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Abstract

Selective opening (SO) security is one of the most important security notions of public key encryption
(PKE) in a multi-user setting. Even though messages and random coins used in some ciphertexts are
leaked, SO security guarantees the confidentiality of the other ciphertexts. Actually, it is shown that there
exist PKE schemes which meet the standard security such as indistinguishability against chosen ciphertext
attacks (IND-CCA security) but do not meet SO security against chosen ciphertext attacks. Hence, it
is important to consider SO security in the multi-user setting. On the other hand, many researchers
have studied cryptosystems in the security model where adversaries can submit quantum superposition
queries (i.e., quantum queries) to oracles. In particular, IND-CCA secure PKE and KEM schemes in the
quantum random oracle model have been intensively studied so far.

In this paper, we show that two kinds of constructions of hybrid encryption schemes meet simulation-
based SO security against chosen ciphertext attacks (SIM-SO-CCA security) in the quantum random
oracle model or the quantum ideal cipher model. The first scheme is constructed from any IND-CCA
secure KEM and any simulatable data encapsulation mechanism (DEM). The second one is constructed
from any IND-CCA secure KEM based on Fujisaki-Okamoto transformation and any strongly unforgeable
message authentication code (MAC). We can apply any IND-CCA secure KEM scheme to the first one
if the underlying DEM scheme meets simulatability, whereas we can apply strongly unforgeable MAC to
the second one if the underlying KEM is based on Fujisaki-Okamoto transformation.

1 Introduction

1.1 Background

Security against chosen ciphertext attacks, which is called CCA security, has been studied as one of the most
important security notions of public key encryption (PKE). However, as the security of PKE in a multi-user
setting, security against selective opening attacks, which is called SO security, was introduced by Bellare,
Hofheinz and Yilek in [4]. SO security guarantees that even though an adversary gets secret information
such as messages and random coins used in several ciphertexts, the other ciphertexts meet confidentiality.
In a real world, there exist such situations where secret information of some ciphertexts is leaked because
of factors except for cryptosystems. Furthermore, it is shown that there exist PKE schemes which meet
CCA security but do not satisfy SO security [3, 23, 22]. Hence, it is important to consider SO security.
In particular, several SO secure PKE schemes have been proposed so far: PKE [4, 16, 17, 21], hybrid
encryption [14, 33, 18, 34], identity-based encryption [7, 31], and lattice-based PKE [11, 32]. SO security
is roughly classified as simulation-based SO (SIM-SO) security and indistinguishability-based SO (IND-SO)
security. In this paper, we consider SIM-SO security against chosen ciphertext attacks called SIM-SO-CCA
security, since it seems that it is harder to achieve SIM-SO security [8, 21] and many works have aimed at
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proposing SIM-SO-CCA secure PKE schemes [14, 17, 33, 18, 21, 32, 34]. Hence, it is reasonable to consider
SIM-SO-CCA security as our goal in the multi-user setting.

On the other hand, we consider the model where adversaries can submit quantum superposition queries
(i.e., quantum queries) to oracles. In particular, cryptosystems secure in the quantum random oracle model
(QROM) have been intensively studied. The QROM, whose notion was introduced by [9], is a model where
any users can issue quantum queries to random oracles. There exist several works related to PKE schemes
in the QROM: PKE [9, 36], key encapsulation mechanism (KEM) [20, 35, 27, 25, 28, 29], digital signatures
(DSs) [10, 30, 19, 13]. Moreover, almost all PKE/KEM and DS schemes submitted to the post-quantum
cryptography standardization process of NIST (National Institute of Standards and Technology) satisfy
security notions in the QROM. Therefore, it is interesting and important to consider secure PKE schemes
in the QROM. PKE/KEM schemes in the QROM that have already been proposed are summarized as
follows. A PKE scheme constructed from trapdoor permutations meets indistinguishability against chosen
ciphertext attacks (called IND-CCA security) in the QROM [9]. [36] proved that Fujisaki-Okamoto (FO)
transformation [15] and OAEP [6] with additional hash satisfy IND-CCA security in the QROM. [20] analyzed
FO-based KEM schemes. Based on the proof technique of [9], [35] proposed a tightly secure KEM scheme
starting from any disjunct-simulatable deterministic PKE scheme. [27] revisited FO-based KEM schemes
with implicit rejection and proved that these schemes meet tighter IND-CCA security without additional
hash. [28] proposed IND-CCA secure KEM schemes with explicit rejection. [25] gave a tighter security proof
for the KEM scheme based on FO transformation by utilizing the proof techniques proposed in [1]. [29] also
gave tighter security proofs for generic constructions of KEM by utilizing the techniques in [1].

1.2 Our Contribution

Our goal is to present SIM-SO-CCA secure PKE schemes obtained from KEM schemes in the QROM or
the quantum ideal cipher model (QICM). Our main motivation is to transform any PKE/KEM schemes
submitted to the NIST post-quantum cryptography standardization into SIM-SO-CCA secure PKE without
loss of efficiency in terms of key-size, ciphertext-size, and time-complexity.

In the classical random oracle model, classical ideal cipher model, or the standard model (i.e., the model
without random oracles and ideal ciphers), several SIM-SO-CCA secure PKE schemes constructed from KEM
schemes have been studied. Liu and Paterson proposed a SIM-SO-CCA secure PKE scheme constructed
from a KEM scheme secure against tailored constrained chosen ciphertext attacks and a strengthened cross
authentication code (XAC) [33]. Heuer et al. proposed a SIM-SO-CCA secure construction by combining
KEM secure against plaintext checking attacks and a message authentication codes (MAC) [17]. Heuer and
Poettering proved that a PKE scheme in the KEM/DEM framework meets SIM-SO-CCA security in the
classical ideal cipher model if the underlying KEM scheme satisfies IND-CCA security, and the underlying
DEM scheme satisfies both simulatability and one-time integrity of chosen ciphertext attacks, which is called
OT-INT-CTXT security [18]. Lyu et al. proposed a tightly secure PKE starting from any KEM scheme meeting
both of security notions multi-encapsulation pseudorandom security and random encapsulation rejection
security, and any strengthened XAC [34]. Table 1 shows the underlying primitives and security models of
these existing constructions.

In the QROM or QICM, how to construct PKE schemes meeting SIM-SO-CCA security is not obvious
because of the following reason: In the classical random oracle model or classical ideal cipher model, the
security proofs of the existing schemes [33, 18] utilize the lists of query-response pairs of random oracles or
ideal ciphers. In the QROM and QICM, we cannot use such lists, since it is impossible to record query-
response pairs in principle, because of the quantum no-cloning theorem. Hence, it is worth to consider secure
PKE schemes in the models where quantum queries are issued.

Notice that as for the SIM-SO-CCA secure PKE schemes obtained from KEM schemes in the standard
model [33, 34], the ciphertext-size and time-complexity of these encryption and decryption algorithms linearly
depend on the bit-length of a message. Since we are aiming at constructing practical PKE schemes, we do
not focus on these schemes in this paper, because of the lack of efficiency in terms of ciphertext-size and
time-complexity.
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Table 1: SIM-SO-CCA secure PKE constructed from KEM schemes
Scheme Underlying Primitives Standard Model ?

[33]
IND-tCCCA secure KEM, ✓

XAC

[17]
OW-PCA secure KEM,

Random Oracle Model
sUF-OT-CMA secure MAC

[18]
IND-CCA secure KEM,

Ideal Cipher Model
Simulatable DEM

[34]
mPR-CCCA and RER secure KEM, ✓

XAC

Our Scheme PKEhy
1

IND-CCA secure KEM,
Quantum Ideal Cipher Model

Simulatable DEM

Our Scheme PKEhy
2

FO-based KEM (from IND-CPA secure PKE),
Quantum Random Oracle Model

sUF-OT-CMA secure MAC

IND-tCCCA means indistinguishability against tailored constrained chosen ciphertext attacks. IND-PCA means

indistinguishability agasint plaintext checking attacks. mPR-CCCA means multi-encapsulation pseudorandom

security against constrained chosen ciphertext attacks. RER means random encapsulation rejection security. XAC

means (strengthened) cross authentication code. IND-CPA means indistinguishability against chosen message

attacks. FO-based KEM means FO ̸⊥, FO ̸⊥
m, QFO ̸⊥, and QFO ̸⊥

m. Standard model denotes the security model without

random oracles and ideal ciphers.

In this paper, we propose two constructions of SIM-SO-CCA secure PKE schemes from KEM schemes and
symmetric key encryption (SKE) schemes. The details are as follows:

1. The first scheme PKEhy
1 is the KEM/DEM scheme [12]. We prove that this scheme meets SIM-SO-CCA

security in the QICM if the underlying KEM scheme satisfies IND-CCA security, and the underly-
ing DEM scheme satisfies both simulatability [18] and one-time integrity of chosen ciphertext attacks
(OT-INT-CTXT security) [5]. The advantage of this scheme is that we can apply any IND-CCA secure
KEM scheme such as any PKE/KEM schemes submitted to the post-quantum cryptography standard-
ization, and we can obtain a SIM-SO-CCA secure PKE schemes in the QICM.

2. The second one PKEhy
2 is a concrete scheme constructed from any FO-based KEM scheme such as FO̸⊥,

FO̸⊥
m, QFO̸⊥, and QFO̸⊥

m, which are categorized in [20], and any MAC meeting strong unforgeability
against one-time chosen message attacks called sUF-OT-CMA security. The underlying KEM scheme
is FO-based KEM with implicit rejection. That is, these schemes output a random key which is not
encapsulated if a given ciphertext is invalid. We require that the underlying PKE scheme in FO̸⊥,
FO̸⊥

m, QFO̸⊥, or QFO̸⊥
m is injective and satisfies indistinguishability against chosen plaintext attacks

called IND-CPA security. In addition, almost all KEM schemes submitted to the NIST post-quantum
cryptography standardization are classified as FO̸⊥, FO̸⊥

m, QFO̸⊥, or QFO̸⊥
m. Hence, the advantage of

PKEhy
2 is that a lot of PKE/KEM schemes submitted to the post-quantum standardization can satisfy

SIM-SO-CCA security without demanding any special property such as simulatability for the underlying
SKE.

The difference between PKEhy
1 and PKEhy

2 is given as follows:

• Any IND-CCA secure KEM scheme can be applied to PKEhy
1 while a particular KEM scheme (i.e., FO̸⊥,

FO̸⊥
m, QFO̸⊥, or QFO̸⊥

m) can be applied to PKEhy
2 .

• PKEhy
1 requires that the underlying DEM scheme satisfies a special property such as simulatability1

while PKEhy
2 does not require that the underlying MAC satisfies such a special property.

1To the best of our knowledge, there is no simulatable DEM scheme in the quantum ideal cipher model.
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In Sections 3 and 4, we describe concrete primitives which can be applied to PKEhy
1 and PKEhy

2 , respectively.

2 Preliminaries

For a positive integer n, let [n] be a set {1, 2, . . . , n}. For a set X , let |X | be the number of elements in X
(the size of X ). For a set X and an element x ∈ X , we write |x| as the bit-length of x. We write that a
function ϵ = ϵ(λ) is negligible, if for a large enough λ and all polynomial p(λ), it holds that ϵ(λ) < 1/p(λ).
For a randomized algorithm A and any input x of A, A(x; r) denotes a deterministic algorithm, where r is
a random coin used in A. In this paper, probabilistic polynomial-time is abbreviated as PPT, and quantum
polynomial-time is abbreviated as QPT.

2.1 Quantum Computations

We define an n-qubit state as |φ〉 =
∑

x∈{0,1}n ψx|x〉 with a basis {|x〉}x∈{0,1}n and amplitudes ψx ∈ C such

that
∑

x∈{0,1}n |ψx|2 = 1. If |φ〉 =
∑

x∈{0,1}n ψx|x〉 is measured in the computational basis, |φ〉 will become

a classical state |x〉 with probability |ψx|2. For a quantum oracle O : X → Y , submitting a quantum query∑
x∈X ,y∈Y ψx,y|x, y〉 to O (quantum access to O) is written as∑

x∈X ,y∈Y
ψx,y|x, y〉 7→

∑
x∈X ,y∈Y

ψx,y|x, y ⊕ O(x)〉.

The quantum random oracle model (QROM) is defined as the model where a quantum adversary can
submit quantum queries to random oracles. The quantum ideal (block) cipher model (QICM) which was
introduced in [24] is defined as follows: A block cipher with a key space K and a message space X is defined
as a mapping E : K × X → X which is a permutation over X for any key in K. In the QICM, a quantum
adversary is allowed to issue quantum queries to the ideal cipher oracles E+ : K×X → X and E− : K×X → X
such that for any k ∈ K and any x, y ∈ X , the response of E−(k, y) is x meeting E+(k, x) = y. In this paper,
QROM (resp. QICM) denote the security model where a quantum adversary is allowed to issue quantum
queries to random oracles (resp. ideal ciphers), but submit only classical queries to the other oracles.

Semi-Classical Oracle. We describe semi-classical oracle which was introduced in [1] and utilize this oracle
for our security proofs. We consider quantum access to an oracle with a domain X . A semi-classical oracle
OSC

S for a subset S ⊆ X uses an indicator function fS : X → {0, 1} with the subset S which evaluates 1 if
x ∈ S is given, and evaluates 0 otherwise. When OSC

S is given a quantum query
∑

x∈X ψx|x〉|0〉 with the
input register Q and the output register R, it maps∑

x∈X
ψx,z|x〉|0〉 7→

∑
x∈X

ψx|x〉|fS(x)〉,

and measures the register R. Then, the quantum query
∑

x∈X ψx|x〉|0〉 collapses to either
∑

x∈X\S ψ
′
x|x〉|0〉

or
∑

x∈S ψ
′
x|x〉|1〉. Let Find be the event that OSC

S returns
∑

x∈S ψ
′
x|x〉|1〉 for a quantum query

∑
x∈S ψx|x〉.

For a quantum oracle H with domain X and a subset S ⊆ X , let H\S be an oracle which first queries OSC
S

and then H.
By using semi-classical oracles, [1] proved the following propositions. We notice that for query depth d

and the number of queries q, we use q such that q ≥ d in the same way as [25, Theorem 2.8].

Proposition 1 ([1, Theorem 1]). Let S ⊆ X be random. Let H : X → Y, G : X → Y be random functions
such that H(x) = G(x) for all x ∈ X\S, and let z be a random bit-string (S, H, G and z may have an arbitrary
joint distribution). Let A be any quantum algorithm issuing at most q quantum queries to oracles. Then, it
holds that ∣∣Pr[1← AH(z)]− Pr[1← AG(z)]

∣∣ ≤ 2
√
q · Pr[Find | 1← AH\S(z)].
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Proposition 2 ([1, Corollary 1]). Let A be any quantum algorithm issuing at most q quantum queries to a
semi-classical oracle with domain X . Suppose that S ⊆ X and z ∈ {0, 1}∗ are independent. Then, it holds

that Pr[Find | AOSC
S (z)] ≤ 4q · Pmax, where Pmax = maxx∈X Pr[x ∈ S].

Other Results used for our Security Proofs. In order to give security proofs for hybrid encryption
schemes, we utilize the following results.

Proposition 3 ([37, Lemma 13]). Let A be an oracle machine making at most q queries. Let δx(x) := 1 and
δx(y) := 0 for x 6= y. Let 0 denote the all-zero function (0(y) = 0 for all y). Let ρ0 denote the final state of

A together with x in the following experiment: Pick x
$← {0, 1}ℓ. Run Aδx(). Let ρ1 denote the final state of

A together with x in the following experiment: Pick x
$← {0, 1}n. Run A0(). Then TD(ρ0, ρ1) ≤ q2−ℓ/2+1,

where TD(ρ, ρ′) is the trace distance between states ρ, ρ′.

Proposition 4 ([27, Lemma 2]). Let γ ∈ [0, 1]. Let Z be a finite set. N1 : Z → {0, 1} is the following
function: For each z, N1(z) = 1 with probability pz (pz ≤ γ), and N1(z) = 0 else. Let N2 be the function
with ∀ : N2(z) = 0. If an oracle algorithm A makes at most q quantum queries to N1 or N2, then∣∣Pr[b = 0 | b← AN1 ]− Pr[b = 1 | b← AN2 ]

∣∣ ≤ 2q
√
γ

Particularly, the probability of A finding z such that N1(z) = 1 is at most 2q
√
γ, i.e., Pr[N1(z) = 1 | z ←

AN1 ] ≤ 2q
√
γ.

2.2 Definitions of Cryptographic Primitives

2.2.1 Public Key Encryption

A public key encryption (PKE) scheme consists of three polynomial-time algorithms (KGen,Enc,Dec): For a
security parameter λ, letM =M(λ) be a message space, and let CT = CT (λ) be a ciphertext space.

• Key Generation KGen is a randomized algorithm which, on input a security parameter 1λ, outputs
a public key pk and a secret key sk.

• Encryption Enc is a randomized or deterministic algorithm which, on input a public key pk and a
message m ∈M, outputs a ciphertext ct.

• Decryption Dec is a deterministic algorithm which, on input a secret key sk and a ciphertext ct,
outputs a message m ∈M or an invalid symbol ⊥.

Definition 1 (Correctness). A PKE scheme PKE = (KGen,Enc,Dec) is δ-correct if

E

[
max
m∈M

Pr[Dec(sk,Enc(pk,m)) 6= m] | (pk, sk)← KGen(1λ)

]
≤ δ.

Then, δ denotes the decryption failure probability of PKE. In addition, PKE is correct if δ = 0.

We describe two security notions of PKE: indistinguishability against chosen message attacks (denoted by
IND-CPA security) and simulation-based selective opening security against chosen ciphertext attacks (denoted
by SIM-SO-CCA security).

Definition 2 (IND-CPA security). A PKE scheme PKE = (KGen,Enc,Dec) satisfies IND-CPA security if

for any PPT adversary A against PKE, the advantage Advind-cpaPKE,A (λ) := |2 · Pr[A wins]− 1| is negligible in λ,
where [A wins] is the event that A wins in the following game:

Setup: A challenger generates (pk, sk)← KGen(λ).

Challenge: When A submits (m0,m1) such that |m0| = |m1|, the challenger chooses b
$← {0, 1} and returns

ct∗ ← Enc(pk,mb).

5



Exptreal-so-ccaPKE,A (λ)

I ← ∅

(pk, sk)← KGen(1λ)

(MD, st)← ADEC
0 (pk)

(m1, . . . ,mn)
$←MD

(r1, . . . , rn)
$←R

∀i ∈ [n], cti = Enc(pk,mi; ri)

out← AOPEN,DEC
1 (st, ct1, . . . , ctn)

return R(MD,m1, . . . ,mn, I, out)

OPEN(i)

I ← I ∪ {i}
return (mi, ri)

DEC(ct)

if ct ∈ {cti}i∈[n], return ⊥
m← Dec(sk, ct)

return m ∈M∪ {⊥}

Exptideal-so-ccaPKE,S (λ)

I ← ∅

(MD, st)← S0(1
λ)

(m1, . . . ,mn)
$←MD

out← SOPEN
1 (st, |m1|, . . . , |mn|)

return R(MD,m1, . . . ,mn, I, out)

OPEN(i)

I ← I ∪ {i}
return mi

Figure 1: Experiments in REAL-SIM-SO-CCA and IDEAL-SIM-SO-CCA games

Output: A outputs the guessing bit b′ ∈ {0, 1}. A wins if b = b′.

Definition 3 (SIM-SO-CCA security). A PKE scheme PKE = (KGen,Enc,Dec) satisfies SIM-SO-CCA security
if for any PPT algorithms A = (A0,A1), S = (S0, S1) and any relation R, its advantage Advsim-so-cca

PKE,A,S,R(λ) is

negligible in λ. Advsim-so-cca
PKE,A,S,R(λ) is defined as follows:

Advsim-so-cca
PKE,A,S,R(λ) :=

∣∣∣Pr[Exptreal-so-ccaPKE,A (λ)→ 1]− Pr[Exptideal-so-ccaPKE,S (λ)→ 1]
∣∣∣ ,

where the two experiments Exptreal-so-ccaPKE,A (λ) and Exptideal-so-ccaPKE,S (λ) are defined in Figure 1.

2.2.2 Key Encapsulation Mechanism

A key encapsulation mechanism (KEM) scheme consists of three polynomial-time algorithms (KGen,Encaps,
Decaps) with a key space K = K(λ) for a security parameter λ.

Key Generation KGen is a randomized algorithm which, on input a security parameter 1λ, outputs a public
key pk and a secret key sk.

Encapsulation Encaps is a randomized algorithm which, on input a public key pk, outputs a ciphertext ct
and a key k ∈ K.

Decapsulation Decaps is a deterministic algorithm which, on input a secret key sk and a ciphertext ct,
outputs a key k ∈ K or an invalid symbol ⊥.

Then, we require a KEM scheme to be δ-correct with a negligible function δ for λ.

Definition 4 (Correctness). A KEM scheme (KGen,Encaps,Decaps) is δ-correct if for every (pk, sk) ←
KGen(1λ), it holds that k = Decaps(sk, ct) with at least probability 1− δ, where (ct, k)← Encaps(pk).

We describe a security notion of KEM: indistinguishability against chosen ciphertext attacks (denoted by
IND-CCA security).

Definition 5 (IND-CCA security). A KEM scheme KEM = (KGen,Encaps,Decaps) satisfies IND-CCA security
if for any PPT adversary A against KEM, the advantage Advind-ccaKEM,A (λ) := |2 · Pr[A wins]− 1| is negligible in
λ. [A wins] is the event that A wins in the following game:
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Setup: A challenger generates (pk, sk)← KGen(λ) and sends pk to A.

Oracle Access: A is allowed to access the following oracles:

• Challenge(): Given a challenge request, the challenger computes (ct∗, k0)← Encaps(pk) and chooses

k1 ∈ K uniformly at random. It returns (ct∗, kb) for b
$← {0, 1}.

• DEC(ct): Given a decapsulation query ct, the decapsulation oracle DEC returns k′ ← Decaps(sk, ct) ∈
K ∪ {⊥}. A is not allowed to submit ct∗ to DEC.

Output: A outputs the guessing bit b′ ∈ {0, 1}. A wins if b = b′ holds.

2.2.3 Data Encapsulation Mechanism

A data encapsulation mechanism (DEM) scheme consists of two polynomial-time algorithms (Enc,Dec) with
a key space K = K(λ) and a message spaceM =M(λ) for a security parameter λ.

Encryption Enc is a randomized or deterministic algorithm which, on input a secret key k ∈ K and a
message m ∈M, outputs a ciphertext ct.

Decryption Dec is a deterministic algorithm which, on input a secret key k ∈ K, a ciphertext ct, outputs a
message m ∈M or an invalid symbol ⊥.

We require that a DEM scheme satisfies correctness.

Definition 6 (Correctness). A DEM scheme (Enc,Dec) is correct if for every k ∈ K and every m ∈ M, it
holds that m = Dec(k, ct), where ct← Enc(k,m).

Following [5], we describe a security notion of DEM: one-time integrity of chosen ciphertext attacks
(denoted by OT-INT-CTXT security), as follows:

Definition 7 (OT-INT-CTXT security). A DEM scheme DEM = (Enc,Dec) satisfies OT-INT-CTXT security
if for any PPT adversary A against DEM, the advantage Advint-ctxtA,DEM (λ) := Pr[A wins] is negligible in λ, where
[A wins] is the event that A wins in the following game:

Setup: A challenger chooses a key k ∈ K uniformly at random, and sets win← 0 and C ← ∅.

Oracle Access: A is allowed to access the following oracles:

• ENC(m): Given an encryption query m ∈ M, the encryption oracle ENC checks whether C 6= ∅.
If so, it returns ⊥. Otherwise, it returns ct← Enc(k,m), and sets C ← C ∪ {ct}.

• VRFY(ct): Given a verification query ct, the verification oracle VRFY computes m′ ← Dec(k,m).
If m′ 6= ⊥ and ct /∈ C, it sets win← 1. It returns 1 if m′ 6= ⊥, and returns 0 otherwise.

Final: A wins if win = 1.

In this paper, we regard DEM as block cipher-based DEM which uses a block cipher in a black-box way.
In addition, we view the key space K of DEM schemes as K = K′ ×K′′, where K′ is the key space of a block
cipher, and K′′ is the key space of encryption using a block cipher.

To define simulatable DEM, oracle DEM and permutation-driven DEM are defined following [18].

Definition 8 (Oracle DEM). A DEM scheme (Enc,Dec) with a key space K and a message space M is an
oracle DEM scheme for a domain X if Enc and Dec have access to a permutation π on D (where, we write
Enc = O.Encπ and Dec = O.DEMπ), and if for all permutations π : X → X , all k ∈ K, and all m ∈ M, it
holds that m = O.Decπ(k, ct), where ct← O.Encπ(k,m).
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Definition 9 (Permutation-Driven DEM). A DEM scheme DEM = (Enc,Dec) with a key space K = K′×K′′

and a message space M is a (K × X )-permutation-driven DEM if DEM is an oracle DEM for a domain X
with a block cipher {Ek′ : X → X}k′∈K′ as the permutation π over X (where we write Enc = O.EncEk′ and
Dec = O.DecEk′ ), namely, for every (k′, k′′) ∈ K′ × K′′, every m ∈ M, and every ciphertext ct, it holds that
Enc((k′, k′′),m) = O.EncEk′ (k′′,m) and Dec((k′, k′′), ct) = O.DecEk′ (k′′, ct).

Then, the simulatability of oracle DEM [18] is defined as follows.

Definition 10 (Simulatability of Oracle DEM). Let DEM = (Enc,Dec) with a key space K = K′ × K′′ and
a message space M be an oracle DEM scheme for a domain X (where Enc = O.Encπ, Dec = O.Decπ). And,
we assume that DEM has the following algorithms Fake and Make:

• Fake: A randomized algorithm which, given a key k′′ ∈ K′′ and the bit-length |m| of a message, outputs
a ciphertext ct and a state-information st.

• Make: A randomized algorithm which, given a state-information st and a message m ∈ M, outputs
a relation π̃ ∈ X × X which has functions π̃+ : X → X and π̃− : X → X such that if (α, β) ∈ π̃,
α = π̃+(β) and β = π̃−(α).

The oracle DEM scheme DEM meets ϵ-simulatability if for all k = (k′, k′′) ∈ K, all m ∈ M, and the set
Πm

k′′ := {π̃ | (ct, st)← Fake(k′′, |m|); π̃ ← Make(st,m)}, the following conditions hold:

• The set Πm
k′′ can be extended to a set of uniformly distributed permutations on X .

• For any permutation π extended Πm
k′′ , it holds that Pr[ct 6= O.Encπ(k′′,m)] ≤ ϵ, where ct← Fake(k′′, |m|).

• The time-complexity of algorithms Fake(k′, |m|) and Make(st,m) does not exceed the time-complexity of
algorithm Enc(k,m) without counting that of oracles which is accessed by Enc(·).

2.2.4 Message Authentication Code

A message authentication code (MAC) consists of two polynomial time algorithms (Tag,Vrfy) with a key
space K = K(λ) and a message spaceM =M(λ) for a security parameter λ.

Tagging Tag is a randomized or deterministic algorithm which, on input a secret key k ∈ K and a message
m ∈M, outputs a tag τ .

Verification Vrfy is a deterministic algorithm which, on input a secret key k ∈ K, a message m, and a tag
τ , outputs 1 or 0.

We require a MAC scheme to be correct, as follows

Definition 11 (Correctness). A MAC scheme MAC = (Tag,Vrfy) with a key space K and a message space
M is correct if for every k ∈ K and every m ∈M, it holds that 1 = Vrfy(k,m, τ), where τ ← Tag(k,m).

As a security notion of MACs, strong unforgeability against one-time chosen message attacks (denoted by
sUF-OT-CMA security) is defined as follows.

Definition 12 (sUF-OT-CMA security). A MAC scheme MAC = (Tag,Vrfy) meets sUF-OT-CMA security
if for any PPT adversary A against MAC, the advantage Advsuf-cma

A,MAC := Pr[A wins] is negligible in λ, where
[A wins] is the event that A wins in the following game:

Setup: A challenger chooses a key k ∈ K uniformly at random and sets T ← ∅ and win← 0.

Oracle Access: A is allowed to access the following oracles:

• TAG(m): Given a tagging-query m ∈ M the tagging oracle TAG checks whether T 6= ∅. If so, it
returns ⊥. Otherwise, it returns τ ← Tag(k,m) and sets T ← T ∪ {(m, τ)}.

• VRFY(m, τ): Given a verification query (m, τ), the verification oracle VRFY returns b← Vrfy(k,m, τ).
If b = 1 and (m, τ) /∈ T , it sets win← 1.

Final: A wins if win = 1.
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3 SIM-SO-CCA secure PKE from KEM/DEM

In this section, we focus on a hybrid encryption scheme PKEhy
1 constructed by using the standard KEM/DEM

framework [12], and prove that PKEhy
1 satisfies SIM-SO-CCA security in the QICM. This security proof is

based on the proof of Theorem 2 in [18]. However, it is not obvious that it satisfies SIM-SO-CCA security in
the QICM because the proof in [18] uses the list of query-response pairs issued to ideal cipher oracles. Thus,
we cannot apply this technique due to the quantum no-cloning theorem. To resolve this problem, we utilize
a semi-classical oracle to check whether or not quantum queries meeting a condition are submitted to ideal
cipher oracles, instead of using the list of ideal cipher oracles.

To construct PKEhy
1 with a message spaceM, we use the following primitives: Let KEM = (KGenasy,Encaps,

Decaps) be a KEM scheme with a key space K = K′ × K′′ and a randomness space Rasy. Let DEM =
(Encsym,Decsym) be a DEM scheme with a key space K = K′ ×K′′ and a message spaceM.

The PKE scheme PKEhy
1 = (KGen,Enc,Dec) is described as follows:

• (pk, sk)← KGen(1λ):

1. Generate (pkasy, skasy)← KGenasy(1λ).

2. Output pk← pkasy and sk← skasy.

• ct← Enc(pk,m):

1. Compute (e, k)← Encaps(pkasy), and d← Encsym(k,m).

2. Output ct← (e, d).

• m/⊥ ← Dec(sk, ct):

1. Parse ct = (e, d).

2. Compute k← Decaps(skasy, e).

3. Output m′ ← Decsym(k, d) if k 6= ⊥, and output ⊥ otherwise.

If KEM is δ-correct, and DEM is correct, then the PKE scheme PKEhy
1 is also δ-correct, clearly. Furthermore,

the following theorem shows the security of PKEhy
1 .

Theorem 1. If a KEM scheme KEM meets IND-CCA security, and a (K,X )-permutation-driven DEM scheme
DEM corresponding to an oracle DEM for a domain X and a block cipher E meets both ϵsim-simulatability
and OT-INT-CTXT security, then the resulting PKE scheme PKEhy

1 satisfies SIM-SO-CCA security in the
quantum ideal cipher model.

Proof. Let A be a QPT adversary against PKEhy
1 . In this proof, we regard (Enc,Dec) as (O.EncEk′ ,O.DecEk′ )

with the block cipher Ek′ (k′ ∈ K′), and the adversary A has access to the ideal cipher oracles E+, E− of
E. Let qe be the total number of queries issued to the ideal cipher oracles E+ and E−. For J ⊆ [n], let
K ′

J := {k′j | j ∈ J}. For each i ∈ {0, 1, 2, 3, 4}, we consider a security game Gamei, and let Wi be the event
that A outputs out such that R(MD,m1, . . . ,mn, I, out) = 1 in Gamei.

Game0: This game is the same as the REAL-SIM-SO-CCA game. Then, we have Pr[Exptreal-so-cca
PKEhy

1 ,A
(λ) → 1] =

Pr[W0].

Game1: This game is the same as Game0 except that the DEC oracle on input a decryption query ct = (e, d)
returns ⊥ if e ∈ {ei}i∈[n]\I , and returns Dec(sk, ct) otherwise.

Let Bad be the event that A issues a decryption query ct = (e, d) such that ct /∈ {cti}i∈[n], e ∈ {ei}i∈[n]\I ,
and Dec(sk, ct) 6= ⊥. Unless Bad occurs, Game1 is identical to Game0. Thus, we have |Pr[W0]− Pr[W1]| ≤
Pr[Bad]. We show Pr[Bad] ≤ n · (Advind-ccaKEM,D1

(λ)+Advint-ctxtDEM,F (λ)). To do this, we consider index i∗
$← [n] and a

security game Game′1 which is the same as Game1 except that the key ki∗ is chosen uniformly at random. In

addition, let Bad(i
∗) (resp., Bad(i

∗)′) be the event that A submits a decryption query (e, d) such that e = ei∗

and Dec(sk, (e, d)) 6= ⊥ in Game1 (resp., Game′1).
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To show
∣∣∣Pr[Bad(i∗)]− Pr[Bad(i

∗)′]
∣∣∣ ≤ Advind-cca

KEM,D
(i∗)
1

(λ), we construct a PPT algorithm D
(i∗)
1 breaking the

IND-CCA security of KEM in the following way: D
(i∗)
1 is given the public key pkasy of KEM. At the beginning

of the security game, it sets I ← ∅ and sends pk← pkasy to A. When A submitsMD, D
(i∗)
1 does the following

for each i ∈ [n]:

1. If i = i∗, obtain (ei∗ , ki∗) by accessing the Challenge oracle in the IND-CCA security game. Otherwise,
compute (ei, ki)← Encaps(pk; ri), where ri ∈ Rasy is sampled at random.

2. Choose mi ←MD and compute di ← Encsym(ki,mi).

Then, it returns (cti)i∈[n] to A, where cti = (ei, di) for i ∈ [n]. In addition, D
(i∗)
1 simulates the DEC and

OPEN oracles, as follows:

• DEC(ct): Take ct = (e, d) as input. In the case e = ei∗ , halt and output 1 if (e, d) 6= (ei∗ , di∗) and
Decsym(ki∗ , d) 6= ⊥, and return ⊥ otherwise. In the case e 6= ei∗ , submit e to the given decapsulation
oracle and receive k. Return ⊥ if k = ⊥, and return Decsym(k, d) if k 6= ⊥.

• OPEN(i): Set I ← I ∪ {i}. Abort if i = i∗. Return (mi, ri) if i 6= i∗.

Due to the result obtained by combining [39, Lemma 3.8] and [38, Theorem 6.1], the E+ and E− oracles are
simulated by pseudorandom permutations constructed from function to permutation converters (FPCs) and

2qe-wise independent hash functions chosen uniformly at random. When A outputs out, D
(i∗)
1 outputs 0 if

Bad
(i∗)
1 has never occurred.

D
(i∗)
1 completely simulates the views of A in the two games. If A submits a decryption query (e, d) such

that e = ei∗ and Dec(sk, (e, d)) 6= ⊥, then D
(i∗)
1 breaks the IND-CCA security in the straightforward way.

Thus, the difference between Pr[Bad(i
∗)] and Pr[Bad(i

∗)′] is at most Advind-cca
KEM,D

(i∗)
1

(λ).

To show Pr[Bad(i
∗)′] ≤ Advint-ctxtDEM,F(i∗)(λ), we construct a PPT algorithm F(i∗) breaking the OT-INT-CTXT

security of DEM, as follows: F(i∗) is given the two oracles ENC and VRFY in the OT-INT-CTXT security
game. At the beginning of the SIM-SO-CCA security game, F(i∗) generates (pk, sk)← KGen(1λ), sets I ← ∅,
and gives pk to A. When A submits a distributionMD, F

(i∗) does the following for each i ∈ [n]:

1. Compute (ei, ki)← Encaps(pk; ri), where ri ∈ Rasy is sampled at random.

2. Choose mi ←MD.

3. If i = i∗, obtain di∗ by accessing ENC(mi∗). If i ∈ [n]\{i∗}, compute di ← Encsym(ki,mi).

4. Set cti ← (ei, di).

Then, F(i∗) returns (cti)i∈[n] to A. F(i∗) simulates OPEN, E+, and E− in the same way as the above algorithm

D
(i∗)
1 . The DEC oracle is simulated as follows: If e = ei∗ for a given ct = (e, d), F(i∗) submits d to the VRFY

oracle. If VRFY returns 1, F(i∗) halts and wins in the sUF-OT-CMA security game. Otherwise, it returns ⊥.
If e 6= ei∗ , F

(i∗) computes k ← Decaps(skasy, e) and returns Decsym(k, d) ∈ M∪ {⊥}. When A outputs out,

F(i∗) aborts this game if Bad(i
∗)′ has never happened.

The winning condition of F(i∗) is identical to the condition that Bad(i
∗)′ occurs. Hence, it wins in the

OT-INT-CTXT security game if A outputs a ciphertext query (e, d) such that e 6= ei∗ and the VRFY on input
d returns 1.

Therefore, we have |Pr[W0]− Pr[W1]| ≤ n · (Advind-ccaKEM,D1
(λ)+Advint-ctxtDEM,F (λ)) by using the union bound over

i∗ ∈ [n].

Game2: This game is the same as Game1 except that the security game is aborted if the challenger generates
(ei, (k

′
i, k

′′
i ))← Encaps(pk) such that k′i ∈ K ′

[i−1] for i ∈ [n].

The probability of choosing k′i ∈ K ′
[i−1] by running Encaps(pk) for i ∈ [n] is at most n2/|K′|. Thus, we

have |Pr[W1]− Pr[W2]| ≤ n2/|K′|.
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Game3: This game is the same as Game2 except that given a distributionMD, the challenger does the following
for i ∈ [n]:

1. Generate (ei, (k
′
i, k

′′
i ))← Encaps(pk). Abort if k′i ∈ K ′

[i−1].

2. Compute (di, sti)← Fake(k′′i , |mi|).

3. Compute π̃i ← Make(sti,mi), and set E+(k′i, ·)← π̃+
i (·) and E−(k′i, ·)← π̃−

i (·).

4. Abort if di 6= O.Enc
Ek′

i (k′′i ,mi).

5. Set cti ← (ei, di).

Then, it returns (cti)i∈[n] to the adversary A.

Due to the simulatability of DEM, the probability that the challenger aborts when producing di is at
most ϵsim. In addition, since the challenger sets E+(k′i, ·) ← π̃+

i (·), E−(k′i, ·) ← π̃−
i (·) when producing the

ciphertexts (cti)i∈[n], the indistinguishability of E+, E− in the two games follows Proposition 3. Hence, we

have |Pr[W2]− Pr[W3]| ≤ n · ϵsim + 4nqe/
√
|K′| owing to the union bound over i ∈ [n].

Game4: This game is the same as Game3 except that the procedures of the challenger and the OPEN oracle
are modified as follows: Given a distribution MD, the challenger computes (ei, (k

′
i, k

′′
i )) ← Encaps(pk; ri)

(aborts if k′i ∈ K ′
[i−1]) and (di, sti)← Fake(k′′i , |mi|), and then sets cti ← (ei, di) for each i ∈ [n]. In addition,

the OPEN oracle on input i is modified as follows:

1. Set I ← I ∪ {i}.

2. Choose mi ←MD.

3. Compute π̃i ← Make(sti,mi), and set E+(k′i, ·)← π̃+
i (·) and E−(k′i, ·)← π̃−

i (·).

4. Abort if di 6= O.Enc
Ek′

i (k′′i ,mi).

5. Return (mi, ri).

Regarding the indistinguishability between Game3 and Game4, the following lemma holds:

Lemma 1. For any QPT algorithm A against PKEhy
1 that makes at most qe queries to E+ and E−, there

exists a PPT algorithm D2 such that

|Pr[W3]− Pr[W4]| ≤ 2
√
nqe · Advind-ccaKEM,D2

(λ) + 4qe

√
n

|K′|
.

The proof of Lemma 1 is appeared below. This lemma shows that the indistinguishability between the
two games follows the IND-CCA security of KEM.

Finally, we show Pr[W4] = Pr[Exptideal-so-cca
PKEhy

1 ,S
(λ) → 1]. We construct a simulator S in the following way:

It is given the OPEN oracle in the IDEAL-SIM-SO-CCA security game. At the beginning of this game, S
generates (pk, sk)← KGen(1λ), sets I ← ∅, and gives pk to A. When A submitsMD, it receives |m1|, . . . , |mn|
in the IDEAL-SIM-SO-CCA security game, generates (ei, ki)← Encaps(pk; ri) and (di, sti)← Fake(k′′i , |mi|) for
i ∈ [n], and returns (cti)i∈[n] (where cti = (ei, di) for i ∈ [n]). S simulates E+ and E− by using (Fake,Make)
and pseudorandom permutations constructed from 2qe-wise independent hash functions and FPCs [39]. It
simulates the DEC and OPEN oracles as follows:

• DEC(ct):

1. Parse ct = (e, d).

2. Return ⊥ if e ∈ {ei}i∈[n]\I .

3. Compute k← Decaps(sk, e).
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4. Return ⊥ if k = ⊥. Return Decsym(k, d) ∈M∪ {⊥} otherwise.

• OPEN(i):

1. Set I ← I ∪ {i}.
2. Obtain mi by accessing the given open oracle OPEN.

3. Compute π̃i ← Make(sti,mi) and set E+(k′i, ·)← π̃+
i (·) and E−(k′i, ·)← π̃−

i (·).

4. Abort if di 6= O.Enc
Ek′

i (k′′i ,mi).

5. Return (mi, ri).

When A outputs out, S halts and outputs R(MD,m1, . . . ,mn, I, out).
S completely simulates the IDEAL-SIM-SO-CCA game by using only the given oracle OPEN. Thus, we

have Pr[W4] = Pr[Exptideal-so-cca
PKEhy

1 ,S
(λ)→ 1].

Therefore, we obtain the following advantage

Advsim-so-cca
PKEhy

1 ,A,S,R
(λ) ≤ n · Advind-ccaKEM,D1

(λ) + 2
√
nqe · Advind-ccaKEM,D2

(λ)

+ n · Advint-ctxtDEM,F (λ) + n · ϵsim +
4nqe√
|K′|

+ 4qe

√
n

|K′|
+

n2

|K′|
.

From the discussion above, the proof is completed.

Proof of Lemma 1. The E+ and E− oracles of Game4 are the same as those of Game3 except for the way
of defining E+(k′i, ·) and E−(k′i, ·) before accessing OPEN(i) for every i ∈ [n], namely, the way of defining
E+(k′i, ·) and E−(k′i, ·) for i ∈ [n]\I. In order to show the indistinguishability between Game3 and Game4,

we consider an index i∗
$← [n] and the oracles E+\{k′i∗} and E−\{k′i∗} which first query the semi-classical

oracle OSC
{k′

i∗}
and then E+ and E−, respectively. In addition, we consider the following security game:

Hybrid(i
∗): This is the same game as Game3 except that

• the challenger does the following:

1. Compute (ei∗ , (k
′
i∗ , k

′′
i∗))← Encaps(pk; ri∗). Abort if k

′
i∗ ∈ K ′

i∗−1.

2. Compute (di∗ , sti∗)← Fake(k′′i∗ , |mi∗ |).
3. Set cti∗ ← (ei∗ , di∗).

• the oracles E+\{k′i∗} and E−\{k′i∗} are used instead of E+ and E−, respectively.

Then, let Find(i
∗) be the event that the semi-classical oracle OSC

{k′
i∗}

returns 1 before i∗ is issued to the OPEN

oracle in Hybrid(i
∗), and let Find :=

⋃
i∗∈[n] Find

(i∗). Due to Proposition 1, the probability of distinguishing

Game3 and Game4 is at most 2
√
qe · Pr [Find] ≤ 2

√
qe ·

∑
i∗∈[n] Pr

[
Find(i

∗)
]
.

In order to prove that Pr[Find(i
∗)] is negligible if KEM satisfies IND-CCA security, we consider an additional

security game Hybrid(i
∗)′ which is the same game as Hybrid(i

∗) except for choosing k′i∗ ∈ K′ uniformly at

random. In addition, let Find(i
∗)′ the event that OSC

{k′
i∗}

returns 1 before A queries i∗ to OPEN, in Hybrid(i
∗)′.

To show
∣∣∣Pr[Find(i∗)]− Pr[Find(i

∗)′]
∣∣∣ ≤ Advind-cca

KEM,D
(i∗)
2

(λ), we construct a PPT algorithm D
(i∗)
2 breaking the

IND-CCA security of KEM, as follows: D
(i∗)
2 is given the public key pkasy of KEM. At the beginning of the

security game, D
(i∗)
2 sets I ← ∅ and find ← 0, and gives pk ← pkasy to A. When A submits a distribution

MD, D
(i∗)
2 does the following for i ∈ [n]:
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• In the case i = i∗:

1. Obtain (ei∗ , (k
′
i∗ , k

′′
i∗)) by accessing the Challenge oracle in the IND-CCA security game.

2. Abort if k′i∗ ∈ K ′
[i∗−1].

3. Compute (di∗ , sti∗)← Fake(k′′i∗ , |mi∗ |).
4. Set cti ← (ei∗ , di∗).

• In the case i 6= i∗:

1. Compute (ei, (k
′
i, k

′′
i ))← Encaps(pkasy; ri). Abort if k′i ∈ K ′

[i−1].

2. Compute (di, sti)← O.Enc
Ek′

i (k′′i ,mi).

3. Compute π̃i ← Make(sti,mi), and set E+(k′i, ·)← π̃+
i (·) and E−(k′i, ·)← π̃−

i (·).

4. Abort if di 6= O.Enc
Ek′

i (k′′i ,mi).

5. Set cti ← (ei, di).

Then it returns (cti)i∈[n] to A. The DEC and OPEN oracles are simulated as follows:

• DEC(ct): Take ct = (e, d) as input. If e ∈ {ei}i∈[n]\I , return ⊥. If e /∈ {ei}i∈[n]\I , submit e to the given
decapsulation oracle and receive k. Return ⊥ if k = ⊥, and return Decsym(k, d) if k 6= ⊥.

• OPEN(i):

1. Abort if i = i∗. Otherwise, set I ← I ∪ {i}.
2. Return (mi, ri).

The E+ and E− oracles are simulated by using pseudorandom permutations constructed by combining [39,

Lemma 3.8] and [38, Theorem 6.1]. When A outputs out, D
(i∗)
2 outputs find.

We should notice that it is sufficient for the reduction algorithm D
(i∗)
2 to work completely unless A issues

i∗ to OPEN. If ki∗ is generated by the Encaps algorithm, D
(i∗)
2 simulates Hybrid(i

∗). If ki∗ is uniformly random,

it simulates Hybrid(i
∗)′. Hence, we have

∣∣∣Pr[Find(i∗)]− Pr[Find(i
∗)′]

∣∣∣ ≤ Advind-cca
KEM,D

(i∗)
2

(λ).

In addition, we have Pr[Find(i
∗)′] ≤ 4qe/ |K′| from Proposition 2, because only the two oracles E+, E−

contain the information of the uniformly random ki∗ . Hence, we obtain the following inequality

Pr[Find(i
∗)] ≤

∣∣∣Pr[Find(i∗)]− Pr[Find(i
∗)′]

∣∣∣+ Pr[Find(i
∗)′] ≤ Advind-cca

KEM,D
(i∗)
2

(λ) +
4qe
|K′|

.

Defining D2 as a PPT algorithm choosing i∗
$← [n] and behaving in the same way as D

(i∗)
2 , we obtain

|Pr[W3]− Pr[W4]| ≤ 2

√
nqe · Advind-ccaKEM,D2

(λ) +
4nq2e
|K′|

≤ 2
√
nqe · Advind-ccaKEM,D2

(λ) + 4qe

√
n

|K′|
,

and the proof is completed.

4 SIM-SO-CCA secure PKE from FO 6⊥

We describe a PKE scheme PKEhy
2 constructed from the transformation FO̸⊥ and a MAC, and prove that

this scheme　 satisfies SIM-SO-CCA security in the QROM. As KEM schemes, we can apply not only FO̸⊥

but also other transformations FO̸⊥
m, QFO̸⊥, and QFO̸⊥

m, which are classified in [20]. First, we select FO̸⊥

to construct PKEhy
2 . Notice that in the same way as the security proof of PKEhy

2 , it is possible to prove the

security of PKEhy
2 using FO̸⊥

m, QFO̸⊥, or QFO̸⊥
m, instead of FO̸⊥.
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To construct PKEhy
2 with a message space M, we use the following primitives: Let PKE = (KGenasy,

Encasy,Decasy) be a (δ-correct) PKE scheme with a message space Masy, a randomness space Rasy, and a
ciphertext space CT asy. Let MAC = (Tag,Vrfy) be a MAC scheme with a key space Kmac. Let G :Masy →
Rasy, H :Masy × CT asy → Ksym ×Kmac be random oracles, where Ksym =M is a key space.

PKEhy
2 = (KGen,Enc,Dec) is constructed as follows:

• (pk, sk)← KGen(1λ):

1. Generate (pkasy, skasy)← KGenasy(1λ).

2. Choose s
$←Masy.

3. Output pk← pkasy and sk← (skasy, s).

• ct← Enc(pk,m):

1. Choose r
$←Masy.

2. Choose e← Encasy(pkasy, r;G(r)).

3. Compute (ksym, kmac)← H(r, e).

4. Compute d← ksym ⊕m, τ ← Tag(kmac, d).

5. Output ct← (e, d, τ).

• m/⊥ ← Dec(sk, ct):

1. Parse sk = (skasy, s) and ct = (e, d, τ).

2. Choose r′ ← Decasy(skasy, e).

3. Compute (ksym, kmac)← H(r′, e) if e = Encasy(pkasy, r′;G(r′)).
Otherwise, compute (ksym, kmac)← H(s, e).

4. Output m← d⊕ ksym if Vrfy(kmac, d, τ) = 1, and output ⊥ otherwise.

It is clear that PKEhy
2 is δ-correct if PKE is δ-correct, and MAC is correct. The following theorem shows

the security of PKEhy
2 .

Theorem 2. If a PKE scheme PKE meets IND-CPA security, and a MAC scheme MAC meets sUF-OT-CMA
security, then the resulting PKE scheme PKEhy

2 satisfies SIM-SO-CCA security in the quantum random oracle
model.

Proof. Let A be a QPT adversary against PKEhy
2 . Let qg be the number of queries issued to the G ora-

cle, and qh be the number of queries issued to the H oracle. We consider a sequence of security games
Game0, . . . ,Game7. For i ∈ {0, 1, . . . , 7}, letWi be the event that A outputs out such thatR(MD,m1, . . . ,mn, I,
out) = 1 in Gamei.
Game0: This is the REAL-SIM-SO-CCA security game. Then, we have Pr[W0] = Pr[Exptreal-so-ccaPKE (λ)→ 1].

Game1: This game is the same as Game0 except that the DEC oracle computes (ksym, kmac)← H′
q(e) instead

of (ksym, kmac)← H(s, e), if e 6= Encasy(pk, r′;G(r′)), where H′
q : CT asy → Ksym ×Kmac is a random oracle.

Due to [27, Lemma 4], we have |Pr[W0]− Pr[W1]| ≤ 2qh/
√
|Masy|.

We define G′ : Masy → Rasy as a random oracle which, on input r ∈ Masy, returns a value sam-
pled from the uniform distribution over a set of “good” random coins Rasy

good(pk
asy, skasy, r) = {r̂ ∈ Rasy |

Decasy(skasy,Encasy(pk, r; r̂)) = r}. Let δ(pkasy, skasy, r) = |Rasy\Rasy
good(pk

asy, skasy, r)|/|Rasy| denote
the fraction of bad random coins, and let δ(pkasy, skasy) = maxr∈Masy δ(pkasy, skasy, r). Then, we have
δ = E[δ(pkasy, skasy)] as the expectation of δ(pkasy, skasy), which is taken over (pkasy, skasy)← KGenasy(1λ).

Game2: This game is the same as Game1 except that we replace the G oracle by the random oracle G′ :Masy →
Rasy. Due to Proposition 4 (i.e., the generic search problem [2, 26, 27]), we have |Pr[W1]− Pr[W2]| ≤ 2qg

√
δ.
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Game3: This game is the same as Game2 except that the random oracle H(r, e) returns Hq(Enc
asy(pk, r;G(r)))

if e = Encasy(pk, r;G(r)), and returns H′(r, e) otherwise. Hq : CT asy → Ksym×Kmac and H′ :Masy×CT asy →
Ksym ×Kmac are random oracles.

Since the G′ oracle returns “good” random coins, Encasy(pk, · ;G(·)) is injective. Thus, we can view
Hq(Enc

asy(pk, · ;G(·))) as a perfect random oracle, and Pr[W3] = Pr[W2] holds.

Game4: This game is the same as Game3 except that the DEC oracle is modified as follows: Given a decryption
query ct = (e, d, τ), DEC computes (ksym, kmac)← Hq(e). Then, it returns m← ksym⊕d if Vrfy(kmac, d, τ) =
1, and returns ⊥ otherwise.

In the case e = Encasy(pk, r;G(r)), both the DEC oracles in Game3 and Game4 return the same value. In
the case e 6= Encasy(pk, r;G(r)), A cannot distinguish between Game3 and Game4 since both the H oracles in
the two games return uniformly random values. Thus, we have Pr[W4] = Pr[W3].

Game5: This game is the same as Game4 except that we replace the G′ oracle by the G oracle. In the same

way as the game-hop of Game2, we have |Pr[W4]− Pr[W5]| ≤ 2qg
√
δ.

Game6: This game is the same as Game5 except for the way of producing ciphertexts (cti)i∈[n] and the
procedure of the OPEN oracle:

• At the beginning of the security game, the challenger chooses ri
$←Masy and r̂i

$←Rasy, and computes
ei ← Encasy(pkasy, ri; r̂i) for i ∈ [n].

• When A submits a distribution MD, the challenger chooses di
$← Ksym and kmac

i
$← Kmac, computes

τi ← Tag(kmac
i , di), and then returns (cti)i∈[n], where cti = (ei, di, τi) for i ∈ [n]. Then, it sets

G(ri)← r̂i, and H(ri, ei)← (di ⊕mi, k
mac
i ).

It is clear that the first change is conceptual. Regarding the second change, the values (di, τi) of the two
games Game5, Game6 are identically distributed. Regarding setting G(ri) and H(ri, ei), the probability of
distinguishing these oracles in the two games is at most 4(qg + qh)/

√
|Masy|, owing to Proposition 3. Hence,

we have |Pr[W5]− Pr[W6]| ≤ 4n(qg + qh)/
√
|Masy|.

Game7: This game is the same as Game6 except that the challenger on input MD chooses (di∗ , k
mac
i∗ )

$←
Ksym×Kmac and computes τi∗ ← Tag(kmac

i∗ , di∗). In this game, the challenger does not set G(ri∗)← r̂i∗ and
H(ri∗ , ei∗)← (di∗ ⊕mi∗ , k

mac
i∗ ).

Regarding the indistinguishability between Game6 and Game7, the following lemma holds.

Lemma 2. For any QPT algorithm A against PKEhy
2 that makes at most qg queries to G and at most qh

queries to H, there exists a PPT algorithm D against PKE such that

|Pr[W6]− Pr[W7]| ≤ 2
√
n(qg + qh) · Advind-cpaPKE,D (λ) + 4(qg + qh)

√
n

|Masy|

Lemma 2 is proven below. Due to this lemma, |Pr[W6]− Pr[W7]| is negligible in λ if PKE satisfies IND-CPA
security.

Game8: This game is the same as Game7 except that the DEC oracle on input ct = (e, d, τ) returns ⊥ if
ct /∈ {cti}i∈[n] and e ∈ {ei}i∈[n]\I .

In order to show the indistinguishability between Game7 and Game8, we consider the event Bad that A
issues a decryption query ct = (e, d, τ) such that ct /∈ {cti}i∈[n], e ∈ {ei}i∈[n]\I , and Vrfy(kmac, d, τ) = 1.
Then, if Bad does not occur, Game8 is identical to Game7. Thus, we have |Pr[W7]− Pr[W8]| ≤ Pr[Bad].

In order to show Pr[Bad] ≤ n · Advsuf-ot-cma
MAC,F (λ), we consider an index i∗

$← [n] and the event Bad(i
∗) that

A issues a decryption query ct = (e, d, τ) such that ct 6= cti∗ , e = ei∗ , and Vrfy(kmac
i∗ , d, τ) = 1. We construct

a PPT algorithm F(i∗) breaking the sUF-OT-CMA security of MAC, as follows: F(i∗) is given the tagging
oracle TAG and verification oracle VRFY of the sUF-OT-CMA security game. At the beginning of the security
game, F(i∗) generates (pk, sk)← KGen(1λ), chooses 2qh-wise independent hash function fH, fHq

and a 2qg-wise

independent hash function fG, samples (ri, r̂i)
$←Masy ×Rasy, and computes ei ← Encasy(pkasy, ri; r̂i) for

i ∈ [n]. It sets I ← ∅ and win ← 0, and gives pk to A. When A submits a distribution MD, F
(i∗) chooses
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di∗
$← Ksym and obtains τi∗ by issuing di∗ to the TAG oracle. For i ∈ [n]\{i∗}, it chooses (di, k

mac
i )

$←
Ksym×Kmac, and computes τi ← Tag(kmac

i , di). Then, it returns (cti)i∈[n], where cti = (ei, di, τi) for i ∈ [n].
The DEC, OPEN, G, and H oracles are simulated as follows:

• DEC(ct):

1. Parse ct = (e, d, τ).

2. Halt and output win← 1 if ct 6= cti∗ , e = ei∗ , and the VRFY oracle on input (d, τ) returns 1.

3. Compute (ksym, kmac)← fHq
(e).

4. Return m← ksym ⊕ d if Vrfy(kmac, d, τ) = 1, and return ⊥ otherwise.

• OPEN(i):

1. Abort if i = i∗. Otherwise, set I ← I ∪ {i}.
2. Choose mi ←MD.

3. Set G(ri)← r̂i and H(ri, ei)← (di ⊕mi, k
mac
i ).

4. Return (mi, ri).

• G(r):

1. Abort if r = ri∗ .

2. Return r̂i if r = ri for some i ∈ [n].

3. Return fG(r).

• H(r, e):

1. Abort if r = ri∗ .

2. Return (di ⊕mi, k
mac
i ) if (r, e) = (ri, ei) for some i ∈ [n].

3. Return fHq (e) if Enc
asy(pkasy, r;G(r)) = e.

4. Return fH(r, e).

If A outputs a value out, then F(i∗) outputs win.
F(i∗) perfectly simulates the environment of A. Furthermore, the winning condition of F(i∗) is identical to

the condition that Bad(i
∗) occurs. Thus, F(i∗) wins in the sUF-OT-CMA security game if Bad(i

∗) occurs. Due
to the union bound over i∗ ∈ [n], we have |Pr[W7]− Pr[W8]| ≤ n · Advsuf-ot-cma

MAC,F (λ).

Finally, we prove Pr[W8] = Pr[Exptideal-so-cca
PKEhy

2 ,S
(λ)→ 1] by constructing the PPT simulator S in the following

way: S is given the open oracle OPEN of the IDEAL-SIM-SO-CCA security game. At the beginning, S generates
(pk, sk) ← KGen(1λ) and chooses 2qh-wise independent hash functions fH, fHq and a 2qg-wise independent

hash function fG. In addition, it chooses (ri, r̂i)
$←Masy ×Rasy and computes ei ← Encasy(pkasy, ri; r̂i) for

every i ∈ [n]. Then, S sets I ← ∅ and gives pk to A. When A submits MD, S receives |m1|, . . . , |mℓ| in the

IDEAL-SIM-SO-CCA security game, chooses (di, k
mac
i )

$← Ksym ×Kmac, and computes τi ← Tag(kmac
i , di) for

i ∈ [n]. Then, it returns (cti)i∈[n], where cti = (ei, di, τi) for i ∈ [n]. The DEC, OPEN, G, and H oracles are
simulated as follows:

• DEC(ct):

1. Parse ct = (e, d, τ).

2. Return ⊥ if e ∈ {ei}i∈[n]\I .

3. Compute (ksym, kmac)← fHq
(e).

4. Return m← ksym ⊕ d if Vrfy(kmac, d, τ) = 1. Return ⊥ otherwise.
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• OPEN(i):

1. Set I ← I ∪ {i}.
2. Obtain mi by accessing the given open oracle OPEN.

3. Set G(ri)← r̂i and H(ri, ei)← (di ⊕mi, k
mac
i ).

4. Return (mi, ri).

• G(r):

1. Return r̂i if r = ri for some i ∈ [n].

2. Return fG(r).

• H(r, e):

1. Return (di ⊕mi, k
mac
i ) if (r, e) = (ri, ei) for some i ∈ [n].

2. Return fHq
(e) if Encasy(pkasy, r;G(r)) = e.

3. Return fH(r, e).

When A outputs out, S halts and outputs R(MD,m1, . . . ,mn, I, out). S completely simulates the view of A
by using the OPEN oracle. Thus, we have Pr[W8] = Pr[Exptideal-so-cca

PKEhy
2 ,S

(λ)→ 1].

From the discussion above, we obtain

Advsim-so-cca
PKEhy

2 ,A,S,R
(λ) ≤ 2

√
n(qg + qh) · Advind-cpaPKE,D (λ) + n · Advsuf-ot-cma

MAC,F (λ)

+
4n(qg + qh)√
|Masy|

+ 4(qg + qh)

√
n

|Masy|
+

2qh√
|Masy|

+ 4qg
√
δ.

The proof is completed.

Proof of Lemma 2. Game7 is identical to Game6 except for the way of setting G(ri) and H(ri, ·) before
accessing OPEN(i) for every i ∈ [n], namely, the way of setting G(ri) and H(ri, ·) for i ∈ [n]\I. In order to

prove the indistinguishability between Game6 and Game7, we choose an index i∗
$← [n] and define G\{ri∗}

and H\{ri∗} as the random oracles which first query the semi-classical oracle OSC
{ri∗} and then G and H,

respectively. In addition, we consider the following security game:

Hybrid(i
∗): This is the same game as Game6 except that the way of producing the i∗-th ciphertext is modified

in the following way:

• The challenger on input a distribution MD chooses (di∗ , k
mac
i∗ )

$← Ksym × Kmac, computes τi∗ ←
Tag(kmac

i∗ , di∗), and sets cti∗ = (ei∗ , di∗ , τi∗).

• We replace G\{ri∗} and H\{ri∗} with G and H, respectively.

Then, unless OSC
{ri∗} used by G\{ri∗} and H\{ri∗} returns 1 before OPEN(i∗) is invoked, OPEN in Hybrid(i

∗)

can program the random oracles G(ri∗) and H(ri∗ , ·) in the same way as Game7. We define Find(i
∗) as the

event that the semi-classical oracle OSC
{ri∗} returns 1 before i∗ is issued to OPEN, in Hybrid(i

∗). In addition,

let Find :=
⋃

i∗∈[n] Find
(i∗). Then, due to Proposition 1, we have |Pr[W6]− Pr[W7]| ≤ 2

√
(qg + qh) Pr[Find] ≤

2
√

(qg + qh)
∑

i∗∈[n] Pr[Find
(i∗)].

In order to show that the probability Pr[Find(i
∗)] is negligible if PKE fulfills IND-CPA security, we consider

an additional security game Hybrid(i
∗)′ which is the same as Hybrid(i

∗) except for replacing ri∗ by r′i∗ when
ei∗ is generated.

To prove the indistinguishability between Hybrid(i
∗) and Hybrid(i

∗)′, we construct a PPT algorithm D(i∗)

breaking the IND-CPA security of PKE, as follows: D(i∗) is given the public key pkasy of PKE. At the beginning
of the security game, it chooses 2qh-wise independent hash functions fH, fHq

and a 2qg-wise independent hash
function fG, and does the following for i ∈ [n]:
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• If i = i∗, choose ri∗ , r
′
i∗

$← Masy and obtain the challenge ciphertext ei∗ by issuing (ri∗ , r
′
i∗) in the

IND-CPA security game.

• If i 6= i∗, choose ri
$←Masy and r̂i

$←Rasy, and compute ei ← Encasy(pkasy, ri; r̂i).

Then, D(i∗) sets I ← ∅ and find← 0, and gives pk← pkasy to A. When A submits a distributionMD, D
(i∗)

does the following for i ∈ [n]:

• If i = i∗, choose (di∗ , k
mac
i∗ )

$← Ksym ×Kmac and compute τi∗ ← Tag(kmac
i∗ , di∗).

• If i 6= i∗, choose mi ←MD and ri
$←Masy, and compute ei ← Encasy(pkasy, ri;G(ri)), (k

sym
i , kmac

i )←
H(ri, ei), di ← ksymi ⊕mi, and τi ← Tag(kmac

i , di).

Then, D(i∗) sets cti ← (ei, di, τi) for i ∈ [n] and returns (cti)i∈[n]. In addition, the DEC, OPEN, G, and H
oracles are simulated as follows:

• DEC(ct):

1. Parse ct = (e, d, τ).

2. Compute (ksym, kmac)← fHq
(e).

3. Return m← ksym ⊕ d if Vrfy(kmac, d, τ) = 1, and return ⊥ otherwise.

• OPEN(i):

1. Abort if i = i∗, and set I ← I ∪ {i} otherwise.
2. Return (mi, ri).

• G(r): Set find← 1 if the semi-classical oracle OSC
{ri∗} on input a given quantum query returns 1.

1. Return r̂i if r = ri for some i 6= i∗.

2. Return fG(r).

• H(r, e): Set find← 1 if the semi-classical oracle OSC
{ri∗} on input a given quantum query returns 1.

1. Return (di ⊕mi, k
mac
i ) if (r, e) = (ri, ei) for some i 6= i∗.

2. Return fHq
(e) if Encasy(pkasy, r) = e.

3. Return fH(r, e).

Finally, when A outputs out, then D(i∗) outputs find. We analyze the D(i∗) algorithm. It suffices to
make sure that D(i∗) works completely unless A issues i∗ to OPEN. If D(i∗) is given ei∗ ← Encasy(pkasy, ri∗),

it simulates Hybrid(i
∗). If it is given ei∗ ← Encasy(pkays, r′i∗), Hybrid(i

∗)′ is simulated. Hence, we have∣∣∣Pr[Find(i∗)]− Pr[Find(i
∗)′]

∣∣∣ ≤ Advind-cpa
PKE,D(i∗)(λ).

Furthermore, in Hybrid(i
∗)′, the information of r′i∗ is given by only the G or H oracle. Thus, Pr[Find(i

∗)′] ≤
4(qg+qh)/|Masy| holds due to Proposition 2. Therefore, by defining D as a PPT algorithm choosing i∗

$← [n]
and behaving in the same as D(i∗), the probability of distinguishing Hybrid6 and Game7 is at most

2

√
n(qg + qh) · Advind-cpaPKE,D (λ) +

4n(qg + qh)2

|Masy|
≤ 2

√
n(qg + qh) · Advind-cpaPKE,D (λ) + 4(qg + qh)

√
n

|Masy|
,

and the proof is completed.
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5 Conclusion

We presented two SIM-SO-CCA secure PKE schemes constructed from KEM schemes in the quantum random
oracle model or quantum ideal cipher model. The first one PKEhy

1 meets the security in the quantum ideal
cipher model. It is constructed from an IND-CCA secure KEM and a simulatable DEM with OT-INT-CTXT
security. On the other hand, the second one PKEhy

2 meets the security in the quantum random oracle model.
It is constructed from an FO-based KEM FO̸⊥ and an sUF-OT-CMA secure MAC. The differences between
these schemes are as follows: It is possible to apply any IND-CCA secure KEM scheme to PKEhy

1 , while PKEhy
2

applies a particular KEM scheme FO̸⊥ to PKEhy
2 . In addition, it is possible to apply any deterministic MAC

scheme to PKEhy
2 , while the underlying DEM scheme of PKEhy

1 needs to meet not only integrity but also
simulatability (in the quantum ideal cipher model).
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