case, each ai can be recovered according to equations (2). And any

restricting equation on recovered ai can bring a gain of 21 — before setting the
restricting equations, those involved ai must be linearized first.

II. Matching the 64-bit truncation of the second plane with b0 known.
In this case, there are two ways to set restricting equations. If attackers set

a0 = b0, although the matching probability is only 3/4, one restricting equation
can still bring a gain of 3/4÷1/2 ≈ 20.58. If attackers set a0 = b0 and meanwhile
ensure a1 = 1 or a2 = 0, b0 must be matched and two restricting equations can
bring a gain of 21.

III. Matching the 192-bit truncation of the second plane with b0b1b2 known.
This case is much more complicated. On one hand, through delicate substi-

tutions, it can be proved that:
4 In [19], the authors mistook the extra cost for 22 with the last two bits “11”, which

is actually unnecessary.

Improved Preimage Attacks on Round-Reduced Keccak-384/512 7

{
a0 ⊕ (b1 ⊕ 1) · a2 = b0

a1 ⊕ (b2 ⊕ 1) · a3 = b1
(3)

Therefore, restricting equations on a0 or a0 ⊕ a2 (depending on b1) and a1
or a1 ⊕ a3 (depending on b2) can always bring a gain of 21 each.

On the other hand, our attacks may encounter a special situation that only
a0 and a4 can be restricted. In this case, attackers can set:{

a0 = b0 ⊕ (b1 ⊕ 1) · b2
a4 = 0

(4)

Then it can be proved that as long as b1 and b2 are randomly matched, b0
must be simultaneously matched. Therefore, two restricting equations on a0 and
a4 can always bring a gain of 21.

2.5 Notations

From this section on, we will no longer use A to denote the state of Keccak-f ,
since it cannot accurately show the execution process. Instead, we will use capital
Greek letters (in {Θ,P,Π,X, I}) with a superscript (from 1 to 3) to denote the
state exactly after the corresponding step is executed. For examples, Π2 denotes
the state after the second π step, and X3 denotes the state after the third χ step.
In particular, I0 denotes the initial state of a single Keccak-f (after XORing the
message block). The first r bits of I0 are named “input part” (XORed with r-bit
message), and the last c bits of I0 are named “restricted part” (uncontrollable
in coming Keccak-f).

To avoid ambiguity, we will always use three indices in subscript to denote a
component of the state. However, we may use “∗” to indicate all possible values.
For examples, I1∗,y,z is a 5-bit row, I1x,∗,z is a 5-bit column, I1x,y,∗ is a 64-bit lane,
I1∗,y,∗ is a 320-bit plane, and I1∗,∗,z is a 5× 5 slice. If the subscript is omitted, it
indicates the 1600-bit whole state (like notations above).

Column sum setting is the core issue of preimage analysis on round-reduced
Keccak. In this paper, we use SA with two parameters x, z to denote the sum of
a certain column from state A, which is:

SA(x, z) =
⊕

y=0∼4
Ax,y,z (5)

Similarly, x, z may be replaced by “∗” to indicate a set of column sums.

3 Overview

This section describes some existing attack thoughts of linear analysis on round-
reduced Keccak-384/512, which greatly inspire our research. Developments of the
attack framework can be divided into two parts: linear structure with allocating
model, and quadratic structure with the relinearization technique.

8 He et al.

3.1 Linear Structure with Allocating Model

In 2016, Guo et al. [15] applied linear analysis in round-reduced Keccak and
proposed the basic linear structure. Their idea is to linearize step χ, which is
the only non-linear step in function R, so that they can get an entirely-linear
state after several rounds. Take their 1-round linear structure for Keccak-384 as
an example (as shown in Fig. 3).

� !" #" �"

!$#$

% & ∘ () ∘ *

%

& ∘ (

linear 0const restricted part

Fig. 3. The 1-round linear structure for Keccak-384 in [15].

Since the forward S-box calculation is bi = ai ⊕ (ai+1 ⊕ 1) · ai+2, to linearize
step χ, attackers must ensure no consecutive linear bits exist in any row before
step χ (in state Πn). However, due to the first θ step, initial variable bits will
diffuse messily in Π1. To control the diffusion, attackers must fix related column
sums by setting (linear) equations. For Fig. 3, the equations should be5:{

I00,0,z ⊕ I00,1,z ⊕ I00,2,z ⊕ I00,3,z ⊕ I00,4,z = SI0(0, z)

I02,0,z ⊕ I02,1,z ⊕ I02,2,z ⊕ I02,3,z ⊕ I02,4,z = SI0(2, z)
(6)

Then through column sum setting, the number of linear lanes remains 6 in
Π1, and the first χ step is successfully linearized. Yet according to the forward
S-box calculation, variables in Π1

x,y,∗ may still diffuse to I1x−1,y,∗ or I1x−2,y,∗, and
finally cover the whole Π2. Therefore, Guo et al.’s basic linear structure can only
pass through 1-round for Keccak-384.

In summary, by setting 384 initial variable bits and fixing 128 column sums,
Guo et al. designed a 1-round linear structure for Keccak-384 with 256 degrees
of freedom left. Those degrees of freedom were further used to restrict equivalent
bits of Π2

∗,0,∗, which can be recovered from the digest (cf. Section 2.4). Count-
ing the padding rule, their searching complexity of preimage attack on 2-round
Keccak-384 is 2384−256+1 = 2129.
5 Among any equation system in this paper, z varies from 0 to 63, red indicates linear

variables, purple indicates controllable constants (attackers can arbitrarily set) and
grey indicates uncontrollable constants (have been determined).

Improved Preimage Attacks on Round-Reduced Keccak-384/512 9

To promote the basic linear structure, a natural idea is to further control the
diffusion in the first χ step, which requires extra conditions in the restricted part
of I0. In 2019, Li and Sun [16] constructed an allocating model and solved this
problem. By applying such a model, they merely improved preimage attacks on
round-reduced Keccak-224/256. For better comparison, here we simply design a
2-round linear structure for Keccak-384 in accordance with their idea (as shown
in Fig. 4).

� !" #" �"

!$#$

% & ∘ () ∘ *

%

& ∘ (

#+ �$

) ∘ *& ∘ (∘ %

linear 0const 1conditional restricted part

Fig. 4. A 2-round linear structure for Keccak-384 by applying allocating model.

Compared to Fig. 3, this structure starts with identical initial variable bits
(and identical column sum equations) in I0. However, this structure maintains
several lanes of ‘0’ and ‘1’ in Π1, so that the diffusion in the first χ step can be
effectively controlled. Similarly, after setting 192 column sum equations in the
second θ step (as enclosed below), this structure can linearize the second χ step
with 384− 128− 192 = 64 degrees of freedom left.

I10,0,z ⊕ I10,1,z ⊕ I10,2,z ⊕ I10,3,z ⊕ I10,4,z = SI1(0, z)

I11,0,z ⊕ I11,1,z ⊕ I11,2,z ⊕ I11,3,z ⊕ I11,4,z = SI1(1, z)

I12,0,z ⊕ I12,1,z ⊕ I12,2,z ⊕ I12,3,z ⊕ I12,4,z = SI1(2, z)

(7)

Those lanes of ‘0’ and ‘1’ are originally generated in the first θ step. Then
according to the calculation of step θ, extra conditions are required in advance:

I01,0,z = I01,1,z ⊕ 1 = I01,3,z ⊕ 1 = I01,4,z

I03,1,z = I03,2,z = I03,3,z

I04,0,z = I04,1,z = I04,4,z

(8)

Among above conditions, I01,3,z ⊕ 1 = I01,4,z and I03,2,z = I03,3,z belong to the
restricted part, which attackers cannot control. We name this kind of conditions
“restricted conditions”. Those restricted conditions can only be satisfied by the
output of previous Keccak-f , and thus require an allocating model. In general

10 He et al.

cases, even if attackers satisfy all restricted conditions by an exhaustive search,
the complexity is still far away from that of preimage searching (neglecting the
solving time, temporarily) — for Fig. 4, the former is 2128, while the latter is
2384−64+1 = 2321. Therefore, the total searching complexity only depends on the
freedom space left in the linear structure.

Another noticeable problem in allocating model is the size of random space,
which is the total number of different equation systems the linear structure can
generate. Let d1 denote the searching complexity of satisfying all restricted condi-
tions (d1 can be constant-level), d2 denote the searching complexity of preimage
attack, and dr denote the size of random space. Usually dr < d2, under this case
attackers are expected to restart the linear structure (generating another quali-
fied I0) [d2/dr] times to find a preimage. Then the total searching complexity of
satisfying all restricted conditions is d1 × [d2/dr] — if dr < d1, the total search-
ing complexity becomes [d1/dr] × d2 rather than d2. Therefore, when applying
allocating model, the size of random space should satisfy dr ≥ d1.

As for the calculation of dr, it depends on the number of controllable column
sums. For Fig. 4, SI1(0, ∗), SI1(1, ∗) and SI1(2, ∗) are all controllable, while SI0

must satisfy following relations6 to generate those lanes of ‘0’ and ‘1’ in Θ1.
Counting controllable SI0(1, ∗), the size of random space is dr = 264+192 = 2256.

SI0(0, z)⊕ SI0(2, z − 1)⊕ I01,3,z = Θ1
1,3,z = 0

SI0(2, z)⊕ SI0(4, z − 1)⊕ I03,3,z = Θ1
3,3,z = 0

SI0(3, z)⊕ SI0(0, z − 1)⊕ I04,4,z = Θ1
4,4,z = 1

(9)

In summary, by applying allocating model, the basic linear structure can be
promoted to 2-round for Keccak-384. Under this structure, the total searching
complexity of preimage attack on 3-round Keccak-384 is 2384−64+1 = 2321. The
model parameters are d1 = 2128, d2 = 2321 and dr = 2256, satisfying d1 ≤ dr.

3.2 Quadratic Structure with the Relinearization Technique

In the previous section, the designs of linear structure all aim to get an entirely-
linear state, which is unnecessary in some cases. Like the example in Fig. 4, the
entirely-linear Π3 contains 320 restricting equations on Π3

∗,0,∗ that can bring a
gain of 21 each, while the number of degrees of freedom left is only 64. In 2019,
Rajasree [17] designed a 2-round partially-linear structure for Keccak-384 (as
shown in Fig. 5) that achieved a balance between the two values.

In the partially-linear structure, quadratic lanes are allowed to exist, so that
the number of linear restricting equations on Π3

∗,0,∗ and the number of degrees
of freedom left can be matched (both are 64). Calculations of model parameters
are very similar to the contents in Section 3.1 — for simplicity, here we directly
conclude that the model parameters are d1 = 264, d2 = 2321 and dr = 2320.

Compared to the entirely-linear structure (Fig. 4), Rajasree’s partially-linear
structure can merely enlarge the size of random space dr, remaining the searching
6 Please notice that SI0(4, ∗) has actually been determined by conditional constants.

Improved Preimage Attacks on Round-Reduced Keccak-384/512 11

complexity d2 unchanged. Yet this idea still gives us great inspirations because
a larger random space will greatly contribute in the application of extra linear
dependence.

� !" #" �"

!$#$

% & ∘ () ∘ *

%

& ∘ (

#+ �$

) ∘ *& ∘ (∘ %

linear 0const 1conditional restricted part quadratic

Fig. 5. The 2-round partially-linear structure for Keccak-384 in [17].

However, Rajasree’s attack framework has not fully balanced the number of
linear restricting equations and the number of degrees of freedom left, because
all those 256 quadratic bits in Π3

∗,0,∗ are generated by the diffusion of only 128
quadratic terms in I2. This is exactly the suitable case to apply the relineariza-
tion technique. The relinearization technique is a solving algorithm for special
quadratic (or higher-degree) equation systems, where the number of equations is
much larger than the number of different quadratic (or non-linear) terms. Take
the equation system in Fig. 6 as an example.

� ⋅ �" ⊕� ⋅ �$ ⊕�" ⋅ �$ = % � ⊕�$ ⊕� ⋅ �" = %"�" ⊕�$ ⊕� ⋅ �$ = %$�" ⊕� ⋅ �" ⊕� ⋅ �$ = %&�" ⊕� ⋅ �" ⊕�" ⋅ �$ = %'� ⊕�" ⊕�$ = %(

�& ⊕�' ⊕�(= % � ⊕�$ ⊕�& = %"�" ⊕�$ ⊕�' = %$�" ⊕�& ⊕�' = %&�" ⊕�& ⊕�(= %'� ⊕�" ⊕�$ = %(
� = %" ⊕%$ ⊕%&�" = % ⊕%" ⊕%& ⊕%' ⊕%(�$ = % ⊕%$ ⊕%'�& = % ⊕%& ⊕%'�' = %" ⊕%& ⊕%(�(= %" ⊕%' ⊕%(

� ⊕�$ ⊕� �"
��

)�& = � ⋅ �" ?�' = � ⋅ �$?�(= �" ⋅ �$?

relinearize

solve

examine

Fig. 6. An example of applying the relinearization technique.

12 He et al.

The equation system in Fig. 6 contains 3 variables and 6 equations — if it
is a linear equation system, solvers can simply satisfy 3 out of 6 equations and
match the others randomly with a probability of 2−3. Although the example is
a quadratic equation system, it can be equivalently solved by introducing 3 new
variables to replace each different quadratic term. Then the equation system will
become entirely-linear and can be simply solved by Gaussian Elimination on a
6× 6 matrix. Finally solvers only need to examine whether 3 new variables are
correctly matched, and the solving probability is equivalently7 2−3.

Generally speaking, for a quadratic equation system that contains v variables
and e equations, the relinearization technique is suitable only when the number
of different quadratic terms q satisfies q ≤ e − v, and the solving probability is
2e−(v+q)+q = 2e−v. This means in special scenes, the freedom space can bring
an equivalent gain even though the restricting equations are quadratic.

Reviewing Rajasree’s attack framework (Fig. 5), if we apply the relineariza-
tion technique, the system parameters will be v = 64, e = 320 and q = 128,
which apparently have room for improvements (still far away from q = e − v).
In 2021, Liu et al. [19] designed a 2-round quadratic structure8 for Keccak-384
(as shown in Fig. 7). Unlike Fig. 5, their attack framework can indeed enlarge
the freedom space.

� !"

#

$"

% ∘ '

�"

(∘)$*

#% ∘ '

!*
(∘)

�*

#

relinearize

� ∘ !

"# $#

linear

0

const

1

conditional

restricted part

quadratic

relinearized

Fig. 7. The 2-round quadratic structure for Keccak-384 in [19].

The core idea of their attack framework is to reduce some column sum equa-
tions in SI1(1, ∗), fixing only t out of 64 instead:
7 They are not strictly equivalent because the probability of a random n × n matrix

being singular depends on n.
8 Without relinearization, the final state Π3 will be (almost) entirely-quadratic.

Improved Preimage Attacks on Round-Reduced Keccak-384/512 13


I10,0,z ⊕ I10,1,z ⊕ I10,2,z ⊕ I10,3,z ⊕ I10,4,z = SI1(0, z)

I11,0,z ⊕ I11,1,z ⊕ I11,2,z ⊕ I11,3,z ⊕ I11,4,z = SI1(1, z), z = z1, z2, . . . , zt

I12,0,z ⊕ I12,1,z ⊕ I12,2,z ⊕ I12,3,z ⊕ I12,4,z = SI1(2, z)

(10)

Then this quadratic structure can leave 64− t more degrees of freedom, yet
generating 256−4t quadratic bits in I2. Fortunately, by applying the relineariza-
tion technique, as long as 128− t+ 256− 4t ≤ 320 holds, the freedom space can
still bring an equivalent gain without loss. It is derived that t ≥ 13.

In summary, by reducing 51 column sum equations in SI1(1, ∗) (269 in total),
Liu et al. designed a 2-round quadratic structure for Keccak-384 with 115 degrees
of freedom left. Although they finally obtained a quadratic equation system, the
remaining freedom space can still bring an equivalent gain of 2115 by applying
the relinearization technique. The model parameters of their attack framework
are d1 = 2128, d2 = 2270 and dr = 2141 (with SI0 all determined and 141 control-
lable column sums in SI1). The system parameters of their attack framework
are v = 256, e = 320 + 141 = 461 and q = 4× (64− 13) = 204.

Calculation of “Size”. In [19], the authors used a unique way to calculate the
total number of variables in the final quadratic equation system. They regarded
the number of initial variable bits as reduced by the column sum equations in
SI0 (e.g. 384−128 = 256 in Fig. 7). As a result, “Size” of their attack framework
for 3-round Keccak-384 is thus 256 + 204 = 460. In this paper, we will use the
same way to calculate “Size” for better comparison.

4 Extra Linear Dependence

This section discusses extra linear dependence, which is the core technology of
our improved preimage attacks on round-reduced Keccak-384/512.

4.1 Basic Principle of Extra Linear Dependence
The technology of extra linear dependence aims to construct linear-dependent
bit pairs in Πn, so that some pairs of restricting equations can be simultaneously
satisfied by only 1 degree of freedom, and the number of equations in the final
equation system can exceed the limit of matrix rank. For example, if attackers
construct p linear-dependent bit pairs, then p extra restricting equations can be
added into the final equation system (the matrix rank is still unchanged), and
the complexity reduce of preimage searching is just corresponding to the total
gain of p extra restricted bits in Πn.

Before discussing the construction of multiple linear-dependent bit pairs, we
should first explain the basic principle of one bit pair being linear-dependent9.
The basic principle is revealed in Fig. 8.
9 Actually this basic principle is just identical to the technology of zero coefficient [18],

which also inspires our research.

14 He et al.

�∗,∗,!
"#$

�∗,∗,!#$
"#$

%∗,∗,!
" &∗,∗,!'

"

&∗,∗,!(
"

) * ∘ -

unconcerned

const

linear/quadratic

linear-dependent

Fig. 8. The basic principle of extra linear dependence.

Suppose there are two restricting equations in Πn. Each equation consists of
11 bits from Θn. Then if two restricted bits are permuted from the same column
Θn

x,∗,z, 10 out of 11 bits are duplicate in the equation pair. Therefore, as long as
2 unique bits are both constants, linear dependence of the equation pair can be
ensured. This relation can be written as:

Θn
x,y1,z ⊕Θn

x,y2,z = In−1
x,y1,z ⊕ In−1

x,y2,z = const (11)

One step backwards, since In−1
x,y,z = Πn−1

x,y,z⊕ (Πn−1
x+1,y,z⊕1) ·Πn−1

x+2,y,z, whether
In−1
x,y,z is a constant depends on related bits in Πn−1. If Πn−1

x+1,y,z or Πn−1
x+2,y,z is a

variable, attackers can prevent the diffusion of variable by ensuring Πn−1
x+2,y,z = 0

or Πn−1
x+1,y,z = 1. However, if Πn−1

x,y,z has been a variable, In−1
x,y,z is impossible to

be a constant. The value control further depends on column sums in SIn−2 . For
example, when constructing the linear-dependent bit pair In−1

3,0,z ⊕ In−1
3,3,z = c(z)

in Fig. 8, suppose the distribution of variables (indicated by red) is:{
In−1
3,0,z = Πn−1

3,0,z ⊕ (Πn−1
4,0,z ⊕ 1) ·Πn−1

0,0,z = Πn−1
3,0,z

In−1
3,3,z = Πn−1

3,3,z ⊕ (Πn−1
4,3,z ⊕ 1) ·Πn−1

0,3,z = Πn−1
3,3,z

(12)

Then column sums in SIn−2 are required to satisfy10:
Πn−1

0,0,z = Θn−1
0,0,z = SIn−2(4, z)⊕ SIn−2(1, z − 1)⊕ In−2

0,0,z = 0

Πn−1
4,3,z = Θn−1

3,4,z−56 = SIn−2(2, z − 56)⊕ SIn−2(4, z − 57)⊕ In−2
3,4,z−56 = 1

Πn−1
3,0,z ⊕Πn−1

3,3,z = Θn−1
3,3,z−21 ⊕Θn−1

2,3,z−15 = In−2
3,3,z−21 ⊕ SIn−2(2, z − 21) \\

⊕ SIn−2(4, z − 22)⊕ SIn−2(1, z − 15)⊕ SIn−2(3, z − 16)⊕ In−2
2,3,z−15 = c(z)

(13)
10 Here c(z) is a certain value that can be calculated from two known restricting equa-

tions (cf. Section 2.4) on Πn
3,0,z1 and Πn

0,1,z2 . Therefore, it requires an extra condition
to match Πn−1

3,0,z ⊕Πn−1
3,3,z = c(z).

Improved Preimage Attacks on Round-Reduced Keccak-384/512 15

In this paper, these equations are named “column sum conditions” (distin-
guished from “column sum equations”). Satisfying column sum conditions does
not require any degree of freedom, but requires controllable column sums in the
attack framework. Therefore, when applying the technology of extra linear de-
pendence, the random space will be greatly compressed, and the calculation of
dr will become a momentous problem.

4.2 Construction of Multiple Linear-Dependent Bit Pairs
The basic principle of extra linear dependence has been explained in the previous
section. Actually in [18], the authors have proposed a similar technology named
zero coefficient. Such a technology aimed to find some linear-dependent pairs in
a certain equation system to save degrees of freedom. As a result, the authors
found 11 linear-dependent pair in 173 equations. This value is limited mainly
because their analysis object is Keccak-224/25611. Yet for Keccak-384/512, the
first two planes in Πn contains as many as 320 (possibly) linear-dependent bit
pairs as summarized below(“→” means the permutation through π ◦ ρ):

(Θn
3,0,z → Πn

0,1,z+28)⊕ (Θn
3,3,z → Πn

3,0,z+21) = const

(Θn
4,1,z → Πn

1,1,z+20)⊕ (Θn
4,4,z → Πn

4,0,z+14) = const

(Θn
0,2,z → Πn

2,1,z+3)⊕ (Θn
0,0,z → Πn

0,0,z) = const

(Θn
1,3,z → Πn

3,1,z+45)⊕ (Θn
1,1,z → Πn

1,0,z+44) = const

(Θn
2,4,z → Πn

4,1,z+61)⊕ (Θn
2,2,z → Πn

2,0,z+43) = const

(14)

0 3

1 4

0 2

1 3

2 4

�

0 1 2 3 4

3 4 0 1 2

�

! ∘ #

Fig. 9. 320 (possibly) linear-dependent bit pairs.

Therefore, the technology of extra linear dependence tends to “construct”
rather than “find” linear-dependent bit pairs. When applying extra linear de-
pendence, attackers had better:
11 Due to the algebraic structure of Keccak, any linear-dependent bit pair can never

be located in the same plane of Πn — this leads to the main difference between
zero coefficient and extra linear dependence. Since the output of Keccak-224/256 is
generated from merely the first plane of Πn, zero coefficient can only be applied to
the linearization process and its improvement is quite limited. However, extra linear
dependence can directly be applied to the output matching of Keccak-384/512. Then
the improvement can be much larger and the construction of linear-dependent bit
pairs becomes a worth-thinking problem.

16 He et al.

I. Maximize the number of constructed linear-dependent bit pairs to obtain
the largest gain.

II. Minimize the number of required column sum conditions to ensure the
random space (dr ≥ d1).

From the example in the previous section (equations (13)), it’s shown that
the construction of a single linear-dependent bit pair requires three column sum
conditions. However, by designing specific attack frameworks (depending on the
distribution of variables), attackers can construct multiple linear-dependent bit
pairs with less than three column sum conditions in average. Take the same bit
pair In−1

3,0,z ⊕ In−1
3,3,z = c(z) as an example. Suppose the distribution of variables

changes to: {
In−1
3,0,z = Πn−1

3,0,z ⊕ (Πn−1
4,0,z ⊕ 1) ·Πn−1

0,0,z = Πn−1
3,0,z

In−1
3,3,z = Πn−1

3,3,z ⊕ (Πn−1
4,3,z ⊕ 1) ·Πn−1

0,3,z

(15)

In this case, although variables cannot diffuse to In−1
3,3,z, attackers still need

to fix Πn−1
4,3,z or Πn−1

0,3,z — otherwise, In−1
3,0,z ⊕ In−1

3,3,z = c(z) will become a quadratic
equation from the perspective of SIn−2 . Then since Πn−1

4,0,z = 1 has been required,
attackers can choose to fix Πn−1

0,3,z = 1, which involves the same column sums as
the former. Finally, attackers can construct 64 linear-dependent bit pairs with
only two column sum conditions12 in average (In−2

4,0,z = In−2
4,4,z is required in the

attack framework):

Πn−1
4,0,z = Θn−1

4,4,z−14 = SIn−2(3, z − 14)⊕ SIn−2(0, z − 15)⊕ In−2
4,4,z−14 = 1

Πn−1
0,3,z = Θn−1

4,3,z−27 = SIn−2(3, z − 27)⊕ SIn−2(0, z − 28)⊕ In−2
4,0,z−27 = 1

Πn−1
3,0,z ⊕Πn−1

3,3,z ⊕Πn−1
4,3,z ⊕ 1 = Θn−1

3,3,z−21 ⊕Θn−1
2,3,z−15 ⊕Θn−1

3,4,z−56 ⊕ 1 \\

= SIn−2(2, z − 21)⊕ SIn−2(4, z − 22)⊕ SIn−2(1, z − 15)⊕ SIn−2(3, z − 16) \\

⊕ SIn−2(2, z − 56)⊕ SIn−2(4, z − 57)⊕ In−2
3,3,z−21 ⊕ In−2

2,3,z−15 ⊕ In−2
3,4,z−56 = c(z)

(16)
Generally speaking, when constructing multiple linear-dependent bit pairs,

the effect of extra linear dependence highly depends on the attack framework.
And after massive attempts on different designs, it is concluded that combining
extra linear dependence and quadratic structures can exactly reach the lowest
final complexity.

4.3 Gain Analysis of Extra Linear Dependence

Since Πn
∗,0,∗ can be fully recovered from the digest. as long as the final equation

system contains a restricting equation on Πn
x1,0,z1 , linear dependence between

Πn
x1,0,z1 and Πn

x2,0,z2 is equivalent to an extra restricting equation on Πn
x2,0,z2

(corresponding to ax2
). As for the gain of restricting equations on different ai,

please refer to Section 2.4.
12 Please notice that as long as In−2

4,0,z = In−2
4,4,z holds (z varies from 0 to 63), the first

line and the second line will correspond to an identical set.

Improved Preimage Attacks on Round-Reduced Keccak-384/512 17

For simplicity, here we generally summarize that:
I. Gains of multiple restricting equations in different rows can be summed

up independently.
II. In most cases, one restricting equation can bring a gain of 20.58, and two

restricting equations in the same row can bring a gain of 21.

5 Preimage Attacks on Round-Reduced Keccak-384/512

This section provides improved preimage attacks on 2-round and 3-round Keccak-
384/512. For 2-round Keccak-384/512 and 3-round Keccak-384, we modify the
quadratic structures designed in [19] to apply extra linear dependence and con-
struct lane-level linear-dependent bit pairs. As for 3-round Keccak-512, although
extra linear dependence can hardly be applied due to lack of controllable column
sums, we still make a progress by rectifying an omission in applying the relin-
earization technique and designing an improved quadratic structure.

5.1 Improved Preimage Attack on 2-Round Keccak-384

Our attack framework of improved preimage attack on 2-round Keccak-384 is
given in Fig. 10.

�

!
"

#

$
"

3

4

3

4

� ∘ !

"#

$ ∘ %

&'

(� ∘ !

)'

linear

0

const

1

conditional

restricted part

quadratic

relinearized

2
 !"

3

4

3

4

3 4

3 4

Fig. 10. A modified 1-round quadratic structure for Keccak-384.

Modification of the quadratic structure. Inspired by the design in [19], we
set identical 512 variable bits and 192 column sum equations in I0. 8 linear lanes
are then permuted to different locations in Π1, among which 2 consecutive ones
will generate 1 quadratic lane I14,4,∗ through the first χ step. In [19], the authors
relinearized I14,4,∗ by introducing new variables, while in this paper, we regard
I14,4,z = Π1

4,4,z ⊕ (Π1
0,4,z ⊕ 1) ·Π1

1,4,z = Π1
4,4,z with a holding probability of 3/4.

18 He et al.

Parameters about the relinearization technique. Since I14,4,z is regarded as
a constant, the relinearization technique is unnecessary in our attack framework.

In conclusion, this quadratic structure can leave 512− 192 = 320 degrees of
freedom but hold with a probability of only (3/4)64 ≈ 2−27. Entire column sum
equations are given below. Under this structure, the basic searching complexity
(before applying extra linear dependence) is 2384−320+1 × 227 = 292.

I00,0,z ⊕ I00,1,z ⊕ I00,2,z ⊕ I00,3,z ⊕ I00,4,z = SI0(0, z)

I02,0,z ⊕ I02,1,z ⊕ I02,2,z ⊕ I02,3,z ⊕ I02,4,z = SI0(2, z)

I03,0,z ⊕ I03,1,z ⊕ I03,2,z ⊕ I03,3,z ⊕ I03,4,z = SI0(3, z)

(17)

As for the application of extra linear dependence, the target linear-dependent
bit pairs are (as marked by red numbers in Fig. 10):{

(Θ2
3,0,z → Π2

0,1,z+28)⊕ (Θ2
3,3,z → Π2

3,0,z+21) = I13,0,z ⊕ I13,3,z = c1(z)

(Θ2
4,1,z → Π2

1,1,z+20)⊕ (Θ2
4,4,z → Π2

4,0,z+14) = I14,1,z ⊕ I14,4,z = c2(z)
(18)

And the distribution of variables in Π1 is:
I13,0,z = Π1

3,0,z ⊕ (Π1
4,0,z ⊕ 1) ·Π1

0,0,z = Π1
3,0,z

I13,3,z = Π1
3,3,z ⊕ (Π1

4,3,z ⊕ 1) ·Π1
0,3,z

I14,1,z = Π1
4,1,z ⊕ (Π1

0,1,z ⊕ 1) ·Π1
1,1,z = Π1

4,1,z

I14,4,z = Π1
4,4,z ⊕ (Π1

0,4,z ⊕ 1) ·Π1
1,4,z = Π1

4,4,z (prob. : 3/4)

(19)

It’s found that Π1
4,0,∗ = 1, Π1

0,3,∗ = 0 and Π1
1,1,∗ = 0 involve common column

sums. Thus the entire column sum conditions are (I04,0,z = I04,1,z = I04,4,z ⊕ 1 is
required in the quadratic structure):

SI0(3, z)⊕ SI0(0, z − 1) = I04,4,z ⊕ 1

Π1
3,0,z ⊕Π1

3,3,z = Θ1
3,3,z−21 ⊕Θ1

2,3,z−15 = SI0(2, z − 21)⊕ SI0(4, z − 22) \\

⊕ I03,3,z−21 ⊕ SI0(1, z − 15)⊕ SI0(3, z − 16)⊕ I02,3,z−15 = c1(z)

Π1
4,1,z ⊕Π1

4,4,z = Θ1
2,4,z−61 ⊕Θ1

1,4,z−2 = SI0(1, z − 61)⊕ SI0(3, z − 62) \\

⊕ I02,4,z−61 ⊕ SI0(0, z − 2)⊕ SI0(2, z − 3)⊕ I01,4,z−2 = c2(z)
(20)

The examination shows that the rank of 192 column sum conditions is also
192. Therefore, for any values of c1(z) and c2(z) (determined by corresponding
restricting equations), 128 linear-dependent bit pairs can be constructed under
above column sum settings. Those linear-dependent bit pairs are equivalent to
128 extra restricting equations on Π2

0,1,∗ and Π2
1,1,∗ — according to Section 2.4,

the total gain is 264.
In summary, by modifying the quadratic structure and applying extra linear

dependence, we decrease the searching complexity of preimage attack on 2-round
Keccak-384 from 292 to 228 (corresponding to 239 2-round Keccak calls). Since

Improved Preimage Attacks on Round-Reduced Keccak-384/512 19

the modified structure does not contain any restricted condition in I0, allocating
model is unnecessary for the attack. To support our analysis, Table 3 presents
an actual preimage of all ‘0’ digest (matching the padding rule). Source codes
are publicly available at https://github.com/lxe21/2round-Keccak384.

Table 3. An actual preimage for 2-round Keccak-384 (in big-endian order).

Initial State I0 (one message block)
65fbd7e20b5fe6b4 0000000000000000 b7fb5afa8f3f1ffb dd2d29a4b4194993 ffffffffffffffff

9bec84cf16dc95f5 fffffffffd9c96b1 09e053aed207f2d7 dd2d292436194993 ffffffffffffffff

01e8ac92a37c8cbe fffffffffd9c96b1 be1b097079a8ed2c 0000000000000000 0000000000000000

0000000000000000 0000000000000000 0000000000000000 0000000000000000 0000000000000000

0000000000000000 0000000000000000 0000000000000000 0000000000000000 0000000000000000

State Π2 (the first two planes)
0000000000008082 0000000000008082 0000000000000000 0000000000008082 0000000000000000

0000000000000000 ffffffffffffffff d9216fe9e51c940e 5adf53be68c76a5e 0909240404100000

Digest State I2 (the first two planes)
0000000000000000 0000000000000000 0000000000000000 0000000000000000 0000000000000000

0000000000000000 fd21efe9f73c95af d8214be9e10c940e 5adf53be68c76a5e f6f6dbfbfbefffff

5.2 Improved Preimage Attack on 2-Round Keccak-512
Our attack framework of improved preimage attack on 2-round Keccak-512 is
given in Fig. 11.

� !"

#

$"

% ∘ '

�"

(∘)

$*

#% ∘ '

!*

linear

0

const

1

conditional

restricted part

quadratic

relinearized

3

2

3

2

3

2

3

2

relinearize

2 3

3 2

Fig. 11. A modified 1-round quadratic structure for Keccak-512.

Modification of the quadratic structure. Inspired by the design in [19], we
set identical 512 variable bits and 256 column sum equations in I0. 8 linear lanes

https://github.com/lxe21/2round-Keccak384

20 He et al.

are then permuted to different locations in Π1, among which 6 consecutive ones
will generate 3 quadratic lanes I14,0,∗, I14,2,∗ and I14,4,∗ through the first χ step.
Thus the relinearization technique is applied to solve the final equation system.
In [19], the authors relinearized I14,0,∗, I14,2,∗ and I14,4,∗ by introducing 192 new
variables. However, there was an omission that the relinearization of I14,0,∗ and
I14,2,∗ need not require as many as 128 new variables. Actually by introducing 64
new variables on I14,0,∗ ⊕ I14,2,∗, the diffusion of quadratic bits can be prevented
in the second θ step, leaving only 2 quadratic lanes13 that would not affect the
digest — both quadratic lanes are not located in the first two planes.

Parameters about the relinearization technique. Using the calculating
way in [19], the number of variables is v = 512−256 = 256. Since each row Π2

∗,1,z
contains two restricting equations that can bring a gain of 21 (cf. equations (3)),
counting 320 restricting equations on recovered Π2

∗,0,∗, the number of equations
is e = 320 + 128 = 448. And the number of different quadratic terms has been
revealed to be q = 128, satisfying q ≤ e− v.

In conclusion, this quadratic structure can leave 512− 256 = 256 degrees of
freedom. Entire column sum equations are given below. Under this structure,
the basic searching complexity is 2512−256+1 = 2257.

I00,0,z ⊕ I00,1,z ⊕ I00,2,z ⊕ I00,3,z ⊕ I00,4,z = SI0(0, z)

I01,0,z ⊕ I01,1,z ⊕ I01,2,z ⊕ I01,3,z ⊕ I01,4,z = SI0(1, z)

I02,0,z ⊕ I02,1,z ⊕ I02,2,z ⊕ I02,3,z ⊕ I02,4,z = SI0(2, z)

I03,0,z ⊕ I03,1,z ⊕ I03,2,z ⊕ I03,3,z ⊕ I03,4,z = SI0(3, z)

(21)

As for the application of extra linear dependence, the target linear-dependent
bit pairs are (as marked by red numbers in Fig. 11):{

(Θ2
3,0,z → Π2

0,1,z+28)⊕ (Θ2
3,3,z → Π2

3,0,z+21) = I13,0,z ⊕ I13,3,z = c1(z)

(Θ2
2,4,z → Π2

4,1,z+61)⊕ (Θ2
2,2,z → Π2

2,0,z+43) = I12,2,z ⊕ I12,4,z = c2(z)
(22)

And the distribution of variables in Π1 is:
I13,0,z = Π1

3,0,z ⊕ (Π1
4,0,z ⊕ 1) ·Π1

0,0,z = Π1
3,0,z

I13,3,z = Π1
3,3,z ⊕ (Π1

4,3,z ⊕ 1) ·Π1
0,3,z

I12,2,z = Π1
2,2,z ⊕ (Π1

3,2,z ⊕ 1) ·Π1
4,2,z

I12,4,z = Π1
2,4,z ⊕ (Π1

3,4,z ⊕ 1) ·Π1
4,4,z

(23)

Similarly, Π1
4,0,∗ = 1 and Π1

0,3,∗ = 0 can be ensured by 64 common column
sum conditions of SI0(3, z)⊕SI0(0, z−1) = I04,4,z⊕1. For the linear dependence
on I12,4,∗, attackers can choose to fix Π1

3,4,∗ = 1, which requires 64 column sum

13 This idea is quite similar to Rajasree’s [17] that allows quadratic parts to exist.

Improved Preimage Attacks on Round-Reduced Keccak-384/512 21

conditions of SI0(4, z)⊕SI0(1, z− 1) = I00,3,z ⊕ 1. Above column sum conditions
have also ensured that:

Π1
3,2,z = Θ1

4,3,z−8 = SI0(3, z − 8)⊕ SI0(0, z − 9)⊕ I04,3,z−8

= I04,4,z−8 ⊕ 1⊕ I04,3,z−8

Π1
4,2,z = Θ1

0,4,z−18 = SI0(4, z − 18)⊕ SI0(1, z − 19)⊕ I00,4,z−18

= I00,3,z−18 ⊕ 1⊕ I00,4,z−18

Π1
2,4,z = Θ1

4,2,z−39 = SI0(3, z − 39)⊕ SI0(0, z − 40)⊕ I04,2,z−39

= I04,4,z−39 ⊕ 1⊕ I04,2,z−39

(24)

In other words, 128 common column sum conditions can totally fix 6 lanes
that would affect the construction of 128 linear-dependent bit pairs. Thus the
entire column sum conditions are (I04,0,z = I04,4,z ⊕ 1 is required in the quadratic
structure)14:

SI0(3, z)⊕ SI0(0, z − 1) = I04,4,z ⊕ 1

SI0(4, z)⊕ SI0(1, z − 1) = I00,3,z ⊕ 1

Π1
3,0,z ⊕Π1

3,3,z = Θ1
3,3,z−21 ⊕Θ1

2,3,z−15 = SI0(2, z − 21)⊕ SI0(4, z − 22) \\

⊕ I03,3,z−21 ⊕ SI0(1, z − 15)⊕ SI0(3, z − 16)⊕ I02,3,z−15 = c1(z)

Π1
2,2,z ⊕ (Π1

3,2,z ⊕ 1) ·Π1
4,2,z ⊕Π1

2,4,z = Θ1
3,2,z−25 ⊕ (Π1

3,2,z ⊕ 1) ·Π1
4,2,z \\

⊕Π1
2,4,z = SI0(2, z − 25)⊕ SI0(4, z − 26)⊕ I13,2,z−25 ⊕ (I04,3,z−8 ⊕ I04,4,z−8) \\

· (I00,3,z−18 ⊕ I00,4,z−18 ⊕ 1)⊕ I04,2,z−39 ⊕ I04,4,z−39 ⊕ 1 = c2(z)
(25)

The examination shows that the rank of 256 column sum conditions is also
256. Therefore, for any values of c1(z) and c2(z) (determined by corresponding
restricting equations), 128 linear-dependent bit pairs can be constructed under
above column sum settings. Those linear-dependent bit pairs are equivalent to
128 extra restricting equations on Π2

0,1,∗ and Π2
4,1,∗ — according to equations (4),

the total gain is 264. To avoid contradictions, attackers can construct the final
equation system by 320 restricting equations on Π2

∗,0,∗, 64 restricting equations
on Π2

1,1,∗ or Π2
1,1,∗⊕Π2

3,1,∗ (the number of equations becomes e = 384) and 128
extra restricting equations on Π2

0,1,∗ and Π2
4,1,∗.

In summary, by modifying the quadratic structure and applying extra linear
dependence, we decrease the searching complexity of preimage attack on 2-round
Keccak-512 from 2257 to 2193 (corresponding to 2204 2-round Keccak calls). Al-
though the modified structure does not contain any restricted condition in I0,
allocating model is still necessary for the attack because the quadratic structure
cannot support a random space over 2193. The model parameters are d1 = 20,
d2 = 2193 and dr = 20 (with SI0 all determined). Under this model, each turn
of preimage searching will start with a randomized middle state.

14 Please notice that SI0(4, ∗) has actually been determined by conditional constants.

22 He et al.

5.3 Improved Preimage Attack on 3-Round Keccak-384

Our attack framework of improved preimage attack on 3-round Keccak-384 is
given in Fig. 12.

� !"

#

$"

% ∘ '

�"

(∘)$*

#% ∘ '

!*
(∘)

�*

3

4

3

4

�

relinearize

3 4

3 4
� ∘ !

"# $#

linear

0

const

1

conditional

restricted part

quadratic

relinearized

3

4

4

3

Fig. 12. A modified 2-round quadratic structure for Keccak-384.

Modification of the quadratic structure. We have introduced the design
in [19] in Section 3.2. Their idea is to partially set t = 13 out of 64 column sum
equations in SI1(1.∗) and solve the final equation system by the relinearization
technique, so that the quadratic structure can leave 51 more degrees of freedom.
The main body (as well as the relinearization part) of our modified structure is
just the same as the previous one. However, we release those extra conditions in
I01,2,∗. This change will influence the linear lane Π2

3,4,∗(← Θ2
0,3,∗), which would

not generate any quadratic term in I2 through the second χ step. Therefore,
our modified structure can support a larger random space (enlarged by 264) for
preimage searching, which means more controllable column sums can be fixed
in the application of extra linear dependence.

Parameters about the relinearization technique. Using the calculating
way in [19], the number of variables is v = 384 − 128 = 256, the number of
equations is e = 320+ 141 = 461 (the column sum equations in SI1 are counted
into this part), and the number of different quadratic terms is q = 4×(64−13) =
204, satisfying q ≤ e− v.

In conclusion, this quadratic structure can leave 384− 128− 192 + 51 = 115
degrees of freedom. Entire column sum equations are given below. Under this
structure, the basic searching complexity is 2384−115+1 = 2270.

Improved Preimage Attacks on Round-Reduced Keccak-384/512 23



I00,0,z ⊕ I00,1,z ⊕ I00,2,z ⊕ I00,3,z ⊕ I00,4,z = SI0(0, z)

I02,0,z ⊕ I02,1,z ⊕ I02,2,z ⊕ I02,3,z ⊕ I02,4,z = SI0(2, z)

I10,0,z ⊕ I10,1,z ⊕ I10,2,z ⊕ I10,3,z ⊕ I10,4,z = SI1(0, z)

I11,0,z ⊕ I11,1,z ⊕ I11,2,z ⊕ I11,3,z ⊕ I11,4,z = SI1(1, z), z = z1, z2, . . . , zt

I12,0,z ⊕ I12,1,z ⊕ I12,2,z ⊕ I12,3,z ⊕ I12,4,z = SI1(2, z)

(26)

Since the modified structure contains several restricted conditions in I0, be-
fore applying extra linear dependence, attackers should calculate the number of
controllable column sums they can fix (limited by dr ≥ d1). To generate those
lanes of ‘0’ and ‘1’ in Θ1, I0 must satisfy15:

I01,0,z = I01,1,z ⊕ 1 = I01,3,z ⊕ 1 = I01,4,z

I03,1,z = I03,2,z = I03,3,z

I04,0,z = I04,1,z = I04,4,z

SI0(0, z)⊕ SI0(2, z − 1) = I01,3,z

SI0(2, z)⊕ SI0(4, z − 1) = I03,3,z

SI0(3, z)⊕ SI0(0, z − 1) = I04,4,z ⊕ 1

(27)

Counting controllable SI0(1, ∗), the number of controllable column sums is
64 + 141 = 205. And since there are 128 restricted conditions in I0 (d1 = 2128),
attackers can at most fix 205− 128 = 77 of all controllable column sums.

As for the application of extra linear dependence, the target linear-dependent
bit pairs are (as marked by red numbers in Fig. 12):{

(Θ3
3,0,z → Π3

0,1,z+28)⊕ (Θ3
3,3,z → Π3

3,0,z+21) = I23,0,z ⊕ I23,3,z = c1(z)

(Θ3
4,1,z → Π3

1,1,z+20)⊕ (Θ3
4,4,z → Π3

4,0,z+14) = I24,1,z ⊕ I24,4,z = c2(z)
(28)

And the distribution of variables in Π2 is:
I23,0,z = Π2

3,0,z ⊕ (Π2
4,0,z ⊕ 1) ·Π2

0,0,z = Π2
3,0,z

I23,3,z = Π2
3,3,z ⊕ (Π2

4,3,z ⊕ 1) ·Π2
0,3,z

I24,1,z = Π2
4,1,z ⊕ (Π2

0,1,z ⊕ 1) ·Π2
1,1,z

I24,4,z = Π2
4,4,z ⊕ (Π2

0,4,z ⊕ 1) ·Π2
1,4,z = Π2

4,4,z

(29)

Unlike the constructions in previous sections, here Π2
3,3,∗ and Π2

4,1,∗ may be
variables because those column sum equations in SI1(1, ∗) are partially set.{

Π2
3,3,z = Θ2

2,3,z−15 = SI1(1, z − 15)⊕ SI1(3, z − 16)⊕ I12,3,z−15

Π2
4,1,z = Θ2

2,4,z−61 = SI1(1, z − 61)⊕ SI1(3, z − 62)⊕ I12,4,z−61

(30)

15 Please notice that SI0(4, ∗) has actually been determined by conditional constants.

24 He et al.

Therefore, to construct linear dependence on I23,3,z (or I24,1,z), the column
sum SI1(1, z− 15) (or SI1(1, z− 61)) must be fixed in the final equation system.
It is summarized that one column sum equation on SI1(1, z) can correspond to
two extra restricting equations on Π3

0,1,z+43 and Π3
1,1,z+17.

Other involved bits can be similarly fixed by related column sums. Here we
fix Π2

0,3,z = 1 and Π2
0,1,z = 0. Thus the entire column sum conditions are:

Π2
4,0,z = Θ2

4,4,z−14 = SI1(3, z − 14)⊕ SI1(0, z − 15)⊕ I14,4,z−14 = 1

Π2
0,3,z = Θ2

4,0,z−27 = SI1(3, z − 27)⊕ SI1(0, z − 28)⊕ I14,0,z−27 = 1

Π2
3,0,z ⊕Π2

3,3,z ⊕Π2
4,3,z ⊕ 1 = Θ2

3,3,z−21 ⊕Θ2
2,3,z−15 ⊕Θ2

3,4,z−56 ⊕ 1 \\

= SI1(2, z − 21)⊕ SI1(4, z − 22)⊕ SI1(1, z − 15)⊕ SI1(3, z − 16) \\

⊕ SI1(2, z − 56)⊕ SI1(4, z − 57)⊕ I13,3,z−21 ⊕ I12,3,z−15 ⊕ I13,4,z−56 = c1(z)

Π2
0,1,z = Θ2

3,0,z−28 = SI1(2, z − 28)⊕ SI1(4, z − 29)⊕ I13,0,z−28 = 0

Π2
1,4,z = Θ2

3,1,z−55 = SI1(2, z − 55)⊕ SI1(4, z − 56)⊕ I13,1,z−55 = 0

Π2
4,1,z ⊕Π2

1,1,z ⊕Π2
4,4,z = Θ2

2,4,z−61 ⊕Θ2
4,1,z−20 ⊕Θ2

1,4,z−2 \\

= SI1(1, z − 61)⊕ SI1(3, z − 62)⊕ SI1(3, z − 20)⊕ SI1(0, z − 21) \\

⊕ SI1(0, z − 2)⊕ SI1(2, z − 3)⊕ I12,4,z−61 ⊕ I14,1,z−20 ⊕ I11,4,z−2 = c2(z)
(31)

Since there are only t = 13 column sum equations in SI1(1, ∗), attackers can
construct at most 26 linear-dependent bit pairs by above colunm sum settings.
For the largest gain, attackers can apply a wise strategy to assemble 24 among
26 (and abandon the rest two) extra restricting equations in 12 rows. The details
are given in Table 4.

Table 4. The choice of 13 column sum equations in SI1(1, ∗).

Fixed Column Sum Corresponding Linear-Dependent Bit Pairs
SI1(1, 21) Π3

0,1,0 ⊕Π3
3,0,57 = const \

SI1(1, 47) Π3
0,1,26 ⊕Π3

3,0,19 = const Π3
1,1,0 ⊕Π3

4,0,58 = const

SI1(1, 9) Π3
0,1,52 ⊕Π3

3,0,45 = const Π3
1,1,26 ⊕Π3

4,0,20 = const

SI1(1, 35) Π3
0,1,14 ⊕Π3

3,0,7 = const Π3
1,1,52 ⊕Π3

4,0,46 = const

SI1(1, 61) Π3
0,1,40 ⊕Π3

3,0,33 = const Π3
1,1,14 ⊕Π3

4,0,8 = const

SI1(1, 23) Π3
0,1,2 ⊕Π3

3,0,59 = const Π3
1,1,40 ⊕Π3

4,0,34 = const

SI1(1, 49) Π3
0,1,28 ⊕Π3

3,0,21 = const Π3
1,1,2 ⊕Π3

4,0,60 = const

SI1(1, 11) Π3
0,1,54 ⊕Π3

3,0,47 = const Π3
1,1,28 ⊕Π3

4,0,22 = const

SI1(1, 37) Π3
0,1,16 ⊕Π3

3,0,9 = const Π3
1,1,54 ⊕Π3

4,0,48 = const

SI1(1, 63) Π3
0,1,42 ⊕Π3

3,0,35 = const Π3
1,1,16 ⊕Π3

4,0,10 = const

SI1(1, 25) Π3
0,1,4 ⊕Π3

3,0,61 = const Π3
1,1,42 ⊕Π3

4,0,36 = const

SI1(1, 51) Π3
0,1,30 ⊕Π3

3,0,23 = const Π3
1,1,4 ⊕Π3

4,0,62 = const

SI1(1, 13) \ Π3
1,1,30 ⊕Π3

4,0,24 = const

Improved Preimage Attacks on Round-Reduced Keccak-384/512 25

The examination shows that the construction of above 24 linear-dependent
bit pairs requires 72 column sum conditions without duplication, and the rank
of all column sum conditions is also 72. Therefore, for any values of c1(z) and
c2(z) (determined by corresponding restricting equations), 24 linear-dependent
bit pairs can be constructed. Those linear-dependent bit pairs are equivalent to
24 extra restricting equations on Π2

0,1,∗ and Π2
1,1,∗ (assembled in 12 rows) —

according to Section 2.4, the total gain is 212.
In summary, by modifying the quadratic structure and applying extra linear

dependence, we decrease the searching complexity of preimage attack on 3-round
Keccak-384 from 2270 to 2258 (corresponding to 2270 3-round Keccak calls). Since
the modified structure contains restricted conditions in I0, allocating model is
necessary for the attack. The model parameters are d1 = 2128, d2 = 2258 and
dr = 2205−72 = 2133.

5.4 Improved Preimage Attack on 3-Round Keccak-512

Our attack framework of improved preimage attack on 3-round Keccak-512 is
given in Fig. 13.

� !"

#

$"

% ∘ '

�"

(∘)$*

#% ∘ '

!*
(∘)

�*

#

relinearize

� ∘ !

"# $#

linear

0

const

1

conditional

restricted part

quadratic

relinearized

2 !"

Fig. 13. An improved 2-round quadratic structure for Keccak-512.

Improvement of the quadratic structure. The design in [19] was similar to
Fig. 7, which partially set t = 54 out of 128 column sum equations in SI1(0.∗)
and SI1(1.∗). However, we have revealed in Section 5.2 that they left an omission
in relinearization and thus their design can apparently be improved. By rectifying

26 He et al.

the omission, we design an improved quadratic structure that passes through an
entirely different route.

Our quadratic structure starts with 384 variable bits and 192 column sum
equations in I0. 6 linear lanes are then permuted to different locations in Π1,
among which 2 consecutive ones will generate 1 quadratic lane I14,0,∗ through the
first χ step. Similarly, we regard I14,0,z = Π1

4,0,z ⊕ (Π1
0,0,z ⊕ 1) · Π1

1,0,z = Π1
4,0,z

with a holding probability of 3/4. In the second θ step, we abandon all column
sum equations in SI1(1, ∗), which generates 384 quadratic bits (6 entire lanes) in
I2. Fortunately, the relinearization of 384 quadratic bits only requires 256 new
variables on I21,1,∗, I22,1,∗ ⊕ I22,4,∗, I23,2,∗ ⊕ I23,4,∗ and I24,2,∗. By introducing those
256 new variables, the diffusion of quadratic bits can be prevented in the third θ
step, leaving only 4 quadratic lanes that would not affect the digest — although
there is a quadratic lane Π3

4,1,∗ located in the first two planes, it doesn’t matter
because those 128 restricting equations for matching the 192-bit truncation only
involve a0, a1, a2 and a3 (cf. equations (3)).

Parameters about the relinearization technique. Using the calculating
way in [19], the number of variables is v = 384 − 192 = 192, the number of
equations is e = 320 + 128 + 64 = 512 (the column sum equations in SI1 are
counted into this part), and the number of different quadratic terms has been
revealed to be q = 256, satisfying q ≤ e− v.

In conclusion, our quadratic structure can leave 384 − 256 = 128 degrees of
freedom but hold with a probability of only (3/4)64 ≈ 2−27. Entire column sum
equations are given below. Due to lack of controllable column sums, extra linear
dependence can hardly be applied. Thus under this structure, the final searching
complexity is 2512−128+1 × 227 = 2412.

I00,0,z ⊕ I00,1,z ⊕ I00,2,z ⊕ I00,3,z ⊕ I00,4,z = SI0(0, z)

I01,0,z ⊕ I01,1,z ⊕ I01,2,z ⊕ I01,3,z ⊕ I01,4,z = SI0(1, z)

I03,0,z ⊕ I03,1,z ⊕ I03,2,z ⊕ I03,3,z ⊕ I03,4,z = SI0(3, z)

I10,0,z ⊕ I10,1,z ⊕ I10,2,z ⊕ I10,3,z ⊕ I10,4,z = SI1(0, z)

(32)

Moreover, to generate those lanes of ‘0’ and ‘1’ in Θ1, I0 must satisfy16:

I02,0,z = I02,1,z ⊕ 1 = I02,4,z

I04,0,z = I04,1,z ⊕ 1 = I04,4,z

SI0(1, z)⊕ SI0(3, z − 1) = I02,4,z ⊕ 1

SI0(3, z)⊕ SI0(0, z − 1) = I04,4,z ⊕ 1

SI0(4, z)⊕ SI0(1, z − 1) = I00,4,z ⊕ 1

(33)

Therefore, the column sums in SI0 are all determined and the total number
of controllable column sums is 64 (from SI1(0, ∗)).
16 Please notice that SI0(2, ∗) and SI0(4, ∗) have actually been determined by condi-

tional constants.

Improved Preimage Attacks on Round-Reduced Keccak-384/512 27

In summary, by rectifying the omission in relinearization and improving the
quadratic structure, we decrease the searching complexity of preimage attack on
3-round Keccak-512 to 2412 (corresponding to 2424 3-round Keccak calls). Since
our quadratic structure contains restricted conditions in I0, allocating model is
necessary for the attack. The model parameters are d1 = 264, d2 = 2412 and
dr = 264.

6 Conclusion

In this paper, we provide improved preimage analysis on round-reduced Keccak-
384/512. The core of our preimage attacks is linear analysis. We inherit existing
attack frameworks from previous researches and improve the preimage analysis
results in two aspects:

I. By applying a new technology named extra linear dependence, we construct
lane-level linear-dependent bit pairs between two output planes without spending
degrees of freedom (by compressing the random space instead).

II. By changing the form of relinearization, we design an improved quadratic
structure and reduce the number of variables in the final equation system.

As a result, the complexity of preimage attacks on 2-round Keccak-384/512
and 3-round Keccak-384/512 is decreased to 239/2204 and 2270/2424 Keccak calls
respectively, which are all the best known results so far. Remarkably, our work
firstly performs practical preimage attacks on 2-round Keccak-384.

It is noted that our attack algorithm is still far from threatening the security
of full-round Keccak. However, the idea of constructing extra linear dependence
may be applicable to linear analysis on other cryptographic functions.

References

1. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: Cryptographic sponge
functions. Submission to NIST (Round 3) (2011). https://sponge.noekeon.org/
CSF-0.1.pdf

2. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: The Keccak reference, ver-
sion 3.0. Submission to NIST (Round 3) (2011). https://keccak.noekeon.org/
Keccak-reference-3.0.pdf

3. Bernstein, D.J.: Second preimages for 6 (7? (8??)) rounds of Keccak?
NIST Mailing List (2010). https://ehash.iaik.tugraz.at/uploads/6/65/
NIST-mailing-list_Bernstein-Daemen.txt

4. Morawiecki, P., Srebrny, M.: A SAT-based preimage analysis of reduced KECCAK
hash functions. Information Processing Letters 113(10-11), 392–397 (2013). https:
//doi.org/10.1016/j.ipl.2013.03.004

5. Morawiecki, P., Pieprzyk, J., Srebrny, M.: Rotational cryptanalysis of round-
reduced Keccak. In: Moriai, S. (eds.) FSE 2013. LNCS, vol. 8424, pp. 241–262.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-662-43933-3_13

6. Dinur, I., Dunkelman, O., Shamir, A.: New attacks on Keccak-224 and Keccak-
256. In: Canteaut, A. (eds.) FSE 2012. LNCS, vol. 7549, pp. 442–461. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-34047-5_25

https://sponge.noekeon.org/CSF-0.1.pdf
https://sponge.noekeon.org/CSF-0.1.pdf
https://keccak.noekeon.org/Keccak-reference-3.0.pdf
https://keccak.noekeon.org/Keccak-reference-3.0.pdf
https://ehash.iaik.tugraz.at/uploads/6/65/NIST-mailing-list_Bernstein-Daemen.txt
https://ehash.iaik.tugraz.at/uploads/6/65/NIST-mailing-list_Bernstein-Daemen.txt
https://doi.org/10.1016/j.ipl.2013.03.004
https://doi.org/10.1016/j.ipl.2013.03.004
https://doi.org/10.1007/978-3-662-43933-3_13
https://doi.org/10.1007/978-3-642-34047-5_25

28 He et al.

7. Qiao, K., Song, L., Liu, M., Guo, J.: New collision attacks on round-reduced
Keccak. In: Coron, J.S., Nielsen, J. (eds.) EUROCRYPT 2017, Part III. LNCS,
vol. 10212, pp. 216–243. Springer, Heidelberg (2017). https://doi.org/10.1007/
978-3-319-56617-7_8

8. Song, L., Liao, G., Guo, J.: Non-full sbox linearization: applications to collision
attacks on round-reduced Keccak. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017,
Part II. LNCS, vol. 10402, pp. 428–451. Springer, Heidelberg (2017). https://doi.
org/10.1007/978-3-319-63715-0_15

9. Aumasson, J.P., Meier, W.: Zero-sum distinguishers for reduced Keccak-f and for
the core functions of Luffa and Hamsi. NIST Mailing List (2009). https://131002.
net/data/papers/AM09.pdf

10. Boura, C., Canteaut, A., De Cannière, C.: Higher-order differential properties of
Keccak and Luffa In: Joux, A. (eds.) FSE 2011. LNCS, vol. 6733, pp. 252–269.
Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-21702-9_15

11. Duan, M., Lai, X.: Improved zero-sum distinguisher for full round Keccak-f per-
mutation. Cryptology ePrint Archive, Report 2011/023 (2011). https://eprint.
iacr.org/2011/023

12. Dinur, I., Morawiecki, P., Pieprzyk, J., Srebrny, M., Straus, M.: Cube attacks
and cube-attack-like cryptanalysis on the round-reduced Keccak sponge func-
tion. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015, Part I. LNCS,
vol. 9056, pp. 733–761. Springer, Heidelberg (2015). https://doi.org/10.1007/
978-3-662-46800-5_28

13. Huang, S., Wang, X., Xu, G., Wang, M., Zhao, J.: Conditional cube attack on
reduced-round Keccak sponge function. In: Coron, J.S., Nielsen, J. (eds.) EURO-
CRYPT 2017, Part II. LNCS, vol. 10211, pp. 259–288. Springer, Heidelberg (2017).
https://doi.org/10.1007/978-3-319-56614-6_9

14. Song, L., Guo, J., Shi, D., Ling, S.: New MILP modeling: improved conditional
cube attacks on Keccak-based constructions. In: Peyrin, T., Galbraith, S. (eds.)
ASIACRYPT 2018, Part II. LNCS, vol. 11273, pp. 65–95. Springer, Heidelberg
(2018). https://doi.org/10.1007/978-3-030-03329-3_3

15. Guo, J., Liu, M., Song, L.: Linear structures: applications to cryptanalysis of round-
reduced Keccak. In: Cheon, J., Takagi, T. (eds.) ASIACRYPT 2016, Part I. LNCS,
vol. 10031, pp. 249–274. Springer, Heidelberg (2016). https://doi.org/10.1007/
978-3-662-53887-6_9

16. Li, T., Sun, Y.: Preimage attacks on round-reduced Keccak-224/256 via an allocat-
ing approach. In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019, Part III. LNCS,
vol. 11478, pp. 556–584. Springer, Heidelberg (2019). https://doi.org/10.1007/
978-3-030-17659-4_19

17. Rajasree, M.S.: Cryptanalysis of round-reduced KECCAK using non-linear struc-
tures. In: Hao, F., Ruj, S., Sen Gupta, S. (eds.) INDOCRYPT 2019. LNCS,
vol. 11898, pp. 175–192. Springer, Heidelberg (2019). https://doi.org/10.1007/
978-3-030-35423-7_9

18. He, L., Lin, X. Yu, H.: Improved preimage attacks on 4-round Keccak-224/256.
IACR Transactions on Symmetric Cryptology 2021(1), 217–238 (2021). https:
//doi.org/10.46586/tosc.v2021.i1.217-238

19. Liu, F., Isobe, T., Meier, W., Yang, Z.: Algebraic Attacks on Round-Reduced
Keccak. In: Baek, J., Ruj, S. (eds.) ACISP 2021. LNCS, vol. 13083, pp.91–110.
Springer, Heidelberg (2021). https://doi.org/10.1007/978-3-030-90567-5_5

20. Kumar, R., Mittal, N., Singh, S.: Cryptanalysis of 2 round Keccak-384. In:
Chakraborty, D., Iwata, T. (eds.) Progress in Cryptology – INDOCRYPT 2018.

https://doi.org/10.1007/978-3-319-56617-7_8
https://doi.org/10.1007/978-3-319-56617-7_8
https://doi.org/10.1007/978-3-319-63715-0_15
https://doi.org/10.1007/978-3-319-63715-0_15
https://131002.net/data/papers/AM09.pdf
https://131002.net/data/papers/AM09.pdf
https://doi.org/10.1007/978-3-642-21702-9_15
https://eprint.iacr.org/2011/023
https://eprint.iacr.org/2011/023
https://doi.org/10.1007/978-3-662-46800-5_28
https://doi.org/10.1007/978-3-662-46800-5_28
https://doi.org/10.1007/978-3-319-56614-6_9
https://doi.org/10.1007/978-3-030-03329-3_3
https://doi.org/10.1007/978-3-662-53887-6_9
https://doi.org/10.1007/978-3-662-53887-6_9
https://doi.org/10.1007/978-3-030-17659-4_19
https://doi.org/10.1007/978-3-030-17659-4_19
https://doi.org/10.1007/978-3-030-35423-7_9
https://doi.org/10.1007/978-3-030-35423-7_9
https://doi.org/10.46586/tosc.v2021.i1.217-238
https://doi.org/10.46586/tosc.v2021.i1.217-238
https://doi.org/10.1007/978-3-030-90567-5_5

Improved Preimage Attacks on Round-Reduced Keccak-384/512 29

LNCS, vol. 11356, pp. 120–133. Springer, Heidelberg (2018). https://doi.org/
10.1007/978-3-030-05378-9_7

21. The U.S. National Institute of Standards and Technology: SHA-3 standard:
permutation-based hash and extendable-Output functions. Federal Information
Processing Standard, FIPS 202 (2015). http://nvlpubs.nist.gov/nistpubs/
FIPS/NIST.FIPS.202.pdf

https://doi.org/10.1007/978-3-030-05378-9_7
https://doi.org/10.1007/978-3-030-05378-9_7
http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.202.pdf
http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.202.pdf

	Improved Preimage Attacks on Round-Reduced Keccak-384/512

