Software Evaluation for Second Round
Candidates in NIST Lightweight Cryptography

Ryota Hira!, Tomoaki Kitahara!, Daiki Miyahara!,
Yuko Hara-Azumi?, Yang Li!, and Kazuo Sakiyama!

! The University of Electro-Communications, Chofu, Tokyo 182-8585, Japan
2 Tokyo Institute of Technology, Fuchu, Tokyo 183-8538, Japan

Abstract. Lightweight cryptography algorithms are increasing in value
because they can enhance security under limited resources. National In-
stitute of Standards and Technology is working on standardising lightweight
authenticated encryption with associated data. Thirty-two candidates
are included in the second round of the NIST selection process, and
their specifications differ with respect to various points. Therefore, for
each algorithm, the differences in specifications are expected to affect
the algorithm’s performance. This study aims to facilitate the selection
and design of those algorithms according to the usage scenarios. For this
purpose, we investigate and compare the 32 lightweight cryptography
algorithm candidates using specifications and software implementations.
The results indicate that latency and memory usage depend on param-
eters and nonlinear operations. In terms of memory usage, a difference
exists in ROM usage, but not in the RAM usage from our experiments us-
ing ARM platform. We also discovered that the data size to be processed
efficiently differs according to the padding scheme, mode of operation,
and block size.

Keywords: Lightweight Cryptography - Authenticated Encryption with
Associated Data - Block Cipher - Sponge Construction.

1 Introduction

With the conception of the Internet of Things (IoT), resource-constrained de-
vices, such as sensor nodes, in-vehicle devices, and medical devices, can connect
to the network. Cryptography must be applied to these devices to protect the
data flowing over the Internet. However, conventional cryptographic standards
are unsuitable for use in these devices because of their high cost. Therefore,
a secure and implementable lightweight cryptography algorithm is required to
protect data and privacy.

Accordingly, numerous institutions have focused on the research and develop-
ment of lightweight cryptography [4, 12,1, 6,9]. National Institute of Standards

2 A preliminary version of this paper was presented at the 38th Symposium on Cryp-
tography and Information Security (SCIS 2021) [5]. In this study, we perform addi-
tional experiments on the finalists.



2 R. Hira et al.

and Technology (NIST) has been working on standardising lightweight cryptog-
raphy algorithms [10]. The standardisation process of NIST was initiated in July
2015, and lightweight cryptography algorithms were solicited in August 2018. In
April 2019, 56 algorithms were published as Round-1 candidates. Furthermore,
in August 2019, 32 algorithms were accepted as Round-2 candidates; 24 candi-
dates were excluded because of their security vulnerability [14]. In March 2021,
10 finalists were selected from the 32 Round-2 candidates [13]; the finalists are
currently being evaluated.

This study aims to implement lightweight cryptography algorithms in soft-
ware for resource-limited embedded systems, and to facilitate the selection and
design of cryptography algorithms according to the usage scenarios. For this
purposes, we clarify the influence of cryptographic specifications on software
implementation. We conduct a survey based on the specifications and software
implementation performance of NIST Round-2 and finalist candidates, and com-
pare the results. The contributions of this work are: (1) We discovered that la-
tency varies depending on cryptographic parameter: nonce and block size. (2)
In terms of memory usage, we explored the details of ROM usage in nonlinear
operations. (3) We varified the size of the data to be processed efficiently varies
depending on the block size, padding scheme, and mode of operation.

The remainder of this paper is organised as follows. Section 2 summarises
the lightweight cryptography and authenticated encryption with associated data
(AEAD). Section 3 describes the survey items and results of the study based on
the specifications. Section 4 describes the investigation methodology and results
of software implementation performance. Then, discusses the results of the sur-
vey on the Round-2 candidates. In Sect. 5, we perform additional experiments
on the finalist candidates, and discuss the obtained results. Section 6 concludes
the paper.

2 Prelimiaries

2.1 Lightweight Cryptography Algorithm

A lightweight cryptography algorithm is a class of cryptography algorithms that
is used in environments with limited computational resources, memory size, and
power. CRYPTREC recommends the lightweight cryptographic primitives, i.e.,
block cipher, stream cipher, hush function, as well as message authentication
code (MAC) and authenticated encryption. The circuit size, power consumption,
and latency in hardware implementations and memory size in software imple-
mentations are evaluated typical performance indicators of lightweight cryptog-
raphy algorithms [3]. The lightweight cryptography algorithm, which is expected
to be used in small devices, such as home appliances, medical equipment, and
robots, that are connected to the Internet.

2 A preliminary version of this paper was presented at the 38th Symposium on Cryp-
tography and Information Security (SCIS 2021) [5]. In this study, we perform addi-
tional experiments on the finalists.



Software Evaluation for NIST Lightweight Cryptography 3

2.2 Authenticated Encryption with Associated Data

AEAD ciphers simultaneously provide confidentiality through encryption and
integrity through message authentication [2]. The encryption takes the plain-
text, associated data, nonce, and key as the input, and outputs the ciphertext
and authentication tag. Associated data are authenticated with plaintext, and
are not encrypted for integrity. Nonce is a disposable random number that is
used to enhance the security of encryption under the same key. The decryption
process takes the ciphertext, associated data, nonce, key, and authentication tag
as the input, and outputs the plaintext if the authentication is successful. If the
authentication fails, the plaintext is not output.

There are two main types of AEAD modes of operation selected by the
NIST: block cipher and sponge modes [13]. The components used in the state
transformation process differ for these two modes. The former uses a block cipher,
and the latter uses a permutation; however, both modes use the XOR operation
and padding functions.

1. Block Cipher-based Candidates
The block cipher-based type of AEAD is realised through the block cipher
mode of operation that repeatedly uses block ciphers. This type of AEAD
requires a key schedule because the block cipher generally uses round keys.
2. Sponge-based Candates
The sponge-based type of AEAD is realised via a sponge mode of operation
that repeatedly uses permutations. This type of AEAD uses the permutation
as a key, and does not require a key schedule to generate the round key.
However, it is expedient to use a large permutation to increase security [15].

3 Specification-level Survey

Based on the specifications of each candidate submitted to the NIST and sam-
ple code of each algorithm in C language, we investigated the AEAD modes,
recommended parameters, and operations of building blocks (block cipher or
permutation) in cryptographic processing. In this study, we investigated 32 can-
didates: ACE, ASCON, COMET, DryGASCON, Elephant, ESTATE, ForkAE,
GIFT-COFB, Gimli, Grain-128AEAD, HyENA, ISAP, KNOT, LOTUS-AEAD
and LOCUS-AEAD, mixFeed, ORANGE, Oribatida, PHOTON-Beetle, Pyja-
mask, Romulus, SAEAES, Saturnin, SKINNY-AEAD, SPARKLE, SPIX, SpoC,
Spook, Subterranean2.0, SUNDAE-GIFT, TinyJambu, WAGE, and Xoodyak.
Some candidates have multiple members with different parameters and opera-
tions. We investigated 89 members from the 32 candidates. The submitter of each
algorithm represents a representative member of the candidates, having multiple
members. We refer to these representative members as primary members.

We summarise the results of the survey in table 6 as an appendix. The pri-
mary member of each candidate is marked with an asterisk. In the table entry,
AEAD type ‘B’ refers to a block cipher-based candidate, and AEAD type ‘S’
to a sponge-based candidate. Because SAEAES has some members whose block



4 R. Hira et al.

size differs between the plaintext and associated data, the block size for the
associated data is described in parentheses in table 6.

3.1 Types of AEAD

As mentioned in Sect. 2.2, there are two main types of AEAD: block cipher- and
sponge-based. Different types of AEAD require different building blocks and
parameters, which might change the performance.

We discovered 14 block cipher-based candidates with 51 members and 16
sponge-based candidates with 34 members. The remaining two candidates were
classified as others: Grain-128AEAD and Elephant. The former is based on a
stream cipher, and the latter is based on permutation with a non-sponge struc-
ture.

Some candidates had other characteristics. Spook is a sponge-based candi-
date that uses permutation Shadow-512 for state update; however, it also uses
block cipher Clyde-128 for the state initialisation and finalisation of the AEAD.
TinyJambu is classified as a block cipher-based candidate; however, it uses a
keyed NFSR for the state transformation process, which is unique compared to
other general block cipher operations.

3.2 Parameters

AEAD has five parameters: key, block (rate), state, tag, and nonce sizes.

1. Keys
The key size is crucial to the security of a cipher. If the key size is small, the
total number of keys decreases, and a brute-force attack becomes possible.
Therefore, it is necessary to select a key size that is sufficiently resilient to
brute-force attacks. The NIST submission requirements need the key size to
be 128 bits or more.

2. Block size
The block size affects the security and processing time. This value influences
the amount of data processed securely when encryption is performed under
the same key. The block size also refers to the number of bits of plaintext
and ciphertext generated per block cipher or permutation. Therefore, it can
increase or decrease the processing time.

3. State size
The state size indicates the size of the block cipher or permutation used in
the cryptographic process. This parameter determines the size of temporary
variables during the encryption or decryption process, and thus, increases or
decreases the RAM usage to store the intermediate state. The state size also
affects the processing time because it is related to the amount of computation
required to update the state.

4. Tag size
The tag size determines the size of the authentication tag. This size affects
the processing time when generating the authentication tag. According to
the NIST submission requirements, the tag size should be 64 bits or more.



Software Evaluation for NIST Lightweight Cryptography 5

5. Nonce size

The nonce size determines the size of random numbers used in the encryp-
tion. The time required to generate and supply random numbers from out-
side the cipher varies depending on the size of the random numbers used for
the encryption. Additionally, the time required to process random numbers
in the cipher differs, thus influencing the processing time. Therefore, this
parameter affects the execution time. According to the NIST submission
requirements, the nonce size needs to be 96 bits or more.

Table 1 and 2 present the mean, median, and mode of the parameters of the
primary member of each candidate.

Table 1: Parameters of block cipher-based AEAD

Block Key State Tag Nonce
Mean 121.1 137.1 146.3 128.0 118.1
Median 128.0 128.0 128.0 128.0 124.0
Mode 128 128 128 128 128

Table 2: Parameters of sponge-based AEAD

Block Key State Tag Nonce
Mean 127.0 148.0 325.3 128.0 137.1
Median 128.0 128.0 289.5 128.0 128.0
Mode 128 128 256 128 128

Table 1 and 2 indicate that the state size differs between the block cipher-
and sponge-based candicates. This difference is probably due to the use of a
large permutation in sponge-based candidates to increase security, as described

in Section 2.2. No differences exist in the other parameters depending on the
types of AEAD.

3.3 Operations

Two types of state transformation operations are used in cryptography algo-
rithms: linear and nonlinear. Nonlinear operations are necessary because linear
cryptography algorithms are insecure against cryptanalysis. However, nonlinear
operations are generally more expensive to implement than linear operations.
Therefore, small nonlinear operations, which are less expensive and have weak
nonlinearity, are commonly used. Generally, nonlinearity is spread over the en-
tire state by applying linear operations after applying these small nonlinear
operations. In this study, we investigate nonlinear operations that have high
implementation costs.



6 R. Hira et al.

There are three main types of nonlinear operations: modular operation, S-
box, and Boolean function. They differ based on the optimal implementation
environment and strength of nonlinearity [11].

S-boxes can be constructed in two ways; one method stores a lookup table
in memory, which is a table with corresponding input and output values, and
the other method calculates a programme using the Boolean function. There-
fore, the amount of memory usage and execution time differ depending on the
configuration method, even if the same S-box is used.

For the primary member of each candidate, 1 candidate used the modular
operation, 13 candidates used the S-box, and 18 candidates used the Boolean
function for nonlinearity. For the candidates using S-boxes, the algebraic number
of bits in the S-box is listed in table 6. The candidates using S-boxes, which
were calculated with the Boolean function, were counted as candidates using the
Boolean function, and the algebraic number of bits of the S-boxes is presented
in parentheses in table 6.

Table 6 demonstrates that the candidates, constructing S-boxes using lookup
tables, are mostly used in block cipher-based AEAD, and that they use 4-, 7-, and
8-bits S-boxes. For the sponge-based AEAD, many candidates use the Boolean
function or S-boxes calculated using the Boolean function.

4 Investigation of Software Implementation Performance

4.1 Measurement Method

We conducted experiments to evaluate the software performance of each can-
didate. We implemented the sample codes in C language for each candidate
submitted to the NIST, and investigated their latency and memory usage. The
programmes used in this measurement are reference implementations of each
algorithm.

We used the test vectors prepared by the NIST. The test vectors comprised
33 x 33 0r 1089 combinations of plaintext and associated data by default; each
data size ranged from 0 to 32 bytes, varying 1 byte at a time. The key and
nonce sizes of each test vector are fixed. In this measurement, we used 289 of
the prepared test vectors to reduce the time required for the measurement. The
test vectors comprised 17 x 17 or 289 combinations of plaintext and associated
data, each data size ranged from 0 to 32 bytes, varying 2 bytes at a time.

The execution and development environment is as follows.

— Execution environment: Mbed LPC1114FN28 [8]
e CPU: 32 bit ARM cortex-MO0 core
e Clock frequency: 48 MHz
e Flash memory: 32 kB
e RAM: 4 kB

— IDE: Mbed Online Compiler
e Easy to prepare the development environment
e Presents the memory usage when compiling



Software Evaluation for NIST Lightweight Cryptography 7

Memory Usage

RAM
Type Size | Maximum
Code (Flash) 12.2 kB 32.0 kB
Code Data 2.1kB n/a
RO Data (Flash) 1.9kB 32.0 kB
RW Data (RAM) 0.2 kB 4.0 kB
ZI Data (RAM) 0.7 kB 4.0 kB
Debug 3.9kB n/a
ROM 14.3 kB n/a
Flash 14.2 kB 32.0 kB
RAM 0.9 kB 4.0 kB

Fig. 1: Analysis results of memory usage acquired from Mbed online compiler (example
screenshot, partially rewritten in English)

We measured the execution time with two timers in the programme: one for
encryption, and the other for decryption. The values obtained are the sum of
the latencies for encryption or decryption for the 289 test vectors.

The memory usage was obtained using the Mbed online compiler [7]. Figure 1
presents the results of the Mbed online compiler, which details the memory usage
when employing the compiling programme. Figure 1 also shows the analysis
results of the comparison programme (mentioned later). Here, the flash memory
is divided into code and read-only (RO) data. The code stores the programme
code, and the RO data stores the RO constant data. The RAM stores data that
may be rewritten during the programme operation. These data are divided into
read-write (RW) and zero-initialised (ZI) data.

4.2 Results

We summarise the results of the survey in table 7 as an appendix. The first
member of each candidate is marked with an asterisk.We created another iden-
tical programme that performs everything expect the cryptographic processing
unit, to compare the amount of memory usage for the cryptographic processing
unit of the programme. We have included this result to the second row of table
7 as a programme for comparison.



8 R. Hira et al.

e Sponge-Based Block Cipher-Based

24
g 22
2 20 ,
8 °
;18 :. o o ° ° ¢ °
o
= 16 2
o
€ 14
=
‘E" 12

0.0 5.0 10.0 15.0 20.0 25.0

Sum of encryption and decryption latency |[s]

Fig. 2: Relationship between latency and flash memory usage

We only discussed the amount of flash memory usage because there was no
difference in the RAM usage for each candidate.Owing to the difference in the
number of members for each candidate, the mean and median of the implemen-
tation performance for all members were inconsistent and biased. Therefore, we
only discussed the primary member.

Figure 2 illustrates the software implementation performance, and table 3
lists the mean and median of the results. Figure 2 presents an excerpt of the
measurement results, excluding data with extremely high latency and memory
usage (candidates with flash memory usage exceeding 24 kB and latency exceed-
ing 25 s).

3 shows that the block cipher-based AEAD tends to have lower latency and
higher flash memory usage than the sponge-based AEAD. However, figure 2
shows that the type of AEAD does not have a decisive influence on the soft-
ware implementation performance, because some candidates have no difference
in performance, although they are different types of AEAD.

Table 3: Latency and flash memory usage

Sum of latency Flash memory usage

Block cipher base Mean 5.0 18.7
Median 3.5 17.9
Sponge base Mean 7.9 18.4

Median 6.2 17.5




Software Evaluation for NIST Lightweight Cryptography 9

4.3 Analysis of Measurement Results

We performed an analysis based on the results. The results of the parameters,
nonlinear operations, and performance, used in the analysis, are those listed in
table 6 and 7.

Table 4 presents the obtained correlation coefficients of all 89 members for
implementation performance and each parameter, and that for implementation
performance and cost of the nonlinear operation. The cost of the nonlinear oper-
ations differs from that of the S-boxes, modular operation, and Boolean function.
In the case of the S-boxes, the cost of the nonlinear operations is the algebraic
number of bits per output value stored in the lookup table. For the modular
operation and Boolean function, the cost of the nonlinear operation is set to
zero, because no lookup table is required.

In each section, we describe the trends that emerged in the performance of
all candidates and characteristics of a specific candidates.

Table 4: Correlation coefficients between the parameters and size of nonlinear opera-
tions and the implementation performance

Flash memory Code RO
Latency Usage Data Data

Block size 0.143 -0.236 -0.107 -0.330

Key size -0.127 0.061 -0.033 0.210
State size 0.087 -0.156 -0.022 -0.316

Tag size -0.162 -0.052 0.018 -0.162
Nonce size -0.081 -0.075 -0.072 -0.033
Non-liner Operation 0.006 0.359 0.130 0.577

Parameters on Implementation Performance Table 4 shows that no sig-
nificant correlation exists between the parameters and implementation perfor-
mance. However, there is a weak negative correlation between the RO data
and block and state sizes. Therefore, as the block or state sizes increase, the
amount of RO data usage decreases. The sponge-based AEAD tends to have a
larger state size, and uses less flash memory than the block cipher-based AEAD.
Therefore, the relationship between the state size and RO data might be due
to the characteristics of the AEAD types. According to Section 3.2, the block
size of the primary members does not depend on the type of AEAD. However,
when we calculated the average block size of 89 members, the block cipher- and
sponge-based AEAD were 105.4 and 127.0, respectively. This suggests that the
relationship between the block size and RO data exists because of the types of
AEAD.

Then, we discuss the performance of members with different parameters
within the same candidate. ASCON, PHOTON-Beetle, and SAEAES have sev-
eral members with different block sizes, and exhibit no significant differences



10 R. Hira et al.

in other parameters or operations. For example, based on table 5, photon-
beetleacad128ratel2v] and photonbeetleacad128rate32v1 have block sizes of 128

and 32 bits, respectively. Their encryption and decryption latencies are approxi-
mately 12 and 30 s, respectively. Similarly, sacaes128a120t128v1 and saecaes128a64t128v1
have different block sizes of 120 and 64 bits for associated data, and the former

has lower latency. For ascon128av12 and ascon128v12, the latency of the former

is lower with a larger block size, although the difference between their number of
rounds of permutation is two. Therefore, members with a larger block size tend

to have lower latencies for different members of the same candidate.

Table 5: Correlation coefficients between the parameters and size of nonlinear opera-
tions and the implementation performance

Member Block size Encryption time(seconds)
asconl28av12 128 0.153
asconl28v12 64 0.183

* photonbeetleacad128rate128v1 128 12.251
photonbeetleaead128rate32vl 32 29.655
saeaes128a120t128v1 64(120) 0.099
saeaes128a64t128v1 64(64) 0.111

SUNDAE-GIFT has four members with different nonce sizes. The latencies
for nonce sizes of 0, 64, 96, and 128 bits are 2.41, 2.65, 2.76, and 2.87 s, re-
spectively. Thus, these results indicate that, when the nonce size is larger, the
latency is higher. Therefore, the size of the nonce size affects the latency.

Operations on Implementation Performance For reference, when S-boxes
are implemented using a lookup table, a 4-bit S-box requires 64 bits (0.0078 kB)
of memory usage, and an 8-bit S-box requires 2048 bits (0.25 kB).

Table 4 shows that the correlation coefficient between the cost of nonlinear
operations and flash memory usage is 0.359, indicating a weak positive correla-
tion. Additionally, the correlation coefficient with the RO data is 0.577, indicat-
ing a positive correlation. Therefore, the cost of the nonlinear operations affects
the flash memory usage, especially RO data usage.

COMET and ESTATE have several members with different operations, and
demonstrate no significant differences in the other parameters. COMET128AESV1
and COMET128CHAMYV1 are based on the block ciphers AES and CHAM, re-
spectively. The nonlinear operations used in each cipher are 8-bit S-boxes for
AES and modular addition for CHAM. The implementation performance of
the two members differs in terms of the RO data and latency. Moreover, es-
tatetweaes128v1, using 8-bit S-boxes for TweAES, and estatetwegift128v1, using
4-bit S-boxes for TweGIFT, differ with respect to the RO data and latency.
Therefore, the operations used in the algorithm affect the memory usage and
latency.



Software Evaluation for NIST Lightweight Cryptography 11

All members of SAEAES and comet128aesvl have more RO data than the
other candidates. Their sample programmes include four arrays of 256 4-byte
data for lookup tables of size 4 kB. These data are supposed to be used to
speed up the cryptographic process; in fact, the latency of these candidates is

low. Therefore, the latency can be reduced by storing large data in the memory
beforehand.

Other Factors on Implementation Performance There was no difference
in RW, ZI, and their sum for all 89 members of the 32 candidates. However,
elephant160v1 and elephant176v1 as well as all members of mixFeed had more
RW data than the other candidates. We examined the sample codes of the two
candidates, and discovered that the array data stored in the lookup table did
not have a const modifier to treat the constant as RO data in the C language.
This might have caused the lookup table to be stored in the RAM as RW data.
After adding the const modifier to their data, they were stored in flash memory
as RO data.

Elephant160vl and elephant176v1, isapkl128v20, and Oribatida had higher
latency than the other candidates. In the Elephant specification, elephant160v1
and elephant176v] were hardware-oriented members with more rounds in the
substitution function at 80 and 90. Therefore, they are unsuitable for the soft-
ware, and their latency is considerably high. Elephant200v1—a software member—
had 18 rounds of substitution functions, and the latency was approximately 10
s. The reason for the high latency of isapk128v20 and Oribatida has not been
discovered.

5 Experiment for use in specific scenarios

5.1 Measurement Method

We conducted experiment to investigate the relationship between the data size
and latency for 28 members of the 10 finalists. From this experiment, we can
discover the data size to be processed efficiently and can use each candidates
in specific scenarios. We used the reference C implementation code of the 10
finalists for the experiments. The execution and development environments are
the same as those described in Section 4. We implemented all members of each
candidate in the software, and measured the latency for different data sizes.
In this study, the data size was the sum of the plaintext and AD lengths. For
example, when processing 8 bytes of the plaintext and 8 bytes of the AD, the
data size is 16 bytes.

The test vectors comprised 33 x 33 or 1089 combinations of plaintext and AD;
each data size ranged from 0 to 32 bytes, varying 1 byte at a time. However,
for some of the candidates (romulus-m and xoodyak), we used more test vectors
(100 x 100 or 10000) to investigate them in detail.

Unlike the experiments conducted in Section 4, we measured the latency
for the encryption/decryption of each test vector separately. Therefore, for one



12 R. Hira et al.

candidate (or one member), we obtain the latency for 1089 (or 10,000) vectors.
We compared the latency for each data size to determine what could be processed
efficiently.

5.2 Results

We summarised the results in a heat map as an appendix in Section C. All data
used to create the figures are latency taken for encryption. The vertical axis
represents the plaintext length, and the horizontal axis represents the AD length.
For each candidate, we created two diagrams based on the experimental results.
One diagram depicts the heat mapping of raw-data, where white indicates the
minimum latency and black the maximum latency (hereafter, referred to as ‘raw-
data’). The other illustrates the heat mapping of the obtained latency divided by
the data size in bytes (hereafter referred to as ‘divided-data’). For example, the
latency obtained by processing 8 bytes of plaintext and 8 bytes of AD is divided
by data size 8 + 8or 16. The divided-data express the latency per 1 byte, and
allow the data size to be compared, which can be processed efficiently. In this
figure, the 10th percentile is coloured white, and the 90th percentile is coloured
black to enhance readability.

5.3 Analysis of Data Size and Latency

In this section, we analyse the results of the experiments described in Section
6. The analysis is based on the raw- and divided-data. From the previous anal-
ysis, we consider the relationship between the specification of the cipher and
the latency. The latter analysis provides the data size, which can be processed
efficiently.

Analysis with Raw-data From the results for each candidate, the latency in-
creased as the processed data size increased. Furthermore, the latency increased
step-by-step after a certain number of bytes for the AD and plaintext lengths of
the processed data. These numbers of bytes were based on the block size of the
AEAD, and the latency increased as the data size exceeded integer multiples of
the block size. The candidates that used the stream cipher as building blocks
(Grain-128AEAD) had the same characteristics if we consider the block size as 1
bit or 1 byte. All the candidates showed a stepwise increase in latency based on
the block size. However, the latency increased in different ways depending on the
padding scheme and mode of operation. We describe the effect of the padding
scheme and mode of operation in the following.

Effect of Padding Scheme In the AEAD mode, a single encryption block ob-
tains a ciphertext of bit length equal to that of plaintext, equal to block size
r. Therefore, when encrypting a plaintext of length r, the ciphertext should be
obtained with only one encryption block. However, depending on the padding
scheme, the number of encryption blocks may increase. Next, we summarise the



Software Evaluation for NIST Lightweight Cryptography 13

candidates wherein the number of encryption blocks varies depending on the
padding scheme.

The data sizes, where the characteristics of the padding scheme appear, are
0 bytes and an integer multiple of r bytes. First, we describe the process when
the data size is 0 bytes. In such a case, some candidates perform padding, and
process the data as a single block. However, some candidates do not process the
data, and skip the cryptographic process. We classify the candidates as follows.
Here, Proc_ AD and Proc_ PT refer to the series of operations for AD and PT,
respectively.

1. Does not perform Proc_PT and Proc_ AD
Grain128-AEAD, PHOTON-Beetle, Sparkle, TinyJambu
2. Performs Proc_ PT and does not perform Proc_ AD
Ascon
3. Does not perform Proc_PT and performs Proc AD
Elephant, GIFT-COFB, ISAP, Romulus
4. Performs Proc_ PT and Proc_ AD
Xoodyak

In terms of performance, the candidate that does not process when the data
size is zero has low latency, and is more efficient. Performing cryptographic
operations only on the padded data is ineflicient.

Subsequently, we describe the process when the data size is approximately an
integer multiple of r bytes. Padding is applied to the last block of data when it is
less than the block size, making the data size equal to the block size. The input,
which is an integer multiple of the block size, is divided into multiple blocks of
r bytes, and encrypted.

The finalist candidates use two major padding schemes. One pads only num-
ber of bits less than the block size. If the data size z is (n — 1)r < z < nr,
then the data size becomes nr (for n = 1,2,3,...) after the padding process.
Therefore, the input data of size x can be processed using n blocks. We refer to
this method as padding scheme 1 in this study.

In the other padding scheme, when the data size is equal to the block size,
i.e. nr bytes, an additional block of padded data is added. Therefore, if the data
size is nr bytes, the number of blocks becomes (n + 1). We refer to this method
as padding scheme 2 in this paper.

The padding schemes for each candidate are summarised below.

1. Padding scheme 1

GIFT-COFB, PHOTON-Beetle, Romulus, Sparkle, TinyJambu, Xoodyak
2. Padding scheme 2

ASCON, Elephant, ISAP

In Elephant, the nonce is padded to AD, which changes the data size that
can be processed in one block. Because Grainl28-aead uses a stream cipher as a
building block, we cannot determine the effect of padding.



14 R. Hira et al.

Effect of Mode of Operation The NIST candidates use various cryptographic
modes of operation. The different modes of operation affect the manner latency
changes and memory usage. In this section, we discuss the latency.

First, We describe the candidates whose latency changes in steps of 2 bytes,
depending on the mode of operation. The candidates are Elephant and ISAP;
their modes of operation are Enc-then-Mac. The Enc-then-Mac mode encrypts
the plaintext, and generates an authentication tag from the ciphertext. Both
candidates encrypt the plaintext, and generate tags from the AD and ciphertext.
At this time, padding scheme 1 is used for the plaintext, and padding scheme
2 is used for the AD and ciphertext. Therefore, depending on the data size,
the number of blocks in the plaintext and ciphertext blocks differ, resulting in a
latency change of 2 bytes. Specifically, from (n—1)r+1 to nr—1 bytes, both the
plaintext and ciphertext blocks are processed with n blocks. With nr bytes, the
plaintext block is processed with n encryption blocks; however, the ciphertext
block requires n + 1 blocks. Therefore, the latency changes once. Furthermore,
when processing nr + 1 bytes of input data, boththe plaintext and ciphertext
blocks require n + 1 blocks of processing. This changes the latency again. As
described above, Elephant and ISAP have a latency change of 2 bytes.

Subsequently, we introduce candidates for which the time taken to process
the PT and AD are different. These candidates have different latency increments
when the plaintext and AD blocks are increased. For Elephant and ISAP, the
latency increment is larger when the number of plaintext blocks is increased com-
pared to when the number of AD blocks is increased. This is because, when the
number of plaintext blocks increases, the number of ciphertext blocks required
to generate the tag also increases.

TinyJambu has a similar feature. TinyJambu increases the latency when the
number of plaintext blocks increases, compared to when the number of AD blocks
increases. This is because the number of rounds of the function used to update
the state differs. TinyJambu uses 1024 and 640 rounds of functions to update
the state of the PT blocks and AD blocks, respectively. Therefore, the latency
increases, especially when the number of PT blocks increases.

Moreover, when ASCON increases the number of AD blocks, the latency
increases more than when it increases the number of PT blocks. However, we
did not learn the cause of this from the specification.

Finally, we introduce a characteristic candidate. It is a member of Romu-
lus, romulus-m. This candidate differs significantly from the other finalist in the
manner the latency changes. Generally, the latency of the other candidates in-
creases as the AD length and plaintext length exceed an integer multiple of the
block size. The latency is related to the data size and varies regularly, and the
diagram is grid-like. However, the latency of romulus-m varies irregularly, and
the diagram shows a shifted grid. For the plaintext length, the latency changes
every 16 bytes, which is the block size. However, for the AD length, there was
no clear relationship between the block length and latency. The reason for this
is not clear from the specification.



Software Evaluation for NIST Lightweight Cryptography 15

Analysis with Divided-data The figures of divided-data shows that the la-
tency per byte decreases as the data size increases. This is due to the initialisation
and finalisation of the state, which is always performed regardless of the data
size. The processing time for the AD and PT varies depending on the data size.
However, the state initialisation and finalisation take almost constant time, re-
gardless of the data size. Therefore, the latency per byte decreases as the data
size (divisor) increases.

Additionally, the diagram of the divided-data is in the form of a grid, similar
to the raw-data. Within the same grid (block), when the data size is larger,
the latency per byte is smaller. This is because, when the number of blocks is
the same, the latency is almost constant. The latency per byte changes only
depending on the data length, which is the divisor. Therefore, when the data
size is larger, processing within the same block is more efficient.

6 Conclusion

In this study, we surveyed and compared second-round candidates from the NIST
lightweight cryptography project. We also conducted additional experiments on
the finalist candidates to investigate the relationship between data size and la-
tency.

Based on specifications, the state size differs between block cipher- and
sponge-based AEAD. Several candidates used S-boxes and Boolean functions
for the nonlinear operations of primary members, and only one candidate used
modular operations as the nonlinear operations of primary members. According
to the results of the software implementation, the RAM usage for each candidate
did not differ. Additionally, the block cipher-based AEAD tends to have a lower
latency and higher flash memory usage than the sponge-based AEAD. However,
it is unclear whether this is due to the type of AEAD in this study.

We have investigated the relationship between the specifications and software
implementation performance. Consequently, differences in parameters and oper-
ations cause differences in software implementation performance among different
members of the same candidate. Based on the results above, the cost of nonlinear
operations and the amount of RO data usage had the strongest correlation.

The experimental results on finalist candidates show that the latency of the
AEAD increases step-by-step with the block size, as the data size increases.
Moreover, the manner in which the latency changes for each candidate differs
owing to the padding scheme and mode of operation. We can select algorithms
that suit usage scenarios, and use them efficiently by understanding the specifi-
cations of the cryptography algorithms.

In this study, there was no difference in the amount of RAM usage. This is
because the Mbed online compiler displayed memory usage in units of 0.1 kB,
and there was no difference below 0.1 kB. Therefore, we will conduct a detailed
investigation of RAM usage. In this paper, we focused on the latency and memory
usage of the software implementation. In future, we will also investigate the
security of each cipher against side-channel and fault attacks.



16 R. Hira et al.

Acknowledgements This work was supported by JST AIP Acceleration Re-
search under Grant JPMJCR20U2 and JSPS KAKENHI Grant Numbers JP20H00590
and JP18H05289.

References

1. Buchanan, W.J., Li, S., Asif, R.: Lightweight cryptogra-
phy  methods. Journal of Cyber  Security  Technology  1(3-4),
187-201 (2017). https://doi.org/10.1080,/23742917.2017.1384917,
https://doi.org/10.1080,/23742917.2017.1384917

2. CRYPTREC: Angou gijyutu tyousa wg (keiryou angou) houkokusyo (March 2015),
https://www.cryptrec.go.jp/exreport/cryptrec-ex-2406-2014.pdf

3. CRYPTREC: Cryptographic technology guideline (lightweight cryptography)
(June 2017), https://www.cryptrec.go.jp/report/cryptrec-gl-2003-2016jp.pdf

4. FEisenbarth, T., Kumar, S., Paar, C., Poschmann, A., Uhsadel, L.: A survey of
lightweight-cryptography implementations. IEEE Design Test of Computers 24(6),
522-533 (2007). https://doi.org/10.1109/MDT.2007.178

5. Hira, R., Li, Y., Hara-Azumi, Y., Sakiyama, K.: Survey for software implementa-
tion of the second round candidates in the nist lightweight cryptography. In: 2021
Symposium on Cryptography and Information Security (January 2021)

6. Manifavas, C., Hatzivasilis, G., Fysarakis, K., Rantos, K.: Lightweight cryptog-
raphy for embedded systems — a comparative analysis. In: Garcia-Alfaro, J., Li-
oudakis, G., Cuppens-Boulahia, N., Foley, S., Fitzgerald, W.M. (eds.) Data Pri-
vacy Management and Autonomous Spontaneous Security. pp. 333-349. Springer
Berlin Heidelberg, Berlin, Heidelberg (2014). https://doi.org/10.1007/978-3-642-
54568-9\ 21

7. arm MBED: Build with the online compiler, https://os.mbed.com/docs/mbed-
0s/v6.5/quick-start /build-with-the-online-compiler.html

8. arm MBED: mbed lpc1114fn28, https://os.mbed.com /platforms/LPC1114FN28/

9. Mohajerani, K., Haeussler, R., Nagpal, R., Farahmand, F., Abdulgadir, A., Kaps,
J.P., Gaj, K.: Fpga benchmarking of round 2 candidates in the nist lightweight
cryptography standardization process: Methodology, metrics, tools, and results.
IACR Cryptol. ePrint Arch. 2020, 1207 (2020)

10. NIST: Submission requirements and evaluation criteria for
the lightweight cryptography standardization process (August
2018), https://csrc.nist.gov/CSRC /media/Projects/Light weight-

Cryptography/documents/final-lwc-submission-requirements-august2018.pdf

11. Sakiyama, K., Sasaki, Y., Li, Y.: Security of Block Ciphers: From Algorithm De-
sign to Hardware Implementation, chap. Introduction to Block Ciphers, pp. 1-26.
Wiley-IEEE Press (2015). https://doi.org/10.1002/9781118660027.ch1

12. Thakor, V.A., Razzaque, M.A., Khandaker, M.R.A.: Lightweight cryptog-
raphy algorithms for resource-constrained iot devices: A review, com-
parison and research opportunities. IEEE Access 9, 28177-28193 (2021).
https://doi.org/10.1109/ACCESS.2021.3052867

13. Turan, M.S., McKay, K., Chang, D., Calik, C., Bassham, L.,
Kang, J., Kelsey, J.: Status report on the second round of the



14.

15.

Software Evaluation for NIST Lightweight Cryptography 17

nist  lightweight  cryptography standardization process (July  2021),
https://nvlpubs.nist.gov/nistpubs/ir /2021 /NIST.IR.8369.pdf

Turan, M.S., McKay, K.A., Calik, C., Chang, D., Bassham, L.: Status report on the
first round of the nist lightweight cryptography standardization process (October
2019), https://nvlpubs.nist.gov/nistpubs/ir /2019 /NIST.IR.8268.pdf

Yasuda, K., Sasaki, Y.: Cryptographic hash functions: How should we deal
with the critical situation? IEICE Fundamentals Review 4(1), 57-67 (2010),
https://www.jstage.jst.go.jp/article/essfr/4/1/4 1 57/ pdf

A Survey of Specification

B

C

Result of the Software Implementation Study

Latency Heat Map of the Finalist Candidates



18 R. Hira et al.

Table 6: Result of specification study

Algorithm Member Types of AEAD Block size Key size State size Tag size Nonce size Non-liner operation
ace * aceac128v1 S 64 128 320 128 128 Boolean function
ascon asconl28av12 S 128 128 320 128 128 Boolean function(5bit)
* ascon128v12 S 64 128 320 128 128 Boolean function(5bit)
ascon80pqv12 S 64 160 320 128 128 Boolean function(5bit)
comet * comet128aesvl B 128 128 256 128 128 S-box(8bit)
comet64chamvl B 64 128 196 64 120 modular operarion
comet64speckvl B 64 128 196 64 120 modular operarion
comet128chamv1 B 128 128 256 128 128 modular operarion
dygascon * drygascon128 S 128 320 448 128 128 Boolean function
drygascon256 S unknown unknown unknown unknown unknown Boolean function
elephant elephant200v1 other 200 128 200 128 96 Boolean function
* elephant160v1 other 160 128 160 64 96 S-box(8bit)
elephant176v1 other 176 128 176 64 96 S-box(8bit)
estate sestatetweaes128v1 B 128 128 128 128 128 S-box(8bit)
* estatetweaes128v1 B 128 128 128 128 128 S-box(8bit)
estatetwegift128v1 B 128 128 128 128 128 S-box(4bit)
forkae paefforkskinnyb128t256n112v1 B 128 128 128 128 112 S-box(8bit)
saefforkskinnyb128t192n56v1 B 128 128 128 128 56 S-box(8bit)
saefforkskinnyb128t256n120v1 B 128 128 128 128 120 S-box(8bit)

* paefforkskinnyb128t288n104v1 B 128 128 128 128 104 S-box(8bit)
paefforkskinnyb64t192n48v1 B 64 128 64 64 48 S-box(4bit)
paefforkskinnyb128t192n48v1 B 128 128 128 128 48 S-box(8bit)

giftcofb * giftcofb128v1 B 128 128 128 128 128 Boolean function(4bit)
gimli * gimli2dvl S 128 256 384 128 128 Boolean function
grain-128-aead * grainl28aead other - 128 256 96 96 Boolean function
hyena, * hyenavl B 128 128 128 128 96 S-box(4bit)
isap isapal28av20 S 64 128 320 128 128 Boolean function(5bit)
isapal28v20 S 64 128 320 128 128 Boolean function(5bit)
* isapk128av20 S 144 128 400 128 128 Boolean function
isapk128v20 S 144 128 400 128 128 Boolean function
knot * knot128v1 S 64 128 256 128 128 Boolean function(4bit)
knot192 S 96 192 384 192 192 Boolean function(4bit)
knot256 S 128 256 512 256 256 Boolean function(4bit)
knot128v2 S 192 128 384 128 128 Boolean function(4bit)
lotus/locus twegift64locusaeadvl B 64 128 64 64 128 S-box(4bit)

* twegift64lotusaeadvl B 64 128 64 64 128 S-box(4bit)
mixfeed * mixfeed B 128 128 128 128 120 S-box(8bit)
orange * orangezestvl S 256 128 256 128 128 S-box(4bit)

oribatida oribatidal92v12 S 96 128 192 96 64 Boolean function
* oribatida256v12 S 128 128 256 128 128 Boolean function
photonbeete * photonbeetleacadl28ratel128v1 S 128 128 256 128 128 S-box(4bit)
photonbeetleacad128rate32v1 S 32 128 256 128 128 S-box(4bit)
pyjamask * pyjamask128aeadvl B 128 128 128 128 96 Boolean function (4bit)
pyjamask96acadv1 S 96 128 96 96 64 Boolean function(3bit)
rumulus romulusn3v12 B 128 128 128 128 96 S-box(8bit)
romulusm3v12 B 128 128 128 128 96 S-box(8bit)
romulusn2v12 B 128 128 128 128 96 S-box(8bit)
* romulusnlvl2 B 128 128 128 128 128 S-box(8bit)
romulusm1v12 B 128 128 128 128 128 S-box(8bit)
romulusm2v12 B 128 128 128 128 96 S-box(8bit)
saeaes saeaes128a120t64v1 B 64(120) 128 128 64 120 S-box(8bit)
sé 5128a120t128v1 B 64(120) 128 128 128 120 S-box(8bit)
sacaes128a64t64v1 B 64(64) 128 128 64 120 S-box(8bit)
* sacaes128a64t128v1 B 64(64) 128 128 128 120 S-box(8bit)
saeaes256a120t128v1 B 64(120) 256 128 128 120 S-box(8bit)
saeaes192a120t128v1 B 64(120) 192 128 128 120 S-box(8bit)
sacacs256a64t64v1 B 64(64) 256 128 64 120 S-box(8bit)
saeaes256a64t128v1 B 64(64) 256 128 128 120 S-box(8bit)
sacaes192a64t64v1 B 64(64) 192 128 64 120 S-box(8bit)
saeaes192a64t128v1 B 64(64) 192 128 128 120 S-box(8bit)
saturnin * saturninctrcascadev2 B 256 256 256 256 160 Boolean function(4bit)
saturninshortv2 B 128 256 256 128 128 Boolean function(4bit)
sbterranean subterraneanv1l S 32 128 257 128 unknown Boolean function
skinnyaead * skinnyaeadtk3128128v1 B 128 128 128 128 128 S-box(8bit)
skinnyaeadtk296128v1 B 128 128 128 128 96 S-box(8bit)
skinnyaeadtk29664v1 B 128 128 128 64 96 S-box(8bit)
skinnyaeadtk312864v1 B 128 128 128 64 128 S-box(8bit)
skinnyaeadtk396128v1 B 128 128 128 128 96 S-box(8bit)
skinnyaeadtk39664v1 B 128 128 128 64 96 S-box(8bit)
sparkle schwaemm128128v1 S 128 128 256 128 128 modular operarion
schwaemm256128v1 S 256 128 384 128 256 modular operarion
schwaemm192192v1 S 192 192 384 192 192 modular operarion
schwaemm256256v1 S 256 256 512 256 256 modular operarion
spix * spix128v1 S 64 128 256 128 128 Boolean function
spoc * spoc128sliscplight256v1 S 128 128 256 128 128 Boolean function(64bit)
spoc64sliscplight192v1 S 64 128 192 64 128 Boolean function(64bit)
spook spook128mu512vl S 256 128 512 128 128 Boolean function(4bit)
* spook128su512v1 S 256 128 512 128 128 Boolean function(4bit)
spook128mu384v1 S 128 128 384 128 128 Boolean function(4bit)
spook128su384v1 S 128 128 384 128 128 Boolean function(4bit)
sundae sundaegiftOvl B 128 128 128 128 0 Boolean function(4bit)
sundaegift64vl B 128 128 128 128 64 Boolean function(4bit)
* sundaegift96v1 B 128 128 128 128 96 Boolean function(4bit)
sundaegift128v1 B 128 128 128 128 128 Boolean function(4bit)
tinyjambu * tinyjambul28 B 32 128 128 64 94 Boolean function
tinyjambu256 B 32 256 128 64 96 Boolean function
tinyjambul92 B 32 192 128 64 96 Boolean function
wage * wageael28v1 S 64 128 259 128 128 S-box(7bit)
xoodyak * xoodyakv1 S 128 128 384 128 unknown Boolean function




Software Evaluation for NIST Lightweight Cryptography 19

Table 7: Software evaluation study

Algorithm Member Encryption time(seconds) Decryption time(seconds) RAM usage(kB) RW Data(kB) ZI Data(kB) ROM usage(kB) Code(kB) RO Data(kB)
Comparison - 0.003 0.003 0.9 0.2 0.7 14.1 12.2 1.9
ace * aceael28v1 8.261 8.263 0.9 0.2 0.7 17.5 15.4 2.1
ascon asconl28av12 0.153 0.155 0.9 0.2 0.7 3 28.6 2.0
* ascon128v12 0.183 0.185 0.9 0.2 0.7 31.4 29.4 2.0
ascon80pqv12 0.185 0.188 0.9 0.2 0.7 31.3 29.3 2.0
comet, * comet128aesvl 0.240 0.242 0.9 0.2 0.7 22.2 15.9 6.3
comet64chamv1 0.591 0.593 0.9 0.2 0.7 17.4 15.4 2.0
comet64speckvl 0.594 0.597 0.9 0.2 0.7 17.6 15.5 2.0
comet128chamv1 1.233 1.235 0.9 0.2 0.7 17.7 15.8 2.0
drygascon * drygascon128 3.803 3.806 0.9 0.2 0.7 17.5 15.6 2.0
drygascon256 10.988 10.993 0.9 0.2 0.7 17.5 15.5 2.0
elephant elephant200v1 11.095 11.095 0.9 0.2 0.7 17.0 14.9 2.1
* elephant160v1 309.186 309.187 1.9 1.2 0.7 16.4 14.4 2.0
elephant176v1 362.768 362.769 1.9 1.2 0.7 16.4 14.4 2.0
estate sestatetweaes128v1 0.310 0.312 0.9 0.2 0.7 17.2 14.7 2.5
* estatetweaes]128v1 0.346 0.348 0.9 0.2 0.7 17.2 14.7 2.5
estatetwegift128v1 10.212 10.213 0.9 0.2 0.7 17.2 14.9 2.3
forkae paefforkskinnyb128t256n112v1 1.209 1.690 0.9 0.2 0.7 20.9 18.3 2.6
saefforkskinnyb128t192n56v1 1.210 1.692 0.9 0.2 0.7 20.7 18.1 2.6
saefforkskinnyb128t256n120v1 1.211 1.694 0.9 0.2 0.7 20.7 18.1 2.6
* paefforkskinnyb128t288n104v1 1.992 5 0.9 0.2 0.7 21.3 18.7 2.6
paefforkskinnyb64t192n48v1 2.464 1.1 0.2 0.9 21.5 19.4 21
paefforkskinnyb128t192n48v1 1.205 0.9 0.2 0.7 20.9 18.4 2.6
giftcofb * giftcofb128v1 1.806 0.9 0.2 0.7 17.1 15.1 2.0
gimli * gimli24v1 0.441 0.9 0.2 0.7 16.4 14.4 2.0
grain-128-aead * grainl28acad 23.854 0.9 0.2 0.7 17.8 15.8 2.0
hyena * hyenavl 6.966 0.9 0.2 0.7 17.6 15.2 2.3
isap isapal28av20 2.791 0.9 0.2 0.7 16.5 14.5 2.0
isapal28v20 11.414 0.9 0.2 0.7 16.5 14.5 2.0
* isapk128av20 46.794 46.796 0.9 0.2 0.7 16.6 14.5 2.2
isapk128v20 394.973 394.975 0.9 0.2 0.7 16.6 14.5 2.2
knot * knot128v1 unknown unknown 1.0 0.2 0.7 16.8 14.8 2.0
knot192 unknown unknown 1.0 0.3 0.7 17.6 15.6 2.0
knot256 unknown unknown 1.0 0.3 0.7 17.9 15.9 2.0
knot128v2 unknown unknown 1.0 0.3 0.7 17.3 15.3 2.0
lotus/locus twegift64locusacadvl 8.876 8.929 0.9 0.2 0.7 18.2 15.9 2.2
* twegift64lotusaeadvl 9.048 9.049 0.9 0.2 0.7 18.1 15.9 2.2
mixfeed * mixfeed 1.041 1.041 1.1 0.4 0.7 17.2 15.2 2.0
orange * orangezestv1 10.373 10.373 0.9 0.2 0.7 17.9 15.8 2.1
oribatida oribatidal92v12 176.166 176.179 0.9 0.2 0.7 19.2 16.7 2.5
* oribatida256v12 286.61 286.613 0.9 0.2 0.7 19.0 16.5 2.5
photonbeete * photonbeetleacadl128rate128v1 12.251 12.253 0.9 0.2 0.7 17.5 15.4 2.1
photonbeetleacad128rate32v1 29.655 29.658 0.9 0.2 0.7 17.6 15.5 2.1
pyjamask * pyjamaskl28acadvl 1.754 1.754 0.9 0.2 0.7 173 153 2.0
pyjamask96aeadvl 1.738 1.723 0.9 0.2 0.7 17.4 15.4 2.0
rumulus romulusn3v12 3.214 1.0 0.2 0.7 19.5 16.9 2.6
romulusm3v12 4.185 1.0 0.2 0.7 19.7 17.1 2.6
romulusn2v12 4.943 1.0 0.2 0.7 19.7 17.1 2.6
* romulusnlvl2 4.959 1.0 0.2 0.7 19.6 17.0 2.6
romulusmlv12 6.126 1.0 0.2 0.7 19.5 17.0 2.6
romulusm2v12 6.376 1.0 0.2 0.7 19.8 17.2 2.6
saeaes saeaes128a120t64v1 0.098 0.8 0.2 0.6 21.5 15.5 6.1
saeaes128a120t128v1 0.099 0.9 0.2 0.7 22.3 16.3 6.0
saeaes128a64t64v1 0.110 0.9 0.2 0.7 22.4 16.3 6.0
* saeaes128a64t128v1 0.111 0.9 0.2 0.7 22.3 16.3 6.0
s 256a120t128v1 0.130 0.9 0.2 0.7 23.4 17.4 6.0
s 192a120t128v1 0.141 0.9 0.2 0.7 23.0 16.9 6.0
56a64t64v1 0.147 0.9 0.2 0.7 23.5 174 6.0
saear 6a64t128v1 0.148 0.150 0.9 0.2 0.7 2 17.4 6.0
saeaes192a64t64v1 0.155 0.157 0.9 0.2 0.7 23. 17.0 6.0
saeaes192a64t128v1 0.156 0.158 0.9 0.2 0.7 23.0 16.9 6.0
saturnin * saturninctrcascadev2 0.527 0.528 0.9 0.2 0.7 18.1 16.1 2.0
saturninshortv2 unknown unknown 0.9 0.2 0.7 19.9 17.9 2.0
sbterranean subterraneanvl 3.117 3.120 0.9 0.2 0.7 18.8 15.5 3.3
* skinnyaeadtk3128128v1 unknown unknown 0.9 0.2 0.7 20.6 17.9 2.7
skinnyaeadtk296128v1 unknown unknown 0.9 0.2 0.7 20.7 18.0 2.7
skinnyaeadtk29664v1 unknown unknown 0.9 0.2 0.7 20.9 18.3 2.7
skinnyaeadtk312864v1 unknown unknown 0.9 0.2 0.7 20.8 18.1 2.7
skinnyaeadtk396128v1 unknown unknown 0.9 0.2 0.7 20.6 17.9 2.7
skinnyaeadtk39664v1 unknown unknown 0.9 0.2 0.7 20.8 18.1 2.7
sparkle schwaemm128128v1 0.221 0.222 0.9 0.2 0.7 16.9 14.9 2.0
schwaemm256128v1 0.269 0.269 0.9 0.2 0.7 17.1 15.1 2.0
schwaemm192192v1 0.313 0.9 0.2 0.7 17.0 15.0 2.0
schwaemm256256v1 0.354 0.9 0.2 0.7 17.2 15.1 2.0
spix * spix128vl 4.736 0.9 0.2 0.7 17.8 15.7 2.1
spoc * spoc128sliscplight256v1 2.371 0.9 0.2 0.7 17.0 14.9 2.1
spoc6dsliscplight192v1 2.812 0.9 0.2 0.7 17.0 14.9 2.1
spook spook128mu512v1 0.9 0.2 0.7 18.0 15.9 2.2
* spook128su512v1 0.9 0.2 0.7 18.1 15.9 22
spook128mu384v1 0.9 0.2 0.7 18.1 15.9 22
spook128su384v1 0.9 0.2 0.7 18.1 15.9 2.2
sundae sundaegiftOvl 0.9 0.2 0.7 17.5 15.5 2.0
sundaegift64v1 0.9 0.2 0.7 17.5 15.5 2.0
* sundaegift96v1 0.9 0.2 0.7 17.5 15.5 2.0
sundaegift128v1 0.9 0.2 0.7 17.5 15.5 2.0
tinyjambu * tinyjambul28 0.9 0.2 0.7 15.7 137 2.0
inyjambu256 0.9 0.2 0.7 15.7 13.7 2.0
0.9 0.2 0.7 15.7 13.7 2.0
wage * wageael28v1 0.9 0.2 0.7 19.4 16.8 2.6
xoodyak * xoodyakvl 0.9 0.2 0.7 16.3 14.3 2.0




20

R. Hira et al.

T3 45 6 78 9101112131615 1647 18 1920212223 24 25 26 21 23 29 30 31 2 D123 456 108 9105112131615 16 17 181920 21 22 23 24 25 26 27 28 20 30 31 2

(a) raw-data (b) divided-data

Fig. 3: ascon80

T 123 45 6 78 9101112131815 1617 1810202122 23 24 25 26 21 28 29 0 31 2 T1 23456 108 9105112132415 16 17 181920 21 22 23 24 25 26 27 28 20 30 31 2

(a) raw-data (b) divided-data

Fig. 4: asconl28 a

T T 23 4 5 6 7 8 9101112030015 1617 18 192021 22 23 20 2526 21 28 29 0 31 22 T 123456 108 9105112132415 16 17 18 19 20 21 22 23 24 25 26 27 28 20 30 31 2

(a) raw-data (b) divided-data

Fig. 5: asconl28



Software Evaluation for NIST Lightweight Cryptography 21

e

708 9 10111213 14 15 16 17 18 19 20 71 2 73 04 75 6 1 09 29 W A

T T 73 45 5 7 5 9 I 1Z 1 151617 18192021 72 7328 25 26 27 28 29 90 31 %

(a) raw-data (b) divided-data

Fig. 6: elephant160

12315 e TN RN UG G RN AN RN BB AR DI R T 1234561891012 50NN RAAEETBBNTR

(a) raw-data (b) divided-data

Fig. 7: elephant176

T T 23 A5 6 7 8 G 0TI 191815 1617 18 15 20 20 22 23 24 25 26 21 28 29 0 31 2

9123456 789 101112131415 16 17 18 19 20 21 22 73 24 25 26 27 28 25 30 91 3

(a) raw-data (b) divided-data

Fig. 8: elephant200



22 R. Hira et al.

R A T R EEE T 778810111213 14 15 16 171181920 21 22 23 24 25 26 21 A WA B

(a) raw-data (b) divided-data

Fig. 9: giftcofb

T T 23 4 5 6 7 8 91001120308 15 16 17 18 19 20 21 22 23 24 25 26 27 28 20 20 3

(a) raw-data (b) divided-data

Fig. 10: grain128aead

e TSI NN RN UGN RANSKABNNNR

T 123456 108 9105112132415 16 17 18 19 20 21 22 23 24 25 26 27 28 25 30 31 2

(a) raw-data (b) divided-data

Fig.11: isapal28 a



Software Evaluation for NIST Lightweight Cryptography

(a) raw-data (b) divided-data

Fig. 12: isapal28

D

T E I NN NN B T892 22242520 828032

(a) raw-data (b) divided-data

Fig.13: isapkl28 a

TTziise

T U 0T IS 61718 192021 2223 24 2526 21 28 29 0 31 2 T 123456 108 9105112132415 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 2

(a) raw-data (b) divided-data

Fig. 14: isapkl28 a

23



24

R. Hira et al.

3101112 13 14 15 16 17 18 19 20 21 22 23 24 25 26 21 28 29 0 31 22

(a) raw-data (b) divided-data

Fig. 15: photonbeetle128 32

456 78 91010121310151617 181920212229 24 25 26 21 23 29 0 91 2 T 123456 108 9105112132415 16 17181920 21 22 224 25 26 27 BB WA

(a) raw-data (b) divided-data

Fig. 16: photonebeetle128 128

(a) raw-data (b) divided-data

Fig.17: romurus_ml



Software Evaluation for NIST Lightweight Cryptography 25

b

ke

(a) raw-data (b) divided-data

Fig. 18: romurus_m2

e

[

(a) raw-data (b) divided-data

Fig.19: romurus_m3

2
2
1 1
1

T 23 4 5 € 7 8 0 0TI T30 15 167 18 102021 22 23 24 25 26 21 28 29 0 31 2 T 12345 6 108 9101012131415 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 2

(a) raw-data (b) divided-data

Fig. 20: romuruls_nl



26 R. Hira et al.

2

. L
1

% 1

u u

n n

0 h

(a) raw-data (b) divided-data

Fig. 21: romulus _n2

n '
1

T 7§ O WIS 11718192021 22232425 26 21 28 2 3031 2 T1 23456 108 9105112132415 16 17 18 19 20 21 22 23 24 25 26 27 28 20 30 31 2

(a) raw-data (b) divided-data

Fig. 22: romulusu_n3

T B 9 1011121316 15 1617 18 19 2021 22 23 20 25 26 21

(a) raw-data (b) divided-data

Fig. 23: schwaemm128_ 128



Software Evaluation for NIST Lightweight Cryptography

(a) raw-data (b) divided-data

Fig. 24: schwaemm192 192

(a) raw-data (b) divided-data

Fig. 25: schwaemm?256_ 128

(a) raw-data (b) divided-data

Fig. 26: schwaemm256 256

27



28 R. Hira et al.

T 2305678 I NUTNNG G BN 2NN BN R T 123405618 9005120314151601 810900 BRAEETBBNTR

(a) raw-data (b) divided-data

Fig. 27: tinyjambul28

12315 eI I NN ENNG G RNAN R NGB BN N R T123 456189000126 BN ERAEETBBNNR

(a) raw-data (b) divided-data

Fig. 28: tinyjambul92

T1 2315 T i INNENNG LU RNAN RN BBABA NI R

Th23 456189000126 BINARRAEETBBNTR

(a) raw-data (b) divided-data

Fig. 29: tinyjambu256



Software Evaluation for NIST Lightweight Cryptography 29

(a) raw-data (b) divided-data

Fig. 30: xoodyak



