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Abstract. Ciphertext-policy attribute-based encryption (CP-ABE) has
attracted much interest from the practical community to enforce ac-
cess control in distributed settings such as the Internet of Things (IoT).
In such settings, encryption devices are often constrained, having small
memories and little computational power, and the associated networks
are lossy. To optimize both the ciphertext sizes and the encryption speed
is therefore paramount. In addition, the master public key needs to be
small enough to fit in the encryption device’s memory. At the same time,
the scheme needs to be expressive enough to support common access con-
trol models. Currently, however, the state of the art incurs undesirable
efficiency trade-offs. Existing schemes often have linear ciphertexts, and
consequently, the ciphertexts may be too large and encryption may be
too slow. In contrast, schemes with small ciphertexts have extremely
large master public keys, and are generally computationally inefficient.
In this work, we propose TinyABE: a novel CP-ABE scheme that is ex-
pressive and can be configured to be efficient enough for settings with
embedded devices and low-quality networks. In particular, we demon-
strate that our scheme can be configured such that the ciphertexts are
small, encryption is fast and the master public key is small enough to
fit in memory. From a theoretical standpoint, the new scheme and its
security proof are non-trivial generalizations of the expressive scheme
with constant-size ciphertexts by Agrawal and Chase (TCC’16, Euro-
crypt’17) and its proof to the unbounded setting. By using techniques
of Rouselakis and Waters (CCS’13), we remove the restrictions that the
Agrawal-Chase scheme imposes on the keys and ciphertexts, making it
thus more flexible. In this way, TinyABE is especially suitable for IoT.

Keywords: attribute-based encryption · ciphertext-policy attribute-based
encryption · short ciphertexts · efficient encryption

1 Introduction

Attribute-based encryption (ABE) is an advanced type of public-key encryp-
tion in which the key pairs are associated with attributes rather than individu-
als [46]. In ciphertext-policy ABE (CP-ABE), messages are encrypted under an
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access policy [16]. Subsequently, the ciphertexts can be decrypted by a single
secret key that is associated with a set of attributes that satisfies the policy.
In contrast, in key-policy ABE (KP-ABE), ciphertexts are associated with sets
of attributes and secret keys with access policies [30]. CP-ABE has proven to
be a valuable primitive in the enforcement of fine-grained access control on a
cryptographic level [16,35,47]. It allows the encrypting device to determine who
gets access to the plaintext, without requiring an online trusted third party to
act as an intermediary [52]. Instead, it requires a trusted entity to issue secret
keys to eligible users, which can be used to access the data for which those are
authorized. In this way, the device can directly and securely share its data via
any (potentially untrusted) network. Recently, the European Telecommunica-
tions Standards Institute (ETSI) has published two specifications regarding the
high-level requirements for ABE [26], and how ABE can increase data security
and privacy [27]. In these specifications, ETSI focuses on several use cases, one
of which considers data access control in the Internet of Things (IoT), in par-
ticular. An important requirement that ETSI imposes on ABE is that an IoT
device should be able to encrypt, but not necessarily decrypt. To this end, the
public keys and ciphertexts should be small, and encryption should be efficient.
ETSI also requires the scheme to support expressive policies [26]. Such policies
include Boolean formulas, consisting of AND and OR gates, over attributes; and
the attributes may be strings or numerical values. The policies may also be large,
because they could specify that a decryption key should be generated within a
certain time interval, whose description may require several attributes.

According to RFC85763, IoT devices and networks are characterized by small
memory, low computational power, and high packet loss rates. Unfortunately,
many ABE schemes—including those considered by ETSI [26]—have cipher-
texts sizes and encryption costs that grow linearly in the number of attributes
[2,6]. As a result, these schemes are not suitable for IoT applications [28]. First,
encryption may simply consume too much time, requiring almost one second
per attribute [48]. Second, even for small policies, the ciphertexts may be so
large that they have to be fragmented across more than one data packet during
transmission. This results in an increased probability that at least one of the
packets is dropped, and subsequently increases the expected time that it takes
for the message to successfully arrive at the receiver [42]. Third, the ciphertext
may not fit in memory. The computation of one ciphertext would therefore need
to be split into parts, and the partial ciphertexts need to be streamed out of the
device, like in [34]. This may further complicate issues with packet loss.

To mitigate issues with the size, ABE schemes with sufficiently short cipher-
texts can be deployed. Several schemes with constant-size ciphertexts have been
proposed [25,32,22,12,11,1]. However, many of these schemes have restricted poli-
cies [25,32,22], supporting only AND-gates or threshold functions, and therefore
have a limited expressivity. Others are bounded [12,11,1], supporting only limited
sizes for the sets or policies associated with the ciphertexts. More importantly,
the efficiency of these bounded schemes depends heavily on the bounds. Hence,
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choosing these bounds to be sufficiently high for some given practical setting is
not a suitable option either.

In this work, we mitigate these limitations by proposing a scheme with a
trade-off feature. Upon setup, the system parameters can be chosen such that
the desired efficiency trade-off between the sizes of the keys and the ciphertexts,
as well as the computational costs of the algorithms can be attained. In partic-
ular, one can optimize encryption so that it can be performed on IoT devices.
Furthermore, one can configure the ciphertexts to be small enough for a specific
setting, i.e., to fit in memory of IoT devices or in one Ethernet packet for some
given number of attributes. One can also configure the master public key to be
small enough to fit in memory. This makes TinyABE especially suitable for IoT.

1.1 Our contributions

Our main contribution is TinyABE, a new CP-ABE scheme that simultaneously
can satisfy several desirable properties:

– Expressivity: The scheme supports monotone span programs (MSPs), which
includes Boolean formulas consisting of both AND and OR gates;

– Large-universeness: Any string can be used as attribute;
– Unboundedness: No bounds are posed on the parameters, including the

attribute sets associated with the keys and the policy lengths;
– Configurable: The system parameters can be chosen such that the scheme

attains the required efficiency, for example
• Short ciphertexts: The scheme can be configured such that the cipher-

texts are sufficiently small for scenarios involving low-quality networks;
• Efficient encryption: The scheme can be configured such that encryp-
tion is fast, even on resource-constrained devices.

We achieve this by making the expressive CP-ABE scheme with constant-size
ciphertexts by Agrawal and Chase (AC16) [1] unbounded. As a result, our scheme
is parametrized, and can be configured to provide the desired efficiency trade-
off. Special cases of our scheme include AC16, and the CP-ABE scheme with
constant-size ciphertexts by Attrapadung (Att19) [9]. TinyABE can thus be
viewed as a generalization of AC16 to the unbounded setting. We also provide
two secondary contributions:

– Security proof: We generalize Agrawal and Chase’s [3] proof for AC16 [1] to
the unbounded setting using Rouselakis and Waters’ [45] techniques;

– Performance analysis: We analyze the efficiency of our scheme with a focus
on practice. In particular, we obtain the most efficient encryption algorithm
compared to other expressive and unbounded schemes;

2 High-level overview and details about TinyABE

Our construction. TinyABE is a generalization of the Agrawal-Chase scheme
(AC16) [1,3] to the unbounded setting, using the partitioning techniques by At-
trapadung et al. (AHM+16) [10], and by using the proof techniques by Rouse-
lakis and Waters (RW13) [45]. By generalizing AC16, we can make it more
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efficient. Although AC16 supports expressive policies and attains constant-size
ciphertexts, it is bounded in parameters N1 and N2, where N1 and N2 denote
the upper bounds on the number of rows and columns of the access structure,
respectively. Importantly, the scheme’s efficiency depends on these parameters.
Whereas the ciphertext sizes are constant, the master public key grows by a
factor N1N2, and the secret keys grow by a factor N2

1N2. As a result, the master
public key is already so large for N1 = N2 = 32, i.e., 103 kilobytes (KB), that it
does not fit in memory of many embedded devices. By making AC16 unbounded,
the efficiency depends differently on these factors. We make the AC16 scheme
unbounded by using a similar approach as AHM+16. Roughly, we partition the
sets of rows and columns in smaller subsets of maximum sizes n̂1 and n̂2, re-
spectively, and apply the AC16 scheme to the partitions. The master public key
and secret keys then also grow in factors n̂1n̂2 and n̂2

1n̂2, respectively, but n̂1

and n̂2 can be much smaller to attain small ciphertexts. Although our cipher-
texts are not constant-size, they shrink by a factor O(min(n̂1, n̂2)) compared to
schemes with linear-size ciphertexts, such as RW13. Thus, even for small choices
of n̂1 and n̂2, our ciphertexts are much smaller than RW13 ciphertexts. Whereas
RW13 ciphertexts might only fit in memory or in one Ethernet packet for a max-
imum policy length of 33 or 3, respectively, TinyABE can support larger policy
lengths. For example, in the same settings, it supports maximum policy lengths
of 298 (for n̂1 = n̂2 = 3), and 100 (for n̂1 = n̂2 = 13), respectively, while the
associated master public keys are only 2.3, and 19 KB, respectively.

Security proof: the AC17 framework. We formulate our scheme and proofs
in the AC17 [3] framework, which considers a commonly-used abstraction of
pairing-based encryption schemes: pair encoding schemes (PES) [8]. Essentially,
a PES condenses a scheme to “what happens in the exponent”. The AC17 frame-
work simplifies security analysis, whilst achieving strong security guarantees, by
reducing the effort of proving security to performing simple linear algebra [51].
In part, we use this framework, because we generalize AC16, and its only proofs
in the full-security setting are given in this framework [3,9]. In contrast, other
expressive CP-ABE schemes with constant-size ciphertexts [11,13] have larger
keys than AC16 and are therefore less efficient. Furthermore, because we prove
security in the AC17 framework, our scheme can be transformed into a scheme
supporting negations in the policies [9,5], additionally allowing for the support
of revocation systems [37].

Improving the partitioning approach. We improve on the partitioning ap-
proach used for the KP-ABE scheme of Attrapadung et al. (AHM+16) [10],
which is unbounded, supports expressive policies, and can be configured to have
small ciphertexts. Specifically, AHM+16 generalizes the first expressive KP-ABE
scheme with constant-size ciphertexts of Attrapadung, Libert and de Panafieu
(ALP11) [12] to the unbounded setting. Concretely, their approach consists of
the partitioning of the attribute set (to be used during encryption) into subsets
of maximum size nk, where nk is the bound on the attribute set inherited from
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ALP11. Before our work, a CP-ABE scheme attaining similar characteristics
remained an open problem. In fact, the first expressive CP-ABE schemes with
constant-size ciphertexts [11,1] were proposed four years after the introduction of
ALP11. Presumably, the reason for this delay is the difficulty in simultaneously
achieving these properties in the ciphertext-policy setting. On the one hand,
the entire access policy—which is two-dimensional—needs to be embedded in
one ciphertext component. On the other hand, the decrypting user—who has an
attribute set satisfying the policy—may not have keys for all attributes used in
the access policy. These difficulties also translate to the unbounded setting: to
make AC16 unbounded, we need to partition in two dimensions instead of one.
In addition, we want to embed the entire policy in one ciphertext component,
like AC16. This is unlike AHM+16, which embeds each partitioned subset in a
separate ciphertext component, and thus still requires a linear number of op-
erations during encryption. In contrast, the costs of computing our ciphertext
component embedding the policy are essentially upper-bounded by a constant.

Performance analysis. We show that TinyABE offers advantages over other
schemes by analyzing the storage and computational costs. In this analysis, we
take into account the limitations of constrained devices and low-quality net-
works. To this end, we select two configurations of TinyABE, which we compare
with RW13 and AC16. Our first configuration provides sufficiently small pub-
lic keys and ciphertexts for IoT devices, whilst attaining an efficient encryption
algorithm. For example, in Section 6.3, we estimate the encryption costs on
some IoT devices. For policies of length 100, encryption with RW13 takes over
a minute, while encryption with our scheme takes only 7.6 seconds. Moreover,
while the master public key of AC16 is almost a megabyte in size, our master
public key is only 2.25 kilobytes, and thus fits easily in memory of constrained
devices. Our second configuration ensures that, for policy lengths of up to 100
attributes, the ciphertexts fit in one Ethernet packet, which has a maximum
transmission unit of 1500 bytes. In contrast, RW13 ciphertexts are too large.

Expressive, large-universe, unbounded and efficient. TinyABE is simul-
taneously expressive and unrestricted while it is configurable. Therefore, it can
be configured to be efficient enough for practical applications involving IoT de-
vices and networks. Our scheme supports large universes, so it can efficiently
support any strings as attributes, and does not require that, in the setup, public
keys are generated for each attribute. The scheme is also unbounded4, which
implicitly ensures that it attains a better efficiency, even for large policies, com-
pared to bounded schemes. In contrast, the efficiency of bounded schemes with
constant-size ciphertexts [1,9] depends heavily on the choice of these bounds.
Finally, because our scheme supports monotone span programs, it can enforce
any fine-grained policies on encrypted data. Practitioners therefore do not need
to restrict themselves to less expressive solutions in IoT settings anymore [36,28].

4 Note that our scheme is also unbounded in that it satisfies the “multi-use” property,
meaning that attributes may occur any number of times in the access policies.
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Expressive and efficient CP-ABE scheme for IoT. Several schemes have
been introduced over the years. Some can attain sufficiently short ciphertexts for
some specific practical context. In particular, we consider schemes that can be
configured to be small enough to fit e.g., in memory of constrained devices or in
Ethernet packets, even for large policies. As Table 1a shows, all of the CP-ABE
schemes of this kind incur a trade-off: either they are not expressive, or they
impose bounds (and by extension, they are inefficient). In contrast, TinyABE is
the first CP-ABE scheme to overcome these limitations. Furthermore, compared
to expressive schemes with ciphertext sizes that grow at least in the size of the
policy or set (see Table 1b), TinyABE can be configured to have a more efficient
encryption. As such, it is feasible to implement ABE on IoT devices (see Section
6.3), which are mainly assumed to be required to encrypt and not decrypt.

3 Preliminaries

3.1 Notation

If an element is chosen uniformly at random from a finite set S, then we denote
this as x ∈R S. For integers a < b, we denote [a, b] = {a, a + 1, ..., b − 1, b},
[b] = [1, b] and [b] = [0, b]. We use boldfaced variables A and v for matrices and
vectors, respectively. We denote a : A to substitute variable a by a matrix or
vector A. We define 1d1×d2

i,j ∈ Zd1×d2
p as the matrix with 1 in the i-th row and

j-th column, and 0 everywhere else, and similarly 1d1
i and 1

d2

i as the row and
column vectors with 1 in the i-th entry and 0 everywhere else.

3.2 Access structures

Definition 1 ((Monotone) access structures [15]). Let {a1, ..., an} be a
set of attributes. An access structure is a collection A of non-empty subsets of
{a1, ..., an}. The sets in A are called the authorized sets, and the sets that are
not in A are called the unauthorized sets. An access structure A ⊆ 2{a1,...,an} is
monotone if for all B,C holds: if B ∈ A and B ⊆ C, then also C ∈ A.

We represent access policies A by linear secret sharing scheme (LSSS) ma-
trices, which support monotone span programs [15,31]. In particular, Boolean
formulas can be efficiently converted into LSSS matrices [38].

Definition 2 (Access structures represented by LSSS matrices [31]).
An access structure can be represented as a pair A = (A, ρ) such that A ∈
Zn1×n2
p is an LSSS matrix, where n1, n2 ∈ N, and ρ is a function that maps the

rows of A to attributes in the universe. For some vector v = (s, v2, ..., vn2) ∈R

Zn2
p , the i-th secret generated by matrix A is λi = Aiv

⊺, where Ai denotes
the i-th row of A. In particular, if S satisfies A, then there exist a set of rows
Υ = {i ∈ [n1] | ρ(i) ∈ S} and coefficients εi ∈ Zp for all i ∈ Υ such that∑

i∈Υ εiAi = (1, 0, ..., 0), and thus,
∑

i∈Υ εiλi = s holds. If S does not satisfy A,
there exists w = (1, w2, ..., wn2

) ∈ Zn2
p such that Aiw

⊺ = 0 for all i ∈ Υ [15].
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Table 1: Comparison of ABE schemes with short and linear ciphertexts, respec-
tively. For each scheme, we list whether they are CP, the expressivity (expr.),
whether they are large-universe (LU), and whether they support unbounded
(unb) policies or sets. For the schemes with short ciphertexts, we also give the
asymptotic complexity of the storage costs of their master public keys (MPK),
secret keys (SK) and ciphertexts (CT). We consider a scheme to have short
ciphertexts if their asymptotic sizes are smaller than linear in the number of
attributes, i.e., O(|S|) or O(|A|). Note that we have only listed schemes that are
structurally different, i.e., that have a different PES. For instance, the KP-ABE
scheme in [45] has the same PES as the KP-ABE scheme in [39].

Scheme CP Expr. LU
Unb. Sizes
|A| |S| MPK SK CT

EMN+09 [25] ✓ AND ✗ ✓ ✓ O(|U|) O(1) O(1)
HLR10 [32] ✓ Threshold ✗ ✓ ✓ O(|U|) O(|U|) O(1)
CZF11 [22] ✓ AND ✗ ✓ ✓ O(|U|) O(|U|) O(1)
ALP11 [12] ✗ (N)MSP ✓ ✓ ✗ O(Nk) O(Nk|A|) O(1)
CCL+13 [21] ✗ Threshold ✗ ✓ ✓ O(|U|) O(|U||A|) O(1)
Tak14 [49] ✗ NMSP ✓ ✗ ✗ O(Nk) O(Nk|A|) O(1)
AHY15 [11] ✓ (N)MSP ✓ ✗ ✗ O((NkN1)

2λ) O((NkN1)
4λ2) O(1)

AHM+16 [10] ✗ MSP ✓ ✓ ✓ O(nk) O(nk|A|) O( |S|
nk

)

AC16 [1,3] ✓ MSP ✓ ✗ ✗ O(N1(N2 +Nk)) O(|S|N2
1 (N2 +Nk)) O(1)

Att19 [9] ✓ NMSP ✓ ✗ ✓ O(N1N2)) O(|S|N2
1N2) O(1)

AT20 [13] ✓ (N)MSP ✓ ✗ ✓ O((N2 +Nkλ)
2) O((N2 +Nkλ)

4) O(1)
LL20b [40] ✗ MSP ✓ ✓ ✗ O(Nk) O(Nk|A|) O(1)

TinyABE ✓ MSP ✓ ✓ ✓ O(n̂1(n̂2 + nk)) O(n̂2
1(n̂2 + n̂k)

|S|
nk

) O(min(n1
n̂1

, n2
n̂2

))

(a) ABE with short ciphertexts.

Scheme CP LU
Unb.
|A| |S|

GPSW06 [30] ✗ ✗ ✓ ✓
BSW07 [16] ✓ ✓ ✓ ✓
Wat11-I [53] ✓ ✗ ✓ ✓
Wat11-IV [53] ✓ ✓ ✓ ✓
LW11 [39] ✗ ✓ ✓ ✓
RW13 [45] ✓ ✓ ✓ ✓
FAME [2] ✓ ✓ ✓ ✓

ABGW17 [6] ✓ ✓ ✓ ✓
TKN20 [50] ✓ ✓ ✓ ✓
TinyABE ✓ ✓ ✓ ✓

(b) ABE with linear-sized keys and ciphertexts that support MSPs.

Notes: U = universe; A = access policy; S = set of attributes;
(N)MSP = (non-)monotone span program, n1, n2 = number of rows, columns of A;

N1, N2, Nk = maximum bounds on n1, n2, |S|;
n̂1, n̂2, nk = maximum partition sizes of n1, n2, |S|
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3.3 Ciphertext-policy ABE

Definition 3 (Ciphertext-policy ABE [16]). A ciphertext-policy ABE (CP-
ABE) scheme consists of four algorithms:

– Setup(λ) → (MPK,MSK): The setup takes as input a security parameter λ.
It outputs the master public-secret key pair (MPK,MSK).

– KeyGen(MSK,S) → SKS : The key generation takes as input a set of at-
tributes S and the master secret key MSK. It outputs a secret key SKS .

– Encrypt(MPK,A,M) → CTA: The encryption takes as input a message M ,
a policy A and the master public key MPK. It outputs a ciphertext CTA.

– Decrypt(SKS ,CTA) → M ′: The decryption takes as input the ciphertext
CTA with access policy A, and a secret key SKS with attribute set S. It
succeeds and outputs a message M ′ if S satisfies A. Otherwise, it fails.

The scheme is correct if successful decryption of a ciphertext always yields the
original message.

Large-universe and unbounded ABE. A scheme supports large universes if
it does not impose bounds on the universe, which consists of all attributes that
can be used in the scheme. We call the scheme unbounded, if it supports large
universes and additionally does not impose bounds on the sets S and policies A,
or on the number of times |ρ−1(att)| that one attribute att occurs in a policy.

3.4 Security model

Definition 4 (Full IND-CPA-security for CP-ABE [16]). We define the
game between challenger and attacker as follows:

– Setup phase: The challenger runs the Setup algorithm and sends the master
public key MPK to the attacker.

– First query phase: The attacker queries secret keys for the sets of at-
tributes S1, ...,Sn1

.

– Challenge phase: The attacker specifies two equal-length messages M0 and
M1, and an access structure A∗ such that none of the sets Si satisfies it, and
sends these to the challenger. The challenger flips a coin, i.e., β ∈R {0, 1},
encrypts Mβ under A∗, and sends the resulting ciphertext to the attacker.

– Second query phase: The attacker queries secret keys for the sets of at-
tributes Sn1+1, ...,Sn2 with the restriction that none of the sets Si satisfy
access structure A∗.

– Decision phase: The attacker outputs a guess β′ for β.

The advantage of the attacker is defined as |Pr[β′ = β] − 1
2 |. A CP-ABE

scheme is fully secure if all polynomial-time attackers have at most a negligible
advantage in this security game.
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3.5 Pairings (or bilinear maps)

We define a pairing to be an efficiently computable map e on three groups G,H
and GT of prime order p, so that e : G×H → GT , with generators g ∈ G, h ∈ H
is such that for all a, b ∈ Zp, it holds that e(g

a, hb) = e(g, h)ab (bilinearity), and
for ga ̸= 1G, h

b ̸= 1H, it holds that e(g
a, hb) ̸= 1GT

, where 1G′ denotes the unique
identity element of the associated group G′ (non-degeneracy).

3.6 Pair encoding schemes

Definition 5 (Pair encoding schemes (PES) [3]). A pair encoding scheme
for a predicate family Pκ : Xκ × Yκ → {0, 1}, indexed by κ = (p,par), where
par specifies some parameters, is given by four deterministic polynomial-time
algorithms as described below.

– Param(par) → n: On input par, the algorithm outputs n ∈ N that specifies
the number of common variables, which are denoted as b = (b1, ..., bn).

– EncKey(y, p) → (m1,m2,k(r, r̂,b)): On input p ∈ N and y ∈ Yκ, this algo-
rithm outputs a vector of polynomials k = (k1, ..., km3

) defined over non-lone
variables r = (r1, ..., rm1

) and lone variables r̂ = (r̂1, ..., r̂m2
). Specifically,

the polynomial ki is expressed as

ki = δiα+
∑

j∈[m2]

δi,j r̂j +
∑

j∈[m1],k∈[n]

δi,j,krjbk,

for all i ∈ [m3], where δi, δi,j , δi,j,k ∈ Zp.
– EncCt(x, p) → (w1, w2, c(s, ŝ,b)): On input p ∈ N and x ∈ Xκ, this algo-

rithm outputs a vector of polynomials c = (c1, ..., cw3) defined over non-lone
variables s = (s, s2, ..., sw1

) and lone variables ŝ = (ŝ1, ..., ŝw2
). Specifically,

the polynomial ci is expressed as

ci =
∑

j∈[w2]

ηi,j ŝj +
∑

j∈[w1],k∈[n]

ηi,j,ksjbk,

for all i ∈ [w3], where ηi,j , ηi,j,k ∈ Zp.
– Pair(x, y, p) → (E,E): On input p, x, and y, this algorithm outputs two

matrices E and E of sizes (w1 + 1)×m3 and w3 ×m1, respectively.

A PES is correct for every κ = (p,par), x ∈ Xκ and y ∈ Yκ such that
Pκ(x, y) = 1, it holds that sEk⊺ + cEr⊺ = αs.

Definition 6 (Symbolic property [3]). A pair encoding scheme Γ = (Param,
EncKey, EncCt, Pair) for a predicate family Pκ : Xκ ×Yκ → {0, 1} satisfies the
(d1, d2)-selective symbolic property for positive integers d1 and d2 if there exist
deterministic polynomial-time algorithms EncB, EncS, and EncR such that for
all κ = (p,par), x ∈ Xκ and y ∈ Yκ with Pκ(x, y) = 0, we have that

– EncB(x) → B1, ...,Bn ∈ Zd1×d2
p ;
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– EncR(x, y) → r1, ..., rm1
∈ Zd1

p ,a, r̂1, ..., r̂m2
∈ Zd2

p ;

– EncS(x) → s0, ..., sw1
∈ Zd2

p , ŝ1, ..., ŝw2
∈ Zd1

p ;

such that ⟨s0,a⟩ ≠ 0, and if we substitute

ŝi′ : ŝ
⊺
i′ sibj : Bjs

⊺
i α : a r̂k′ : r̂k′ rkbj : rkBj ,

for i ∈ [w1], i
′ ∈ [w2], j ∈ [n], k ∈ [m1], k

′ ∈ [m2] in all the polynomials of k and
c (output by EncKey and EncCt, respectively), they evaluate to 0.

Similarly, a pair encoding scheme satisfies the (d1, d2)-co-selective symbolic
security property if there exist EncB,EncR,EncS that satisfy the above properties
but where EncB and EncR only take y as input, and EncS takes x and y as input.

A scheme satisfies the (d1, d2)-symbolic property if it satisfies the (d′1, d
′
2)-

selective and (d′′1 , d
′′
2)-co-selective properties for d′1, d

′′
1 ≤ d1 and d′2, d

′′
2 ≤ d2.

Agrawal and Chase [3] prove that any PES satisfying the (d1, d2)-symbolic
property can be transformed in a fully secure ABE scheme.

4 Our construction: TinyABE

We present our construction. To this end, in Section 4.1, we give a step-by-step
description on how these layering techniques can be applied, by first carefully re-
viewing the scheme. Roughly, we use the techniques of Attrapadung et al. [10,9]
to remove the bounds on the attribute sets used in the key generation. Then, we
apply the layering techniques to the ciphertext policy, by using the partitioning
approach of Attrapadung et al. (AHM+16) [10]. However, unlike in AHM+16
[10], we need to partition in two “directions” due to the two-dimensional na-
ture of access policies. In particular, for each policy, we split the set of rows
in subsets of maximum size n̂1, and the set of columns in subsets of maximum
size n̂2. Then, for each subset, we use a fresh “randomizer”. These randomizers
are appropriately applied to the ciphertext component of AC16 that embeds
the policy. To this end, we identify which parts of this ciphertext component
correspond to the rows and which to the columns:

C ′′ =
∏

j∈[n1],k∈[n2]

gsAj,kbj,k

︸ ︷︷ ︸
columns

∏
i∈[nk],j∈[n1]

gsρ(j)
ib′i,j

︸ ︷︷ ︸
rows

,

where gbj,k and gb
′
i,j denote public keys, and s is a random integer during encryp-

tion under access structure A = (A, ρ) with A ∈ Zn1×n2
p . For example, for each

partitioned subset S ′
l of [n1], we use a fresh randomizer sl to compute partial

ciphertext
∏

i∈[nk],j∈S′
l
gslρ(j)

ib′i,j . In the scheme, we use mappings τ1 and τ2 to

partition the rows and columns, respectively, in sets of maximum size n̂1 and n̂2.
Furthermore, we define the mappings τ̂1 and τ̂2 to map each row and column,
respectively, that are in the same partition to a unique set of public keys.
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4.1 Removing the bounds from AC16

We show how to make AC16 [1] unbounded, by analyzing the scheme and show-
ing, in steps, how the bounds can be removed by introducing more randomness.

The AC16 scheme. We briefly review the AC16 scheme [1]. Specifically, the
secret keys SK and ciphertexts CT are of the form

SK = ({K1,j = grj ,K2,j,k = grjbj,k−vk ,K3,j,j′,k = grjbj′,k ,

K4,j,att = g
rj

∑
i∈[nk]

xi
attb

′
i,j ,K5,i,j,j′ = grjb

′
i,j′}

i∈[nk],j,j
′∈[n̂1],j ̸=j′,

k∈[n̂2],att∈S
),

CT =

(
C = M · e(g, g)αs, C ′ = gs,

C ′′ =
∏

j∈[n1],k∈[n2]

gsAj,kbj,k
∏

i∈[nk],j∈[n1]

gsρ(j)
ib′i,j

)

where gbj,k and gb
′
i,j denote public keys, v1 = α is the master-key, rj , vk ∈R Zp

are randomly chosen integers during the key generation for set S with |S| ≤ nk,
and s is a randomly chosen integer during encryption for access structure A =
(A, ρ) with A ∈ Zn1×n2

p such that n1 ≤ N1 and n2 ≤ N2 and ρ : [n1] → Zp,
where N1, N2 ∈ N denote bounds on the policy size. Furthermore, xatt denotes
the unique representation of an attribute att (represented as a string) in Zp,
which can be generated with a collision-resistant hash function H : {0, 1}∗ → Zp.

Intuitively, decryption using a key SK for set S of a ciphertext CT with ac-
cess policy A works by “singling out” each row j ∈ Υ = {j′ ∈ [n1] | ρ(j′) ∈
S}, i.e., e(g, g)rjs(

∑
k∈[n̂2] Aj,kbj,k+

∑
i∈[nk]

ρ(j)ib′i,j) from C ′′ (and K1,j). From this,

e(g, g)
∑

k∈[n̂2] Aj,kvk can be retrieved by using C ′, K2,j,k and K4,j,ρ(j). More con-
cretely, this can be done because the secret keys are constructed in a specific
way. That is, for each j, j′ ∈ [n̂1], it embeds the product rjbj′,k, but only in
the case that j = j′, it also embeds the secret vk (where v1 = α). Similarly, for
j = j′, only the secrets rj

∑
i x

i
attb

′
i,j are given for those attributes att that are

in the set S. For j ̸= j′, we can reconstruct rj
∑

i x
i
att

b′i,j′ for any attribute att.
To decrypt, we have to retrieve e(g, g)αs, for which we would need to pair K2,j,k

with C ′ to obtain e(g, g)rjbj,ks−vks. Then, the question is how we can cancel out
e(g, g)rjbj,ks. Roughly, we want to “single out” the j-th row of the access policy in
the ciphertext component C ′′. Then, we pair K1,j = grj with C ′′, and cancel out

all resulting components e(g, g)rjs(Aj′,kbj′,k+ρ(j′)ib′
i,j′ ) for j ̸= j′ by using K3,j,j′,k

and K5,i,j,j′ and pairing them with C ′. Note that we just argued that we can
reconstruct these components (regardless of the fact that, possibly, ρ(j′) /∈ S).
This leaves us with components e(g, g)

rjs(
∑

k∈[n̂2] Aj,kbj,k+
∑

i∈[nk]
ρ(j)ib′i,j). Then,

we can only cancel
∏

i∈[nk]
e(g, g)rjsρ(j)

ib′i,j if ρ(j) ∈ S (by pairing K4,j,att with

C ′), which subsequently yields
∏

k∈[n̂2]
e(g, g)rjsAj,kbj,k . By combining this with
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e(g, g)rjbj,ks−vks, we can obtain e(g, g)αs. For these last steps, we use the fol-
lowing LSSS property (Definition 2). If S satisfies A, then there exist εj ∈ Zp

for all j ∈ Υ = {j ∈ [n1] | ρ(j) ∈ S} such that
∑

j∈Υ εjAj = (1, 0, ..., 0) for

rows Aj of matrix A. Thus, computing
∏

k∈[n̂2]
(e(g, g)rjbj,ks−vks)εjAj,k yields∏

j∈Υ,k∈[n̂2]
e(g, g)rjεjAj,kbj,kse(g, g)−αs. We finally obtain e(g, g)αs by raising∏

k∈[n̂2]
e(g, g)rjsAj,kbj,k to the power εj for each j ∈ Υ .

Removing the bound on set S. First, we remove the bound nk on set S,
which is simpler than removing the bounds on the access policy. In fact, this has
already been done by Attrapadung [9], so we only briefly review his version of the
scheme. Note that this method also resembles the method used in the AHM+16
scheme [10]. The general idea is that the set S is partitioned in arbitrary sets
of maximum size nk. For each partition, we use the randomness provided by rj
and the public keys to embed the partition like in the original scheme. However,

because we have m =
⌈
|S|
nk

⌉
partitions, we need m fresh sets of randomness

{rj}j∈[n̂1] for each partition. Hence, the keys look like this:

SK = {K1,j,l = grj,l ,K2,j,k,l = grj,lbj,k−vk ,K3,j,j′,k,l = grj,lbj′,k ,

K4,j,att = g
rj,ι(att)

∑
i∈[nk]

xi
attb

′
i,j ,K5,i,j,j′,l = grj,lbi,j′}j,j′∈[n̂1],j ̸=j′,k∈[n̂2],

i∈[nk],l∈[m],att∈S

,

where ι : S → [m] maps the attributes of S into partitions. To ensure that the
partitions are small enough, we place a restriction on ι, i.e., |ι−1(l)| ≤ nk for
all l ∈ [m]. Note here that the key component K4,j,att only uses the randomizer
rj,l corresponding to the partition in which xatt is mapped with ι. Furthermore,
decryption is similar as in the AC16 scheme, though a little more care should be
taken into picking the correct randomizer rj,l.

Removing the bound from policy A. It is considerably more difficult to
remove the bounds on the access policy A. Again, we need to introduce fresh
randomness for each partition. However, we need to partition in two directions:
the rows and the columns. Hence, we partition the access policy A = (A, ρ)

by splitting the rows in m′
1 =

⌈
n1

n̂1

⌉
partitions of maximum size n̂1, and the

columns in m′
2 =

⌈
n2

n̂2

⌉
partitions of maximum size n̂2. In addition, we define the

associated mappings τβ : [nβ ] → [m′
β ] for β ∈ {1, 2} that output the indices of

the partitions in which the rows (for β = 1) and columns (for β = 2) are mapped.
For each partition lβ ∈ [m′

β ], we introduce a randomizer sβ,lβ . In addition, we
need to ensure that each row j ∈ [n1] in one partition uses a unique set of public

parameters {gbj′,k , gb
′
i,j′}

i∈[nk],k∈[n̂2]
(with j′ ∈ [n̂1]). Similarly, we need to ensure

that each column k ∈ [n2] in one partition uses a unique set {bj,k′}j∈[n1] (with
k′ ∈ [n̂2]). We thus define the corresponding mappings τ̂β : [nβ ] → [n̂β ] such that
τ̂β is injective on the subdomain τ−1

β (lβ) for each lβ ∈ [m′
β ].
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Then, we consider how we can apply any randomness in the ciphertext with-
out causing incorrectness or insecurity. To this end, we analyze the AC16 cipher-
text component C ′′, which is∏

j∈[n1],k∈[n2]

gsAj,kbj,k

︸ ︷︷ ︸
C′′

A

·
∏

i∈[nk],j∈[n1]

gsρ(j)
ib′i,j

︸ ︷︷ ︸
C′′

ρ

.

For both parts C ′′
A and C ′′

ρ , we analyze with which randomness the randomness
s needs to be replaced. As shown, the part associated with the access policy,
i.e., C ′′

A, is necessary to retrieve the secret e(g, g)sAj,kvk , such that eventually
e(g, g)αs can be retrieved by computing

∏
j∈Υ,k∈[n2]

e(g, g)εjsAj,kvk . Note that,
here, it is important that s is associated with k = 1 to ensure correctness of the
scheme. However, for k > 1, we can use a different randomness. In short, for
the C ′′

A part, we use the randomness associated with the m′
2 column partitions,

which yields the transformation:

C ′′
A 7→

∏
j∈[n1],k∈[n2]

gs2,τ2(k)Aj,kbτ̂1(j),τ̂2(k) ,

where we require that s2,τ2(1) = s to ensure correctness.
As shown, the part of C ′′ associated with the attribute mapping ρ, i.e.,

C ′′
ρ , ensures that the message is, albeit indirectly, sufficiently blinded. That is,

in the “singling out” of row j, we could only obtain
∏

k e(g, g)
rjsAj,kbj,k (now:∏

k e(g, g)
rj,ι(ρ(j))s2,τ2(k)Aj,kbτ̂1(j),τ̂2(k)) if we could cancel out e(g, g)rjsρ(j)

ib′i,j . This
only worked if ρ(j) ∈ S. In this case, using a fresh set {b′i,j}i∈[nk]

for each row j

ensures that there is sufficient randomness for the entire partition. As such, it is
straightforward that the C ′′

ρ part needs to be randomized for each partition of
n̂1 rows, like in the removal of the bound on S. For the row partitions, we had
introduced the random integers s1,l1 for each partition l1 ∈ [m′

1], and substituting
s for these yields:

C ′′
ρ 7→

∏
i∈[nk],j∈[n1]

gs1,τ1(j)ρ(j)
ib′i,τ̂1(j) .

Finally, we point out that the randomizers s1,l1 and s2,l2 are only used in
combination with the public keys b′i,j and bj,k, respectively. In our proofs, it
becomes clear that we can therefore set s2,l2 = s1,l2 for all l2 ∈ [m′

2].

4.2 The scheme

We give our scheme in the selective-security setting. A fully secure variant can
be obtained by applying the AC17 [3] transformation to our PES (Section 4.3).

Definition 7 (TinyABE). TinyABE is defined as follows.
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– Setup(λ): On input the security parameter λ, the algorithm generates three
groups G,H,GT of prime order p with generators g ∈ G and h ∈ H, and
chooses a pairing e : G×H → GT . It sets the universe of attributes U = Zp,
and chooses n̂1 ∈ N and n̂2 ∈ N as the maximum number of rows and
columns that fit into one partition, respectively. It also chooses nk ∈ N,
which is the maximum partition size of the keys. It then generates random
α, bj,k, b

′
i,j ∈R Zp for all i ∈ [nk], j ∈ [n̂1], k ∈ [n̂2]. It outputs MSK =

(α, {bj,k, b′i,j}i∈[nk],j∈[n̂1],k∈[n̂2]
) as the master secret key and publishes the

domain parameters (p,G,H,GT , n̂1, n̂2, nk) and the master public key as

MPK = (g, h,A = e(g, h)α, {Bj,k = gbj,k , B′
i,j = gb

′
i,j}

i∈[nk],j∈[n̂1],k∈[n̂2]
).

– KeyGen(MSK,S): On input a set of attributes S, the algorithm computes

m =
⌈
|S|
nk

⌉
, defines a partition mapping ι : S → [m] such that |ι−1(l)| ≤ nk

for each l ∈ [m], and generates random integers rj,l, vk ∈R Zp for each
j ∈ [n̂1], k ∈ [2, n̂2], l ∈ [m], setting v1 = α and computes the secret key as

SKS = ({K1,j,l = hrj,l ,K2,j,k,l = hrj,lbj,k−vk ,K3,j,j′,k,l = hrj,lbj′,k ,

K4,j,att = h
rj,ι(att)

∑
i∈[nk]

xi
attb

′
i,j ,K5,i,j,j′,l = hrj,lbi,j′}j,j′∈[n̂1],j ̸=j′,k∈[n̂2],

i∈[nk],l∈[m],att∈S

).

– Encrypt(MPK,A,M): Message M ∈ GT is encrypted under A = (A, ρ) with

A ∈ Zn1×n2
p and ρ : [n1] → U by computing m′

1 =
⌈
n1

n̂1

⌉
and m′

2 =
⌈
n2

n̂2

⌉
,

and defining partition mappings for each β ∈ [2]: τβ : [nβ ] → [m′
β ] such

that |τ−1
β (lβ)| ≤ n̂β for each lβ ∈ [m′

β ]. For τ2, we require that τ2(1) = 1.

Define τ̂β : [nβ ] → [n̂β ] such that τ̂β is injective on the subset τ−1
β (lβ) for

each lβ ∈ [m′
β ]. Then, generate random integers s, sl′ ∈R Zp for each l′ ∈

[2,max(m′
1,m

′
2)], and specifically set s1 = s, and compute the ciphertext as

CTA =
(
C = M ·As, {Cl1 = gsl1 }l1∈[m′

1]

C ′ =
∏

j∈[n1],k∈[n2]

B
sτ2(k)Aj,k

τ̂1(j),τ̂2(k)

∏
i∈[nk],j∈[n1]

(B′
i,τ̂1(j)

)sτ1(j)ρ(j)
i)
.

– Decrypt(SKS ,CTA): Suppose that S satisfies A, let Υ = {j ∈ [n1] | ρ(j) ∈
S}. Then, {εj ∈ Zp}j∈Υ exist with

∑
i∈Υ εjAj = (1, 0, ..., 0) (Definition 2).

Then, the plaintext M is retrieved by computing C ·C2 ·C3 ·C4 ·C5/C1, where

C1 =
∏
j∈Υ

e(C ′,K
εj
1,τ̂1(j),ι(ρ(j))

), C2 =
∏

j∈Υ,k∈[n2]

e(Cτ2(k),K
εjAj,k

2,τ̂1(j),τ̂2(k),ι(ρ(j))
),

C3 =
∏

j∈Υ,j′∈[n1]\{j},k∈[n2]

e(Cτ2(k),K
εjAj′,k
3,τ̂1(j),τ̂1(j′),τ̂2(k),ι(ρ(j))

),

C4 =
∏
j∈Υ

e(Cτ1(j),K
εj
4,τ̂1(j),ρ(j)

),

C5 =
∏

i∈[nk],j∈Υ,j′∈[n1]\{j}

e(Cτ1(j′),K
εjρ(j

′)i

5,i,τ̂1(j),τ̂1(j′),ι(ρ(j))
).
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The scheme is correct (see Appendix A).

4.3 The associated pair encoding scheme

To prove security, we define the pair encoding of TinyABE, for which we use the
variables n̂1, n̂2, nk,S, ι,ρ, τ1, τ2, τ̂1, τ̂2, n1, n2, λi,m,m′

1,m
′
2 from Definition 7.

Definition 8 (PES for TinyABE).

– Param(par) → n̂1(n̂2 + nk). Let b = ({bj,k, b′i,j}i∈[nk],j∈[n̂1],k∈[n̂2]
).

– EncK(S) → k(r, r̂,b), where

k(r, r̂,b) = ({k2,j,k,l = rj,lbj,k − vk, k3,j,j′,k,l = rj,lbj′,k,

k4,j,att = rj,ι(att)
∑

i∈[nk]

xi
attb

′
i,j , k5,i,j,j′,l = rj,lbi,j′}i∈[nk],j,j

′∈[n̂1],j ̸=j′,
k∈[n̂2],l∈[m],att∈S

),

and r = ({rj,l}j∈[n1],l∈[m]) are non-lone variables and r̂ = ({vk}k∈[2,n2]) are
lone variables.

– EncC((A, ρ)) → c(s, ŝ,b) = (c′), where

c′ =
∑

j∈[n1],k∈[n2]

sτ2(k)Aj,kbτ̂1(j),τ̂2(k) +
∑

i∈[nk],j∈[n1]

sτ1(j)ρ(j)
ib′i,τ̂1(j)

and we have non-lone variables s = ({sl′}l′∈[max(m′
1,m

′
2)]
).

Theorem 1. The PES for TinyABE in Definition 8 satisfies the symbolic prop-
erty (Definition 6).

5 Security proof

We prove security of TinyABE (Definition 8) by proving symbolic security of
our PES. This yields a fully secure scheme with the generic transformation in
the AC17 [3] framework. In particular, we prove the selective and co-selective
security properties (Definition 6) in Sections 5.2 and 5.3, respectively. Before
that, we show in Section 5.1 how we combine the AC17 [4] symbolic proofs of
AC16 [1], and the selective security proofs of RW13 [45].

5.1 “Unbounding” the AC17 proof of AC16

We elevate the AC17 [4] proof of the AC16 [1] (see Appendix B for a summary)
to the unbounded setting by applying the techniques of Rouselakis and Waters
[45]. (Note that, although we explain our methodology for the selective property,
it is similar for the co-selective property.) Roughly speaking, with their layering
techniques, we embed all row attributes that are mapped to the same public-key
components b′i,j and bj,k for j ∈ [n̂1] in these public-key components. Then, we
use the individual randomness techniques of Rouselakis and Waters shared by
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all row attributes in the same row partition to ensure that only the attribute
layer associated with the partition is singled out in the challenge phase. We do
something similar for the column partitions.

More specifically, for the challenge ciphertext polynomials to evaluate to 0
(as needed for the symbolic property (Definition 6)), we require the following
substitutions. The public key b′i,j “embeds” all rows j′ ∈ [n1] that are mapped to
row j ∈ [n̂1] with τ̂1. For each of these rows (and their corresponding attribute),
the individual randomness associated with its partition—to which it is mapped
with τ1—is used. Similarly, the substituted public key bj,k “embeds” all columns
that are mapped to column k ∈ [n̂2], which are randomized with the individual
randomness for each corresponding partition. In this way, during the “challenge
phase”, the layers associated with the ciphertext partitions l1 ∈ [m′

1] and l2 ∈
[m′

2] (for the rows and columns, respectively) can be singled out for each public-
key variable bj,k and b′i,j . This works, because each public-key component only
uses each partition randomness at most once (due to the restriction that τ̂β is
injective on each subdomain τ−1

β (lβ) with lβ ∈ [m′
β ]).

For the “key query phase”, the AC17 proof is adapted as follows. We embed
another individual randomness, for each row j′ ∈ [n1] that is mapped to row
j ∈ [n̂1], in the public-key variables b′i,j , and we embed another individual ran-
domness associated with the i-th coefficient. In particular, we embed the same
polynomial as in the AC17 proof, but instead we embed one for each row j′ that
is mapped to j with τ̂1. That is, we define an nk-degree polynomial that yields
0 if ρ(j′) is plugged in. We embed the polynomials for which the roots are the
attributes in the partition—like in the AC17 proof—for each row attribute. This
ensures that the substituted encoding associated with K4,j,att evaluates to 0.

5.2 The selective property

Our PES satisfies the selective security property. Let χ1,j = {j′ ∈ [n1] | τ̂1(j′) =
τ̂1(j)} and χ2,k = {k′ ∈ [n2] | τ̂2(k′) = τ̂2(k)} for all j ∈ [n̂1], k ∈ [n̂2]. Let
Υ as before and set Υ = [n1] \ Υ . Because S does not satisfy A, there exists
w = (1, w2, ..., wn2

) ∈ Zn2
p such that Ajw

⊺ = 0 for all j ∈ Υ (Definition 2).

Let Ĝj,k(xatt) =
∑

i∈[nk]
(xi

att − ρ(j)i)1d1×d2

(i,j,k),τ1(j)
for all j ∈ [n1], k ∈ [n2]. Let

Ψl = {att ∈ S | ι(att) = l} be the l-th partition of S for all l ∈ [m]. Then, for
each l ∈ [m], we define Gl(xatt) =

∏
att′∈Ψl

(xatt − xatt′) =
∑nk

i=0 ui,lx
i
att. We

make the following substitutions:

b′0,j :
∑

j′∈χ1,j ,k′∈[n2]

Aj′,k′

1d1×d2

(j′,k′),τ1(j′)
−
∑

i′∈[nk]

ρ(j′)i
′
1d1×d2

(i′,j′,k′),τ1(j′)


b′i,j :

∑
j′∈χ1,j ,k′∈[n2]

Aj′,k′1d1×d2

(i,j′,k′),τ1(j′)

bj,k : −
∑

k′∈χ2,k

1d1×d2

(j,k),τ2(k′), sl′ : 1
d2

l′ , vk : − wk

 ∑
k′∈χ2,k

1
d2

τ2(k′)


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rj,l :
∑

k′∈[n2]

wk′

1d1

(j,k′) −
∑

i′∈[nk],j′∈χ1,j∩Υ

ui′,l

Gl(ρ(j′))
1d1

(i′,j′,k′)


for all i ∈ [nk], j ∈ [n̂1], k ∈ [n̂2], l ∈ [m], l′ ∈ [max(m′

1,m
′
2)], where the row

indices (j, k) and (i, j, k) are mapped injectively in the interval [(nk + 2)n1n2].
We have d1 = (nk + 2)n1n2 and d2 = max(m′

1,m
′
2). It follows quickly that the

polynomials evaluate to 0 (see Appendix C.1).

5.3 The co-selective property

For the co-selective property, we generalize the co-selective proof by Agrawal
and Chase [4]. In this proof, the coefficients of the polynomials Gl(xatt) are
embedded in the variables b′i,j . We make the following substitutions:

b′i,j :
∑
l∈[m]

ui,l1
d1×d2

(j,l),(1,j,l), bj,k :
∑
l∈[m]

1d1×d2

(j,l),(2,k), vk : 1
d2

(2,k),

rj,l : 1d1

j,l, sl′ :
∑

k∈τ−1
2 (l′)

wk1
d2

2,τ̂2(k) −
∑

j∈τ−1
1 (l′)∩Υ ,l∈[m]

Ajw
⊺

Gl(ρ(j))
1
d2

(1,τ̂1(j),l)

for all i ∈ [nk], j ∈ [n̂1], k ∈ [n̂2], l ∈ [m], l′ ∈ [max(m′
1,m

′
2)], where the row

indices (j, l) are mapped injectively in the interval [d1], and the column indices
(1, j, l) and (2, k) in the interval [d2], where d1 = n̂1m and d2 = n̂1m + n̂2. It
follows quickly that the polynomials go to 0 (see Appendix C.2).

6 Performance analysis

We analyze the performance of TinyABE for two configurations relevant to IoT
settings. To illustrate the efficiency trade-offs and the advantages of TinyABE
more clearly, we compare the efficiency of the two configurations with two
large-universe CP-ABE schemes: one with linear-size ciphertexts and one with
constant-size ciphertexts. In particular, we compare RW13 [45], which is an un-
bounded CP-ABE scheme with linear-size ciphertexts, and the version of AC16
[1] with unbounded attribute sets and constant-size ciphertexts: Att19 [9]. To
effectively compare the efficiency of all relevant schemes, we run benchmarks
for various group operations in RELIC [7], and extrapolate the computational
costs of the schemes by counting the number of operations required by the algo-
rithms. In particular, we use the pairing-friendly elliptic-curve group BLS12-381
[14,18] for our analysis. For this curve, Scott has recently performed measure-
ments on several IoT devices [48], which we will use in our analysis in Section 6.3.
RELIC [7] supports efficient constant-time implementations for “regular” expo-
nentiations and two special types of exponentiation: fixed-base and multi-base
exponentiation. In a fixed-base exponentiation, the base g to be exponentiated
in gx is fixed after setup, and as such, a precomputation table can be made to
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speed up the computation [20]. In a multi-base exponentiation, the product of
multiple exponentiations, e.g., gx1

1 . . . gxn
n , is computed [41]. We have run these

benchmarks on a 1.6 GHz Intel i5-8250U processor5 (see Appendix E).

We compare the schemes as follows. For a fair comparison, we place all of
them in the selective-security and prime-order setting. We then convert the
schemes to the asymmetric setting using the same optimization approaches [43].
For each scheme, we optimize the encryption efficiency6, e.g., by placing each
ciphertext component in G. (In Appendix D, we give a full description of RW13.
Att19 is a special case of TinyABE, where n̂1 and n̂2 are the upper bounds on
the access policies used during encryption.) Afterwards, we convert the results
to match the most efficient variant in the full-security setting by applying the
generic transformation in the AC17 [3] framework, which incurs roughly twice
the costs. To obtain the most efficient implementation of encryption and de-
cryption, we assume that the access policies used during encryption are Boolean
formulas. Any Boolean formula can be converted to an LSSS matrix with matrix
entries Aj,k in {−1, 0, 1}, and coefficients εj in {0, 1} [38].

6.1 Computational costs of TinyABE

We list the computational costs of the key generation, encryption and decryption
algorithms by listing the number of group operations required by these (see
Appendix F for further details on our analysis):

– Key generation: n̂1(m+ n̂1n̂2m+ |S|+ nk(n̂1 − 1)m) fixed-base exponen-
tiations in H;

– Encryption: one exponentiation in GT , m fixed-base exponentiations in G,
one (nk min(n̂1, |Υ |))-multi-base exponentiation in G, the minimum of the
following two costs:

• one (n̂1n̂2)-multi-base exponentiation in G;

• one m′
2-multi-base exponentiation in G and n1n2 multiplications in G;

and the minimum of the following two costs:

• one n̂1-multi-base-exponentiation in G;

• one m′
1-multi-base exponentiation and n1 multiplications in G.

(Note that the ciphertext component C ′ can be computed in multiple ways,
which we show in more detail in Appendix F.2. Specifically, the costs are
upper bounded by a constant.)

– Decryption: one (m′
1 + 1)-multi-pairing operation, and |Υ |n̂1n2 + nkn1

exponentiations and (|Υ | − 2)nkn1 + 2|Υ | multiplications in H.

To convert these costs to the full-security setting (using the most efficient trans-
formation in [3]), we multiply the costs in G and H by a factor 2.

5 Our code is available as a Jupyter notebook at github.com/mtcvenema/tinyabe.
6 In Appendix F, we explain how a more balanced encryption-decryption efficiency
can be attained.

github.com/mtcvenema/tinyabe
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Scheme
Key sizes (in KB)

Size of the set
1 10 100

TinyABE(1,3,3) 7.39 73.89 738.87
TinyABE(1,13,13) 450.71 4507.09 45.1·103

RW13 0.76 4.17 38.27
Att19 191.3·103 1.9 ·106 19.1 ·106
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Fig. 1: The key and ciphertext sizes of TinyABE(nk,n̂1,n̂2), RW13 and Att19.

Two configurations of TinyABE. To investigate the feasibility of TinyABE
in IoT settings, we analyze the efficiency of TinyABE for two configurations, i.e.,

1. where encryption is optimal: (nk, n̂1, n̂2) = (1, 3, 3);
2. where ciphertexts are small: (nk, n̂1, n̂2) = (1, 13, 13).

In particular, for the latter configuration, the ciphertexts are small enough such
that they fit in one Ethernet packet for policy sizes |A| ≤ 100. In Appendix F.3,
we give further details on how the parameters can be chosen.

6.2 Comparison with RW13 and AC16/Att19

We compare the efficiency of TinyABE with RW13, a scheme with linear-size
ciphertexts and Att19, the variant of AC16 with constant-size ciphertexts that is
unbounded in sets S. In particular, we focus on the ciphertext size and encryption
efficiency, as ultimately, we want to optimize the scheme for low-quality networks
and resource-constrained encryption devices. For all schemes, we require that
they can support any |A|, |S| ≤ 100, thus we set the upper bounds N1, N2 of
Att19 on the number of rows and columns to N1 = N2 = 100. Because the key
sizes and the key generation costs are linear and the differences between the
schemes are large, we put those results in tables, and the rest in graphs.

Storage costs. As Figure 1 shows, our secret keys are generally much larger
than RW13. Nevertheless, our ciphertexts are much smaller. Our scheme’s con-
figurations never exceed the maximum RAM size, and TinyABE(1,13,13) never
exceeds the maximum transmission unit (MTU), which we show to be beneficial
in Section 6.3. Compared to Att19, our keys are much smaller, while our cipher-
texts are marginally larger. Importantly, our master public key is, at most, 19.13
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Scheme
Key generation costs (in ms)

Size of the set
1 10 100

TinyABE(1,3,3) 20.3 202.8 2 ·103
TinyABE(1,13,13) 1.2 ·103 12.4 ·103 123.7 ·103 (≈ 2 minutes)

RW13 2.1 11.4 105.1
Att19 525.3 ·103 (> 8 minutes) 5.3 ·106 (> 1 hour) 52.5 ·106 (> 14 hours)

(a) Key generation
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Fig. 2: The computational costs (in milliseconds (ms)) of key generation, encryp-
tion and decryption with TinyABE(nk,n̂1,n̂2), RW13 and Att19.

KB, in contrast to the 957 KB of Att19. In Section 6.3, we show that our scheme
can thus be used in resource-constrained devices while Att19 cannot.

Computational costs. Similarly, Figure 2 shows that our key generation and
decryption costs are higher than RW13, but our encryption is much more effi-
cient. We show in Section 6.3 that this gain in encryption efficiency can make
a difference between deployment or not, as it reduces the encryption timings
on resource-constrained devices from minutes to mere seconds. (Also note that
our key generation can be extended to an online/offline variant (see Appendix
G). This allows the authority that generates keys to prepare many keys in ad-
vance (e.g., 0.7-44 MB per 100 attributes for (nk, n̂1, n̂2) ∈ {(1, 3, 3), (1, 13, 13)}),
which mitigates any potential issues caused by the large costs.) Moreover, all of
our configurations outperform Att19, notably reducing the key generation costs
to more feasible timings. While Att19 takes at least eight minutes to compute a
key, our scheme never requires more than two minutes, even for large sets.

Comparison with other linear-sized schemes. The main reason why we
compare our scheme with RW13 is because it is closely related to our scheme,
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Fig. 3: The probability that a partial ciphertext needs to be retransmitted for
various packet loss rates.

and because it has linear-size ciphertexts and it is unbounded. In addition, to
illustrate the advantages of TinyABE in IoT settings, we want to compare mainly
its encryption (and the public key and ciphertext sizes) with a linear-sized scheme
such as RW13. Because encryption with other popular large-universe schemes
[16,2,6] is roughly as efficient as RW13 (see Appendix F.4), we expect that
TinyABE compares similarly as favorably to those schemes as to RW13.

6.3 Advantages in low-quality networks and constrained devices

We showcase some practical advantages of TinyABE in IoT settings.

Packet loss in low-quality networks. One of the main features of TinyABE
is that the ciphertexts can be configured to be small, which is beneficial in
low-quality networks. In general, large ciphertexts may increase the risk that
at least one of the packets is dropped during transmission, in which case the
dropped packets need to be retransmitted [42], delaying the message’s time of
arrival. This may be problematic for resource-constrained devices, such as IoT
devices, because their communication channels are often characterized by high
packet loss rates (see RFC85767). Packet sizes on the physical layer are even
more limited, increasing the probability that packets are lost. Furthermore, these
devices typically have much less memory at their disposal, meaning that they
may not be able to store the entire ciphertext. As a result, these devices need to
stream out partial ciphertexts, and either retain the partial ciphertext until the
intended receiver confirms that it has arrived, or risk having to recompute it. To
mitigate these issues, the size of the ciphertexts that are transmitted from the

7 https://tools.ietf.org/html/rfc8576

https://tools.ietf.org/html/rfc8576
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device should be minimized. TinyABE achieves this. In fact, even for n̂1 = 3,
which optimizes the encryption efficiency, the probability that ciphertexts need
to be retransmitted is significantly lower than for RW13.

Through an example, we briefly illustrate that the increase in size of the
ciphertext may increase the probability that one of the packets drops. For this
example, we use a similar approach as in [42]. We consider the maximum trans-
mission unit (MTU) of an Ethernet connection, i.e., 1500 bytes, and consider
varying packet loss rates between 1% and 20%, with steps of 1%. In general,
if we consider the shortest round-trip time, then the expected additional time
incurred by re-transmitting a packet is 6.193 ms. In comparison, we can encrypt
a message under a policy of length 20 with our least efficient configuration of
our scheme in that time (Figure 2), so this additional overhead is relevant in
practice. To illustrate the effect of packet loss on the efficiency of the scheme, we
analyze the probability that at least a part of the ciphertext is dropped in Fig-
ure 3. As the figures show, TinyABE never exceeds 50%, even for large policies
and high packet loss rates. In contrast, for small policies, RW13 exceeds 50% at
high rates (i.e., > 20%) and for large policies at small rates (i.e., > 3.5%). For
large policies and high rates, it is almost certain that a partial RW13 cipher-
text drops. Therefore, our scheme clearly provides an advantage in low-quality
networks compared to schemes with linear-size ciphertexts such as RW13.

Resource-constrained devices: memory. In contrast to other expressive
schemes such as RW13 and Att19, the ciphertexts and master public key of
TinyABE easily fit in memory, even of resource-constrained devices. In RFC72288,
three classes of constrained devices are listed: with < 10, ≈ 10 and 50 KB of
RAM, and with < 100, ≈ 100 and 250 KB of flash memory (ROM), respectively.
In practice, the master public key can be stored in flash memory, such that only
the components that are needed during encryption are loaded in RAM. While
the RW13 public key (of 0.89 KB) fits easily in flash memory, our public keys are
fairly large, e.g., 2.25-19.13 KB for (nk, n̂1, n̂2) ∈ {(1, 3, 3), (1, 13, 13)}. Although
it leaves slightly less space for the code and other applications than RW13 would,
it easily fits in devices with at least 100 KB of flash memory. This is not the
case for the Att19 scheme, as the master public key of 957 KB is much larger
than 100 KB for maximum policy length 30 or higher.

Additionally, while the ciphertexts of our scheme as well as the RW13 scheme
would easily fit in 50 KB of RAM (even for large policies), it would be more
problematic for devices with only 10 KB of RAM to fit RW13 ciphertexts. In
fact, a ciphertext with policy length 33 already pushes the limit of 10 KB, and
leaves no space for anything else, such as payload, additional overhead incurred
by the computation, or optimization through precomputation. As such, trade-offs
need to be made, e.g., by limiting the size of the access policy or by streaming out
partially computed ciphertexts. However, because IoT devices often have a lossy
communication channel, this increases the risk of recomputation of ciphertext
components, increasing the encryption costs. Alternatively, the device can retain

8 https://tools.ietf.org/html/rfc7228

https://tools.ietf.org/html/rfc7228
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Fig. 4: Conservative estimates of the encryption costs on two IoT devices.

the partial ciphertexts, until the receiver has confirmed that the ciphertexts
have arrived, which however also increases the encryption time. In contrast,
TinyABE’s ciphertexts easily fit in 10 KB of memory, even for large policies. For
n̂1 = 3 and policy length n1 = 100, the size of the ciphertext is 3.84 KB. For
n̂1 = 13, the size of the ciphertext is 1.41 KB, which leaves an ample 8.59 KB of
memory for e.g., the payload and optimization through precomputation. In this
way, we may be able to gain some significant speedup [29]. Furthermore, because
the ciphertext fits entirely in memory, the device can retain it, until it has been
notified by the intended receiver that the ciphertext has arrived successfully. It
therefore does not require the device to recompute any partial ciphertexts either,
which may be the case for RW13.

Resource-constrained devices: speed. As shown, for some parameter choices,
our scheme provides fast encryption, even for large inputs. For instance, for
(nk, n̂1) = (1, 3), our encryption algorithm is several factors faster than RW13,
which may be desirable for resource-constrained devices. Recently, Scott [48]
tested the performance of some operations on the BLS12-381 curve on IoT de-
vices. These results show that the devices with the slowest and fastest timings
would approximately require 1.175 and 0.075 seconds, respectively, per exponen-
tiation in G. In Figure 4, we estimate the encryption costs for the two fastest
devices measured in [48]. For the fastest device, our most efficient configuration
requires only 7.6 seconds to encrypt with a policy of length 100, while RW13
requires one minute and 15 seconds.

7 Future work

Our work paves the way for further improvements in the design and implementa-
tion of ABE in IoT settings. While we have theoretically analyzed the feasibility
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of implementing our schemes in practical settings such as low-quality networks
and embedded devices, it would be useful to empirically test them. Notably, our
conservative estimates for the IoT devices in Section 6.3 are based on the bench-
marks in [48]. By implementing the scheme—possibly using optimizations (e.g.,
through precomputation [29]) that have not been used in [48] or using curves
with more efficient arithmetic in G [24]—it may perform even better than our
estimates suggest. Furthermore, our scheme supports monotone span programs
only. It can be transformed into a scheme that also supports non-monotone span
programs by applying transformations by Attrapadung [9] and Ambrona [5].
Finally, because our scheme is proven secure in the AC17 [3] framework, its se-
curity relies on a q-type assumption [17,19]. Even though existing attacks [23]
have not been shown to break the specific q-type assumptions used in AC17, from
a theoretical point of view, it might be preferable to rely on non-parametrized
assumptions [40,13].

8 Conclusion

We proposed a new configurable unbounded large-universe CP-ABE scheme,
mainly designed for settings with embedded devices or low-quality networks. We
have proven the scheme secure in the AC17 framework, yielding efficient con-
structions that are provably fully secure. TinyABE can be configured such that
encryption is very efficient, outperforming state-of-the-art CP-ABE schemes by
several factors for large policies. Additionally, the ciphertexts are much shorter
than those of schemes with linear-size ciphertexts, and are therefore more likely
to fit in the constrained memories of embedded devices. Due to this shortness,
ciphertexts are also much less likely to drop during transmission. While the ci-
phertexts are longer than those of schemes with constant-size ciphertexts, our
public and secret keys are much shorter, and the computational costs are much
lower. For these reasons, TinyABE is more practical for embedded devices and
low-quality networks.
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A Correctness of TinyABE

TinyABE (i.e., the scheme in Definition 7) is correct, i.e.,

C2 · C3 = e(g, h)
∑

j∈Υ,j′∈[n1],k∈[n2] εjsτ2(k)(rτ̂1(j),attAj′,kbj′,k−Aj,kvτ̂2(k))

= e(g, h)
∑

j∈Υ,j′∈[n1],k∈[n2] εjrτ̂1(j),ι(ρ(j))sAj′,kbj′,k · e(g, h)−αs

C6 = C · C2 · C3

= M · e(g, h)
∑

j∈Υ,j′∈[n1],k∈[n2] εjrτ̂1(j),ι(ρ(j))sτ2(k)Aj′,kbj′,k

C4 · C5 = e(g, h)
∑

i∈[nk],j∈Υ,j′∈[n1]
εjrτ̂1(j),ι(ρ(j))sτ1(j′)ρ(j

′)ib′
i,j′

C−1
1 = e(g, h)

−
∑

i∈[nk],j∈Υ,j′∈[n1],k∈[n2]
εjrτ̂1(j),ι(ρ(j))sτ2(k)Aj′,kbj′,k

·e(g, h)−
∑

i∈[nk],j∈Υ,j′∈[n1],k∈[n2]
εjrτ̂1(j),ι(ρ(j))sτ1(j′)ρ(j

′)ib′
i,j′

C7 = C4 · C5 · C−1
1

= e(g, h)−
∑

j∈Υ,j′∈[n1],k∈[n2] εjrτ̂1(j),ι(ρ(j))sτ2(k)Aj′,kbj′,k

C6 · C7 = C · C2 · C3 · C4 · C5/C1 = M.

B The selective AC17 proof of AC16

We briefly review the selective AC17 [4] proof of the AC16 scheme [1]. We define
for each j ∈ [n̂1] the nk-degree polynomial

Ĝj(xatt) =
∑

i∈[nk],k∈[n̂2]

(xi
att − ρ(j)i)1d1×d2

(i,j,k),1 =

nk∑
i=0

c′i,jx
i
att,

where the coefficients c′0,j = −
∑

i∈[nk],k∈[n2]
ρ(j)i1d1×d2

(i,j,k),1 for all j ∈ [n̂1], and

c′i,j =
∑

k∈[n2]
1d1×d2

(i,j,k),1 for i ∈ [nk], for which Ĝj(ρ(j)) = 0. Then, the “public

keys” are substituted as follows:

bj,k : 1d1×d2

(j,k),1, b′i,j :
∑

k∈[n̂2]

Aj,k1
d1×d2

(i,j,k),1

b′0,j : −
∑

k∈[n̂2]

Aj,k

 ∑
i∈[nk]

1d1×d2

(i,j,k),1 + 1d1×d2

(j,k),1


for all i ∈ [nk], j ∈ [n̂1], k ∈ [n̂2].

In the “key query phase”, i.e., EncR, we divide the set of rows [n̂1] in Υ =
{j ∈ [n̂1] | ρ(j) ∈ S} and Υ = [n̂1] \ Υ . Because S does not satisfy A, there
exists w = (1, w2, ..., wn1

) ∈ Zn1
p such that Ajw

⊺ = 0 for all j ∈ Υ . Then, the

randomness rj containsw and, if j ∈ Υ , the “re-programming” of the polynomial

Ĝj to the nk-degree polynomial G(xatt) =
∏

att′∈S(xatt − xatt′) =
∑nk

i=0 uix
i
att,
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which has roots in the set S, divided by G(ρ(j)) (which is not equal to 0 because
ρ(j) ̸∈ S). This is done by substituting

rj :


∑

k′∈[n̂2]
wk′

(
1d1

(j,k′) −
∑

i′∈[nk]

ui′1
d1
(i′,j,k′)

G(ρ(j))

)
if ρ(j) ∈ Υ∑

k′∈[n̂2]
wk′1d1

(j,k′) otherwise
.

Intuitively, this ensures that rjbj,1 −α (where α is substituted by wk1
d2

1 ) evalu-

ates to 0 due to the part of rj that embeds
∑

k′∈[n̂2]
wk′1d1

(j,k′), and rj
∑

i∈[nk]
b′i,jx

i
att

goes to 0, either because Ajw
⊺1

d2

1 = 0 (in the case that j ∈ Υ ) or because

Ajw
⊺1

d2

1 is canceled by the other part.

In the “challenge phase”, i.e., EncS, we substitute s = 1
d2

1 , so the encoding
associated with C ′′ of the AC16 ciphertext goes to 0, because sAj,kbj,k can-

cels out the part in s
∑

i∈[nk]
b′i,jρ(j)

i associated with 1d1×d2

(j,k),1, which then yields∑
k∈[n̂2]

Aj,k1
d2

1 Ĝj(ρ(j)) = 0, due to the definition of Ĝj .

C More details on the security proof

We show that the polynomials in the selective and co-selective property proofs
in Section 5 indeed evaluate to 0.

C.1 The selective property

The polynomials k2,j,k,l, k3,j,j′,k,l, k4,j,att and k5,i,j,j′,l, and c′ in Section 5.2 eval-
uate to 0. For k3,j,j′,k,l and k5,i,j,j′,l, this follows trivially. Then,

k2,j,k,l = rj,lbj,k − vk = −
∑

k′∈χ2,k

wk1
d2

τ2(k′) + wk

∑
k′∈χ2,k

1
d2

τ2(k′) = 0,

and

k4,j,att = rj,ι(att)
∑

i∈[nk]

xi
attb

′
i,j

= rj,ι(att)
∑

j′∈χ1,j ,k′∈[n2]

Aj′,k′

Ĝj′,k′(xatt) +
∑

i′∈[nk]

1d1×d2

(j,k′),τ1(j′)


=

∑
j′∈χ1,j ,k′∈[n2]

Aj′,k′wk′

(
Gι(att)(xatt)−Gι(att)(ρ(j

′))

Gι(att)(ρ(j′))
+ 1

)
1
d2

τ1(j′)

=
∑

j′∈χ1,j ,k′∈[n2]

Aj′,k′wk′ (−1 + 1)1
d2

τ1(j′) = 0,
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and c′ = c1 + c2, where

c1 =
∑

j∈[n1],k∈[n2]

sτ2(k)Aj,kbτ̂1(j),τ̂2(k)

= −
∑

j∈[n1],k∈[n2],k′∈χ2,τ̂2(k)

Aj,k1
d1×d2

(τ̂1(j),τ̂2(k)),τ2(k′)1
d2

τ2(k)

= −
∑

j∈[n1],k∈[n2],k′∈χ2,τ̂2(k)

Aj,k1
d1

(τ̂1(j),τ̂2(k))
,

cancels out

c2 =
∑

i∈[nk],j∈[n2]

sτ1(j)ρ(j)
ib′i,τ̂1(j)

=
∑

j∈[n2],j′∈χ1,τ̂1(j),k′∈[n2]

Aj′,k′Ĝj′,k′(ρ(j))1
d2

τ1(j)

+
∑

j∈[n2],j′∈χ1,τ̂1(j),k′∈[n2]

Aj′,k′1d1×d2

(j′,k′),τ1(j′)
1
d2

τ1(j)

=
∑

j∈[n2],k′∈[n2]

Aj,k′Ĝj,k′(ρ(j))1
d2

τ1(j) − c1 = −c1.

C.2 The co-selective property

If we substitute the values in the key and ciphertext polynomials in Section
5.3, we observe that they evaluate to 0. This follows trivially for k3,j,j′,k,l and
k5,i,j,j′,l, and for the others we have:

k2,j,k,l = rj,lbj,k − vk

= 1d1

j,l

∑
l∈[m]

1d1×d2

(j,l),(2,k) − 1
d2

(2,k) = 1
d2

(2,k) − 1
d2

(2,k) = 0,

and

k4,j,att = rj,ι(att)
∑

i∈[nk]

xi
attb

′
i,j = 1d1

j,ι(att)

∑
i∈[nk],l∈[m]

ui,lx
i
att1

d1×d2

(j,l),(1,j,l)

=
∑

i∈[nk]

ui,ι(att)x
i
att1

d2

(1,j,ι(att)) = Gι(att)(xatt)1
d2

(1,j,ι(att)) = 0,

and we split c′ = c1 + c2 into two parts again:

c1 =
∑

j∈[n1],k∈[n2]

sτ2(k)Aj,kbτ̂1(j),τ̂2(k)

=
∑

j∈[n1],k∈[n2],k′∈τ−1
2 (τ2(k)),l∈[m]

Aj,kwk′1d1

(τ̂1(j),l),(2,τ̂2(k))
1
d1

2,τ̂2(k′)
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=
∑

j∈[n1],k∈[n2],l∈[m]

Aj,kwk1
d1

(τ̂1(j),l)
=

∑
j∈[n1],l∈[m]

Ajw
⊺1d1

(τ̂1(j),l)
,

which is canceled out by

c2 =
∑

i∈[nk],j∈[n1]

sτ1(j)ρ(j)
ib′i,τ̂1(j)

= −
∑

i∈[nk],j∈[n1],

j′∈τ−1
1 (τ1(j))∩Υ ,

l,l′∈[m]

Aj′w
⊺ui,lρ(j)

i

Gl′(ρ(j′))
1d1×d2

(τ̂1(j),l),(1,τ̂1(j),l)
1
d2

(1,τ̂1(j′),l′)

= −
∑

j∈[n1],l∈[m]

Aj′w
⊺Gl(ρ(j))

Gl(ρ(j))
1d1

(τ̂1(j),l)
= −c1.

D RW13 in the asymmetric setting

We give the definition of the RW13 [45] scheme. In particular, we distribute the
key and ciphertext components such that the encryption and decryption algo-
rithms are optimized (possibly at the cost of the key generation efficiency). The
general approach is fairly simple: we try to put as many ciphertext components
in G as possible.

Definition 9 (The RW13 scheme [45]). The RW13 ciphertext-policy attribute-
based encryption scheme with optimized encryption (as well as most balanced
encryption/decryption) is defined as follows.

– Setup(λ): On input the security parameter λ, the algorithm generates three
groups G,H,GT of prime order p with generators g ∈ G, h ∈ H, and chooses
a pairing e : G×H → GT . It also defines the universe of attributes U = Zp. It
then generates random α, b, b0, b1, b

′ ∈R Zp. It outputs MSK = (α, b, b0, b1, b
′)

as the master secret key and publishes the master public key as

MPK = (g, h,A = e(g, h)α, B = gb, B0 = gb0 , B1 = gb1 , B′ = gb
′
).

– KeyGen(MSK,S): On input a set of attributes S, the algorithm generates
random integers r, ratt ∈R Zp for each att ∈ S, lets xatt ∈ Zp denote the
representation of att in Zp and computes the secret key as

SKS = (K = hα−rb,K ′ = hr,

{K1,att = hratt(b1xatt+b0)+rb′ ,K2,att = hratt}att∈S).

– Encrypt(M,MPK,A): Message M ∈ GT is encrypted under access policy
A = (A, ρ) with A ∈ Zn1×n2

p and ρ : [n1] → U by generating random integers
s, s1, ..., sn1 , v2, ..., vn2 ∈R Zp and by computing the ciphertext as

CTA = (C = M ·As, C ′ = gs, {C1,j = Bλj (B′)sj ,
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Table 2: The performance of various algorithms on the BLS12-381 elliptic curve,
expressed in the number of 103 cycles.

Algorithm In G In H In GT

Exponentiation 344 696 1163
Fixed-base exponentiation 183 416 -

Multi-base exponentiation
(n+ 1 bases)

344+ 696+
-

101n 602n

Hash 101 602 -

Pairing operation

Single 2159
Product of n+ 1 2159 + 633n

C2,j =
(
B

ρ(j)
1 B0

)sj
, C3,j = gsj}j∈[1,n1]),

such that λj denotes the j-th entry of A · (s, v2, ..., vn2
)⊺.

– Decrypt(SKS ,CTA): Suppose that S satisfies A, and suppose Υ = {j ∈
[1, n1] | ρ(j) ∈ S}, such that {εj ∈ Zp}j∈Υ exist with

∑
i∈Υ εjAj = (1, 0, ..., 0)

(Definition 2). Then, the plaintext M is retrieved by computing

C/

e(C ′,K) · e

∏
j∈Υ

C
εj
1,j ,K

′

∏
j∈Υ

(
e(C

εj
2,j ,K2,ρ(j))/e(C

εj
3,j ,K1,ρ(j))

) .

E Benchmarks in RELIC

Our benchmarks are summarized in Table 2.

F More details on the performance analysis

F.1 Optimizing encryption versus decryption

The chosen “optimization approach” affects the distribution of the key and ci-
phertext components over G and H. Generally, operations in G are much more
efficient than in H. Thus, if we want to optimize the encryption costs, we place
as many ciphertext components in G as possible. Consequently, the key compo-
nents that are paired with these ciphertext components are all in H. Not only
does this affect the key generation efficiency, but it also affects the decryption
efficiency, and most obviously in the computation of C5, which can be computed
most efficiently as

∏
l1∈[m′

1]

e

 ∏
i∈[nk],

j′∈τ−1
1 (l1)

 ∏
j∈Υ\{j′}

K
εj
5,i,τ̂1(j),τ̂1(j′),ι(ρ(j))

ρ(j′)i

, Cl1


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which costs at most m′
1 pairing operations, nkn1 exponentiations and (|Υ | −

2)nkn1 multiplications in the group in which the associated key components
live. If these key components live in H (like in Definition 7), a large part of the
decryption costs are several times as expensive as when these components had
lived in G. On the other hand, if we put Cl1 in H, this would impact only one
exponentiation per n̂1 attributes during encryption. Similarly, computing C3 in
the decryption algorithm requires at most |Υ |n̂1n2 multiplications in the group
in which C3 lives, which blows up quadratically for large access policies.

F.2 Optimizing the order of computations

The order in which the computations of the algorithms are executed influences
the efficiency. We can reduce the number of pairing operations required to de-
crypt by analyzing the pairing operations that share an argument [44]. Similarly,
we can change the order of exponentiations, which is most notable in the cipher-
text component C ′. We can compute C ′ in two ways. Depending on the choices
of n̂1, n̂2, nk and the number of ciphertext partitions, either way may be more
efficient. First, we split C ′ in two parts:

C ′ =
∏

j∈[n1],k∈[n2]

B
sτ2(k)Aj,k

τ̂1(j),τ̂2(k)︸ ︷︷ ︸
C′

1

·
∏

i∈[nk],j∈[n1]

(B′
i,τ̂1(j)

)sτ1(j)ρ(j)
i

︸ ︷︷ ︸
C′

2

.

Then, C ′
1 can be computed as

∏
l2∈[m′

2]

 ∏
j∈[n1],k∈τ−1

2 (l2)

B
Aj,k

τ̂1(j),τ̂2(k)

sl2

,

which costs m′
2 exponentiations, and at most n1n2 multiplications, or as∏

j∈[n̂1],k∈[n̂2]

B

∑
j′∈τ̂

−1
1 (j),k′∈τ̂

−1
2 (k)

sτ2(k′)Aj′,k′

j,k ,

which costs n̂1n̂2 exponentiations.
Further, the computation of C ′

2 requires nk min(n̂1, n1) exponentiations for
the i > 0 part, and for the i = 0 part, we either compute

∏
j∈[n̂1]

(
B′

0,j

)∑
j′∈τ̂−1(j) sτ1(j′) or

∏
l1∈[m′

1]

 ∏
j∈τ−1

1 (l1)

B′
0,τ̂1(j)

sl1

,

which costs either n̂1 exponentiations, or m′
1 exponentiations and at most n1

multiplications.
Interestingly, this analysis shows that the cost of computing C ′ can be upper-

bounded in parameters that are fixed after the setup. That is, the computation
of C ′ requires at most n̂1(nk + 1 + n̂2) exponentiations, regardless of the size
of the access policy. This is the main reason why our encryption is so efficient
when these parameters are small.
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Fig. 5: The sizes of the keys and ciphertexts for various choices of parame-
ters n̂1 = n̂2, of the variants with optimized encryption (OE) and balanced
encryption-decryption (BD) efficiency.

F.3 Selecting suitable parameters

To select suitable parameters, we analyze the computational costs of our scheme
for various parameter choices.

Storage efficiency. We analyze the sizes of the master public keys, secret keys
and ciphertexts for various choices of n̂1 in our scheme. This illustrates the
increase of the key sizes versus the decrease in the ciphertext size. As Figure
5 shows, the sizes of the keys grow quadratically. In contrast, the effect on the
ciphertext sizes of our scheme is very limited for large n̂1: even for small choices
of n̂1, the ciphertext sizes are sufficiently small to e.g., fit in RAM of constrained
devices or in one or two Ethernet packets during transmission.
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Fig. 6: The computational costs of key generation, encryption and decryption for
various choices of parameters n̂1 = n̂2.

Computational efficiency. Similarly, the computational efficiency of our
scheme depends heavily on the choice of n̂1. To illustrate this, we analyze the
computational costs of the key generation, encryption and decryption algorithms
for various choices of n̂1 in our scheme. As Figure 6 shows, the computational
costs of encryption and decryption are more or less optimal for n̂1 ∈ [3, 10].
Furthermore, for larger choices of n̂1, the key generation costs are extremely
high. For n̂1 > 30, the key generation algorithm takes at least ten seconds per
ten attributes. Interestingly, the encryption costs of our scheme are optimal for
n̂1 ≈ 3 (due to the upper bound on the computational costs of C ′). In addition,
the computational costs are still quite low for n̂1 ≈ 13, while the ciphertexts fit
into one Ethernet packet for up to 100 attributes.
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The parameter sets. Based on our analysis, we select two sets of parameters
(nk, n̂1, n̂2) for our comparison with RW13, for which

1. encryption is the most efficient: (nk, n̂1, n̂2) = (1, 3, 3);

2. ciphertexts are small, and encryption is efficient: (nk, n̂1, n̂2) = (1, 13, 13).

On the key generation costs. In general, encryption is the most efficient
when nk = 1. This comes however at a cost: the key generation is then the least
efficient. To illustrate the effect of picking nk higher, we also analyze the costs for
variable nk, and (n̂1, n̂2) = (13, 13) in Appendix F.5. As Figures 8 and 9 show,
the key sizes and key generation efficiency are the most optimal when |S| = nk.
However, the effect is rather minimal: the sizes and computational costs are
roughly halved. In turn, the sizes of the master public keys increase, as well as
the computational costs of encryption and decryption. It is more effective to use
an online/offline variant of the algorithm [33], which allows the key generation
authority to precompute large batches of key material (Appendix G).

F.4 On the efficiency of CP-ABE with linear-size ciphertexts

As mentioned in Section 6.2, RW13 is the large-universe CP-ABE scheme with
the most efficient algorithm. If we compare FAME [2] and the selective variants
of BSW07 [16] and ABGW17 [6] transformed to the full security setting [3], then
we observe that they incur the following encryption costs:

– BSW07: 1 exponentiation in GT , 2n1 regular exponentiations and 2 fixed-
base exponentiations in G, 2n1 hashes in G, and 2n1 fixed-base exponentia-
tions in H;

– FAME: 2 exponentiations in GT , 3 exponentiations in H, at least 3n1(2+n2)
hashes in G and 3n1 two-base exponentiations in G;

– ABGW17: 1 exponentiation in GT , 4n1 two-base exponentiations in G and
2n1 fixed-base exponentiations in G.

Note that the ABGW17 costs are the same as the RW13 costs. The costs of
the schemes are depicted in Figure 7. It shows that BSW07 is only marginally
faster than RW13, and in particular, that our scheme outperforms all linear-sized
schemes for both configurations.

F.5 On the effect of nk on the efficiency

In Figures 8 and 9, the storage and computational costs of our scheme are
depicted for various choices of nk. This illustrates the decreased costs of key
generation for higher choices of nk, versus the increased costs of encryption and
decryption.
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Fig. 7: The encryption costs of various CP-ABE schemes.

G Online/offline key generation

The biggest performance bottleneck of our scheme is the inefficiency of the key
generation algorithm. To mitigate this issue, we can split the key generation in
an online and offline phase, such as the HW14 [33] scheme does with the RW13
[45] scheme. In this way, the key generation authority can precompute many
preliminary secret keys so that during an access request, it requires very little
computational power. After the user has received her keys, she can compute
the secret keys as in the original construction (Definition 7), and thus perform
decryption as she usually would.

– Offline key generation: This algorithm generates an “intermediate secret
key” for one partition by generating random integers rj , v̂k ∈R Zp for each
j ∈ [n̂1], k ∈ [2, n̂2] and random integers zi ∈R Zp for all i ∈ [nk], by setting
v̂1 = α, and by computing the intermediate secret key as

ŜK = ({K1,j = grj , K̂2,j,k = grjbj,k−v̂k ,K3,j,j′,k = grjbj′,k , K̂ ′
4,j,i′ = grjzi′ ,

K5,i,j,j′ = grjbi,j′ , rj , v̂k, zi′}i∈[nk],i
′∈[nk],j,j

′∈[n̂1],j ̸=j′,k∈[n̂2]
).

– Online key generation: On input a set of attributes S, this algorithm

computes m =
⌈
|S|
nk

⌉
, defining ι : S → [m] such that |ι−1(i)| ≤ nk for each

i ∈ [m], and selecting m intermediate secret keys

ŜKl = ({K1,j,l, K̂2,j,k,l,K3,j,j′,k,l, K̂
′
4,j,i′,l,K5,i,j,j′,l,
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Fig. 8: The sizes of the keys and ciphertexts for various choices of nk.

rj,l, v̂k,l, zi′,l}i∈[nk],i
′∈[nk],j,j

′∈[n̂1],j ̸=j′,k∈[n̂2]
).

Then, it also injectively maps all the attributes in the same partition l ∈ [m]
to the “intermediate attributes” [nk] by defining a mapping γ : S → [nk]
such that γ is injective on subdomain ι−1(l) for each l ∈ [m], and it chooses
random vk ∈R Zp for each k ∈ [2, n2], and then computes

K̂6,j,att = rj,ι(att)

 ∑
i∈[nk]

xi
attb

′
i,j − zγ(att),ι(att)


K̂7,k,l = v̂k,l − vk,

K̂4,j,att = K̂ ′
4,j,γ(att),ι(att)
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Fig. 9: The computational costs of key generation, encryption and decryption for
various choices of nk.

for all j ∈ [n1], k ∈ [2, n2], l ∈ [m], att ∈ S. It returns the secret key as

ŜKS = ({K1,j,l, K̂2,j,k,l,K3,j,j′,k,l, K̂4,j,att,K5,i,j,j′,l,

K̂6,j,att, K̂7,k,l}i∈[nk],j,j
′∈[n̂1],j ̸=j′,

k∈[n̂2],l∈[m],att∈S
).

– Final step key generation: After receiving the intermediate secret key
ŜKS , the user can compute her secret key by first computing

K2,j,k,l = K̂2,j,k,l · gK̂7,k,l , K4,j,att = K̂4,j,att · gK̂6,j,att ,

and then retrieving the secret key as in Definition 7 as

SKS = ({K1,j,l,K2,j,k,l,K3,j,j′,k,l,K4,j,att,

K5,i,j,j′,l}i∈[nk],j,j
′∈[n̂1],j ̸=j′,k∈[n̂2],l∈[m],att∈S).
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– Correctness: The final step of the key generation indeed yields the secret
keys as defined in Definition 7:

K2,j,k,l = K̂2,j,k,l · gK̂7,k,l = grj,lbj,k−v̂k,l · gv̂k,l−vk = grj,lbj,k−vk

K4,j,att = K̂4,j,att · gK̂6,j,att

= grj,ι(att)zγ(att),ι(att) · grj,ι(att)
(∑

i∈[nk]
xi
attb

′
i,j−zγ(att),ι(att)

)

= g
rj,ι(att)

∑
i∈[nk]

xi
attb

′
i,j .

– Security: This online/offline key generation yields a secure scheme. That
is, if we can break the scheme with the online/offline key generation, then
we can also break the scheme with a regular key generation. Suppose SKS =

({K1,j,l,K2,j,k,l,K3,j,j′,k,l,K4,j,att,K5,i,j,j′,l}i∈[nk],j,j
′∈[n̂1],j ̸=j′,

k∈[n̂2],l∈[m],att∈S
).

is a secret key given in the security game of the regular scheme. Then we
can generate a secret key in the security game of the online/offline extension
of the scheme by computing K̂6,j,att, K̂7,k,l ∈R Zp for each j ∈ [n1], k ∈
[2, n2], l ∈ [m], att ∈ S and setting K̂2,j,k,l = K2,j,k,l · g−K̂7,k,l and K̂4,j,att =

K4,j,att ·g−K̂6,j,att . Note that K̂6,j,att and K̂7,k,l are correctly distributed due
to the randomness of zi′,l and v̂k,l. The secret key returned to the attacker
that can break the online/offline extension of the scheme is

ŜKS = ({K1,j,l, K̂2,j,k,l,K3,j,j′,k,l, K̂4,j,att,K5,i,j,j′,l,

K̂6,j,att, K̂7,k,l}i∈[nk],j,j
′∈[n̂1],j ̸=j′,

k∈[n̂2],l∈[m],att∈S
).
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