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Abstract. The celebrated result by Gentry and Wichs established a theoretical barrier for succinct
non-interactive arguments (SNARGs), showing that for (expressive enough) hard-on-average languages,
we must assume non-falsifiable assumptions. We further investigate those barriers by showing new
negative and positive results related to the proof size.

1. We start by formalizing a folklore lower bound for the proof size of black-box extractable arguments
based on the hardness of the language. This separates knowledge-sound SNARGs (SNARKs) in the
random oracle model (that can have black-box extraction) and those in the standard model.

2. We show that under the existence of adaptively sound SNARGs (without extractability) and from
standard assumptions, it is possible to build SNARKs with non-adaptive black-box extractability for
a non-trivial subset of NP.

3. On the other hand, we show that (under some mild assumptions) all NP languages cannot have
SNARKs with black-box extractability even in the non-adaptive setting.

4. The Gentry-Wichs result does not account for the preprocessing model, under which fall several
efficient constructions. We show that also, in the preprocessing model, it is impossible to construct
SNARGs that rely on falsifiable assumptions in a black-box way.

Along the way, we identify a class of non-trivial languages, which we dub “trapdoor languages”, that
can bypass these impossibility results.

1 Introduction

Proof systems have been studied extensively both in cryptography and in the theory of computation [BGG+90,
For87, GMW86], and are a fundamental building block in various cryptographic constructions today, includ-
ing delegating computation [BCG+13, BCTV14, CFH+15] and privacy-preserving cryptocurrencies [BCG+14]
to name a few. In a succinct proof, it is additionally required that the communication be sublinear (ideally
polylogarithmic) in the size of the non-deterministic witness used to verify the relation (proof succinctness).
This requirement is often extended to verification complexity (verification succinctness).

Statistically-sound proofs are unlikely to allow for significant improvements in proof size [GH98, GVW02,
Wee05], that is, for NP, statistical soundness requires the prover to communicate, roughly, as much infor-
mation as the size of the witness. If we restrict ourselves to argument systems [BCC88] where soundness is
computational, then proofs can potentially be shorter than the length of the witness.

Succinct arguments. Succinct arguments were first studied by Kilian [Kil92], who gave an interactive
construction based on probabilistically checkable proofs (PCP) and collision-resistant hash functions. Kilian’s
construction was turned into a non-interactive argument in the random oracle model using the Fiat-Shamir
heuristic [FS87] by Micali [Mic94]. In the standard model (i.e., without idealized primitives), non-interactivity
is achieved by a trusted party generating a Common Reference String (CRS) during a setup phase. The notion
of adaptive soundness requires soundness to hold even when a malicious prover can choose the statement
after receiving CRS. Otherwise, we call soundness non-adaptive.

⋆ This is the full version of [CGKS23], from which it slightly differs. We list changes in Appendix G.



In this work, we are concerned with the theoretical limitations for building efficient, succinct non-
interactive arguments in the standard model5. One of the best-known impossibility results on SNARGs
is that of Gentry and Wichs [GW11] (we occasionally refer to it as “GW”), which shows that in the standard
model, adaptively-sound SNARGs for (hard enough) NP languages cannot be proven secure via a black-box
(BB) reduction to a falsifiable assumption [Nao03]. A falsifiable assumption is an assumption where the
challenger can efficiently confirm that the challenge was broken6.

A folklore way to interpret GW has been “we cannot escape non-falsifiable assumptions to build SNARGs
for NP”. While this is essentially true, there are several caveats to this interpretation (which we discuss
later in this work in Section 6 and some have already been noticed in prior work). We formally explore the
boundaries of this simplifying interpretation, especially motivated by the focus on (composable) extractabil-
ity [BS21, KZM+15] and the popular model of “preprocessing SNARGs” in recent works, e.g. [Gro16]. We
strive to provide a modern view of these topics, for example, by adopting the language of indexed relations
from [CHM+20] (we later argue why this is a meaningful switch).

(Black-box) knowledge soundness. A strengthening of the soundness property is knowledge soundness.
It requires that, whenever an efficient prover convinces the verifier, not only can we conclude that x ∈ L, but
also an NP witness w can be efficiently extracted from the prover. This helpful property is satisfied by many
proof systems and is necessary for a lot of applications of succinct arguments. A Succinct Non-interactive
ARgument of Knowledge (SNARK) is a SNARG with the knowledge soundness property.

Constructions of SNARKs for NP in the standard model all rely on non-falsifiable assumptions that
are knowledge-type assumptions related to some algebraic problem, e.g., guaranteeing the existence of an
extractor algorithm that can output a discrete log “from” a specific adversary. This example also hints to
why these assumptions are non-falsifiable—they are non-black-box, that is, they require knowledge of the
internal state of the adversary and an extractor aware of the concrete adversarial algorithm. This contrasts
with the milder black-box extraction, namely the ability to extract a witness from a malicious prover only
using its input/output interface.

Understanding whether we can build SNARKs with black-box extraction in the standard model is still
an elusive problem. In addition to being a theoretical curiosity, if answered positively, it would allow us to
construct more robust cryptographic protocols using SNARKs. Black-box extraction is required in strong
notions of composition security, e.g., in universal composability (or UC-security [Can01]) where the “ideal-
world” simulator must extract a witness without knowledge of the environment’s algorithm. (See [KKK21]
for an attempt to combine composability and knowledge-type assumptions.) If answered negatively, it would
confirm the seeming incompatibility of SNARKs in the standard model and UC. In this work, we then ask
the question:

Is non-black-box extraction inherent to SNARKs?

Addressing this question is, we believe, even more pressing because prior works [BKSV21, BS21, CKLM13,
KZM+15] have used as motivation the fact that succinctness must be sacrificed for black-box extraction,
implying that the question had been settled (see also Section 1.2). However, to the best of our knowledge,
there was no formal treatment for this question prior to our work.

Our First Contribution: We formally confirm the folklore belief that black-box extraction is impossible
for adaptive knowledge soundness in the standard model if one requires proof-succinctness. As a consequence,
this result separates the standard model and other idealized models in terms of what is possible for black-
box extraction (for example, in the ROM and through the Fiat-Shamir transform, there exist black-box
extractable proof-succinct non-interactive arguments [BBB+18]).

5 There exist efficient SNARKs (SNARGs of knowledge) in idealized models like ROM (random oracle model),
GGM (generic group model), or AGM (algebraic group model), including constructions like Groth16 [Gro16],
Bulletproofs [BBB+18]. We later discuss the implications of our results for different models.

6 For example, DLOG is a falsifiable assumption since the challenger can efficiently test if the adversary has found
the correct discrete logarithm.

2



Our Second Contribution: We explore whether the impossibility extends to the non-adaptive case.
We find out that non-adaptive black-box extractability is possible for a non-trivial subset of NP—which
encompasses distributionally hard problems such as knowledge of a discrete logarithm — by assuming the
existence of an adaptively sound SNARG and some standard assumptions (FHE). In particular, we show
that a SNARG can be lifted to a SNARK with the features above for the class of languages FewP (roughly,
NP statements with at most a polynomial number of valid witnesses). Our transformation also preserves
zero-knowledge of the initial SNARG.

Our Third Contribution: A natural question is whether the previous construction for FewP can be
extended to NP. We answer this in the negative under some mild assumptions. In particular, we show that
if the relation is y = f(w) where f is an L-continuous leakage-resilient one-way function (CLR-OWF, a one-
way function where L bits may leak multiple times given that preimage w is updated), then the proof size
must be more than L bits. There exists a CLR-OWF under the discrete logarithm assumption [ADVW13]
where L is linear in the size of w. Thus, the proof cannot be succinct.

Preprocessing and the Gentry-Wichs impossibility result. In many applications we want to look
beyond proof-succinctness and keep the verifier as efficient as possible. Ideally, we would like verification to
run sublinearly in the size/time of the computation. It may seem counterintuitive that this is even possible:
naturally, in circuit-based7 arguments for general computations the verifier should at least read the statement
being proven. The latter includes both the description of the computation (i.e., the circuit) and its input
(i.e., the deterministic input for an NP statement). There exists, however, a (commonly used) way around
this problem: a preprocessing phase. In a preprocessing SNARG, one generates a CRS, usually depending on
a specific circuit C, which is constructed once and for all and can later be used to prove/verify an unbounded
number of proofs for the computation of C. This CRS is structured as a pair of CRS’es, the prover’s CRS
and the verifier’s CRS, used by each respective party. The verifier’s CRS is morally a digest of the circuit. If
the verifier’s CRS is “short enough”, then the online verification stage can be fast, requiring to read only the
SNARG proof and a partial input description (the deterministic input to the circuit, without its description);
thus the verifier can run in time sublinear in |C| (and in the witness size).

This preprocessing model encompasses a rich line of efficient SNARGs [BCI+13, GGPR13, Gro10, Lip12,
Lip13, PHGR13]. The fact that it is a practically interesting model, as it achieves verifier-succinct SNARGs,
further motivates a deeper theoretical understanding of it. A fundamental question is:

Can we construct preprocessing SNARGs based on falsifiable assumptions?

We argue this question has not been settled. First, none of the known preprocessing constructions rely
on falsifiable assumptions. Also, known impossibility results do not inform us on the matter either. The
Gentry-Wichs impossibility—which separates SNARGs and falsifiable assumptions—has long served as a
justification to SNARGs for NP on non-falsifiable assumptions, but it fails to shed light on the preprocessing
setting. The reason is that the GW result presumes a SNARG with a CRS with a specific pattern (we mean
“prover’s CRS” when we just say CRS from now on): their CRS cannot grow with the size of the instance,
but should instead be bounded by a polynomial in the security parameter. In principle the question is then
still open, more so because all existing preprocessing constructions, do have a CRS with the opposite pattern:
it is usually as long as the instance8.

Besides GW, other existing works also fail to provide an answer. For example, the work of [BCCT13] shows
how to “bootstrap” a preprocessing SNARK into one without preprocessing to obtain a complexity-preserving
SNARK, i.e., one without expensive preprocessing. The transformation can be applied to known SNARKs
with expensive preprocessing to obtain a SNARK without the costly preprocessing. This complexity-preserving
compilation, informally, establishes that preprocessing does not give any additional power; if preprocessing

7 There are other models of computation that have a succinct description, for instance, machine computations.
However, in general, the description of a computation could be as large as the computation itself.

8 For example, in pairing-based constructions such as [GGPR13] it consists of at least one group element per wire
in the circuit to be proven.
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SNARKs were possible from falsifiable assumptions, one could apply the bootstrapping transformation and
obtain short CRS SNARKs from falsifiable assumptions. Thus, any impossibility for SNARKs holds even for
SNARKs that rely on expensive preprocessing. However, this bootstrapping crucially requires the knowledge
soundness property and, therefore, only applies to SNARKs. The question of whether allowing a preprocess-
ing phase allows constructing SNARGs based on falsifiable assumptions remains.

Our Fourth Contribution: We fill the gap left by the GW result and show that even preprocessing
SNARGs with a loosely-bounded CRS cannot be constructed from falsifiable assumptions in the standard
model.

The landscape of impossibilities for non-interactive arguments. For our work to be as self-contained
as possible, we complement the results above with an overarching view of impossibilities on non-interactive
arguments (Section 6). This discussion strives to give a complete picture of existing impossibility results,
related key properties of positive results, and gaps between positive and negative results. Motivated by
the observation that preprocessing SNARGs do not come under the GW impossibility, we articulate the
assumptions behind the impossibilities, and identify settings that would bypass them. Along the way, we
formalize a class of languages that does not come under the Gentry-Wichs impossibility result. We dub
them trapdoor languages (where there exists a “trapdoor” that makes the problem feasible) and exemplify
several application settings that fall under the same category. Trapdoor languages can be thought of as a
generalization of witness-sampleable (algebraic) languages in the work of [CH20].

1.1 Technical Overview

BB extraction is impossible for any hard language (adaptive case). We show the impossibility of
black-box extraction for non-interactive succinct arguments following the intuition that if an argument is too
“small”, it cannot contain information about a “long” witness. This makes extraction impossible since the
extractor does not have any additional power, like access to the prover’s randomness (as in non-black-box
extractors for popular SNARKs) or the ability to rewind the prover (as in interactive arguments, such as
Kilian’s protocol).

Our result gives a precise characterization between the hardness of guessing the witness and the size of
the proof. We show that if an efficient adversary can guess the witness at most with probability ε(λ) and the
knowledge soundness error of the argument system is εks(λ), then the proof size is at least − log(ε(λ)+εks(λ))
bits. For example, if we consider for simplicity that εks(λ) = 0 and ε(λ) = 1/2δ|w(λ)| for some δ > 0 and the
witness size is |w(λ)|, then the proof size will be at least δ|w(λ)|. In Appendix B, we show how to obtain a
similar result based on the hardness of leakage-resilient OWFs.

BB extraction is possible for FewP (non-adaptive case). We then ask if the impossibility holds if
we weaken the knowledge soundness requirement to be non-adaptive. Indeed, the non-adaptive case escapes
the GW impossibility for SNARGs as we discuss in Section 6.1, and it is natural to hope for a positive
result for extraction as well. In the non-adaptive knowledge soundness definition, the adversary chooses the
statement before seeing the CRS, and then outputs a proof for the chosen statement. Intuitively, an extractor
for such an adversary does have additional power – the extractor can rewind the prover to the point after
the statement is chosen, sample different CRS’es and obtain multiple proofs for the same statement. Thus,
non-adaptivity makes the prover stateful allowing for rewinding to be useful for an extractor9. We give a
positive result in the non-adaptive case by showing a SNARK with black-box non-adaptive extraction (for a
subset of NP). In the construction, we take advantage of our observation that the extractor can obtain more
information by seeing multiple proofs corresponding to cleverly crafted CRS’es. At a high level, we ask the
prover to encrypt a bit of the witness as part of the proof, in addition to proving the underlying relation.
Given the secret key of the encryption scheme as the CRS trapdoor, the extractor can recover this witness

9 Contrast this with the adaptive case, where the prover is stateless and rewinding is not useful.
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bit. Now, the crafted CRS’es are such that they ask for different bits of the witness to be encrypted so that
with every rewinding, the extractor learns a new bit until it can completely recover the witness.

While this works for valid statements with a unique witness, there are some subtleties that we need
to address in order to show extraction for languages that have polynomially many witnesses, that is, class
FewP. Here, the problem is that the adversary can choose to use a different witness each time, and there is
no guarantee that the extractor can collect enough bits for any one witness. We now provide an overview of
our construction. Let R be the relation for the language. We start with an existing adaptively secure SNARG
for R and lift it to a non-adaptively secure SNARK. We use a Fully Homomorphic Encryption (FHE) scheme
in order to hide the index of the bit the prover is asked to encrypt. Intuitively this is to hide the index so
that the prover cannot adversarially choose a different witness for different indices. We augment the relation
the SNARG proves to include a hash of the witness. Now the extractor keeps track of which witness it is
extracting by using the hash to fingerprint. The extractor still needs to collect all bits of one witness. Here,
we rely on the semantic security of the FHE scheme to show that the prover cannot consistently use witness
w1 for index i, and witness w2, for index j. Since there are only polynomially many witnesses, assuming
universality (non-adaptive collision resistance) of the hash function, the extractor succeeds in recovering all
bits of some witness.

We also show that if the hash is encrypted (which will also be useful for knowledge soundness) and
the initial SNARG has computational zero-knowledge, the resulting SNARK will also have computational
zero-knowledge.

BB extraction is impossible for all NP (non-adaptive case). The previous result, however, cannot
be extended to all NP languages. We show this by relating an extractor’s existence to breaking the relation’s
leakage resilience. A SNARK proof can be thought of as leakage on the witness. When this leakage is small, no
extractor can succeed if theNP relation is leakage resilient. This impossibility due to leakage resilience is easy
to see in the adaptive case. In non-adaptive extraction, an extractor can potentially rewind the adversary and
obtain multiple proofs; akin to a leakage resilience adversary obtaining leakage multiple times. We formalize
this connection using continuous leakage resilience. In L-leakage-resilient OWF (LR-OWF), one-wayness
holds even if L bits of the preimage are leaked. In L-continuous LR-OWF (CLR-OWF), L bits can be leaked
multiple times with the caveat that the preimage has to be updated before each leakage. Moreover, if for an
OWF f we have y = f(w) and w is updated to w′, then also y = f(w′).

We connect this primitive to the impossibility of non-adaptive black-box knowledge soundness of SNARKs.
Suppose we have a SNARK for the relation y = f(w) where f, y are public, and w is the witness. We view the
proof as leakage on the witness given to the adversary. If the proof is at most L bits long, then the extractor
can learn at most L bits of information about the witness with each rewinding. Now if the adversary also
updates its witness w between queries, L-CLR of f implies that the extractor cannot recover the witness.
Thus, the SNARK proof is at least L bits long.

We can instantiate this result with (1− 2
n )|w|-CLR-OWF from [ADVW13] which is based on the discrete

logarithm assumption. The witness size |w| = n log q, where q is the size of the discrete logarithm group and
n is an input size parameter. Thus, the proof size will be asymptotically linear in |w|.

Extending GW to preprocessing SNARGs. The central idea in the GW proof is to show that every
SNARG for an NP language has a simulatable adversary. An unbounded adversarial prover that breaks
soundness comes with an efficient simulator such that no efficient machine can tell whether it is interacting
with the prover or the simulator. A black-box reduction is an efficient oracle-access machine that breaks
some falsifiable assumption when given access to a successful adversary. Suppose the reduction given oracle
access to the prover breaks the assumption. In that case, the efficient machine with oracle access to the
efficient simulator also breaks it since the efficient challenger of the falsifiable assumption cannot distinguish
the prover from the simulator. Thus, assuming a simulatable adversary, the theorem follows.

Our proof extending the GW impossibility to preprocessing SNARGs follows the GW template. We
observe that the GW proof needs the CRS to be short in constructing a simulatable adversary: the reduction
that has oracle access to either the computationally unbounded prover or the efficient simulator can query
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the oracle with 1m where m is different from the security parameter n. If m is small enough compared to the
actual security parameter n, then the reduction can distinguish the adversary from the simulator. Therefore,
the proof modifies the simulator to behave differently in answering queries with a sufficiently small m; this
is done by hardcoding a table of responses as non-uniform advice. The table has hardcoded entries (x, π) for
every m and every CRS. Therefore, the CRS size is bounded by a polynomial in the security parameter and
cannot grow with the size of the instance.

When considering security-parameter preserving reductions, the reduction queries its oracle with the
same security parameter. Therefore, a hardcoded table is unnecessary, and we show how the proof goes
through when the size of the CRS depends on the instance, as in indexed relations. We leave the case with
non-parameter-preserving reductions as an open problem.

1.2 Related Work

Succinctness vs black-box extraction. Here we discuss works that trade succinctness for black-box
extraction. C∅C∅ [KZM+15] and Tiramisu [BS21] aim at compiling a SNARK into a UC-secure scheme.
However, this transformation results in NIZK arguments whose proof size and verification time are (quasi-
)linear in the witness size. This degradation in succinctness is claimed to be unavoidable if one demands
black-box extraction. In [BKSV21], Baghery et al. add black-box extraction to [Gro16] SNARK. Although the
proof size is again asymptotically linear in the witness size, the authors’ goal is to strive for concrete efficiency.
In [CKLM13], Chase et al. construct controlled malleable proofs that crucially require the stronger black-box
version of extractability. Even though their starting point is a SNARG, to obtain black-box extraction of
the controlled malleable proof, they give up succinctness and achieve controlled malleable NIZKs.

What is common in all the works above as an idea is to perform verifiable encryption by encrypting the
witness and then proving knowledge of the value inside the ciphertext in addition to the original relation.
The black-box extractor works by decrypting. This is why the black-box extractor comes at the cost of
succinctness: the proof includes a ciphertext and a proof of correct encryption.

Subsequent work. After the publication of the initial version of our work, Mathialagan, Peters, and
Vaikuntanathan [MPV24] further studied SNARGs for the complexity class UP in the designated verifier
setting. They show how to obtain reusable designated verifier SNARGs for UP under subexponentially hard
assumptions. Furthermore, they point out some errors (see Appendix G) in the earlier version of our compiler
for obtaining a non-adaptive SNARK for FewP and propose a corrected version for the class UP. Their
compiler builds on the ideas of our compiler and transforms an adaptive (ZK)-SNARG for UP to a non-
adaptive (ZK)-SNARK for UP. Compared to the compiler in the current version of our paper, we require an
adaptive SNARG for a larger class of languages (NP) but also obtain a non-adaptive SNARK for a larger
class of languages (FewP).

Other works. The work in [KKK21] proposes an alternative composability model to the UC model, which
can (at least to some extent) use non-black-box extractability and knowledge-type assumptions. In this case,
one can still obtain succinct UC SNARKs (under some restrictions) without needing black-box extraction.
The recent work in [GKO+22] obtains witness-succinct non-interactive arguments of knowledge in UC but
applying the random oracle model.

2 Preliminaries

PPT stands for probabilistic polynomial time. We use λ to denote the security parameter. We write x←$ X
to denote that x is sampled from a distribution X. If X is a set, then x←$ X denotes uniform sampling. We
write f(λ) = negl(λ) when f is negligible in λ and f(λ) = poly(λ) when f is polynomial in λ. For an integer
N ≥ 1, we define [N ] := {1, . . . , N}.
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Indistinguishability. We say that two distributions X1 and X2 are (s(λ), ϵ(λ))-indistinguishable if for
any circuit D of size s(λ), we have |Pr[D(X1) = 1]− Pr[D(X2) = 1]| ≤ ϵ(λ).

Hard-on-average problems. We define a language L ∈ NP to be a hard-on-average problem if

– It has an efficient instance sampler SampL(1
λ) that outputs x ∈ L together with an NP witness w.

– There is an efficient sampler SampL̄(1
λ) that with an overwhelming probability outputs x ̸∈ L.

– It is computationally hard to distinguish outputs of SampL(1
λ) and SampL̄(1

λ).

Language L is (s(λ), ϵ(λ))-hard if distributions of x from SampL(1
λ) and SampL̄(1

λ) are (s(λ), ϵ(λ))-indistinguishable.
It is sub-exponentially hard if there exits some constant δ > 0 such that previous distributions are (s(λ), ϵ(λ))-

indistinguishable for s(λ) = 2Ω(λδ) and ϵ(λ) = 1/2Ω(λδ). Lastly, L is exponentially hard if the above holds
and moreover |x|+ |w| = O(λδ) for (x,w)←$ SampL(1

λ).
Simple example is the DDH language where SampL outputs group elements ga, gb, gab, where a, b are

chosen uniformly at random and g is a group generator, and SampL̄ outputs 3 random group elements
ga, gb, gc. More generally, hard-on-average problem is implied by the existence of one-way-functions since it
is possible to construct a PRG from a one-way function [HILL99].

Falsifiable assumptions. Below we recall the notion of falsifiable assumptions.

Definition 1 ([GW11]). A falsifiable cryptographic assumption (C, c) consists of a PPT challenger C and
a constant c ∈ [0, 1). We say that A wins (C, c) if A(1λ) and C(1λ) interact and finally C outputs 1. The
assumption (C, c) holds if for all non-uniform PPT A, Pr[A wins (C, c)] ≤ c+negl(λ). Otherwise we say that
(C, c) is false.

Definition 1 captures most cryptographic assumptions from the literature. In the case of search assump-
tions (e.g., discrete logarithm problem and shortest vector problem), we set c = 0. In the case of decisional
assumptions (e.g., decisional Diffie-Hellman, decisional Learning with Errors), we set c = 1/2 since the
adversary can win with probability 1/2 by random guessing. Knowledge assumptions [Dam92, HT98] are
seemingly non-falsifiable.

2.1 Continuous Leakage-Resilient OWFs

A leakage-resilient OWF (LR-OWF) f is a function that is one-way even when the adversary is allowed
to learn arbitrary functions of f(x)’s preimage as long as this leakage is restricted to L bits. Continuous
LR-OWF (CLR-OWF) in the floppy model [ADVW13, ADW09] is a generalization of this where leakages
can happen multiple times. In short, it assumes a master secret key which is kept in a leakage-free server
(e.g., on a floppy disk) and then can be used to securely update the preimage x. L bits of leakage on the
preimage can occur after each update. Importantly however, updates have to preserve the output of the
OWF, that is f(x) = f(x′) when x′ is an update of x.

More formally, a CLR-OWF consists of the following probabilistic polynomial time (PPT) algorithms:
(1) KGen(1λ) that outputs a public parameter pp and an update key uk. (2) Sample(pp) takes as input the
parameter pp and outputs a random OWF input x. (3) Eval(pp, x) is a deterministic algorithm that produces
the OWF output y. (4) Update(uk, x) takes in the update key uk and x, and outputs an updated OWF input
x′.

We assume that a CLR-OWF satisfies the following properties.

Correctness. For any (pp, uk) ∈ KGen(1λ) and x ∈ {0, 1}∗, we have that Eval(pp,Update(uk, x)) = Eval(pp, x).
L-Continuous leakage-resilience. Let L = L(λ). For any PPT A,

Pr

[
(pp, uk)← KGen(1λ), x← Sample(pp),

y ← Eval(pp, x), x′ ← AOL(·)(pp, y)
: y = Eval(pp, x′)

]
= negl(λ),

where OL(·) is an oracle that takes as an input a leakage function h : {0, 1}∗ → {0, 1}L, on which OL(h)
sets x← Update(uk, x) and then returns h(x).
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There exists CLR-OWFs [ADVW13], which can leak almost the full key. We recall this result in Ap-
pendix A.

2.2 Argument System

We recall the notion of non-interactive argument systems.

Definition 2 (Indexed relation [CHM+20]). An indexed relation R is a set of triples (i, x,w) where i
is the index, x is the instance, and w is the NP-witness; the corresponding indexed language L(R) is the set
of pairs (i, x) for which there exists a witness w such that (i, x,w) ∈ R. Indexed relation is associated with an
efficient index sampling algorithm I that outputs an index i on input 1λ.

For example, i can be an arithmetic circuit and x and w public and private inputs to the circuit such
that the circuit outputs 1. We say that an indexed language is a hard-on-average problem if it is defined like
in Section 2, but additionally SampL and SampL̄ take i← I(1λ) as an input.

A non-interactive argument system for an indexed relation R is a tuple of PPT algorithms Π =
(Setup,P,V). The setup algorithm Setup(1λ, i) produces a common reference string crs and a trapdoor td.
The prover algorithm P(crs, x,w) produces a proof π for the statement (i, x) ∈ L. The verifier algorithm
V(crs, x, π) decides if π is a valid proof for a statement (i, x) by outputting either 0 or 1. Notice that P and
V are not directly given i as an input and instead get a crs which depends on i. This allows to potentially
compress the index description by preprocessing.

We require that Π satisfies the following two properties.

Completeness. For all (i, x,w) ∈ R, Pr[(crs, td)← Setup(1λ, i), π ← P(crs, x,w) : V(crs, x, π) = 1] = 1.

Soundness. For all non-uniform PPT adversaries A,

AdvsndΠ,A(λ) := Pr

[
i← I(1λ), (crs, td)← Setup(1λ, i)

(x, π)← A(1λ, i, crs)
:
V(crs, x, π) = 1∧

(i, x) ̸∈ L

]
= negl(λ) .

In some parts of the paper (where it does not matter), we drop i and I(1λ) from the definitions for simplicity.
However, index plays a crucial role in Section 5.

We call an argument system a SNARG (succinct non-interactive argument) if additionally the following
holds.

Proof succinctness. [GW11] Exists a constant c < 1 such that the length of the proof π is bounded by
succ(λ, |x|, |w|) := poly(λ) · (|x|+ |w|)c.

Various other succinctness definitions can be found from the literature. We occasionally discuss two other
forms of succinctness.

Verifier succinctness. Exists a constant c < 1 such that the verifier’s running time is bounded by poly(|x|+
succ(λ, |x|, |w|)).

CRS succinctness. CRS size is poly(λ). Importantly, CRS size is independent of |i|.

For example, [CFF+20, CHM+20, Gro16, PHGR13, RZ21] are proof and verifier succinct but not CRS
succinct.

3 On Adaptively-Secure Black-Box Extraction

A folklore understanding is that if an argument has black-box knowledge soundness (i.e., there is an efficient
algorithm Ext that can recover a witness from a proof by using a trapdoor and Ext is independent of
adversary’s code), then the proof has to be “as long as the witness”. It is easy to see that such a statement is
only partially accurate. Consider an argument system for some relation RL where L is an NP-language. The
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same argument system works for a modified relation R′L = {(x,w∥0k) : (x,w) ∈ RL} where the witness is
padded with k zeroes for an arbitrary number k. An extractor Ext for R′L needs to append 0k to the witness
it extracts for RL. Notably, the proof length for R′L remains the same as for RL independently of witness
padding length. This section correctly formalizes the folklore result about the proof size and witness length
by associating the hardness of finding the witness with the size of the argument.

We begin by recalling the definition of black-box knowledge soundness.
Black-box knowledge soundness. An argument system is black-box εks(λ)-knowledge sound for a

relation R if there exists a PPT extractor Ext, such that for any PPT adversary A,

Pr

[
(crs, td)← Setup(1λ), (x, π)← A(crs)

w← Ext(crs, td, x, π)
:
V(crs, x, π) = 1 ∧

(x,w) ̸∈ R

]
≤ εks(λ) .

We say the argument system is black-box knowledge sound if εks(λ) = negl(λ).
We prove that if the witness of the language cannot be guessed, except for probability ε, then the proof

size must be at least − log(ε+ εks) bits long. We start by formalizing the witness guessing probability.

Definition 3. Let L be an NP language and RL a corresponding relation. We say that an efficiently sam-
pleable distribution DL over L is ε(λ)-witness-hard for a relation RL if for any PPT guesser M, and any
security parameter λ ∈ N,

Pr[x← D(1λ),w←M(1λ, x) : (x,w) ∈ RL] ≤ ε(1λ) .

Theorem 1. Suppose an efficiently sampleable distribution DL over some NP language L is ε(λ)-witness-
hard for a relation RL. Let Π be an argument system that has (perfect) completeness and black-box εks(λ)-
knowledge soundness. Then the argument size of Π is at least − log(ε(λ) + εks(λ)) bits.

Proof. Suppose that Π is an argument system with black-box extractor Ext and the argument size is bounded
by p(λ) bits. We construct a witness-guesserM∗ (see Fig. 1), which picks a crs and an extraction key td and
guesses uniformly randomly a proof π of size p(λ) bits. It then returns the output of the black-box witness
extractor Ext(crs, td, x, π).

Let us analyze the success probability εM∗ of M∗ in the witness-hardness game against DL. Let E be
the distribution (x,w, crs, π) obtained by running x ← D(1λ) and w ← M∗(1λ, x) (crs and π are generated
insideM∗). Then,

εM∗ = Pr
[
(x,w, crs, π)← E(1λ) : (x,w) ∈ RL

]
≥ Pr

[
(x,w, crs, π)← E(1λ) : (x,w) ∈ RL ∧ V(crs, x, π) = 1

]
= Pr

[
(x,w, crs, π)← E(1λ) : (x,w) ∈ RL | V(crs, x, π) = 1

]
·Pr

[
(x,w, crs, π)← E(1λ) : V(crs, x, π) = 1

]
.

Let us separately analyze

ε1 := Pr
[
(x,w, crs, π)← E(1λ) : V(crs, x, π) = 1

]
and

ε2 := Pr [(x,w, crs, π)← E : (x,w) ∈ RL | V(crs, x, π) = 1]

For ε1: since x ∈ L, by perfect completeness there exists at least one proof of size at most p(λ) bits
that is accepted by the verifier. Thus, ε1 ≥ 1/2p(λ). In order to lower bound ε2, we construct an adversary
B against black-box knowledge soundness. The adversary B, described in Fig. 1, outputs x ← DL and a
randomly sampled proof π ← {0, 1}p(λ). By inlining B into the black-box knowledge soundness game, we get
Pr[(x,w, crs, π)← E(1λ) : V(crs, x, π) = 1 ∧ (x,w) ̸∈ RL] ≤ εks(λ). That is

Pr[(x,w, crs, π)← E(1λ) : V(crs, x, π) = 1 ∧ (x,w) ̸∈ RL]
= Pr[(x,w, crs, π)← E(1λ) : (x,w) ̸∈ RL | V(crs, x, π) = 1]
·Pr[(x,w, crs, π)← E(1λ) : V(crs, x, π) = 1]
≥ Pr[(x,w, crs, π)← E(1λ) : (x,w) ̸∈ RL | V(crs, x, π) = 1] · 1

2p(λ) .
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M∗(1λ, x)
(crs, td)← Setup(1λ);π ←$ {0, 1}p(λ);
return w← Ext(crs, td, x, π);

B(crs)
x← D(1λ);π ←$ {0, 1}p(λ);
return (x, π);

Fig. 1: A witness guessing algorithmM∗ for RL and a knowledge soundness adversary B

Thus, Pr[(x,w, crs, π) ← E(1λ) : (x,w) ̸∈ RL | V(crs, x, π) = 1] ≤ εks(λ) · 2p(λ), which means that ε2 >
1− εks(λ) · 2p(λ).

By combining those results, we get that ε(λ) ≥ εM∗ > 1
2p(λ) · (1−εks(λ) ·2p(λ)) = 1

2p(λ) −εks(λ). It follows

that ε(λ) + εks(λ) >
1

2p(λ) , which we can rewrite as p(λ) > − log(ε(λ) + εks(λ)). ⊓⊔

To understand this claim better, let us consider for simplicity that εks(λ) = 0. Then if ε = 1
2k(λ) , we

obtain the lower bound p(λ) ≥ − log( 1
2k(λ) + 0) = k(λ). In one extreme case, we can imagine that the best

PPT witness guesser is no better than an algorithm that guesses the witness at random, i.e., ε(λ) = 1/|w|.
Then we would get the folklore result that p(λ) = |π| ≥ |w|. In the other extreme, suppose that the language
is in P, in which case ε(λ) = 1. Then we get that − log(ε) = 0, which fits the intuition that there is no
need to communicate a proof for languages in P. However, in a typical situation (where we have some hard
language), the lower bound falls somewhere between those extremes.

A closely related but somewhat less precise result can be directly concluded from leakage-resilient OWFs
by viewing a proof as leakage on the witness. We show the proof of this impossibility using LR-OWFs
in Appendix B.

4 Non-Adaptive Black-Box Knowledge Soundness

This section defines non-adaptive black-box knowledge soundness and shows our positive result for FewP
and a negative result for NP.

Below we define non-adaptive black-box knowledge-soundness. To the best of our knowledge it has not
appeared in prior literature.

Definition 4 (Non-adaptive Black-box Knowledge Soundness.). An argument system is non-adaptive
black-box εks(λ)-knowledge sound for a relation R if there exists a non-uniform PPT extractor Ext, such that
for any admissible non-uniform PPT adversary A = (Ainp,Aprf),

Pr

[
(x, st)← Ainp(1

λ), (crs, td)← Setup(1λ)

π ← Aprf(st, crs),w← ExtAprf(st,·)(crs, td, x, π)
:
V(crs, x, π) = 1

∧(x,w) ̸∈ R

]
≤ εks(λ) .

where we refer to an adversary as admissible if it outputs a verifying proof with noticeable probability. We
say that the argument system is (non-adaptively) black-box knowledge sound if εks(λ) = negl(λ).

Remark 1. The adversary in Definition 4 is stateful only between the input-challenge stage and the proof-
challenge stage (through st), but not otherwise. We also assume that on each query Aprf (st, ·) gets fresh
random coins.

4.1 A Construction for FewP

In this section, we show that, under the existence of fully homomorphic encryption, universal hash functions
and SNARGs (not necessarily of knowledge) for a specific complexity class K, there exists a non-adaptively
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secure SNARK with black-box extraction for K10. We can obtain non-adaptive black-box knowledge sound-
ness for a non-trivial subset of NP called FewP. The class FewP can be described as the class of languages
admitting at most a polynomial number of witnesses. We remark that if one-way permutations exist, then
P ̸= FewP11. One example of a natural application of a SNARK for FewP is proving knowledge of w such
that R(w) is satisfied (for arbitrary relation R) and w opens a perfectly binding commitment.

Further preliminaries for this section can be found in Appendix A, where we define the standard definitions
of fully homomorphic encryption (FHE) and universal hash functions (UHF) which will be tools in our
construction.

We present our extractable construction in Fig. 212. As discussed in the introduction, its main intuition is
that the prover provides a (ciphertext containing a) bit of the witness together with the proof. The index for
which it is providing such a bit must be somehow hidden. This intuitively prevents the adversary from acting
differently for different bits (e.g., using different valid witnesses). This allows us to extract by repeatedly
asking the prover for a proof referring to a different index. To achieve the latter, we use an FHE scheme.
When extracting, we will need to keep track of what witness we are extracting (since there could be several).
We do this by using a fingerprint through a universal hash function. The hash is never computed explicitly
by the prover but it is evaluated through a homomorphic evaluation over the encrypted hashing key. This
also allows us to obtain zero-knowledge. Our soundness proof requires that the prover hash ciphertext uses
a different key than the one for the encryption of the witness bit.
The extractor for FewP. The extractor is presented in Fig. 3. It works by collecting different bits of
the witness by decrypting ctb (the ciphertext returned by the prover) and storing it in some table indexed by
the corresponding hash. The crucial point is that there is only a polynomial number of witnesses and thus
the extractor can (in the worst-case) “fingerprint” them all. Hashing the witness (through a universal hash
function) keeps the proof succinct.

Theorem 2. If Π∃ is an adaptively sound SNARG scheme for NP, FHE is an FHE scheme with semantic
security and H is a family of UHFs, then the construction in Fig. 2 is a SNARK for FewP satisfying
Definition 4. If Π∃ additionally satisfies computational zero-knowledge, then so does the resulting SNARK.

The proof of the theorem above is in Appendix C.1.

4.2 Impossibility for All NP

We now show that the previous constructive result cannot be extended from FewP to NP. We mentioned at
the end of Section 3 that we could view the proof as a leakage of the witness and use leakage resilient (LR)
cryptography to prove the impossibility of succinct black-box adaptive knowledge soundness. (Appendix B)
For the non-adaptive case, we can no longer view the SNARK proof as a one-time leakage since the extractor
(LR adversary) has the ability to rewind the prover and obtain multiple proofs (leakages). Using continuous
leakage resilience, we extend the impossibility to non-adaptive extraction.

Consider a L-CLR-OWF Σ = (KGen,Sample,Eval,Update). We define a relation RΣ = {((pp, y), w) :
pp ∈ KGen(1λ), w ∈ Sample(pp),Eval(pp, w) = y}. Suppose there is a non-adaptive black-box extractable
SNARK for RΣ . Let us further assume that the proof size of this SNARK is less than L bits.

We construct the following adversary A. First, A samples (pp, uk)← KGen(1λ), a random w, and outputs
((pp, y = Eval(pp, w)), st = (pp, uk, w)). Next, the extractor can query A(st, ·) with different CRS’es and get
proofs for the statement (pp, y) ∈ LRΣ

. Here we define A’s behavior as follows: on each query, A updates w,
that is it computes w′ ← Update(uk, w). Then it creates a proof with w′, π ← P(crs, (pp, y), w′), and returns
π. This proof is at most size L, thus at most L bits of information about w′ gets leaked. By L-CLR property
it is not possible to recover a witness for (pp, y) from this amount of information. Hence, the extractor cannot
extract the witness and such a SNARK cannot exist. We show this formally.

10 This class should include FHE encryption and UHF and should be closed under conjunction. In our theorem
statement, we simply require a SNARG for NP.

11 More generally, if poly-to-one one-way functions exist then P ̸= FewP [All86].
12 A slightly simpler construction for the case of UP (NP statements with a unique witness) is provided in [MPV24].
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Setup(1λ)

(ĉrs, t̂d)← Π∃.Setup(1
λ)

i∗ ←$ [Nw]

(pk
(H)
FHE, sk

(H)
FHE)← FHE.KG(1λ)

(pk
(proj)
FHE , sk

(proj)
FHE )← FHE.KG(1λ)

cti∗ ← FHE.Enc(pk
(proj)
FHE , i∗)

hk←$ KUHF

cthk ← FHE.Enc(pk
(H)
FHE, hk)

return (crs := (ĉrs, cti∗ , cthk, pk
(H)
FHE, pk

(proj)
FHE ), td := t̂d))

P(crs,R, x,w)
Parse crs as (ĉrs, cti∗ , cthk, pk

(H)
FHE, pk

(proj)
FHE )

r(H) ←$ FHE.Rnd; ct(H)w ← FHE.Enc(pk
(H)
FHE,w; r

(H));

r(proj) ←$ FHE.Rnd; ct(prj)w ← FHE.Enc(pk
(proj)
FHE ,w; r(proj));

cth ← FHE.Eval(pk
(H)
FHE, cthk, ct

(H)
w , fH)

where fH(hk,w) := Hhk(w)

ctbit ← FHE.Eval(pk
(proj)
FHE , cti∗ , ct

(prj)
w , fproj)

where fproj(i,w) := wi

π ← Π∃.P(ĉrs,R′,
(
x, cthk, pk

(H)
FHE, pk

(proj)
FHE , cth, cti∗ , ctbit

)
, (w, r(H), r(proj)))

where R′((x, cthk, pk
(H)
FHE, pk

(proj)
FHE , cth, cti∗ , ctbit), (w, r

(H), r(proj))) ⇐⇒

R(x,w) ∧ cth = FHE.Eval(pk
(H)
FHE, cthk, ct

(H)
w , fH) ∧ ctbit = FHE.Eval(pk

(proj)
FHE , cti∗ , ct

(prj)
w , fproj) ∧

ct(prj)w = FHE.Enc(pk
(proj)
FHE ,w; r(proj)) ∧ ct(H)

w = FHE.Enc(pk
(H)
FHE,w; r

(H))

return π∗ := (π, cth, ctbit)

V(crs,R, x, π∗)
Parse π∗ as (π, cth, ctbit)

return Π∃.V
(
ĉrs,R′,

(
x, cthk, pk

(H)
FHE, pk

(proj)
FHE , cth, cti∗ , ctbit

))
where R′ is defined like above

Fig. 2: Non-adaptively secure black-box extractable construction for FewP. Nw is a bound on the witness
size. Π∃ is the SNARG scheme.

Theorem 3. Let Σ = (KGen,Sample,Eval,Update) be an L-CLR-OWF and let Π be a non-adaptive black-
box εks(λ)-knowledge sound argument for RΣ as defined above. If the proof size is less than L(λ) bits, then
L-CLR-OWF can be broken with probability 1− εks(λ).

The proof of this theorem is in Appendix C.2. By combining Theorem 3 and Theorem 7, we obtain the
following result.

Theorem 4. If the discrete logarithm assumption holds in some group, then there exists an NP-language
L such that any non-adaptive BB knowledge sound argument system for RL has a proof size Ω(|w|) where
|w| is the witness size.

12



E(crs, td, x, π)
Initialize empty table W

hk←$ KUHF

for j∗ = 1, . . . , Nw

Run QIdx(x, j∗)

endfor

Let h∗ s.t. W [h∗][j] ̸= ⊥ for all j

return W [h∗][1] . . .W [h∗][Nw]

QIdx(x, j)

for k = 1, . . . , Nq = poly(λ)

// Sample fresh setup except for hk and j

(ĉrs, t̂d)← Π∃.Setup(1
λ)

(pk
(H)
FHE, sk

(H)
FHE)← FHE.KG(1λ)

(pk
(proj)
FHE , sk

(proj)
FHE )← FHE.KG(1λ)

ctj ← FHE.Enc(pk
(proj)
FHE , j)

cthk ← FHE.Enc(pk
(H)
FHE, hk)

Set crsj ←
(
ĉrs, ctj , cthk, pk

(H)
FHE, pk

(proj)
FHE

)
Query Aprf on crsj

obtaining π∗ = (π, cth, ctbit)

If proof π accepts then

b← FHE.Dec(sk
(proj)
FHE , ctbit);

else b← ⊥
Set W [h][j]← b

where h := FHE.Dec(sk
(H)
FHE, cth)

endfor

Fig. 3: Extractor for the case for FewP

5 GW Impossibility for Preprocessing SNARGs

Careful study of [GW11] reveals that the CRS generation algorithm of a SNARG in their definition depends
only on the security parameter. In other words, the proof separating SNARGs from falsifiable assump-
tions assumes that the SNARG is CRS succinct and does not allow preprocessing. Many modern SNARGs
have a relatively large CRS, which depends on the size of the index i (e.g., a circuit description) in some
way [CFF+20, CHM+20, GWC19, GGPR13, Gro16, RZ21]. This makes it questionable if the impossibility
result of Gentry and Wichs extends to such SNARGs. We reprove the impossibility theorem for SNARGs
that are not necessarily CRS-succinct.

Let us recall the leakage lemma from [GW11]. We say that a distribution A over tuples (x, π) is an
augmented distribution of X if x is distributed according to X and π is some arbitrary information, possibly
correlated to x. More formally, we may write A is the distribution over (x, π) such that x←$ X and π ← f(x)
where f is some (randomized and possibly inefficiently computable) function.

Lemma 1 (Leakage lemma [GW11]). There exists a polynomial p for which the following holds. Let
Xλ and X̄λ be two distributions that are (s(λ), ε(λ))-indistinguishable. Let Aλ over (x, π) be an augmented
distribution of Xλ, where |π| = ℓ(λ). Then there exist an augmented distribution Āλ of X̄λ such that Aλ and
Āλ are (s∗(λ), ε∗(λ))-indistinguishable where s∗(λ) = s(λ)p(ε(λ)/2ℓ(λ)) and ε∗(λ) = 2ε(λ).

We also present some definitions which help to prove the main result.

Definition 5 (Breaking Adaptive Soundness [Pas13]). We say that an algorithm A breaks adaptive
soundness of a SNARG Π for a language L with probability ε(·) if there exists an index i ∈ I such that for
every λ ∈ N,

Pr[crs← Setup(1λ, i), (x, π)← A(1λ, crs) : (i, x) ̸∈ L ∧ Verify(crs, x, π) = 1] ≥ ε(λ).

Note that if ε(λ) is non-negligible, then adaptive soundness cannot be satisfied.
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Definition 6 (Soundness Reduction [Pas13]). We say that a PPT machine R is a black-box reduction
for adaptive soundness of an argument Π based on a falsifiable assumption (C, c) if there exists a polynomial
p(·, ·) such that for every A that breaks adaptive soundness with probability ε(·), for every λ ∈ N, RA(1λ)
wins (C, c) with a probability at least p(ε(λ), 1/λ).

We say that RA is security-parameter preserving if additionally there exist a polynomial q such that RA(1λ)
queries A with inputs of the form (1λ, x ∈ {0, 1}∗) and at most q(λ) times.

We start by stating two technical lemmas, which we prove in Appendix C.

Lemma 2. If an indexed languages L ∈ NP has a sub-exponentially hard-on-average problem, then for any

d > 0, L also has a hard-on-average problem with (2λ
d

, 1/2λ
d

)-indistinguishability.

Lemma 3. Let Xλ and X̄λ be (2λ
d

, 1/2λ
d

)-indistinguishable distributions for some integer d ≥ 2. Let Aλ

over (x, π) be an augmented distribution of Xλ, where |π| = ℓ(λ) = o
(
λd

)
. Then there exists an augmented

distribution Āλ of X̄λ such that Aλ and Āλ are (poly(λ), negl(λ))-indistinguishable.

Remark 2. Note that (s(λ), ε(λ)) = (poly(λ), negl(λ))-indistinguishability is not enough in the previous
lemma because. Suppose |π| = ℓ(λ) = λd−1. Then,

s∗(λ) = s(λ)p(ε(λ)/2ℓ(λ)) = poly(λ)p(negl(λ)/2λ
d−1

)

= poly(λ)p(2−ω(λ
d−1)) = 2−ω(poly(λ)) ,

given that p is not a constant polynomial. Thus, Aλ and Āλ would be (provably) indistinguishable only for
very small circuits.

Now we are ready to restate the Gentry-Wichs impossibility result with respect to preprocessing SNARGs
from Section 2.2.

Theorem 5. Assume that,
– L is an indexed language with a sub-exponentially hard-on-average problem (see Section 2).
– Π is a SNARG for L, i.e., it is complete, sound, and proof-succinct (but not necessarily verifier-succinct

or CRS-succinct).
Then, for any falsifiable assumption (C, c) either:
– (C, c) is false or,
– there is no security-parameter preserving black-box reduction for adaptive soundness of Π based on (C, c).

Proof. Suppose there exists a security-parameter preserving black-box reduction R for adaptive soundness
of Π based on a falsifiable assumption (C, c) and that R makes at most q(λ) queries to its oracle, where q is
some polynomial. The proof idea is to construct a computationally unbounded adversary A∗ that is able to
break adaptive soundness. Then we show using Lemma 1 that there is an efficient emulator Emul that gives
outputs which are indistinguishable from outputs of A∗. Thus, if RA∗

(1λ) is able to break the assumption
(C, c), then so is REmul(1λ) and it follows that (C, c) must be false.

Since Π is proof-succinct there exists some n such that the proof size ℓ is bounded by λn · (|x|+ |w|)o(1).
Moreover by Lemma 2, since we assume that some sub-exponentially hard-on-average problem exists for L,
there also exists a sub-exponentially hard-on-average problem with (2λ

n+2

, 1/2λ
n+2

)-indistinguishability. Let
it be defined by an index sampler I and instance samplers SampL and SampL̄. It is more convenient to start
from describing the emulator Emul before we describe A∗. The emulator (see also Fig. 4) on input (1λ, crs, i)
checks that i is well-formed, samples (x,w) ← SampL(1

λ, i), creates a proof π ← P(crs, x,w) and returns
(x, π).

Notice that since SampL runs in polynomial time in λ, then |x| = poly(λ) and |w| = poly(λ). Therefore,

the proof size is ℓ(λ) = λo(nd+2).
Fix an arbitrary oracle input (1λ, crs, i). Let Xλ,i be the distribution of x from sampling (x,w) ←

SampL(1
λ, i) and X̄λ,i the distribution of x̄ we get by sampling x̄ ← SampL̄(1

λ, i). As we established, these
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A∗(1λ, crs, i)
if i ̸∈ I(1λ)

return ⊥;
(x̄, π̄)← Āλ,i,crs;

return (x̄, π̄);

Emul(1λ, crs, i)

if i ̸∈ I(1λ)
return ⊥;

(x,w)← SampL(1
λ, i);

π ← P(crs, x,w);

return (x, π);

Oi(1
λ, crs, i)//Initially j = 1

if j ≤ i

(x, π)← Emul(1λ, crs, i);

else

(x, π)← A∗(1λ, crs, i);

j ← j + 1;

return (x, π);

Fig. 4: Soundness adversary A∗, its efficient emulator Emul, and hybrid adversaries Oi

distributions are (2λ
n+2

, 1/2λ
n+2

)-indistinguishable. Let Aλ,i,crs be the augmented distribution of Xλ,i defined
as (x, π) ← Emul(1λ, crs, i). By Lemma 3, there exists an augmented distribution Āλ,i,crs of X̄λ,i such that
Aλ,i,crs and Āλ,i,crs are (poly(λ), negl(λ))-indistinguishable.

Now we can describe the adversary A∗. On the query input (1λ, crs, i) it simply returns (x̄, π̄)←$ Āλ,i,crs.
Since Āλ,i,crs is not necessarily efficiently sampleable, A∗ may be inefficient.

Our goal is to show that the assumption (C, c) is false if R exists, i.e.,

Pr[REmul(1λ) wins (C, c)] > c+ negl(λ) .

We show this in two parts.
1) RA

∗
wins (C, c): First, let εA∗(λ) be the probability that A∗ breaks adaptive soundness of Π,

εA∗(λ) := Pr

[
i← I(1λ), crs← Setup(1λ, i)

(x, π)← A∗(1λ, crs, i)
: (i, x) ̸∈ L ∧ V(crs, x, π) = 1

]
.

Let us first only consider the probability of the verifier accepting a proof,

εVf=1(λ) := Pr

[
i← I(1λ), crs← Setup(1λ, i),

(x, π)← A∗(1λ, crs, i)
: V(crs, x, π) = 1

]
.

Due to completeness, we know that εEmul(λ) = 1, where

εEmul(λ) := Pr
[
i← I(1λ), crs← Setup(1λ, i), (x, π)← Emul(1λ, crs, i) : V(crs, x, π)

]
= 1].

Since V can be seen as a polynomial-size distinguisher for Aλ,i,crs and Āλ,i,crs, we get from before that
|εEmul(λ)−εVf=1(λ)| ≤ negl(λ). Therefore, 1−negl(λ) ≤ εVf=1. Since Pr[i← I(1λ), crs← Setup(1λ, i), (x, π)←
A∗(crs, i) : (i, x) ̸∈ L] = 1, εA∗ = εVf=1 ≥ 1 − negl(λ). Thus, A∗ breaks adaptive soundness with an
overwhelming probability. Since we assumed a black-box reduction R, there must exist a polynomial p(·, ·)
such that RA

∗
(1λ) breaks (C, c) with probability at least p(1− negl(λ), 1/λ).

2) RA
∗
is indistinguishable from REmul: Suppose R makes q(λ) oracle queries. Let Oi for i ∈ {0, . . . , q(λ)}

denote a stateful algorithm that we describe in the following. The machine Oi for the first i queries responds
as Emul and for the rest of the queries (1λ, crs, i) responds as A∗ (see Fig. 4). In particular O0 = A∗ and
Oq(λ) = Emul. We denote εi := Pr[ROi(1λ) wins (C, c)]. We can again use indistinguishability of Aλ,i,crs and
Āλ,i,crs to show that |εi−εi+1| ≤ negl(λ). Therefore, by triangle inequality |ε0−εq(λ)| ≤ q(λ)negl(λ) = negl(λ).

Since ε0 = εA, we get that Pr[R
Emul(1λ) wins (C, c)] = εq(λ) ≥ ϵA−negl(λ) = p(1−negl(λ), 1/λ)−negl(λ).

Thus, REmul(1λ) can break the assumption (C, c) with an overwhelming probability. ⊓⊔

6 Understanding SNARG Impossibilities

In this section, we attempt to provide a complete overview of known impossibilities for non-interactive
arguments. This illustrates the precise assumptions behind these impossibilities in order to identify avenues
for further research. The following are some of the major impossibility results.
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1. Gentry-Wichs [GW11]: Adaptive soundness of a SNARG cannot be proven via a black-box reduction to
a falsifiable assumption.

2. Pass [Pas13]: Adaptive soundness of a statistical NIZK argument cannot be proven via a black-box
reduction to a falsifiable assumption.

3. Groth [Gro16]: Any pairing-based SNARK obtained from a NILP (a non-interactive linear proof) must
contain at least 2 group elements, one in each of the pairing source groups.
Since [Gro16] is relevant only in a very specific setting, and [Pas13] is about general NIZKs, we will not

focus on it in the rest of the paper. The proof idea of [GW11] is quite similar to our extension of it. We recall
the proof idea of [Pas13] in Appendix E and the proof idea of [GW11] in Appendix D. In the following, we
discuss the impossibility result of [GW11] and then outline the landscape of positive and negative results in
Table 1.

6.1 Impossibility of Gentry-Wichs

We recall the main result of [GW11].

Theorem 6. Let L be a sub-exponentially hard NP language and let Π be a SNARG for L, satisfying
completeness and proof succinctness. Then, for any falsifiable assumption (C, c), either (C, c) is false, or
there is no black-box reduction showing the (adaptive) soundness of Π based on (C, c).

We take a closer look at GW impossibility and enumerate the scenarios to which it does not apply. While
some of these are known results, they are all scattered in the literature.

– Non-adaptive soundness: The impossibility holds only for adaptive soundness. The proof technique
used in GW to rule out a black-box reduction uses a stateless adversary that outputs an instance proof
pair (x, π) on input a CRS. In particular, this does not rule out our reductions that can rewind the prover
and obtain different proofs for the same x, which is possible in the case of non-adaptive soundness. Recent
work attempted to show tightness from new albeit falsifiable assumptions, but the construction was shown
to be faulty [WW22].

– Low-space non-deterministic computation: The high-level idea of the GW impossibility result is a
“leakage lemma” that says the following: assuming the underlying NP language is 2ℓ-hard, a reduction
that breaks the assumption, cannot distinguish between pairs (x, π) generated by a (possibly inefficient)
cheating prover, where x ̸∈ L and π is a proof of length ℓ, and a pair (x̃, π̃) where x̃ ∈ L and π̃ is an
efficiently generated proof. Therefore, for computations recognizable in poly(λ) time and S(λ) space with
a non-deterministic Turing machine (the class NTISP (poly(λ), S(λ))), the GW result does not rule out the
possibility of a SNARG with proofs of length poly(λ)(S(λ)), since a computation in NTISP (poly(λ), S(λ))
is in DTIME(poly(λ) · 2S(λ)) which is not poly(λ) · 2O(S(λ))-hard. The work of [BKK+18] constructs a
delegation scheme for non-deterministic computations with a proof length that grows only with the space
of the computation.

– Preprocessing SNARGs: The GW separation result holds for SNARGs that have a “short” CRS. More
precisely, the impossibility proof requires that the size of the CRS depends only on the security parameter,
and does not grow with the size of the instance. This gap is now closed with the current work.

– Trapdoor languages: For some languages there are efficient proofs [JR13, LPJY14] in the quasi-adaptive
setting (QA-NIZK). These proofs have a constant number group elements – regardless of the instance size.
The construction of [KW15] for languages consisting of linear subspaces of a vector space, have constant-
sized proofs, achieve adaptive soundness (based on a falsifiable assumption) and perfect ZK. This seemingly
contradicts the GW impossibility result (as well as the impossibility on perfect ZK [Pas13]).13 The results
in the quasi-adaptive setting do not contradict the GW impossibility because the CRS hides a trapdoor
for deciding membership in the language. The proof of GW rules out reductions that cannot efficiently
detect when the soundness property is broken. We formalize this notion of trapdoor languages below.

13 The proof of [KW15] contains 1 group element and bypasses the [Gro16] impossibility as well. This is not contra-
dictory because the [Gro16] impossibility only applies to pairing-based NIZKs that are compiled from NILPs
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DL[M]1
(M, [x⃗]1)

r ← rank(M);

for A = (M ′ | x⃗′) ∈ Z(r+1)×(r+1)
p submatrix of (M | x⃗)

[det(A)]1 ←
d∑

i=1

(−1)i+d[x′
i]1Di,d;

if [det(A)]1 ̸= [0]1 : return false;

return true;

Fig. 5: Efficient decision algorithm for L[M ]1 , given access to trapdoor M

Bypassing GW: Trapdoor Languages. Intuitively, a trapdoor language allows verifying membership in
the language if one knows a trapdoor. Towards formalizing such languages, we illustrate it by taking the
linear subspace language as an example. Recall the language of linear subspaces from [KW15]. We have
a distribution D that outputs a language parameter lpar = [M ]1 ∈ Gn×m

1
14 for some matrix M and the

respective linear subspace language is defined as

L[M ]1 = {[x⃗]1 ∈ Gn
1 | ∃w⃗ ∈ Zm

p : x⃗ = M · w⃗}.

In the proof of [GW11], the reduction algorithm R that picks the CRS, (and in the case of the linear sub-
space language, also picks the language parameter lpar), should not efficiently distinguish between elements
x ∈ L from x ∈ L. The latter condition does not hold for linear subspace languages.

In particular, we now argue that it is possible to efficiently decide if [x⃗]1 ∈ L[M ]1 by knowing M .
Observe that given both M and x⃗ as integers, by Kronecker–Capelli theorem there exists w⃗ ∈ Zm

p such
that x⃗ = Mw⃗ (i.e., [x⃗]1 ∈ L[M ]1) if and only if rank(M) = rank(M | x⃗). Turns out a similar test can be used
even when given only [x]1 and M , but some extra care needs to be taken to compute rank(M | x⃗). Firstly,
consider a submatrix A = (M ′ | x′) ∈ Zd×d

p of (M | x⃗) which includes the last column x⃗. By using Laplace

expansion, we are able to compute [det(A)]1 =
∑d

i=1(−1)i+d[x′i]1Di,d where Di,d is a determinant of the
submatrix that we get by removing i-th row and d-th column from A. We still do not know det(A), but by
comparing [det(A)]1 to [0]1, we can tell if A is a singular or a non-singular matrix. Considering that rank
of a matrix is the largest order of any of its non-zero minors, we obtain the algorithm in Fig. 5 for deciding
elements of L[M ]1 .

In more detail, we first compute rank r of M , which can be done efficiently. The rank of (M | x⃗) can be
at most r + 1 since it includes only one extra column. To test this, we iterate over all the (r + 1)× (r + 1)
submatrices A of (M | x⃗) that contain the x⃗ column and compute [det(A)]1. If one of the determinants is
non-zero, then rank(M | x⃗) = r + 1 and it follows that [x⃗]1 ̸∈ L[M ]1 . Otherwise, rank(M | x⃗) = r = rank(M)
and [x⃗]1 ∈ L[M ]1 . In order for DL[M]1

to be efficient, we assume that n and m are small constants.
As we saw above, the linear subspace language has a trapdoor M which allows to efficiently recognize

language elements and this sufficient to avoid the [GW11] impossibility.
We now generalize this observation by defining a trapdoor language.

Definition 7. Let D(1λ) be an efficiently sampleable distribution that outputs (lpar, td) and each lpar is
associated with a language Llpar. A family of languages {Llpar}(lpar,td)∈D(1λ),λ∈N are trapdoor languages if

there exists a PPT deciderM such that for all λ ∈ N and all (lpar, td) ∈ D(1λ),

x ∈ L ⇔M(1λ, lpar, td, x) = 1.

The security definitions from Section 2.2 for non-interactive arguments slightly change in that the Setup
takes the language parameter instead of index as input and outputs a CRS. The soundness definition in

14 Here, G1 is an additive pairing group and [x]1 denotes a group element with a discrete logarithm x.
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general is not efficiently falsifiable because checking x ̸∈ L is usually not efficient. However, with trapdoor
languages it is falsifiable sinceM is efficient. In particular, a tautological assumption “Π is sound” becomes
a falsifiable assumption.

Examples of useful trapdoor languages. We are interested in “hard” trapdoor languages, i.e., trapdoor
languages that are hard to decide without knowledge of td. We illustrate a few examples below.
– Linear subspace language. Firstly, let us observe that the linear subspace languages fits into the trapdoor

language definition. We let D(1λ) pick a pairing description bp and sample a matrix M according to
some distribution. D(1λ) outputs lpar = (bp, [M ]1) and td = M . Deciding if x ∈ L[M ]1 can be decided
efficiently given td as we argued before. For many distributions of M , L[M ]1 is considered to be a hard

language on average. For example, if M = (1, x)⊤ and x,w ←$ Zp, then [Mw]1 = (w,wx), which is
indistinguishable from a random tuple [u, v]⊤1 ←$ G2

1 under the decisional Diffie-Hellman assumption.
More generally, hardness of such distributions is characterized by the matrix decisional Diffie-Hellman
(MDDH) assumption [EHK+13].

– Statements about encrypted values. Many statements about ciphertexts can be naturally formalized as
a trapdoor language by using the public key as lpar and the secret key as td. Consider the following
example.
Let (KGen,Enc,Dec) be a public key cryptosystem for encrypting ℓ-bit messages and let C : {0, 1}ℓ →
{0, 1} be an efficiently computable boolean circuit. We set D(1λ) = KGen(1λ), that is lpar = pk is the
public key and td = sk is the corresponding secret. We define the language as LC

pk = {c | C(Dec(sk, c)) =

1}. In other words, LC
pk contains ciphertexts that encrypt a message m which satisfy some property

characterized by the circuit C. For example, in range proofs we have C which checks that k1 ≤ m ≤ k2
for some constants k1 and k2. Clearly, LC

pk is a trapdoor language since given sk it is possible to decrypt
c and efficiently check that the plaintext satisfies C.

– Shuffle. Popular ciphertext-based language that fits into the trapdoor language mould is the ciphertext
shuffle. We set D = KGen. Let Σn be the set of permutations on n elements. The shuffle language for n
ciphertexts is

Ln-shuf
pk =

{(
(c1, . . . , cn), (c

′
1, . . . , c

′
n)
)
| ∃σ ∈ Σn ∀i ∈ {1, . . . , n} : Dec(sk, ci) = Dec(sk, c′σ(i))

}
.

With the secret key as the trapdoor, statements are easy to verify since one can decrypt both ciphertext
vectors, sort the resulting plaintext vectors, and then check their equality.
Shuffle proofs are often used to prove correct behaviour of mix-networks, which have for instance found
application in e-voting systems to anonymize ciphertexts of voters [SK95].

– Set membership. Let us consider a public set S and a public key cryptosystem. A set membership language
for S is defined as LS

pk = {c : Dec(sk, c) ∈ S}. This is clearly a trapdoor language where again sk plays
the role of a trapdoor. González and Ráfols [GR16] show that an argument for this language (and its
aggregated version for multiple ciphertexts) can be used to obtain, for example, shuffle arguments and
range arguments. Of course, there are also more direct application like showing that c encrypts a valid
candidate in an e-voting system, where S is the set of all candidates.
We note that trapdoor languages are interesting, arise frequently in practice and GW impossibility does

not apply. Can we construct SNARGs from falsifiable assumptions for trapdoor languages? We leave resolving
this as an interesting open question, and believe that our formalization is a first step in identifying the middle
ground where GW does not apply but the language remains interesting.

6.2 A Complete Picture

In Table 1, we give an overview of the impossibility results for non-interactive arguments, and positive
results known under various relaxations. As already highlighted above, there are two major impossibility
results. Firstly, there is no adaptively sound succinct argument for all non-deterministic computations with
a black-box reduction to a falsifiable assumption [GW11]. This holds even with a designated verifier (a verifier
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Table 1: (Im)possibility results for non-interactive arguments under falsifiable assumptions. BB stands for
black-box.

adaptive
sound-
ness

public
verifier

succinct
argument

language class statistical
ZK

notes/citation

+ +/− + NP +/− No BB reduc-
tion [GW11]

+ +/− +/− NP + No BB reduc-
tion [Pas13]

− + + NP + [LP21] and [SW14]

+ + + P trivial [CJJ21b, GZ21,
KPY19]

+
(quasi-

adaptive)

+ + linear subspace + [KW15]

− + + batch NP − [CJJ21a]

+ + + non-deterministic
bounded space

− [KVZ21]

that holds a private verification key). Secondly, there is no statistical zero-knowledge argument (succinct or
not) for all non-deterministic computations with a black-box reduction to a falsifiable assumption [Pas13].
Although not mentioned in the original paper, this impossibility result also extends to the designated verifier.
15

On the other hand, by relaxing some of the requirements, it is possible to achieve succinct arguments
and also statistical zero-knowledge arguments. Delegation schemes are adaptively sound succinct arguments
for deterministic computation and they are achievable under falsifiable pairing-based and lattice-based as-
sumptions as was shown by [CJJ21b, GZ21, KPY19]. Recently Lipmaa and Pavlyk [LP21] showed that
non-adaptivity is another possible relaxation. They construct a non-adaptively sound SNARG for non-
deterministic computation that has perfect zero-knowledge based on a new, but falsifiable assumption. A
non-adaptively sound SNARG under a falsifiable assumption was known even prior to [LP21]. Namely, Sa-
hai and Waters [SW14] constructed a succinct perfect NIZK argument with non-adaptive soundness from
iO. Subsequent to their work, constructions of iO have been proposed which are secure under falsifiable
assumption, e.g. [WW21]. We give a brief overview of this SNARG construction in Appendix F.

Acknowledgements. We thank the reviewers of CRYPTO 2022 for constructive feedback, in particular, for
pointing out the connection between blackbox extractability and leakage-resilient cryptography. We thank
Helger Lipmaa for comments on the paper. We thank Michele Ciampi for conversations about properties on
public-key cryptosystems. Matteo Campanelli worked on this project while at Protocol Labs. We thank the
authors of [MPV24] for pointing out some flaws in our proofs.

15 As can be seen in Appendix E, neither the inefficient soundness adversary Aslow nor its emulator Afast need to
run the verifier internally and thus the same impossibility proof applies for the designated verifier setting.
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A Further Preliminaries

A.1 Computational Zero-knowledge

We say that an argument system Π for a relation R satisfies computational zero-knowledge if there exists a
PPT simulator Sim, such that for any PPT A, |ε0 − ε1| = negl(λ), where

εb := Pr
[
(crs, td)← Setup(1λ) : AOb(crs,td,·)(crs) = 1

]
.

The oracle Ob takes an input (crs, td, x,w). It returns ⊥, when (x,w) ̸∈ R. Otherwise, if b = 0 it returns
π ← P(crs, x,w) and if b = 1 it returns π ← Sim(crs, td, x).

A.2 Fully Homomorphic Encryption (FHE)

An FHE scheme consists of a tuple of algorithms (KG,Enc,Dec,Eval) with the following syntax:

KG(1λ)→ (pk, sk): generates a key pair (the algorithm is randomized).

Enc(pk,m)→ ct: produces a ciphertext corresponding to a message m through the public key (the algorithm
is randomized).

Dec(sk, ct)→ m: decrypts a ciphertext through the secret key (the algorithm is deterministic).

Eval(pk, ctm, F )→ ctF : produces an encryption of F (m) from an encryption of m through the public key
(the algorithm is randomized).

Occasionally we may overload the notation of Eval for functions with arity higher than one, e.g., we write
Eval(pk, ct(1), . . . , ct(n), F ) for input ciphertexts ct(1), . . . , ct(n), and function F that takes as input tuples of
size n.

Occasionally, we need to explicitly write Enc(pk,m; r), where r ←$ Rnd are the random coins sampled
from the randomness space Rnd.

We need FHE schemes that satisfy correctness and semantic security as defined below. We also require
an additional property known as compactness, which essentially implies that the ciphertext size does not
grow through homomorphic operations and the output length only depends on the security parameter.

Correctness. For any λ, plaintext m and function F ,

Pr [Dec(sk, ct) = m] = 1

and
Pr [Dec(sk,Eval(pk, ct, F )) = F (m)] = 1

where (pk, sk)← KG(1λ) and ct← Enc(pk,m).

Semantic security. For all λ, for any PPT adversary A = (A1,A2),

∣∣∣∣∣Pr
[

(pk, sk)← KG(1λ), (st,m0,m1)← A1(pk)

b←$ {0, 1}, ct← Enc(pk,mb), b
′ ← A2(st, ct)

: b = b′

]
− 1/2

∣∣∣∣∣ = negl(λ)

Compactness. There is a polynomial p, such that for any (pk, sk) ← KG(1λ), ciphertexts ct(1), . . . , ct(n),
and function F , the size of the evaluation ciphertext Eval(pk, ct(1), . . . , ct(n), F ) is bounded by p(λ).
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A.3 Universal Hash Functions

We say that a family of functions H = {Hhk : M → Y }hk∈K for |M | > |Y | is a universal hash function (UHF)
family if for all distinct m1,m2 ∈M ,

Pr
[
Hhk(m1) = Hhk(m2) : hk←$ K

]
= 1/|Y | .

Therefore, UHF must only satisfy non-adaptive collision resistance compared to a standard cryptographic
hash function. More precisely, in a cryptographic hash function, the adversary first gets a key hk and then has
to find distinct m1,m2 that produce a collision. In the case of UHF, m1,m2 are fixed beforehand, and then
hk is picked independently of m1 and m2. Although satisfying a weaker property, UHFs are very efficient to
compute and information-theoretically secure.

Consider, for example, the following construction. Let F be a prime order finite field. For some n ≥
0, we define M = K = Fn and Y = F. For hk = (k1, . . . , kn) ←$ Fn the hash function is defined as

Hhk(m1, . . . ,mn) =
∑n

i=1 kimi. Let us confirm that this is indeed a UHF. Suppose for distinct a⃗, b⃗ ∈ Fn,

Hhk(⃗a) = Hhk(⃗b). Thus, Hhk(⃗a)− Hhk(⃗b) =
∑n

i=1 ki(ai − bi) = 0. Since at least for some j, aj − bj ̸= 0, there
are |F|n−1 keys that satisfy this equation. Thus, the probability of collision is |F|n−1/|F|n = 1/|F|. This
probability will be negligible by picking a suitably large field F.

One can also compress the key size in the previous construction by defining the key space to be K = F
and Hhk(m⃗) =

∑n
i=1 mik

i−1, where k ←$ K = F. Since, Hhk(⃗a) − Hhk(⃗b) =
∑n

i=1(ai − bi)k
i−1 = 0 if k is

a root of a non-zero at most degree n − 1 polynomial, it follows that the collision probability is bounded
by (n− 1)/|F|. This is not formally a UHF anymore (collision probability is not 1/|Y |), but still serves our
purposes.

A.4 Construction of CLR-OWF

Agrawal et al. [ADVW13] propose and prove the security of the following CLR-OWF. KGen(1λ) picks a
discrete logarithm secure group G of order p with a generator g. It samples α⃗ = (α1, . . . , αn)←$ Zn

p and sets
gi ← gαi for i = 1, . . . , n. The public parameter is pp = (G, g, g1, . . . , gn) and the update key is uk = α⃗. The
sampling algorithm Sample(pp) outputs x⃗←$ Zn

p . Eval(pp, x⃗) returns y ←
∏n

i=1 g
xi
i . Update(uk, x⃗) chooses a

random vector β⃗ that is orthogonal to α⃗ and returns x⃗′ ← x⃗+ β⃗.

The correctness holds since
∏n

i=1 g
x′
i

i = g
∑n

i=1 αixi+
∑n

i=1 αiβi = g
∑n

i=1 αixi =
∏n

i=1 g
xi
i .

Theorem 7 ([ADVW13]). If the discrete logarithm assumption holds in group G, then there exists a
L-CLR-OWF in the floppy model, with L(λ) < (n− 2) log p− ω(log λ).

B Impossibility of Adaptive BB Extraction Using LR-OWF

The impossibility shown in Theorem 1 can be interpreted as a consequence of leakage-resilience; a SNARK
proof is leakage on the witness. For an NP-relation that is leakage-resilient, recovering the entire witness is
impossible for an extractor even given the leakage, if this leakage is small.

Definition 8 ((ℓ, ε)-LR-OWF). A function family F = {fi : Di → Ri} is (ℓ, ε)-LR one-way if:

– There exists efficient algorithms (i) KGen(1λ) to sample an index i (ii) Sample(i) for sampling an input
x←$ Di (iii) Eval(i, x) for computing y = fi(x).

– For any PPT A,

Pr

[
i← KGen(1λ), x← Sample(i),

y ← Eval(i, x), x′ ← AOℓ(·)(i, y)
: y = Eval(i, x′)

]
≤ ε

where Oℓ(·) is an oracle that takes as an input a leakage function h : {0, 1}∗ → {0, 1}ℓ, on which Oℓ(h)
returns h(x). Adversary can query Oℓ(·) only once.
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Let F be a family of (ℓ, ε)-LR OWFs. For f ∈ F , consider the relation RF := {((x, i),w) | i ∈ KGen(1λ),w ∈
Sample(i), x = Eval(i,w)}.
Theorem 8. A non-interactive argument system Π for RF with argument size at most ℓ bits, has black-box
knowledge soundness error εks ≥ 1− ε.

Proof. By LR one-wayness of f , we have

Pr[i← KGen(1λ), x←$ Di,w← AOℓ(·)(1λ, x) : ((x, i),w) ∈ RF ] ≤ ε.

Consider an argument system Π for RF with argument size bounded by ℓ bits. Let Ext be the black-box
extractor guaranteed by Π. We construct an adversary AOℓ(·) that breaks the ℓ-leakage resilience of f . A
receives as challenge x, picks a crs together with an extraction key td, sets h(X) := P(crs, x, X), and receives
π ← Oℓ(h) = P(crs, x,w). It then invokes the black-box witness extractor Ext(crs, td, x, π) to receive w, and
returns w as preimage. Assuming perfect correctness, we have that A succeeds in breaking one-wayness of f
with the probability that the extractor succeeds. Pr[A succeeds ] ≥ 1− εks(λ). Thus, εks ≥ 1− ε. ⊓⊔

Since an adversary can always guess the correct leakage with probability 1/2ℓ, all OWFs are LR with
ℓ = O(log |w|). We therefore obtain as a corollary, that an argument for RF must be at least of logarithmic
size.

Corollary 1. Assuming the existence of OWFs, a SNARK with negligible black-box knowledge soundness
error must have argument size at least Ω(log |w|).

With concrete LR-OWFs even better lower bounds can be achieved. Consider for example the discrete
logarithm based (C)LR-OWF from Theorem 7. We obtain the following result.

Corollary 2. If the discrete logarithm assumption holds, then there exist a LR-OWF family F such that
any non-interactive black-box knowledge sound argument for the relation RF must have size Ω(|w|).
The latter also shows that black-box extractable SNARKs for all NP do not exist.

C Additional Proofs

C.1 Proof of Theorem 2

Theorem 9 (Restatement of Theorem 2). If Π∃ is an adaptively sound SNARG scheme for NP, FHE
is an FHE scheme with semantic security and H is a family of UHFs, then the construction in Fig. 2 is
a SNARK for FewP satisfying Definition 4. If Π∃ has additionally computational zero-knowledge, then so
does the resulting SNARK.

Proof. We prove succinctness and zero-knowledge respectively in Lemma 11 and Lemma 12. In the rest, we
will focus on proving knowledge soundness. We use the extractor in Fig. 3. The extractor can have embedded
Nw, a bound on the length of witnesses, since it is non-uniform. In the remainder, we define S(j), for index
j, as the set of strings h for which W [h][j] ̸= ⊥ after running QIdx(x, j). That is,

S(j) :=
{
h :W [h][j] ̸= ⊥ after running QIdx(x, j)

}
. (1)

Later in Lemma 4 we show that for h ∈ S(j) there exists w such that R(x,w) ∧ H(w) = h (with high
probability). Therefore, h ∈ S(j) intuitively means “the extractor holds the j-th bit of a witness w such that
H(w) = h”.

In order to argue black-box knowledge soundness, we should be able to successfully extract from an
adversary that returns an accepting proof with noticeable probability, i.e. with probability λ−c for some
positive constant c16. We show that for this type of adversary it holds with noticeable probability that
∃h ∈

⋂Nw

j=1 S(j) (this is key for extraction; see last line in extractor definition). We argue this is the case by
combining two facts:

16 This simplifies the proof, but we can argue with minor modifications the case for an adversary returning an
accepting proof with only non-negligible probability.
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– S(j) = S(j′) with overwhelming probability for all j, j′ (Lemma 7);

– If Pr [adversary returns an accepting proof] is non-negligible then Pr [S(j) ̸= ∅] is non-negligible (Lemma 8).

If ∃h ∈
⋂Nw

j=1 S(j), then the string returned by the extractor is a witness with overwhelming probability
because W [h][j] is a bit of a witness for the relation with overwhelming probability (by Lemma 4) and
because, except with negligible probability, there exists a unique w such that Hhk(w) = h (by Lemma 9).
This concludes the proof. ⊓⊔

The following auxiliary lemma shows that an element in the table constructed by the extractor actually
captures a bit of the witness with high probability.

Lemma 4. For any PPT adversary A, for each j ∈ {1, . . . , Nw}, let S be defined as in Eq. (1), then the
probability Pr[E] is overwhelming where E = “ ∀h ∈ S(j) : ∃w : R(x,w) ∧Hhk(w) = h ∧W [h][j] = wj” and
wj denotes the j-th bit of w.

Proof. Let us assume by contradiction that Pr[E] is not overwhelming for some j, or equivalently that for
some j, p∗ := Pr[¬E] is non-negligible where ¬E = “∃h ∈ S(j) :̸ ∃w : R(x,w)∧Hhk(w) = h ∧W [h][j] = wj”.
We build an adversary B for the adaptive SNARG soundness experiment exactly as in the proof of Lemma 10
(to which we refer the reader).

We claim that B breaks the soundness experiment with non-negligible probability, which contradicts the
assumption on the soundness of the SNARG Π∃ (absurd!).

Let us now prove the claim above. We call a string h “bad” if for that h it holds that ̸ ∃w : R(x,w) ∧
Hhk(w) = h ∧W [h][j] = wj . By this definition Pr[¬E] = Pr[∃ bad h ∈ S(j)] is non-negligible. We show that
if this is the case then it must be that in, B’s code, the following probability is also non-negligible:

p′ := Pr[h bad ∧ π accepting proof |(π, cth, . . . )← Aprf(. . . ) and h← FHE.Dec(sk
(H)
FHE, cth)]

This is because by definition of our extractor and by the union bound we have that Pr[¬E] ≤ Nq ·p′. Now if p′

were negligible it would necessarily follow that Pr[¬E] is also negligible (because by construction Nq < q(λ)
for some polynomial q for infinitely many values of λ), which reaches an absurd. Now we observe that:

Pr[B wins] =

Pr[̸ ∃w, r(H), r(proj) : R(x,w) ∧ cth = FHE.Eval(pk
(H)
FHE, cthk,FHE.Enc(pk

(H)
FHE,w; r

(H)), fH) ∧

ctbit = FHE.Eval(pk
(proj)
FHE , cti∗ ,FHE.Enc(pk

(proj)
FHE ,w; r(proj)), fproj)] ≥ p′

where the inequality follows by observing that the event on which p′ is defined implies the event of the prob-
ability on the left-hand side (by construction and by correctness of the encryption scheme). This concludes
the proof. ⊓⊔

The following two auxiliary lemma observe that the probability of an adversary returning a valid proof
with good probability for a CRS containing a randomly sampled index i∗ and hashing key should also hold
when we provide them with a CRS “referring to” an arbitrary index i∗ and hashing key. This is useful to
ensure that we can apply our extraction strategy. Otherwise we could for example conceive an adversary
returning a valid proof for all indices except a few. Such an adversary would return a valid proof with high
probability for a honestly generated CRS but we would not be able to extract from it.

Lemma 5. For any PPT adversary A, if Pr [A returns an accepting proof] in the black-box knowledge-
soundness experiment (Definition 4) is non-negligible then for any i∗ ∈ [Nw] the following probability is
non-negligible:

p(i
∗)

acc := Pr
[
(crs, td)← Setupi∗(1

λ), (x, π)← A(crs) : V(crs, x, π) = 1
]

where Setupi∗ is defined in Fig. 6.
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Setupi∗(1
λ)

(ĉrs, t̂d)← Π∃.Setup(1
λ)

(pk
(H)
FHE, sk

(H)
FHE)← FHE.KG(1λ)

(pk
(proj)
FHE , sk

(proj)
FHE )← FHE.KG(1λ)

cti∗ ← FHE.Enc(pk
(proj)
FHE , i∗)

hk←$ KUHF

cthk ← FHE.Enc(pk
(H)
FHE, hk)

return (crs := (ĉrs, cti∗ , cthk, pk
(H)
FHE, pk

(proj)
FHE ), td := ⊥)

Fig. 6: Modified setup with fixed index in Lemma 5.

Proof. First observe that for any adversary A, for any j, j′ ∈ [Nw]. The probabilities p
(j)
acc and p

(j′)
acc must

be negligibly close. If they were not then we could build an adversary breaking IND-CPA of the FHE since
intuitively we could distinguish ciphertexts of j from those of j′ (a formal description of this adversary would
be a simpler variant of the one we build in the proof of Lemma 7).

Next, we observe that we can write p
(avg)
acc Pr [A returns an accepting proof] in the black-box knowledge-

soundness experiment (Definition 4) as a function of p
(i∗)
acc for i∗ = 1, . . . , Nw through a simple marginalization

and bound it as follows

p(avg)acc =
1

|Nw|
∑

i∗∈|Nw|

p(i
∗)

acc ≤ min
i∗∈|Nw|

p(i
∗)

acc + ϵ ,

where ϵ is a negligible quantity. We can argue the bound by simple algebra and by applying our previous

observation. As a consequence of the above, it is easy to see that, if p
(avg)
acc is non-negligible, so must be each

p
(i∗)
acc . ⊓⊔

Lemma 6. For any PPT adversary A, if Pr [A returns an accepting proof] in the black-box knowledge-
soundness experiment (Definition 4) is non-negligible then for any i∗ ∈ [Nw] and any bit string hk∗ of
polynomial size the following probability is non-negligible:

p(i
∗,hk∗)

acc := Pr
[
(crs, td)← Setupi∗,hk∗(1

λ), (x, π)← A(crs) : V(crs, x, π) = 1
]

where Setupi∗,hk∗ is defined in Fig. 7.

Proof. By applying Lemma 5 we can conclude that the probability of an accepting proof by A with respect
to a CRS from Setupi∗ is non-negligible. Now assume for sake of contradiction that, instead, for some hk∗ the
probability of an accepting proof by A with respect to a CRS from Setupi∗,hk∗ is non-negligible. If this the
case we can build a successful adversary against the semantic security of the FHE scheme. This adversary
would intuitively be able to distinguish a randomly sampled hashing key hk from hk∗ as follows: it would
provide a freshly sampled hk and the fixed hk∗ as potential plaintexts to the IND-CPA challenger. It would
then emulate Setup to obtain a CRS using the target ciphertext cthk. It would then pass this onto A. If the
returned proof were to be accepting the IND-CPA adversary would return 0, otherwise 1. This would lead
to a non-negligible probability of success given the gap between Setupi∗ and Setupi∗,hk. This concludes the
proof. ⊓⊔

Lemma 7. For any PPT adversary Aksnd = (Ainp,Aprf), for all j ̸= j′ the sets S(j), S(j′) are equal except
with negligible probability (where S is defined in the proof of Theorem 9).
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Setupi∗,hk∗(1
λ)

(ĉrs, t̂d)← Π∃.Setup(1
λ)

(pk
(H)
FHE, sk

(H)
FHE)← FHE.KG(1λ)

(pk
(proj)
FHE , sk

(proj)
FHE )← FHE.KG(1λ)

cti∗ ← FHE.Enc(pk
(proj)
FHE , i∗)

cthk ← FHE.Enc(pk
(H)
FHE, hk

∗)

return (crs := (ĉrs, cti∗ , cthk, pk
(H)
FHE, pk

(proj)
FHE ), td := ⊥)

Fig. 7: Modified setup with fixed index and hashing key in Lemma 6.

Proof. We can rephrase the theorem statement as follows: consider the work of the extractor (Fig. 3 and let
hk∗ be the hashing key it is using to retrieve the witness. Then, at the end of extraction, the probability
of the following event is negliglible: that for indices j0 ̸= j1 there exists h∗ such that h∗ ∈ S(j0) but
h∗ ̸∈ S(j1). Assume by contradiction that it is not the case. We show we can break semantic security of FHE
(Appendix A.2) with the adversary ACPA in Fig. 8.

Intuitively the adversary ACPA does the following. After receiving a public key pk∗FHE from the FHE
challenger, “emulates” the extractor invoking a variant of QIdx in Fig. 3 (QIdx in Fig. 8). It does this to
identify the indices j0, j1 as defined above. ACPA constructs each set S(j) exactly as the extractor (implicitly)
does, but without storing the decrypted bits in W [h][j] (which it cannot due to not having the secret key).
More precisely, after receiving a valid proof for index j which includes hash h∗ (after decrypting cth with

sk
(H)
FHE

17), ACPA will simply set W [h∗][j] to a dummy “check” value (✓ in Fig. 8). This is enough to define the
sets S(j) which are our concern below. By hypothesis there exist with non-negligible probability indices j0, j1
such that S(j0) ̸= S(j1). Adversary A1

CPA finds such indices and returns j0 and j1 to the FHE challenger
as challenge plaintexts. It also saves a “target” hash h∗ that is in S(j0) but not in S(j1). Once received a
ciphertext ct? A2

CPA will query Aprf with a CRS that uses ct? (the target ciphertext encrypting either j0 or
j1) as encrypted index.

The probability of this adversary winning the semantic security game is at least:

1

2
+ Pr[π̂ verifies ∧ h = h∗]

We can write the probability on the right as follows:

Pr[π̂ verifies ∧ h = h∗] =

Pr[h = h∗ | π̂ verifies ∧ h ∈
⋂
j

S(j)] · Pr[h ∈
⋂
j

S(j) | π̂ verifies] · Pr[π̂ verifies] ≥(
Pr[∃h∗ ∈ S(j0) \ S(j1)]

Nq ·Nw
− negl

)
·
(
1− negl

)
· 1

poly(λ)

where above we used: the bound on the size of
⋂

j S(j) and the fact that (up to negligible factors) h must
be uniformly distributed otherwise one could reduce to semantic security similarly to how done in Lemma 6;
the results from Lemma 10; the assumption on the original knowledge soundness adversary.

In order to conclude that the product above leads to a non-negligible quantity (thus breaking semantic-
security of FHE and reaching a contradiction), we can observe the following: by the assumption on the
adversary Pr[∃h∗ ∈ S(j0) \ S(j1)] is non-negligible; we can guarantee, however, that this property is large
enough to stay non-negligible after being divided by the (polynomially bounded) denominators by appropri-
ately amplifying it by repeating the steps in A1

CPA enough (albeit polynomially many) times. ⊓⊔

17 This is specifically the reason we have two key pairs for FHE: this adversary needs to reconstruct the hash when,
at the same time, it is not able to see the encrypted indices.
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A1
CPA(pk

∗
FHE)

Initialize empty table W

hk←$ KUHF

Run Ainp to obtain input x

for j∗ ∈ [Nw]

Run QIdx(x, j∗)

endfor

For each j let S(j) :=
{
h : W [h][j] ̸= ⊥}

Find j0, j1 ∈ [Nw] such that S(j0) ̸= S(j1) (o.w. abort)

Let h∗ ∈ S(j0) \ S(j1)
Save all computed values and pk∗FHE in state st

return (st,m0 = j0,m1 = j1)

A2
CPA(st, ctj?)

(ĉrs, t̂d)← Π∃.Setup(1
λ)

(pk
(H)
FHE, sk

(H)
FHE)← FHE.KG(1λ)

cthk ← FHE.Enc(pk
(H)
FHE, hk)

Let crs? :=
(
ĉrs, ctj? , cthk, pk

(H)
FHE, pk

∗
FHE

)
query Aprf on (crs?, x) obtaining π∗ = (π, cth, ctbit)

h← FHE.Dec(sk
(H)
FHE, cth)

If proof π rejects, then abort

If h = h∗, let b = 0, else b←$ {0, 1}
return b

QIdx(x, j)

for k = 1, . . . , Nq

(ĉrs, t̂d)← Π∃.Setup(1
λ)

(pk
(H)
FHE, sk

(H)
FHE)← FHE.KG(1λ)

(pk
(proj)
FHE , sk

(proj)
FHE )← FHE.KG(1λ)

cthk ← FHE.Enc(pk
(H)
FHE, hk)

ctj ← FHE.Enc(pk
(proj)
FHE , j)

Let crsj :=
(
ĉrs, ctj , cthk, pk

(H)
FHE, pk

(proj)
FHE

)
query Aprf on (crsj , x) obtaining π∗ = (π̂, cth, ctbit)

h← FHE.Dec(sk
(H)
FHE, cth)

If proof π̂ accepts, then set W [h][j]← ✓

endfor

Fig. 8: IND-CPA adversary and auxiliary algorithms for proof in Lemma 7.
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Lemma 8. For any PPT adversary A, if Pr [A returns an accepting proof] in the black-box knowledge-
soundness experiment (Definition 4) is non-negligible then for any j ∈ [Nw] the probability Pr [S(j) ̸= ∅]
is non-negligible.

Proof. This follows easily by the definition of set S and how QIdx works (Fig. 3). In fact, by inspecting the
last two lines in the loop of QIdx and the definition of S (see proof of Theorem 9) we can see that S(j)
becomes a non-empty set as long as the adversary returns at least one accepting proof referring to index j.

This can be bounded by the probability p
(j,hk)
acc as defined in Lemma 6. Applying that same lemma concludes

the proof. ⊓⊔

The following fact is useful in the proofs of the lemmas above. It states that we should not expect hash
collisions among witnesses.

Lemma 9. For any PPT adversary, for all witnesses w,w′ such that R(x,w) and R(x,w′) it holds that
Pr [Hhk(w) = Hhk(w

′)] is negligible, where the probability is over the randomness of the adversary and the
sampling of hk.

Proof. The statement follows directly from the likely absence of collisions in the hash function (Appendix A.3)
and from the fact that the instance x is selected independently of the hash key (this is implied by non-adaptive
security, i.e. Definition 4).

The following lemma essentially states that the set S(j) “converges” after sufficiently many queries Nq =
poly(λ).

Lemma 10. For any PPT adversary, for each index j, there exists constant c such that for all constants

c′ > c the sets S(λc)(j) = S(λc′ )(j) except with negligible probability, where S(t)(j) denotes the set S(j) after
t queries to QIdx(x, j). Moreover, |S(λc)(j)| will be at most the number of witnesses of the instance.

Proof. For an adversary returning a valid proof with negligible probability, the result follows immediately.
Let us then consider the case of an adversary returning a valid proof with non-negligible probability. We
proceed by contradiction: assume that for any polynomial number of invocations t to QIdx(x, j), the size of
the set S(j) increases with non-negligible probability after a polynomial number of steps. Call N the number
of witnesses of x and recall that N = poly(|x|) = poly(λ) since the language is in FewP. Then observe that
there exists a (polynomial) number of steps t∗ after which the set S became larger than N , i.e., |S(t∗)(j)| > N
with non-negligible probability. By our hypothesis, after a polynomial number of steps, at least one hash
image will be added to S(j) with non-negligible probability. By soundness of the underlying SNARG, for
each of these hashes, there is a preimage that is also a witness.with non-negligible probability, implying that
the number of witnesses is greater than N , which leads to an absurd. We can reduce to soundness by building
the following adversary B:

B(1λ, crs∃) :

(pk
(H)
FHE, sk

(H)
FHE)← FHE.KG(1λ)

(pk
(proj)
FHE , sk

(proj)
FHE )← FHE.KG(1λ)

hk←$ KUHF

cthk ← FHE.Enc(pk
(H)
FHE, hk)

ctj ← FHE.Enc(pk
(proj)
FHE , j)

Let crsj :=
(
crs∃, ctj , cthk, pk

(H)
FHE, pk

(proj)
FHE

)
(x, st)← Ainp(1

λ)

(π, cth, ctbit)← Aprf(st, crsj)

x̂←
(
x, cthk, pk

(H)
FHE, pk

(proj)
FHE , cth, ctj , ctbit

)
return (x̂, π)
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Let us call a string h “bad” if none of the witness w for x are such that Hhk(w) = h. We can observe that
the probability that B wins is lower bounded by p := Pr[FHE.Dec(sk, cth) is bad ∧ π is a valid proof for x̂].
This is true since this event implies the event “winning the soundness experiment” because of correctness of
the encryption scheme. In particular:

π verifies ∧ ∀w
(
R(x,w) = 0 ∨ Dec(cth) ̸= H(w)

)
=⇒

π verifies ∧ ∀w, r(H)
(
R(x,w) = 0 ∨ cth ̸= Eval(pk

(H)
FHE, cthk,Enc(pk

(H)
FHE,w; r

(H)), fH) ∨ . . .
)

All we are left with doing is to claim that p is non-negligible. Assume by contradiction that p were negligible.
Then let us bound the probability Pr[∃ bad h ∈ S(t∗)(j)] as follows: Pr[∃ bad h ∈ S(t∗)(j)] ≤ t∗ ·p ≤ negl(λ),
where the first inequality follows by applying the union bound and the second one follows by observing
that—by our assumption on t∗—it holds that t∗ < q(λ) for some polynomial q for infinitely many λ-s. We
can reach an absurd by observing that:

non-negl ≤ Pr[|S(t∗)(j)| > N ] ≤ Pr[∃ bad h ∈ S(t∗)(j)]

where the first inequality follows from how we defined t∗ and the second one follows from applying the
pigeonhole principle. ⊓⊔

Lemma 11. If Π∃ has succinctness and FHE has compactness as defined in Appendix A.2, then the con-
struction in Fig. 2 has succinctness.

Proof. A proof consists of (π, cth, ctbit), where π is a SNARG proof produced by Π∃, cth is a FHE encryption
of a hash message, and ctbit is a FHE ciphertext of a single bit. The FHE has plaintexts and ciphertexts with
fixed polynomial size. Also, the compactness of FHE implies that the size of ctbit is bounded by a polynomial
that is independent of the size of the ctw-s (and hence w). Thus, if the underlying SNARG is succinct, the
resulting proof will also be succinct. ⊓⊔

Lemma 12. If Π∃ has computational zero-knowledge, FHE is semantically secure, the construction in Fig. 2
has computational zero-knowledge.

Proof. Recall the computational zero-knowledge definition in Appendix A.1. Let A be a PPT adversary, and
suppose the number of queries that A can make is bounded by q(λ). Since A runs in polynomial time, the
function q(X) is bounded by some polynomial. We define the simulator Sim in Fig. 9. In short, Sim encrypts
arbitrary values (e.g., zeros) inside cth and ctbit, and then invokes the simulator of Π∃.

Let Game0 be the game where the zero-knowledge oracle O0 responds with honestly constructed proofs.
In Game1 we change the oracle to O1, which simulates the proofs π of Π∃.

Next, we consider a sequence of games Game2:i for i = 1, . . . , q(λ). On the first i queries, in Game2:i,
we run O2 which works just as O1, but encrypts 0 in cth instead of the hash of the witness. Subsequent
queries will still use O1. Similarly, we will have games Game3:i, which on the first i queries will run O3 that
additionally encrypts 0 in ctbit and on the subsequent queries will run O2. Oracles O1,O2,O3 are described
in full detail in Fig. 9. Observe that Game3:q(λ) is equivalent to the zero-knowledge game, where A receives
a simulated proof (that is, proofs are generated by Sim) for all queries.

Let us now analyze the success probability of A in the previous games. Let εi denote A’s success proba-
bility in Gamei. We need to show that |ε0 − ε3:q(λ)| = negl(λ).

Game0 → Game1. We construct a reduction Bzk for computational zero-knowledge of Π∃. The reduction
is straightforward. Bzk has access to an oracle Ob,Π∃ which returns an honest Π∃ proof when b = 0 and a
simulated proof when b = 1. Bzk runs A internally and creates proofs for A’s queries. However, when it comes
to creating π, Bzk uses the oracle Ob,Π∃ to create it. Bzk outputs the same value as A. Detailed construction
of Bzk can be seen in Fig. 10. It follows that |ε0 − ε1| = negl(λ) since Bzk’s advantages is negligible in the
zero-knowledge game for Π∃.

Game2:i−1 → Game2:i. Let us first recall the definition of semantic security for FHE, which states that for

all λ, and for any PPT adversary B = (B1,B2),
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Olbl(crs, td, x,w)

parse crs as (ĉrs, cti∗ , cthk, , pk
(H)
FHE, pk

(proj)
FHE )

ct(H)
w ← FHE.Enc(pk

(H)
FHE,w); cth ← FHE.Eval(pk

(H)
FHE, cthk, ct

(H)
w , fH)

cth ← FHE.Enc(pk
(H)
FHE, 0)

ct(prj)
w ← FHE.Enc(pk

(proj)
FHE ,w); ctbit ← FHE.Eval(pk

(proj)
FHE , cti∗ , ct

(prj)
w , fproj)

ctbit ← FHE.Enc(pkFHE, 0)

x̂←
(
x, cthk, pk

(H)
FHE, pk

(proj)
FHE , cth, cti∗ , ctbit

)
π ← Π∃.Sim(ĉrs, t̂d, x̂)

return π
∗
:= (π, cth, ctbit)

Sim(crs, td, x)

parse crs as (ĉrs, cti∗ , cthk, pk
(H)
FHE, pk

(proj)
FHE )

cth ← FHE.Enc(pk
(H)
FHE, 0)

ctbit ← FHE.Enc(pk
(proj)
FHE , 0)

x̂←
(
x, cthk, pk

(H)
FHE, pk

(proj)
FHE , cth, cti∗ , ctbit

)
π ← Π∃.Sim(ĉrs, t̂d, x̂)

return π
∗
:= (π, cth, ctbit)

Fig. 9: Oracles O1,O2,O3 and the simulator Sim for Lemma 12. When lbl = 1, 2, 3, then we respectively
consider only lines with AAA , AAA , and AAA . Recall fproj(i,w) := wi and fH(hk,w) := Hhk(w).

∣∣∣∣∣Pr
[
(pkFHE, skFHE)← KG(1λ), (st,m0,m1)← B1(pkFHE)

b←$ {0, 1}, ct← Enc(pkFHE,mb), b
′ ← B2(st, ct)

: b = b′

]
− 1/2

∣∣∣∣∣ = negl(λ).

We now construct a reduction Bsem to the semantic security of FHE. Full details are described in Fig. 11.
Essentially, B1sem runs A for i queries and outputs m0 = w(i) and m1 = 0, where w(i) is the witness A
submits on the i-th query. Then, B2sem gets an encryption ct, which encrypts either m0 or m1. B2sem runs
internally A. For queries j = 1, . . . , i − 1 adversary B2sem returns the answers of O1 and for queries j > i
it returns the answer of O2 to A. However, on the i-th query it behaves as O1 but cth is the homomorphic
evaluation of fH in ct. So if ct encrypts w(i) it will be oracle O1 and if ct encrypts 0 it will be the oracle O2.
B2sem returns the same answer as A. It follows from the semantic security that |ε2:i−1 − ε2:i| = negl(λ).

Game3:i−1 → Game3:i. This is identical to the previous case, with the only difference being that we rely

on the semantic security of FHE for the other key in the CRS. The reduction B̃sem = (B̃1sem, B̃2sem) to the

semantic security of FHE can be constructed as follows. B̃1sem runs A for i queries and outputs m0 = w(i) and

m1 = 0, where w(i) is the witness A submits on the i-th query. Then, B̃2sem gets a challenge ciphertext ct. It

runs internally A, where on the i-th query it behaves as O2 but ctbit = FHE.Eval(pk
(proj)
FHE , ctℓ∗ , ct, fproj) for an

index ℓ∗ ←$ [Nw], and ctℓ∗ = FHE.Enc(pk
(proj)
FHE , ℓ∗). For queries j = 1, . . . , i− 1, B̃2sem returns the answers of

O3 and for queries j > i it returns the answer of O2 to A. Observing that B̃sem simulates perfectly the outputs
of O2 and O3, it follows that the advantage of B̃sem is identical to that of A, and thus |ε3:i−1−ε3:i| = negl(λ).
Since q(λ) is bounded by a polynomial and at every game transition A’s advantage increases at most by a
negligible amount, then it follows that our construction has computational zero-knowledge. ⊓⊔

C.2 Proof of Theorem 3

Theorem 10 (Restatement of Theorem 3). Let Σ = (KGen,Sample,Eval,Update) be an L-CLR-OWF
and let Π be a non-adaptive black-box εks(λ)-knowledge sound argument for RΣ as defined above. If the proof
size is less than L(λ) bits, then L-CLR-OWF can be broken with probability 1− εks(λ).

Proof. Assume that the proof size of Π is upper bounded by L(λ). We show that in this case it is possible to
break L-continuous leakage-resilient one-wayness of Σ. Firstly, we describe an adversary A = (Ainp,Aprf )
for non-adaptive black-box knowledge soundness in Fig. 12. This exactly follows the intuition we discussed
above.
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B
Ob,Π∃

(ĉrs,t̂d,·)
zk (ĉrs)

(pk
(H)
FHE, sk

(H)
FHE)← FHE.KG(1λ)

(pk
(proj)
FHE , sk

(proj)
FHE )← FHE.KG(1λ)

hk←$ KUHF

cthk ← FHE.Enc(pk
(H)
FHE, hk)

i
∗ ←$ [Nw]; cti∗ ← FHE.Enc(pk

(proj)
FHE , i

∗
)

crs←
(
ĉrs, cti∗ , cthk, pk

(H)
FHE, pk

(proj)
FHE

)
return AOBzk

(crs,·)
(crs)

O
Ob,Π∃

(ĉrs,t̂d,·)
Bzk

(crs, x,w)

if (x,w) ̸∈ R then return ⊥
h← Hhk(w)

r
(H) ←$ FHE.Rnd; ct(H)

w ← FHE.Enc(pk
(H)
FHE,w; r

(H)
);

r
(proj) ←$ FHE.Rnd; ct(prj)w ← FHE.Enc(pk

(proj)
FHE ,w; r(proj));

cth ← FHE.Eval(pk
(H)
FHE, cthk, ct

(H)
w , fH);

ctbit ← FHE.Eval(pk
(proj)
FHE , cti∗ , ct

(prj)
w , fproj)

x̂←
(
x, cthk, pk

(H)
FHE, pk

(proj)
FHE , cth, cti∗ , ctbit

)
ŵ←

(
w, r(H)

, r
(proj)

)
Query π̂ ← Ob,Π∃ (ĉrs, t̂d, x̂, ŵ)

return π ← (π̂, cth, ctbit)

Fig. 10: Game0 → Game1 reduction in Lemma 12

B1
sem(pk∗FHE)

(pk
(proj)
FHE , sk

(proj)
FHE )← FHE.KG(1λ)

hk←$ KUHF

cthk ← FHE.Enc(pk∗FHE, hk)

(ĉrs, t̂d)← Π∃.Setup(1
λ
)

i
∗ ←$ [Nw]; cti∗ ← FHE.Enc(pk

(proj)
FHE , i

∗
)

crs←
(
ĉrs, cti∗ , cthk, pk

∗
FHE, pk

(proj)
FHE

)
td←

(
t̂d
)

Sample random coins r for A

b← AO2 (crs; r)

Recover A’s i-th query (x(i),w(i))

return
(
st← (crs, td, r),m0 ← w(i)

,m1 ← 0
)

B2
sem(st = (crs, td, r), ct)

return AOsem(st,ct,·)
, where

For queries j = 1, . . . , i− 1: Osem = O2

On i-th query Osem(st, ct, x,w) :

cth ← FHE.Eval(pk∗FHE, cthk, ct, fH)

ctbit ← FHE.Eval(pk
(proj)
FHE , cti∗ , ct

(prj)
w , fproj)

x̂←
(
x, cthk, pk

∗
FHE, pk

(proj)
FHE , cth, cti∗ , ctbit

)
π ← Π∃.Sim(ĉrs, t̂d, x̂)

return π
∗
:= (π, cth, ctbit)

For queries j > i: Osem = O1

Fig. 11: Game2:i−1 → Game2:i reduction in Lemma 12

Ainp(1
λ)

(pp, uk)← KGen(1λ);

w ←$ Sample(pp);

y ←$ Eval(pp, w);

return (x = (pp, y), st = (pp, uk, y, w));

Aprf (st, crs)

Parse st = (pp, uk, y, w);

w′ ← Update(uk, w);

π ← P(crs, (pp, y), w′);

return π;

Fig. 12: Non-adaptive black-box knowledge soundness adversary for Theorem 3

Next, we construct an adversary B against CLR in Fig. 13. Idea is that we want to use the extractor
Ext of Π to recover the OWF preimage. To do so, B must provide Ext with proofs which are created by crs
chosen by Ext. Since proofs depend on the OWF preimage w, B can use the leakage query oracle OL with
a function hcrs,y,pp(X) := P(crs, (pp, y), X). This is possible only because the proof size is ≤ L(λ) bits. In

Fig. 13, B runs a subroutine SimOL(·)
pp,y (crs) for creating proofs.
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BOL(·)(pp, y)

(crs, td)← KGen(1λ)

π ← SimOL(·)
pp,y (crs)

Run ExtSim
OL(·)
pp,y (·)(crs, td, (pp, y), π)

SimOL(·)
pp,y (crs)

Define hcrs,y,pp(X) := P(crs, (pp, y), X)

Query π ← OL(hcrs,y,pp)

return π

Fig. 13: Continuous leakage-resilience adversary B

Game1(1
λ)

(pp, uk)← KGen(1λ)

w ← Sample(pp)

y ← Eval(pp, w)

(crs, td)← KGen(1λ)

π ← SimOL(·)
pp,y (crs)

x′ ← ExtSim
OL(·)
pp,y (·)(crs, td, (pp, y), π)

return y = Eval(pp, x′)

Game2(1
λ)

(x = (pp, y), st = (pp, uk, y, w))← Ainp(1
λ)

(crs, td)← KGen(1λ)

π ← Aprf (st, crs)

x′ ← ExtAprf (st,crs)(crs, td, (pp, y), π)

return y = Eval(pp, x′)

Fig. 14: Security games for Theorem 3

In the following, we will analyze the success probability of B. Essentially, we show that if Ext succeeds
in extracting with high probability, then also B will succeed in breaking L-continuous leakage-resilience of
OWF with high probability.

Game0. This is the original L-CLR game with the adversary B from Section 2.1.
Game1. This is the same game with B being in-lined. See Fig. 14. Obviously the probability that y =

Eval(pp, x′) is the same in both games.
Game2. This game is again just a slight rewrite of the previous Game1. Note that the first three lines of

Game1 in Fig. 14 are equivalent to Ainp(1
λ). So we instead write (x = (pp, y), st = (pp, uk, y, w))← Ainp(1

λ)

in Game2. Moreover, SimOL(·)
pp,y (crs) and Aprf (st, crs) produce the exact same proof π. We change SimOL(·)

pp,y (crs)
to Aprf (st, crs) in Game2. Clearly again the probability of y = Eval(pp, x′) is the same as before.

Note that Game2 with the winning condition V(crs, (pp, y), π) = 1 ∧ y ̸= Eval(pp, x′) is the non-adaptive
black-box knowledge soundness game. We know that this probability is bounded by εks(λ). Thus, V(crs, (pp, y), π) ̸=
1 ∨ y = Eval(pp, x′) happens with a probability > 1 − εks(λ). However, V(crs, (pp, y), π) ̸= 1 is not possible
given the construction of Aprf . Thus, V(crs, (pp, y), π) ̸= 1∨y = Eval(pp, x′) is equivalent to y = Eval(pp, x′),
which is the Game2 winning condition. It follows that B can break L-CLR with the probability 1−εks(λ). ⊓⊔

C.3 Proofs of Lemmas 2 and 3

Lemma 13 (Restatement of Lemma 2). If an indexed languages L ∈ NP has a sub-exponentially

hard-on-average problem, then for any d > 0, L also has a hard-on-average problem with (2λ
d

, 1/2λ
d

)-
indistinguishability.

Proof. Let us recall that Xλ and X̄λ are said to be sub-exponentially indistinguishable if there exists a

δ > 0 such that Xλ and X̄λ are (2Ω(λ
δ), 1/2Ω(λ

δ))-indistinguishable. Let us define n(λ) = ⌈λd/δ⌉. Then
Yλ := Xn(λ) and Ȳλ := X̄n(λ) are (s(λ), ε(λ))-indistinguishable, where s(λ) = 2Ω(n

δ) = 2Ω(⌈λ
d/δ⌉δ) and

ε(λ) = 1/2Ω(n
δ) = 1/2Ω(⌈λ

d/δ⌉δ). Firstly, since the circuit of size s(λ) = 2Ω(⌈λ
d/δ⌉δ) grows faster than the

circuit of size 2λ
d

, then, for a sufficiently large λ, Yλ and Ȳλ are also (2λ
d

, ε(λ))-indistinguishable. Conversely,
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Yλ and Ȳλ are(2λ
d

, ε′(λ))-indistinguishable if ε′(λ) ≥ ε(λ). This is the case for ε′(λ) = 1/2λ
d

if λ is again

sufficiently large. It follows that for a large enough λ, exists Yλ and Ȳλ that are (2λ
d

, 1/2λ
d

)-indistinguishable.
Let i be the index sampler and (SampL,SampL̄) instance samplers for sub-exponentially hard-on-average

problem. Then we can always define I ′(1λ) as I(1n(λ)), Samp′L(1
λ, i) as Samp′L(1

n(λ), i), and SampL̄(1
λ, i) as

SampL̄(1
n(λ), i), which gives the desired hard-on-average problem with (2λ

d

, 1/2λ
d

)-indistinguishability. ⊓⊔

Lemma 14 (Restatement of Lemma 3). Let Xλ and X̄λ be (2λ
d

, 1/2λ
d

)-indistinguishable distributions
for some integer d ≥ 2. Let Aλ over (x, π) be an augmented distribution of Xλ, where |π| = ℓ(λ) =
o
(
λd

)
. Then there exists an augmented distribution Āλ of X̄λ such that Aλ and Āλ are (poly(λ), negl(λ))-

indistinguishable.

Proof. Let Xλ and X̄λ be (s(λ), ε(λ))-indistinguishable, where s(λ) = 2λ
d

and ε(λ) = 1/2λ
d

. Then Xλ and

X̄λ are (s(λ), ε′(λ))-indistinguishable for any ε′(λ) ≥ 1/2λ
d

. Let us take ε′(λ) = 1/2λ
d−1

. According to the
leakage lemma, there exists a polynomial p and an augmented distribution Āλ of X̄λ such that Aλ and Āλ

are (s∗(λ), ε∗(λ))-indistinguishable where s∗(λ) = s(λ)p(ε′(λ)/2ℓ(λ)) and ε∗(λ) = 2ε′(λ).

Clearly ε∗(λ) is negligible since ε∗(λ) = 2ε′(λ) = 2/2λ
d−1

= 1/2λ
d−1−1 = negl(λ). The distinguisher

circuit size s∗(λ) is s∗(λ) = s(λ)p(ε′(λ)/2ℓ(λ)) = 2λ
d

p(2−λ
d−1−o(λd)). Here, p(2−λ

d−1−o(λd)) = 2−o(λ
d−1) and

therefore s∗(λ) = 2λ
d−o(λd−1) = 2Ω(λ

d). This means that indistinguishability holds also for all polynomial
size circuits, as s∗(λ) grows faster than any polynomial. ⊓⊔

D A Summary of the GW Impossibility Proof [GW11]

The main technique used in the proof is showing the existence of a simulatable adversary P for any SNARG
for an NP complete language. A simulatable adversary is an inefficient adversary that, given a CRS, outputs
a false statement x ̸∈ L with a valid proof π for it. While the existence of such adversary is trivial for any
SNARG, a simulatable adversary also comes with an efficient simulator S such that no efficient distinguisher
can distinguish them. To show the existence of a simulatable adversary, a lemma in [GW11] shows that
for any two computationally indistinguishable distributions respectively over a set L and its complement
L = {0, 1}∗\L, and for any leakage information π on x ∈ L, there exists some leakage information π on x ∈ L
such that (x, π) and (x, π) are also computationally indistinguishable. What is important in this lemma
is that the security degrades exponentially with the size of the leakage π and this is the reason why the
underlying SNARG Π should have succinctness property.

Now, given this simulatable adversary, the result can be concluded as follows. Assume there exists a
black-box reduction R that shows the soundness of π based on (C, c). This means that the efficient reduction

RP, given black-box access to successful adversary P can break (C, c). But if (inefficient) RP can break (C, c),
then (efficient) RS can also break it since no efficient distinguisher (including the challenger of (C, c)) can
distinguish P from S. Thus, if this black-box reduction exists, then the assumption (C, c) should be false.

E A Summary of the Pass Impossibility Proof [Pas13]

We briefly summarize the impossibility result of [Pas13]. Let L be a hard-on-average language as defined
in Section 2. Now we can give an informal statement for the result in [Pas13].

Theorem 11. Let Π be an adaptively sound and perfectly zero-knowledge non-interactive argument for an
hard-on-average problem L. Suppose that there exists an efficient black-box reduction R that can reduce
adaptive soundness of Π to some falsifiable assumption C. Then C can be broken in polynomial time.

The intuition behind the result is as follows. First, we construct an inefficient adversary Aslow (the first
algorithm in Fig. 15) that can break adaptive soundness. If Aslow gets a valid CRS as an input (crs is in
the image of Setup), then it brute-force computes a trapdoor td, samples a false statement x, and runs the
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Aslow(crs)

if crs ∈ img(Setup)

Find td for crs;

x← SampL̄;

π ← S(crs, td, x);
else

(x,w)← SampL;

π ← P(crs, x, π);

return (x, π)

Afast(crs)

(x,w)← SampL;

π ← P(crs, x,w);

return (x, π);

Fig. 15: Inefficient adversary Aslow against adaptive soundness and its efficient emulator Afast

simulator with td to produce a proof π. If the CRS is invalid (outside of the image of Setup), then it just
tries to compute a proof for an honest statement x. Note that in the adaptive soundness game the CRS
will always be valid and thus only the first branch will matter. Since L is a hard-on-average language, then
false and true statements are indistinguishable, and therefore S will produce a proof which is accepted by a
verifier with an overwhelming probability. So indeed Aslow does break adaptive soundness.

Let us suppose that there exists an efficient reduction R that given black-box access to any adaptive
soundness adversary A, can break some falsifiable assumption C. The problem is that although Aslow does
break adaptive soundness, it is not efficient. Therefore also the reduction RAslow will be inefficient. We solve
this issue be constructing an efficient emulator Afast (the second algorithm in Fig. 15) for Aslow.

The emulator Afast simply samples an honest (x,w) and generates an honest proof π. Now let us compare
Afast and Aslow. If CRS is invalid, then Aslow and Afast are identical. However, if the CRS is valid, then it
needs a bit more work to show that outputs are indistinguishable. Intuitively, x is indistinguishable due to the
hard-on-average property and π is indistinguishable due to zero-knowledge. However, here it is important that
zero-knowledge property holds even with respect to a fixed CRS since we do not know how the distinguishing
adversary may pick the valid CRS. Moreover, with computational zero-knowledge it may be even possible
to extract the witness from a proof π which would make distinguishing Aslow and Afast trivial. This is the
reason why zero-knowledge has to be perfect (or statistical). It follows now that outputs of Afast and Aslow

are computationally indistinguishable.
Since RAslow can break the assumption C, then so does RAfast which means that the assumption C is

insecure. Hence, it is impossible to base adaptively sound perfect zero-knowledge argument on a falsifiable
assumption using a black-box reduction.

F Non-Adaptive SNARGs With Perfect ZK Based on iO

We show how for the non-adaptive case, none of [Pas13] and [GW11] results hold. We do so by the following
observation: assuming that indistinguishability obfuscation (iO) can be build from falsifiable assumptions
(see [WW21]), the perfect NIZK arguments of Sahai and Waters [SW14], instantiated with a puncturable
PRF (PPRF) that satisfies succinctness property, is a non-adaptive SNARG with perfect ZK for all NP
languages in the CRS model. While this can be seen as a feasibility result, proposing a construction with
more standard assumptions (i.e., without iO) is still an interesting open question.

We now recall the NIZK arguments of Sahai and Waters [SW14].
NIZK arguments of Sahai and Waters. The idea is very simple: the proof system consists of two

obfuscated programs put in the CRS. The first program is the proving algorithm that inputs a statement
x and witness w and outputs a signature on x if (x,w) ∈ R. The signature is realized by a PRF in the
construction. The second program is the verification algorithm that is just the signature verification and
verifies the proof by checking the validity of the signature on x.
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P′

Constants: PRF key K

Input: (x,w)

if (x,w) ∈ R
return PRFK(x)

else

return ⊥

V′

Constants: PRF key K

Input: (x, π)

if f(π) = f(PRFK(x))

return 1

else

return 0

Fig. 16: Programs P′ and V′

Let PRF be a puncturable PRF that inputs ℓ-bit long strings and outputs λ bits (where λ is the security
parameter). Let f(·) be a one way function. The NIZK argument Π = (Setup,P,V) for language L with
relation R is as follows:

– Setup(1λ) first selects a puncturable PRF key K for PRF. Next, it creates an obfuscation of programs P′

and V′ as depicted in Figure 16. The CRS crs consists of the two obfuscated programs.

– P(crs, x,w) runs the obfuscated program P′ on input (x,w) and returns the proof π if (x,w) ∈ R.
– V(crs, x, π) runs the obfuscated program V′ on input (x, π) and returns a bit indicating accept or reject.

Theorem 12. [SW14] The argument system Π is perfectly zero-knowledge. Moreover, if the obfuscation
scheme is indistingishuably secure, PRF is a secure punctured PRF with succinctness property, and f(·) is
an injective one way function, then Π is a non-adaptive SNARG.

Remark 3. While SNARGs with non-adaptive security can be seen as interactive two-message arguments
by thinking of the CRS as the verifier’s message, the type of non-adaptivity in the resulting argument is
still “strong” in the sense that the verifier’s message does not depend on the prover’s (fixed) statement.
One can also define a weaker notion of non-adaptivity for two-message arguments where the first message
is statement-dependent (See [BIOW20] for example). We note that while the above iO-based construction
satisfies the stronger notion, giving a construction for the weaker notion of non-adaptivity based on seemingly
weaker tools is not a hard task. Namely, the verifier can use a witness encryption scheme to encrypt a succinct
random value r under the prover’s statement and ask the prover to return r.

G Differences from the Africacrypt Version [CGKS23]

Some of the formal results in this paper underwent a minor revision after publication. The bulk of the results
in this paper still holds. A general set of changes involved making our proofs more formal. All of the following
changes are related to the FewP construction of non-adaptive black-box knowledge sound arguments:

1. Theorem 2 (assumption on Π∃): Our result needs to assume an underlying SNARG that is adaptively
secure. Our conference proceedings version states Theorem 2 by assuming a non-adaptively secure SNARG.
We do not know how to reduce the knowledge soundness of our construction to non-adaptive soundness of
the SNARG, and fix the theorem statement to assume adaptove soudnness of Π∃ in this version. We leave
it as an open problem to show the theorem for non-adaptive SNARG (or provide a new transformation
from non-adaptive SNARG to SNARK).

2. Dependence of the adversary’s behavior on the hashing key: a previous version of our proof of Theorem 2
had a small issue during extraction (of which we were unaware) which led to a lower probability of
extraction than claimed. To solve this problem, we use homomorphic encryption on the hashing key as
well. Incidentally this also helps us obtain zero-knowledge (see next point). It is possible one does not
strictly need to homomorphically compute the hash, but a different approach may require some changes
in the extraction strategy.
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3. Theorem 2 (Preservation of ZK): The construction in the proceedings version did not preserve ZK of the
underlying SNARG. For instance, when FHE.Eval is a deterministic function and outputs some information
about w as part of the evaluated ciphertext, the resulting proof is not simulatable. We fix ZK preservation
in this version, by additionally encrypting the hash key hk, augmenting the relation to include correct
FHE evaluation of the hash. Crucially, the hash of the witness is now computed homomorphically and we
rely on FHE semantic security to argue ZK.

We thank the authors of [MPV24] for pointing out (1) and (3).
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