
Security Against Honorific Adversaries: Efficient
MPC with Server-aided Public Verifiability

Li Duan
Paderborn University
liduan@mail.upb.de

Yufan Jiang
Karlsruhe Institute of Technology

yufan.jiang@partner.kit.edu

Yong Li
Ruhr University Bochum

Yong.Li@rub.de

Jörn Müller-Quade
Karlsruhe Institute of Technology

joern.mueller-quade@kit.edu

Andy Rupp
University of Luxembourg

andy.rupp@uni.lu

Abstract—Secure multiparty computation (MPC) allows dis-
trustful parties to jointly compute some functions while keeping
their private secrets unrevealed. MPC adversaries are often
categorized as semi-honest and malicious, depending on whether
they follow the protocol specifications or not. Covert security
was first introduced by Aumann and Lindell in 2007, which
models a third type of active adversaries who cheat but can be
caught with a probability. However, this probability is predefined
externally, and the misbehavior detection must be made by other
honest participants with cut-and-choose in current constructions.
In this paper, we propose a new security notion called security
against honorific adversaries, who may cheat during the protocol
execution but are extremely unwilling to be punished . Intuitively,
honorific adversaries can cheat successfully, but decisive evidence
of misbehavior will be left to honest parties with a probability
close to one. By introducing an independent but not trusted auditor
to the MPC ideal functionality in the universal composability
framework (UC), we avoid heavy cryptographic machinery in
detection and complicated discussion about the probability of
being caught. With this new notion, we construct new provably
secure protocols without cut-and-choose for garbled circuits
that are much more efficient than those in the covert and
malicious model, with slightly more overhead than passively
secure protocols.

Index Terms—MPC, security notion, efficient protocols, hon-
orific adversaries

I. INTRODUCTION

In secure multiparty computation (MPC), n parties are
willing to jointly compute a function C() without revealing
their private input {x1, · · · , xn} to others. MPC protocols
should guarantee that besides the output of the given function
{y1, · · · , yn} = C(x1, · · · , xn), nothing else can be learned
(privacy), and the output {y1, · · · , yn} is distributed correctly
(correctness). In different settings, MPC protocols are designed
against various types of adversaries, making trade-offs be-
tween efficiency and security. Up to now, three main categories
of adversaries are considered and most prior works achieved
provable security against one of them.
Semi-honest adversaries: these adversaries can be seen as

protocol participants who do not violate the protocols but
attempt to learn more than predefined output of functions.

Malicious adversaries: these adversaries may deviate arbi-
trarily from the protocol. In addition to the power of

semi-honest adversaries, they can take any action to
manipulate the result and messages. Protocols secure
against malicious adversaries ensure that the participants
can always detect misbehavior of its partner, and may
abort the execution.

It is not hard to see that protocols secure against semi-honest
adversaries offers quite limited privacy, while the ones with
malicious security [21] [26] [29] are usually too inefficient
for large-scale applications in practice [13].
Covert adversaries: these adversaries may actively cheat like

malicious adversaries, but they can be caught with a
constant probability E and they are afraid of being caught.
Protocols secure against such adversaries allow successful
cheating, but guarantee that honest parties can detect such
behaviors with the given probability E .

This notion can lead to more efficient protocols construc-
tions [5] than malicious security. However, the existing instan-
tiations in prior works [4] [5] [10] [12] [16] [18] [23] are still
much heavier than semi-honest ones. On the other hand, it is
extremely non-trivial in real world to quantify the probability
E of being caught as a reasonable externality in the theoretical
model.

Therefore, it remains prominent to explore other alternatives
between the weakest and strongest security guarantee.

A. Security Against Honorific Adversaries

Instead of adopting security-with-abort [25], we take a
fresh look at misbehavior detection and its consequence. The
incentive for a rational party to behave honestly is the fear
of being caught and punished. Intuitively, if a rational party
A cherishes its reputation so much that it cannot tolerate
being publicly labeled as dishonest, and if the detection
probability is overwhelming, then A will give up cheating
with overwhelming probability. We call such a rational A
as an honorific adversary. Like any law or regulation, this
notion itself does not technically prohibit any cheating during
execution, but provides honest parties with the ability to
detect and punish cheaters later on in public. Against such
honorific adversaries, we introduce an independent auditor as
an additional "external" protocol party.

M

FC

mxAU

xA,mxA xB,mxB

C(xA, xB) C(xA, xB)

PA PB

PAu

M(mxA,mxB,mxAU)

Fig. 1: Intuition of MPC with independent auditor Pau. Party
PA and PB give private inputs xA and xB to the ideal
functionality FC to compute C(xA, xB).

a) Modeling an Independent Auditor.: The idea of ex-
plicitly including an independent party Pau roots in Beaver’s
commodity based cryptography (CbC) [7]. In CbC, besides
the normal participants Alice and Bob, there are a group
of independent servers that do not actively take part in the
core protocol but serve as security resources to Alice and
Bob. An example of such resources is independently generated
Beaver’s multiplicative triples [7], which are widely used in
new protocols such as Overdrive in the pre-processing model
for statistical security [22]. MPC from hardware tokens [6]
[15] also implies an independent party for attestation and
sealing, which can persuade both Alice and Bob to believe in
the correctness and non-malleability of logic in the hardware
[1]. Although the hardware may actively participate in every
protocol execution [27], the independent party itself does not
always do.

We thus use an indepdent auditor Pau as a security re-
sources. Technically, we allow the MPC ideal functionaltity to
be parameterized with an auditing function as in Figure 1. This
auditing function is a Turing Machine (TM)M which can take
input ax from an independent auditor Pau, who is NOT a fully
trusted third party (TTP) but independent. On one hand, if Pau

functions honestly, it can help other honest parties identify the
cheater with the input mxA or mxB from both parties and an
external evidence mxAU from Pau. On the other hand, we
allow Pau to tamper with the input mxAU, as long as Pau

is not colluding with any other corrupted party. An algorithm
given in Fig.1 could be, for example, proving whether the
sender PA has handed in the correct messages within any
scope during an OT protocol (instantiated in protocol 7).

b) Smooth but Powerful Composition.: Suppose that a
protocol π consists of functionalities (FC1

, FC) and some other
intermediate steps. What we would like to achieve for π is the
auditing throughout the complete execution of π.

Intuitively, the ideal functionalities FC1
and FC can be

composed in the following way for π as shown in Figure 2.

(1) The sub-protocol FC1 produce outputs for party PA and
PB. Pau audits FC1

as defined and keeps the result
M1(ax1).

(2) PA and PB send information to Pau based on the
previous output for generating evidence for the next sub-
protocol.

(3) PA and PB insert input for the next sub-protocol FC .

Pau uses newly computed evidence ax to audit FC , and
produces the final auditing results from M1(ax1) and
M(ax).

This composition allows inheritance of evidences from previ-
ous FC1 smoothly, without interfering the pure two party part
that PA and PB participate in FC . A concrete example of
the power of this composition is Oblivious Transfer Extension
(OTE) [2], which needs the receiver’s input to be consistent
in both base oblivious transfer and the extension phase. This
requirement can be easily fulfilled in the above generic com-
position, which we will elaborate in Section VII technically.

c) Distinction from other Notions.: Bringing in an au-
ditor has already made our model distinct from pure n-party
MPC, where each party takes care of its own privacy. We do
not take the probability of catching cheaters as an externality,
but require it to be 1 − negl(κ), where negl(κ) a negligible
function of the security parameter κ.

The evidence mxAU for auditors is also fundamentally
different from the direct leakage adopted in the acceptable se-
curity paradigm proposed by Du et al. [11]. More specifically,
MPC participants deem as acceptable the exposure of q bits
in the private input in [11]. In contrast, without collusion, the
auditor Pau in our model cannot infer a single bit of private
input except the inherit leakage, such as input length and the
origin of messages.

We also offer extra power to each adversary. By providing
Pau with the participant generated evidence as auxiliary
input besides M, it can launch more unpredictable attacks in
theory, while the hardware adversary has no external input
from participants in the semi-trusted hardware model [27].
Malicious participants (PA or PB) also have the potential
to generate rogue information for evidence and observe the
auditing result to learn more.

B. Our Contribution and Structure of the Paper

In this work, we introduce a new security notion called
honorific security and present efficient garbled circuit and
OT/OTE protocols with honorific security in the universal
composability framework (UC) [9]. More specifically, we
achieve the following goals.

• New Ideal Functionalities in UC and Constructions. We
formalize fundamental ideal functionalities and provide
concrete constructions provably secure in UC. More
specifically, we formalize Oblivious Transfer with Audit-
ing Algorithm (FOT

MOT,A), Oblivious Transfer Extension
with honorific Security (Fm×OT

M), and Two-Party Com-
putation (F2pc

M) based on Fm×OT
Mm×OT,A . Then we provide

constructions from public key encryption, garble circuit
and digital signatures and we prove that all of our
constructions are secure in UC. The basic idea behind
this notion is, participants are responsible to exchange
encrypted evidence including all randomness they have
used, along with a signature to each other. Receiving all
these additional information will allow an independent
auditor to find out any misbehavior, but this happens

M
FC

mxAU
C

xA, · · · xB, · · ·

C(xA, xB) C(xA, xB)

PA PB

M(· · ·)

PAu

(3)

(1) (1)

(2) (2)

FC1

Protocol π

(3) (3)

mxAU
1 ,M1(· · ·)

(1)

M1

Fig. 2: Intuition of composition.

only if any party starts the auditing process. Since parties
do not know the decision made by others, holding the
evidence by its opponents will force parties to behave
honestly, avoiding punishment by a potential auditing.

• High Efficiency. We show that our protocols are almost
as efficient as those with semi-honest security. Another
attractive part of our protocol is that participant do
not have to prove misbehavior of other parties online
with cut-and-choose or zero-knowledge proofs. Thus our
protocols are significantly more efficient than protocols
with covert security and malicious security in metrics
such as computation and communication cost.

• Adaptive OT Protocol Options. In most of garbled circuit
protocols against covert adversaries [4] [18], either signed
OT or malicious OT is required. Within our protocol,
besides using a trivial solution to run OT protocols
with malicious security [3], we design a new secure
OT protocol in the presence of honorific adversaries.
We show that this new OT protocol is more efficient
than the previous one against malicious adversaries, and
meanwhile more powerful than those against semi-honest
adversaries by letting garbler hold the evidence.

• Compatible for Fully Malicious Adversary. We show
that our protocol can be constructed to achieve active
security by letting participants send an auditing query
after each break point of the protocol. We stress that
this trade-off between security guarantee and efficiency is
another highlight of our new notion. Since the adversaries
does not know how honest parties will behave after
receiving the evidence, this deterrence will force them
to act honestly.

Following the introduction, we survey related work in

Section II and introduce necessary notations and cryptographic
primitives in Section III. Our new model, ideal functionalities
and constructions of a generic honorific garbled circuit proto-
col are presented in Section IV and V, containing the complete
security proof. New oblivious transfer (OT) and constructions
can be found in Section VI, followed by oblivious transfer
extension (OTE) ideal and constructions in Section VII. For
all constructions we provide security proofs or sketches. We
summarize the result and propose possible future research in
Section VIII.

II. RELATED WORK

A. Security Notions Beyond Semi-honest

The formal definition of malicious security can be found
in Goldreich’s seminal two volume classics [14]. Protocols
with malicious security ensure that even if an adversary A
deviates from protocol definition arbitrarily, A cannot learn
anything about other parties’ inputs, except that A may cause
other parties to abort (Security with abort) [19]. Typical
constructions and analysis can be found in [21] [26] [29].

Covert security was first introduced by Aumann and Lindell
[5] in 2007, targeting the middle ground between passive and
malicious security. Loosely speaking, in a covert-secure proto-
col, cheating behavior can succeed with probability 1−E , and
will be detected by other parties with the remaining probability
E , which is also called the deterrence factor. Follow-up works
till 2016 [4] [10] [16] [24] confirmed that protocols with
reasonable E have a clear advantage in efficiency over the
ones with malicious security.

Among them, authors of [4] highlighted another critical
feature a covert-secure MPC protocol may need, the public
verifiability (PVC). PVC means in addition to self-detection,

the honest parties can also generate a certificate cert for the
misbehavior of the cheater, and cert can be verified by anyone
with the Judge Algorithm with public keys. Later in 2018 Hong
et al. [18] proposed a PVC protocol with further improvement
in efficiency.

B. Performance of Existing and Our Constructions

Lindell and Pinkas designed a protocol against malicious
adversaries [26] based on cut-and-choose technique (CC). Let
κ denote the security parameter, the garbler creates κ pieces
of circuits. Both parties proceed with a tossing-coin protocol
to jointly determine which circuits will be opened, the rest of
them are the evaluation circuits set. In order to perform the
consistency-check for garbler’s input wire labels, the garbler
computes commitments for all input wire labels of κ circuits,
let the evaluator open some of them based on the cut-and-
choose technique. A malicious garbler can still perform so
called selective-failure attack, by providing one correct and
another incorrect label during the OT protocol. The garbler is
able to learn the evaluator’s one-bit input based on whether
the evaluator aborts or not. This attack is prevented in this
paper by letting the evaluator’s input bit split by new κ input
bits, whose exclusive-or value replaces the original input bit
(xor tree in [12]). For the evaluation part, evaluator evaluates
the rest unopened circuits, takes the output that appears in the
most evaluation circuits set.

Regarding protocols with E-security for garbling circuits
[18], the garbler is forced to garble the same circuit several
times, while the evaluator opens the rest of the garbled circuits
to verify whether the garbler has cheated during garbling,
except one of those circuits remaining for evaluation. For
public verifiability, the garbler has to additionally send its
signature over all transcripts, which allows an honest evaluator
to create some certificates proving if the garbler has cheated
during the protocol execution. Within this protocol, a mali-
cious OT protocol is required to prevent a malicious evaluator
from cheating by handing inconsistent choice bit y. Selective
Failure Attacks are prevented by performing OT protocols
several times (corresponding to the number of opened garbled
circuits), which allows the evaluator to check whether the
rest of the received labels (except the one for evaluation) are
invalid.

According to the analysis in the prior work [4] [5] [23]
[18], to achieve a deterrence factor E = 1/2, at least λ = 2
replication factor is needed. A more general function of E
with expansion of the XOR-tree can be expressed as E =
(1 − 1

λ)(1 − 2−ζ+1), where ζ denotes the number of input
wires of the XOR-tree that an original bit has been expanded.
Regarding the protocol [26], PB has to open the half of sent
circuits and evaluate the rest of them. And meanwhile, PA
has to compute commitments for labels corresponding to all
circuits and send them to PB. In the work [18], PA and PB run
λ executions of ΠOT to transit the seedAi , avoiding sending the
original copies of garbled circuits. Still, PB is heavily stressed
by proving the rest of sent circuits.

The works developed by Wang et al. [29] and specifically
Katz et al. [21] get rid of the cut-and-choose by letting both
PA and PB hold the secret share of each gate. They integrate
an information theoretic-MAC on PA’s share of the masked bit
to ensure that PA cannot affect correctness of garbled table.
This protocol is later improved by Katz et al. making the pro-
tocol compatible with the half-gate optimization and avoiding
sending an information-theoretic MAC for each garbled row.
Within their protocol, the execution of OT protocol is replaced
by letting PA and PB open authenticated values and transit
input wire labels based on their truth input bits masked by
masking bits (recall that this masking bits are hidden from
both parties). Labels delivery in this style is circuit dependent
and must be done in online phase. Their approach requires a
function-independent preprocessing protocol for both parties
to prepare triples for AND gates. After PB finishing evaluation,
both parties need to prove that each AND gate has been
computed correctly by locally computing the authenticated
shares then authenticating in the online phase, as well as PA’s
authenticated shares for output wires.

In general, among all protocols with malicious or covert
security, parties are forced to prove guilt by themselves, and
do not have evidence to challenge corrupted parties (except
protocols with public verifiability). We argue that our proto-
col against honorific adversaries provides sufficient security
guarantee in many cases and enables participants to perform
a postponed verification of cheating behavior.

Meanwhile, we believe that our protocol is almost as effi-
cient as the state-of-the-art protocols against semi-honest ad-
versaries. We have compared our protocol to those state-of-the-
art two-party computation protocols against covert adversaries
[18] and malicious adversaries [29] [21] as well. The semi-
honest protocol we compared with incorporates all existing
optimizations. We have chosen the standard RSA algorithm
provided by openssl as the public-key-encryption scheme and
the signature scheme. All experiments are implemented on a
Ubuntu 20.04 VM enabling 4 cores of Intel i7-8550U CPU,
running at 1.80GHz each. The circuits used for evaluation are
listed in the following:

Circuit |C|
AES-128 6800
SHA-256 22573
SHA-512 57947
Sorting 10.223 K
Multi 4.192 K

TABLE I: Circuits for evaluation. |C| : number of AND gates.

1) Computation Complexity: The running time of our pro-
tocol for each circuit compared with that for semi-honest is
shown below in Tab. II. All implemented result contains the
running time of an OTE protocol [2]. We have also enclosed
the performance comparison cited in paper [18]. In PVC, the
OT protocol with malicious security is necessarily chosen to
be implemented. As pointed out by the authors, the running
time of the protocol for small circuits will be "dominated by
the base OTs". We would like to stress that the slowdown

factors of this paper are much smaller than those implementing
malicious OTs, since the baseline semi-honest protocol we
compared with requires less running time. As expected, our
protocol is at most 37% slower than semi-honest protocol in
LAN setting.

Circuit Implemented Slowdown [18]
This paper Semi-honest This paper PVC malicious

AES-128 19.36 ms 14.14 ms 37% 60% 541%
SHA-256 56.14 ms 44.69 ms 25% 27% 1160%
SHA-512 171.97 ms 154.91 ms 11% - -

TABLE II: Comparison of running times between our protocol
and a covert/malicious protocol in LAN setting (performance
of covert/malicious protocol cited from paper [18]).

2) Communication complexity: To consider comparison in
WAN setting, we compared our protocol with those state-of-
the-art two-party computation protocols for computing differ-
ent circuits. We have chosen two representative protocols with
covert security by Chen et al. [18] and with malicious security
by Katz et al. [21]. The communication overhead of this paper
against semi-honest only differs from the length of signature
and the encrypted evidences (e.g. the seed to garble the circuit
or to create random messages for base OTs). It is also possible
to sign and encrypt only once in batch, which will extremely
reduce the additionally transferred data size. For one single
circuit, the communication complexity of our protocol almost
the same as that in semi-honest setting as well, shown in Tab.
III.

III. NOTATION AND PRELIMINARIES

We summarize basic notation in this paper in Table IV,
and other terms will be introduced when necessary. We use
"a party uses randomness derived from seed" as a convention
for the action that a party uses seed as the key of a pseudo-
random function (PRF) to obtain a sufficiently long series of
pseudorandomness.

Definition 1 (Garbling Scheme). A circuit garbling scheme
GCS = (Gb, En, Ev, De) consists of the following algorithms.

• Gb(1κ, C) denotes the garbling algorithm. It takes the
security parameter 1κ, the circuit C as input. It returns a
garbled circuit GC, encoding information e, and decoding
information d.

• En(e, w) denotes the encoding algorithm. It takes the
input w and encoding information e as input. It returns
the garbled input {Wi,b}.

AES-128 SHA-128 SHA-256 Sort. Mult.
Semi-Honest 0.222 1.165 2.800 313.1 128.0
Covert (PVC) [18] 0.243 1.205 2.844 325.1 128.2
Malicious [21] 3.545 17.69 42.95 2953 1228
This paper 0.230 1.173 2.808 - -

TABLE III: Communication complexity in MB (communica-
tion overhead of covert/malicious protocol cited from paper
[18]).

{(x̂0
j , x̂

1
j)}j∈[m] m pairs messages {x0, x1} of party auditor

{(x0
j , x

1
j)}j∈[m] m pairs messages {x0, x1} of party A

{ekau, dkau} encryption key and decryption key of party auditor
for a PKE scheme

{B̂i,j,b} a set of correct evaluator’s input label B̂i,j,b ex-
tracted from ĜCi

{pki, ski} public key and private key of party i for a signature
scheme

{Ai,j,b} a set of garbler’s input label Ai,j,b for ith circuit,
jth wire, label b

{Bi,j,b} a set of evaluator’s input label Bi,j,b for ith circuit,
jth wire, label b

{k0, k1}l party B’s input in base OT phase F l×OT
Ml×OT,B

{Oi,j,b} a set of output label Bi,j,b for ith circuit, jth wire,
label b

{y0j , y1j }j∈[m] m pairs encrypted messages
GCS garbling scheme GCS = (Gb, En, Ev, De)

ĜCi ith garbled circuit computed by party auditor using
decrypted seedAi

GCi ith garbled circuit computed by party A
κ the security parameter
Pi Party i
qi ith column in matrix Q
r choice bit of party B
s party A’s input in base OT phase F l×OT

Ml×OT,B

ti ith column in matrix T
ui ith column in matrix U

Fm×OT
M ideal functionality m × OT without PA’s input

consistency auditing algorithm
Fm×OT

Mm×OT,A ideal functionality m × OT with PA’s input con-
sistency auditing algorithm Mm×OT,A

F2pc
M ideal functionality 2pc with honorific security
Mm×OT,i auditing algorithm within Fm×OT

Mm×OT,i for party i
Mi auditing algorithm for party i
badot event bad OT in main GC based 2PC protocol
cheatParty flag documenting cheat party
cti,OT evidence computed by party i for OT protocol
ct

A,GCi
i evidence computed by party A for ith computation

in GCi

seedAi seed used for garbling ith circuit by party A
seedB seed used to generate {k0, k1}l ith by party B
rnd randomness used for OT.ENC by party A
ΠGC

M GC Protocol with honorific security
Πm×OT

M m×OT Protocol with honoridic security
ΠOT

MOT,A OT Protocol implementing PA’s input consistency
auditing algorithm

Pr[A : B] the probability that event A happens if action B is
taken

sid session identifier
σi,OT signature computed by party i for OT protocol
σ
A,GCi
i signature computed by party A for ith computation

in GCi

ξ Party’s invalid input
1κ unary string of κ ones

a
$← S sampling an element from S uniformly at random

m
$← AO(·)() A outputs m with the help of another algorithm

(oracle) O(·)
X||Y the operation concatenating two binary strings X and

Y
badbaseOT event bad base OT in main OTE protocol
G pseudorandom generator
H collision-resistent hash function
x, y, ax Party’s valid input

TABLE IV: Notations.

• Ev(GC,W) denotes the evaluation algorithm. It takes the
garbled circuit GC and garbled input {Wi,b} as input. It
returns a garbled output {Oi}.

• De(d,O) denotes the decoding algorithm. It takes the
decoding information d and garbled output {Oi} as
output. It returns the output {oi}

Definition 2 (Correctness [8]). A garbling scheme GCS =
(Gb,En, Ev,De) is correct, if for all functions C and input w:

Pr[(GC, e, d)← Gb(1κ, C) :
De(d,Ev(GC,En(e, w))) = C(w)] = 1

Definition 3 (Simulatable Privacy [8] [27]). A garbling
scheme GCS = (Gb,En, Ev,De) is simulatable private, if
for all functions C and input w, there exists a probabilistic
polynomial time (PPT) simulator Sim such that for all PPT
adversary A:

Pr


b = b⋆ :

(GC0, e0, d0)← Gb(1κ, C);W0 ← En(e, w);
(GC1,W1, d1)← Sim(1κ, C(w),Φ(C));

b← {0, 1}; b⋆ ← A(GCb,Wb, db);

 ≤ negl(κ)

where Φ denotes the side-information function.

Definition 4 (Signature scheme). A signature scheme SIG =
(SIG.Gen, SIG.Sign, SIG.Vfy) consists of three algorithms
SIG.Gen, SIG.Sign and SIG.Vfy described as below.

• SIG.Gen(1κ)
$→ (pk, sk). The non-deterministic key gen-

eration algorithm SIG.Gen() takes the security parameter
1κ as the input and outputs the public key pk and the
private key sk.

• SIG.Sign(sk,m)
$→ σ. The (non-deterministic) message

signing algorithm SIG.Sign() takes the private key sk and
a message m as the input and outputs the signature σ.

• SIG.Vfy(pk,m, σ) = b. The deterministic signature ver-
ification algorithm SIG.Vfy() takes the public key pk, a
message m, a signature σ as input and outputs a boolean
value b. b is TRUE if σ is a valid signature on m.

Definition 5 (Public key encryption scheme, PKE). A public
key encryption scheme Π = (KGen,ENC,DEC) consists of
three algorithms KGen, ENC and DEC described as below.

• Π.KGen(1κ)
$→ (ek, dk). The non-deterministic key gen-

eration algorithm KGen() takes the security parameter
1κ as the input and outputs the public encryption key ek
and the private decryption key dk.

• Π.ENC(ek,m)
$→ CT. The non-deterministic encryption

algorithm ENC() takes the encryption key ek and a
message m as the input and outputs a ciphertext CT.

• Π.DEC(dk,CT) = m′. The deterministic decryption
algorithm DEC() takes the public key pk, a ciphertext
CT as input and outputs a plaintext m′.

Due to the page limitation, we refer the reader to cryp-
tography texts such as [20] for definitions of correctness and
security of SIG, hash function, PKE, PRF and other primitives.

IV. HONORIFIC MPC IDEALS AND GC PROTOCOL

A. Ideals against Honorific Adversaries in UC

The Ideal F2pc
M : Let PA, PB and Pau denote the partic-

ipating parties P = {PA,PB,Pau}, Pc ⊆ {PA,PB,Pau}
denote the corrupted parties controlled by an adversary A. We
include following basic queries in our new ideal.
Inputs: Let x denote party PA’s input, y denote party PB’s

input, z denote adversary A’s auxiliary input.
Send inputs to ideal functionality: The honest party Pj

sends its input to the ideal functionality. The corrupted
parties controlled by A may either send their predefined
input, some other input of the same length, or abort (by
replacing the input with a special (abort,Pi, sid) to the
ideal functionality.

Early Abort Option: If the ideal functionality receives the
message (abort, Pi, sid), it sends (abort,Pi, sid) to
all parties and the ideal execution terminates. Otherwise,
the ideal execution proceeds.

Ideal functionality sends outputs to adversary: The ideal
functionality computes fi(x

′, y′) and sends fi(x
′, y′) to

party Pi for all i ∈ Pc (i.e. to all corrupted parties).
Adversary instructs ideal functionality to continue or halt:
A sends either (continue,Pi, sid) or (abort,Pi, sid)
to the ideal functionality. If received (continue,Pi, sid),
the ideal functionality sends fj(x′, y′) to the honest party
Pj for all j /∈ Pc (i.e. to all honest parties). Otherwise,
the ideal functionality send (abort,Pi, sid) to party Pj.

Outputs An honest party always outputs what ideal function-
ality sends to it. The corrupted parties output nothing.
The adversary A outputs any (probabilistic polynomial
time computable) function of the initial inputs {xi}i∈Pc

,
the auxiliary input z, and the messages {fi(x′, y′)}i∈Pc

received from the ideal functionality.
The ideal is now parameterized with two additional flags:

• cheatParty is a set of cheated parties. Since we con-
sider the honest majority setting in this paper, only one
party could be corrupted and then cheats.

• M is implemented as an auditing algorithm. Consider-
ing an OT protocol with malicious security against the
receiver, if both parties PA and PB agree that the input
messages of the sender must be xi ∈ X . Then having Pau

holding the external input mxAU = X , and mxA = {xi},
the auditing algorithmM(mxA,mxAU) outputs the exact
cheating behavior performed by PA (when PA is the
sender).

We then extend the ideal by adding new instructions that
the adversary can send to the ideal functionality. Similar to
the ideals with covert security, the adversary is able to send a
cheat option to the ideal functionality, and this cheat decision
"must be made before the adversary learns anything" [5].
Besides, we extend this cheat option by letting the cheat party
also include the input mxi for auditing algorithm M:
Cheat Option: If a corrupted party send (cheat, (mxi,M)

Pi, sid) to the ideal functionality, then the ideal

functionality sends all of the honest parties’ inputs
{xj}j /∈Pc

to Pi and stores the mxi. If multiple
(cheat, (mxi,M),Pi, sid) are sent, the ideal function-
ality ignores all but one.

Additionally, we allow any party sends an auditing query
((audit,Pj),Pi, sid) to the ideal functionality. Note that
parties are able to send this query at any time during the
protocol. The ideal functionality will first require the input
of Pau if needed, then it sends the auditing result (which is
the output ofM) to Pau. We stress that this Pau is not a part
of the secure computation and come into force only when any
Pi sends the auditing query.

Audit Option: If any party Pi sends ((audit,Pj),Pi, sid)
to the ideal functionality intended to audit Pj, if M
requires mxAU from Pau, then the ideal functional-
ity sends ((M,Pj),Pi, sid) to Pau. Upon receiving
(mxAU,Pau, sid) from Pau, it sends M(mxi,mxAU) to
Pau. Otherwise, it directly sends M(mxi) to Pau. It
waits for the (deliver,Pau, sid) and broadcasts the result
of M.

We let FOT
MOT,A denote the ideal OT functionality with

auditing algorithm MOT,A, and Fm×OT
Mm×OT,A its the parallel

version, as shown in Figure 4.

B. GC-based MPC with Honorific Security, the idea

In this section, we show a high-level overview of our
protocol ΠGC

M . A formal definition is provided in Figure 5.
Using a signature scheme SIG = (SIG.Gen, SIG.Sign,

SIG.Vfy), both parties PA and PB run SIG.Gen to obtain
their public-private key pairs. We assume that both parties and
Pau know the public key of participants before running the
protocol. Using a PKE (KGen,ENC,DEC), Pau runs KGen()
to obtain its public and private key pair. We assume that both
parties know the public key of Pau as well before running the
protocol. In the common reference string (CRS) model, this
will allow the simulator to simulate the key pair for the PKE
and the signature scheme.

To achieve security against honorific adversaries, both party
PA and PB have to send an evidence and a signature along
with part of the transcript to each other. If one party, say
PB would like to check whether PA has cheated during the
protocol, PB can send the evidence, the signature, and the
corresponding part of the transcript to auditor, who can open
the evidence and verify all PA’s behaviors during the protocol.
Note that since the auditor could be corrupted by a semi-honest
adversary, both parties are not willing to expose their private
input in the evidence.

In a garbled circuit based MPC, after garbling the ith
circuit, PA has to compute the evidence ctA,GCi

i including all
(pseudo)randomness derived from a corresponding seed seedAi .
PA sends all information above along with a signature σA,GCi

i

to PB. 1

1Recall that if Pau opens PA’s evidence, Pau will have the whole garbled
circuit, so PA’s input wire labels can not be included in the ctA,GCi

i .

The above idea will prevent an honorific PA from cheating
during the GC generation phase, since PB can verify PA’s
behavior at any time. But during the OT protocol, where PB

learns the receiver’s input wire labels, PA can still perform a
selective failure attack, by providing a pair of true and false
label observing if PB aborts to obtain PB’s one-bit input. In
our model, if PA performs such attacks and PB prosecutes,
Pau should be able to detect such cheating behavior. Thus,
we require an improved OT ideal functionality Fm×OT

Mm×OT,A

shown in Fig. 4 within our protocol. Fm×OT
Mm×OT,A allows Pau to

input reference OT labels retrieved from the receiving evidence
within the GC protocol and will compare these with the real
input of PA. By importing a consistency check algorithmM,
any protocol implementing conventional ideal OT functionality
can easily be converted to implement Fm×OT

Mm×OT,A . The detailed
description is in Section VI.

There still remains the issue that PB may cheat during
the OT protocol by using inconsistent choice bit r to obtain
PA’s choice bit s and can thus decrypt both {y0j , y1j }, where
j ∈ [n2]. We can either preventing such a cheating behavior
by deploying an OT protocol with malicious security (e.g.
[28] and [3]), or extending an OT protocol (e.g. from [2])
of passive security against PB to maintain honorific security.
Following the same idea above, PB as OT protocol receiver
has to provide PA with an evidence and a signature during
the OT protocol, enabling PA to audit PB’s behavior at any
time. More details are explained in Sec. VII.

Finally, PA sends the garbler’s input {Ai,j,b} to PB,
allowing PB to compute the output.

V. PROTOCOLS AND SECURITY ANALYSIS

We now analyze the security of ΠGC
M . First we define the

server-aided public verifiability.

Definition 6 (Server-aided Public Verifiability). If a corrupted
party Pj outputs an evidence ctj, its corresponding signature
σj and sends them to an honest party Pi, then we know that an
semi-honest auditor holding the private key dkau can always
outputMj(mxj,mxAU) upon receiving the auditing query by
Pi, except with negligible probability.

Theorem 1. Assume GCS = (Gb,En,Ev,De) is a secure sim-
ulate private and correct garbling scheme, H() is a collision-
resistant hash function, SIG is existentially unforgeable under
a chosen-message attack, PKE has indistinguishable encryp-
tions under a chosen-ciphertext attack. Protocol ΠGC

M de-
scribed in Fig.5 securely realizes F2pc

M described in Fig.3
with server-aided public verifiablity in the Fm×OT

Mm×OT,A -hybrid
model, in the presence of an honorific adversary who can
corrupt either PA or PB, or in the presence of a semi-honest
adversary who can corrupt Pau, with static corruption.

We prove Theorem 1 by analyzing the cases of static
corruption of PB, PA and independently corrupted Pau.

A. Honorific Security — Malicious PB

Let A be an adversary corrupting PB. In CRS model, we
build the following simulator S, who simulates a key pair of

Functionality F2pc interacts with players P := {PA,PB,Pau} and the adversary S. It is parameterized with the set of
corrupted parties Pc, a set of cheated parties cheatParty ∈ {PA,PB}, and a set of PPT algorithms M2pc = {MA,MB}.
Initially, Pc = ∅, cheatParty = ∅.

Corruption handling:
• Upon receiving (corrupt,Pi, sid) from the adversary S:

– If Pi ∈ P and Pc = ∅, set Pc := {Pi}. Send (corrupt_success,Pi, sid) to S.
– Otherwise, send (corrupt_failed,Pi, sid) to S

Compute:
• Upon receiving (input, x,PA, sid) from party PA and (input, y,PB, sid) from party PB:

– Compute f(x, y) and send it to PB.
• Upon receiving (input, ξ,Pi, sid) from any party Pi ∈ {PA,PB}, where ξ is a invalid input:

– Send ⊥ to PB.
Cheating handling:

• Upon receiving (cheat, (mxA,MA),PA, sid) from party PA:
– If PA ∈ Pc, send a message (cheat_success, y, sid) to S, wait to receive oB from PA and send oB to PB. Set

cheatParty = {PA}, and stores mxA;
Otherwise, send a message (cheat_failed, sid) to S;

• Upon receiving (cheat, (mxB,MB),PB, sid) from party PB:
– If PB ∈ Pc, send a message (cheat_success, x, sid) to S, wait to receive oA from PB and send oA to PA. Set

cheatParty = {PB}, and stores mxB;
Otherwise, send a message (cheat_failed, sid) to S;

Auditing:
• Upon receiving ((audit,Pj),Pi, sid) from party Pi intended to audit Pi:

– Run Mj and sends the result to Pau. Wait for response and broadcasts.

Fig. 3: Two Party Functionality F2pc
M .

Private inputs: PA has input {x0, x1}m and keys {pkA, skA} for a signature scheme. PB has input y ∈ {0, 1}m and keys
{pkB , skB} for a signature scheme. Pau has input {x̂0, x̂1}m.
Public inputs: Both party agree to compute a set of auditing algorithmsMm×OT = {Mm×OT,A,Mm×OT,B}, know the public
key pki of each other, and agree with a encryption key ekau for the public-key-encryption scheme.
Initialization: Pc = ∅, cheatParty = ∅.

Compute: Upon receiving ({x0, x1}m, PA, sid) from PA and (y, PB , sid) from PB, send {xy[i]}m to PB .

Cheating handling:
1) Upon receiving (cheat, (mxm×OT,B,Mm×OT,B),PB, sid) from party PB, send a message (cheat_success,
{x0, x1}m, sid) to S, wait to receive oA from PB and send oA to PA. Set cheatParty = {PB} and stores mxm×OT,B.

2) Upon receiving (cheat, (mxm×OT,A,Mm×OT,A),PA, sid) from party PA, send a message (cheat_success, y, sid) to
S, wait to receive oB from PA and send oB to PB. Set cheatParty = {PA} and stores mxm×OT,A.

*Auditing algorithm Mm×OT,B:
• Upon receiving ((audit,PB),PA, sid) from PA, send Mm×OT,B(mxB) to Pau. Wait for (deliver,Pau, sid) and

broadcast.
*Auditing algorithm (Input consistency check included) Mm×OT,A:

• Upon receiving ((audit,PA),PB, sid) from PB and (mxAU,Pau, sid) from Pau where mxAU = {x̂0, x̂1}m, send
Mm×OT,A(mxm×OT,A,mxm×OT,AU) to Pau. Wait for (deliver,Pau, sid) and broadcast.

Fig. 4: OT ideal functionality Fm×OT
Mm×OT,A .

Private inputs: PA has input x ∈ {0, 1}n1 and a key pair {pkA, skA} for the signature scheme. PB has input y ∈ {0, 1}n2

and a key pair {pkB , skB} for the signature scheme. Pau has a key pair {ekau, dkau} for the PKE scheme.
Public inputs: Both parties agree to compute the functionality C with parameters κ, λ and deploy an ideal functionality
Fm×OT

Mm×OT,A . They both know the public key pki of each other and agree with the ekau for a encryption scheme. Pau knows
the pki of PA and PB.

Protocol:
1) PA garbles C using randomness derived from seedAi . The ith garbled circuit are denoted by GCi, as well as PA’s input wire

labels {Ai,j,b}j∈[n1],b∈{0,1}, PB’s input wire labels {Bi,j,b}j∈[n2],b∈{0,1}, and output wire labels {Oi,j,b}j∈[n3],b∈{0,1}. PA

then computes a decoding table tablei ← {Label0i,j , Label
1
i,j}j∈[n3], where Label0i,j ← H(Oi,j,0) and Label1i,j ← H(Oi,j,1).

2) PA and PB call Fm×OT
Mm×OT,A , where PA uses {Bi,j,b}j∈[n2],b∈{0,1} as input and PB uses y as input.

3) PA computes an evidence ctA,GCi

i ← ENC(ekau, seed
A
i , sid). Then PA computes a signature of this message combined

with transcript σA,GCi

i ← SIG.Sign(skA, C,GCi, tablei, ct
A,GCi

i , sid). PA then sends GCi, tablei, ct
A,GCi

i and σA,GCi

i to
PB.

4) PB checks whether σA,GCi

i is a valid signature for GCi and ctA,GCi

i , aborts with output ⊥ if not.
* Auditing first part:

a) PB sends an auditing query (C,GCi, ct
A,GCi

i , σA,GCi

i , sid) to Pau, who checks whether σA,GCi

i is valid, aborts with ⊥
if not.

b) Pau retrieves seedAi ← DEC(dkau, ct
A,GCi

i).
c) Pau computes ĜCi and ˆtablei using seedAi , then compares whether GCi = ĜCi and tablei = ˆtablei , broadcasts the

result.
* Auditing second part:

a) PB sends an auditing query ((audit,PA),PB, sid) to Fm×OT
Mm×OT,A , which sends a notification

((Mm×OT,A,PA),PB, sid) to Pau.
b) Upon receiving ({B̂i,j,b},Pau, sid) from Pau, Fm×OT

Mm×OT,A sends Mm×OT,A({Bi,j,b}, {B̂i,j,b}) to Pau.
c) Upon receiving (deliver,Pau, sid) from Pau, Fm×OT

Mm×OT,A broadcasts Mm×OT,A({Bi,j,b}, {B̂i,j,b}).
5) PA sends {Ai,j,x[j]}j∈[n1] to PB.
6) PB evaluates GCi using {Ai,j,b}j∈[n1], {Bi,j,b}j∈[n2], obtains {Oi,j}j∈[n3]. Then, PB compute {H(Oi,j)}j∈[n3]. If any

H(Oi,j) /∈ {Label0i,j , Label
1
i,j}, aborts with ⊥, otherwise output oB .

Fig. 5: Full description of ΠGC
M against honorific adversaries.

PA for the signature scheme, a key pair of Pau for the PKE,
holds the public key of PB and runs A as subroutine, while
playing the role of PB in the ideal world interacting with F2pc

M
as follows.

1) Play the role of an honest PA, using pseudorandomness
derived from uniform distributed κ-bit seedAi to create
pseudorandom keys {Bi,j,b}j∈[n2],b∈{0,1}.

2) Play the Fm×OT
Mm×OT,A with A playing PB:

a) If the input is (cheat, (mxB,Mm×OT,B),PB, sid),
send (cheat, (mxB,MB),PB, sid) to F2pc

M and re-
ceive back PA’s input x. Then use the input x of PA

to perfectly emulate PA in the rest of execution. Send
oA to F2pc

M , which will be received by PA as output.
The simulation ends here for this case.

b) If the input is y, hands A the wire label {Bi,j,y[j]} that
are chosen by A, proceed with the simulation below.

3) Send the A’s input y as PB’s input to F2pc
M , receive back

the output oB .
4) Using the appropriate PB’s input wire labels from above,

generate a garbled GCi and corresponding tablei, which
is always evaluated to oB . Send GCi and tablei to A.

5) Compute ctA,GCi

i using the seedAi and a corresponding
σA,GCi

i , send to A.
6) Hand A arbitrary PA’s input wire labels and halt.

We now prove the indistinguishability of views.

Proof. Denote Protocol 5 as ΠGC
M and Pc = {PB} (i.e. PB is

corrupted), we show:{
IDEALh

C,S(z),Pc
((x, y), n)

}
c≡
{

HYBRIDOT,h

ΠGC
M,A(z),Pc

((x, y), n)
}

(1)

To prove (1), we first consider the cases when A sends
(cheat, (mxm×OT,B,Mm×OT,B),PB, sid) or behaves hon-
estly, denoted by badot and ¬badot, respectively. Note that
the oblivious transfer is the first step of the protocol, and A’s
view in IDEAL is identical to its view in the real protocol
execution with an ideal functionality Fm×OT

Mm×OT,A , whether the
event badot happens depends on A itself. This indicates that
the probability an event badot happens is identical in the
IDEAL and HYBRID execution. Thus we still have to show
that the following equations hold:{

IDEALh
C,S(z),Pc

(x, y)|badot
}

≡
{

HYBRIDOT,h

ΠGC
M,A(z),Pc

(x, y)|badot
}

(2)

{
IDEALh

C,S(z),Pc
(x, y)|¬badot

}
c≡
{

HYBRIDOT,h

ΠGC
M,A(z),Pc

(x, y)|¬badot
}

(3)

To prove that Eq. (2) holds, we stress that after sending
(cheat, (mxm×OT,B,MB),PB, sid), S receives back honest
PA’s input x. For both cases, Pau’s output is exactly the same
auditing result computed by S during HYBRID execution.
Since S is able to emulates PA perfectly when holding PA’s
real input, and PA has no output from Protocol 5, the joint
distribution of A’s view and output of PA and Pau in IDEAL
is thus indistinguishable from the joint distribution of A’s view
and output of PA and Pau in HYBRID execution.
To prove Eq. (3), we recall that PA has no output, and Pau’s
output is identical to the result computed by S, so we just
have to show that the A’s view in IDEAL is computational
indistinguishable from the A’s view in HYBRID execution.
Thus, we consider the following hybrid worlds.
Hybrid 1: We consider a simulator S1, which holds the real
PA’s input x. This S1 garbles the circuit C honestly and send
the corresponding input wire labels {Ai,j,b}j∈[n1],b∈{0,1} to
A. This is trivial to verify that the distribution of A’s view in
the IDEAL is identical to the distribution of A’s view in the
real HYBRID execution. Thus we have{

IDEALh
C,S1(x,z),Pc

((x, y), n)
}

≡
{

HYBRIDOT,h

ΠGC
M,A(z),Pc

((x, y), n)
}
. (4)

Hybrid 2: We consider a simulator S2 that works exactly as
S1 except using an uniform distributed κ-bits seedA

i

′ instead
of using the correct seedAi to compute the evidence ctA,GCi

i

and the corresponding σA,GCi

i . Due to the fact that ctA,GCi

i is
computed by a PKE, which has indistinguishable encryptions
under CCA, the distribution of A’s view in the IDEAL is
computational indistinguishable from the distribution of A’s
view in the Hybrid 1. Thus, we have{

IDEALh
C,S2(x,z),Pc

((x, y), n)
}

c≡
{

IDEALh
C,S1(x,z),Pc

((x, y), n)
}
. (5)

Hybrid 3: We consider a simulator S3 that works exactly as
S2 except that S3 garbles the circuit C in such a way that this
circuit will always be evaluated to oB , using the appropriate
input wire labels. Since Gb is a secure simulatable private
garbling scheme, the distribution of A’s view in the IDEAL is
computational indistinguishable from the distribution of A’s
view in Hybrid 2. Thus, we have{

IDEALh
C,S3(z),Pc

((x, y), n)
}

c≡
{

IDEALh
C,S2(x,z),Pc

((x, y), n)
}
. (6)

This completes the proof.

B. Honorific Security — Malicious PB

Let A be an adversary corrupting PA. In CRS model, we
build the following simulator S which simulates a key pair
of PA for the signature scheme, a key pair of Pau for the
PKE, holds the public key of PA and runs A as subroutine,
while playing the role of PA in the ideal world interacting
with F2pc

M :

1) Play the Fm×OT
Mm×OT,A with A playing PA:

a) If the input is (cheat, (mxm×OT,A,Mm×OT,A),PA, sid),
send (cheat, (mxm×OT,A,MA),PA, sid) to F2pc

M
and receive back PB’s input y. Then use the input
y of PB to perfectly emulate PB in the rest of
execution. Send oB to F2pc

M , which will be received
by PB as output. The simulation ends here for this
case.

b) If the input is {Bi,j,b}j∈[n2],b∈{0,1}, proceed with the
simulation below.

2) Play the role as an honest PB, receive GCi, tablei,
ctA,GCi

i and σA,GCi

i , from A
3) Check if the signature σA,GCi

i is invalid, send ⊥ to F2pc
M

and halt.
4) Extract (seedAi , sid) with DEC(dkau, ct

A,GCi

i). Compute
ĜCi and ˆtablei using the pseudorandomness derived from
seedAi .

5) For the following cases:
a) If ĜCi ̸= GCi or ˆtablei ̸= tablei, send (cheat,

(GCi, tablei, seed
A
i ,MA), PA, sid) to F2pc

M and re-
ceive back PB’s input y. Then use the input y of PB

to perfectly emulate PB in the rest of execution. Send
oB to F2pc

M , which will be received by PB as output.
The simulation ends here for this case.

b) If any of {Bi,j,b}j∈[n2],b∈{0,1} is not a
consistent label corresponding to ĜCi, send
(cheat, ({Bi,j,b}, {B̂i,j,b},MA),PA, sid) to F2pc

M
and receive back PB’s input y. Then run perfect
emulation using PB’s input. Send oB to F2pc

M , which
will be received by PB as output. The simulation
ends here for this case.

6) Upon receiving {Ai,j,x[j]} from A, check if any
{Ai,j,x[j]} are invalid, send ξ to F2pc

M and halt (cause
PB to receive ⊥). Otherwise, derive the exact A’s input
x, send to F2pc

M and halt.

Proof. Denote Protocol 5 as ΠGC
M and Pc = {PA} (i.e. PA

is corrupted), we show:{
IDEALh

C,S(z),Pc
(x, y)

}
c≡
{

HYBRIDOT,h

ΠGC
M,A(z),Pc

(x, y)
}

(7)

The analysis of the event badot and probability of both badot
and ¬badot are identical to the case when PB is corrupted

and so we have:{
IDEALh

C,S(z),Pc
(x, y)|badot

}
≡

{
HYBRIDOT,h

ΠGC
M,A(z),Pc

(x, y)|badot
}

(8)

It remains to prove for the case ¬badot. Note that after
Fm×OT

Mm×OT,A , A does not receive any message from PB. The
A’s view in the IDEAL is therefore indistinguishable from
its view in the HYBRID execution. We point out, that this is
not the case when we consider the joint distribution including
PB’s output, because any cheating by A can cause PB to
output an incorrect value. Thus, we prove the joint distribution
of PB’s output and Pau’s output are identical in IDEAL and
HYBRID execution, to show that if any cheating behavior
occurs, the cheated party can cause other honest parties to
output some incorrect value. However, it cannot prevent an
honest auditor from having the correct auditing results.

Note that as long as A decides to cheat, the simulator S dis-
covers cheating behavior directly by decrypting the evidence,
receives PB’s real input y, and can thus perfectly emulate
PB. The output oB that received by PB in IDEAL is exactly
the same output that S has computed during the HYBRID
execution. Besides, the simulator S extracts evidence exactly
as an honest auditor will do in the HYBRID execution. Thus,
the output received by Pau in IDEAL is identical to the
auditing result that S has computed during the HYBRID
execution. This completes the proof.

C. Honorific Security — Semi-honest Pau

For simplicity, we consider the case that Fm×OT
Mm×OT,A is

implemented by a protocol with malicious security against
both PA and PB, indicating that PB’s cheating behavior
will be detected by PA already within the ideal functionality
Fm×OT

Mm×OT,A . So regarding Pau’s view, we will only focus on
whether PA’s cheating behavior takes place in the rest of
proofs. Let A be an adversary corrupting Pau. In CRS model,
we build the following simulator S who simulates the two
key pairs of PA and PB for the signature scheme, knows the
public key of Pau for PKE, and receives adversary A’s output
MA(mxA). S runs A as subroutine, while playing the role
of Pau in the ideal world interacting with F2pc

M .

a. The output MA(mxA) received by S indicates that PA

has behaved honestly:
1) Play the role of an honest PA, choose uniform dis-

tributed κ-bit seedAi to compute {Bi,j,b}j∈[n2],b∈{0,1}.
2) Play Fm×OT

Mm×OT,A between PA and PB, where PA uses
{Bi,j,b}j∈[n2],b∈{0,1} and PB uses y as input.

3) Use seedAi to garble circuit C and thus receive GCi and
tablei. Then compute ctA,GCi

i and σA,GCi

i .
4) Play role of PB, send the auditing query

(C,GCi, tablei, ct
A,GCi

i , σA,GCi

i , sid) to A.
5) Play the role of Fm×OT

Mm×OT,A , send ((Mm×OT,A,PA),

PB, sid) to A. After receiving ({B̂i,j,b} from A, send
Mm×OT,A({Bi,j,b}, {B̂i,j,b}, sid) to A and halt.

b. The output MA(mxA) received by S indicates that PA

has cheated. WithMA, the simulator is able to restore the
cheated behavior of PA during the protocol execution:
– We consider the first case when PA has sent an

incorrect GCi or tablei.
1) Play the role of PA, choose uniform distributed

κ-bit seedAi to compute {Bi,j,b}j∈[n2],b∈{0,1}.
2) Play Fm×OT

Mm×OT,A between PA and PB, where PA

uses {Bi,j,b}j∈[n2],b∈{0,1} and PB uses y as input.
3) Use seedAi to garble circuit C and thus receive

GCi. Make use of MA(C̄A), replace the correct
part of GCi with incorrect strings, denoted by GC′

i.
Or replace the correct tablei with table′i. Then
compute ctA,GCi

i and σA,GCi

i using the modified GC′
i

and table′i.
4) Send (C,GC′

i, table
′
i, ct

A,GCi

i , σA,GCi

i , sid) to A.
5) Play the role of Fm×OT

Mm×OT,A , send
((Mm×OT,A,PA), PB, sid) to A. After
receiving ({B̂i,j,b},Pau, sid) from A, send
Mm×OT,A({Bi,j,b}, {B̂i,j,b}, sid) and halt.

– We consider the second case when PA has handed an
incorrect label to Fm×OT

Mm×OT,A .
1) Play the role of PA, choose uniform distributed

κ-bit seedAi to compute {Bi,j,b}j∈[n2],b∈{0,1}.
2) Play Fm×OT

Mm×OT,A between PA and PB, where PA

uses {Bi,j,b}j∈[n2],b∈{0,1} and PB uses y as input.
3) Use seedAi to garble circuit C and thus receive GCi

and tablei. Then compute ctA,GCi

i and σA,GCi

i .
4) Send (C,GCi, tablei, ct

A,GCi

i , σA,GCi

i , sid) to A.
5) Play the role of Fm×OT

Mm×OT,A , send
((Mm×OT,A,PA),PB, sid) to A. After receiving
({B̂i,j,b} from A, send Mm×OT,A({Bi,j,b},
{B̂i,j,b}, sid) and halt.

Proof. Denote Protocol in Figure 5 as ΠGC
M and Pc = {Pau}

(i.e. Pau is corrupted), we show

{
IDEALsemi

C,S(z),Pc
((x, y), n)

}
c≡
{

HYBRIDOT,semi

ΠGC
M,A(z),Pc

((x, y), n)
}
. (9)

Since the output received by A reflects already, in which
part of protocol execution PA has cheated, the simulator can
thus emulate the cheating behavior exactly as a cheated PA

has done during the HYBRID execution. Besides, the evidence
is the only message received by A, the A’s view in ideal world
is indistinguishable from its view in HYBRID execution, this
completes the proof.

VI. SECURE OBLIVIOUS TRANSFER WITH AUDITING

In this section, we show how to convert an OT protocol
(with malicious security) to a protocol implementing FOT

MOT,A .
If we run parallel version of this OT protocol, we can easily
see that this parallel version implements Fm×OT

Mm×OT,A . This is a
security upgrade, since with our new notion the converted OT

can now detect inconsistency in inputs referring to external
evidence, which is not possible for standalone malicious OT.

We first take the OT protocol with malicious security [28]
as an example, and provide a prove sketch that the modified
protocol implements the FOT

MOT,A . Due to the space limitation,
we do not provide a detailed description of the original
protocol here and refer the reader to the formal description
of the modified protocol in Figure 6 in Appendix.

Theorem 2. Assume that H() is a collision-resistant hash
function, SIG is existentially unforgeable under a chosen-
message attack, PKE has indistinguishable encryptions under
a chosen-ciphertext attack. Protocol ΠOT

MOT,A described in
Fig.6 securely realizes FOT

MOT,A , and thus its parallel version
securely realizes Fm×OT

Mm×OT,A with public verifiability described
in Fig.4, in the presence of an malicious adversary who can
corrupt either PA or PB, or in the presence of a semi-honest
adversary who can corrupt Pau, with static corruption.

The security analysis is similar.

A. Honorific Security — Malicious PA:

Peikert et. al have already proved that the unmodified
protocol (without * steps shown in Fig.6) is secure against
the malicious PA. If we consider the joint distribution of the
output of Pau, since the internal cheat behaviors are already
detected by PB, the only remaining auditing algorithmMOT,A

will be to verify if PA has handed the correct {x0, x1}. Recall
that in CRS model, the simulator is able to forge the key
pair of Pau and extract the encrypted rnd as mxA, exactly
as an honest Pau will do during the real protocol execution.
When H is a collision-resistant hash function, the ciphertext
of OT.PKE is a binding commitment of the randomness-
message pair, a malicious PA succeeds in finding a rnd′ so
that H(OT.ENC({x0, rnd′})||OT.ENC({x1, rnd′})) is identi-
cal with H(OT.ENC({x̂0, rnd′})||OT.ENC({x̂1, rnd′})), only
with negligible probability. Thus, a malicious PA cannot cause
Pau to output an incorrect result. In the new protocol, we
stress that PA does not receive any more message from PB

and Pau, and thus do not provide further proof and directly
derive malicious security from the proof of original paper.

B. Honorific Security — Malicious PB:

We follow the same reasoning above and argue that re-
ceiving two additional messages ctA,OT and σA,OT does not
provide a malicious PB with any new ability. Besides, it can
not cause Pau to output an incorrect result. When SIG is
existentially unforgeable under CMA and PKE has indistin-
guishable encryptions under CCA, the output of Pau is not
decided by PB, but by PA. Thus, we do not provide further
proof and directly conclude with the malicious security from
original paper [28].

C. Honorific Security — Semi-honest PAu:

We can easily prove that the adversary’s view in ideal
world is identical with its view in HYBRID execution, since

the simulator S receives the input (x̂0, x̂1) and the out-
put MOT,A({x0, x1}, {x̂0, x̂1}) obtained by adversary, which
enables the simulator to perfectly emulate PA’s behavior.
Recall that if a malicious PA has encrypted "a wrong" rnd
as evidence, the real rnd and {x0, x1} are then uniform
distributed to A, which can easily be simulated. Since H is
a collision-resistant hash function and PKE has CCA security,
the adversary cannot distinguish its view in ideal generated by
simulator and the view in the real protocol execution.

VII. OTE AGAINST HONORIFIC ADVERSARIES

In this section, we present our new protocol (extended from
OTE in [2]) with improved security against a honorific receiver
and a semi-honest auditor. A formal definition is provided in
Fig.7 in Appendix. We stress that, this new protocol already
realizes Fm×OT

M . For conciseness, we only show how the
original protocol can benefit from the presence of a semi-
honest auditor, and discuss the improvement from Fm×OT

M to
Fm×OT

Mm×OT,A at the end of this section.

Theorem 3. Assume H() is a collision-resistant hash func-
tion, SIG is existentially unforgeable under a chosen-message
attack, PKE has indistinguishable encryptions under a chosen-
ciphertext attack, G is a pseudo-random generator. Protocol
Πm×OT

M described in Fig. 7 securely realizes Fm×OT
M with

public verifiablity in the F l×OT
Ml×OT,B -hybrid model, in the

presence of a malicious adversary who can corrupt PA, or in
the presence of an honorific adversary who can corrupt PB,
or in the presence of a semi-honest adversary who can corrupt
Pau, with static corruption.

We refer the reader to Appendix C for the complete proof
of Theorem 3.

Remark on Auditor. To improve the implemented auditing
algorithm M in Πm×OT

M so that the consistency of PA’s
input could be proved by Pau, we only have to force PA

to also include its randomness used within the OTE protocol
as evidence and send this with a corresponding signature to
PB. However, there is a subtlety in OTE here when M is
defined as follows:
(1) When PA sends an auditing query ({ui ⊕

uj}i,j∈[l], ct
B,OT, σB,OT, sid) to Pau, Pau is able

to decrypt (seedB, sid) ← DEC(dkau, ct
B,OT) and thus

compute {k0, k1}l.
(2) When PB sends an auditing query

({ui}, {H(y0j),H(y1j)}m, ctA,OT, σA,OT, sid) to Pau

for a input consistency check.
And in case both parties try to prove misbehavior of each

other by submitting the evidence, there exists an attack by
Pau reconstructing the full receiver’s view. Once Pau has
both {ui}l and {k0, k1}l, it can compute PB’s private input
by:

r ← ui ⊕ G(ki0)⊕ G(ki1)

For this case, we will have to separate both auditing
algorithms.

VIII. CONCLUSION AND FUTURE WORK

In this paper, we propose a new security notion honorific
security in UC framework. We show this notion provides good
security guarantee and implies high efficiency by constructing
OT, OTE and efficient GC-based MPC protocols with provable
security. We believe that it is extremely meaningful to con-
struct sharing-based MPC protocols in our model in the future,
which may involve non-interactive zero-knowledge proof.

REFERENCES

[1] I. Anati, S. Gueron, S. Johnson, and V. Scarlata, “Innovative technology
for cpu based attestation and sealing,” in Proceedings of the 2nd inter-
national workshop on hardware and architectural support for security
and privacy, vol. 13. Citeseer, 2013, p. 7.

[2] G. Asharov, Y. Lindell, T. Schneider, and M. Zohner, “More efficient
oblivious transfer and extensions for faster secure computation,” in
Proceedings of the 2013 ACM SIGSAC conference on Computer &
communications security, 2013, pp. 535–548.

[3] ——, “More efficient oblivious transfer extensions with security for
malicious adversaries,” in Annual International Conference on the
Theory and Applications of Cryptographic Techniques. Springer, 2015,
pp. 673–701.

[4] G. Asharov and C. Orlandi, “Calling out cheaters: Covert security with
public verifiability,” in Advances in Cryptology – ASIACRYPT 2012,
X. Wang and K. Sako, Eds. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2012, pp. 681–698.

[5] Y. Aumann and Y. Lindell, “Security against covert adversaries: Efficient
protocols for realistic adversaries,” vol. 23, no. 2. Springer, 2010, pp.
281–343.

[6] S. Badrinarayanan, A. Jain, R. Ostrovsky, and I. Visconti, “Uc-secure
multiparty computation from one-way functions using stateless tokens,”
in International Conference on the Theory and Application of Cryptology
and Information Security. Springer, 2019, pp. 577–605.

[7] D. Beaver, “Commodity-based cryptography,” in Proceedings of the
twenty-ninth annual ACM symposium on Theory of computing, 1997,
pp. 446–455.

[8] M. Bellare, V. T. Hoang, and P. Rogaway, “Foundations of garbled
circuits,” 2012, https://ia.cr/2012/265.

[9] R. Canetti, “Universally composable security: A new paradigm for
cryptographic protocols,” in Proceedings 42nd IEEE Symposium on
Foundations of Computer Science. IEEE, 2001, pp. 136–145.

[10] I. Damgård, M. Geisler, and J. B. Nielsen, “From passive to covert
security at low cost,” 2009, https://ia.cr/2009/592.

[11] W. Du and Z. Zhan, “A practical approach to solve secure multi-party
computation problems,” in Proceedings of the 2002 workshop on New
security paradigms, 2002, pp. 127–135.

[12] D. Evans, V. Kolesnikov, and M. Rosulek, “A pragmatic introduction to
secure multi-party computation,” Foundations and Trends® in Privacy
and Security, vol. 2, no. 2-3, 2017.

[13] D. Evans, V. Kolesnikov, M. Rosulek et al., “A pragmatic introduction to
secure multi-party computation,” Foundations and Trends® in Privacy
and Security, vol. 2, no. 2-3, pp. 70–246, 2018.

[14] O. Goldreich, Foundations of cryptography: volume 2, basic applica-
tions. Cambridge university press, 2009.

[15] V. Goyal, Y. Ishai, A. Sahai, R. Venkatesan, and A. Wadia, “Founding
cryptography on tamper-proof hardware tokens,” in Theory of Cryptog-
raphy Conference. Springer, 2010, pp. 308–326.

[16] V. Goyal, P. Mohassel, and A. Smith, “Efficient two party and multi party
computation against covert adversaries,” in Annual International Con-
ference on the Theory and Applications of Cryptographic Techniques.
Springer, 2008, pp. 289–306.

[17] J. Groth and A. Sahai, “Efficient non-interactive proof systems for
bilinear groups,” in Annual International Conference on the Theory and
Applications of Cryptographic Techniques. Springer, 2008, pp. 415–
432.

[18] C. Hong, J. Katz, V. Kolesnikov, W. jie Lu, and X. Wang, “Covert
security with public verifiability: Faster, leaner, and simpler,” 2018,
https://ia.cr/2018/1108.

[19] Y. Ishai, R. Ostrovsky, and V. Zikas, “Secure multi-party computation
with identifiable abort,” in Annual Cryptology Conference. Springer,
2014, pp. 369–386.

[20] J. Katz and Y. Lindell, Introduction to modern cryptography. CRC
press, 2014.

[21] J. Katz, S. Ranellucci, M. Rosulek, and X. Wang, “Optimizing au-
thenticated garbling for faster secure two-party computation,” 2018,
https://ia.cr/2018/578.

[22] M. Keller, V. Pastro, and D. Rotaru, “Overdrive: Making spdz great
again,” in Annual International Conference on the Theory and Applica-
tions of Cryptographic Techniques. Springer, 2018, pp. 158–189.

[23] V. Kolesnikov and A. J. Malozemoff, “Public verifiability in the covert
model (almost) for free,” in Advances in Cryptology – ASIACRYPT 2015,
T. Iwata and J. H. Cheon, Eds. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2015, pp. 210–235.

[24] Y. Lindell, “Fast cut-and-choose-based protocols for malicious and
covert adversaries,” Journal of Cryptology, vol. 29, no. 2, pp. 456–490,
2016.

[25] ——, “How to simulate it–a tutorial on the simulation proof technique,”
Tutorials on the Foundations of Cryptography, pp. 277–346, 2017.

[26] Y. Lindell and B. Pinkas, “An efficient protocol for secure two-party
computation in the presence of malicious adversaries,” 2008, https://ia.
cr/2008/049.

[27] Y. Lu, B. Zhang, H.-S. Zhou, W. Liu, L. Zhang, and K. Ren, “Cor-
related randomness teleportation via semi-trusted hardware—enabling
silent multi-party computation,” in European Symposium on Research
in Computer Security. Springer, 2021, pp. 699–720.

[28] C. Peikert, V. Vaikuntanathan, and B. Waters, “A framework for efficient
and composable oblivious transfer,” in Annual international cryptology
conference. Springer, 2008, pp. 554–571.

[29] X. Wang, S. Ranellucci, and J. Katz, “Authenticated garbling and
efficient maliciously secure two-party computation,” 2017, https://ia.cr/
2017/030.

APPENDIX

A. OT protocol with auditing algorithm.

See Figure 6.

B. OTE protocol against honorific adversaries.

See Figure 7.

C. Honorific Security — Malicious PA in OTE

The original paper [2] already provides security against
a malicious PA [3]. Since SIG is unforgeable under CMA,
PKE has indistinguishable encryptions under CCA, receiving
two additional messages ctB,OT and σB,OT does not provide a
malicious PA with more information or new ability. Besides, a
malicious PA cannot cause Pau to output an incorrect result,
since this only depends on the ctB,OT and σB,OT sent by
PB. Thus we do not further prove security but directly derive
security against a malicious PA from the original paper.

D. Honorific Security — Malicious PB in OTE

Let A be an adversary corrupting PB. In CRS model, we
build the following simulator S which forges a key pair of PA

for the signature scheme, a key pair of Pau for the PKE, holds
the public key of PB and runs A as subroutine, while playing
the role of PB in the ideal world interacting with Fm×OT

M :
1) Play the F l×OT

Ml×OT,B with A playing PB:
a) If input is (cheat, (mxl×OT,B,Ml×OT,B),PB, sid),

send (cheat, (mxl×OT,B,Mm×OT,B),PB, sid) to
Fm×OT

M and receive back PA’s input {x0
j , x

1
j}m.

Then use the real PA’s input to perfectly emulate PA

in the rest of execution. Send oA to Fm×OT
M , which

will be received by PA as output. The simulation
ends here for this case.

https://ia.cr/2012/265
https://ia.cr/2009/592
https://ia.cr/2018/1108
https://ia.cr/2018/578
https://ia.cr/2008/049
https://ia.cr/2008/049
https://ia.cr/2017/030
https://ia.cr/2017/030

Private inputs: PA has input (sid, ssid, x0, x1) and a key pair {pkA, skA} for a signature scheme, PB has input (sid, ssid, r)
and a key pair {pkB , skB} for a signature scheme. Pau has a key pair {ekau, dkau} for a PKE scheme and conditionally
reference input (x̂0, x̂1).
Public inputs: Both parties know the public key pki of each other and the ekau for the auditing PKE scheme. They both
agree to deploy Fmode

CRS , OT.KeyGen, OT.ENC, OT.DEC. Pau knows the pki of PA and PB.

Protocol:
1) PB queries Fmode

CRS with (sid,PA,PB) and gets back (sid, crs).
2) PA queries Fmode

CRS with (sid,PA,PB) and gets back (sid, crs).
3) PB computes (ekOT, dkOT)← OT.KeyGen(crs, r), sends (sid, ssid, ekOT) to PA, and stores (sid, ssid, dkOT).
4) PA computes y0 ← OT.ENC(ekOT, 0, x0) and y1 ← OT.ENC(ekOT, 1, x1) and sends (sid, ssid, y0, y1) to PB.
* PA compute ctA,OT ← ENC(ekau, rnd) where the rnd denotes all randomness PA has used for the OT.ENC, and a

signature σA,OT ← SIG.Sign(pkA,H(y0||y1), ctA,OT, ekOT, crs, sid, ssid). Then PA sends ctA,OT and σA,OT to PB, who
checks whether σA,OT is valid, aborts if not.

5) PB outputs (sid, ssid, xr) where xr ← OT.DEC(dkOT, yr).
* Input consistency auditing:

a) PB sends an auditing query ({y0, y1}, ctA,OT, σA,OT, ekOT, crs, sid, ssid) to Pau, who verifies whether σA,OT is valid,
aborts with ⊥ if not.

b) Pau computes rnd ← OT.DEC(dkOT, ct
A,OT) and then ŷ0 ← OT.ENC(ekOT, 0, x̂0, rnd) and ŷ1 ← OT.ENC(ekOT,

1, x̂1, rnd).
c) Pau verifies whether H(y0||y1) = H(ŷ0||ŷ1), broadcasts the result.

Fig. 6: A secure OT protocol (malicious security) with auditing algorithm

b) If input is {k0, k1}l, proceed with the simulation below.
2) Play the role as an honest PA, receive {u}l, ctB,OT,

σB,OT, check whether σB,OT is invalid, send⊥ to Fm×OT
M

and halt.
3) Extract (seedB, sid) ← DEC(dkau, ct

B,OT) and compute
{k̂0, k̂1}l.

4) For the following case:
a) If for any i, j ∈ [l]:

ui ⊕ uj ⊕ k̂i0 ⊕ k̂i1 ⊕ k̂j0 ⊕ k̂j1 ̸= 0

send (cheat, (mxm×OT,B,Mm×OT,B),PB, sid) to
Fm×OT

Mm×OT,A and receive back PA’s input {x0
j , x

1
j}m.

Then use the real PA’s input to perfectly emulate PA

in the rest of execution. Send oA to Fm×OT
M , which

will be received by PA as output. The simulation
ends here for this case.

b) If {k̂0, k̂1}l ̸= {k0, k1}l, do the same as above. The
simulation ends here for this case.

5) Extract A’s input r and send to Fm×OT
M . Upon receive

{xrj}m, use {ui}l, s, {ksi}l and received {xrj}m to
compute {yrj}m, set {yrj}m uniformly random. Send
{yb}m to A and halt.

Proof. Denote protocol 7 as Πm×OT
M and set Pc = {PB} (i.e.

PB is corrupted), we show:{
IDEALh

m×OT,S(z),Pc
((x, y), n)

}
c≡
{

HYBRIDl×OT,h

Πm×OT
M ,A(z),Pc

((x, y), n)
}

(10)

We still consider two events badbaseOT and ¬badbaseOT.
The analysis of the event badbaseOT and probability of both

badbaseOT and ¬badbaseOT are identical to the case when PB

is corrupted in GC protocol, so we have:{
IDEALh

m×OT,S(z),Pc
(x, y)|badbaseOT

}
c≡
{

HYBRIDl×OT,h

Πm×OT
M ,A(z),Pc

(x, y)|badbaseOT

}
(11)

It remains to prove for the case ¬badbaseOT. For both cases
when A decides to cheat by sending {ui}l with inconsistent
choice bits r or handing inconsistent {k0, k1}l in F l×OT

Ml×OT,B

and ctB,OT, the simulator S receives back the real PA’s input
{x0

j , x
1
j}m and can thus perfectly emulate PA’s behavior

in the rest of HYBRID execution. Since PA does not have
output from protocol 7, and Pau outputs exactly what S
outputs during the HYBRID execution, we have just shown
that the joint distribution of A’s view and both the outputs of
PA and Pau in IDEAL is identical to the joint distribution
of A’s view and the outputs of PA and Pau in the HYBRID
execution.

For the second case when A behaves honestly, we consider
the following hybrid worlds:
Hybrid 1: We consider a simulator S1 holds PA’s input
{x0

j , x
1
j}m. It is trivial to verify that the distribution of A’s

view in IDEAL is identical to the distribution of A’s view in
HYBRID execution. Thus we have shown that:{

IDEALh
m×OT,S1(z,{x0,x1}m),Pc

((x, y), n)|¬badbaseOT

}
c≡
{

HYBRIDl×OT,h

Πm×OT
M ,A(z),Pc

((x, y), n)|¬badbaseOT

}
(12)

Hybrid 2: We consider a simulator S2 works exactly as S1
except holding only {xrj}, not {x0, x1}. Now we show that
the distribution generated by S2 and S1 are computationally
indistinguishable. Because A does not know the choice bit s.

Private inputs: PA has input {(x0
j , x

1
j)}j∈[m] and key pair {pkA, skA} for a signature scheme, PB has input r = (r1, ..., rm)

and key pair {pkB , skB} for a signature scheme. Pau has a key pair {ekau, dkau} for a PKE scheme.
Public inputs: Both parties know the public key pki of each other and the ek for a encryption scheme. They agree to deploy
an ideal functionality F l×OT

Ml×OT,B . Pau know the public key pki of PA and PB.

Protocol:
1) PA initializes a random vector s ∈ {0, 1}l and PB use randomness derived from seedB to generate {k0, k1}l each of

size κ.
2) Parties proceed with a F l×OT

Ml×OT,B where PA acts as the receiver with input s and PB acts as the sender with input
{k0, k1}l.

3) For i ∈ [l], let ti = G(ki0). Let T = [t1|...|tl] denote the m× l matrix where ith column is ti. Let tj denote the jth row
of T . PB uses input choice bits r to compute ti = G(ki0) and ui = ti ⊕ G(ki1)⊕ r.

4) PB then computes an evidence ctB,OT ← ENC(ek, seedB, sid) and a signature σB,OT ← SIG.Sign(skB , {ui ⊕
uj}i,j∈[l], ct

B,OT, sid).
5) PB sends {ui}l, ctB,OT, σB,OT to PA, who checks if the signature σB,OT is valid, aborts with output ⊥ if not.
* Receiver’s choice-bits auditing first part:

a) PA sends an auditing query ({ui ⊕ uj}i,j∈[l], ct
B,OT, σB,OT, sid) to Pau, who checks whether σB,OT is valid, aborts

with ⊥ if not.
b) Pau retrieves (seedB, sid)← DEC(dkau, ct

B,OT) and can thus compute {k̂0, k̂1}l.
c) Pau verifies if for every i, j ∈ [l]:

ui ⊕ uj ⊕ k̂i0 ⊕ k̂i1 ⊕ k̂j0 ⊕ k̂j1 = 0

d) Pau broadcasts the result.
* Receiver’s choice-bits auditing second part:

a) PA sends an auditing query ((audit,PB),PA, sid) to F l×OT
Ml×OT,B , which sends a notification ((Ml×OT,B,PB),PA, sid)

to Pau.
b) Upon receiving ({k0, k1}l,Pau, sid) from Pau, F l×OT

Ml×OT,B sends Ml×OT,B({k0, k1}l, {k̂0, k̂1}l) to Pau.
c) Upon receiving (deliver,Pau, sid) from Pau, F l×OT

Ml×OT,B broadcasts Ml×OT,B({k0, k1}l, {k̂0, k̂1}l).
6) For i ∈ [l], PA defines qi = (si · ui)⊕ G(kisi). Let Q = [q1|...|ql] denote the m× l bit matrix with qi represents its ith

column. Let qj denote the jth row of the matrix Q. Note that qi = (si · r)⊕ ti and qj = (rj · s)⊕ tj.
7) PA computes and sends {y0j , y1j }j∈[m], where:

y0j = x0
j ⊕ H(j, qj) and y1j = x1

j ⊕ H(j, qj ⊕ s)

8) PB outputs (xr1
1 , ..., xrm

m) with x
rj
j = y

rj
j ⊕ H(j, ti).

Fig. 7: OTE protocol against honorific adversaries.

For each j ∈ [l], due to the functionality of protocol, A can
only compute one of H(qj) or H(qj⊕s) depends on its choice
bit rj , and the other one is uniform distributed to A. Since
A does not know xrj either, yrj ← xrj ⊕ Hrj is uniform
distributed to A as well, which shows that:{

IDEALC,S2(z,{xrj }),Pc
((x, y), n)|¬badbaseOT

}
c≡
{

IDEALC,S1(z,{x0,x1}m),Pc
((x, y), n)|¬badbaseOT

}
(13)

This completes the proof.

E. Honorific Security — Semi-honest Pau in OTE

The proof for the security against a semi-honest Pau is
similar to the proof provided in GC protocol. The simulator
S receives the output Mm×OT,B of A. And in CRS model,
the simulator S can forge PA’s signature and thus perfectly
emulates an honest or cheated PB providing the corresponding
evidence to a simulated PA and eventually to A.

	Introduction
	Security Against Honorific Adversaries
	Our Contribution and Structure of the Paper

	Related Work
	Security Notions Beyond Semi-honest
	Performance of Existing and Our Constructions
	Computation Complexity
	Communication complexity

	Notation and Preliminaries
	Honorific MPC Ideals and GC protocol
	Ideals against Honorific Adversaries in UC
	GC-based MPC with Honorific Security, the idea

	Protocols and Security Analysis
	Honorific Security — Malicious PB
	Honorific Security — Malicious PB
	Honorific Security — Semi-honest Pau

	Secure Oblivious Transfer with Auditing
	Honorific Security — Malicious PA:
	Honorific Security — Malicious PB:
	Honorific Security — Semi-honest PAu:

	OTE against Honorific Adversaries
	Conclusion and Future Work
	References
	Appendix
	OT protocol with auditing algorithm.
	OTE protocol against honorific adversaries.
	Honorific Security — Malicious PA in OTE
	Honorific Security — Malicious PB in OTE
	Honorific Security — Semi-honest Pau in OTE

