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Abstract

Recently, there has been great interest towards constructing efficient zero-knowledge proofs for prac-
tical languages. In this work, we focus on proofs for threshold relations, in which the prover is required
to prove knowledge of witnesses for k out of ` statements.

The main contribution of our work is an efficient and modular transformation that starting from a
large class of Σ-protocols and a corresponding threshold relation Rk,`, provides an efficient Σ-protocol
for Rk,` with improved communication complexity w.r.t. prior results. Moreover, our transformation
preserves statistical/perfect honest-verifier zero knowledge.
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1 Introduction

With the advent of blockchain technology and cryptocurrencies there is much more interest towards designing
practical systems for decentralized computations. In particular there is an effort towards systems producing
succinct messages that can therefore be uploaded on blockchains guaranteeing some public verifiability.
Notable examples of such tools are threshold signatures and succinct non-interactive arguments of knowledge
(SNARKs).

Proofs over threshold relations. In this work we are interested in efficient proofs over threshold relations
(PTRs) where a statement consists of n instances and the prover would like to prove knowledge of witnesses
for at least k of them. There has been an effort in the past to obtain such proofs for practical languages.

In [CDS94] Cramer et al. showed how to efficiently combine Σ-protocols in order to prove knowledge of
witnesses corresponding to at least k out of ` instances. For simplicity we will refer to such a proof as a (k, `)-
PTR. Their construction mainly consists of running Σ-protocols for all instances, combining them efficiently
and thus the costs (i.e., computations and communication) of their (k, `)-PTRs essentially consist of the
sum of the costs of all underlying Σ-protocols. The resulting protocol is still a Σ-protocol. Interestingly,
their composition enjoys two more properties: it allows also the use of non-threshold access structures; the
` instances can belong to different languages since the starting point is the direct use of Σ-protocols for the
involved languages.

More recently, a different technique has been proposed in [CPS+16] where Ciampi et al. showed how
to obtain a similar result with the additional feature of postponing the need to know the instances to
the last round (i.e., delayed input). The delayed-input (k, `)-PTR of Ciampi et al. relies on the DDH
assumption and can be used for instances of multiple languages since they allow the use of a large class of
Σ-protocols. The resulting protocol is a 3-round public-coin proof of knowledge. Unfortunately, since this
composition technique relies on a computationally-hiding commitment scheme it produces a protocol which
only achieves computational zero knowledge regardless of the underlying Σ-protocols being statistical/perfect
zero knowledge. However, statistical/perfect zero knowledge is very important since it protects the privacy
of the prover forever (e.g., even if quantum computers become a concrete threat).

Very recently, Attema et al. in [ACF21], improving a prior work of Groth and Kohlweiss [GK15], have
shown how to obtain a very compact (k, `)-PTR that however works only for discrete logarithms (and
variations) thus remaining far from the general results of [CDS94]. The resulting construction requires
a logarithmic number of rounds1 and is secure against polynomial-time adversarial provers only (while
preserving statistical/perfect zero knowledge). Moreover, they require as trusted parameters a shared random
string (SRS).

Even more recently, Goel et al. in [GGHK21] have broken the barrier of linear (in `) communication
complexity when composing generic Σ-protocols, showing an efficient composition for a large class of Σ-
protocols (which they call stackable Σ-protocols) obtaining logarithmic communication complexity. Their
construction is secure against polynomial-time adversarial provers only2 obtaining computational special
soundness. They give an instantiation of their construction based on a commitment scheme that relies on
the discrete logarithm assumption and requires trusted parameters including the description of a collision-
resistant hash function (CRHF) and parameters for Pedersen commitments. The perfect hiding of the
commitment scheme allows to preserve statistical/perfect zero knowledge. In Sec. 8 of their work they also
show techniques to combine instances of different languages. While their construction applies to a large
class of Σ-protocols, unfortunately, the techniques of [GGHK21] are communication efficient only when
k = 13. Goel et al. discuss (see Sec. 9.1 and App. F of [GGHK21]) an approach for the case of k > 1 but
unfortunately, as they admit, their proposal strongly affects communication, without providing substantial

1The result of [GK15] instead works only for k = 1 but in 3 rounds.
2For ease of presentation, in this work we will use the term PPK even when the soundness property holds only against a

computationally bounded adversarial prover. We will do the same for computational Σ-protocols which only satisfy a weaker
version of special soundness called computational special soundness (cfr., Sec. 3.2).

3Note that the protocol for the case k = 1 appeared in Eurocrypt 2022 [GGHK22]. The protocol for k > 1 was only described
in the pre-print version [GGHK21].
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improvements over [CDS94]. Goel et al. left explicitly open the problem of efficiently combining Σ-protocols
in order to break, for generic values of k, the linear (in `) barrier achieved by [CDS94] (see [GGHK21], page
32, Sec. 9.1).

Open problem. In light of the above state of affairs, we have the following natural and interesting (both
theoretically and practically) open question:

Is it possible to obtain practical (i.e., round efficient, communication efficient and computationally efficient)
(k, `)-proofs of knowledge for threshold relations for a large class of Σ-protocols (and thus for several useful
languages) with communication complexity o(`) and which also preserve statistical/perfect zero knowledge?

1.1 Our Contribution

In this work we solve the above open problem when k = o( `
log ` ) by showing how to efficiently combine

the same large class of Σ-protocols considered in [GGHK21] obtaining a (k, `)-PTR with communication
complexity that is roughly4 k log `. In scenarios where k is way smaller than ` (e.g., k is constant or even√
`) this is a big improvement. Moreover, our construction, similarly to [GGHK21], can also be used for

(k, `)-PTR involving Σ-protocols for different languages. The protocol obtained through our techniques is
still a Σ-protocol. As a result, it can be combined again with our techniques or other techniques (e.g.,
[CDS94]) for composing Σ-protocols, thus allowing non-threshold access structures. Finally our construction
preserves the flavour of the zero knowledge property of the composed protocols. Indeed, our (k, `)-PTR is
still perfect honest-verifier zero knowledge if the base Σ-protocols are perfect honest-verifier zero knowledge.

We use the (1, `)-PTR of [GGHK21] as a building block and start with their observation that repeating
k times their construction is insecure since an adversarial prover might succeed using a witness for the same
instance in all the k executions. This is precisely the problem left unsolved for (k, `)-PTRs with sublinear
communication in [GGHK21] that instead we solve in this work.

Compact proof of consistency of commitment parameters. In [GGHK21], the use of a witness is
associated to log ` pairs of parameters of a commitment scheme such that for every pair one parameter
allows for equivocation and the other parameter prevents equivocation. For simplicity, we will say that one
parameter is equivocal and the other one is binding and only the prover knows which element is equivocal
for every pair. Informally, we say that5 a commitment scheme is 1-out-of-2 equivocal when a commitment
phase requires to commit to two messages, one with binding parameters and one with equivocal parameters,
without allowing the receiver to distinguish them, even after the commitment is opened.

In the following, we assume w.l.o.g. that ` is a power of 2 and give an abstract/simplified description of
our approach, while a more detailed and rigorous explanation will be given in Sec. 6.2. Let x0, . . . , x`−1 be
the instances and consider xi for i ∈ {0, . . . , `− 1} be the instance corresponding to witness wi known to the
prover. The log ` pairs of parameters are chosen so that the j-th pair has the first parameter binding if the
j-th bit of i is zero (for j = 0, . . . , log ` − 1) and equivocal otherwise. Notice that the connection between
a pair of parameters that can be either (equivocal,binding) or (binding,equivocal) and a bit of the index of
an instance makes the log ` pairs of parameters associated to xi logically different from the log ` pairs of
parameters associated to xj , as long as i 6= j.

We observe that in order to show that in k executions of the (1, `)-PTR of [GGHK21] the k witnesses
correspond to k different instances, one can focus on showing that the k sequences of log ` pairs of parameters
are all disjoint in the sense that for every pair (ā = a0, a1, . . . , alog `−1), (b̄ = b0, b1, . . . , blog `−1) of elements
in those k sequences, there is always a position j ∈ {0, . . . , log `− 1} such that only one out of aj and bj has
the first parameter that is binding. We focus on efficiently proving the above property of all pairs in those
k sequences as follows: first, we require the prover to sort the k sequences according to the order relation

4We will be more precise later making the impact of the security parameter explicit.
5We use the same term originally used in [CPS+16], while the term 1-out-of-2 Partially Binding Vector Commitment is

instead used in [GGHK21].
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derived by assigning to every sequence of log ` pairs of parameters a string of log ` bits where the j-th bit
is 0 if and only if the j-th pair of parameters in the sequence has the first element that is binding. The
prover has all the information to sort those k sequences since the prover decided those parameters and thus
it knows which one is binding and which one is equivocal. Once the k sequences are sorted, in order to
prove that they are all disjoint (in the sense explained above) for the prover it is enough to show that for
every two consecutive elements (ā, b̄) in such ordered sequence of k elements, the bit representation of b̄ is
greater than the one of ā. With such trick, the prover must provide k − 1 proofs in total to show that all
sequences are different. Each of such proofs is about proving a property of the involved 4 log ` parameters6.
We show a concrete and efficient instantiation of such proofs with communication O(log `) for the parameters
of the 1-out-of-2 equivocal commitment scheme from [GGHK21]. Our construction can also be instantiated,
with small modifications, using the commitment scheme of [CPS+16]7. In this case, our (k, `)-PTR would
provide only computational honest-verifier zero knowledge and it would only require a collision-resistant
hash function as setup.

In Table 1, we compare our results to the previously discussed approaches to obtain (k, `)-PTR. For the
sake of completeness, in this comparison we make the security parameter λ explicit. Note that our approach
while being less communication efficient than [GK15, ACF21] is more flexible since it applies to a much
wider family of languages.

An additional discussion on related work in comparison with our results can be found in Sec. 2.

Non-threshold access structures. In [CDS94], Cramer et al. provided a generalization of their tech-
nique for arbitrary monotone access structures other than the threshold one. Attema et al. in [ACF21]
also appropriately modify their protocol to enable monotone access structures for their argument system.
Interestingly, our (k, `)-PTR is a general compiler that can take other (k′, `′)-PTRs as input to create a PTR
for threshold-of-threshold relations.

Threshold ring signatures. As pointed out in [GGHK21], by making their (1, `)-PTR non-interactive
with the aid of a random oracle one gets a ring signature whose size is logarithmic in the size of the ring
` (See [GGHK21] Page 4 and Sec. 9.3). Following a similar approach, starting from our (k, `)-PTR we can
get a threshold ring signature scheme according to Def. 3 of [HS20] but considering PPT adversaries instead
of quantum polynomial-time adversaries. In a threshold ring signature scheme, k signers cooperate to sign
a message hiding their identities within a larger group of size `. In our threshold ring signature scheme the
size of a signature corresponds roughly to O(k log `) group elements (e.g., consider the instantiation using
the protocol of [Sch89] as underlying Σ-protocol). Interestingly, while featuring a relatively simple design,
our construction surpasses in terms of signature tag size many literature works [BSS02, YLA+13, OTYO18].
Other schemes have signature size which is linear in ` (while being independent of k) and thus are also
outperformed when k << ` [ZZY+17, CHGa19, HS20]. When comparing our construction to others achieving
more compact signature sizes [HS20, MOY21, ACR21], our construction still has interesting advantages in
terms of resilience to adversarially chosen keys (i.e., given two sets of honestly generated keys S0 and S1

of size k on the same ring of size ` the adversary cannot tell if a signature is generated using the signing
keys in S0 or in S1, even if any subset of all the keys of the ring but the ones in S0 and S1 is maliciously
generated, see [HS20]) or used assumptions. A major feature of our threshold ring signature is that it can
be instantiated from a variety of assumptions (i.e., the assumptions depend on the chosen languages and
Σ-protocols). A more detailed comparison is reported in Sec. 2.

Finally, our techniques allow threshold ring signatures with more advanced hiding properties than a simple
subset of signers. Indeed, we can consider also non-threshold access structures obtaining more expressive
power (i.e., better anonymity) than a regular (k, `) threshold.

6For each proof there are two sequences of log ` pairs of parameters.
7This modification would mainly consists in adapting the definitions of 1-out-of-2 equivocal commitment scheme to 3-

round public coin protocols as the one of [CPS+16]. Additionally, our proof system for proving an ordering relation among
commitment parameters would follow the same structure but would take into account the different nature of the commitment
parameters. Indeed, in this case equivocal parameters are Diffie-Hellman tuples and binding parameters are a particular kind
of non-Diffie-Hellman tuples (i.e., 1-non-Diffie-Hellman tuples).
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Protocol # Rounds Communication Values of k Language

[CDS94] 3 O(`CC(Σ)) k > 0 All Σ
[GK15] 3 O(λ log `) k = 1 DL-like
[ACF21] O(log `) O(λ log(2`− k)) k > 0 DL-like
[GGHK21] 3 O(CC(Σ) + λ log `) k = 1 Stackable Σ
[GGHK21] 3 O(k(CC(Σ) + λ`)) k > 1 Stackable Σ
Ours 3 O(k(CC(Σ) + λ log `)) k > 0 Stackable Σ

Table 1: Comparison of several techniques for (k, `)-PTR. When comparing more language-generic tech-
niques like ours and [CDS94, GGHK21] we express the communication complexity both in terms of the the
communication complexity of the underlying Σ-protocol CC(Σ) and of the security parameter λ. Note that
the communication complexity of [GK15] does not depend on k since their technique only works for k = 1.
The Language column reports the languages supported by the corresponding composition technique. De-
spite being the least communication efficient, [CDS94] supports a wider class of languages (i.e., all languages
admitting a Σ-protocol).

Remark on [GGHK21]. We have also noticed some subtleties in the security analysis of the main claim
of [GGHK21] that we discuss in Remark 2 and Remark 3. For completeness, we have added in the appendix
an instantiation (along with a proof) of [GGHK21] with the 1-out-of-2 commitment scheme defined as in
Sec. 4 taking care of those subtleties.

1.2 Technical Overview of [GGHK21]

We first describe 1-out-of-2 equivocal commitments (see Sec. 4 for more details) that are a major tool used
in [GGHK21]. Then, we show how [GGHK21] exploits 1-out-of-2 equivocal commitments to get a (1, `)-PTR.

1-out-of-2 equivocal commitments in a nutshell. A 1-out-of-2 equivocal commitment allows a sender
to commit to two values one of which is guaranteed to be binding, either unconditionally or under com-
putational assumptions. The other element instead can be equivocated using a trapdoor that is known to
the sender. Once the commitment is opened, the commitment scheme itself would guarantee the equivocal
position is not leaked. Before sending the commitment to the receiver, the commitment scheme parameters
are generated by the sender who has to decide which position is equivocal. From now on, we call non-
trapdoor (NT) a parameter that is associated with a binding position, while a trapdoor parameter (T) is
associated with an equivocal position. We will use the word “trapdoorness” when referring to the property
of a commitment parameter of allowing to equivocate or not.

(1, `)-PTR through Σ-protocols. For simplicity, we will focus on instances belonging to the same lan-
guage. Nevertheless, both in [GGHK21] and in our results it is possible to go beyond this restriction (see
Sec. 8 of [GGHK21]).

The main idea in [GGHK21] is that every involved Σ-protocol has a deterministic Honest Verifier Zero-
Knowledge (HVZK) simulator, called Extended HVZK (EHVZK) simulator which, given a challenge c, a
third-round message z, and a statement x, successfully outputs a simulated a such that (a, c, z) is an accepting
transcript for the instance x. With EHVZK in their hands, the authors introduce the notion of stackable
Σ-protocols. A Σ-protocol is stackable if (i) it has an EHVZK simulator and (ii) the third-round message is
recyclable, meaning that the distribution of such messages is independent of the instance for every instance
in the language.

Let us first consider just two of the ` instances, say x1 and x2. Given two executions Σ1 and Σ2 of
a stackable Σ-protocol Π for instances x1 and x2 respectively, an execution Σ1,2 of the combined protocol
Π′ defined by Goel et al. [GGHK21] for x1 ∨ x2 can be constructed as follows. Let us assume that the
prover P1,2 knows the witness corresponding to x1. We name a1 (respectively a2) the first-round message
of the underlying execution Σ1 (respectively Σ2), a the first-round message of the execution Σ1,2 of Π′, c
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the challenge sampled by the verifier V1,2 for Π′, and z the last message of Σ1,2. Since Σ1 and Σ2 are
executions of the stackable Σ-protocol Π, their third-round messages have the same distribution. Therefore,
the accepting third-round message from the execution Σ1 can be re-used as a third-round message for the
execution Σ2 as described in the composed Σ-protocol Π′ below:

• P1,2 computes the first-round message a1 of protocol Π on input the statement x1 and witness w1. P1,2

commits to a1 using a 1-out-of-2 equivocal commitment scheme. The value a1 is put in the binding
position, while the equivocal position commits to 0. We denote the resulting commitment as com. The
first-round message a in the execution Σ1,2 of the composed protocol Π′ includes com as well as the
parameters of the commitment scheme.

• Upon receiving the challenge c from V1,2, P1,2 computes z′ using witness w1, and equivocates the
equivocal position of the commitment with a simulated a2. The value a2 is obtained by running the
EHVZK simulator of Π with input the instance x2, c, and the value z′ computed above. Then P1,2

sends z′ and the opening values of com to V1,2 as a third-round message z of Σ1,2. The value z also
includes the commitment parameters8.

• V1,2 reconstructs a1 and a2 by running the EHVZK simulator of Π. Then V1,2 checks that both
(a1, c, z

′) and (a2, c, z
′) are accepting transcripts for V1 and V2, and that com actually opens to a1 and

a2.

Since Π′ is still a stackable Σ-protocol, it can be recursively used to prove the statement x1 ∨ x2 ∨ x3 ∨ x4.
Indeed, this can be seen again as an OR of two statements, therefore the Σ-protocol for the statement
(x1 ∨ x2) ∨ (x3 ∨ x4) can be composed using the same technique. Then, one can iterate the same process to
obtain a (1, 8)-PTR by applying the same technique to two (1, 4)-PTR, and so on.

Such composition of ` disjunctive statements can be represented by the following binary tree9: the leaves
of the tree represent the ` base executions (Σ1, . . . ,Σ`) of the Σ-protocol Π. Given two siblings nodes i
and j, with associated protocol execution Σi for the instance xi and Σj for the instance xj respectively, the
parent node t of i and j describes the execution of the protocol Σt obtained by applying the compiler for
(1, 2)-PTR of [GGHK21]. Moreover, the edges (t, i) and (t, j) are labeled as follows: if Pt knows a witness
for the statement xi, then the edge (t, i) is labeled with NT to indicate that, in the commitment computed
by Pt in the first round the position where xi is used is binding. The edge (t, j) is labeled with T to indicate
that the position where xj is used is equivocal. If instead Pt knows a witness for xj , then the opposite holds.
An example of a tree induced by recursively applying the composition of [GGHK21] for a (1, 2)-PTR to get
a (1, 8)-PTR is shown in Fig. 1. As explained in Sec. 1.3, this recursive application of the (1,2)-PTR gives
a communication complexity for the (1, `)-PTR which is roughly logarithmic in `.

(k, `)-PTR extension. In [GGHK21] an extension of their compiler to achieve a (k, `)-PTR10 is also pro-
posed. An immediate solution might consist in just repeating the (1, `)-PTR k times. Unfortunately, such
simple approach does not work because the prover could use the same witness in each of the k executions
of the (1, `)-PTR. In [GGHK21] it is proposed to address the above issue modifying their 1-out-of-` equiv-
ocal commitment scheme. They propose as replacement a k-out-of-` binding vector-of-vectors commitment
scheme. This modification allows to equivocate at most `− k positions. Roughly speaking, they instantiate
such a primitive by making the commit algorithm output a matrix of k × ` commitment values (i.e., each
row is a 1-out-of-` equivocal commitment), together with a non-interactive (NI) zero-knowledge (ZK) proof
that the binding position is different in each row. As pointed out in [GGHK21], with this technique they lose
the ability to recursively apply the (1, 2)-PTR compiler. As a result, their (k, `)-PTR has a communication
complexity of roughly O(k`).

8Later on it will be more clear why this allows to exploit extended simulation to achieve logarithmic communication com-
plexity.

9Without loss of generality it can be assumed that the number of composed instances is always a power of two.
10Sec. 9.1 and App. F of [GGHK21].
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1.3 Our Techniques

Our approach for a communication-efficient (k, `)-PTR. In [GGHK21], the location of the instance
for which the prover knows the witness uniquely determines the way parameters are laid out over the
composition tree. For example, in Fig. 1 the instance for which P1,2 knows the witness is x1. This means
that, starting from Σ1,2, the position containing the first message of Σ1 has to be binding. Indeed, since P1,2

only holds a witness for x1, P1,2 is able to produce an accepting transcript exclusively for Σ1. Therefore, the
third-round message to be recycled has to come from Σ1, while the committed first-round message of the
execution Σ2 needs to be equivocated with the output of the EHVZK simulator. It follows that, climbing
up the tree, the commitment position containing the first message of Σ1,2 has to be binding. Indeed, V1,2,3,4

will in turn execute V1,2 and V3,4, which internally use the verifiers of the base Σ-protocols. This means that
in Σ3,4 the prover recycles the third-round message of Σ1,2 and that in Σ1,2,3,4 the committed first-round
message of Σ3,4 has to be equivocated accordingly in order to get an accepting transcript. Applying the
same reasoning again, it is easy to conclude that in Σ1,...,8 the binding position of the 1-out-of-2 equivocal
commitment is again the same.

A crucial idea of [GGHK21] to achieve logarithmic communication complexity is reusing commitment
parameters and openings across the same levels of the composition tree. The composition is designed so
that commitment parameters and openings are part of the third-round message of the composed protocol.
Indeed, since the composed Σ-protocol of [GGHK21] is itself stackable, it follows that its EHVZK simulator
takes as input commitment parameters and openings to generate a suitable first-round message, namely a
1-out-of-2 equivocal commitment reusing the same openings and parameters11. This means that since all
the Σ-protocols executions that belong to the same level of the tree share the same third-round message
they also have to use the exact same commitment parameters. This is emphasized in Fig. 1 by coloring all
the edges of each level with the same color. Therefore, in the (1, `)-PTR of [GGHK21] depending on the
instance xi corresponding to the witness used by the prover there is a different way commitment parameters
are laid out over the composition tree. Thus, to build a (k, `)-PTR it suffices to repeat the construction of
[GGHK21] k times and to prove that the composition trees of such k executions are all different. In this
section we describe how we design a communication-efficient computational sound Σ-protocol for the above
statement.

Problem statement. We use the following notation: for any vector v, v[z] indicates the z-th element of
the vector v. The first element of a vector v is indexed as v[1]. Moreover, we use [n] for n ∈ N to identify
the set {1, . . . , n}.

Let x = ((p1
0, p

1
1), . . . , (pn0 , p

n
1 )) be a vector containing n pairs of parameters corresponding to n instantia-

tions of a 1-out-of-2 equivocal commitment scheme, where pi0 represents the parameters of the first position
of the i-th commitment instantiation, and pi1 is the analogue for the second position. Consider the relations
RT0 ,RT1 , where RT0 = {(x = (p0, p1), w) : p1 is a trapdoor parameter and w is the corresponding trapdoor}
and, similarly RT1 = {(x = (p0, p1), w) : p0 is a trapdoor parameter and w is the corresponding trapdoor}.

We present a Σ-protocol Πord, that, given a vector X = (x1, . . . ,xk) of vectors each containing n pairs of
parameters corresponding to n instantiations of a 1-out-of-2 equivocal commitment scheme, allows a prover
P to efficiently prove knowledge of a witness for X ∈ L where

L ={X : ∃W = (w1, . . . ,wk) such that

∀ i, j ∈ [k] with i 6= j ∃z ∈ [n], such that bi,z 6= bj,z}
(1)

where bi,z and bj,z ∈ {0, 1} are such that (xi[z],wi[z]) ∈ RTbi,z and (xj[z],wj[z]) ∈ RTbj,z .

11For this composition to work and to compress the communication complexity down to logarithmic, [GGHK21] points out
that the size of the equivocal commitment must be independent of the size of the committed value. For example, the first
message of the execution Σ1,2,3,4 in Fig. 1 should be a commitment to two 1-out-of-2 equivocal commitments (i.e., the first
messages of executions Σ1,2 and Σ3,4) which of course would not fit in the input space of the commitment scheme. To solve
this issue, committed values have to be compressed down to a constant size with the aid of a collision-resistant hash function.
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Σ1,...,8

Σ1,2,3,4

Σ1,2

Σ1 Σ2

Σ3,4

Σ3 Σ4

Σ5,6,7,8

Σ5,6

Σ5 Σ6

Σ7,8

Σ7 Σ8

NT3

NT2

NT1 T1

T2

NT1 T1

T3

NT2

NT1 T1

T2

NT1 T1

Figure 1: An example of a tree induced by the recursive application of the (1, 2)-PTR of [GGHK21] in
which 8 base Σ-protocols are composed to obtain a (1, 8)-PTR (i.e., meaning that the prover knows at least
one witness wi for xi, with i ∈ [8]). In this example, P1,...,8 knows a witness for the statement x1. This
implies that, going from the root to the leaves, the left-most branch must be non-trapdoor. Additionally,
commitment openings and parameters are re-used across the same level of the composition tree and this is
emphasized by using the same index across all labels and the same color to draw all the edges within a level.

An efficient Σ-protocol. One could naively prove the above statement by separately proving that each
vector of n pairs of commitment parameters differs in the way equivocal and binding parameters are laid
out w.r.t. every other vector. Carrying out such proof would involve a quadratic (in k) amount of separate
proofs, thus impairing the overall efficiency of the Σ-protocol, even for moderate values of k. We instead take
a different path, that is introducing a strict total ordering among these k vectors of n pairs of commitment
parameters. In particular, we map a vector x of n pairs of commitment parameters to a binary string
s ∈ {0, 1}n by setting s = b1|| . . . ||bn, for which (x[z],w[z]) ∈ RTbz . Let sm be the string resulting to
applying the above mapping to a vector xm of n pairs of commitment parameters with m ∈ [k]. W.l.o.g.
consider the case where s1 > . . . > sk.

If the above order relation holds, it follows that all the k vectors of n pairs of commitment parameters
are logically different from each other in terms of how the trapdoor parameters are laid out in at least one
position. Note that after having introduced such ordering among the k vectors of n pairs of commitment
parameters, one can come up with the language Lord described by only a linear number of comparisons.
Let X = (x1, . . . ,xk) be a vector of k vectors each containing n pairs of parameters corresponding to n
instantiations of a 1-out-of-2 commitment scheme, the language of Equation 1 can be equivalently rewritten
as

Lord ={X : ∃W = (w1, . . . ,wk) such that

s1 > s2 > . . . > sk},
(2)

where for all m ∈ [k], sm = b1|| . . . ||bn, for which (xm[i],wm[i]) ∈ RTbi .
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Instantiation. Let us consider two binary strings s1 ∈ {0, 1}n and s2 ∈ {0, 1}n, it is pretty straightforward
to see that if s1 > s2, the following formula also holds12. We use s[i] to indicate the i-th bit of the string s.

n∨
i=1

i−1∧
j=0

(s1[j] = s2[j])

 ∧ (s1[i] > s2[i])

 . (3)

Indeed, this corresponds to performing a bit-wise comparison between s1 and s2, starting from the most
significant bits. Namely, if s1 > s2 the first different bit between the two numbers is 1 in s1 and 0 in s2.

Building on this observation, we can construct a protocol Πord′ to prove that two binary strings, each
representing a vector of n 1-out-of-2 equivocal commitment parameters, are such that one is greater than
the other. Then, given k vectors of commitment parameters, one can prove that X = (x1, . . . ,xk) ∈ Lord,
where |xi| = n for all i ∈ [k], by using Πord′ k − 1 times. We call the resulting protocol proof of parameters
ordering Πord.

1-out-of-2-commitment of [GGHK21]. In [GGHK21] a t-out-of-` equivocal commitment scheme based
on the discrete logarithm assumption is defined. From now on, we call this commitment scheme GGHK.
Here, we briefly describe GGHK for t = 1 and ` = 2. As shown in [GGHK21], this choice of t and ` is what
is used to get a (1, `)-PTR from Σ-protocols with logarithmic communication complexity.

GGHK uses the same SRS of the non-interactive version of the Pedersen commitment scheme. Namely,
the SRS is composed by two generators g0, h in a group G where solving the discrete logarithm is believed to
be hard. We recall that a Pedersen commitment to the message m ∈ G is computed as gm0 h

r for a random
value r ∈ Z|G|. What makes the Pedersen commitment scheme binding is that the sender does not know the
discrete logarithm of g0 with base h. In GGHK, the SRS is used by the sender to compute new generators
g1, g2 so that the sender knows the discrete logarithm (in base h) of at most one out of g1 and g2. To do
that, the sender selects a random trapdoor y1 and derives one of the two generators, say g1, by computing
g1 = hy1 . After having computed g1,the other generator g2 is computed by interpolating g1 and h in the
exponent, which is then evaluated in a concrete point in Z|G|. To be more specific, consider the two points
(0, y0) and (1, y1), the equation for the line crossing these two points is y(x) = y1x− y0x+ y0 for x ∈ Z|G|.
Then g2 = hy(2) is evaluated as hy(2) = g2

1g
−1
0 with g1 = hy1 and g0 = hy0 . By doing so the intercept of such

interpolated line corresponds to y0, the discrete logarithm of h with base g0.
To commit to two messages, the sender uses Pedersen commitment scheme with parameters (g1, h) and

(g2, h), for the first and the second message respectively. To equivocate in the equivocal position, the sender
uses the trapdoor associated to the equivocal position as in the regular Pedersen commitment scheme.
Intuitively, what makes the other position binding is the fact that by knowing the discrete logarithm of g2

(i.e., y2) the sender could use it together with y1 to reconstruct the equation of the line whose intercept is
y0. Having such equation, it would be trivial to compute the intercept y0 (i.e., the discrete logarithm of h),
thus breaking the discrete logarithm assumption. Whether one of the two parameters is trapdoor or not is
perfectly hidden. Indeed, both gi with i ∈ {1, 2} can be recomputed by interpolating in the exponents the
other generator and g0. Whatever the trapdoor position is, g0 and g1 look as two uniformly random group
generators.

Instantiating our Σ-protocol for the commitment of [GGHK21]. We now instantiate Πord for
vectors of commitment parameters of GGHK.

Therefore, it suffices for the sender to prove that he knows the trapdoor of of at least of one of the two
parameters (i.e, to prove that (x,w) ∈ RTb with b ∈ {0, 1}).

To do so, we just need to express Formula 3 in terms of the parameters of GGHK. Given (pa0 , p
a
1),

let RDL(pab , w) be the function evaluating to 1 if w is the discrete logarithm of pab w.r.t. h and 0 oth-
erwise. Given two vectors of n commitment parameters of GGHK x1 = ((p1

0, p
1
1), . . . , (pn0 , p

n
1 )) and x2 =

((q1
0 , q

1
1), . . . , (qn0 , q

n
1 )), and two vectors of corresponding witnesses wp = (w1

p, . . . , w
n
p ) and wq = (w1

q , . . . , w
n
q ),

Formula 3 can be rewritten as follows:
12To make the formula consistent, we assign the index 1 to the first position within the vector and we say that si[0] = 0.
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n∨
i=1

(( i−1∧
j=0

(
((RDL(pj0, w

j
p) ∧RDL(qj0, w

j
q)) ∨ (RDL(pj1, w

j
p) ∧RDL(qj1, w

j
q))
))

∧ (RDL(pi1, w
i
p) ∧RDL(qi0, w

i
q))

)
. (4)

Basically, for each bit of the strings s1 and s2 of Formula 3 such bits are equal if the corresponding
parameters pairs have the same trapdoor position, meaning that either the sender knows the discrete log of
both the first positions of the pairs, or that the same applies for the second position of both parameter pairs.
In this case, a bit of the string si with i ∈ {1, 2} is defined to be 1 if the corresponding parameters pair has
in its first position a group element with a discrete log that is known to the sender, while it is defined to be
to 0 if the corresponding parameters pair has in its second position a group element with a discrete log that
is known to the sender.

On the communication efficiency of our instantiations of Πord. Our of Πord we have shown can be
obtained by composing Σ-protocols of statements of varying complexity. Proving knowledge of a witness for
each single basic instance over a parameter pab can be done by relying on Schnorr-like Σ-protocols. We now
analyze the communication complexity to prove Formula 4 by composing different Σ-protocols for its nested
formulas. The AND clauses inside Formula 4 can be proven by the standard parallel repetition technique.
The OR clauses, can be proven by using [GGHK21]. Πord has communication complexity O(kλn)13. More
details are reported in Sec. 6.

Our communication-efficient (k, `)-PTR. We build our (k, `)-PTR by repeating the construction of
[GGHK21] k times, each time using a different witness, and then we prove that the composition trees of
such k instances are all different. Our new proof can be accomplished via a direct usage of Πord having as
statements the k vectors of commitment parameters of length O(log `) that constitutes the composition trees.
Since such proof has a communication complexity14 of O(kλ log `)), and the communication complexity of k
repetitions of [GGHK21] is O(k(λ log `+CC(Σbase))) the combination of the two gives a (k, `)-PTR from Σ-
protocols, having communication complexityO(k(λ log `+CC(Σbase))+k(λ log `)) = O(k(λ log `+CC(Σbase)).

Application to threshold ring signatures. A natural application of proofs over threshold relations is
ring signatures. Given a set of ` signers, a ring signature is a digital signature that guarantees that a message
was signed by a signer in the set (also called the ring) but at the same time protects the identity of the signer.
There is a direct link between (1, `)-PTRs and ring signatures. For example, as pointed out in [GGHK21]
one can get a ring signature whose size is logarithmic in the size of the ring by making their (1, `)-PTR
non-interactive using a random oracle (see [GGHK21] Page 4 and Sec. 9.3). The ` public keys would be the
statement of the proof, and the composed Σ-protocol would be a proof of knowledge of at least one signing
key (i.e., the witness). Properly using the random oracle makes the signing process non-interactive and ties
the proof to the signed message. Threshold ring signatures are a natural extension of ring signatures. In a
threshold ring signature, k signers cooperate to sign a message while hiding their identity within the larger
group of size `. By using our construction for (k, `)-PTR one can easily get a threshold ring signature.

Let the statement x = (vk1, . . . , vk`) be a tuple containing the signers’ verification keys (vk1, . . . , vk`).
Consider the associated (1, `)-PTR to prove knowledge of at least one signing key ski related to one of the
verification keys (vk1, . . . , vk`), and the (k, `)-PTR to prove knowledge of at least k signing keys related to
k of the ` verification keys. Let Σbase be the base Σ-protocol to prove the knowledge of the signing key ski
related to the verification key vki. Finally, let the aggregator A be a third party who aggregates the work of
all the k signers to create the final signature. A is trusted for anonymity, but not for unforgeability (roughly,

13Now we are explicitly including the security parameter in the analysis of the communication complexity.
14Note that the parameter n previously used corresponds to log ` in this case.
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A knows the identities of the signers, but should not be able to produce a threshold ring signature on its
own).

Let K be a set of indexes indicating the k signers within the ring of size `. Consider a message m to be
signed which is known to all signers and to A. The description of our approach follows.

1. For all i ∈ K, each signer Si computes the first-round message ai of Σbase for statement vki and witness
ski, and sends ai to A.

2. Using the first-round messages for Σbase received in the previous step, A computes the first-round
messages a1,`i = (com, (pj0, p

j
1)j∈[log `])

15 for each of the k underlying (1, `)-PTR of [GGHK21] (cfr.,
App. C) for statement x. Moreover, A computes the first-round message aT of the proof of parameters

ordering Πord with the k tuples of commitment parameters pairs (pj0, p
j
1)j∈[log `] (i.e., one for each a1,`i

computed by A) as statement16.

A sends all the first-round messages of the underlying (1, `)-PTR, (i.e., (a1,`1 , . . . , a1,`k )), together with
Πord’s first-round message aT to each Si.

3. Si computes the challenge c for (k, `)-PTR compiler described in Sec. 6 by hashing the statement

x together with the (k, `)-PTR first-round message a = (a1,`1 , . . . , a1,`k , aT ) and the message m to be
signed (i.e., c = H(x||a||m)). Then, Si computes the third-round message zi of Σbase from its first-round
message ai and the challenge c, and sends zi to A.

4. A computes each third-round message z1,`i of the [GGHK21] compiler from the statement x, ai, c =
H(x||a||m), and the values zi received from each Si. Then, A computes the third-round message zT of
the proof of parameters ordering Πord on the same challenge c and first-round message aT . A publishes
the (k, `)-threshold ring signature σ = (a = (a1,`1 , . . . , a1,`k , aT ), c = H(x||a||m), z = (z1,`1 , . . . , z1,`k , zT ))
of a message m under the signers’ verification keys x = (vk1, . . . , vk`).

Our above construction can be seen as A applying the Fiat-Shamir transform to our (k, `)-PTR by delegating
the computation of the underlying protocol Σbase (to prove knowledge of the signing key ski relative to the
verification key vki) to each signer Si.

Informally, A is unable to forge a signature because of (1) the special soundness of the underlying Σbase

(i.e., each signer Si cannot come up with an accepting transcript (ai, c, zi) without knowing ski), (2) the
special soundness of the non-interactive version of our (k, `)-PTR compiler of Sec. 6 (i.e., A cannot come
up with an accepting transcript without knowing at least k accepting transcripts for Σbase on the challenge
c = H(x||a||m) and statement x, where each of those transcripts is computed from different signing keys),
(3) the ZK property of the underlying non-interactive version of Σbase;

17 (i.e., A cannot learn the signing key
of any signer Si by interacting with Si). Anonymity, instead, is guaranteed by the zero-knowledge property
of the non-interactive version of our (k, `)-PTR.

Extension to threshold-of-threshold ring signatures. We can go beyond threshold ring signatures.
Consider the following scenario as a possible example. An organization is made of `2 different sub-groups,
each of them containing `1 signers. Each sub-group can approve the content of a message if k1 members
agree to sign the message. Then, organization-wide, this message is considered approved if at least k2 of the
`2 sub-groups signed such message. We name such scenario threshold-of-threshold ring signature.

The aggregator A, in order to compute such a threshold-of-threshold ring signature, will compute a
(k2, `2)-PTR with the approach described in the previous paragraph using a (k1, `1)-PTR as the base Σ-
protocol: A will compute the first-round messages of the (k2, `2)-PTR starting from the first-round messages

15In [GGHK21] a1,`i is obtained from recursively composing `/2 instances of a 1-out-of-2 equivocal commitment. Therefore,

a1,`i is of the form (com, (pj0, p
j
1)j∈[log `]), where (pj0, p

j
1)j∈[log `] is a log ` size tuple of pair of commitment parameters.

16A will use, for each ai containing the commitment parameters tuple (pj0, p
j
1)j∈[log `], the corresponding witness W =

(wj)j∈[log `] to generate the first-round message aT of Πord.
17Note that when a Σ-protocol with HVZK is compiled into a non-interactive argument system using the Fiat-Shamir

transform it becomes ZK in the random oracle model.
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of the k2 underlying instances of the (k1, `1)-PTR used as a base Σ-protocol. A, instead of directly commu-
nicating with the signers, will now talk to aggregators A1, . . . , A`2 , where each Ai, i ∈ [`2] is associated to
a sub-group of signers Si1, . . . , S

i
`1

. At least k2 of those Ai for i ∈ {1, . . . , `2} will, in turn, execute the base

Σ-protocol for a (k1, `1)-PTR by interacting with its own subset of signers Si1, . . . , S
i
k1

using the technique
described in the previous paragraph, with the difference that the challenge c now depends on the statement
used by A for the (k2, `2)-PTR. The very same technique can be easily extended to an arbitrary number of
levels.

Considering two levels of aggregators, the size of the threshold-of-threshold ring signature computed by A
is O(k2(λ log `2 +CC(Σk1,`1))) = O(k2(λ log `2 + k1(λ log `1 +CC(Σbase))), where CC(Σk1,`1) is the communi-
cation complexity of the underlying (k1, `1)-PTR computed by each Ai and CC(Σbase) is the communication
complexity of the base Σ-protocol used by each of the k1 signers interacting with each Ai.

2 More on Related Work vs Our Results

Here, we give a more detailed discussion of how our results compare to the related work.

Σ-protocols. The breakthrough work by Cramer et al. [CDS94] devise a composition technique to obtain
(k, `)-PTR from Σ-protocols. This protocol obtains a communication complexity which is linear in `, it
achieves special soundness in the plain model. Inspired by the design principles of [CDS94], a rather recent
line of works proposes new composition techniques to reduce the communication complexity or to obtain
enhanced security guarantees.

Groth and Kohlweiss [GK15] devise a technique that achieves communication complexity which is loga-
rithmic in ` specifically for the discrete-log relation and only for the value k = 1. Soundness holds compu-
tationally. The security is proven in the SRSmodel.

Recently, Attema and Cramer formulated compressed Σ-protocol theory [AC20] by appropriately recast-
ing Bulletproof’s [BCC+16, BBB+18] compression mechanism. Attema, Cramer and Fehr [ACF21] exploit
compressed Σ-protocol theory to construct (k, `)-PTR which has logarithmic communication complexity
both in k and `. Unfortunately, the composition of [ACF21] only applies to the discrete logarithm relation
(or variations of it). Another drawback is that the resulting protocol has a logarithmic number of rounds.
Soundness holds computationally. Security is proven in the shared random string model.

Ciampi et al. [CPS+16] devise a (k, `)-PTR by composing Σ-protocols with the aim of supporting
delayed instances specification. They follow the blueprint of [CDS94] but they deploy a different technique
to allow the prover to cheat on inactive clauses. This technique relies on the notion of k-out-of-` equivocal
commitment, namely a commitment to a vector of ` elements, k of which are binding and ` − k can be
equivocated.

More recently, Goel et al. [GGHK21] crucially exploit the ideas presented in [CPS+16] but with a different
goal, that is reducing communication complexity. The new idea is recycling the same third-round message
across all the instances. By applying their strategy recursively on 1-out-of-2 relations, [GGHK21] achieves
logarithmic communication complexity when k = 1. The protocol enjoys special soundness which holds
computationally. Their results are proven secure in the SRS model. Their composition is generic and applies
to a broad class of Σ-protocols. Goel et al. also propose a technique to generalize their result to arbitrary
k, however their approach falls back to a communication complexity that is linear both in k and in `.

Our improvements. We improve the state of the art in the following dimensions:

• By taking advantage of approach used in [GGHK21], our technique applies to a large family of base
protocols and preserves the honest-verifier zero-knowledge flavour of the base protocols.

• Our technique works for arbitrary value of k providing a communication complexity that is linear in k
and logarithmic in `. This strictly improves on the communication complexity of [GGHK21]. [ACF21]
obtains a communication complexity that is logarithmic both in k and `, but it only applies to the
discrete logarithm relation (or variations of it).

13



Other approaches. Heath and Kolesnikov [HK20] extended the work of Jawureck et al. [JKO13] greatly
optimizing the communication complexity of zero-knowledge proofs based on garbled circuits in the case of
conditional branching. This approach leads to a communication complexity that is proportional to the longest
branch. More recently, [HKP21] extended this result to (k, `)-PTRs retaining the same communication
advantage while optimizing computation efficiency. Mac’n’Cheese by Baum et al. [BMRS21] is an interactive
commit-and-prove zero-knowledge proof system for binary and arithmetic circuits. As commitments it uses
information-theoretic MACs based on vector oblivious linear evaluation (VOLE). For k-out-of-` statements,
the communication complexity is proportional to k times the longest circuit plus an additive term which
is logarithmic in `. Note that Mac’n’Cheese is inherently private coin since the soundness relies on the
verifier keeping the MAC key secret. Therefore, it is not immediately clear whether it can be modified to
support public verifiability. Instead all approaches producing Σ-protocols (like ours) can be turned into non-
interactive publicly verifiable zero-knowledge proofs in the RO model applying the Fiat-Shamir transform.

Finally, one might leverage succinct proof techniques such as STARKs or SNARKs [CHM+20, CFQ19,
GWC19, CFF+21, MBKM19, Set20, BBHR19] to get a communication-efficient (k, `)-PTR. While succinct-
ness could be heavily optimized achieving constant proof sizes, removing the dependency on k and `. On
the other hand, these techniques have several drawbacks such as a huge workload for provers and the use of
strong assumptions and/or problematic trusted setups.

Although the approaches above apply to NP-complete languages, we note that they are not so obviously
efficiently generalizable to arbitrary languages. Instead, our approach is more beneficial to protocol designers.
Indeed, if there is a Σ-protocol for the base relation, a protocol designer can use our solution directly for the
(k, `) case without the need to run a possibly expensive NP-reduction.

Threshold ring signature. Several works construct threshold ring signature from a variety of assump-
tions. Our threshold ring signature achieves shorter signature tags than several known threshold ring signa-
tures schemes [BSS02, YLA+13, OTYO18], other schemes have signature size which is linear in ` and thus
are also outperformed when k << ` [ZZY+17, CHGa19, HS20].

In [ACR21], Attema et al. exploit the (k, `)-PTR of [ACF21] to build a threshold ring signature. [ACR21]
combines the (k, `)-PTR of [ACF21] with BLS signatures [BLS01] to obtain a threshold ring signature whose
size is logarithmic in ` and independent of k. Their scheme requires a shared random string as setup and
pairing groups. A recent work by Munch-Hansen et al. [MOY21] achieves a signature size which is linear in
k and does not depend on `, it also achieves stronger anonymity guarantees than traditional definitions (i.e.,
signers’ anonymity is preserved even within the smaller coalition of the k signers) but it requires a trusted
setup. Another work by Haque et al. [HKSS20] does not require any trusted setup and achieves a signature
size which is linear in k and does not depend on `. However, to avoid forgeries and anonymity attacks, the
keys need to be honestly generated by a trusted party different than the signers. It is interesting to note
that our solution, while being very simple and straightforward, leads to a threshold ring signature scheme
which has a good trade-off between size, assumptions and features:

• The signature size O(k log `) outperforms several previous works.

• When comparing our construction to other works achieving more compact signature tags [HKSS20,
MOY21, ACR21], our construction presents other advantages such as:

(i) It can be instantiated from several Σ-protocols and commitment schemes, giving more flexibility
in terms of used assumptions.

(ii) It does not require pairing groups.

(iii) It supports adversarially generated public keys.

The above advantages can be crucial in some contexts. For instance when considering Bitcoin, the
requirement of a common hash function is for free and the random oracle model is well accepted. Moreover,
current signatures schemes supported in Bitcoin do not use pairings. In some sense an update of Bitcoin
that would allow to write scripts able to verify our threshold ring signatures would be much milder and less
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traumatic (and thus easier to be accepted by the community) than what is required by other threshold ring
signature schemes.

3 Preliminaries

3.1 Notations

We use N to denote the set of all natural numbers and we let PPT stand for probabilistic polynomial time.
For a probabilistic algorithm A, A(x) denotes the probability distribution of the output of A when run with
x as input. We use A(x; r) instead to denote the output of A when run on input x and coin tosses r. We
denote with λ ∈ N the security parameter and with poly(·) a positive polynomial poly. Every algorithm take
in input the security parameter 1λ in unary. When an algorithm takes more than one input, 1λ is omitted.
We say that a function ν : N→ R is negligible if every positive polynomial poly(·) and all sufficiently large
λ it holds that ν(λ) ≤ 1

poly(λ) .

A polynomial-time relation R is a relation for which membership of (x,w) to R can be decided in time
polynomial in |x|. If (x,w) ∈ R then we say that w is a witness for the instance x. A polynomial-time relation
R is naturally associated with the NP language LR defined as LR = {x|∃w : (x,w) ∈ R}. Similarly, an NP
language is naturally associated with a polynomial-time relation.

In this paper we consider the notion of threshold relation. Let R1, . . . ,Rn be polynomial-time relations.
A threshold relation with threshold k is a polynomial-time relation as well, with the following form

Rk,` ={(x1, . . . , xn), (w1, d1) . . . , (wk, dk)) :

1 ≤ d1 < · · · < dk ≤ n ∧ (xdi , wi) ∈ Ri, for i = 1, . . . , k}.

Roughly, a threshold relation with threshold k contains a set of n NP statements x1, . . . , xn, and a set of
witnesses w1, . . . , wk with k ≤ n, in which each wi represents a valid witness for one and only one statement
xdi ∈ LRdi with di ∈ {1, . . . , n}.

A distribution ensemble {X(a)}a∈{0,1}∗ is an infinite sequence of probability distributions, where a dis-
tribution X(a) is associated with each value of a. We say that two distribution ensembles {X(n)}n∈N and
{Y (n)}n∈N are computationally indistinguishable if for every PPT distinguisher D, there exists a negligible
function ν such that for all n ∈ N,

Prob [ D(X(n), n) = 1 ]− Prob [ D(Y (n), n) = 1 ] ≤ ν(n).

We say that {X(n)}n∈N and {Y (n)}n∈N are statistically indistinguishable if the above holds for all D.
We can also use ≈ to indicate that two distributions are identically distributed.

We denote by [n] for an n ∈ N the set of numbers {1, . . . , n}. We refer to vectors as v and to indicate the
i-th position of v, we write v[i], we do the same for binary strings. When using← we mean that the variable
on the left side is assigned with the output value of the algorithm on the right side. With ←$ , we indicate
that the variable on the left side is assigned a values sampled randomly according to the distribution on the
right side.

3.2 Σ-Protocols

We consider a 3-round public-coin protocol Π for an NP language L with a poly-time relation RL. Π =
(P0,P1,V) is run by a prover running auxiliary algorithms P0,P1 and a verifier running an auxiliary algorithm
V. The prover and the verifier receive common input x and the security parameter 1λ in unary. The prover
receives as an additional private input a witness w for x. Prover and verifier use the auxiliary algorithms
P0,P1,V in the following way:

1. The prover runs P0 on common input x, private input w, randomness R, and outputs a message a.
The prover sends a to the verifier;

15



2. The verifier samples a random challenge c←$ {0, 1}λ and sends c to the prover;

3. The prover runs P1 on common input x, private input w, first-round message a, randomness R, and
challenge c, and outputs the third-round message z, which is then sent to the verifier;

4. The verifier outputs 1 if V(x, a, c, z) = 1, and rejects otherwise.

The transcript (a, c, z) for the protocol Π = (P0,P1,V), and common statement x is called accepting if
V(x, a, c, z) = 1.

Definition 1. A 3-round public-coin protocol Π = (P0,P1,V), is a Σ-protocol for an NP language L with a
poly-time relation RL iff the following properties are satisfied

Completeness: For all x ∈ L and w such that (x,w) ∈ RL it holds that:

Prob

 V(x, a, c, z) = 1

∣∣∣∣∣∣
R←$ {0, 1}λ; c←$ {0, 1}λ;

a← P0(x,w;R);
z ← P1(x,w, a, c;R)

 = 1.

Special Soundness: ∃ PPT Extract, such that on input x and two accepting transcripts (a, c0, z0) and
(a, c1, z1) for x, where c0 6= c1, it holds that

Prob [ (x,w) ∈ RL|w ← Extract(x, a, c0, c1, z0, z1) ] = 1.

Special Honest-Verifier Zero-Knowledge (SHVZK): There exists a PPT simulator S that, on input
an instance x ∈ L and challenge c, outputs (a, z) such that (a, c, z) is an accepting transcript for x.
Moreover, the distribution of the output of S on input (x, c) is computationally/statistically/perfectly
indistinguishable from the distribution obtained when the verifier sends c as challenge and the prover
runs on common input x and any private input w such that (x,w) ∈ RL.

We also define the weaker notion of computational special soundness. Indeed, in [GGHK21], the first
message of the compiled Σ-protocol exploits the compression power of a collision-resistant hash function,
thus the overall composition cannot achieve special soundness when instantiated with GGHK.

Definition 2. A 3-round public-coin protocol Π = (P0,P1,V) is a computational Σ-protocol for an NP
language L with a poly-time relation RL if and only if it is complete, (computational/statistical/perfect)
special honest-verifier zero knowledge, and computational special sound. Computational special soundness is
specified below.

Computational Special Soundness: ∃ PPT Extract s.t. ∀ PPT P∗ ∃ a negligible function ν(·) such that
∀x ∈ L it holds that

Prob
[
ExpExtP∗,Extract(x) = 1

]
≤ ν(|x|).

ExpExtP∗,Extract(x)

1. (a, c0, c1, z0, z1)← P∗(x).

2. If c0 6= c1, or V(x, a, c0, z0) = 0, or V(x, a, c1, z1) = 0 return 0.

3. w ← Extract(x, a, c0, c1, z0, z1).

4. Return 1 if (x,w) /∈ RL. Otherwise, return 0.

From now on, we will refer both to Σ-protocols and computational Σ-protocols simply as Σ-protocols.
We will instead clearly state the considered flavour whenever it is useful for the discussion.
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3.3 Stackable Σ-protocols

Similarly to [GGHK21], we define stackable Σ-protocols below.

Definition 3 (Computational/Statistical EHVZK). Let Σ = (P0,P1,V), be a Σ-protocol for an NP language
L. Σ is extended honest-verifier zero knowledge (EHVZK) if there exists a PPT algorithm SEHVZK such that

for all PPT/unbounded D, and c ∈ {0, 1}λ, there exists an efficiently samplable distribution D
(z)
x,c and a

negligible function ν(·) such that for all x ∈ L∣∣∣Prob
[
ExpEHVZK(P0,P1),D(c) = 1

]
− Prob

[
ExpEHVZKSEHVZK,D(c) = 1

] ∣∣∣ ≤ ν(|x|).

We say instead that a Σ-protocol is perfect EHVZK, if

Prob
[
ExpEHVZK(P0,P1),D(c) = 1

]
− Prob

[
ExpEHVZKSEHVZK,D(c) = 1

]
= 0,

and there is no constraint on the running time of D. The experiment ExpEHVZK for EHVZK follows.

ExpEHVZKP′,D(c)

1. (x,w)← D(c).

2. If (x,w) 6∈ RL, return 0.

3. If P′ = SEHVZK, sample z←$ D
(z)
x,c and compute a← SEHVZK(x, c, z).

4. Otherwise, sample R←$ {0, 1}λ, compute a← P0(x,w;R) and z ← P1(x,w, a, c;R).

5. Return D(x,w, a, c, z).

Definition 4 (Σ-protocol with recyclable third messages). Let Σ = (P0,P1,V) be a Σ-protocol for an NP
language L, Σ has recyclable third messages if for each c ∈ {0, 1}λ, there exists an efficiently samplable

distribution D
(z)
c , such that for all (x,w) ∈ RL, it holds that D

(z)
c ≈ {z|R←$ {0, 1}λ; a ← P0(x,w;R); z ←

P1(x,w, c;R)}.

Definition 5 (Stackable Σ-protocol). We say that a Σ-protocol Σ = (P0,P1,V), is stackable, if it is a
EHVZK Σ-protocol and has recyclable third messages.

4 1-out-of-2 Equivocal Commitment Schemes

We now define the notion of 1-out-of-2 equivocal commitment scheme. The sender commits to a pair of
messages (m0,m1) with m0,m1 ∈ {0, 1}λ, where λ ∈ N is the security parameter. A 1-out-of-2 equivocal
commitment scheme CS = (Setup,Gen,BindCom,EquivCom,Equiv,RT ) consists of five PPT algorithms and
a polynomial-time relation RT . The algorithm Setup generates a common reference string pp. We denote
by Ypp the space of well-formed commitment parameters w.r.t. pp and require that membership in Ypp can
be checked efficiently. The above algorithms work as follows:

• pp ← Setup(1λ; r): on input the security parameter, and randomness r, generates public parameters
pp.

• (p0, p1, td)← Gen(pp, β; r): on input public parameters pp, binding position β ∈ {0, 1}, and randomness
r, returns the commitment parameters (p0, p1) ∈ Ypp and the trapdoor td for parameter p1−β such
that (p1−β , td) belongs to RT 18.

18The statement for RT may also depend from pp. We will omit this dependence to simplify the notation.
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• com← BindCom(pp, p0, p1,m0,m1; r): on input public parameters pp, commitment parameters p0, p1,
messages m0, m1, and randomness r outputs a commitment com.

• (com, aux)← EquivCom(pp, β,m, p0, p1, td; r): on input public parameters pp, binding position β, mes-
sage of the binding position m, commitment parameters p0, p1, trapdoor td, and randomness r returns
a commitment com and some auxiliary information aux.

• r ← Equiv(pp, β,m0,m1, p0, p1, td, aux): on input public parameters pp, binding position β, messages
m0, m1, commitment parameters p0, p1, trapdoor td, and auxiliary information aux, deterministically
returns an equivocation randomness r.

In the following, we assume that pp was already generated by a trusted third party using the algorithm
Setup. Furthermore, we will omit the randomness from the algorithms, except when it is relevant. A sender
and a receiver interact using the commitment scheme as follows.

Commit Phase: The sender, on private input m and binding position β, computes (p0, p1, td) ←
Gen(pp, β), (com, aux)← EquivCom(pp, β,m, p0, p1, td). The sender sends (com, p0, p1) to the receiver.

Reveal Phase: The sender, on input m∗, computes r ← Equiv(pp, β,m0,m1, p0, p1, td, aux) where mβ =
m and m1−β = m∗, and sends (r,m0,m1) to the receiver. The receiver computes com′ ←
BindCom(pp, p0, p1,m0,m1; r) and accepts if com′ = com and (p0, p1) ∈ Ypp, rejects otherwise.

Definition 6 (1-out-of-2 Equivocal Commitment Scheme). The protocol CS described above is a 1-out-of-2
equivocal commitment scheme if and only if the following properties are satisfied:

Partial Equivocation: For all λ ∈ N, pp← Setup(1λ), β ∈ {0, 1}, (p0, p1) ∈ Ypp, (m0,m1) ∈ {0, 1}2λ, for
all td such that (p1−β , td) ∈ RT the following holds:

Prob

[
BindCom(pp, p0, p1,
m0,m1; r) = com

∣∣∣∣ (com, aux)← EquivCom(pp, β,mβ , p0, p1, td);
r ← Equiv(pp, β,m0,m1, p0, p1, td, aux).

]
= 1.

Computational Fixed Equivocation: Given the experiment ExpFixEquiv below, for every non-uniform
PPT receiver A, there exists a negligible function ν(·) such that for any λ ∈ N: Prob [ ExpFixEquivA(λ) = 1 ] ≤
ν(λ).

ExpFixEquivA(λ)

1. pp← Setup(1λ).

2. (p0, p1, r
1, r2, r3, r4,m1

0,m
2
0,m

1
1,m

2
1,m

3
0,m

4
0,m

3
1,m

4
1)← A(pp).

3. Return 1 if ∃β ∈ {0, 1} such that

(BindCom(pp, p0, p1,m
1
0,m

1
1; r1) = BindCom(pp, p0, p1,m

2
0,m

2
1; r2) ∧(

BindCom(pp, p0, p1,m
3
0,m

3
1; r3) = BindCom(pp, p0, p1,m

4
0,m

4
1; r4)) ∧

(m1
1−β 6= m2

1−β) ∧ (m3
β 6= m4

β) ∧ ((p0, p1) ∈ Ypp).

Return 0 otherwise.

Moreover, the protocol achieves perfect fixed equivocation if for any unbounded A it holds that
Prob [ ExpFixEquivA(λ) = 1 ] ≤ ν(λ) = 0.
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Computational Position Hiding: Given the experiment ExpHid below, for every non-uniform PPT A,
there exists a negligible function ν(·) such that for any λ ∈ N: Prob [ ExpHidA(λ) = 1 ] ≤ 1

2 + ν(λ).

ExpHidA(λ)

1. pp← Setup(1λ).

2. Sample β←$ {0, 1} and compute (p0, p1, td)← Gen(pp, β).

3. β′ ← A(pp, p0, p1).

4. Return 1 if β′ = β and 0 otherwise.

Moreover, if A is unbounded and ν(λ) = 0 we say that the scheme is perfect position hiding.

Computational Trapdoorness: Given the experiment ExpTrap, for every non-uniform PPT receiver A,
there exists a negligible function ν(·) such that for any λ ∈ N : Prob [ ExpTrapA(ρ, λ) = 1 ] ≤ 1

2 + ν(λ).

ExpTrapA(λ)

1. pp← Setup(1λ).

2. (m0,m1, p0, p1, td, β)← A(pp).

3. If (p0, p1) 6∈ Ypp or (p1−β , td) 6∈ RT abort the experiment.

4. Sample b←$ {0, 1}. If b = 0, set (com, aux) ← EquivCom(pp, β,mβ , p0, p1, td) and set
r ← Equiv(pp, β,m0,m1, p0, p1, td, aux). If b = 1, sample r←$ D and set com ←
BindCom(pp, p0, p1,m0,m1; r).

5. b′ ← A(pp,m0,m1, p0, p1, td, β, com, r).

6. Return 1 if b = b′, return 0 otherwise.

Moreover, if A is unbounded and ν(λ) = 0 we say that the protocol achieves perfect trapdoorness.

In App. B we show the instantiation of the commitment scheme GGHK [GGHK21] according to the
above syntax. Our definition slightly differs from the one formulated in [GGHK21]. In particular, our fixed
equivocation property implies the partial binding of [GGHK21]. We need this slightly stronger property to
prove the soundness of our (k, `)-PTR. We point out that natural instantiations such as GGHK also enjoy the
fixed equivocation property. The remaining properties are just a restatement of the minimal requirements
for a 1-out-of-2 commitment scheme in [GGHK21]. See App. C for more details.

5 The (1, `)-Proof over Threshold Relations of [GGHK21]

In [GGHK21], the authors directly present the (1, `)-PTR system by leveraging a 1-out-of-` equivocal com-
mitment. Then they argue on how the complexity of the protocol can be reduced recursively composing
(1, 2)-PTRs obtained with their compiler. Therefore, for the sake of simplicity, we directly focus on the
(1, 2)-PTR.

To describe the (1, 2)-PTR system we use the 1-out-of-2 equivocal commitment scheme as defined in
Sec. 4.

Let Π′ = (P′0,P
′
1,V
′) be a stackable Σ-protocol for language L and let SEHVZKbase be the simulator for Π′.

Let x = (x0, x1) be the public input. Let w = (wα, α), with α ∈ {0, 1}, so that (xα, wα) ∈ RL be the prover’s
private input. [GGHK21] proposes a compiler that generates a stackable Σ-protocol Π = (P0,P1,V), starting
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from Π′ for proving the relation R = {(x = (x0, x1), wα)|(x0, wα) ∈ RL ∨ (x1, wα) ∈ RL}. We report the
compiler in Fig. 2. In the compiled protocol Π, we set the sender S of the 1-out-of-2 commitment scheme to
be the prover (P0,P1), while the verifier V is the receiver R.

Given the compiler in Fig. 2 it is straightforward to extend this protocol to a (1, `)-PTR using recursion.
Since in [GGHK21] the proof of computational special soundness and EHVZK is done w.r.t. a non-interactive
commitment scheme, we report in App. C a sketch of the proof using an interactive commitment scheme.

The (1, `)-PTR of [GGHK21] is a stackable Σ-protocol with computational special soundness. If the
employed 1-out-of-2 equivocal commitment scheme satisfies perfect trapdorness and perfect position hiding,
then the EHVZK flavour (i.e., perfect, statistical or computational) of the base Σ-protocol is preserved.

6 Our Compact (k, `)-PTR from Stackable Σ-Protocols

6.1 Proof of Parameters Ordering for DL Parameters

We now introduce Πord that can be used to prove that there is a strict total ordering among vectors of
1-out-of-2 equivocal commitment parameters of GGHK. Given k vectors p1, . . . ,pk of n pairs of parameters
of a 1-out-of-2 equivocal commitment and k vectors w1, . . . ,wk of witnesses, the relation proved by Πord,
can be defined starting from Formula 3. The first step is to rewrite Formula 3, obtaining a formula Rord′ for
Πord′ as follows. Given two vectors of parameters p = ((p1

0, p
1
1), . . . , (pn0 , p

n
1 )) and q = ((q1

0 , q
1
1), . . . , (qn0 , q

n
1 )),

two vectors of parameters trapdoors wp = (w1
p, . . . , w

n
p ) and wq = (w1

q , . . . , w
n
q ), Rord′((p,q), (wp,wq)) is19

n∨
i=1

(( i−1∧
j=0

(
((RDL(pj0, w

j
p) ∧RDL(qj0, w

j
q)) ∨ (RDL(pj1, w

j
p) ∧RDL(qj1, w

j
q))
))

∧ (RDL(pi1, w
i
p) ∧RDL(qi0, w

i
q))

)
. (5)

We define the relation for Πord as follows:

Rord((p1, . . . ,pk), (w1, . . . ,wk)) =

k−1∧
i=1

Rord′((pi,pi+1), (wi,wi+1)). (6)

We point out that the first part of formula Rord can be expressed as a composition of subformulas. In
turn, each of those subformulas can be described in the same way. We describe the subformulas Ri(x,w) as
follows:

Rord′((p,q), (wp,wq)) =

n∨
i=1

(
Ri1((p,q), (wp,wq)) ∧R3((pi1, q

i
0), (wpi , w

q
i ))
)
.

Ri1((p,q), (wp,wq)) =

i−1∧
j=0

(
R2((pj0, p

j
1, q

j
0, q

j
1), (wjp, w

j
q)) ∧R3((pi0, q

i
1), (wip, w

i
q))
)
.

R2((p0, p1, q0, q1), (wp, wq)) =
(
R3((p0, q0), (wp, wq)) ∨R3((p1, q1), (wp, wq))

)
.

R3((p, q), (wp, wq)) =
(
RDL(p, wp) ∧RDL(q, wq)

)
.

We point out that that all the relations described above can be realized with a stackable Σ-protocol.
In particular, we can prove R3 via the AND composition of two Σ-protocols for RDL (i.e., with parallel

19In the following formula the AND ranging from j = 0 to j = i− 1 is evaluated as true for j = 0. Indeed, according to the
notation used in this paper, there are no parameters pair in the position 0 of the vector.
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Let Π′ = (P′0,P
′
1,V
′) be a stackable Σ-protocol for relation RL and CS be a 1-out-of-2 equivocal

commitment scheme, the following compiler produces a stackable Σ-protocol Π1,2 = (P1,2
0 ,P1,2

1 ,V1,2) for
relation ROR = {((x0, x1), w)|(x0, w) ∈ RL ∨ (x1, w) ∈ RL}. Let pp be public parameters generated by
a trusted party running Setup.

First round: The prover, on input (x, (w, β), randP), runs P1,2
0 (x,w, β; randP) as follows:

• Parse randP = (randβ ||rand0||rand1);

• Set vβ ← P′0(xβ , wβ ; randβ);

• Run Gen(pp, β; rand0) to obtain (p0, p1, td);

• Run EquivCom(pp, β, vβ , p0, p1, td; rand1) to obtain (com, aux);

• Output (σ1, td) where σ1 = (com, p0, p1).

Finally, the prover sends a = σ1 to the verifier.

Second round: The verifier samples a challenge c←$ {0, 1}λ and sends c to the prover.

Third round: The prover runs P1,2
1 (x, (w, β), a, vβ , c; randP) as follows:

• Parse randP = (randβ ||rand0||rand1) and a = (com, p0, p1);

• Compute z∗ ← P′1(xβ , wβ , vβ , c; rand
β);

• Set v∗1−β ← SEHVZKbase (x1−β , c, z
∗);

• Set v∗β = vβ ;

• Run Equiv(pp, β, v∗0 , v
∗
1 , p0, p1, td, aux) (where aux is computed with rand1) and receive r;

• Output z = (z∗, r, p0, p1).

Finally, the prover sends z to V1,2.

Verification: V1,2, in input (x, a, c, z), does as follows:

• Parse a = (com, p0, p1) and z = (z∗, r, p′0, p
′
1);

• If (p0, p1) 6= (p′0, p
′
1) return 0, otherwise continue to next step;

• If (p0, p1) 6∈ Ypp return 0, otherwise continue to next step;

• Set vi ← SEHVZKbase (xi, c, z
∗), for i ∈ {0, 1};

• Compute com′ ← BindCom(p0, p1, v0, v1, c; r). If com′ = com, return V′(x0, v0, c, z
∗) ∧

V′(x1, v1, c, z
∗), otherwise output 0.

Figure 2: (1, 2)-PTR of [GGHK21] from stackable Σ-protocols.
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repetition). Given the composed Σ-protocol ΠR3 for proving R3, we can apply, in turn, an OR composition
(e.g. with [GGHK21]) of Σ-protocols for R3 in order to prove R2. Then, the protocol for R1 can be obtained
by composing Σ-protocols for R2 and R3. The protocol for Rord′ can be obtained by composing (in OR)
n Σ-protocols for R1. Finally, the Σ-protocol Πord for Rord can be realized by composing (in AND) k
Σ-protocols for Rord′ . We remark that R2 is evaluated only n− 1 times since when j = 0 and R2 is satisfied
since in this case there are no parameters pairs to check.

We note that this instantiation is a perfect EHVZK computational stackable Σ-protocols.

On the communication complexity of Πord. The communication complexity of the protocol to prove
RDL is O(λ). The complexity of protocol ΠR3 realizing the AND composition of two protocols for RDL is
still O(λ) when using parallel repetition. The same reasoning applies to the OR composition of two instances
of ΠR3

with [GGHK21]. Now, to realize a proof ΠR1
for R1, parallel repetition shall be applied i times to

the AND of the two Σ-protocols ΠR2
and ΠR3

. The communication complexity of ΠR1
is O(nλ). Rord′ can

be proved by composing in OR n instances of the Σ-protocol ΠR1 . By using [GGHK21], the protocol Πord′

proving Rord′ achieves communication complexity O(nλ+ λ log n) = O(nλ). Finally, Πord can be obtained
by repeating Πord′ k − 1 times in parallel, obtaining a communication complexity of O((k − 1)nλ).

6.2 Our (k, `)-Proof over Threshold Relations

We now describe our communication-efficient (k, `)-PTR (cfr., Fig. 3) starting from the compiler of [GGHK21]
for (1, `)-PTR, which is obtained by recursively composing ` instances of the (1, 2)-PTR described in Sec. 5,
and our communication-efficient Σ-protocol described in the previous section for proving a strict total or-
dering relation among vectors of commitment parameters. Notice that Πord is defined over ordered vectors
of pairs of commitment parameters. Each (1, `)-PTR Πi

1,`, for i ∈ [k], induces a vector vi of pairs of com-

mitment parameters. Informally, vi, for i ∈ [k], represents the position in which the prover of Πi
1,` holds the

witness. While running Πord, the prover of the (k, `)-PTR must use (v1, . . . ,vk) already sorted according
to the positions of the witnesses used in the k Π1,` executions. The prover has all this information. There-
fore, the prover would just need to sort the k underlying Π1,` executions according to such indexes when
interacting with the verifier.

Let (P1,`
0 ,P1,`

1 ) be the prover algorithms of (1, `)-PTR from [GGHK21]. W.l.o.g., we also assume that the

algorithm P1,`
0 outputs, together with the first-round message a to be sent to V1,`, the tuple of commitment

parameters ((p1
0, p

1
1), . . . , (plog `

0 , plog `
1 )) and the related witnesses (td1, . . . , tdlog `).

Consider the relation Rk,` = {((x1, . . . , x`), ((w1, α1), . . . , (wk, αk)))|1 ≤ α1 < . . . < αk ≤ ` ∧ ∀ j ∈ [k] :
(xαj , wj) ∈ RL}.

Theorem 1. Let Π1,` be the stackable Σ-protocol of [GGHK21], and let Πord be the stackable Σ-protocol of
Sec. 6.1. The protocol Πk,` = (Pk,`,Vk,`) described in Fig. 3 is a stackable Σ-protocol for relation Rk,` with
computational special soundness. Furthermore, Πk,` preserves the EHVZK flavour of the underlying Π1,`.

We remark that, since the EHVZK flavour of our Πord instantiation is perfect, Πord does not affect the
EHVZK flavour of Πk,`. We will go through the proof by proving lemmas for completeness, computational
special soundness, and EHVZK.

Lemma 1 (Completeness). Πk,` is complete.

Proof. It follows from the completeness of the underlying protocols.

Before proving that Πk,` is computational special sound we will first make some observations and introduce
an additional lemma that we will use later on in the actual proof.

From now on, we consider the following notion of composition tree T for an accepting transcript of Π1,`.
Given an accepting transcript (a, c, z) of Π1,`, for an instance (x1, . . . , x`), where a contains a 1-out-of-2
equivocal commitment to values aleft and aright, we label the nodes of T as follows. Every node of T is
inductively labeled with an instance and an accepting transcript for that instance:
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In our (k, `)-PTR Πk,` = (Pk,`
0 ,Pk,`

1 ,Vk,`), the prover takes as input a tuple of statements x = (x1, . . . , x`)
and k witnesses w = ((w1, α1), . . . , (wk, αk)) in which αj ∈ [`] is the position of the j-th witness. Πk,` uses

the (1, `)-PTR Π1,` = (P1,`
0 ,P1,`

1 ,V1,`), and the proof of parameters ordering Πord = (Pord0 ,Pord1 ,Vord).

First Round: The prover invokes Pk,`
0 that, on input (x,w; rand) computes a as follows:

1. Parse rand as randP1
|| . . . ||randPk ||randord;

2. For all j ∈ [k]: Run (aj ,pj , tdj) ← P1,`
0 (x, (wj , αj); randPj ), where pj =

((p
(1,j)
0 , p

(1,j)
1 ), . . . , (p

(log `,j)
0 , p

(log `,j)
1 )) and tdj = (td(1,j), . . . , td(log `,j));

3. Generate aord ← Pord0 ((pj)j∈[k], (tdj)j∈[k]; randord);

The prover sends a = (a1, . . . , ak, aord,p1, . . . ,pk) to the verifier.

Second Round: The verifier samples c ∈ {0, 1}λ and sends c to the prover.

Third Round: The prover invokes Pk,`
1 that computes z as follows: For each j ∈ [k] run zj ←

P1,`
1 (x, (wj , αj), c; randPj ) and zord ← Pord1 ((pj)j∈[k], (tdj)j∈[k], c; randord);

Then, the prover sends z = (z1, . . . , zk, zord) to the verifier.

Verification: The verifier invokes Vk,` that, on input (x, a = (a1, . . . , ak, aord,p1, . . . ,pk), c, z =
(z1, . . . , zk, zord)), returns a bit b as follows:

1. For i ∈ [k] and j ∈ [log `] check that (p
(i,j)
0 , p

(i,j)
1 ) ∈ Ypp, where the pairs (p

(i,j)
0 , p

(i,j)
1 ) are

taken from zi;

2. Check that pi = (p
(i,j)
0 , p

(i,j)
1 )j∈[log `];

3. For all i ∈ [k] check that V1,`(x, ai, c, zi) = 1;

4. Check that Vord((pj)j∈[k], aord, c, zord) = 1;

5. If all the previous checks are successful, output 1. Otherwise, output 0.

Figure 3: Our communication-efficient (k, `)-PTR from stackable Σ-protocols.
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• The root is labeled with Σroot = ((x1, . . . , x`), a, c, z).

• Given a node m at level q, with q ∈ [log `], labeled with Σm = ((xi, . . . , xj), am, c, zm =
(z̃m, rm, (p

q
0, p

q
1))), for 1 ≤ i < j ≤ `, the left child node of m is at level q + 1 and is labeled with

Σleft = ((xi, . . . , x(j+i−1)/2), aleft, c, z̃m), and the right child node is at level q + 1 and is labeled with
Σright = ((x((j+i+1)/2)+1, . . . , xj), aright, c, z̃m)20, where aleft is the first-round message of the transcript
for statement (xi, . . . , x(j+i−1)/2) and aright is the first-round message of the transcript for statement
(x((j+i+1)/2)+1, . . . , xj).

Moreover, for each node m at level q in T labeled with Σm = ((xi, . . . , xj), am, c, zm = (z̃m, rm, (p
q
0, p

q
1))),

the edge going from m to its left child is labeled with pq0 and the edge from m to its right child is labeled
with pq1. We say that the edges from m to their children are edges at level q.

Let (a, c, z) be an accepting transcript for Π1,`, we notice that p = ((p1
0, p

1
1), . . . , (plog `

0 , plog `
1 )) contained

in z represents the labeling of the edges of the composition tree T for (a, c, z). Indeed, each node m in level
q, for q ∈ [log `], has the edge to the left child labeled with pq0 and the edge to the right child labeled with
pq1. We denote with T p the composition tree with edge labeling defined by p. An example of a composition
tree is illustrated in Fig. 1.

The extractor of Π1,` in terms of composition trees. Let us now review how ExtractΠ1,`
, the extractor

of Π1,` proposed in [GGHK21], works in terms of composition trees. ExtractΠ1,`
takes in input two composition

trees whose roots have accepting transcripts with the same first-round massage and different challenges. Due
to stackability, we can look at every node of a composition tree as representing the transcript for the Σ-
protocol for an OR relation on a subset of all the ` involved statements. The root of the tree Σroot represents
the transcript for the Σ-protocol for the whole relation R1,`. For each node with statements (xi, . . . , xj), its
left child Σleft and right child Σright represent the Σ-protocol transcripts for a relation R1,(j−i+1)/2 on the first
and second half of the subset of instances respectively. It follows that the leaves represent the Σ-protocols
transcripts for the individual instances xi with i ∈ [`]. ExtractΠ1,`

is a recursive composition of the extractor
ExtractΠ1,2 of the underlying Π1,2 (see App. C for details).

Consider the following two accepting transcripts Σ1
root and Σ2

root (with associated composition trees T 1 and
T 2) having the same first-round message aroot = (com, p0, p1), c1 6= c2, z1 = (z̃1, r, p0, p1), z2 = (z̃2, r, p0, p1).
Given these accepting transcripts, it is possible to compute transcripts for Σleft and Σright as follows: a1

left ←
SEHVZKleft (xleft, c

1, z̃1), a1
right ← SEHVZKright (xright, c

1, z̃1), a2
left ← SEHVZKleft (xleft, c

2, z̃2), a2
right ← SEHVZKright (xright, c

2, z̃2),

where xleft = (x1, . . . , x`/2) and xright = (x`/2+1, . . . , x`). Therefore, whenever a1
left = a2

left or a1
right = a2

right it

is possible to call again ExtractΠ1,2 on the two composition sub-trees of T 1 and T 2 rooted at the respective
children nodes that have the same-first round messages (i.e., either the left or the right children nodes). For
each pair of nodes in T 1 and T 2 having the same first-round message, looking again at the children nodes,
either a1

left is equal to a2
left or a1

right is equal to a2
right with overwhelming probability, otherwise it is possible

to break the computational special soundness of Π1,2 and thus the computational special soundness of Π1,`

(see App. C for details). Therefore, the latter leads to at least one extracted witness for an instance xj with
j ∈ [`]. In general, up to ` witnesses could be extracted.

Trapdoor equivalence class. We now introduce the concept of trapdoor equivalence class. Informally, a
trapdoor equivalence class identifies all vectors of trapdoors having the same trapdoor (and non-trapdoor)
position for all parameters pairs.

Definition 7 (Trapdoor Equivalence Class). Let p = ((p1
0, p

1
1), . . . , (pn0 , p

n
1 )) be a vector of parameters of a

1-out-of-2 equivocal commitment scheme (see Def. 6), and let RT be its associated poly-time relation. Let
td = (td1, . . . , tdn) be a vector of trapdoors such that for every i ∈ [n], there exists β ∈ {0, 1} such that
RT (piβ , tdi) = 1. The trapdoor equivalence class [td]RTp is the set containing all vectors td′ = (td′1, . . . , td

′
n)

in which for every i ∈ [n], and β ∈ {0, 1}, RT (piβ , tdi) = RT (piβ , td
′
i).

20We recall that z̃m contains the commitment parameters used to generate the first-round message of the children of node
m. Therefore, all the children of node m use the same commitment parameters pair.
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We now define the notion of valid trapdoor equivalence class. Informally, a trapdoor equivalence class
is said to be valid w.r.t. two composition trees with the same edge labels if there is no level in such trees
where a trapdoor is related to a parameter (e.g., in the first position) while an equivocation is performed in
the position of the other parameter (e.g., the second position).

Definition 8 (Valid Trapdoor Equivalence Classes). Let p = ((p1
0, p

1
1), . . . , (plog `

0 , plog `
1 )) be a vector of

parameters of a 1-out-of-2 equivocal commitment scheme (see Def. 6) with associated poly-time relation
RT . Let (a, c, z) and (a, c′, z′), with c 6= c′, be two accepting transcripts of Π1,` for the same instance
x = (x1, . . . , x`), and T p and T ′p be the composition trees associated with those accepting transcripts. Let
us take (td1, . . . , tdlog `) ∈ [td]RTp . A trapdoor equivalence class [td]RTp is valid w.r.t. T p and T ′p if, for
every level i ∈ [log `] (of both T p and T ′p), there does not exist a node m at level i in which

((RT (pi0, tdi) = 1) ∧ (a
(i,m)
right 6= a′

(i,m)
right )) ∨ ((RT (pi1, tdi) = 1) ∧ (a

(i,m)
left 6= a′

(i,m)
left ))

where a
(i,m)
left (resp. a

(i,m)
right ) is the first-round message associated to the left (resp. right) child of node m

which is at level i of T p. The same holds w.r.t a′
(i,m)
left , a′

(i,m)
right , and T ′p.

Lemma 2. Let (a, c, z) and (a, c′, z′) be two transcripts for Π1,` for the same statement (x1, . . . , x`) and
c 6= c′. Let T p and T ′p be the two composition trees associated with (a, c, z) and (a, c′, z′) respectively. Let
CS be the 1-out-of-2 equivocal commitment scheme with associated relation RT used in Π1,`. If ExtractΠ1,`

extracts s different witnesses, then the number of valid trapdoor equivalence classes [td]RTp w.r.t. T p and
T ′p is upper-bounded by s.

Proof. Let i be a level of T p and T ′p and t be the number of valid trapdoor equivalence classes [td]RTp (see

Def. 8). Let us call tdj = (tdj1, . . . , td
j
log `) the representative of the j-th valid trapdoor equivalence class

[tdj ]RTp for j ∈ [t]. We define Li, Ei and si as follows:

• Li =
⌈∑

j∈[t](RT (pi0,td
j
i ))

t

⌉
+
⌈∑

j∈[t](RT (pi1,td
j
i ))

t

⌉
. Li can either be 1 or 2. Li is 1 if, at level i, either

RT (pi0, td
j
i ) = 1 and RT (pi1, td

k
i ) = 0 or RT (pi0, td

k
i ) = 0 and RT (pi1, td

j
i ) = 1 for some j, k ∈ [t].

Otherwise, Li is 2.

• Ei =
i∏

j=1

Lj Ei represents the number of valid equivalence classes for the sub-trees of T p and T ′p

having only the first i levels. Elog ` is equal to t.

• si represents the number of witnesses that can be extracted from the i-th level of T p and T ′p. It is
trivial to see that si ≥ si−1 for every i ∈ [log `].

In the following, we use a(i,m) to indicate the first-round message contained in the node m at level i in

composition tree T p. Additionally,“a
(i,m)
left ” indicatse the first-round message contained in the left child of

node m at level i of composition tree T p. The pedix “right” indicates a right child node. The apex “ ′ ” is
added to indicate that a node is from composition tree T ′p.

We prove the lemma by induction. For every level i ∈ [log `], Ei ≤ si.

Base case: Let us consider the root m of T p and T ′p. By inspection, it is clear that if s0 = 1 then either

a
(0,m)
left = a′

(0,m)
left or a

(0,m)
right = a′

(0,m)
right but not both at the same time. Indeed, in this last case s0 would

be equal to 2. Therefore, fixed one of the two cases above, there exists only one valid equivalence

class, thus L0 = 1. Let us assume that a
(0,m)
left = a′

(0,m)
left and a

(0,m)
right 6= a′

(0,m)
right . Indeed, if L0 = 2 and

s0 = 1, then there exists tdj1 and tdk1 from two different equivalence classes with representative tdj and

tdk respectively such that either RT (p0, td
j
1) = 1 or RT (p0, td

k
1) = 1 violating the validity property of

Def. 8. If s1 = 2 the base case is trivially true since L1 ≤ 2. Therefore, in the base case it holds that
E2 = L2 ≤ s2.
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Inductive case: We now show that Ei−1 ≤ si−1 implies Ei ≤ si. We notice that for increasing values of
i the values of Ei and si are monotone non-decreasing. Indeed, Ei is a product of non-zero integers.
Regarding si, extracting a witness from a node at level i−1 requires extracting a witness from at least
one of its child nodes at level i. Therefore, if Ei = Ei−1 then Ei ≤ si trivially follows from Ei−1 ≤ si−1.
We now show that if Ei = 2Ei−1, then si ≥ 2si−1. If Ei = 2Ei−1 then it holds that Li−1 = 2 which
means that there exists tdji and tdki in equivalence classes with representatives tdj and tdk satisfying

either RT (pi0, td
j
i ) = 1 and RT (pi1, td

k
i ) = 1 or RT (pi0, td

k
i ) = 1 and RT (pi1, td

j
i ) = 1. Let us assume

by contradiction that si < 2si−1. In this case there must be at least a witness at level i− 1 such that

a
(i,m)
left = a′

(i,m)
left and a

(i,m)
right 6= a′

(i,m)
right or a

(i,m)
right = a′

(i,m)
right and a

(i,m)
left 6= a′

(i,m)
left for some node m. From the

above observation, it follows that at least one of the trapdoor equivalence classes does not satisfy the
validity requirement of Def. 8. Then, it holds that si ≥ 2si−1, from which it follows that Ei ≤ si.

Lemma 3 (Computational Special Soundness). Πk,` is computational special sound.

Proof. Computational special soundness follows from the computational special soundness of Π1,`, the com-
putational special soundness of Πord, and the fixed equivocation property of CS. To prove computational
special soundness of Πk,` we define the extractor ExtractΠk,`

based on the extractor ExtractΠ1,`
of Π1,` and

the extractor ExtractΠord of Πord as follows.
Given two accepting transcripts with the same first-round message a = (a1, . . . , ak, aord,p1, . . . ,pk),

c 6= c′, z = (z1, . . . , zk, zord), and z′ = (z′1, . . . , z
′
k, z
′
ord) for statement (x1, . . . , x`), ExtractΠk,`

runs, for each
i ∈ [k], the extractor of each (1, `)-PTR, i.e. ExtractΠ1,`

((x1 . . . , x`), ai, c, c
′, zi, z

′
i).

From each execution of ExtractΠ1,`
((x1 . . . , x`), ai, c, c

′, zi, z
′
i), ExtractΠk,`

obtains with overwhelming prob-
ability at least a witness (wi1, j

i
1), otherwise it is possible to break the computational special soundness of

Π1,`. Indeed, (ai, c, zi) and (ai, c
′, z′i) are two accepting transcripts for statement (x1 . . . , x`) for Π1,` other-

wise Vk,` cannot accept the transcripts (a, c, z) and (a, c′, z′). If ExtractΠ1,`
((x1 . . . , x`), ai, c, c

′, zi, z
′
i) does

not return a valid witness, then ExpExtP1,`∗,ExtractΠ1,`
(x1, . . . , x`) returns 1, that happens only with negligible

probability.
Let us consider the case in which, for all i ∈ [k], a set of witnesses wi = {(wi1, ji1), . . . , (wik, j

i
fi)} with

f i < k is extracted from each (1, `)-PTR. Recall that for u ∈ [f i], each index jiu ∈ [`] simply specifies the
base instance the extracted witness corresponds to. Additionally, consider Ii = {ji1, . . . , jifi} and the case

for which |
⋃k
i=1 I

i| < k. Namely, this is the case in which less than k witnesses for different statements in
(x1, . . . , x`) are extracted from the (k, `)-PTR. We only need to consider this case since otherwise we would
have already extracted a witness for relation Rk,`. This case implies that from each (1, `)-PTR less than k
witnesses are extracted, since the witness extracted by ExtractΠ1,`

are always related to different elementary
statements by construction.

We run ExtractΠord on input ((pi)i∈[k], aord, c, c
′, zord, z

′
ord) obtaining, with overwhelming probability, a

witness for (pi)i∈[k] being in Rord. Otherwise, it is possible to break the computational special soundness
of Πord. The reduction follows the same blueprint of the one shown for the computational special soundness
of Π1,`. We now argue that there must be two composition trees T pi and T ′pi , with i ∈ [k], in which

there exists a node m at level q ∈ [log `] in which RT (pq0, td
i
q) = 1, a

(q,m)
left = a

′(q,m)
left and a

(q,m)
right 6= a

′(q,m)
right

(or equally RT (pq1, td
i
q) = 1, a

(q,m)
right = a

′(q,m)
right , and a

(q,m)
left 6= a

′(q,m)
leftq

), where tdiq is an element of the vector

tdi = (tdi1, . . . , td
i
log `) related to pi, and tdi was extracted using ExtractΠord . Namely, tdi is a representative

of a trapdoor equivalence class which is not valid according to Def. 8. Indeed, by Lemma 2 the number
of valid trapdoor equivalence classes is upper-bounded by the number of extracted witnesses, which is
strictly less than k in this case. Nevertheless, thanks to the computational special soundness of Πord,
ExtractΠk,`

extracts, with overwhelming probability, k vectors of trapdoors, all belonging to different trapdoor
equivalence classes21. Therefore, one of such vectors must belong to a non-valid trapdoor equivalence class,

21Indeed, this is the requirement imposed by the relation Rord.
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thus allowing the following reduction. Consider the transcripts associated to node m at level q in both T pi

and T ′pi . They are of the form (a(q,m), c, z), (a′(q,m), c′, z′) with a(q,m) = a′(q,m), c 6= c′, z = (z∗, r, pq0, p
q
1),

and z′ = (z∗′, r′, pq0, p
q
1). We now use these two accepting transcripts to break the fixed equivocation property

of the 1-out-of-2 equivocal commitment scheme. A does the following:

• (m0,m
′
0,m1)←$ {0, 1}3λ with m0 6= m′0.

• (com′, aux)← EquivCom(pp, β = 1,m1, p
q
0, p

q
1, td

i
q);

• r∗ ← Equiv(pp, β = 1,m0,m1, p
q
0, p

q
1, td

i
q, aux)

• r∗′ ← Equiv(pp, β = 1,m′0,m1, p
q
0, p

q
1, td

j
q, aux)

A outputs (pq0, p
q
1, r, r

′, r∗, r∗′, a
(q,m)
left , a

′(q,m)
left , a

(q,m)
right , a

′(q,m)
right ,m0,m

′
0,m1,m1).

Thanks to the partial equivocation property of the commitment scheme, BindCom(pp, pq0, p
q
1,m0,m1, r

∗) =
BindCom(pp, pq0, p

q
1,m0,m

′
1, r
∗′). Additionally, since the two transcripts are accepting, we have that

BindCom(pp, pq0, p
q
1, a

(q,m)
left , a

(q,m)
right , r) = BindCom(pp, pq0, p

q
1, a
′(q,m)
left , a

′(q,m)
right , r′). Therefore, A breaks the fixed

equivocation property with the same probability that less than k witnesses for different elementary state-
ments are extracted, thus reaching a contradiction.

Lemma 4 (Extended Honest-Verifier Zero Knowledge). Πk,` is Extended Honest-Verifier Zero Knowledge.

Proof. Let D
(z)∗

x,c be the third-round message distribution of Π1,`, and D
(z)′

c be the third-round message
distribution of Πord. Let SEHVZK1,` be the EHVZK simulator of Π1,`, for i ∈ [k], and SEHVZKord be the EHVZK

simulator of Πord. Let D
(z)
c =

{
(z1, . . . , zk, zord)| ∀i ∈ [k] zi←$ D

(z)∗

c , zord←$ D
(z)′

c

}
.

We define simulator SEHVZKk,` (x = (x1, . . . , x`), c, (z1, . . . , zk, zord)) as follows:

1. Compute ai ← SEHVZK1,` (x, c, zi), for all i ∈ [k];

2. Parse zi = (z̃j , {rj}j∈[log `],pi), for all i ∈ [k];

3. Compute aord ← SEHVZKord ((p1, . . . ,pk), c, zord);

4. Return (a1, . . . , ak, aord,p1, . . . ,pk).

We prove that Πk,` is EHVZK with the following hybrid arguments.

H0: this is equal to the real game with honest prover, except that the prover of hybrid H0 takes in input

(x,w, c, (z1, . . . , zk, zord)), where zi ∈ D(z)
c for all i ∈ [k] and zord ∈ D(z)′

c . The additional inputs c and
(z1, . . . , zk, zord) are ignored during the execution by the prover of hybrid H0. We notice that H0 is
distributed identically to the real game.

H10
: It is identical toH0 except that aord is computed using SEHVZKord ((p1, . . . ,pk), c, zord) where (p1, . . . ,pk),
c and zord are taken from the prover’s additional input specified in H0. Recall that zi, for i ∈ [k],
contains also pi. If there exists a distinguisher DEHV ZK that distinguishes H0 from H10 with non-
negligible advantage, we can construct a distinguisher Dord that distinguishes an execution of SEHVZKord

from an execution of Πord with the same advantage. The reduction works as follows:

• Dord samples randomness rand, computes (aj , tdj) ← P1,`
0 (x, (wj , ij); rand) and zj =

(z̃j , {ri}i∈[log `],pj) ← P1,`
1 (x, (wj , ij), c; rand), for all j ∈ [k]. Then, Dord outputs

the statement/witness pair ((p1, . . . ,pk), (td1, . . . , tdk)) in the experiment (cfr., Sec. 3.3)
ExpEHVZKP′,Dord(c) (where P′ is either (Pord0 ,Pord1 ) or SEHVZKord ) receiving back (aord, zord).

• Dord, on input ((p1, . . . ,pk), (td1, . . . , tdk), aord, c, zord), forwards (x,w, a, c, z) to DEHV ZK ,
where a = (a1, . . . , ak, aord,p1, . . . ,pk) and z = (z1, . . . , zk, zord). Dord outputs whatever
DEHV ZK outputs.
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H1i : for each i ∈ [k], this is equal to H1i−1 except that all values a1, . . . , ai are computed using
SEHVZK1,` (x, c, zi) where c and zi are taken from the prover’s additional input specified in H0.

If there exists a distinguisher DEHV ZK that distinguishes H1i from H1i+1
with non-negligible advan-

tage, we can construct a distinguisher D1,` that distinguishes a simulated execution SEHVZK1,` from an
execution of Π1,` with the same advantage. The reduction works as follows:

• D1,` samples randomness rand, D1,` computes (aj , tdj) ← P1,`
0 (x, (wj , ij); rand) and zj =

(z̃j , {ri}i∈[log `],pj) ← P1,`
1 (x, (wj , ij), c; rand), for each j < i. Then, Dord samples zj ←$ Dz

c

and computes aj ← SEHVZK1,` (x, c, zj) for each j > i. The value aord is computed from

SEHVZK((p1, . . . ,pk), c, zord) for zord←$ D
(z)′

c . Then D1,`, outputs the statement/witness pair

(x, wi) in the experiment ExpEHVZKP′,D1,`
(c) (where P′ is either (P1,`

0 ,P1,`
1 ) or SEHVZK1,` ), receiving

back (ai, zi).

• D1,`, on input (x, wi, ai, c, zi), sends (x,w, a, c, z) toDEHV ZK , where a = (a1, . . . , ak, aord,p1, . . . ,pk)
and z = (z1, . . . , zk, zord). D1,` outputs whatever DEHV ZK outputs.

H2: this is equal to SEHVZKk,` (x, c, (z1, . . . , zk, zord)). H2 is identical to H1k .

7 Conclusion

In this work, we proposed an efficient and modular transformation that starting from stackable Σ-protocols
and a corresponding threshold relation Rk,`, provides an efficient Σ-protocol for Rk,` with communication
complexity O(k(CC(Σ) + λ log `)), where CC(Σ) is the communication complexity of the base Σ-protocol.
Moreover, our transformation preserves statistical/perfect honest-verifier zero knowledge.

Previous approaches broke the linear barrier of communication in ` only for specific languages and thus,
even if producing more compact proofs, are for from being a general tool to be used as a building block
for a variety of protocols. Interestingly, the flexibility of our approach also allows to get other primitives
such as threshold ring signatures from a variety of assumptions depending on the underlying Σ-protocol.
Our approach is based on the (1, `)-PTR of [GGHK21], equipped with an efficient proof system about the
equivocal commitment scheme used in the (1, `)-PTR. Our technique is not tied to a specific instantiation but
it can be adapted to different instantiations, as soon as there exists a relation with associated Σ-protocol for
a parameter being equivocal. Although we broke the linear barrier in ` of the communication complexity of
(k, `)-PTR for a vast class of Σ-protocols, removing the linear dependency in k for a vast class of Σ-protocols
is still an interesting open problem.
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A Standard Tools

A.1 Discrete Logarithm (DL) Assumption

Assumption 1 (DL). There exists a PPT algorithm GG(1λ) which returns the description of a cyclic group
G in which the sampling of the elements is efficient, such that for all PPT algorithms A there exists a
negligible function ν(λ):

Prob
[
A(1λ,G, g, h) = y|G← GG(1λ);h← G; y ← Z|G|; g ← hy

]
= ν(λ).

A.2 Collision-Resistant Hash Functions

Since [GGHK21] compresses the messages exchanged between the prover and the verifier, we verbatim report
from [KL14] the definition of collision-resistant hash functions.

Definition 9. A hash function Hf is a pair of PPT algorithms (Gen;H) fulfilling the following:

• Gen is a PPT algorithm which takes as input a security parameter λ and outputs a key s. We assume
that 1λ is included in s.

• There exists a polynomial poly such that H is (deterministic) polynomial-time algorithm that takes as
input a key s and any string x ∈ {0, 1}∗,and outputs a string Hs(x) ∈ {0, 1}poly(λ).

The security property of Hf = (Gen,H) is defined using an experiment ExpHashColl for Hf, an adversary
A and a security parameter λ.

ExpHashCollHf,A(λ)

1. s← Gen(1λ).

2. The adversary A on input s computes x and x′.

3. The output of the experiment is 1 if and only if x 6= x′ and Hs(x) = Hs(x′). In such a case we say
that A has found a collision for Hf.

Definition 10. A hash function Hf = (Gen,H) is collision resistant if for all PPT adversaries A there exists
a negligible function ν(·) such that

Prob
[
ExpHashCollHf,A(λ) = 1

]
≤ ν(λ).

B 1-out-of-2 Equivocal Commitment from DL [GGHK21]

We now report the instantiation of the 1-out-of-2 equivocal commitment scheme GGHK from [GGHK21].
GGHK uses the same CRS of the (non-interactive) Pedersen commitment scheme. Namely, the CRS contains
two random group elements g0, h in a group G where solving the discrete logarithm is believed to be hard (i.e.,
it can be seen as an SRS). The parameters space Ypp is {(p0, p1)|p0, p1 ∈ G, p1 = p2

0g
−1
0 }. The polynomial-

time relation RT related to this instantiation is RT = {(x,w) : x = hw}. The randomness space for BindCom
and EquivCom is D = {0, 1}2λ.

In the following, we describe the algorithms of GGHK. For conciseness, we omit the appropriate parsing
of the CRS pp from the below algorithms.

• Setup(1λ): On input the security parameter, generate the appropriate group G. Sample g0, h←$ G.
Output pp = (g0, h).
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• Gen(pp, β; rand0): Parse pp as (p0, h). Sample y1−β ←$ Z|G| according to randomness rand0. Generate
trapdoor parameter p1−β = hy1−β . Generate binding parameter pβ by interpolating a degree one
polynomial in the exponent base h, and evaluating it in point β+1. In this interpolation, the exponent
of g0 is associated with point 0, while parameter pi is associated with point i + 1. In particular, if

β = 1 compute p1 = p2
0g
−1
0 , otherwise compute p0 = p

1/2
1 g

1/2
0 . Output (p0, p1, td), where td = y1−β .

• EquivCom(pp, β,m, p0, p1, td; rand1): Parse pp as (p0, h) and rand1 as (r0, r1). Set mβ = m and
m1−β = 0. Compute com0 = hr0pm0

0 and com1 = hr1pm1
1 . Set com = (com0, com1) and aux = (r0, r1).

Output (com, aux).

• Equiv(pp, β,m0,m1, p0, p1, td, aux): Parse aux as (r0, r1). Compute r′1−β = r1−β − td ·m1−β , r′β = rβ
and output r, where r = (r′0, r

′
1).

• BindCom(pp, p0, p1,m
′
0,m

′
1; r): Parse pp as (p0, h) and r as (r0, r1). Compute comb = hr

′
bp
m′b
b for

b ∈ {0, 1}. Output com = (com0, com1).

Remark 1. GGHK is a 1-out-of-2 equivocal commitment. Indeed, GGHK satisfies the partial equivocation
property since a valid witness for RDL on one of the parameters always allows successful equivocation in the
corresponding position (i.e., as in the Pedersen commitment scheme). It has computational fixed equivoca-
tion. In [GGHK21], a weaker notion called partial binding involving only one commitment equivocated in
both positions is proved. However, their proof directly involves the underlying Pedersen commitments that
make up a 1-out-of-2 equivocal commitment. Therefore, one can carry essentially the same reduction for
the case of two (distinct) 1-out-of-2 equivocal commitments w.r.t. the same parameters. GGHK is perfect
position hiding. In [GGHK21], a stronger notion in which the commitment must hide both the committed
values and the binding position is proved. In [GGHK21], the trapdoorness property is not formulated. Nev-
ertheless, GGHK achieves perfect honest-receiver trapdoorness. All these properties are achieved in the SRS
model.

C Details on the (1, `)-PTR of [GGHK21]

Here, we report a sketch of the security proofs using the commitment of Sec. 4. Completeness trivially follows
from the completeness of the underlying protocols and the partial equivocation of the commitment scheme.

Computational special soundness (sketch). It is possible to create an extractor Extract for Π using the
extractor Extract′ of the underlying protocol Π′. Extract receives in input two accepting transcripts of Π (a =
(com, p0, p1), c0, z0 = (z′0, r0, p0, p1)) and (a = (com, p0, p1), c1, z1 = (z′1, r1, p0, p1)) for the same statement x.
Extract can derive the first-round messages of the underlying underlying protocol Π′ by running its EHVZK
simulator. Let such messages be a1

0 ← SEHVZKbase (x0, c0, z
′
0), a1

1 ← SEHVZKbase (x1, c0, z
′
0), a2

0 ← SEHVZKbase (x0, c1, z
′
1),

a2
1 ← SEHVZKbase (x1, c1, z

′
1).

With non-negligible probability either a1
0 = a2

0 or a1
1 = a2

1, otherwise it is possible to break the computa-
tional fixed equivocation of CS. GGHK has computational fixed equivocation, therefore there is a negligible
probability that a PPT P∗ breaks the fixed equivocation property. Assume a1

0 6= a2
0 and a1

1 6= a2
1, the

adversarial sender A breaks the fixed equivocation property of CS as follows:

• A sends (p0, p1, r0, r1, r0, r1, a
1
0, a

2
0, a

1
1, a

2
1, a

1
0, a

2
0, a

1
1, a

2
1) to the challenger of fixed equivocation.

Since the two transcripts are accepting, it holds that BindCom(pp, p0, p1, a
1
0, a

1
1; r0) = BindCom(pp, p0, p1, a

2
0, a

2
1; r1) =

com such that a = (com, p0, p1). Thus A wins the fixed equivocation experiment with the same probability
that a1

0 6= a2
0 and a1

1 6= a2
1. Since the probability that A wins the binding experiment is negligible, the

following holds with non-negligible probability: either a1
0 = a2

0 or a1
1 = a2

1. It follows that Extract has,
with non-negligible probability, at least one pair of accepting transcripts for Π′ sharing the same first-round
message to give in input to Extract′.

33



Extract runs Extract′ on such transcripts and outputs whatever Extract′ outputs. Recall that x = (x0, x1)
and Extract′ outputs a witness w such that (xi, w) ∈ RL with i ∈ {0, 1}, which is also a valid witness for
relation ROR (cfr., Fig. 2) If Π′ is special sound, Extract′ successfully extracts a witness with probability 1.
Instead, if special soundness holds only computationally Extract′, Extract will have a negligible probability
of failure.

In [GGHK21] an hash function is used to compress the first message of Π. We consider this in the rest
of the proof. Let Hf = (Gen,H) be a collision resistant hash function (cfr., App. A.2), now the message a
produced by P0 is a = Hs((com, p0, p1)), where s is a random value defined in a common reference string
CRS22 and generated using algorithm Gen on the same security parameter used in Π. Let us assume that
even if the adversarial prover P∗ of Π cannot break the partial binding of CS and cannot break the special
soundness of the underlying protocol Π′, P∗ can still break computational special soundness of Π. We
can show that in this case there exists an adversary A with access to P∗ that wins in ExpHashColl with
non-negligible probability. A obtains the value s in the CRS and the message (a, c0, c1, z0, z1) from P∗.
Looking at the transcripts (a, c0, z0) and (a, c1, z1), it cannot be that a is equal to Hs((com, p0, p1)) for the
same (com, p0, p1), otherwise, as previously shown, it is possible to break either the special soundness of
Π′ or the partial binding of CS. Then there must exists two values (com, p0, p1) and (com′, p′0, p

′
1) such

that Hs((com, p0, p1)) = Hs(com′, p′0, p
′
1)). This means that A found a collision for Hf, thus reaching a

contradiction. Since A can win in this experiment only with negligible probability, it follows that P∗ can
break computational special soundness with the same negligible probability.

EHVZK (sketch). Let D
(z)
c =

{
(z∗, r, p0, p1)|r←$ D; z∗←$ D

(z∗)
c ; (p0, p1, td)← Gen(pp, β = 1)

}
, where D

is the randomness space of the underlying 1-out-of-` equivocal commitment scheme23 and pp the common
random string previously generate in a trusted manner by running Setup(1λ). It is straightforward to see
that Π is EHVZK with recyclable third-round messages.

The simulator SEHVZK((x0, x1), c, (z∗, r, p0, p1)) is defined as follows.

1. Compute vb ← SEHVZKbase (xb, c, z
∗), for b ∈ {0, 1};

2. Compute com← BindCom(pp, p0, p1, v0, v1, c; r);

3. Return (com, p0, p1).

Consider the following hybrids:

H0: it is equivalent to the real game with the honest prover P.

H1: it is equivalent to H0 except that the protocol is not interactive and uses a challenge c randomly sampled
by {0, 1}λ as challenge from V. The distribution of those two hybrids is identical since c is a random
value.

H2: it is equivalent to H1 except that the prover P uses c and z∗ from D
(z∗)
c as input for SEHVZKbase to compute

vβ in the first round. Additionally, the execution of P′1 in the third round is removed since the value

z∗ used is the one taken in input from D
(z)
c . If there exists a distinguisher DEHV ZK that distinguishes

H1 from H2 with non-negligible probability, we can define a distinguisher D′EHV ZK that breaks the
EHVZK property of Π′. D′EHV ZK sends (xβ , w) to P′ in the experiment ExpEHVZKP′,D′EHVZK

(c). P′

returns (vβ , c, z̃).

D′EHV ZK computes a transcript as follows:

• (p0, p1, td)← Gen(pp, β);

• (com, aux)← EquivCom(pp, β, vβ , p0, p1, td);

22We recall that the CRS does not need to be generated by a trusted entity since it is composed only of the description of a
CRHF (e.g., SHA256 in practice).

23For GGHK D = {0, 1}2λ.
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• v1−β ← SEHVZKbase (x1−β , c, z̃);

• r ← Equiv(pp, β, v0, v1, p0, p1, td, aux).

D′EHV ZK sends (a = (com, p0, p1), c, z = (z̃, r, p0, p1)) to DEHV ZK and returns the value returned by
DEHV ZK .

Since Π′ is perfect EHVZK, H1 and H2 are identically distributed.

H3: it is the same as H2 excepts that P computes com ← BindCom(pp, p0, p1, v0, v1; r), where r is not gen-
erated by first calling EquivCom(pp, β, vβ , p0, p1, td) and then Equiv(pp, β, v0, v1, p0, p1, td, aux; rand1)
but it is taken from the input of P. If there exists a distinguisher DEHV ZK that distinguishes between
H2 and H3 with non-negligible probability, we can define an adversary Atrap that breaks the honest
receiver trapdoorness property of the underlying 1-out-of-2 equivocal commitment scheme.

• Given (x = (x0, x1), w), Atrap computes vb ← SEHVZKbase (xb, c, z
∗), for each b ∈ {0, 1}, and

(p0, p1, td)← Gen(pp, β) where β is from the input of P;

• Atrap sends (v0, v1, p0, p1, td, β) to ExpTrap(λ), and receives (com, r) from ExpTrap.

• Atrap sends (a = (com, p0, p1), c, (z∗, r, p0, p1)) to DEHV ZK and receives back a bit b. Atrap
outputs b.

Note that Atrap perfectly simulates H2 when ExpTrap uses EquivCom to generate com and then Equiv to
generate r, and perfectly simulates H3 when ExpTrap uses BindCom together with a uniformly random
r to generate com.

H4: it is the same as H3 except that the prover of H4 fixes the binding position to β′ = 1 when calling
the parameter generation algorithm Gen. If β′ = β, the two hybrids are identically distributed, then
DEHV ZK cannot distinguish H3 from H4. Let us consider the case in which β′ 6= β. If there exists
a distinguisher DEHV ZK that distinguishes between H3 and H4 with non-negligible probability, we
can define an adversary Ahid that breaks the position hiding property of the 1-out-of-2 equivocal
commitment scheme with non-negligible probability.

• Given (x = (x0, x1), w), Ahid computes vb ← SEHVZKbase (xb, c, z
∗), for each b ∈ {0, 1}.

• Ahid receives (p0, p1, td) from ExpHid.

• Ahid sets (a = (com, p0, p1), c, z = (z∗, r, p0, p1)), where c and z∗ are the value in input to P, and
com is generated by running BindCom with the messages (v0, v1) and the randomness r taken from
the input of P. Ahid sends (a, c, z) to DEHV ZK and receives a bit b. Ahid outputs b.

Note that Ahid perfectly simulates H3 given β = 0 when ExpHid calculates (p0, p1, td) from β = 0, and
perfectly simulates H4 when ExpHid calculates (p0, p1, td) from β = 1.

H5: it is equal to H4 except that the prover P takes additional inputs (z∗, r, p0, p1)) taken from D
(z)
c , and

uses such inputs instead of sampling them by itself. H4 and H5 are indistinguishable since the values
passed in input in H5 are identically distributed to the values computed in H4.

Note that H5 is identically distributed to the simulator SEHVZK((x0, x1), c, (z∗, r, p0, p1)). This concludes
the proof.

Achieved properties. As we said, it is possible to instantiate the compiler in Fig. 2 with GGHK described
in App. B. Since the commitment scheme in App. B achieves computational fixed equivocation, perfect
position hiding and perfect honest-receiver trapdoorness in the SRS model, the resulting protocol Π is
computational special sound and perfect EHVZK in the SRS model.
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Remark 2. We notice that in [GGHK21] they refer to the standard formulation of Σ-protocols requiring
special soundness to hold for an unbounded prover. Nevertheless, they then proceed by proposing an ex-
tractor that fails only with negligible probability assuming the commitment scheme is computational partial
binding (i.e., a weaker version of the fixed equivocation property stating that it is infeasible to generate
a commitment and accepting openings to (m1

0,m
1
1), (m2

0,m
2
1) such that m1

0 6= m2
0 and m1

1 6= m2
1.). It is

straightforward to notice that their construction cannot achieve statistical/perfect special soundness in the
classical sense since it relies on a security property that only holds computationally. We took care of this
subtlety by formally defining computational special soundness in Sec. 3.2 and using such definition in the
reduction presented above.

Remark 3. We also notice an issue in the proof for EHVZK proposed in [GGHK21]. They prove EHVZK
using the following hybrids:

• Hβ that is equivalent to the real protocol, except that in the first round aβ is generated using SEHVZKbase (xβ ,
c, z);

• Hβ,p0,p1 that is equivalent to Hβ , except that the commitment is computed setting β = 1.

In [GGHK21], they argue that Hβ and Hβ,p0,p1 are perfectly indistinguishable for the perfect hiding
of their commitment, but this property is not enough to prove the indistinguishability of the two hybrids.
Indeed, a 1-out-of-2 equivocal commitment scheme fulfilling the definitions presented in [GGHK21] does not
necessarily guarantee the trapdoorness property. Therefore, the verifier may be able to discover the value of
β at the end of the Reveal Phase.

It is worth noting that it is possible to define a commitment scheme achieving all the properties required
in [GGHK21], but that reveals the binding position in the Reveal Phase. To see this, consider a commitment
scheme in which the Sender, in the Reveal Phase, sends the message M to the Receiver, where M = M∗||β,
with || the concatenation operator, M∗ the message to be sent by the Sender to the Receiver to compute
the opening, and β the binding position used by the sender in the Commitment Phase. For example,
considering the Reveal Phase of the commitment scheme in App. B, we can modify the last message sent
by the sender to the receiver as described before, concatenating the index of the binding position to it. It
is straightforward to see that the resulting scheme achieves computational binding, perfect hiding, but does
not achieve trapdoorness.
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