
MOSFHET: Optimized Software for FHE over the Torus

Antonio Guimarães1*, Edson Borin2 and Diego F. Aranha3

1IMDEA Software Institute, Madrid, Spain.
2Institute of Computing, University of Campinas, Campinas, São Paulo, Brazil.

3Department of Computer Science, Aarhus University, Aarhus, Denmark.

*Corresponding author(s). E-mail(s): antonio.guimaraes@imdea.org;
Contributing authors: edson@ic.unicamp.br; dfaranha@cs.au.dk;

Abstract

Homomorphic encryption is one of the most secure solutions for processing sensitive information in
untrusted environments, and there have been many recent advances toward its efficient implementation
for the evaluation of approximated arithmetic as well as linear and arbitrary functions. The TFHE
scheme [Chillotti et al., 2016] is the current state-of-the-art for the evaluation of arbitrary functions,
and, in this work, we focus on improving its performance. We divide this paper into two parts. First,
we review and implement the main techniques to improve performance or error behavior in TFHE
proposed so far. Then, we introduce novel improvements to several of them and new approaches to
implement some commonly used procedures. We also show which proposals can be suitably combined
to achieve better results. We provide a single library containing all the reviewed techniques as well
as our original contributions. Among the techniques we introduce, we highlight a new method for
multi-value bootstrapping based on blind rotation unfolding and a Faster-than-memory seed expansion,
which introduces speedups of up to 2 times to basic arithmetic operations.

Keywords: Homomorphic Encryption, TFHE, Functional Bootstrap, Programmable Bootstrap, Efficient
Implementation

1 Introduction

The idea of performing computation over
encrypted data was a long-chased goal in the
cryptography community. The concept was first
defined in 1978 by Rivest et al. [1], but for decades
proposed solutions only achieved partial homo-
morphism. In 2009, Gentry [2] presented the first
Fully Homomorphic Encryption (FHE) scheme,
based on ideal lattices, enabling arbitrary com-
putation through the evaluation of logic gates.
Efficiency was a problem from the start, but Gen-
try’s work also established a blueprint later used
to build more efficient FHE schemes based on the
Learning With Errors (LWE) problem [3] and its

variants [4, 5]. Many of these follow-up works pre-
sented significant improvements efficiency-wise,
but the literature generally evolved around the
needs of specific use cases, leaving behind, in terms
of performance, capabilities such as the evaluation
of arbitrary (nonlinear) functions.

Currently, one of the most efficient solutions
for homomorphic evaluation is the CKKS cryp-
tosystem [6], which was proposed aiming specif-
ically at the homomorphic evaluation of neural
network algorithms, a major use case for FHE.

1

These algorithms require a high throughput of lin-
ear arithmetic operations and are capable of cor-
rectly operating even with relatively large impre-
cisions [7]. Considering that, CKKS offers a very
efficient homomorphic evaluation of approximate
arithmetic in a SIMD-like1 manner. Its efficiency,
however, restricts functionality, as the scheme
needs to rely on arithmetic approximations for
nonlinear functions. The cost of evaluating such
approximations might grow exponentially with
the desired precision [8], and trusting the arith-
metic robustness of the overlying application is not
always possible. In this way, the scheme requires
extensive modifications for some applications and
is unfit for some of them.

Schemes implementing exact computing, on
the other hand, usually represent applications as
compositions of very basic logic components, such
as binary logic gates, finite automata, and lookup
tables. Translating an application to such com-
ponents is a straightforward process and works
broadly. However, large applications require a
great number of logic components, and evaluating
each may take significant amounts of time. The
TFHE cryptosystem [9] is the current state-of-the-
art for arbitrary exact (non-approximate) homo-
morphic evaluation. It was originally designed to
evaluate binary logic gates, but newer versions also
enable evaluating multi-bit gates [10] and lookup
tables [11].

1.1 Contributions

There were several recent proposals for improv-
ing TFHE, but most of them are built upon
various different implementations of the scheme,
making it hard to address and evaluate their
impact on the cryptosystem. Many also remained
purely theoretical contributions, with no practi-
cal implementation until now. Considering this,
our first goal in this work is to unify all these
proposals in a single highly-optimized library. In
this way, we can not only measure their impact
considering the use of modern implementation
techniques and algorithms but also evaluate how
combinations of optimizations affect performance.
Our library, MOSFHET (Optimized Software for
FHE over the Torus) [12], is fully portable and
self-contained with optional optimizations for the

1Single Instruction Multiple Data

Intel AVX2, FMA, and AVX-512 Instruction Set
Extensions (ISEs). We designed it specifically for
enabling the efficient prototyping of improvements
to TFHE. In this first part, we implement the
core functionalities of TFHE and the following
techniques.

• The Functional [7] or Programmable [11] Boot-
strap and its improved version [13];

• The Circuit Bootstrap [14] and its optimiza-
tions [13];

• The multi-value bootstrap [13, 15] and its opti-
mizations [16];

• The Key Switching and its optimizations [17];
• The BlindRot Unfolding [18] and its optimiza-
tions [19];

• The Full RGSW bootstrap [20];
• Three different approaches [13, 21, 22] for eval-
uating the Full-Domain Functional Bootstrap
(FDFB);

• Public Key compression using randomness seed,
or seeded (R)LWE ;

• BFV-like multiplication [13]; and
• Bootstrap using Galois Automorphism [23].

It is important to note that our focus is
to provide optimized implementations of these
techniques, but comparing competing techniques
would also require careful consideration of the
choice of cryptosystem parameters. While our
library provides all the necessary implementations
for enabling such analyses, conducting them is
beyond the scope of this project, as parameter
optimization is generally an intricate and often
application-dependent task [24]. Nonetheless, we
benchmark all techniques with 4 different param-
eter sets from the literature taking note of which
techniques would require larger parameter sets.

From this baseline implementation, we found
several opportunities for improvements in core
procedures as well as for combining existing tech-
niques to yield better performance or error growth
behavior. We also developed new methods to
implement some commonly used techniques. As a
result, we present the following contributions:

• We introduce faster-than-memory seed expan-
sion (FTM-SE): ‘Seeded RLWE’ is a sample
and public key compression technique so far
used for memory or storage optimizations. In

2

this work, we show how to use it to accel-
erate the execution time of basic arithmetic
procedures by up to 2 times.

• We also provide several other contributions to
the basic arithmetic procedures (e.g., FFTs and
complex multiplication):

– We analyze and characterize the impact of
memory accesses (intensified by larger keys)
on the performance of individual operations,
with and without FTM-SE.

– We show how the relation between key
size and arithmetic performance represents
a major practical challenge for techniques
that should, in theory, greatly improve per-
formance.

– We optimize two FFT implementations using
SIMD instructions to speed the execution up
to 1.5 times.

• We generalize the blind rotation unfolding (as
suggested by Bourse et al. [19]) and show that
it does not achieve the expected gains on large
parameters. We partially explain this behavior
based on our arithmetic microbenchmarks.

• We introduce a new procedure for multi-value
bootstrapping based on the blind rotation
unfolding. Although significantly more expen-
sive than existing techniques, we show that our
method has unique properties and complements
existing techniques (instead of competing with
them).

• We optimize several techniques by combining
them with others and with our aforementioned
improvements. In some cases, we also add new
functionalities through these combinations.

The remainder of this text is organized as
follows: Section 2 introduces the basic notation
and concepts of TFHE; Section 3 presents the
techniques implemented in our library and the
improvements upon them; Section 4 introduces
novel techniques for TFHE; Section 5 presents
the experimental results; and, finally, Section 6
concludes the paper.

2 Fully Homomorphic
Encryption over the Torus
(TFHE)

TFHE [9] is a fully homomorphic encryption
scheme based on the Learning With Errors (LWE)
problem [3] and its ring variant [25]. In this
section, we describe its algebraic structures as
well as its basic functioning for homomorphi-
cally evaluating linear arithmetic and arbitrary
functions.

Notation

We denote as Snq the set of vectors with n ele-
ments, each of them in some set S modulo q. We
use subscript to index elements of a vector, i.e,
si ∈ S is the i-th element of s ∈ Sn. We denote by
Z, R, and B the sets of integer, real, and binary
numbers. The real torus T = R/Z is the set of
real numbers modulo 1. We denote a set of poly-
nomials over the variable X with coefficients in S
by S[X]. For power-of-two cyclotomic polynomi-
als, we define Rq = Zq[X]/(XN + 1) as the ring
of polynomials over the variable X with modulus
Φ2N (X) = XN + 1 and coefficients in Zq. Addi-
tionally, ⟨a, b⟩ denotes the inner product between
vectors a and b, ⌈r⌋t the rounding of r to the clos-
est multiple of t, and [r]p its reduction modulo p. If
omitted, t = 1. If r is a polynomial, rounding and
modular reduction are applied to each of its coef-
ficients. Similarly, if r is a vector, rounding and
modular reduction are applied to each of its ele-
ments. The vector interpretation of a polynomial
is the list of its coefficients, in order, starting with
the coefficient of the monomial with degree 0.

TFHE was originally proposed using Torus
notation, but we start this paper with a generic
definition over Zq, more common in the FHE lit-
erature. We introduce the Torus abstraction and
show how it maps to Zq and to Rq later in this
section.

Encryption scheme

TFHE works with scalar and polynomial mes-
sages and encrypts them, respectively, in LWE and
RLWE samples.

• An LWE sample is a pair (a, b) ∈ Zn+1
q , where

a is uniformly sampled from Zn
q , b = ⟨a, s⟩ +

e ∈ Zq, and n ≥ 1 ∈ Z. The binary secret key

3

s is sampled from a uniform distribution over
Bn, and the error e is sampled from a Gaussian
distribution over Zq with mean 0 and standard
deviation σ.

– Encryption: We encrypt a message m ∈ Zq/∆

by adding (0,m∆) to a fresh LWE sample,
where ∆ is a scaling factor meant to sepa-
rate message from noise. We denote the set
of LWE samples encrypting the message m
with key s and parameters k = (n, σ,∆)
by c ∈ LWEs,k(m). Textually, we refer to
c ∈ LWEs,k(m) as a “sample of m”. We
omit the parameters if they are not relevant
to the context and whenever it is possible
to unequivocally infer them from the key or
context.

– Decryption: we first use the secret key s to
calculate the phase of a sample phase(c) =
b−⟨a, s⟩, which is the message plus the noise.
Then, we round it to remove the noise and
get the message m = ⌈phase(c)/∆⌋.

• An RLWE sample is a pair (a, b) ∈ R2
q, where

a is uniformly sampled from Rq, and b ∈ Rq

is given by b = a · S + e, for a binary secret
key S sampled from a uniform distribution over
R2, and an error e sampled from a Gaussian
distribution over Rq with mean 0 and stan-
dard deviation σ. Encryption and decryption
are similar as described for LWE samples. We
denote the set of RLWE samples encrypting the
message m with key S and parameters k =
(N,∆, σ) by RLWES,k(m). Again, we omit the
parameters whenever it is possible.

The Torus representation

Implementation-wise, TFHE usually works in Z2p

and R2p , where p is the word size of the imple-
mentation. The original 32-bit implementation of
TFHE uses p = 32 whereas its experimental
branch as well as most newer implementations use
p = 64. When defined over the Torus, it relies on
the map T ∼−→ Z2p given by x 7→ x ·2p to be imple-
mented because floating-point arithmetic modulo
1 is considered to be more expensive compared
to just working with word-sized integers (where
modular reductions for p = 2k are an architecture
feature). Implementations of TFHE with prime
moduli are also common in some libraries [26]. In
this case, the Torus abstraction is not used.

Evaluating arithmetic

(R)LWE samples are in an R-module. Therefore,
we have well-defined additions between samples
and multiplications with other rings. In both
cases, operations are pair-wise: Let ci = (ai, bi) ∈
(R)LWE(mi) for i ∈ {0, 1} be two (R)LWE sam-
ples encrypting messages mi. The sum of them is
given by csum = (a0+a1, b0+b1) ∈ (R)LWEs(m1+
m2) while cscale = (a0 ·z, b0 ·z) ∈ (R)LWEs(m1 ·z)
encrypts the scaling by z ∈ R, where R is a ring
(typically, Z or R).

(R)LWE samples also support external prod-
ucts by RGSW samples, which are sets of 2ℓ
RLWE samples. They are rarely used to encrypt
messages but are necessary for creating evaluation
keys, which are self-encryptions of the LWE and
RLWE secret keys necessary for providing fully
homomorphic evaluation. We denote the set of
RGSW samples encrypting the message m ∈ Rq

with key s ∈ R2 and parameters k = (n,N, σ, ℓ)
by RGSWs,k(m). For the most part of this paper,
we can consider RGSW encryption and decryption
as black-box algorithms.

As we scale, add, or multiply samples, the
Gaussian error in the component b increases. For
being a fully homomorphic encryption scheme,
and therefore allowing for the evaluation of an
unbound number of consecutive operations, we
need to have tools for controlling the error growth.
The bootstrap procedure, as first defined by Gen-
try [2], is a technique that allows resetting the
error to a default value established by the param-
eter set.

2.1 Bootstrapping

In TFHE, the bootstrap can be used not only for
resetting the error but also to implement arbitrary
(nonlinear) functions. It defines it using three
main building blocks, which we describe in this
section.

2.1.1 Public and private key switching

The idea behind a key-switching algorithm is
the homomorphic evaluation of the phase of a
ciphertext. Let c = (a, b) ∈ (R)LWEs,k(m) be
a (R)LWE sample encrypting m, the keyswitch
algorithm uses an encryption of the secret key s,
defined as KSi ∈ (R)LWEs′,k′(si), to calculate the
phase(c) = b−⟨a,KS⟩. The result of this operation

4

is c′ ∈ (R)LWEs′,k′(m), allowing us, therefore,
to switch keys and parameters. This process also
allows the evaluation of linear morphisms, i.e., any
function f for which phase(f(c)) = f(phase(c)).
We should note that, by this definition, f can be
a linear combination of several (R)LWE samples,
which allows us, for example, to pack LWE sam-
ples in RLWE samples, a process called Packing
Key Switching. Algorithm 1 shows the Public Key
Switching algorithm from TFHE. We should note
that ai is decomposed before being multiplied by
the encryption of s (line 4) so that the error vari-
ance growth, which would be quadratic on the
value of ai, is now significantly reduced.

Algorithm 1: Public Functional Key
Switching (PublicKeySwitch) [9]

Input : p LWE samples
c(z) = (a(z), b(z)) ∈ LWEs(µz),
z ∈ [[1, p]]

Input : a linear morphism f : Zp
q 7→ Rq

Input : a precision parameter t ∈ Z
Input : a Key Switching key

KSi,j ∈ (R)LWEs′(si2
j), for

i ∈ [[1, n]] and j ∈ [[1, t]]
Output: an (R)LWE sample

c′ ∈ (R)LWEs′(f(µ))
1 for i ∈ [[1, n]] do

2 ai ← f(a
(1)
i , a

(2)
i , ..., a

(p)
i)

3 ãi ←
⌈
ai

2t

q

⌋
4 Decompose ãi, s.t. ãi =

∑t
j=1 âi,j · 2

j

5 Return (0, f(b
(1)
i , b

(2)
i , ..., b

(p)
i))−∑n

i=1

∑t
j=1 âi,j ·KSi,j

The private version of the function bootstrap is
quite similar to the public one, differing by the fact
that the function f is embedded in the key switch-
ing key, i.e., KS ∈ (R)LWEs′,k′(f(s)). This version
is especially useful when f depends on secret infor-
mation, such as the secret key. Algorithm 2 shows
the private key switching from TFHE.

2.1.2 Blind rotation

Given an LWE sample c = (a, b) ∈ LWEs(m)
and an RLWE sample t ∈ RLWEs′(v), the Blin-
dRot procedure computes t′ = RLWEs′(v ·
X−⌈phase(c)2N/q⌋). Since this multiplication occurs
modulo the 2N -th cyclotomic polynomial, the

Algorithm 2: Private Functional Key
Switching (PrivateKeySwitch) [9]

Input : p LWE samples
cz = (az , bz) ∈ LWEs(µz), z ∈ [[1, p]]

Input : a precision parameter t ∈ Z
Input : a Key Switching key

KSi,j,z ∈ (R)LWEs′(fz(s)i2
j), for

i ∈ [[1, n]], and
KSn+1,j,z ∈ (R)LWEs′(f(−1)2

j),
for j ∈ [[1, t]] and z ∈ [[1, p]], where
fz are linear morphisms
representing a function f

Output: a (R)LWE sample
c′ ∈ (R)LWEs′(f(µ))

1 for z ∈ [[1, p]] do
2 for i ∈ [[1, n]] do

3 ãz,i ←
⌈
az,i

2t

q

⌋
4 Decompose ãz,i, such that

ãz,i =
∑t

j=1 âz,i,j · 2
j

5 Return −
∑p

z=1

∑n+1
i=1

∑t
j=1 âz,i,j ·KSz,i,j

operation works as a negacyclic rotation of the
polynomial v ∈ Rq by an amount defined by the
phase of c (thus, a blind rotation).

Algorithm 3: Blind Rotation
(BlindRot) [9]

Input : a sample
c = (a1, ..., an, b) ∈ LWEs(m)

Input : a sample tv ∈ RLWES(v)
Input : a list of samples Ci ∈ RGSWS(si),

for i ∈ [[1, n]]
Output: an RLWE sample of

c′ ∈ RLWES(X
⌈phase(c)2N/q⌋ · v)

1 ACC← X
−
⌈
b 2N

q

⌋
· tv

2 for i← 1 to n do

3 ãi ←
⌈
ai

2N
q

⌋
4 ACC← CMUX(Ci, X

ãi ·ACC,ACC)
5 return ACC

1 Procedure CMUX(C, A, B)
2 return C · (B −A) +A

2.1.3 Sample extraction

Given an RLWE sample c ∈ RLWEs(p =∑N−1
i=0 miX

i), the SampleExtract proce-
dure extracts an LWE sample encrypting

5

a coefficient from the polynomial p, i.e.,
SampleExtractj(c) ∈ LWEs′(mj), where s′ is
the vector interpretation of s.

2.1.4 The functional bootstrap

In its first version, TFHE’s bootstrap was defined
for evaluating only binary logic gates in a proce-
dure called Gate Bootstrapping, which was later
generalized for evaluating arbitrary functions dis-
cretized in Lookup Tables (LUTs). In 2019,
Boura et al. [7] formalized the idea of a functional
bootstrap, both for TFHE and other cryptosys-
tems. In 2021, Chillottiet al. [11] introduced a
discretized version of TFHE and defined the pro-
grammable bootstrapping (PBS), a formalization
of the functional bootstrap specific to TFHE.

Algorithm 4 shows the functional bootstrap of
TFHE.

Algorithm 4: Functional Bootstrap
(FBS) [7, 11, 16]

Input : an LWE sample
c = (a, b) ∈ LWEs(m), for m ∈ ZB

Input : an integer LUT
L = [l0, l1, ..., lB−1] ∈ ZB

B′

Input : a bootstrapping key
BKi ∈ RGSWS (si), for i ∈ [[1, n]]

Output: c′ ∈ LWES ′(L[m]), where S ′ ∈ BN

is the vector interpretation of S
1 b′ ← ⌈b2N/q⌋ and a′ ← ⌈a2N/q⌋
2 v ←

∑N−1
i=0 ∆ · l⌊ iBN ⌋X

i

3 C← BlindRot((0, v), (a′, b′ + 2N
4B),BK)

4 return SampleExtract0(C)

The first step for evaluating the arbitrary func-
tion is to discretize its domain, evaluate it in all
discretized points, and store the results in a lookup
table (LUT). The LUT, then, needs to be encoded
as a polynomial (line 2). Equation 1 details this
process. The Base B is a precision parameter.

L = [l1 = f(1), ..., lB = f(B)] 7→ ∆

N−1∑
i=0

l⌊ iB
N ⌋X

i

(1)

The negacyclic property

The table lookup is performed by using the
BlindRot to multiply the test vector, v by
X−⌈phase(c)2N/q⌋. This multiplication occurs mod-
ulo the 2N -th cyclotomic polynomial and, there-
fore, presents a negacyclic property, i.e., let p
be a polynomial, p · XN = −p. This property
restricts the use of the functional bootstrap to
anti-symmetric functions, i.e., functions f such
that f(x + N) = −f(x). For arbitrary functions,
we avoid the negacyclic property by using only the
first half of the torus to encode messages.

Evaluating encrypted LUTs and private
functions

Algorithm 4 receives a LUT represented as an
array of integers in ZB

B′ , but it could receive
directly the test vector v polynomial (calculated
in line 2) or even an RLWE sample encrypting
v. This last case is especially useful for evaluat-
ing private functions, but the error variance of the
encrypted LUT is added to the output error vari-
ance of the algorithm. This version can also be
used to evaluate multi-variable functions, as we
can use the Packing Key Switch to create LUTs
from function inputs [16]. In this case, the out-
put error variance is always greater than at least
one of the function inputs, limiting the bootstrap’s
error-reducing capabilities.

3 State-of-the-art on TFHE
and improvements

In this section, we describe the main proposals
presented so far for improving core algorithms or
functionalities of TFHE. We should note that we
do not include proposals made for other cryp-
tosystems. Although many could be adapted from
schemes such as FHEW [27], GSW [20], or even
CKKS [6], we decided to limit our efforts at some
point. We also do not consider optimizations for
building applications or high-level functions with
TFHE, as these are usually more specialized use
cases.

6

3.1 The improved programmable
bootstrap

In 2021, Chillotti et al. [13] presented an improved
version of the programmable bootstrap. This ver-
sion introduced new parameters that allow for
slicing and selecting just part of the input to
evaluate the function over. Let c = (a, b) ∈
LWE(m) be an LWE sample encrypting m and
let m̃ be the binary vector representation of m,

i.e. m =
∑⌊log2 m⌋

i=0 2im̃i. The improved version of
the Programmable Bootstrap allows to evaluate
f(
∑j−i

k=0 2
km̃k+i), for any i ≤ j ∈ [[0, ⌊log2 m⌋]].

In this way, it makes it possible to decompose
messages into digits and bootstrap decomposed
digits separately. This feature can be leveraged by
methods that work over decomposed messages for
enabling the evaluation of large lookup tables rep-
resenting functions with high precision. We further
discuss them in Section 3.5.

Algorithm 5 describes the improved version of
the programmable bootstrap using the functional
bootstrap of TFHE. Notice that our definition of
κ and θ is different from [13] (but functionally
equivalent).

Algorithm 5: Improved Programmable
Bootstrap (PBS) [13]

Input : an LWE sample
c = (a, b) ∈ LWEs(m), for m ∈ ZB

Input : an integer LUT
L = [l0, l1, ..., lB−1] ∈ ZB

B′

Input : message slicing parameters κ and θ
Input : a bootstrapping key

BKi ∈ RGSWS (si), for i ∈ [[1, n]]
Output: c′′ ∈ LWES ′(L[m̃]), where

m̃ = [⌊m/θ⌉]κ and S ′ ∈ BN is the
vector interpretation of S

1 b′ ← [⌊b/θ⌉]κ and a′ ← [⌊a/θ⌉]κ
2 Let c′ = (a′, b′) ∈ LWEs([⌊m/θ⌉]κ)
3 return FBS(c′, L,BK)

3.2 The Multi-Value Functional
Bootstrap (MVFB)

Evaluating several different functions over the
same input is a necessity not only for high-
level applications but even for core procedures

of the cryptosystem, such as the Circuit Boot-
strap (Section 3.6) and the Tree-Based Func-
tional Bootstrap (Section 3.5). The multi-value
functional bootstrap is a technique that allows
these evaluations to occur at a much smaller
cost than executing several (single-value) func-
tional bootstraps. The most straightforward solu-
tion for implementing the multi-value bootstrap
would be using the BlindRot to calculate just
c′ ∈ RLWE(X−⌈phase(c)2N/q⌋) and, then, multi-
ply it by each LUT (encoded in polynomials).
In 2019, Carpov et al. [15] proposed a better
method based on decomposing the polynomials
that encoded the LUTs to achieve a better error
output. Algorithm 6 describes it.

Algorithm 6: Multi-Value Functional
Bootstrap (MVFB) [15]

Input : an LWE sample
c = (a, b) ∈ LWEs(m), m ∈ Z2N

Input : a scale factor τ
Input : z LUTs encoded in polynomials

TVFi
∈ Rq, for i ∈ [[1, z]]

Input : a bootstrapping key
BKi ∈ RGSWS (si), for i ∈ [[1, n]]

Output: An array of LWE samples
c′i ∈ LWES ′(Fi(m)) for i = 1, ..., z,
where S ′ ∈ BN is the vector
interpretation of S

1 b′ ← ⌊b2N/q⌉ and a′ ← ⌊a2N/q⌉
2 v ←

∑N−1
i=0 ·

q
4N · τX

i

3 ACC← BlindRot((0, v), (a′, b′ + 2N
4B),BK)

4 foreach i ∈ [[1, z]] do

5 c′i ← SampleExtract0(
TVFi
v ·ACC)

6 return c′

This method is a significant improvement over
the straightforward version, but it still intro-
duces significantly more noise than the single-
value counterpart. Carpov et al. [15] estimates the
error output variance of their multi-value boot-
strap as given by Equation 2, where σFB is the
output error variance of the (single-value) func-
tional bootstrap, and s and q are the input and
output bases, respectively.

V ar(Err(c)) ≤ s(q − 1)2σFB (2)

In 2021, Guimarães et al. [16] improved the
method by introducing a base composition with

7

linear error growth, based on the scaling algo-
rithm described in Algorithm 7. Equation 3 shows
the final output error variance. Both works, how-
ever, start from the assumption that the square
norm of the polynomial representing the LUT,
∥TVf∥22, is smaller than s(q − 1)2, where s and q
are, respectively, the input and output bases. This
equation is not true in all cases. Let us take, for
example, a 4-slot LUT with values [1, 0, 1, 1], input
base 4, and output base 2. The factorized version
would be [2,−1, 1, 0], for which the square norm
is 22 + (−1)2 + 12 = 6, which should be smaller
or equal than s(q − 1)2 = 4(2 − 1)2 = 4. This is
a corner case for their error estimations, which, in
this work, we solve by applying the same scaling
algorithm used in the base composition (Algo-
rithm 7) to the multiplication by the first element
of the factorized LUT. In our example, while the
square norm is still 22 + (−1)2 + 12 = 6, the vari-
ance growth is linear on the first element, thus
presenting a final growth of 21 + (−1)2 + 12 = 4.

V ar(Err(c)) ≤ s(q − 1)σFB (3)

Algorithm 7: Multiplication (Scaling)
using the Multi-Value Extract
(MultiValueExtractScaling) [16]

Input : an RLWE sample c ∈ RLWES (p),
which is the accumulator (ACC) of
a previous functional bootstrap,
and a cleartext scalar z ∈ Z

Output: an LWE sample c′ ∈ LWES ′(z · p0),
where p0 is the constant term of p,
and S ′ is the vector interpretation
of S

1 c′ ← LWES (0)
2 for i← 0 to

⌈
z
2

⌉
− 1 do

3 c′ ← c′ + SampleExtracti(p)
4 for i← N −

⌊
z
2

⌋
to N − 1 do

5 c′ ← c′ − SampleExtracti(p)

6 Return c′

Bootstrapping Many LUTs

In 2021, Chillotti et al. [13] presented a new
method for the multi-value bootstrap. Different
from the previous ones, their method does not
incur additional noise nor affect performance. On
the other hand, the number of LUTs evaluated

in each bootstrap is limited by the cryptosys-
tem parameters, and increasing it requires reduc-
ing message precision or working with a higher
probability of failure. Algorithm 8 describes the
Bootstrap Many LUTs procedure.

Algorithm 8: Bootstrap ManyLUT
(BML) [13]

Input : an LWE sample
c = (a, b) ∈ LWEs(m), m ∈ Z2N

Input : a set L of z lookup tables, each
represented by an array Li ∈ ZB

q

encoding a function Fi, for i ∈ [[0, z)
Input : a bootstrapping key

BKi ∈ RGSWS (si), for i ∈ [[1, n]]
Output: An array of LWE samples

c′i ∈ LWES ′(Fi(m)) for i ∈ [[0, z),
where S ′ is the vector
interpretation of S

1 r ← N
zB

2 b′ ← ⌊b2N/q⌉ and a′ ← ⌊a2N/q⌉
3 v ←

∑B−1
i=0

∑z−1
j=0

∑r−1
k=0 Lj,iX

(iq+j)r+k

4 ACC← BlindRot((0, v), (a, b+ q
4Bz),BK)

5 foreach i ∈ [[0, z) do
6 c′i ← SampleExtractir(ACC)

7 return c′

3.3 Tensor product

As first defined, TFHE did not introduce direct
multiplications between (R)LWE samples. How-
ever, there are several FHE schemes also based on
the RLWE problem presenting tensorial multipli-
cations [6, 28]. In 2021, Chillotti et al. [13] showed
that it is possible to implement the BFV-like [28]
tensor product using TFHE parameters. They also
showed how it can be used to perform a multiplica-
tion between LWE samples. Algorithm 9 describes
the RLWE product, and Algorithm 10 shows the
multiplication between LWE samples.

3.4 Full-Domain Functional
Bootstrap (FDFB)

As detailed in Section 2.1.4, the negacyclic prop-
erty restricts the functionality of the functional
bootstrap. Specifically, it is capable of evaluat-
ing arbitrary functions only if the input is in
the first half of the torus, i.e., in integer nota-
tion, when m∆ < q/2. Thus, it is a half-domain

8

Algorithm 9: RLWE Product
(RLWEProd) [13]

Input : two RLWE samples
ci = (ai, bi) ∈ RLWEs,∆(pi), for
pi ∈ Rq and i ∈ {0, 1}, with scaling
factor ∆

Input : a relinearization key
RLKi ∈ RLWEs(s

2βj), for j ∈ [[0, t)
Output: c′ ∈ RLWEs(p0 · p1)

1 T ←
[⌊

A1·A2
∆

⌉]
q

2 A′ ←
[⌊

A1·B2+B1·A2
∆

⌉]
q

3 B′ ←
[⌊

B1·B2
∆

⌉]
q

4 T ′ ← ⌊Tβt/q⌉
5 Decompose T ′, s. t. T ′ =

∑t−1
i=0 T̂i · β

j

6 return (A′, B′) +
∑t−1

i=0 T̂i · RLKi

Algorithm 10: LWE Multiplication
(LWEMult) [13]

Input : two LWE samples
ci = (ai, bi) ∈ LWEs(mi), for
mi ∈ ZB and i ∈ {0, 1}

Input : a relinearization key
RLKi ∈ RLWES(S

2βj), for
j ∈ [[0, t)

Input : a Packing Key Switching key
KSKs7→S

Output: c′ ∈ LWES′(m0 ×m1)
1 f : Zq 7→ Rq = m 7→ mX0

2 C0 ← PublicKeySwitch(c0, f,KSK)
3 C1 ← PublicKeySwitch(c1, f,KSK)
4 Cmul ← RLWEProd(C0, C1,RLK)
5 return SampleExtract0(Cmul)

functional bootstrap (HDFB). It also is not able
to perform modular (cyclic) arithmetic. The full-
domain functional bootstrap (FDFB) is a variant
that overcomes such restrictions and operates over
the entire input domain following modular cyclic
arithmetic. There are several techniques for imple-
menting it [13, 21, 22, 29], and, in general, they
evaluate an arbitrary function f by decomposing
it into multiple sub-functions fi and evaluating
each fi with an HDFB. In this work, we imple-
ment the main solutions that are not purely based
on high-level function pre-processing. Specifically,
we implement those that require modifications to
or introduce new building blocks to the cryptosys-
tem. The following sections discuss them.

3.4.1 The tensor product method

Chillotti et al. [13] were the first to present a
full-domain functional bootstrap for TFHE or, as
they defined, a without-padding programmable
bootstrap (WoP-PBS). Algorithm 11 shows their
technique, proposed in 2021.

Algorithm 11: Full-Domain Functional
Bootstrap based on LWEMult (FDFB-
CLOT21) [13]

Input : an LWE sample
c = (a, b) ∈ LWEs(m), for m ∈ ZB

Input : an integer LUT
L = [l0, l1, ..., lB−1] ∈ ZB

B
Input : a bootstrapping key

BKi ∈ RGSWS (si), for i ∈ [[1, n]]
Input : a relinearization key

RLKi ∈ RLWES(S
2βj), for

j ∈ [[0, t)
Input : a Packing Key Switching key

KSKs 7→S

Output: c′ ∈ LWES ′(L[m]), where S ′ ∈ BN

is the vector interpretation of S
1 ca ← FBS(c, L[0 : B

2],BK)

2 cb ← FBS(c, L[B2 : B],BK)
3 cs ← FBS(c, [q

2B ,, q
2B],BK) ; // sign

4 ĉa ← LWEMult(ca, cs + (0, q
2B),RLK,KSK)

5 ĉb ← LWEMult(cb, cs − (0, q
2B),RLK,KSK)

6 return ĉa + ĉb

3.4.2 The PubMux method

In 2021, Kluczniak and Schild [21] proposed a
technique for the FDFB based on the definition of
a public version of TFHE’s C multiplexer (CMUX,
Algorithm 3). In this version, the inputs are poly-
nomials (instead of (R)LWE samples), and the
selector is an LWE sample (instead of an RGSW
sample). Algorithm 12 presents their technique.
It first calculates the input sign, then uses it to
select, using the PubMux method, between LUTs
encoding the subfunctions f0 = f and f1 = −f .
The result is used as a test vector for a regular
functional bootstrap using the same input.

3.4.3 The chaining method

The FDFB presented by Chillotti et al. [13] takes
just one multi-value bootstrap, but it still intro-
duces significantly more noise than the original

9

Algorithm 12: Full-Domain Functional
Bootstrap based on PubMux (FDFB-
KS21) [21]

Input : an LWE sample
c = (a, b) ∈ LWEs(m), for m ∈ ZB

Input : an integer LUT
L = [l0, l1, ..., lB−1] ∈ ZB

B
Input : a bootstrapping key

BKi ∈ RGSWS (si), for i ∈ [[1, n]]
Input : precision parameters ℓ,B ∈ N
Output: c′ ∈ LWES ′(L[m]), where S ′ is the

vector interpretation of S
1 p1 ←

∑N−1
i=0 l⌊ iB

2N ⌋X
i

2 p2 ←
∑N−1

i=0 −l⌊B2 + iB
2N ⌋X

i

3 foreach i ∈ [[0, ℓ) do

4 csign,i ← FBS(c,
[−q
2Bi ,,

−q
2Bi

]
, BK)

5 csign,i ← csign,i +
q

2Bi

6 v ← PubMux(csign, p1, p2)
7 return FBS(c, v, BK)

1 Procedure PubMux(C, A, B)
2 M ← B −A

3 M ′ ← ⌊MBℓ/q⌉
4 Decompose M ′, s.t. M ′ =

∑ℓ−1
i=0 M ′

i ·B
i

5 return A+
∑ℓ−1

i=0 Ci ·M ′
i

FB, as it selects between the bootstrap lookup
results using the RLWE product. In this section,
we introduce another method for performing the
full-domain functional bootstrap that provides the
same error variance output as the basic (half-
domain) FB. Algorithm 13 describes it. Despite
requiring two functional bootstraps, the algorithm
combines them using the chaining method [16],
which provides the lowest output error variance
and does not require larger parameters. This
method was first presented in the FullFBS algo-
rithm by Yang et al. [22] for their cryptosystem
(TOTA). Their method, however, only removes
the negacyclicity, without addressing full-domain
evaluation specifically. One can obtain the original
technique from Yang et al. [22] by replacing line 1
of Algorithm 13 with line 2 of Algorithm 4. We
developed Algorithm 13 independently, but it can
also be seen as an extension of TOTA’s FullFBS.
This method has also been independently pre-
sented and used several times in the literature
since these first presentations.

Algorithm 13: Full-Domain Functional
Bootstrap based on Chaining (FDFB-C)

Input : an LWE sample
c = (a, b) ∈ LWEs(m), for m ∈ ZB

Input : an integer LUT
L = [l0, l1, ..., lB−1] ∈ ZB

B
Input : a bootstrapping key

BKi ∈ RGSWS (si), for i ∈ [[1, n]]
Output: c′ ∈ LWES ′(L[m]), where S ′ ∈ BN

is the vector interpretation of S
1 tv ←∑B

2 −1
i=0

∑1
j=0

∑N
B −1

k=0 ∆l jB
2 +i

X(2i+j)N
B +k

2 csign ← FBS(c,
[
q(B+1)

4B ,,
q(B+1)

4B

]
,BK)

3 c′ ← c+ csign −
q(B+1)

4B

4 return FBS(c′, tv,BK)

3.5 Evaluating large lookup tables

All methods and variations of the functional
bootstrap we presented so far have a common
limitation: The message is encrypted in a single
sample, and the size of the LUT is limited by the
parameters of the cryptosystem.

3.5.1 Tree-based and Chaining
methods

One way of evaluating large lookup tables is to
decompose the message into several ciphertexts
and combine the evaluation of several small LUTs
over the decomposed digits. In 2021, Guimarães et
al. [16] introduced two methods for evaluating
large LUTs. Algorithm 14 describes the tree-based
functional bootstrap.

They also introduced a chaining method
(ChainingFB) for combining multiple functional
bootstraps, which is more intricate to imple-
ment but provides better error output variance.
Its implementation is specific to each function.
In summary, the method boils down to using
linear combinations of an FB output as the selec-
tor for the next. Algorithm 13 exemplifies it.
Guimarães et al. [16] remarks that, although more
functionally restricted, the method is especially
good for evaluating functions with carry-like or
test logics. In 2022, Clet et al. [29] showed that
the method is capable of evaluating any function
by using a digit composition as a linear combina-
tion, i.e., (a0, a1) 7→ a0 + a1 · B, where B is the
numeric base. This composition, however, requires

10

Algorithm 14: Tree-based functional
bootstrap (TreeFB) [16]

Input : a set of LWE samples
ci ∈ LWEs(mi), such that∑d−1

i=0 miB
i = m encodes the

integer m in base B with d digits
Input : a set L of Bd polynomials ∈ Rq

encoding the lookup table of an
arbitrary function F

Input : a bootstrapping key
BKi ∈ RGSWS (si), for i ∈ [[1, n]]

Input : a packing Key Switching key
KSS′ 7→S , where S ′ ∈ BN is the
vector interpretation of S

Output: an LWE sample c′ ∈ LWES ′(F (m))
1 TV← L

2 f : ZB
q 7→ Rq, given by:

f(m0, ...,mB) 7→
∑N−1

i=0 m⌊ iBN ⌋X
i

3 for i← 0 to d− 1 do
4 c′ ←MVFB(ci,TV,BK)

5 foreach j ∈ [[0, Bd−i−2) do
6 TVj−1 ←

PublicKeySwitch((c′(j−1)B , ..., c′jB), f,KS)

7 return c′0

quadratically larger parameters, and it is still
unclear whether it would improve the evaluation
of arbitrary high-level functions.

3.5.2 (Bootstrapped) Vertical Packing
method

The vertical packing is a technique introduced
with TFHE [9] that enables efficiently evaluat-
ing larger LUTs in the leveled setting. However,
this technique requires circuit bootstraps for being
composable. In 2022, Bergerat et al. [24] showed
that the bootstrapped version of the vertical
packing is generally faster than the tree-based
approach. The performance of this technique is
mostly reliant on the circuit bootstrap, which we
discuss in Section 3.6.

3.6 The circuit bootstrap

Working with (R)LWE samples is usually the
norm in TFHE, as computation is cheaper both
for arithmetic and FB-based arbitrary function
evaluation. However, several techniques [9, 16, 24]
require samples to be encrypted as RGSW sam-
ples. In this context, the Circuit Bootstrap [14] is

a technique for producing an RGSW sample from
an RLWE one. Since it is based on the functional
bootstrap, the content of the fresh sample can be
arbitrarily defined by a function. Algorithm 15
defines the circuit bootstrap based on the func-
tional bootstrap. We are presenting a functional
version of it (i.e., the LUT L is a parameter), but
originally it just evaluates the identity function.
Since it requires the evaluation of several functions
over the same input, we can use the BML algo-
rithm, presented in Section 3.2, to accelerate the
computation (as suggested by Chillotti et al. [13])
at the cost of a slightly increased error rate.

Algorithm 15: Circuit Bootstrap algo-
rithm (CircuitBootstrap) [9]

Input : an LWE sample
c = (a, b) ∈ LWEs(m)

Input : an integer LUT
L = [l0, l1, ..., lB−1] ∈ ZB

B′

Input : a bootstrapping key
BKi ∈ RGSWS(si), for i ∈ [[1, n]]

Input : a Private Key Switching key KSKA
that evaluates
f : Zq 7→ Rq = f(m) 7→ m · −S

Input : a Packing Key Switching key
KSKBs 7→S

Output: c′ ∈ RGSWS,(ℓ,B)(L[m])

1 f : Zq 7→ Rq = m 7→ mX0

2 foreach i ∈ [[0, ℓ) do

3 c̃← FBS(c, LBi, BK)

4 c′i ← PrivateKeySwitch(c̃,KSKA)

5 c′ℓ+i ← PublicKeySwitch(c̃, f,KSKB)

6 return c′

3.7 The full RGSW bootstrap

The TreeFB algorithm (Section 3.5) supposes
the use of the multi-value functional bootstrap for
every level of the tree to achieve a linear num-
ber of bootstraps. However, after the first (base)
level of the tree, LUTs are encrypted in RLWE
samples (instead of encoded in clear-text polyno-
mials). Carpov et al. [15] MVFB (Algorithm 6)
does not operate over encrypted test vectors and
Chillotti et al. [13] BML (Algorithm 8) supports
a limited number of LUTs. Guimarães et al. [16]
suggests using theCircuitBootstrap to employ
the MVFB over encrypted LUTs, but they did

11

not implement the technique as it would require
an implementation supporting 64-bit torus preci-
sion. Our library not only provides this precision
level but also all optimizations for the Circuit-
Bootstrap discussed by them [16]. We note,
however, that instead of executing the regular FB
plus a CircuitBootstrap, we can just directly
perform a full RGSW bootstrap, which uses the
same number of BlindRot executions as the
CircuitBootstrap, but saves time by avoiding
key switchings.

The full RGSW bootstrap is similar to the
functional bootstrap described in Algorithm 4,
but the accumulator vector is an RGSW sam-
ple instead of an RLWE sample. In this way,
the external products become internal products
between RGSW samples, which are at least ℓ
times more expensive but have the same out-
put error variance. The result produced by the
algorithm, encrypting X−⌈phase(c)2N/q⌋, is also an
RGSW sample and can, therefore, be multiplied
by the decomposed LUTs in Carpov et al.method,
even when they are encrypted in RLWE samples.
Different from the original MVFB, the output
error variance of such multiplication depends on
the square norm of the RGSW samples, and not
on the LUT. In this way, Carpov et al. decom-
position presents no advantage anymore, and we
can use the straightforward version of the multi-
value bootstrap described at the beginning of
Section 3.2.

3.8 (R)LWE conversion

The Key Switching algorithm is one of the
core procedures of TFHE, and its performance
degrades rather fastly for large parameters when
inputs are LWE samples. For RLWE samples, on
the other hand, the Key Switching can be sped
up by using the FFT to perform multiplications,
which comes at the cost of increased output noise.
In 2021, Chen et al. [17] presented several algo-
rithms that allow performing LWE Key Switching
using RLWE Key Switching methods. For LWE-
to-RLWE conversion, however, their algorithm
multiplies the coefficients of the result by N (the
modulo polynomial degree) as a side effect, since
it is based on the Galois permutation. In the stan-
dard instantiation of TFHE, coefficients are in the
real torus and are mapped to Z2k , therefore N
does not have a modular inverse. In this way, we

implement their algorithms for completeness, but
we did not find many cases in which it could be
used efficiently. Specifically, it is possible to use
such algorithms in cases in which the message can
be divided by N by employing bootstraps, before
encryption, or by switching to a different modulus
q′ = q

2N .

3.9 The blind rotation unfolding

The blind rotation (BlindRot, Algorithm 3) is
the most expensive operation in TFHE’s boot-
strap. Its most expensive part, in turn, is the
multiplication by RGSW samples, which encrypt
si and is used to compute the encryption of
X

∑n
i=1 siãi . In 2018, Zhou et al. [18] showed how

to reduce the number of multiplications by unfold-
ing the blind rotation loop. Equation 4 shows
their proposal. In the same year, Bourse et al. [19]
improved the unfolding equation by calculating
the last term from the first three. They also sug-
gest the equation could be generalized to large
unfoldings. In this work, we implemented this gen-
eralization and tested unfoldings of sizes 2, 4, and
8.

Xas+a′s′ = ss′Xa+a′
+ s(1− s′)Xa

+ (1− s)s′Xa′
+ (1− s)(1− s′). (4)

Notice that the unfolding increases the key size
exponentially. In Equation 4, for example, we need
to store values for ss′, s(1− s′), (1− s)s′, and (1−
s)(1− s′) instead of just s and s′. Specifically, the
key expansion factor is given by 2u

u , where u is the
unfolding size. Algorithm 16 shows the unfolded
blind rotation, where r is the size of the expanded
key.

3.10 State-of-the-art summary

Table 1 summarizes the techniques presented in
this work as well as the improvements we pre-
sented for them. Besides the improvements listed
in the table, we note that one of our main con-
tributions in this work is to implement all the
techniques in a single highly optimized software
library, which is publicly available in our GitHub
repository2.

2https://github.com/antoniocgj/MOSFHET

12

https://github.com/antoniocgj/MOSFHET

Algorithm 16: Unfolded Blind Rotation
(UBR)

Input : a sample
c = (a1, ..., an, b) ∈ LWEs(m)

Input : an unfolding level u ∈ N
Input : a sample tv ∈ RLWES(v)
Input : a list of samples Ci ∈ RGSWS(si),

for i ∈ [[0, n2
u

u)
Output: an RLWE sample of

c′ ∈ RLWES(X
⌈phase(c)2N/q⌋ · v)

1 ACC← X
−
⌈
b 2N

q

⌋
· tv

2 r ← n2u

u
3 for i← 0 to n− 1 by u do
4 C′ ← Cir

5 for j ∈ [[1, r) do
6 a′ ← 0
7 for k ← 0 to u− 1 do
8 if j ∧ 1 then // Bitwise AND

9 a′ ← a′ + ai+u

10 j ← ⌊j/2⌋
11 ã←

⌈
a′ 2Nq

⌋
12 C′ ← C′ + Cir+j ·X ã

13 ACC← ACC · C′

14 return ACC

4 Novel techniques

Besides the several improvements to existing tech-
niques detailed in Section 3, we also developed
entirely new procedures to accelerate core func-
tionalities of TFHE as well as specific evaluation
methods.

4.1 UBR multi-value bootstrap

The unfolded blind rotation (UBR, Section 3.9)
is a theoretically promising technique, but there
are several factors limiting its impact on practi-
cal performance. The main one is the exponential
blow-up in the number of polynomial additions
and multiplications, which is defined by the value
of r in Algorithm 16. Nonetheless, in this section,
we introduce another use for the unfolded blind
rotation: a new method for multi-value bootstrap-
ping.

We start from the observation that lines 5 to 12
in Algorithm 16, which contain the exponential
blow-up, are not dependent on the lookup table,
which is stored in ACC. Therefore, we can use

the UBR to perform a multi-value bootstrap as
follows:

1. Run Algorithm 16 and store the values pro-
duced for C ′ in an array of RGSW samples C̃
with size n

u .

2. Run Algorithm 17 using C̃.

Algorithm 17: Multi-Value Functional
Bootstrap based on the UBR algorithm
(MVFB-UBR)

Input : an LWE sample
c = (a, b) ∈ LWEs(m), m ∈ Z2N

Input : z LUTs encoded in polynomials
LFi
∈ Rq, for i ∈ [[1, z]]

Input : a n/u-sized array of RGSW samples
C̃ produced by the UBR

Output: An array of LWE samples
c′i ∈ LWES ′(Fi(m)) for i = 1, ..., z,
where S ′ ∈ BN is the vector
interpretation of S

1 b′ ← ⌊b2N/q⌉+ N
2B

2 foreach i ∈ [[1, z]] do
3 ACC← Li
4 for j ← 0 to n

u − 1 do

5 ACC← ACC · C̃j

6 c′i ← SampleExtract0(ACC)

7 return c′

Compared to other existing techniques for
multi-value bootstrap, namely the ones we
described in Section 3.2, our new method is signif-
icantly more expensive, but it introduces unique
properties, and, instead of an alternative, it works
as a complement to the other methods.

• Compared to the method introduced Carpov et
al. [15], described in Algorithm 6, our method
allows for the evaluation of encrypted LUTs,
generally introduces less noise, and has no
requirements for the format of the LUT.

• Compared to the BML method from Chillotti et
al. [13], described in Algorithm 8, our method
does not have limits on the number of LUTs
it can evaluate, nor it affects the probability of
failure. Notice that it essentially removes the
main limitations from the BML and, hence,
could work to complement the technique when
needed.

13

Table 1: Summary of the techniques described in this work and our contributions to each.

Procedures Section Literature Improvements in this work

PBS 3.1 [13] -

MVFB
3.2

[15, 16] We modify the composition
algorithm to treat a corner
case on error growth.

[13] -

4.1 This work New technique

BFV-like multiplication 3.3 [13] -

FDFB

3.4.1 [13] Accelerated using the BLM
(as suggested in [13])

3.4.2 [21] Accelerated using the BLM

3.4.3 [22] and
this work

New technique, extending the
method of [22]

TreeFB
3.5 [16]

We use the RGSW bootstrap
or the MVFB-UBR to provide
MVFB for all levels of the tree.

ChainingFB -

CircuitBootstrap 3.6 [9] Accelerated using the BLM
(as suggested in [13])

RGSW Bootstrap 3.7 [20] -

KeySwitching 2.1.1, 3.8 [9, 17] Accelerated using FTM-SE

UBR 3.9 [18, 19] Method generalized for large
unfoldings (as suggested in [19])

FTM-SE 4.2 [9] We show how to exploit fast
PRNGs to improve performance

4.2 Faster-Than-Memory Seed
Expansion (FTM-SE)

The bootstrap operation and, to a lesser degree,
the key switching algorithm are the most time-
consuming procedures in TFHE. Both of them,
however, can be sped up at the cost of larger
keys. Specifically, one can increase the decomposi-
tion base of the key switching and the BlindRot
unfolding in the bootstrap. In both cases, it is pos-
sible to achieve linear gains in performance with
exponential growth in the key size. Techniques for
compressing evaluation keys are broadly available
in the literature. For TFHE, Chillotti et al. [9]
suggest storing just the pseudo-random number
generator (PRNG) seed used to generate the a

component of RLWE samples and only generat-
ing a when necessary. This technique is known as
Seeded (R)LWE and gives up to n times storage
and memory usage improvements for LWE sam-
ples and up to 2 for RLWE samples. In this work,
we not only implement this idea but also show
how we can use it to improve execution time in the
key switching algorithm and in basic arithmetic
procedures.

Algorithm 18 shows an implementation of an
RLWE sample subtraction using Seeded RLWE.
We could use any PRNG to implement it, but
SHAKE256 [30] was a convenient choice as we
were already using it for the rest of the imple-
mentation, and it is a cryptographically secure
PRNG. This version provides almost two times
storage and memory usage reduction for RLWE

14

key switching keys and bootstrap keys. However,
it slows down the execution by more than 10 times.
We could minimize the impact of this slowdown by
expanding the entire keys at loading time (which is
typically done by most implementations), but we
would lose the memory usage gains, which are one
of the most important benefits of this technique.

Algorithm 18: RLWE subtraction using
SHAKE256
Input : a seeded RLWE sample

c0 = (seeda0 , b0) ∈ RLWEs(p0)
Input : an RLWE sample

c1 = (a1, b1) ∈ RLWEs(p1)
Output: c′ = (a′, b′) ∈ RLWEs(p0 − p1)

1 a0 ← SHAKE256(seeda0 , N)
2 for i← 0 to N − 1 do
3 a′i ← a0,i − a1,i
4 b′i ← b0,i − b1,i
5 return c′

To solve this problem, we implement the
RLWE subtraction as shown in Algorithm 19.
There are two main changes to note in this version:

1. We replace SHAKE256 with Xoshiro/X-
oroshiro [31], a much faster PRNG, but that is
not considered cryptographically secure. There
are several examples of using such generators
for generating public information, as is the
case of the a component of (R)LWE samples.
For the security aspects of using Xoroshiro
for generating a, we refer to previous liter-
ature [31–33]. If a secure PRNG is required
even for public parameters, viable alterna-
tives may be found in Lightweight Cryptogra-
phy (LWC) [34].

2. We interleave the memory load of the b com-
ponent with the expansion computation of the
PRNG. In this way, we take advantage of
instruction-level parallelism since CPU (cal-
culation of the a component) and memory
(loading of the b component) intensive code
portions are executed simultaneously by the
processor.

At the implementation level, it was also nec-
essary to vectorize Xoroshiro’s code using AVX2
instructions. Ultimately, it was necessary to use
a highly optimized version of an already very

Algorithm 19: RLWE subtraction using
Xoshiro
Input : a seeded RLWE sample

c0 = (seeda0 , b0) ∈ RLWEs(p0)
Input : an RLWE sample

c1 = (a1, b1) ∈ RLWEs(p1)
Output: c′ = (a′, b′) ∈ RLWEs(p0 − p1)

1 state← seedai

2 for i← 0 to N − 1 do
3 a′i ← Xoroshiro128pp next(state)− a1,i
4 b′i ← b0,i − b1,i
5 return c′

fast generator to have speedups over the non-
compressed version. The vectorized version of
Xoroshiro is a side contribution of this work.

4.2.1 VAES version

On newer computer architectures, we can also
use AVX512-VAES instructions [35] to provide
fast and cryptographically-secure PRNG. This is
an interesting alternative to Xoroshiro and LWC-
based PRNGs, as the VAES hardware support is
able to introduce similar speed-ups while requir-
ing little implementation effort and providing the
security guarantees of a standard cryptographic
algorithm (AES).

5 Experimental Results

We implement all algorithms presented in
Section 3 in a single C library. The code is fully
portable and self-contained, and includes optional
optimizations for the Intel AVX2 and AVX512
Instruction Set Extensions.

We executed all experiments on a bare metal
instance on AWS public cloud (m6i.metal), using
an Intel Xeon Platinum 8375C (Ice Lake) CPU
at 3.5GHz with 512GB of RAM running Ubuntu
22.04.4 LTS. Each measurement presented in this
section is the average of at least 100 executions.

5.1 Parameters

We use the parameter sets reproduced in Table 2.
All of them are extracted from previous literature.
We select parameter sets 1 to 3 from Bergerat et
al. [24] as representatives of some of the most com-
monly used parameter sizes in TFHE. Meanwhile,
we adapted parameter set 4 from TFHEpp [36]

15

since it allows evaluating all techniques described
in this work.

Table 2: Parameter sets. Noise is chosen
based on the dimension for obtaining a
128-bit security level.

Name n N ℓbs βbs ℓks βks

Set 1 585 1024 2 28 5 22

Set 2 744 2048 1 223 5 23

Set 3 807 4096 1 222 5 23

Set 4 632 2048 4 29 8 24

5.2 Basic arithmetic

Most of the optimized implementations of TFHE
rely on the Fast Fourier Transform (FFT) for
providing fast polynomial arithmetics [37]. Our
library presents two options for FFT implementa-
tions: the SPQLIOS [38] library3, and the FFNT
library [39] for providing software portability.
As an additional contribution, we optimize both
libraries using AVX-512 instructions for SPQLIOS
and AVX2/FMA instructions for FFNT. Table 3
shows the execution time of FFT and inverse
FFT (IFFT) transforms. We note that our biggest
speedups concern the inverse FFT not because of
optimizations in the inner algorithm, but because
AVX512 instructions enable us to perform sig-
nificantly more efficient modular reductions for
floating-point. We also optimized the product and
the addition between polynomials, which took 516
and 314 ns, respectively. Their optimization is
independent of the FFT implementation.

Table 3: FFT implementation performance for
N = 2048. Time in microseconds.

Implementation Source FFT IFFT

FFNT [39] 8.43 11.12
FFNT (AVX2/FMA) This work 3.58 7.49
SPQLIOS (FMA) [38] 2.68 4.73

SPQLIOS (AVX512) This Work 2.58 2.65

3SPQLIOS was presented by Nicolas Gama et al. [38] with
TFHE [9]. It was adapted by TFHEpp [36] for their C++ code,
which we adapted to pure C.

5.3 Memory impact on the basic
arithmetic

At first, basic arithmetic operations such as poly-
nomial addition are quite inexpensive compared
to an FFT. In our AVX512 version of SPQLIOS,
the forward FFT takes 2.6µs while a polynomial
addition takes just 312ns. However, this compar-
ison only holds while all data is available in the
processors’ cache. Once we consider the evalua-
tion of large summations, which is the typical
use-case for additions (e.g. at the key switching),
costs increase quickly. Figure 1 shows the rela-
tion between the cost of a single RLWE sample
addition and the number of RLWE samples in a
summation loop. It also shows the impact of our
FTM-SE techniques. Each sample contains 2 poly-
nomials and takes 32KB of memory. Our machine
has 48KB, 1.25MB, and 54MB of L1, L2, and L3
cache, respectively.

The performance behavior observed in this
experiment partially explains the difficulties of
obtaining practical gains in techniques such as the
blind rotate unfolding. A bootstrapping key using
parameter Set 2 contains 1488 RLWE samples.
With unfolding 2 and 4, this number increases
to 2976 and 5952, respectively, which introduces
a slowdown to the basic arithmetic of more than
1.25 times.

This experiment also allows us to compare the
two algorithms we use for the FTM-SE. Xoroshiro
would be certainly the best option if the issue is
just performance, but VAES also provides signifi-
cant gains while being a more conservative option
for which security is well established.

5.4 FTM-SE

Table 4 shows the high-level functions that bene-
fit from the FTM-SE. We use the parameter set 4,
as it is the only one that evaluates all techniques
with a reasonably low probability of failure. We
note that this table could also be used to show
the improvements we are able to achieve by com-
bining existing techniques in the implementation.
Our fastest version of the circuit bootstrap, for
example, is 2.76 times faster than the most basic
implementation. This number goes up to 4.3 times
when we consider the FDFB methods. Notwith-
standing, we must note that these results only
showcase possible improvements enabled by this

16

0 500 1000 1500 2000 2500 3000 3500 4000

Number of RLWE samples in the loop

0

500

1000

1500

2000

2500
E
x
ec
u
ti
o
n
T
im

e
(n
s)

L2 cache L3 cache

Xoshiro

VAES

Memory

Fig. 1: Execution time of a single RLWE addition in a summation loop adding many RLWE samples.
Vertical lines represent the number of samples required to fill the data cache. VAES and Xoshiro curves
are the results of using the FTM-SE with the respective PRNG algorithm. Memory represents the result
of adding samples without using Seeded RLWE (i.e., loading everything from the cache or memory).

work, but they are not a comparison between the
techniques, which would require further work on
parameter optimization.

5.5 Bootstrap

Table 5 presents the execution times of the func-
tional bootstrap and all techniques that could
be used to implement the multi-value bootstrap.
Dashes indicate that the technique cannot be run
with the respective parameter set. Zeroes indi-
cate that the phase (setup or LUT evaluation)
is not required for the method. As we discussed
in Section 4.1, the MVFB and BML methods
are significantly faster than the UBR MVFB, but
they also present several limitations that do not
affect the UBR MVFB. On the other hand, the
RGSW Bootstrap, which is also unaffected by
the discussed limitations, requires much larger
parameters and would only be faster than the
UBR MVFB if there is a large number of LUTs
to evaluate. For example, considering the UBR
MVFB with unfolding u = 4 and supposing both
methods use the same parameters (Set 4), it would
be necessary at least 20 LUTs for the RGSW
Bootstrap to be faster than the UBR MVFB. In
practice, the UBR MVFB introduces significantly
less noise, and most applications could use the
UBR MVFB with Set 2 to achieve similar boot-
strapping capabilities as the RGSW Bootstrap
with Set 4. In this case, it would be necessary more
than 70 LUTs for the RGSW Bootstrap to be
faster than the UBR MVFB.

5.6 Comparison against other
libraries

TFHEpp [36] is the only library to cover many
of the techniques we consider in this work and, it
would, at first, be a natural source for comparing
the performance of our library. However, the most
recent versions of TFHEpp are built using the
arithmetic backend we developed in this project
(specifically, the AVX512 version of SPQLIOS
and the optimizations we introduce) and, hence,
performance should be essentially the same.

There are also several commercial libraries
implementing optimized versions of TFHE, such
as OpenFHE [26] and TFHE-RS [40]. Their
purpose and scope are, however, very different
from ours, making it difficult to provide a fair
comparison. For instance, applications and non-
functional features such as maintainability and
user-friendliness are completely outside of our
scope. Conversely, they also do not implement
the many experimental techniques and optimiza-
tions we implement in this work. Ultimately, one
could obtain a superficial comparison by looking
at core procedures, such as the functional boot-
strap, or core arithmetic functions, such as the
FTT or NTT implementations. For this work,
we consider it would be misleading to present
any claims over this comparison without further
analysis. Nonetheless, we executed all our exper-
iments in the same AWS instance (m6i.metal)
TFHE-RS uses for providing their benchmark

17

Table 4: High-level procedures using the FTM-SE. Execution time in microseconds using parameter
set 4. Speedup over memory.

Technique
Execution Time (µs) Speedup

Memory Xoshiro VAES Xoshiro VAES

PrivateKeySwitching 41,263 32,506 34,089 1.27 1.21
CircuitBootstrap 465,627 397,109 406,852 1.17 1.14
CircuitBootstrap + BML 364,231 294,620 303,325 1.24 1.20
CircuitBootstrap + BML + RLWE KS 198,911 163,244 168,722 1.22 1.18
FDFB-KS21 333,196 294,201 303,219 1.13 1.10
FDFB-KS21 + BML 233,375 194,629 199,968 1.20 1.17
FDFB-CLOT21 266,408 227,775 233,548 1.17 1.14
FDFB-CLOT21 + BML 199,055 160,928 166,489 1.24 1.20
FDFB-C 76,702 76,530 76,790 1.00 1.00

Table 5: Performance of multi-value bootstrapping methods. Execution time in microseconds.

Technique
Set 1 Set 2 Set 3 Set 4

Setup LUT Setup LUT Setup LUT Setup LUT

Functional Bootstrap 0 7,552 0 12,756 0 31,531 0 33,066
BML 7,552 0 12,756 0 31,531 0 33,066 0
MVFB 7,483 3 12,692 6 31,382 13 33,022 6

RGSW Bootstrap - - - - - - 212,798 40
UBR MVFB (u=2) 10,987 3,528 16,184 5,683 39,036 13,476 54,766 14,612
UBR MVFB (u=4) 15,246 1,703 20,816 2,742 46,991 6,567 68,463 6,926
UBR MVFB (u=8) 106,576 838 133,139 1,413 279,332 3,308 431,239 3,284

results [41], which also include data for several
other libraries and should, hence, facilitate such
analysis as future work.

6 Conclusion

One of our major goals in this work was to present
a software platform to facilitate the development
and testing of efficient methods and improvements
to TFHE. MOSFHET achieves this goal, and the
experimental results presented in this paper show-
case its potential. As we stress throughout the
paper, the library is fully portable, self-contained,
and offers optional optimizations using AVX2 and
AVX512 instructions, which enables efficient per-
formance on the most commonly used CPUs while
still supporting other architectures. As side con-
tributions, it also introduces versions of Xoroshiro
and SPQLIOS vectorized with AVX2 and AVX-
512 ISEs.

Notwithstanding, the main contributions of
this work are beyond the presentation of a library.
We reviewed and implemented the main tech-
niques presented so far for improving execution
time or error behavior in the homomorphic eval-
uation using the TFHE scheme. While it was
not within our scope to provide a comprehen-
sive survey of the literature, our presentation of
such techniques represents a contribution on its
own, particularly in the form of a systematiza-
tion of knowledge for TFHE. In terms of practical
impact, having all the techniques presented and
implemented in a single work provides consistency
for comparing existing techniques as well as for
developing new ones.

The novel techniques we introduced in
Section 4 are also contributions of independent
interest. The UBR-MVFB, for example, enables
accelerating the TreeFB significantly (up to 8
times considering the results of Table 5). The
improvements to basic procedures, such as our

18

optimized version of FFT libraries and the novel
FTM-SE, are more general, impacting a much
broader range of techniques that are used not only
in TFHE but also in most FHE implementations
regardless of scheme.

As future work, we expect the library to be
used not only for developing and evaluating new
methods for TFHE but also in different contexts
and applications.

Acknowledgments. This work is partially
supported by the São Paulo Research Foun-
dation (FAPESP) under grants 2013/08293-
7, 2019/12783-6, and 2021/09849-5; by the
National Council for Scientific and Technolog-
ical Development under grants 314645/2020-
9 and 404087/2021-3; by the Independent
Research Fund Denmark (DFF) project no.
1026-00350B; and by the European Union (GA
101096435 CONFIDENTIAL-6G). Views and
opinions expressed are however those of the
author(s) only and do not necessarily reflect those
of the European Union or the European Com-
mission. Neither the European Union nor the
European Commission can be held responsible for
them.

This work was partially performed when the
first author (A.G.) was a Ph.D. student at Uni-
versity of Campinas, Brazil, and partially when he
was visiting the Department of Computer Science
at Aarhus University, Denmark.

The source code for reproducing the experi-
ments is publicly available in our GitHub reposi-
tory: https://github.com/antoniocgj/MOSFHET

This preprint has not undergone any post-
submission improvements or corrections. The Ver-
sion of Record of this article is published in
the Journal of Cryptographic Engineering, and
is available online at https://doi.org/10.1007/
s13389-024-00359-z.

References

[1] Rivest, R.L., Adleman, L., Dertouzos, M.L.:
On data banks and privacy homomor-
phisms. Foundations of Secure Computation,
Academia Press (1978)

[2] Gentry, C.: A fully homomorphic encryp-
tion scheme. PhD Thesis, Stanford University
(2009)

[3] Regev, O.: On Lattices, Learning with Errors,
Random Linear Codes, and Cryptography. J.
ACM 56(6) (2009) https://doi.org/10.1145/
1568318.1568324 . Place: New York, NY,
USA Publisher: Association for Computing
Machinery

[4] Brakerski, Z., Gentry, C., Halevi, S.:
Packed Ciphertexts in LWE-Based Homo-
morphic Encryption. In: Kurosawa, K.,
Hanaoka, G. (eds.) Public-Key Cryptogra-
phy – PKC 2013, pp. 1–13. Springer, Berlin,
Heidelberg (2013). https://doi.org/10.1007/
978-3-642-36362-7 1

[5] Brakerski, Z., Vaikuntanathan, V.: Efficient
Fully Homomorphic Encryption from (Stan-
dard) LWE. In: 2011 IEEE 52nd Annual
Symposium on Foundations of Computer Sci-
ence, pp. 97–106 (2011). https://doi.org/10.
1109/FOCS.2011.12 . ISSN: 0272-5428

[6] Cheon, J.H., Kim, A., Kim, M., Song,
Y.: Homomorphic Encryption for Arith-
metic of Approximate Numbers. In: Takagi,
T., Peyrin, T. (eds.) Advances in Cryp-
tology – ASIACRYPT 2017, pp. 409–437.
Springer, Cham (2017). https://doi.org/10.
1007/978-3-319-70694-8 15

[7] Boura, C., Gama, N., Georgieva, M.,
Jetchev, D.: Simulating Homomorphic
Evaluation of Deep Learning Predictions.
In: Dolev, S., Hendler, D., Lodha, S.,
Yung, M. (eds.) Cyber Security Cryp-
tography and Machine Learning, pp.
212–230. Springer, Cham (2019). https:
//doi.org/10.1007/978-3-030-20951-3 20

[8] Lou, Q., Jiang, L.: SHE: A Fast and Accu-
rate Deep Neural Network for Encrypted
Data. In: Wallach, H., Larochelle, H.,
Beygelzimer, A., Alché-Buc, F.d., Fox,
E., Garnett, R. (eds.) Advances in Neu-
ral Information Processing Systems 32, pp.
10035–10043. Curran Associates, Inc., ???
(2019). http://papers.nips.cc/paper/9194-she-
a-fast-and-accurate-deep-neural-network-for-
encrypted-data.pdf

[9] Chillotti, I., Gama, N., Georgieva, M.,

19

https://github.com/antoniocgj/MOSFHET
https://doi.org/10.1007/s13389-024-00359-z
https://doi.org/10.1007/s13389-024-00359-z
https://doi.org/10.1145/1568318.1568324
https://doi.org/10.1145/1568318.1568324
https://doi.org/10.1007/978-3-642-36362-7_1
https://doi.org/10.1007/978-3-642-36362-7_1
https://doi.org/10.1109/FOCS.2011.12
https://doi.org/10.1109/FOCS.2011.12
https://doi.org/10.1007/978-3-319-70694-8_15
https://doi.org/10.1007/978-3-319-70694-8_15
https://doi.org/10.1007/978-3-030-20951-3_20
https://doi.org/10.1007/978-3-030-20951-3_20

Izabachène, M.: TFHE: Fast Fully Homomor-
phic Encryption Over the Torus. Journal of
Cryptology 33(1), 34–91 (2020) https://doi.
org/10.1007/s00145-019-09319-x . Accessed
2022-11-14

[10] Bonnoron, G., Ducas, L., Fillinger, M.:
Large FHE Gates from Tensored Homo-
morphic Accumulator. In: Joux, A., Nitaj,
A., Rachidi, T. (eds.) Progress in Cryptol-
ogy – AFRICACRYPT 2018, pp. 217–251.
Springer, Cham (2018). https://doi.org/10.
1007/978-3-319-89339-6 13

[11] Chillotti, I., Joye, M., Paillier, P.: Pro-
grammable Bootstrapping Enables Efficient
Homomorphic Inference of Deep Neural Net-
works. In: Dolev, S., Margalit, O., Pinkas,
B., Schwarzmann, A. (eds.) Cyber Security
Cryptography and Machine Learning. Lec-
ture Notes in Computer Science, pp. 1–19.
Springer, Cham (2021). https://doi.org/10.
1007/978-3-030-78086-9 1

[12] Guimarães, A.: MOSFHET: Optimized Soft-
ware for FHE over the Torus. original-
date: 2022-04-26T12:41:21Z (2023). https://
github.com/antoniocgj/MOSFHET Accessed
2023-05-16

[13] Chillotti, I., Ligier, D., Orfila, J.-B., Tap,
S.: Improved Programmable Bootstrapping
with Larger Precision and Efficient Arith-
metic Circuits for TFHE. In: Tibouchi,
M., Wang, H. (eds.) Advances in Cryp-
tology – ASIACRYPT 2021. Lecture
Notes in Computer Science, pp. 670–
699. Springer, Cham (2021). https:
//doi.org/10.1007/978-3-030-92078-4 23

[14] Chillotti, I., Gama, N., Georgieva, M.,
Izabachène, M.: Faster Packed Homo-
morphic Operations and Efficient Circuit
Bootstrapping for TFHE. In: Tak-
agi, T., Peyrin, T. (eds.) Advances in
Cryptology – ASIACRYPT 2017, pp.
377–408. Springer, Cham (2017). https:
//doi.org/10.1007/978-3-319-70694-8 14

[15] Carpov, S., Izabachène, M., Mollimard,
V.: New Techniques for Multi-value Input
Homomorphic Evaluation and Applications.

In: Matsui, M. (ed.) Topics in Cryp-
tology – CT-RSA 2019, pp. 106–126.
Springer, Cham (2019). https://doi.org/10.
1007/978-3-030-12612-4 6

[16] Guimarães, A., Borin, E., Aranha, D.F.:
Revisiting the functional bootstrap in TFHE.
IACR Transactions on Cryptographic Hard-
ware and Embedded Systems 2021(2), 229–
253 (2021) https://doi.org/10.46586/tches.
v2021.i2.229-253

[17] Chen, H., Dai, W., Kim, M., Song, Y.:
Efficient Homomorphic Conversion Between
(Ring) LWE Ciphertexts. Report Number:
015 (2020). https://eprint.iacr.org/2020/015
Accessed 2023-06-29

[18] Zhou, T., Yang, X., Liu, L., Zhang, W.,
Li, N.: Faster Bootstrapping With Multi-
ple Addends. IEEE Access 6, 49868–49876
(2018) https://doi.org/10.1109/ACCESS.
2018.2867655 . Conference Name: IEEE
Access

[19] Bourse, F., Minelli, M., Minihold, M.,
Paillier, P.: Fast Homomorphic Evaluation
of Deep Discretized Neural Networks. In:
Shacham, H., Boldyreva, A. (eds.) Advances
in Cryptology – CRYPTO 2018, pp. 483–512.
Springer, Cham (2018). https://doi.org/10.
1007/978-3-319-96878-0 17

[20] Gentry, C., Sahai, A., Waters, B.:
Homomorphic Encryption from Learn-
ing with Errors: Conceptually-Simpler,
Asymptotically-Faster, Attribute-Based. In:
Canetti, R., Garay, J.A. (eds.) Advances
in Cryptology – CRYPTO 2013. Lecture
Notes in Computer Science, pp. 75–92.
Springer, Berlin, Heidelberg (2013). https:
//doi.org/10.1007/978-3-642-40041-4 5

[21] Kluczniak, K., Schild, L.: FDFB: Full
Domain Functional Bootstrapping Towards
Practical Fully Homomorphic Encryption.
Report Number: 1135 (2021). https://eprint.
iacr.org/2021/1135 Accessed 2023-05-16

[22] Yang, Z., Xie, X., Shen, H., Chen, S., Zhou,
J.: TOTA: Fully Homomorphic Encryption

20

https://doi.org/10.1007/s00145-019-09319-x
https://doi.org/10.1007/s00145-019-09319-x
https://doi.org/10.1007/978-3-319-89339-6_13
https://doi.org/10.1007/978-3-319-89339-6_13
https://doi.org/10.1007/978-3-030-78086-9_1
https://doi.org/10.1007/978-3-030-78086-9_1
https://github.com/antoniocgj/MOSFHET
https://github.com/antoniocgj/MOSFHET
https://doi.org/10.1007/978-3-030-92078-4_23
https://doi.org/10.1007/978-3-030-92078-4_23
https://doi.org/10.1007/978-3-319-70694-8_14
https://doi.org/10.1007/978-3-319-70694-8_14
https://doi.org/10.1007/978-3-030-12612-4_6
https://doi.org/10.1007/978-3-030-12612-4_6
https://doi.org/10.46586/tches.v2021.i2.229-253
https://doi.org/10.46586/tches.v2021.i2.229-253
https://eprint.iacr.org/2020/015
https://doi.org/10.1109/ACCESS.2018.2867655
https://doi.org/10.1109/ACCESS.2018.2867655
https://doi.org/10.1007/978-3-319-96878-0_17
https://doi.org/10.1007/978-3-319-96878-0_17
https://doi.org/10.1007/978-3-642-40041-4_5
https://doi.org/10.1007/978-3-642-40041-4_5
https://eprint.iacr.org/2021/1135
https://eprint.iacr.org/2021/1135

with Smaller Parameters and Stronger Secu-
rity. Report Number: 1347 (2021). https://
eprint.iacr.org/2021/1347 Accessed 2023-05-
16

[23] Lee, Y., Micciancio, D., Kim, A., Choi, R.,
Deryabin, M., Eom, J., Yoo, D.: Efficient
FHEW Bootstrapping with Small Evalua-
tion Keys, and Applications to Threshold
Homomorphic Encryption. Report Number:
198 (2022). https://eprint.iacr.org/2022/198
Accessed 2023-04-10

[24] Bergerat, L., Boudi, A., Bourgerie, Q.,
Chillotti, I., Ligier, D., Orfila, J.-B., Tap, S.:
Parameter Optimization & Larger Precision
for (T)FHE. Published: Cryptology ePrint
Archive, Paper 2022/704 (2022). https://
eprint.iacr.org/2022/704

[25] Lyubashevsky, V., Peikert, C., Regev, O.:
On Ideal Lattices and Learning with Errors
over Rings. In: Gilbert, H. (ed.) Advances
in Cryptology – EUROCRYPT 2010. Lec-
ture Notes in Computer Science, pp. 1–23.
Springer, Berlin, Heidelberg (2010). https://
doi.org/10.1007/978-3-642-13190-5 1

[26] Badawi, A.A., Bates, J., Bergamaschi, F.,
Cousins, D.B., Erabelli, S., Genise, N.,
Halevi, S., Hunt, H., Kim, A., Lee, Y., Liu,
Z., Micciancio, D., Quah, I., Polyakov, Y.,
R.V, S., Rohloff, K., Saylor, J., Suponitsky,
D., Triplett, M., Vaikuntanathan, V., Zucca,
V.: OpenFHE: Open-Source Fully Homomor-
phic Encryption Library. Report Number:
915 (2022). https://eprint.iacr.org/2022/915
Accessed 2023-05-16

[27] Ducas, L., Micciancio, D.: FHEW: Boot-
strapping Homomorphic Encryption in Less
Than a Second. In: Oswald, E., Fischlin,
M. (eds.) Advances in Cryptology – EURO-
CRYPT 2015, pp. 617–640. Springer, Berlin,
Heidelberg (2015). https://doi.org/10.1007/
978-3-662-46800-5 24

[28] Fan, J., Vercauteren, F.: Somewhat Practi-
cal Fully Homomorphic Encryption. Report
Number: 144 (2012). https://eprint.iacr.org/
2012/144 Accessed 2023-05-21

[29] Clet, P.-E., Zuber, M., Boudguiga, A., Sirdey,
R., Gouy-Pailler, C.: Putting up the swiss
army knife of homomorphic calculations by
means of TFHE functional bootstrapping.
Report Number: 149 (2022). https://eprint.
iacr.org/2022/149 Accessed 2023-05-21

[30] Dworkin, M.J.: SHA-3 Standard:
Permutation-Based Hash and Extendable-
Output Functions. Technical Report
NIST FIPS 202, National Institute of
Standards and Technology (July 2015).
https://doi.org/10.6028/NIST.FIPS.202 .
https://nvlpubs.nist.gov/nistpubs/FIPS/
NIST.FIPS.202.pdf Accessed 2023-05-21

[31] Blackman, D., Vigna, S.: Scrambled Lin-
ear Pseudorandom Number Generators.
ACM Transactions on Mathematical Soft-
ware 47(4), 36–13632 (2021) https://doi.org/
10.1145/3460772 . Accessed 2023-05-16

[32] Bos, J.W., Friedberger, S., Martinoli, M.,
Oswald, E., Stam, M.: Fly, you fool! Faster
Frodo for the ARM Cortex-M4. Report
Number: 1116 (2018). https://eprint.iacr.
org/2018/1116 Accessed 2023-05-21

[33] Gérard, F., Rossi, M.: An Efficient and Prov-
able Masked Implementation of qTESLA. In:
Beläıd, S., Güneysu, T. (eds.) Smart Card
Research and Advanced Applications. Lec-
ture Notes in Computer Science, pp. 74–91.
Springer, Cham (2020). https://doi.org/10.
1007/978-3-030-42068-0 5

[34] Saarinen, M.-J.O.: Exploring NIST
LWC/PQC Synergy with R5Sneik: How
SNEIK 1.1 Algorithms were Designed to Sup-
port Round5. Report Number: 685 (2019).
https://eprint.iacr.org/2019/685 Accessed
2023-05-21

[35] Drucker, N., Gueron, S., Krasnov, V.: Making
AES Great Again: The Forthcoming Vec-
torized AES Instruction. In: Latifi, S. (ed.)
16th International Conference on Information
Technology-New Generations (ITNG 2019).
Advances in Intelligent Systems and Comput-
ing, pp. 37–41. Springer, Cham (2019). https:
//doi.org/10.1007/978-3-030-14070-0 6

21

https://eprint.iacr.org/2021/1347
https://eprint.iacr.org/2021/1347
https://eprint.iacr.org/2022/198
https://eprint.iacr.org/2022/704
https://eprint.iacr.org/2022/704
https://doi.org/10.1007/978-3-642-13190-5_1
https://doi.org/10.1007/978-3-642-13190-5_1
https://eprint.iacr.org/2022/915
https://doi.org/10.1007/978-3-662-46800-5_24
https://doi.org/10.1007/978-3-662-46800-5_24
https://eprint.iacr.org/2012/144
https://eprint.iacr.org/2012/144
https://eprint.iacr.org/2022/149
https://eprint.iacr.org/2022/149
https://doi.org/10.6028/NIST.FIPS.202
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.202.pdf
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.202.pdf
https://doi.org/10.1145/3460772
https://doi.org/10.1145/3460772
https://eprint.iacr.org/2018/1116
https://eprint.iacr.org/2018/1116
https://doi.org/10.1007/978-3-030-42068-0_5
https://doi.org/10.1007/978-3-030-42068-0_5
https://eprint.iacr.org/2019/685
https://doi.org/10.1007/978-3-030-14070-0_6
https://doi.org/10.1007/978-3-030-14070-0_6

[36] Matsuoka, K.: TFHEpp: pure C++ imple-
mentation of TFHE cryptosystem (2020).
https://github.com/virtualsecureplatform/
TFHEpp

[37] Chu, E., George, A.: Inside the FFT Black
Box: Serial and Parallel Fast Fourier Trans-
form Algorithms. CRC Press, ??? (1999).
Google-Books-ID: 30S3kRiX4xgC

[38] Gama, N., et al.: Spqlios FFT Library
(2016). https://github.com/tfhe/tfhe/tree/
master/src/libtfhe/fft processors/spqlios

[39] Klemsa, J.: Fast and Error-Free Negacyclic
Integer Convolution using Extended Fourier
Transform. Report Number: 480 (2021).
https://eprint.iacr.org/2021/480 Accessed
2023-05-22

[40] Zama: TFHE-rs: Pure Rust implementation
of the TFHE scheme for boolean and inte-
gers FHE arithmetics. Zama (2023). https://
github.com/zama-ai/tfhe-rs Accessed 2023-
05-16

[41] Zama: Benchmarks - TFHE-rs. https://docs.
zama.ai/tfhe-rs/getting-started/benchmarks
Accessed 2023-05-16

22

https://github.com/virtualsecureplatform/TFHEpp
https://github.com/virtualsecureplatform/TFHEpp
https://github.com/tfhe/tfhe/tree/master/src/libtfhe/fft_processors/spqlios
https://github.com/tfhe/tfhe/tree/master/src/libtfhe/fft_processors/spqlios
https://eprint.iacr.org/2021/480
https://github.com/zama-ai/tfhe-rs
https://github.com/zama-ai/tfhe-rs
https://docs.zama.ai/tfhe-rs/getting-started/benchmarks
https://docs.zama.ai/tfhe-rs/getting-started/benchmarks

	Introduction
	Contributions

	Fully Homomorphic Encryption over the Torus (TFHE)
	Notation
	Encryption scheme
	Evaluating arithmetic

	Bootstrapping
	Public and private key switching
	Blind rotation
	Sample extraction
	The functional bootstrap
	The negacyclic property
	Evaluating encrypted LUTs and private functions

	State-of-the-art on TFHE and improvements
	The improved programmable bootstrap
	The Multi-Value Functional Bootstrap (MVFB)
	Bootstrapping Many LUTs

	Tensor product
	Full-Domain Functional Bootstrap (FDFB)
	The tensor product method
	The PubMux method
	The chaining method

	Evaluating large lookup tables
	Tree-based and Chaining methods
	(Bootstrapped) Vertical Packing method

	The circuit bootstrap
	The full RGSW bootstrap
	(R)LWE conversion
	The blind rotation unfolding
	State-of-the-art summary

	Novel techniques
	UBR multi-value bootstrap
	Faster-Than-Memory Seed Expansion (FTM-SE)
	VAES version

	Experimental Results
	Parameters
	Basic arithmetic
	Memory impact on the basic arithmetic
	FTM-SE
	Bootstrap
	Comparison against other libraries

	Conclusion
	Acknowledgments

