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Abstract. We consider the McEliece cryptosystem with a binary Goppa
code C ⊂ Fn

2 specified by an irreducible Goppa polynomial g(x) ∈
F2m [X] and Goppa points (α1, . . . , αn) ∈ Fn

2m . Since g(x) together with
the Goppa points allow for efficient decoding, these parameters form
McEliece secret keys. Such a Goppa code C is an (n− tm)-dimensional
subspace of Fn

2 , and therefore C has co-dimension tm. For typical McEliece
instantiations we have tm ≈ n

4
.

We show that given more than tm entries of the Goppa point vector
(α1, . . . , αn) allows to recover the Goppa polynomial g(x) and the re-
maining entries in polynomial time. Hence, in case tm ≈ n

4
roughly a

fourth of a McEliece secret key is sufficient to recover the full key effi-
ciently.
Let us give some illustrative numerical examples. For ClassicMcEliece
with (n, t,m) = (3488, 64, 12) on input 64 · 12 + 1 = 769 Goppa points,
we recover the remaining 3488 − 769 = 2719 Goppa points in F212 and
the degree-64 Goppa polynomial g(x) ∈ F212 [x] in 60 secs.
For ClassicMcEliece with (n, t,m) = (8192, 128, 13) on input 128 ·
13 + 1 = 1665 Goppa points, we recover the remaining 8192 − 1665 =
6529 Goppa points in F213 and the degree-128 Goppa polynomial g(x) ∈
F213 [x] in 288 secs.
Our results also extend to the case of erroneous Goppa points, but in
this case our algorithms are no longer polynomial time.

1 Introduction

Partial Key Exposure Attacks. Some cryptosystems are known to allow for full
key recovery from only a fraction of the secret key. As an example, let (N, e)
be an RSA public key with corresponding secret key (d, p, q). A famous result
of Coppersmith [Cop97] shows that N can be factored efficiently if half of the
bits of p are given, thereby revealing the complete secret key. Boneh, Durfee,
and Frankel [BDF98] showed that for small e a quarter of the bits of d also
suffices to reconstruct the complete secret key. This kind of attacks are often
referred to as Partial Key Exposure attacks, and there is a long line of research
for RSA [EJMdW05,STK20,MNS21,MNS22].

However, the existence of polynomial time Partial Key Exposure attacks is
usually considered a typical RSA vulnerability. It is widely believed that for
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discrete logarithm problems gx leakage of a constant fraction of bits of x does
not degrade the problem [Gen05,PS98].

The situation seems to be similar for post-quantum cryptosystem. For most
schemes, no vulnerabilities are known in the sense that leakage of a constant
fraction of the secret key leads to full secret key recovery. In fact, some cryp-
tosystems are believed to be somewhat robust against Partial Key Exposure
attacks [DGKS21].

Among the literature on post-quantum Partial Key Exposures is an NTRU
attack by Paterson and Villanueva-Polanco [PV17], and attacks of Villanueva-
Polanco on BLISS [Vil19a] and LUOV [VP20]. The PhD thesis of Villanueva-
Polanco [Vil19b] contains a more systematic study of partial key exposure at-
tacks, including also McEliece. However, none of these attacks is polynomial time
for a known constant fraction of the secret key bits. To the best of our knowledge
the only exception is a recent result of Esser, May, Verbel, Wen [EMVW22] that
recovers BIKE keys from a constant fraction of their secret key.

McEliece Cryptanalysis. Since the McEliece cryptosystem was proposed more
than 40 years ago, it faced a lot of significant cryptanalysis efforts [BLP08,EMZ22].
However, most cryptanalysis concentrated on information set decoding algo-
rithms [Pra62,BLP11a,MMT11,BJMM12,MO15], basically trying to decoding
McEliece instances as if they where instances of random codes with Goppa code
parameters, thereby completely ignoring the Goppa code structure hidden in
McEliece public keys.

When McEliece is instantiated with other codes, e.g. generalized Reed-Solomon
codes, there have been devastating attacks breaking the scheme in polynomial
time [SS92]. However, for the originally suggested binary subfield Goppa codes
very little structural attacks are known, besides for distinguishers for high-rate
Goppa codes [FGO+11] and for very special choices of Goppa code parame-
ters [LS06], both cases being far off typical cryptographic parameter selection.

Our results. We show surprisingly elementary facts about McEliece keys that
strongly exploit the Goppa code structure. Our attacks imply a clear warning
that one should well protect McEliece secret keys, e.g. against side-channels,
since leaking even a small fraction of the key in any known positions already
allows to efficiently recover the complete secret key.

Let us be a bit more precise what we show in this work. Binary Goppa
codes C ∈ Fn

2 of length n and co-dimension tm are defined via an irreducible
Goppa polynomial g(x) ∈ F2m [x] of degree-t with tm < n, and Goppa points
(α1, . . . , αn) ∈ (F2m)n. In fact, the parity check matrix defining a Goppa code C
is a function of a Goppa polynomial and a tuple of Goppa points. Therefore, a
McEliece secret key consists of g(x) and (α1, . . . , αn), whereas a McEliece public
key Hpub is a scrambled form of a parity check matrix.

It is a folklore result that (α1, . . . , αn) allows to efficiently recover g(x). We
give a more formal proof of this folklore result in Section 3.1, since it is the
starting point for our more involved algorithms.
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1. We show in Section 3.2 that any tm+1 points αi allow to efficiently recover
g(x).

2. We show in Algorithm 3.3 that any tm+1 points αi together with g(x) allow
to recover in polynomial time all the remaining Goppa points, provided that
the submatrix formed by the columns of Hpub indexed by αi has full rank.

3. We show in Algorithm 3.6 that if an attacker knows g(x), then any t(m−2)+1
points αi allow to recover all the remaining Goppa points in polynomial time.

Our results together imply that with constant probability any tm+1 Goppa
points suffice to recover the complete McEliece secret key in polynomial time.

We support our claims by implementing our algorithms, and successfully run-
ning them on McEliece parameters proposed in [ARBC+20]. Our non-optimized
implementations are available at https://github.com/ElenaKirshanova/leaky_
goppa_in_mceliece.

The results are provided in Table 1. On input of tm + 1 Goppa points, our
algorithm Key-Recovery for all 2000 instances succeeded to recover the degree-
t Goppa polynomial g(x) in F2m [x] and all remaining n− (tm+1) Goppa points
in averaged run times between 1 and 5 mins.

(n, t,m) tm+ 1 Time

(3488, 64, 12) 769 60 sec

(4608, 96, 13) 1249 184 sec

(6960, 119, 13) 1548 258 sec

(8192, 128, 13) 1665 288 sec

Table 1: Experimental results for Classic McEliece Key-Recovery (Algo-
rithm 3.4), averaged over 2000 instances. The middle column refers to the number
of Goppa points the algorithm receives as input.

Typical McEliece instantiations have tm+1 ≈ n
4 showing that knowledge of

only a quarter of the secret key suffices to efficiently recover the whole. Some-
what interestingly, current McEliece instantiations explicitly choose small co-
dimension tm ≪ n to guard against information set decoding attacks. Our re-
sults in turn benefit from small co-dimension.

Technically, our results heavily use the structure imposed by Goppa codes,
and thus can be considered as one of the very few structural non-generic McEliece
attacks. At the heart of our algorithms lies a simple routine that constructs —
with the help of the McEliece public key— codewords with at most the Hamming
weight tm of the co-dimension.

Impact on Classic McEliece. Classic McEliece [ARBC+20, Section 2.5.2] pro-
poses to store the secret key as a so-called in-place Beneš network in which nei-

https://github.com/ElenaKirshanova/leaky_goppa_in_mceliece
https://github.com/ElenaKirshanova/leaky_goppa_in_mceliece
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ther g(x), nor (α1, . . . , αn) are stored explicitly. It is an open question whether
our attacks also apply to this setting.

2 Preliminaries

Notation. We let F2 denote the binary field and let F2m be a finite extension
of F2 of degree m > 1. We denote by γ a primitive element of F2m , i.e., field
elements of F2m are of the form

∑m−1
i=0 aiγ

i, ai ∈ F2. We further let n ≤ 2m

denote some positive integer, and let L = (α1, . . . , αn) ∈ Fn
2m be our list of

Goppa points with distinct points αi ̸= αj for i ̸= j. We denote by g(x) our
Goppa polynomial – an irreducible polynomial of degree t in F2m [x].

Let H = (h1 . . .hn) ∈ Ftm×n
2 be a matrix with n columns hi ∈ Ftm

2 . Let
I ⊂ {1, . . . , n} be an index set. Then we denote by H[I] the projection of H’s
to the columns defined by I = {i1, . . . , iℓ}, i.e.,

H[I] = (hi1 , . . . ,hiℓ).

Analogous for a code C ⊆ Fn
2 and some I ⊆ {1, . . . , n} we denote by C[I] the

projection to the coordinates in I = {i1, . . . , iℓ}, i.e.,

C[I] = {(ci1 , . . . , ciℓ) ∈ Fℓ
2 | (c1, . . . , cn) ∈ C}.

For a matrix A, we denote its transpose by At.

Definition 1 (Goppa code). Let L = (α1, . . . , αn) ∈ F2m be Goppa points
and g(x) ∈ F2m [x] be an irreducible, degree-t Goppa polynomial. Then we define
a Goppa code

C(L, g) =

{
c ∈ Fn

2 :

n∑
i=1

ci
x− αi

≡ 0 mod g(x)

}
. (1)

For a codeword c, we define its support as supp(c) := {i ∈ {1, . . . , n} | ci ̸= 0}.

Let us consider HGoppa(L, g) ∈ Ft×n
2m of the form

HGoppa(L, g) =


1 1 . . . 1
α1 α2 . . . αn

...
...

. . .
...

αt−1
1 αt−1

2 . . . αt−1
n

 ·


g−1(α1) 0 . . . 0

0 g−1(α2) . . . 0
...

...
. . .

...
0 0 . . . g−1(αn)

 .

From HGoppa(L, g)∈Ft×n
2m , we construct the parity-check matrix HGoppa(L, g)∈ Fmt×n

2

by applying the bijection V : F2m → Fm
2 , that represents F2m as an m-dimensional

vector space over F2, i.e,
∑m−1

i=0 aiγ
i 7→ [a0, . . . , am−1].

With constant probability HGoppa(L, g) has rank full rank tm. Throughout
this paper we only consider full rank parity check matrices —the standard cryp-
tographic case. For full rank HGoppa(L, g) the Goppa code C(L, g) ⊂ Fn

2 is a
binary code of co-dimension tm and therefore of dimension n− tm.
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In Classic McEliece [ARBC+20], the echelon form of HGoppa defines the public
key Hpub, while (L, g) is the secret key. Knowledge of (L, g) allows for efficient
decoding of up to t errors [Gop70,Cho17].

Definition 2 (Syndrome). For y ∈ Fn
2 , the syndrome of y is defined as

sy :=

n∑
i=1

yi
x− αi

mod g(x). (2)

From Definition 1 and Definition 2 we see that y ∈ C(L, g) iff we have syndrome
sy = 0 mod g(x).

The following lemma, see [Gop70,EOS07,BLP11b], shows that a Goppa poly-
nomial g(x) and its square g2(x) define the same code. We will use this property
in our algorithms for recovering the correct Goppa polynomial. We include a
proof for completeness.

Lemma 1. [Gop70] The binary irreducible Goppa code C(L, g) satisfies

C(L, g) = C(L, g2).

Proof. Since sc ≡ 0 mod g(x)2 we have sc ≡ 0 mod g(x). The inclusion C(L, g2) ⊂
C(L, g) follows.

To show C(L, g) ⊂ C(L, g2), for any c ∈ C(L, g) define

fc(x) :=
∏

i∈supp(c)

(x− αi) with derivative f ′
c(x) =

∑
i∈supp(c)

∏
j ̸=i

(x− αj).

From Definition 2 and the fact that c ∈ C(L, g), it follows that

sc ≡ f ′
c(x)/fc(x) mod g(x)

(multiply both the denominator and nominator of Definition 2 by fc(x)). Since
g(x) is irreducible of degree t > 1, we have gcd(fc(x), g(x)) = 1 and hence fc(x)
is invertible modulo g(x). Therefore

c ∈ C(L, g) ⇔ sc ≡ 0 mod g(x) ⇔ f ′
c(x) ≡ 0 mod g(x).

Notice that f ′
c(x) =

∑n
i=1 ifix

i−1 and thus for even i we have ifix
i−1 =

0 mod 2. Therefore, only xi-terms with even degree remain. Thus,

f ′
c(x) =

n∑
i≡0 mod 2

fi(x
i/2)2 =

(
n∑

i≡0 mod 2

fi(x
i/2)

)2

mod 2.

This implies that f ′
c(x) is a square. Hence every irreducible divisor of f ′

c(x) has
to appear with even multiplicity, implying that g2(x) divides f ′

c(x). Therefore,
c ∈ C(L, g2). ⊓⊔
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Algorithm 2.1 Test-Goppa-Polynomial
Input: f(x), Goppa points αi ∈ F2m with i ∈ I ⊂ {1, . . . , n},

index set I with |I| := ℓ, generator matrix G ∈ Fj×ℓ
2 of C(L, g)[I]

Output: 1 indicating that f(x) might be C(L, g)’s Goppa polynomial, or 0

1: for all j rows g of G do
2: Compute sg(x) =

∑
i∈I

gi
x−αi

mod f(x) from Equation (2).
3: if sg(x) ̸≡ 0 mod f(x) then
4: Return 0
5: Return 1

The following algorithm Test-Goppa-Polynomial (Algorithm 2.1) tests
whether a potential Goppa polynomial satisfies Equation (1) for all codewords
in the span of some projected Goppa code. We shall make use of this algorithm
in the next section.

Throughout the paper, we need that some projected random submatrices
have full rank. The following lemma states the probability for this event.

Lemma 2. Let m ≥ 1. Suppose we obtain u1, . . . ,uk ∈ Fℓ
2m , k ≤ ℓ drawn

independently at uniform from Fℓ
2m . Then u1, . . . ,uk are linearly independent

with probability
∏k−1

i=0 1− 2m(i−ℓ).

Proof. Let Ei, 0 ≤ i ≤ k be the event that the first i vectors u1, . . . ,ui form an
i-dimensional space. Define Pr[E0] := 1.

Let p1 = Pr[E1] and pi = Pr[Ei | Ei−1] for 2 ≤ i ≤ k. Then p1 = 1 − 1
2mℓ ,

since we only have to exclude u1 = 0ℓ ∈ Fℓ
2m . Moreover for 1 < i ≤ k, we have

pi = 1− 2m(i−1)

2mℓ
,

since ui should not lie in the (i− 1)-dimensional span ⟨u1, . . . ,ui−1⟩. We obtain

Pr[Ek] = Pr[Ek | Ek−1] · Pr[Ek−1] = . . . =

k∏
i=1

Pr[Ei | Ei−1]

=

k∏
i=1

pi =

k∏
i=1

1− 2m(i−1−ℓ) =

k−1∏
i=0

1− 2m(i−ℓ).

⊓⊔

3 Some Parts of a Secret Goppa Key Reveal Everything

Our first result states that the knowledge of all Goppa points α1, . . . , αn ∈ F2m

together with the public key Hpub ∈ Ftm×n
2 allows to recover the secret Goppa

polynomial g(x). This result seems to be folklore knowledge and is mentioned
e.g. in [OS09, Section 4.3] and in [ARBC+20]. However, we are not aware of an
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algorithm, let alone a formal proof, showing such a result. We will close this gap
for completeness, and also because recovery of the full secret key from all Goppa
points is the starting point for our more advanced results that recover the secret
key from only a small fraction of all Goppa points.

3.1 Key Recovery from ALL Goppa points

Idea of Goppa Polynomial Recovery Algorithm for All Points. Recall from Equa-
tion (1) that

C(L, g) =

{
c ∈ Fn

2 :

n∑
i=1

ci
x− αi

≡ 0 mod g(x)

}
.

Thus, for every codeword c = (c1, . . . , cn) ∈ C(L, g) we have

n∑
i=1

ci
∏

1≤j≤n,j ̸=i

(x− αj) ≡ 0 mod g(x). (3)

Observe that the left-hand side of Equation (3) is a multiple of the desired Goppa
polynomial g(x).

The public key Hpub allows to easily compute a generator matrix of the
code, from which we can sample random codewords c ∈ C(L, g). Our algorithm
Basic-Goppa (Algorithm 3.1) now computes from a random c the left-hand
side of Equation (3), factors the resulting polynomial in irreducible factors, and
in case there are several degree-t factors, chooses the correct Goppa polynomial
using the test from Algorithm 2.1.

Algorithm 3.1 Basic-Goppa
Input: public key Hpub ∈ Ftm×n

2 , Goppa points α1, . . . , αn ∈ F2m

Output: Goppa polynomial g(x)

1: Compute a generator matrix G ∈ Fn×(n−tm)
2 of C as the right kernel of Hpub.

2: Generate c ∈ C \ {0}: for some non-zero m ∈ Fn−tm
2 set c = mGt ∈ Fn

2 .
3: Compute f(x) =

∑n
i=1 ci

∏
1≤j≤n,j ̸=i(x− αj) ∈ F2m [x], see Equation (3).

4: Factor f(x) into irreducible factors over F2m .
5: for all irreducible degree-t factors ĝ(x) such that ĝ(x)2 divides f(x) do
6: if Test-Goppa-Polynomial(ĝ(x), {1, . . . , n}, Gt) = 1 then output ĝ(x).

Theorem 1. On input of Hpub ∈ Ftm×n
2 and all Goppa points α1, . . . , αn ∈ F2m ,

algorithm Basic-Goppa recovers the Goppa polynomial g(x) in Õ(n3) opera-
tions in F2m .

Proof. From the discussion before we know that the polynomial f(x) in line 3
of Basic-Goppa is a multiple of the Goppa polynomial g(x). By Lemma 1 we
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know that C(L, g) = C(L, g2), and thus not only g(x), but also g2(x) divides
f(x).

Among all potential irreducible candidates ĝ(x) of degree t whose square
divide f(x), we look for a Goppa polynomial that generates our code C(L, g).
To this end we use Test-Goppa-Polynomial that checks whether all code-
words generated by the basis Gt are in C(L, ĝ) from Equation (1), which implies
C(L, ĝ) = C(L, g). This in turn means that ĝ(x) defines the desired Goppa code.

This completes correctness of Basic-Goppa, it remains to show the run
time. Using Gaussian elimination, the generator matrix G can be computed in
time O(n3).

The polynomial f(x) ∈ F2m [x] is of degree n− 1. Thus, f(x) can be factored
in time Õ(n3 + n2 log |F|) = Õ(n3) operations in F2m [Sho05, Section 20]. ⊓⊔

3.2 Goppa Polynomial Recovery from only tm + 1 Goppa points

In this section, we show that only tm+1 Goppa points together with the public
key Hpub ∈ Ftm×n

2 suffice to recover a list of candidate polynomials that contain
the Goppa polynomial g(x). Since tm + 1 ≪ n this improves significantly over
the results of the previous Section 3.1. For typical McEliece parameters we have
tm+1 ≈ n

4 , i.e. only a quarter of the Goppa points suffice to recover the Goppa
polynomial. In the subsequent Section 3.3, we further show how to efficiently
compute the remaining Goppa points, thereby identifying the correct g(x) and
recovering the complete McEliece secret key.

Idea of Goppa Polynomial Recovery Algorithm from tm+1 Points. Recall from
Definition 1 of a Goppa code and Equation (1) that all Goppa codewords c =
(c1, . . . , cn) ∈ Fn

2 satisfy

n∑
i=1

ci
x− ai

=

n∑
i∈supp(c)

ci
x− ai

≡ 0 mod g(x),

where supp(c) = {i ∈ {1, . . . , n} | ci ̸= 0} denotes the index set of non-zero
coordinates in c, called c’s support. We conclude that∑

i∈supp(c)

ci
∏

j∈supp(c)\{i}

(x− αj) ≡ 0 mod g(x). (4)

Assume now that we know the Goppa points αj within an index set j ∈ I ⊆
{1, . . . , n}. If we succeed to construct a codeword c with supp(c) ⊆ I, then we
can efficiently compute the left-hand side of Equation (4).

Our main observation is that for any index set I with |I| > tm we can easily
construct a non-zero codeword c with supp(c) ∈ I. In a nutshell, we project
the Goppa code C(L, g) to the coordinates in I. The details are provided in
Advanced-Goppa (Algorithm 3.2).
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Algorithm 3.2 Advanced-Goppa
Input: public key Hpub ∈ Ftm×n

2 , index set I ⊂ {1, . . . , n} with ℓ := |I| > tm,
Goppa points αi ∈ F2m with i ∈ I

Output: list L of all potential Goppa polynomials ĝ(x) with g(x) ∈ L
1: Let Hpub[I] ∈ Ftm×ℓ

2 be the projection of Hpub ∈ Ftm×n
2 to the ℓ columns from I.

2: Compute G[I] ∈ Fℓ×(ℓ−rank(H̄))
2 as the right kernel of Hpub[I].

3: For some non-zero m ∈ Fℓ−rank(Hpub[I])
2 set c̄ = m(G[I])t ∈ Fℓ

2.
4: Construct c by appending to c̄ zeros in all positions {1, . . . , n} \ I.
5: Compute f(x) =

∑
i∈supp(c) ci

∏
j∈supp(c)\{i}(x− αj) ∈ F2m [x], see Equation (4).

6: Factor f(x) into irreducible factors over F2m . Set L = ∅.
7: for all irreducible degree-t factors ĝ(x) such that ĝ(x)2 divides f(x) do
8: if Test-Goppa-Polynomial(ĝ(x), I, Ḡ[I]t) = 1 then L := L ∪ ĝ(x).

Theorem 2 (Goppa polynomial). On input of Hpub ∈ Ftm×n
2 , an index set

I ⊂ {1, . . . , n} with ℓ := |I| > tm, and Goppa points αi ∈ F2m , i ∈ I, algorithm
Advanced-Goppa computes a list L with the Goppa polynomial g(x) ∈ L in
Õ(n3) operations in F2m .

Proof. The correctness and run time proof for Advanced-Goppa follows mostly
the reasoning in the proof of Theorem 1. In addition, we have to show that
Advanced-Goppa builds a non-zero codeword c ∈ C(L, g) with supp(c′) ∈ I.

Since ℓ > tm we have ℓ − rank(H̄) ≥ ℓ − tm > 0. Thus, there exists some
non-zero m ∈ Fℓ−rank(Hpub[I])

2 , and in turn some non-zero c̄ ∈ Fℓ
2. Since c is

constructed from c̄ by appending zeros in positions outside I, we have supp(c) ⊆
I. Since c̄ is from the right kernel of Hpub[I] we have Hpub[I]c̄ = 0tm, and since
we append only zeros, also Hpubc = 0tm. This shows that c ∈ C(L, g) is indeed
a codeword with supp(c) ∈ I. ⊓⊔

Remark 1 (less Goppa points). In the proof of Theorem 2 we construct a poly-
nomial c̄ with Hamming weight at most ℓ, and expected Hamming weight only
ℓ
2 . Assume that we are given an oracle O(i) that returns αi. Then we could
ask O(·) on c̄’s support, i.e., on expectation only tm+1

2 Goppa points would be
sufficient.

Experiments. In Table 2 we show the results of running the Advanced-Goppa
algorithm on Classic McEliece parameter sets, implemented in SageMath (ver-
sion 9.4). For each parameter set we generated 20 different McEliece public keys,
and for each key, we ran Advanced-Goppa on 100 different index sets I.

Observe from Table 2 (columns 3 and 5) that Advanced-Goppa already
for the minimal ℓ = tm + 1 usually only outputs the desired g(x). When we
increased to ℓ = tm+ 2 we never found a polynomial ĝ(x) ̸= g(x).

Larger ℓ helps Test-Goppa-Polynomial (Algorithm 2.1) to exclude faulty
ĝ. For ℓ = tm + 1 we have rank((G[I])t) = 1 with high probability, and hence
there is only a single non-zero c in the code generated by (G[I])t. In this case
Test-Goppa-Polynomial cannot exclude any false positive ĝ. However, for
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(n, t,m) ℓ = tm+ 1 |L| = 1 ℓ = tm+ 2 |L| = 1 Av. time

(3488, 64, 12) 769 97% 770 100% 18 sec

(4608, 96, 13) 1249 99% 1250 100% 54 sec

(6960, 119, 13) 1548 99% 1549 100% 91 sec

(8192, 128, 13) 1665 99% 1666 100% 105 sec

Table 2: Experimental results for Advanced-Goppa(Algorithm 3.2).

ℓ = tm+2 we might have rank( ¯(G)) = 2, which lets Test-Goppa-Polynomial
exclude faulty ĝ’s.

Our run time (last column) is averaged over all 2000 runs. Our single-threaded
experiments were conducted on Intel Xeon(R) E-2146G CPU 3.50GHz×12, 64GiB,
Ubuntu 20.04. We see that our non-optimized implementation finds the Goppa
polynomial g(x) for all parameter sets in a matter of seconds.

3.3 Reconstruction of the Remaining Goppa Points

In Section 3.2, we showed that ℓ > tm Goppa points are sufficient to efficiently
reconstruct the Goppa polynomial g(x) (or a list L containing g(x)). In this
section, we show that g(x) together with ℓ > tm Goppa points are sufficient to
recover all n Goppa points from Hpub. This in turn implies that ℓ > tm Goppa
points are sufficient to efficiently recover the complete McEliece secret key.

Idea of Goppa Points Recovery Algorithm from g(x) and tm+1 Points. Assume
that we know αi for an index set I of size ℓ := |I| > tm. Our goal is to compute
αr for some r /∈ I.

Our idea is to construct a codeword c ∈ C(L, g) with supp(c) \ I = {r}, i.e.,
c has all but a single 1-coordinate cr = 1 inside I.

From the definition of a Goppa code in Equation (1) we obtain∑
i∈I

ci
x− αi

≡ 1

x− αr
mod g(x). (5)

Knowing the left-hand side and g(x) enables us to compute αr.
The high-level idea of constructing c ∈ C(L, g) with supp(c) \ I = {r} is to

express the r-th column of Hpub as an F2-sum of the ℓ columns in Hpub[I]. This
amounts to solving a system of linear equations. The details are given in Goppa
points (Algorithm 3.3) and the analysis in Theorem 3

Theorem 3 (Goppa points). On input Hpub ∈ Ftm×n
2 , the Goppa polynomial

g(x), an index set I ⊂ {1, . . . , n} with ℓ := |I| > tm such that rank(Hpub[I]) =
tm, and Goppa points αi ∈ F2m , i ∈ I, algorithm Goppa-Points outputs in
time O

(
n4
)

all Goppa points α1, . . . , αn.
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Algorithm 3.3 Goppa-Points

Input: public key Hpub ∈ Ftm×n
2 , Goppa polynomial g(x),

index set I with ℓ := |I| > tm and rank(Hpub[I]) = tm,

Goppa points αi ∈ F2m with i ∈ I ⊂ {1, . . . , n}

Output: all Goppa points α1, . . . , αn ∈ F2m or FAIL

1: while I ≠ {1, . . . , n} do
2: Pick r ∈ {1, . . . , n} \ I.
3: Find c ∈ F|I|

2 that solves the linear equation system Hpub[J ]c = Hpub[{r}].
4: Compute f(x) =

(∑
i∈I

ci
x−αi

)−1

mod g(x) using Equation (5).
5: if f(x) is of the form x− αr then output αr,
6: else output FAIL.
7: Set I ← I ∪ {r}.

Proof. Let us first address the correctness of Goppa-Points. Since we require
rank(Hpub[I]) = tm the linear equation system Hpub[J ]c = Hpub[{r}] in line 3
is always solvable.

Thus, Goppa-Points constructs a solution c ∈ F|I|
2 . Define c′ by appending

to c a 1-coordinate in the r position, and 0-coordinates in all positions from
{1, . . . , n} \ {I ∪{r}}. By construction Hpubc′ = 0tm, and therefore c′ ∈ C(L, g)
with supp(c′) ∈ I ∪ {r}. This allows us to solve for αr using Equation (5) in
line 4.

By Equation (5) we always have f(x) = x−αr, and thus we output another
Goppa point in line 5. The purpose of the else-Statement in line 6 is to identify
incorrect inputs, either incorrect ĝ(x) or faulty Goppa points α̃i. We come back
to this issue in Sections 3.4 and 4.

Goppa-Points’s runtime is dominated by running Gaussian elimination in
line 3 for computing c. Gaussian elimination runs in O(n3) steps in each of the
n− ℓ iterations, resulting in total run time O(n4). ⊓⊔

(n, t,m) ℓ = tm+ 1 time

(3488, 64, 12) 769 42 sec

(4608, 96, 13) 1249 130 sec

(6960, 119, 13) 1548 167 sec

(8192, 128, 13) 1665 183 sec

Table 3: Experimental results for Goppa-Points (Algorithm 3.3).
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Experiments. Table 3 shows how Algorithm 3.3 performs in practice.
Analogous to the experiments in Section 3.2, we generated 20 different McEliece

public key, and for each of them we ran 100 experiments with different index
sets I. We averaged the run time over all 2000 experiments.

Again, we see that recovering all remaining n − ℓ Goppa points is with our
(non-optimized) implementation realized in a matter of seconds.

Remark 2 (Non-full rank). The condition rank(Hpub[I]) = tm in Goppa-Points
is required to solve the equation system in line 3. However, we would like to stress
that Goppa-Points allows to successfully recover some Goppa points even in
the case rank(Hpub[I]) < tm. In this case, the equation system in line 3 is solv-
able by the famous Rouché-Capelli theorem iff

rank(Hpub[I]) = rank(Hpub[I ∪ {r}]). (6)

Thus, we can modify Line 2 such that we choose only r satisfying Equation (6).
All corresponding αr can still be computed by Goppa-Points. E.g. for rank(Hpub[I]) =
tm−1 we expect that Goppa-Points still computes n−ℓ

2 , i.e., half of all remain-
ing Goppa points.

Remark 3 (Probability of full rank). Assume that we obtain an index set I of size
ℓ ≥ tm+ 1 chosen uniformly at random from {1, . . . , n}. Under the assumption
that Hpub behaves like a random matrix over F2, Lemma 2 (special case of it
with m = 1) shows that we are in the full-rank case rank(Hpub[I]) = tm with
probability at least

tm−1∏
i=0

1− 2i−ℓ ≥
tm−1∏
i=0

1− 2i−tm−1 =

tm+1∏
i=2

1− 2−i ≥ lim
n→∞

(
n∏

i=2

1− 2−i

)
≈ 0.58.

3.4 Full Key Recovery from tm + 1 Goppa Points

Combining Theorem 2 and Theorem 3, we obtain a full key recovery algo-
rithm from at least tm + 1 Goppa points. The algoritm Key-Recovery that
successively runs Advanced-Goppa and Goppa-Points is described in Algo-
rithm 3.4.

Theorem 4 (Key Recovery). On input of Hpub ∈ Ftm×n
2 , an index set I ⊂

{1, . . . , n} with ℓ := |I| > tm such that rank(Hpub[I]) = tm, and Goppa points
αi ∈ F2m , i ∈ I, algorithm Key-Recovery outputs in time O

(
n5

t

)
= O(n5)

the Goppa polynomial g(x) and all Goppa points α1, . . . , αn.

Proof. Let us first show correctness. Key-Recovery calls Advanced-Goppa
Algorithm 3.2 and recovers a list L that contains the correct Goppa polynomial
g(x). Then for every candidate ĝ(x) in line 3 Key-Recovery tries to recover all
remaining Goppa points. Usually, Goppa-Points immediately fails on incorrect
ĝ(x).
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Algorithm 3.4 Key-Recovery

Input: public key Hpub ∈ Ftm×n
2 ,

index set I with ℓ := |I| > tm and rank(Hpub[I]) = tm,

Goppa points αi ∈ F2m with i ∈ I ⊂ {1, . . . , n}

Output: Goppa polynomial g(x), all Goppa points α1, . . . , αn ∈ F2m

1: Run L ←Advanced-Goppa(Hpub, I, {αi}i∈I)
2: i := 0
3: for every ĝ(x) ∈ L do
4: if Goppa-Points(Hpub, ĝ(x), I, {αi}i∈I) ̸= FAIL then
5: i← i+ 1
6: ki ← (ĝ(x), α1, . . . , αn)

7: if i = 1 then output k1 = (ĝ(x), α1, . . . , αn).
8: else check k1, . . . , ki via a transformation to public key and comparison with Hpub.

Notice that the correct polynomial g(x) is always contained in L, thus by
Theorems 2 and 3 the loop in line 3 recovers at least one key candidate ki. Thus,
we either output the correct key in line 7, or find among more than one candidate
ki the correct key in line 8. Our check in line 8 uses McEliece’s deterministic
transformation from secret to public key, and thereby assures that we output
the correct key.

Let us consider run time. Advanced-Goppa factors in Equation (4) poly-
nomials of degree at most ℓ ≤ n. A candidate polynomial ĝ(x) from L must
have degree t, and appear as a square in the factorization. Thus, |L| = O(n/t).
Key-Recovery’s run time is dominated by the loop in line 3, running Goppa-
Points in time O(n4) for |L| iterations. The run time follows. ⊓⊔

Experiments. Run times of our Key-Recovery (Algorithm 3.4) experiments
are provided in Table 1. Since almost always |L| = 1, i.e., Advanced-Goppa
finds only the correct Goppa polynomial, Key-Recovery’s runtime is mainly
the sum of the runtimes of Advanced-Goppa and of Goppa-Points (compare
with Tables 2 and 3).

We would like to stress that we never found an example of more than a single
key k1, thus we never had to apply the key check in line 8 of Key-Recovery.

3.5 Reconstruction from Goppa Polynomial and t(m− 2)+ 1 Points

In this section we assume that an attacker knows the Goppa polynomial g(x),
and study how this affects the number of Goppa points that are required to
efficiently recover the full secret key. Theorem 4 shows that without g(x) at
least tm+ 1 Goppa points are sufficient. With knowledge of g(x) we reduce the
number of required Goppa points on expectation to t(m− 2)+1, thereby saving
2t points. As an example, for the smallest Classic McEliece parameter we require



14 Elena Kirshanova1,2 and Alexander May3

on expectation only 641 Goppa points with g(x), instead of 769 points without
g(x).

Our result is achieved by a two-step approach, assuming that we know g(x)
and t(m−2)+1 points in positions from I ⊂ {1, . . . , n}. In the first step, we derive
an algorithm that uses the decoding capabilities of Goppa codes and recovers a
set A1 ⊂ F2m of up to t additional Goppa points in positions I1 outside I. It
is important to stress that we compute a set A1 of points in positions I1, but
not the exact position of each Goppa point in I1. Guessing the position would
require |I1|! steps, which is impractical for McEliece parameters.

Therefore in a second step, we run our algorithm twice such that we obtain
two index sets I1, I2 that intersect only in a single position i∗ = I1 ∩ I2. As a
consequence, the corresponding set A1, A2 also intersect in a single Goppa point
αi∗ in position i∗.

After recovering 2t additional points, we have collected tm+1 points and may
use the more efficient algorithm Goppa-Points from Section 3.3 for recovery of
all remaining points.

Step 1: Idea of Set Computation. Assume we known g(x) and Goppa points in
some index set I, |I| ≥ t(m − 2) + 1. Further, assume that we constructed a
Goppa codeword c such that all but at most t of its 1-coordinates lie inside I.

Let us denote by I = {1, . . . , n} \ I the complement of I, and by

Ic := I ∩ supp(c), respectively Ic := I ∩ supp(c),

the 1-positions of c inside, respectively outside, I. Since at most t coordinates
of c lie outside I, we have |Ic| ≤ t.

Then by the definition of a Goppa code and by Lemma 1,∑
i∈I

ci
x− αi

≡
∑
i∈I

ci
x− αi

mod g2(x),

or equivalently, ∑
i∈Ic

1

x− αi
≡
∑
i∈Ic

1

x− αi
mod g2(x). (7)

Let us denote the known left hand side by h(x) =
∑

i∈I
ci

x−αi
. Furthermore,

we define the unknown polynomial

p(x) :=
∏
i∈Ic

(x− αi) of deg(p(x)) = |I ′
c| ≤ t. (8)

Multiplication by p(x) of both sides of Equation (7) gives

p(x) · h(x) =
∑
i∈Ic

p(x)

x− αi
=
∑
i∈Ic

(x− αi)
′ · p(x)

x− αi
= p′(x) mod g2(x). (9)

Recall that deg(g2) = 2t. Thus, by using coefficient comparison in Eq. (9) we
obtain 2t linear equations in the deg(p) + deg(p′) ≤ 2t unknowns – coefficients
of p(x) and p′(x) (here we utilize the fact that both p(x) and p′(x) are monic).
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We recover all coefficients of p(x) via linear algebra. We then factor p(x) over
F2m [x] into its linear factors (x− αi) from Equation (8), which gives us the set
of all Goppa points {αi}i∈Ic

, without revealing their concrete positions in Ic.

The above procedure is summarized in algorithm Recover-Point-Set (Al-
gorithm 3.5), and is analyzed in the following lemma.

Algorithm 3.5 Recover-Point-Set

Input: public key Hpub ∈ Ftm×n
2 , Goppa polynomial g(x),

index set I,

Goppa points αi ∈ F2m with i ∈ I ⊂ {1, . . . , n},

c ∈ C(L, g) s.t. k := |Ic| ≤ t

Output: AIc
= {αi}i∈Ic

, or FAIL

1: Derive from Eq. (9) M ∈ F2t×2k−1
2m and b ∈ F2t

2m s.t. My = b over F2m .
2: if (My = b has a unique solution y = (p0, . . . , pk−1, p

′
0, . . . , p

′
k−2) ∈ F2k−1

2m ) then
3: p(x)← xk +

∑k−1
i=0 pix

i ∈ F2m [x]

4: Factor p(x) over F2m [x] into linear factors p(x) =
∏k

i=1(x− α′
i).

5: Return AIc
← {α′

1, . . . , α
′
k}.

6: else output FAIL.

Lemma 3. On input Hpub ∈ Ftm×n
2 , the Goppa polynomial g(x), an index set

I ⊂ {1, . . . , n}, Goppa points αi ∈ F2m , i ∈ I, and a codeword c ∈ C(L, g) with
Ic := I ∩ supp(c), |Ic| ≤ t, Algorithm Recover-Point-Set returns {αi}i∈Ic

in O(t3) operations in F2m . Under the assumption that M is a random matrix
over F2m Recover-Point-Set succeeds with probability at least

∏2t
i=1 1−2−mi.

Proof. By the discussion above, the system of 2t linear equations derived in
line 1 of Recover-Point-Set contains the coefficient vector p, from which we
derive p(x) and the set of all αi ∈ Ic. Thus, if there is a unique solution, then
we recover the desired Goppa points.

Let us analyse the success probability of the unique solution event. Assume
that there exists different solutions y ̸= y′. Then

M(y − y′) = 0 with y − y′ ̸= 0,

implying that M has a non-trivial right kernel. Thus, a unique solution is guar-
anteed when the 2k−1 ≤ 2t columns of M are linearly independent. By Lemma 2
this happens with probability at most

2k−1∏
i=0

1− 2m(i−2t) ≥
2t∏
i=0

1− 2m(i−2t) =

2t∏
i=1

1− 2−mi.
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Solving a linear equation system My = b with M ∈ F2t×2k−1
2m , k ≤ t over

F2m requires O(t3) operations in F2m . This complexity dominates the time to
factor p(x), and therefore also dominates the overall run time. ⊓⊔

Remark 4. Let p(m) =
∏2t

i=1 1 − 2−mi denote the lower bound for the success
probability of Recover-Point-Set from Lemma 3. For Classic McEliece pa-
rameter sets we have m ∈ {12, 13}, which in this case gives us

p(m) ≥
2t∏
i=1

1− 2−mi ≥
2t∏
i=1

1− 2−12i ≥
∞∏
i=1

1− 2−12i ≈ 1− 2−24.

Thus, Recover-Point-Set will almost surely succeed.

Step 2: Idea of Recovering a Goppa Point by Set Intersection. Our goal is to
construct two codewords c1, c2 such that

|Ic1
|, |Ic2

| ≤ t and |Ic1
∩ Ic2

| = 1.

Let i∗ = Ic1 ∩ Ic2 ∈ {1, . . . , n} be the known single 1-position in which both
codewords agree outside I. Then Recover-Point-Set on input c1 and c2
computes two sets Ac1

, Ac2
such that αi∗ = Ac1

∩ Ac2
is a newly constructed

Goppa point. We repeat this process until we have in total tm+1 Goppa points.
In order to construct c1 we proceed as follows. We project Hpub to the

columns in I and additionally 2t columns in I. We compute a vector c′1 in
the right kernel of the projected matrix. We expect that c′1 has t 1-coordinates
in I. If it has none or more than t 1-coordinates in I, we repeat the kernel
computation with a different column choice from I. Otherwise we expand c′1 to
a codeword c1 that satisfies |Ic1

| ≤ t.
For constructing c2 we proceed as follows. We pick a random i∗ ∈ Ic1

, and
project Hpub to the columns in I and additionally 2t − 1 columns in (I ∪ Ic1

).
Then we find a linear combination c′2 of these columns that sums to the target
column Hpub[i∗]. Again, we expect that c′2 has t 1-coordinates in I. If it has
more, we repeat the kernel computation with a different column choice from
(I ∪ Ic1

). Otherwise we expand c′2 to a codeword c2 that satisfies |Ic2 | ≤ t and
|Ic1

∩ Ic2
| = 1.

The resulting procedure is given in Algorithm Set-Intersection (Algo-
rithm 3.6), and is analysed in the following theorem.

Theorem 5 (Goppa polynomial &Goppa points). On input Hpub ∈ Ftm×n
2 ,

the Goppa polynomial g(x), an index set I ⊂ {1, . . . , n} with ℓ := |I| ≥ t(m −
2)+1, and Goppa points αi ∈ F2m , i ∈ I, algorithm Set-Intersection outputs
additional tm+1− ℓ Goppa points αi ̸∈ I in expected O

(
n4
)

operations in F2m .
The run time can only be proven under the assumption that Hpub behaves

like a random matrix over F2.

Proof. The correctness of Set-Intersection follows from the discussion above.
It remains to show its run time.
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Algorithm 3.6 Set-Intersection

Input: public key Hpub ∈ Ftm×n
2 , Goppa polynomial g(x),

index set I with ℓ := |I| > t(m− 2)

Goppa points αi ∈ F2m with i ∈ I ⊂ {1, . . . , n}

Output: tm+ 1− ℓ Goppa points αi with i ̸∈ I
GENERATE c1:

1: Pick I′ ∈ I with |I′| = 2t.
2: Compute c′1 as the right kernel of Hpub[I ∪ I′].
3: Construct c1 ∈ Fn

2 by appending to c′1 zeros in all positions not in I ∪ I′.
4: if (|Ic1 | = 0) or (|Ic1 | > t) then GOTO Step 1.

GENERATE c2:
5: Pick random i⋆ ∈ Ic1 .
6: Pick I′ ∈ I \ Ic1 with |I′| = 2t− 1.
7: Compute c′2 ∈ Fℓ+2t

2 s.t. Hpub[I ∪ I′]c′2 = Hpub[i⋆].
8: Construct c2 ∈ Fn

2 by appending to c′2 zeros in all positions not in I ∪ I′, and
setting a one in position i∗.

9: if |Ic2 | > t then: GOTO Step 5.

FIND NEW α:
10: Ac1 ← Recover-Alphas-From-Codeword(c1). If it fails, GOTO Step 1.
11: Ac2 ← Recover-Alphas-From-Codeword(c2). If it fails, GOTO Step 5.
12: αi⋆ ← Ac1 ∪Ac2

13: Repeat Steps1–12 until tm+ 1− ℓ new α′s are found.
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Under the assumption that Hpub behaves like a random matrix, the cardi-
nalities |Ic1

|, |Ic2
| are both binomially distributed with probability 1

2 , and ex-
pectation E(|Ic1

|) = E(|Ic2
|) = t. Thus, on expectation we have to repeat both

loops in lines 1–4 and lines 5–9 less than twice. This gives us expected complex-
ity O((tm)3) = O(n3) for lines 1–9, and by Lemma 3 expected O(t3) = O(n3)
operations in F2m for lines 10–12.

Therefore, we have overall expected O(n3) operations in F2m per iteration.
Since we perform O(t) iterations, Set-Intersection has in total expected com-
plexity of O(n4) operations in F2m .

⊓⊔

We implemented Algorithm 3.6. The concrete runtimes are given in Table 4.
In practice, the algorithm always terminates, e.g. all the expectations on weights
and ranks have been met in our experiments. Most of the time the algorithm
spends in Recover-Alphas-From-Codeword. This is due to the fact this
algorithm solves a linear system over F2m (not over F2 as in all other steps).

(n, t,m) ℓ = t(m− 2) + 1 time

(3488, 64, 12) 641 329 sec

(4608, 96, 13) 1057 1261 sec

(6960, 119, 13) 1310 2526 sec

(8192, 128, 13) 1409 3232 sec

Table 4: Reconstruction of 2t unknown Goppa points from Goppa Polynomial
and t(m−2)+1 Points. Runtimes are averaged over 20 runs per each parameter
set.

4 Correcting Faulty Goppa Points

Error Model. In practice, one might be able (e.g. via some side-channel) to obtain
erroneous Goppa points. Assume the following simple error model. An attacker
obtains erroneous Goppa points α̃1, . . . α̃n, where each α̃i ∈ F2m is correct with
probability 1− p, and faulty with probability p for some constant 0 < p < 1. In
case α̃i is faulty, we assume that α̃i is uniformly distributed (among all incorrect
values). More precisely, for all 1 ≤ i ≤ n we have

Pr[α̃i = αi] = 1− p and Pr[α̃i = y | α̃i ̸= αi] =
1

2m − 1
for all y ∈ F2m \ {αi}.

We now show that our algorithm Key-Recovery nicely extends to the error
scenario, but we have to sacrifice polynomial run time.
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Idea of Faulty Goppa Point Correction. Recall that Key-Recovery from Sec-
tion 3.4 requires only tm + 1 ≪ n correct Goppa points to recover the secret
key. The basic idea of our correction algorithm is to guess a size-(tm+1) subset
of α̃1, . . . α̃n that contains only correct Goppa points. Thus, our algorithm is
reminiscent of Prange’s information set decoding [Pra62].

To this end we have to be cautious, since the correctness proof of Key-
Recovery only guarantees that Key-Recovery outputs the correct key when
run on error-free αi’s. Therefore, we modify Key-Recovery to Faulty-Key-
Recovery that also handles erroneous inputs.

Faulty-Key-Recovery (see Algorithm 4.1) provides the following addi-
tional checks. Line 2 aborts, when Advanced-Goppa does not find a candidate
for the Goppa polynomial. This usually happens for faulty αi, since Equation (4)
only holds for correct Goppa points. Moreover, line 5 aborts, when Goppa-
Points fails, because Equation (5) does not hold for incorrect Goppa points.
We build in additional checks in lines 8 and 9 in order to prove correctness of
our Goppa point correction algorithm. However, we experimentally observe that
lines 2 and 5 seem to capture already all faults in practice.

Algorithm 4.1 Fault-Key-Recovery

Input: public key Hpub ∈ Ftm×n
2 ,

index set I with ℓ := |I| > tm and rank(Hpub[I]) = tm,

Goppa points αi ∈ F2m with i ∈ I ⊂ {1, . . . , n}

Output: Goppa polynomial g(x), all Goppa points α1, . . . , αn ∈ F2m or FAIL

1: Run L ←Advanced-Goppa(Hpub, I, {αi}i∈I)
2: if |L| = 0 then output FAIL.
3: i := 0
4: for every ĝ(x) ∈ L do
5: if Goppa-Points(Hpub, ĝ(x), I, {αi}i∈I) ̸= FAIL then
6: i← i+ 1
7: ki ← (ĝ(x), α1, . . . , αn)

8: if i = 0 then output FAIL.
9: else check k1, . . . , ki via a transformation to public key and comparison with Hpub.

If none of k1, . . . , ki is the correct key, output FAIL.

Our algorithm Faulty-Goppa (Algorithm 4.2) now calls Fault-Key-Recovery
to check for error-freeness of the chosen size-(tm + 1) subset of Goppa points,
and recovers the key for an error-free subset.

Theorem 6. On input Hpub ∈ Ftm×n
2 , and erroneous Goppa points α̃1, . . . α̃n,

where pn αi are faulty and n(1−p) ≥ tm+1, Faulty-Goppa outputs the Goppa
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Algorithm 4.2 Faulty-Goppa

Input: public key Hpub ∈ Ftm×n
2 ,

erroneous Goppa points α̃1, . . . , α̃n ∈ F2m

Output: Goppa polynomial g(x), Goppa points α1, . . . , αn

1: repeat
2: Choose uniformly I ⊂ {1, . . . , n}, |I| = tm+ 1 s.t. rank(Hpub[I]) = tm.
3: until Faulty-Key-Recovery(Hpub, I, {αi}i∈I) ̸= FAIL.

polynomial g(x) and the Goppa points α1, . . . , αn in expected time

T = O

(
n5 ·

(
n

tm+1

)(
n(1−p)
tm+1

)) .

The run time can only be proven under the assumption that Hpub behaves like a
random matrix over F2.

Proof. Let us first show correctness. Theorem 4 ensures that Key-Recovery
and therefore also Faulty-Key-Recovery outputs the correct key when run
on an error-free Goppa point subset {αi}i∈I , since the additional checks in lines
2, 5, 8 and 9 never apply. Moreover, these checks guarantee that Faulty-Key-
Recovery either outputs FAIL, or the correct secret key.

Let us now prove Faulty-Goppa’s expected run time. The input contains
n(1− p) correct Goppa points, and the probability that we choose an index set
I of size tm+ 1 with only error-free Goppa points is

p0 := Pr[{αi}i∈I error-free] =

(
n(1−p)
tm+1

)(
n

tm+1

) .

By Lemma 2, we have rank(Hpub[I]) = tm with probability at least 1
2 , if Hpub

behaves like a random matrix. Thus, we have to run an expected number of
O(p−1

0 ) iterations, until we discover an error-free Goppa point subset. Since in
each iteration we run Faulty-Key-Recovery, and Faulty-Key-Recovery
has the same asymptotic run time O(n5) as Key-Recovery, the run time fol-
lows. ⊓⊔

Run Time Discussion. Assume that tm+ 1 = cn for some constant c, typically
c = 1

4 for McEliece instantiations. Using Stirling’s formula and the binary en-
tropy function H(·), one can express Faulty-Goppa’s run time T in Theorem 6
(neglecting polynomial factors) as the exponential run time

2(H(c)−H( c
1−p )(1−p))n.
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Experiments. In our experiments, we wanted to understand which checks of
Faulty-Key-Recovery lead to FAIL. To this end, for each Classic McEliece
parameter set we started with error-free Goppa points α1, . . . , αn, chose a size-
(tm+1) subset thereof, and injected a single faulty α̃i in this subset. We consider
this the hardest case for letting Faulty-Key-Recovery fail. We ran Faulty-
Key-Recovery on 100 of these injected faulty instances. We then repeated the
experiments with two injected faults.

Our results are presented in Table 5. We provide the percentages of FAIL
events caused by either line 2 or line 5 of Faulty-Key-Recovery. All faulty
keys were detected by these two checks, the additional checks of lines 8 and 9
were never applied.

From Table 5 we observe that if we run Faulty-Key-Recovery with a
single injected fault, it still recovers the correct Goppa polynomial g(x) with
probability roughly 1/2. This happens, since a codeword c constructed inside
Advanced-Goppa may have a 0-coordinate on the position of the faulty α̃i.
This probability drops to at most 29%, when the input set has two faulty Goppa
points, since now Advanced-Goppa needs a c with 0-coordinates on these two
faulty positions. However, our subroutine Goppa-Points inside Faulty-Key-
Recovery eventually detected all faulty inputs via Eq. (5) in our experiments.

(n, t,m)
1 fault in tm+ 1 points 2 faults in tm+ 1 points

line 2 line 5 line 2 line 5

(3488, 64, 12) 46% 54% 71% 29%

(4608, 96, 13) 50% 50% 80% 20%

(6960, 119, 13) 51% 49% 83% 17%

(8192, 128, 13) 52% 48% 84% 16%

Table 5: Occurrences of two FAIL events in Faulty-Key-Recovery, when
either 1 (left part), or 2 (right part) faulty α’s are injected in the index set.
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