
Low-Latency Hardware Private Circuits

David Knichel

firstname.lastname@rub.de

Ruhr University Bochum

Horst Görz Institute for IT Security

Bochum, Germany

Amir Moradi

firstname.lastname@uni-koeln.de

University of Cologne

Institute for Computer Science

Cologne, Germany

ABSTRACT
Over the last years, the rise of the Internet of Things (IoT), and the

connection of mobile – and hence physically accessible – devices,

immensely enhanced the demand for fast and secure hardware im-

plementations of cryptographic algorithms which offer thorough

protection against Side-Channel Analysis (SCA) attacks. Among

a variety of proposed countermeasures against SCA, masking has

transpired to be a promising candidate, attracting significant at-

tention in both, academia and industry. Here, abstract adversary

models have been derived, aiming to accurately model real-world

attack scenarios, while being sufficiently simple to enable formally

proving the SCA resilience of masked implementations on an al-

gorithmic level. In the context of hardware implementations, the

robust probingmodel has become highly relevant for proving SCA re-

silience due to its capability to model physical defaults like glitches

and data transitions. As constructing a correct and secure masked

variant of large and complex circuits is a challenging task, a new line

of research has recently emerged, aiming to design small, masked

subcircuits – realizing for instance a simple AND gate – which still

guarantee security when composed to a larger circuit. Although

several designs realizing such composable subcircuits – commonly

referred to as gadgets – have been proposed, negligible research was
conducted in order to find trade-offs between different overhead

metrics, like randomness requirement, latency, and area consump-

tion.

In this work, we present HPC3, a hardware gadget which is

trivially composable under the notion of PINI in the glitch-extended

robust probing model. HPC3 realizes a two-input AND gate in one

clock cycle which is generalized for any arbitrary security order.

Existing state-of-the-art PINI-gadgets either require a latency of

two clock cycles or are limited to first-order security. In short, HPC3

enables the designer to trade double the randomness for half the

latency compared to existing gadgets, providing high flexibility and

enabling the designer to gain significantly more speed in real-time

applications.

1 INTRODUCTION
Since the first seminal description of Side-Channel Analysis (SCA)

in [35, 36], a significant increase in physically accessible devices

has further driven demand for effective protection against physical

attacks. At the same time, a wide variety of different exploitable

side channels have been revealed, including timing [35], power

consumption [36], electromagnetic (EM) emanations [24], or tem-

perature and heat dissipation [30], posing a wide-ranging and divers

threat to cryptographic implementations. Despite the increasing

effort which has been committed to developing countermeasures

against SCA attacks during the last decades, it remains a challeng-

ing and complex task to design secure hardware implementations

offering a sufficient security level on the one hand, and high effi-

ciency on the other.

Among a wide range of emerged SCA countermeasures, mask-
ing has proven to be a highly promising candidate due to its well-

founded theoretical background based on secret sharing and its

well-understood security requirements [20]. Although extensive re-

search in this area has been conducted and several masking schemes

were proposed over the last years [26, 28, 31, 41, 43, 51], many of

these schemes have been proven to suffer from either design flaws

or invalid assumptions [39].

As a consequence, researchers started focusing on the estab-

lishment of formal models in order to abstractly define an SCA

attacker’s capabilities and to realistically model circuit behavior [6,

23, 31, 42]. The advantage of these models is twofold. On the one

hand, they enable security verification of masked implementations

on an abstract level, aiming to detect security flaws in an early stage

of the design process. Here, a variety of tools, working at different

abstraction levels and offering various accuracy, have been pro-

posed [3–5, 11, 12, 14, 17, 33]. On the other hand, this formalization

enables the design of masked constructions that are provably secure

with respect to the defined adversary model. The ISW 𝑑-probing

model [31] – and its extension to modeling physical defaults in hard-

ware implementations [23] – has proven to be well suited to find

such secure constructions, due to its convenient level of abstraction

and its existing reduction to the Noisy Leakage Model [22], which
is considered to be the closest to reality with respect to accurately

modeling leakage behavior.

Although different models for formal security verification have

been established in the context of SCA, finding provably secure

masking schemes remains a hard task for complex circuits and

high security orders. As a remedy, different composability notions

have been proposed which define properties that aim to guarantee

security even when circuits are composed. Following a divide-and-

conquer approach, this reduces the task of finding large secure

circuits to the task of finding small subcircuits which are in confor-

mity with the composability notions. In the context of the𝑑-probing

model, Non-Interference (NI)/Strong Non-Interference (SNI) [4, 5]

and Probe-Isolating Non-Interference (PINI) [18] have been pro-

posed, where SNI was introduced since the restrictions defined by

NI were not sufficient to guarantee composability. As the scope of

SNI was originally limited to single-output gadgets, Cassiers et al.

provided an extension to cover multiple-output gadgets, but at the

same time proposed PINI which further reduces the overhead neces-

sary to construct composable gadgets [18]. In their recent work [19],

Cassiers and Standaert further extended the adversary model to

1

https://orcid.org/0000-0002-2510-8881
https://orcid.org/0000-0002-4032-7433

David Knichel and Amir Moradi

accurately cope with data transitions between different clock cycles

and formally defined the notion of Output Probe-Isolating Non-

Interference (O-PINI), which aims to achieve trivial composability

under (i) transitions and (ii) transitions + glitches. In the course of

the introduction of these wide variety of notions, several concrete

gadgets have been presented, either realizing atomic logic functions,

like AND or refresh gates [5, 11, 17–19, 27, 31, 38], or even arbitrary

logic functions [34].

As embedded real-time applications become increasingly rele-

vant – especially in the context of the rapidly growing IoT – and

due to the high accessibility of the involved devices, designing

fast and protected cryptographic hardware implementations is the

key to guarantee a high level of security and sufficiently fast data

processing. As a consequence, reducing the latency, introduced by

masking a cryptographic hardware implementation, is an important

task whose difficulty is mainly rooted in omitting leakage through

physical defaults like glitches and transitions [19, 23]. As compos-

able hardware gadgets for arbitrary security orders are restricted

to atomic logic functions, reducing the latency of a gadget would

have a significant effect on the latency of the over-all composed

circuit. It is hence highly beneficial if we can further reduce the

latency of existing schemes.

Contributions. In this work, we present HPC3, a low-latency

hardware gadget, that offers 𝑑-th order security and is trivially

composable under the notion of PINI in the glitch-extended robust

probing model. Similar toHPC1 andHPC2 [17], it realizes a masked

AND gate that can be instantiated for arbitrary security orders 𝑑 .

In contrast to HPC2, our newly introduced HPC3 only needs a

single register stage instead of two, regardless of the security order,

while doubling the randomness requirements. It hence enables the

designer to trade double the randomness for half the latency, while

sustaining the same security level and providing significantly more

flexibility with respect to different use cases – for example in the

context of fast memory encryption. To the best of our knowledge,

HPC3 is the first glitch-robust composable gadget which is set-

tled in the PINI framework and can be instantiated utilizing only

one register stage for any security order. We further show that,

compared to HPC2, our construction itself leads to less chip area

overhead – at the cost of a higher demand for fresh randomness.

Furthermore, we present HPC3+, a gadget that is directly based

on HPC3 and offers trivial composability in the simultaneous pres-

ence of both transition and glitches. Eventually, we prove and for-

mally verify our constructions, compare our work to state-of-the-art

hardware gadgets, and explore multiple case studies and conduct

experimental leakage assessments.

Outline. We start by elaborating all necessary theoretical con-

cepts in Section 2. This includes a summary of all notations used

throughout this work, a definition of the circuit and adversary

model, and recapitulating different security and composability no-

tions. In Section 3, we present our new gadget HPC3 and prove

its conformity to the PINI notion in the glitch-extended robust

probing model. Here, we further present HPC3+ and prove its triv-

ial composability under transitions paired with glitches, before

we compare our designs to state-of-the-art trivially-composable

hardware gadgets in Section 4. After we conduct analyses on an

extensive list of case studies, i.e., different cryptographic implemen-

tations, and perform experimental leakage assessments in Section 5,

we conclude our work in Section 6.

2 BACKGROUND
2.1 Notations
We denote random variables by capital letters, e.g., 𝑋 ∈ F2 de-

notes a binary random variable. Further, we use bold letters like

X to denote sets. Initializations of random variables are denoted

by small letters, while the probability that 𝑋 takes 𝑥 is written as

𝑃𝑟 [𝑋 = 𝑥]. Moreover, we indicate the 𝑖-th input to a function with

subscript 𝑖 while superscripts identify shares of random variables.

Hence, the 𝑠-th share of the 𝑖 input to a function is denoted as

𝑋𝑠
𝑖
. Let further |X|𝑖 denote the number of shares in a set X cor-

responding to 𝑋𝑖 . When masking a function F : F𝑛
2
↦→ F𝑚

2
with

𝑡 shares per input, the set containing all input shares is given as

𝑆ℎ(X) = [𝑋 0

0
, 𝑋 1

0
, . . . , 𝑋 𝑡−1

0
, 𝑋 0

1
, . . . , 𝑋 𝑡−1

𝑛−1
]. In the same manner, for

a set of share indices I ⊆ [0, . . . , 𝑡 − 1], 𝑆ℎ(X)I denotes the set

of all input shares 𝑋𝑠
𝑖
, with 0 ≤ 𝑖 < 𝑛 and 𝑠 ∈ I. Eventually, 𝑃𝑊

denotes the (extended) probe on a wire𝑊 , while drawing a value

𝑋 uniformly and at random from a set 𝑆 is denoted as 𝑋
$← 𝑆 .

2.2 Circuit Model
As originally considered in [31] and later extended in [23], any

stateful and deterministic circuit C is modeled as a Directed Acyclic

Graph (DAG) GC = {V, E} withV being the set of vertices and E
the set of edges inGC. The edges represent wires carrying elements

of F2 while the vertices are combinational gates such as AND and

XOR, or memory gates, i.e., registers. Memory gates will output the

previous input to the gate on any circuit invocation while storing

the input for the next invocation. Eventually, GC realizes a Boolean

function F : F𝑛
2
↦→ F𝑚

2
.

As this model lacks the notion of cycling connections in a circuit,

and the ability to model different executions of the same physical

gate, it has been extended towards a more specific circuit model

in [19]. This model introduces so-called structural gates which
among its functionality, public and secret parameters, also cap-

tures the latency of a gate. Structural wires are then defined as wires

connecting structural gates, and finally a structural circuit is defined
as a directed graph whose nodes are structural gates and whose

edges are structural wires.

The definition of a structural circuit can then be extended to

cover states in different clock cycles by defining a state of each wire

and gate for every clock cycle:

Definition 2.1 (Circuit Execution). A Circuit Execution of
a structural circuit C = (G,W) for the set of cycles T is a directed
graph GC = (V, E) with V ∈ G × T and E ∈ W × T where wires
connect the gates according to their latency. Here, G and W denote
the structural gates and wires of C.

Note that in this model, combinational gates – like AND and XOR
– are structural gates with latency 𝑙 = 0, realizing the corresponding

Boolean function, while registers are structural gates realizing the

identity function and having latency 𝑙 = 1. Nevertheless, structural

gates are defined in a more general way, possibly containing several

register stages.

2

Low-Latency Hardware Private Circuits

Thanks to the previous research conducted in [19] and due to the

share isolating property of PINI, we can conveniently limit all our

considerations to the simpler original circuit model while achieving

secure composition under transitions in the more complex model

of circuit executions.

Encoded Circuit Model. In order to restrict the adversarial prob-

ing solely to the masked circuit, and to exclude the masking and

unmasking of the input data, the process of secure computation

is divided into three steps. As defined in [1], a circuit compiler is
defined by a tuple of three algorithms (COMPILE, ENCODE, DE-
CODE), which are defined as follows.

• The COMPILE algorithm is deterministic and takes as input

a structural circuit C and outputs a randomized (masked) cir-

cuit C̃.
• ENCODE is a probabilistic algorithm that takes as input X and

outputs the encoded input X̃. This encoded input corresponds

to the shared representation of the data, i.e., X̃ = 𝑆ℎ(X), which
– in our case – is derived by means of Boolean masking.

• Eventually, DECODE is a deterministic algorithm that takes

encoded data Ỹ and decodes/unshares it to achieve Y.
As a result, these algorithms enable sharing of the initial input

data (through ENCODE), a computation on the shared represen-

tation of the input (through C̃) and an unsharing of the result

(through DECODE), such that Y← DECODE ◦ C̃ ◦ ENCODE(X)
for Y← C(X), while the adversary is restricted to only make ob-

servations within C̃. It means that the algorithms ENCODE and

DECODE are known to the adversary, but neither the output of

ENCODE nor the input of DECODE.

2.3 Boolean Masking
Following the approach of secret sharing, a Boolean masking of

a secret 𝑋 ∈ F𝑛
2
is a set X ∈ F𝑛×𝑠

2
of 𝑠 independent secret shares

𝑋 𝑖 ∈ F𝑛
2
, 0 ≤ 𝑖 < 𝑠 , such that 𝑋 =

𝑠−1⊕
𝑖=0

𝑋 𝑖
. This is commonly

derived by independently drawing 𝑋 𝑖 $← F𝑛
2
, for 0 ≤ 𝑖 < 𝑠 − 1 and

calculating the remaining share as the XOR sum of all other shares:

𝑋𝑠−1 =
𝑠−2⊕
𝑖=0

𝑋 𝑖
. Following the definition described in Section 2.2,

this step describes the ENCODE algorithm in the case of Boolean

masking. A direct implication of Boolean masking necessitates

splitting sensitive data in at least 𝑑 + 1 shares in order to achieve

𝑑-th order security.

2.4 Adversary Model
Following the definition in Section 2.2, for the remainder of this

work, we assume that an adversary’s access to computations is

limited to C̃ and that the execution of ENCODE and DECODE
remain unavailable.

𝑑-Probing Model. The standard 𝑑-probing model, introduced by

Ishai et al. in [31], grants an adversary the ability to probe up to 𝑑

wires of a circuit. Here, every logic gate acts as a synchronization

element, so every wire is considered stable, carrying only the result

of the driving gate under the current assignment of the primary

inputs. Intuitively, security in this model is given, if an adversary is

not able to receive any information about sensitive (unshared) data

by observing the joint distribution over maximal 𝑑 probed wires.

Glitch-Extended Probing. Since the standard probing model does

not cover the modeling of physical defaults occurring in hardware

implementations, it was extended by Faust et al. in [23]. In their

work, the authors introduced the robust probing model which aims

to extend the probes enabling them to capture leakage originat-

ing from (i) data transitions at registers, (ii) coupling effects, i.e.

dependencies between adjacent wires, and (iii) glitches.

The concept of glitches describes signal recombination caused by

different delay paths in a digital circuit. Hence, in practice, a single

probe on a wire is not only able to observe the intended and stable

output signal of its driving gate, but possibly a recombination of

several upstream signals, up to the last synchronization point, i.e.,

registers output or primary inputs. To capture the worst case in this

context, the glitch extension of a probe is hence the set of probes

placed on all these synchronization points.

This is formally defined through Algorithm 1. The glitch exten-

sion of a probe is defined recursively and will either return the

union over all glitch-extended probes placed on the input of the

driving combinational gate, or return the probe itself in case the

probe is placed on an output of a register or a primary input. Even-

tually, the extension of a set of standard probes is simply derived

by uniting all corresponding glitch-extended probes.

Transition-Extended Probing. Considering the definition of a cir-

cuit execution, given in Definition 2.1, the transition-extended

probes on a structural gate – which is formally defined in [19] by the

fact that all its executions are identical except for a shift in time, i.e.,

in clock cycles – are all non-extended probes 𝑃𝑊 and additionally

the sets

{
(𝑊, 𝑡 − 1), (𝑊, 𝑡)

}
. This means the joint distribution of

probes in two consecutive clock cycles while

{
(𝑊, 𝑡 − 1), (𝑊, 𝑡)

}
belongs to the same execution of the probed structural gate. Here,

𝑡 refers to a clock cycle and (𝑊, 𝑡) refers to the state of𝑊 during

this specific clock cycle, i.e., a node in the circuit execution given

in Definition 2.1. For example, a non-extended probe on a register

output would extend to two probes: on its input and output wires.

Transition+Glitch-Extended Probing. Combining transition- and

glitch-based probe extensions is straightforward. First, all non-

extended probes are glitch-extended, before every resulting probe

becomes transition-extended. This corresponds to the physical prop-

erty that a propagation of a glitch may depend on both the new

and the previous value of the wire.

𝑑-Probing Security. In the (robust) probing model, an adversary

is granted the ability to probe up to 𝑑 wires of a masked circuit

C̃. Naturally, 𝑑-probing security is achieved iff an adversary with

these capabilities, i.e., an adversary in the 𝑑-probing model, does

not learn anything about the processed secrets [31]:

Definition 2.2 (𝑑-Probing Security). A masked circuit C̃ –
derived by compiling C with secret input X – achieves 𝑑-probing
security iff for any set of probes P, |P| ≤ 𝑑 , the joint distribution
over all observations Q made by (extended) probes P is statistically
independent of any secret X, i.e., the following holds for all possible
assignments to variables in Q and X:

𝑃𝑟 [Q|X] = 𝑃𝑟 [Q]
3

David Knichel and Amir Moradi

Algorithm 1: Glitch Extension

Input :Non-extended probe 𝑃 ∈ F2

Output :Glitch-extended probes P𝐸 ∈ F𝑝
2
, 𝑝 > 0

1 if 𝑃 is placed on an output of a combinational gate then
2 P𝐸 ← ⋃

0≤𝑖<𝑛
glitch-extend(𝑃𝑖) // where 𝑃𝑖, 0 ≤ 𝑖 < 𝑛

are all inputs to
the driving gate

3 else
4 if 𝑃 is placed on an output of a register or on a primary input

then
5 P𝐸 ← {𝑃 }
6 end
7 end

2.5 Circuit Composition
Several security and composability notions have been proposed

in recent years, aiming to enable efficient masking of large and

complex circuits. Before we give an overview of these notions, we

start by introducing the concepts of probe simulation and probe
propagation, paving the ground for the subsequent definitions.

Probe Simulatability. The concept of probe simulatability [18, 31]

helps to argue about dependencies between probes and input shares

to a masked/encoded circuit. Its definition is given in the following.

Definition 2.3 (Perfect Probe Simulation). Given a set of (ex-
tended) probes P ∈ F𝑡

2
on an encoded circuit C̃, P is said to be perfectly

simulatable by a set S of input shares iff there exist a simulator SIM,
such that for any values of the inputs to C̃, the joint probability distri-
bution over P and SIM(S) are equal, where SIM(S) : F

|S |
2
↦→ F𝑡

2
with

input S ⊆ 𝑆ℎ(X) is a probabilistic polynomial time (p.p.t.) simulator.

Probe Propagation. The concept of Probe Propagation – initially

introduced by Cassiers et al. in [18] – is closely related to simulata-

bility, and defines which wires are necessary to perfectly simulate a

probe placed on C̃. Intuitively, it describes, how leakage is traversed

backwards throughout a circuit, beginning from the point where

the probe is placed. Restricting probe propagation has proven to be

a key factor to guarantee composability.

Considering a probe 𝑃 ∈ F2 on a subcircuit , 𝑃 is said to propagate

into an input of the subcircuit, if the input is required to perfectly

simulate 𝑃 . When considering composability notions, propagation

of internal and output probes of a gadget are restricted following

a well defined set of rules and allowing to make statements of the

overall circuit. For this, the propagated probes can be derived by

iteratively substituting a probe by its propagated variant on the

gadgets’ inputs until the overall circuit’s input is reached.

Non-Interference (NI). As directly designingmasked circuits which

achieve 𝑑-probing security has proven to be hard for large and

complex functions, different composability notions have been intro-

duced as a remedy. These notions aim to define sufficient properties

which a masked circuit must fulfill in order to provide 𝑑-th order

security in the probing model when composed to a larger circuit.

Following a divide-and-conquer approach and utilizing atomic logic

functions – typically AND and XOR – large circuits can be derived

by composing masked versions of these atomic gates – commonly

referred to as gadgets.
Utilizing the concept introduced above, and as initially elaborated

in [4], NI aims to restrict probe propagation to a certain set of input

shares:

Definition 2.4 (𝑑-Non-Interference (NI)). A masked circuit C̃
provides 𝑑-Non-Interference iff for any probe set |P| of 𝑡 ≤ 𝑑 probes,
there exists a set S of input shares with |S|∀𝑖 ≤ 𝑡 such that P can be
perfectly simulated by S.

Strong Non-Interference (SNI). The notion of SNI [5] has been

introduced in order to correct composability flaws regarding NI

and restricts probe propagation even further:

Definition 2.5 (𝑑-StrongNon-Interference (SNI)). Amasked
circuit C̃ provides 𝑑-Strong Non-Interference iff for any probe set P,
containing 𝑡 = 𝑡1 + 𝑡2 ≤ 𝑑 probes, where 𝑡1 probes are placed on
internal wires and 𝑡2 on output wires, there exists a simulation set S
of input shares with |S|∀𝑖 ≤ 𝑡1, such that P can be perfectly simulated
by S.

Here, output probes are not allowed to propagate into any input

shares, hence resolving the flaws with respect to composability

discovered for NI [5], but implication of secure composition was

originally still restricted to single-output gadgets.

Probe-Isolating Non-Interference (PINI). In [18], it has been shown
that the original definition of SNI can be extended to cover multiple-

output gadgets as well. Nonetheless, in the same work, the au-

thors introduced the notion of PINI, which elegantly isolates probe

propagation within single share domains, enabling trivial imple-

mentations of linear functions and reducing entropy and area re-

quirements compared to SNI, while guaranteeing straightforward

composability.

Similar to Domain-Oriented Masking (DOM), in the context

of PINI, a specific share domain is assigned to every input and

output share. Now, in order to be PINI, every output probe is only

allowed to propagate within its own share domain (share index)

while propagation of every internal probe is limited to a single (but

arbitrary) share domain:

Definition 2.6 (𝑑-Probe-Isolating Non-Interference (PINI)).

Let PI be the set of internal probes with |PI | = 𝑡1. Let further IO be the
index set assigned to the output wires probed by PO with |IO | = 𝑡2.

A masked circuit C̃ provides 𝑑-Probe-Isolating Non-Interference
iff for every P = PI ∪ PO with 𝑡1 + 𝑡2 ≤ 𝑑 , there exists a set II of
circuit indices with |II | ≤ 𝑡1 such that P can be perfectly simulated
by S = 𝑆ℎ(X)II∪IO .

Conveniently, this definition directly implies that the trivial im-

plementation of linear functionswith𝑑+1 shares, i.e., the share-wise

application of the unshared function, is 𝑑-PINI even in the glitch-

extended robust probing model. Consequently, linear functions do

not introduce any additional latency or entropy overhead into the

design.

PINI is invariant under composition, i.e., a circuit composed of

gadgets fulfilling 𝑑-PINI is itself 𝑑-PINI. This is true, if gadgets are

carefully connected, i.e., if an output with a certain share index

is only connected to an input with the same share index. There-

fore, since 𝑑-PINI implies 𝑑-probing security, the resulting circuit

4

Low-Latency Hardware Private Circuits

will be secure in the 𝑑-probing security model and will reveal no

information about any secret value under 𝑑 (extended) probes.

In order to achieve trivial composition under transitions, an ex-

tension to the original definition of PINI, i.e., O-PINI, was recently

introduced in [19]. It deals with adjacent executions of the same

gadget, i.e., if the input of a gadget depends on the output of itself.

As for simulating the second execution of the gadget, the simulator

may need to also simulate outputs of the first gadget execution, this

leads to an effective probe extension of internal probes to additional

probes on the output. As a consequence, the probed wires may prop-

agate into more circuit shares than allowed, causing a reduction in

the security level of the design. Naturally, a possible solution would

be to avoid adjacent execution of gadgets, for example by means of

an ‘empty/dummy’ clock cycle between executions. As this would

introduce composability restrictions, which make additional design

verifications necessary, O-PINI was introduced in order to guaran-

tee trivial composability. O-PINI copes with the issue of adjacent

executions by additionally enforcing simulatability of every output

wire whose share index is also a share index in the simulation set:

Definition 2.7 (𝑑-Output Probe-Isolating Non-Interfer-

ence (O-PINI)). Let PI be the set of internal probes with |PI | = 𝑡1.
Let further IO be the index set assigned to the output wires probed by
P𝑂 with |IO | = 𝑡2.

A (unrolled) masked circuit C̃ provides 𝑑-Probe-Isolating Non-
Interference iff for every P with 𝑡1 + 𝑡2 ≤ 𝑑 , there exists a set II of
circuit indices with |II | ≤ 𝑡1 such that P = PI ∪ P𝑂 ∪ OII can be
perfectly simulated by S = 𝑆ℎ(X)II∪IO .

Note that, for the sake of simplicity and in contrast to [19], we

restrict the definition of𝑑-O-PINI to unrolled designs (which in [19]

is called pipelined), i.e., designs where no feedback loops exist. Due

to their implication of trivial composability, all our constructions

in this work are based on the PINI and O-PINI notions.

2.6 Automated Masking
Gadgets fulfilling composability notions like PINI are well suited for

automated generation of masked hardware. By simply synthesizing

the implementation based on a library that only includes logic gates

for which a corresponding gadgets exist, the implementation can

be masked by substituting every gate in the resulting netlist with

those gadgets. Since composability notions elegantly guarantee

(robust) probing security when gadgets are composed, the overall

design will be provable secure.

The recently introduced software tool AGEMA [32] realizes such

a transformation by first representing the netlist as a graph, before

translating it into a Mealy machine consisting of a combinational

circuit and a single main register stage. The designer can then select

which parts of the netlist should be masked and specify the gadget

family to apply. In the naive approach, every gate in the netlist is

then simply substituted by the corresponding gadget as explained.

As these gadgets introduce additional latency into the design, the

correct functionality of the circuit is ensured by automatically ap-

plying pipelining or clock gating. We utilized AGEMA in this work

in order to construct our case studies and to offer a fair comparison

to state-of-the-art composable gadgets.

Algorithm 2: HPC3 Multiplication

Input :𝑆ℎ (𝑋) = [𝑋 0, . . . , 𝑋𝑑], 𝑆ℎ (𝑌) = [𝑌 0, . . . , 𝑌𝑑] ∈ F𝑑+1
2

Output :𝑆ℎ (𝑍) = [𝑍 0, . . . , 𝑍𝑑] ∈ F𝑑+1
2

/* valid sharings of 𝑋,𝑌,𝑍 = 𝑋 · 𝑌 ∈ F2 */

1 for 𝑖 = 0 to 𝑑 − 1 do
2 for 𝑗 = 𝑖 + 1 to 𝑑 do

3 𝑅′
𝑖 𝑗

$← F2, 𝑅
′′
𝑖 𝑗

$← F2

4 𝑅′
𝑗𝑖
← 𝑅′

𝑖 𝑗

5 𝑅′′
𝑗𝑖
← 𝑅′′

𝑖 𝑗

6 end
7 end
8 for 𝑖 = 0 to 𝑑 do
9 for 𝑗 = 0 to 𝑑 do
10 if 𝑖 ≠ 𝑗 then
11 𝑈 ′

𝑖 𝑗
← 𝑅𝑒𝑔 [𝑌 𝑗 ⊕ 𝑅′

𝑖 𝑗
]

12 𝑈 ′′
𝑖 𝑗
← 𝑅𝑒𝑔 [𝑋 𝑖 · 𝑅′

𝑖 𝑗
⊕ 𝑅′′

𝑖 𝑗
]

13 𝐶𝑖 𝑗 ← 𝑅𝑒𝑔 [𝑋 𝑖] ·𝑈 ′
𝑖 𝑗
⊕𝑈 ′′

𝑖 𝑗

14 end
15 end
16 end
17 for 𝑖 = 0 to 𝑑 do
18 𝑍 𝑖 ← 𝑅𝑒𝑔 [𝑋 𝑖 · 𝑌 𝑖] ⊕

⊕
0≤ 𝑗≤𝑑

(
𝐶𝑖 𝑗

)
19 end

3 LOW-LATENCY HARDWARE PRIVATE
CIRCUITS

In this section, we present the algorithm describing our low-latency

Hardware Private Circuits (HPC3), formally prove its security and

composability and give exemplary schematics for the first and

second security orders, before we extend it to be composable under

transitions and glitches.

3.1 Glitch-Robust Variant
HPC3 is described in Algorithm 2. Here, every cross-domain term

𝑋 𝑖 · 𝑌 𝑗
is blinded by the sum of two freshly drawn random masks

𝑅′
𝑖 𝑗
⊕ 𝑅′′

𝑖 𝑗
, where 𝑅′

𝑖 𝑗
= 𝑅′

𝑗𝑖
and 𝑅′′

𝑖 𝑗
= 𝑅′′

𝑗𝑖
, resulting in a randomness

requirement of 2 ·
(
𝑑 · (𝑑 + 1)

)
/2 = 𝑑 · (𝑑 + 1) and a latency of

a single clock cycle to achieve 𝑑-th order security in the glitch-

extended probing model. The composability under the notion of

PINI – utilizing only a single register stage – is achieved through

blinding 𝑌 𝑗
by 𝑅′

𝑖 𝑗
before multiplying 𝑋 𝑖

, and at the same time

blinding the corresponding correction term 𝑋 𝑖 · 𝑅′
𝑖 𝑗

by another

fresh randomness 𝑅′′
𝑖 𝑗
. This way, a single extended output probe is

never able to reveal 𝑋 𝑖
and 𝑌 𝑗

.

Intuitively, this means that probes on different cross-domain

terms can always be simulated as they are independently blinded

and an adversary would always need two probes on 𝑋 𝑖 · 𝑌 𝑗
and

𝑋 𝑗 · 𝑌 𝑖
to reveal information about domain 𝑖 and 𝑗 . Yet, these

two probes would always be placed on share domain 𝑖 and share

domain 𝑗 , which is in conformity with the PINI security notion. We

formalize this argument by proving Theorem 3.1 as follows.

5

David Knichel and Amir Moradi

Theorem 3.1. HPC3– with security parameter 𝑑 – provides a
correct and PINI-secure circuit in the glitch-extended 𝑑-probing model.

Proof.

Correctness. First, we prove the correctness of the construction.
For this, we discard all registers in Algorithm 2. Since

𝐶𝑖 𝑗 = 𝑋 𝑖 · (𝑌 𝑗 ⊕ 𝑅′𝑖 𝑗) ⊕ 𝑋 𝑖 · 𝑅′𝑖 𝑗 ⊕ 𝑅
′′
𝑖 𝑗

= 𝑋 𝑖 · 𝑌 𝑗 ⊕ 𝑋 𝑖 · 𝑅′𝑖 𝑗 ⊕ 𝑋 𝑖 · 𝑅′𝑖 𝑗 ⊕ 𝑅
′′
𝑖 𝑗

= 𝑋 𝑖 · 𝑌 𝑗 ⊕ 𝑅′𝑖 𝑗 ⊕ 𝑅
′′
𝑖 𝑗

and 𝑅′
𝑖 𝑗

= 𝑅′
𝑗𝑖
, 𝑅′′

𝑖 𝑗
= 𝑅′′

𝑗𝑖
, it holds that

𝑍 =
⊕

0≤𝑖≤𝑑
𝑍 𝑖

=
⊕

0≤𝑖≤𝑑

(
𝑋 𝑖 · 𝑌 𝑖

⊕
0≤ 𝑗≤𝑑,𝑗≠𝑖

(
𝑋 𝑖 · 𝑌 𝑗 ⊕ 𝑅′𝑖 𝑗 ⊕ 𝑅

′′
𝑖 𝑗

))
=

⊕
0≤𝑖≤𝑑

(⊕
0≤ 𝑗≤𝑑

𝑋 𝑖 · 𝑌 𝑗
)
⊕

⊕
0≤𝑖≤𝑑

(⊕
0≤ 𝑗≤𝑑,𝑖≠𝑗

𝑅′𝑖 𝑗 ⊕ 𝑅
′′
𝑖 𝑗

)
=

⊕
0≤𝑖≤𝑑

(⊕
0≤ 𝑗≤𝑑

𝑋 𝑖 · 𝑌 𝑗
)

=

(⊕
0≤𝑖≤𝑑

𝑋 𝑖
)
·
(⊕

0≤ 𝑗≤𝑑
𝑌 𝑗

)
= 𝑋 · 𝑌 .

PINI. Next, we prove PINI security in the glitch-extended 𝑑-

probing model by considering every relevant case of probe

placement and arguing about simulatability.

I. A glitch-extended probe on the input to 𝑈 ′
𝑖 𝑗
, i.e.,

𝑃𝑈 ′
𝑖 𝑗

= [𝑌 𝑗 , 𝑅′
𝑖 𝑗
], can be perfectly simulated by 𝑌 𝑗

and

tossing a fair coin 𝑅′
𝑖 𝑗

$← F2.

II. The glitch-extended probes 𝑃𝑈 ′′
𝑖 𝑗

= [𝑋 𝑖 , 𝑅′
𝑖 𝑗
, 𝑅′′

𝑖 𝑗
] can be

simulated by 𝑋 𝑖
and drawing two random bits

𝑅′
𝑖 𝑗
, 𝑅′′

𝑖 𝑗

$← F2. If additionally 𝑃𝑈 ′′
𝑗𝑖
needs to be simulated,

this can straightforwardly be done by adding 𝑋 𝑗
to the

simulation set.

III. A glitch-extended probe on 𝐶𝑖 𝑗 , i.e.,

𝑃𝐶𝑖 𝑗
= [𝑋 𝑖 , 𝑌 𝑗 ⊕ 𝑅′𝑖 𝑗 , 𝑋 𝑖 · 𝑅′𝑖 𝑗 ⊕ 𝑅

′′
𝑖 𝑗]

can be simulated by [𝑋 𝑖 , 𝑅′
𝑖 𝑗
, 𝑅′′

𝑖 𝑗
], where 𝑅′

𝑖 𝑗
, 𝑅′′

𝑖 𝑗

$← F2.

If additionally 𝑃𝐶 𝑗𝑖
needs to be simulated – which lies in

share domain 𝑗 – this can be done by adding 𝑋 𝑗
, 𝑌 𝑗

and

𝑌 𝑖
to the input set of the simulator. As now two probes are

considered, this is in conformity to the PINI notion. All

other probes can be handled in the same manner but com-

pletely independent, as every share domain is blinded with

completely fresh (and hence independent) randomness.

IV. A glitch-extended output probe

𝑃𝑍𝑖
= [𝑋 𝑖 , 𝑌 𝑖] ∪

{ ⋃
0≤ 𝑗≤𝑑,𝑖≠𝑗

𝐶𝑖 𝑗
}

𝑍 1

𝑌 0 ⊕ 𝑅′

𝑋 1

𝑋
1 · 𝑅′ ⊕ 𝑅′′

𝑋 1 · 𝑌 1

𝑍 0

𝑌 1 ⊕ 𝑅′

𝑋 0

𝑋
0 · 𝑅′ ⊕ 𝑅′′

𝑋 0 · 𝑌 0

Figure 1: Schematics for HPC3 instantiated for 𝑑 = 1.

can be simulated by 𝑋 𝑖
and 𝑌 𝑖

and drawing 𝑑 times

𝑅′
𝑖 𝑗

$← F2 and 𝑅′′
𝑖 𝑗

$← F2 (to simulate 𝐶𝑖 𝑗). As by con-

struction, two outputs have at most one cross domain in

common, and following the same argument as given above

in step III, adding another probe would result in requiring

(next to some additional random bits) inputs from only

one other domain. This is in conformity to the PINI notion.

□

In Figure 1, we provide a schematic overview of our construction,

configured for the first security order and requiring two freshly

drawn random bits. In order to highlight at which points the same

randomness is introduced, we simply denote 𝑅′
01

= 𝑅′
10

and 𝑅′′
01

=

𝑅′′
10

by 𝑅′ and 𝑅′′, respectively. Furthermore, we give the schematics

for the first circuit share of our second-order (𝑑 = 2) design in

Figure 2.

𝑋
0 · 𝑅′

02
⊕ 𝑅′′

02

𝑌 2 ⊕ 𝑅′
02

𝑋 0

𝑌 1 ⊕ 𝑅′
01

𝑋
0 · 𝑅′

01
⊕ 𝑅′′

01

𝑋 0 · 𝑌 0

𝑍 0

Figure 2: Schematics forHPC3 instantiated for 𝑑 = 2, only the
part of the circuit required to generate an output share 𝑍 0.

In addition to proving PINI security in the glitch-extended prob-

ing model for general security order 𝑑 , we further formally verified

our construction up to the fourth order utilizing SILVER [33] – an

open-source Binary Decision Diagram (BDD)-based software tool

for formally verifying different security and composability notions

6

Low-Latency Hardware Private Circuits

G
𝑍 0

𝑍 1

𝑍 2
𝑋 2
𝑋 1
𝑋 0

𝑌 0

𝑌 1

𝑌 2

𝑃1

𝑃2

Figure 3: Schematic probe propagation between different
iterations of the same gadget instantiation

under the glitch-extended probing model. We choose SILVER over

other existing verification tools as, at the time we conducted our

research, it was the only tool available for verifying the notion

of PINI. In parallel to the publication of this work, IronMask [10]

became available as an alternative tool.

3.2 Iterated Glitch+Transition-Robust Variant
As elaborated in [19], fulfilling the notion of PINI may not be suffi-

cient to guarantee security under transitions in an iterative design,

i.e., in a design where the same gadget instantiation is executed

several times and the input of one iteration depends on the output

of a preceding one. The reason is depicted in Figure 3. During an

execution of gadget G, an adversary places an internal, transition-

extended probe 𝑃1 on the gadget, which w.l.o.g. propagates into

share domain 1. As depicted in Figure 3, in order to simulate the

probe 𝑃1, the output 𝑍
1
of the prior execution is needed, which is

equivalent to placing a second probe 𝑃2 onto 𝑍 1
. Now PINI only

guarantees that the new probe set P = {𝑃1, 𝑃2} can be simulated

utilizing two input shares instead of one (while only one probe is

counted), possibly decreasing the design’s security order. As a rem-

edy, the authors introduced the notion O-PINI which, similar to the

methodology described in [19], enables us to extend HPC3 to also

be trivially composable under (iterated) transitions and glitches.

The algorithm of our iterated transition+glitches-robust variant is

given as HPC3+ in Algorithm 3. Here, each output is blinded by

an individual fresh mask 𝑀𝑖 , 0 ≤ 𝑖 ≤ 𝑑 before saved in an output

register, intuitively enabling simpler simulation of the output wires.

For the sake of visualization, Figure 4 depicts the schematic of a

part of the circuit (for an output share) of HPC3+ configured for

𝑑 = 2.

Due to the share-separating nature of O-PINI, and based on

Lemma 1 and Lemma 2 given in [19], we can leverage the fact

that our glitch+transition-robust HPC3+ gadget is unrolled, which

means that there are no loops within the gadget, enabling us to

prove iterated glitch+transition-robust composability, i.e., compos-

ability under transitions+glitches and subsequent executions of the

same hardware gadget, by conveniently staying in our simplified

circuit model and proving perfect simulatability in conformity with

O-PINI, as given in Definition 2.7.

We now prove the security and trivial composability of our

HPC3+ gadget in the presence of both, iterated transitions and
glitches:

Theorem 3.2. HPC3+ is iterated glitch+transition-robust 𝑡-O-PINI
for 𝑡 ≤ 𝑑 , where 𝑑 is the security order.

Algorithm 3: HPC3+ Multiplication

Input :𝑆ℎ (𝑋) = [𝑋 0, . . . , 𝑋𝑑], 𝑆ℎ (𝑌) = [𝑌 0, . . . , 𝑌𝑑] ∈ F𝑑+1
2

Output :𝑆ℎ (𝑍) = [𝑍 0, . . . , 𝑍𝑑] ∈ F𝑑+1
2

/* valid sharings of 𝑋,𝑌,𝑍 = 𝑋 · 𝑌 ∈ F2 */

1 𝑊 ← HPC3(X, Y)
2 for 𝑖 = 0 to 𝑑 − 1 do

3 𝑀𝑖
$← F2

4 end
5 𝑀𝑑 ←

⊕
0≤𝑖<𝑑

𝑀𝑖

6 for 𝑖 = 0 to 𝑑 do
7 𝑍𝑖 ← 𝑅𝑒𝑔 [𝑊𝑖 ⊕ 𝑅𝑒𝑔 [𝑀𝑖]]
8 end

Proof.

Correctness. The correctness of the construction is directly im-

plied by the correctness of HPC3 and the fact that
⊕

0≤𝑖≤𝑑
𝑀𝑖 = 0.

O-PINI. The proof follows the same argument as the proof given

in [19]. Based on this and the fact that our design is unrolled, we

only have to prove that one execution of HPC3+ is glitch-robust
O-PINI and we can stay in our simple circuit model. Without

loss of generality, we restrict our analysis to the most powerful

probes and use the probe simulator for HPC3 considered in the

proof of Theorem 3.1. Intuitively, the additional refresh after

executing HPC3 enables a simulator to simulate additional

output probes possibly caused by subsequent executions of the

gadget.

I. Glitch-extended internal probes on𝑊𝑖 are simulated cor-

rectly by the simulator for HPC3.
II. Glitch-extended probes on 𝑃𝑊𝑖 ⊕𝑀𝑖

= [𝑊𝑖 , 𝑀𝑖] can be sim-

ulated by running the simulator of HPC3 to generate𝑊𝑖

– which can be simulated using only shares from share

domain 𝑖 – and by drawing a fresh random bit𝑀𝑖
$← F2.

III. For glitch-extended probes 𝑃𝑍𝑖
= [𝑊𝑖 ⊕ 𝑀𝑖] which are

added to the output due to the propagation of an internal

probe, i.e., 𝑖 ∈ OII
given in Definition 2.7 of Section 2.5, we

consider the following cases:

i. If not all intermediate values of𝑊𝑖 have been simu-

lated, the simulator simply flips a fair coin and outputs

the result.

ii. If all intermediate values of𝑊𝑖 have already been simu-

lated (for example if there is another probe on𝑊𝑖), use

these values and perform as specified by the algorithm.

The simulation of output probes is correct, as for the worst case

where there is a glitch-extended probe on𝑀𝑑 (and hence all𝑀𝑖 , 0 ≤
𝑖 ≤ 𝑑 are observed enabling to unblind all 𝑃𝐶𝑖

), there are at most

𝑑 − 1 other probes. If one of these probes is 𝑃𝑊𝑖
or 𝑃𝑊𝑖 ⊕𝑆𝑖 , we can

trivially simulate it with shares from share domain 𝑖 and using the

simulator of HPC3. If the probes are internal probes on HPC3, no
glitch-extended probe on a register stage other than 𝑃𝑊𝑖

or 𝑃𝑊𝑖 ⊕𝑆𝑖
can observe more than one 𝑅′

𝑖 𝑗
⊕ 𝑅′′

𝑖 𝑗
at once. As a consequence,

maximal 𝑑 − 1 of the 𝑑 terms 𝑅′
𝑖 𝑗
⊕ 𝑅′′

𝑖 𝑗
are observed per 𝑖 , and 𝑍𝑖 is

7

David Knichel and Amir Moradi

𝑋
0 · 𝑅′

02
⊕ 𝑅′′

02

𝑌 2 ⊕ 𝑅′
02

𝑋 0

𝑌 1 ⊕ 𝑅′
01

𝑋
0 · 𝑅′

01
⊕ 𝑅′′

01

𝑋 0 · 𝑌 0

𝑍 0

𝑀0

Figure 4: Exemplary circuit share of HPC3+ instantiated for
𝑑 = 2

blinded by one fresh random bit. The simulator can hence always

simulate it by tossing a fair coin. □

4 COMPARISON TO STATE-OF-THE-ART HPCs
AND LOW-LATENCY DESIGNS

A wide variety of Hardware Private Circuits (HPCs), i.e., trivially

composable hardware gadgets, have been recently introduced, dif-

fering with respect to their supported security order, their robust-

ness against glitches and transitions, their randomness require-

ments and their latency. In the following, we introduce all related

designs, before we compare them with our low-latency variants.

To ensure comparability with respect to composability guarantees,

we restrict our comparison to gadgets that are trivially composable

in (i) the presence of glitches and/or (ii) transitions.

4.1 Glitch-Robust Hardware Private Circuits
HPC1 [17]. The HPC1 gadget – introduced by Cassiers et al.

– realizes a shared version of a two-input AND gate – generic

for any security order 𝑑 . It is built based on a DOM-AND gadget

and additionally refreshing one of the inputs. As a consequence,

additional randomness has to be introduced into the design in

order to guarantee SNI-conform refreshing. Here, the number of

additional random bits compared to the DOM-AND depends on the

number of shares, i.e., the security order 𝑑 .

HPC2 [17]. In the same work, Cassiers et al. introduced HPC2,
which, in contrast to HPC1, further reduces randomness require-

ments. It is based on blinding terms with fresh randomness de-

pending on their cross domain and guaranteeing that no single

glitch-extended probe can observe two terms involving the same

randomness at the same time.

GHPC [34]. In their work, Knichel et al. presented a methodol-

ogy for transforming any vectorial Boolean function F : F𝑛
2
↦→ F𝑚

2

into a Hardware Private Circuit providing security and composabil-

ity under the PINI notion in the glitch-extended probing model. As

a result, GHPC gadgets enable, for example, the creation of a single

gadget realizing entire SBOXes, while requiring only a low amount

of fresh randomness, but are limited to the first security order.

GHPCLL [34]. In the same line of work, Knichel et al. addition-

ally introduced GHPCLL, enabling the realization of any vectorial

Boolean function in one clock cycle – at the cost of significantly

higher randomness requirements. Similar to GHPC, GHPCLL is

restricted to the first security order.

4.2 Iterated Transition-Robust Hardware
Private Circuits

O-PINI1 [19]. O-PINI1 – recently introduced by Cassiers and

Standaert – realizes a masked two-input AND gate that is prov-

ably composable under iterated transitions, i.e., when there exist

a feedback loop in a design and one input of a gadget depends on

the output of the same gadget, and which can be instantiated for

arbitrary security orders 𝑑 . Their construction is directly based on

HPC2, only adding an additional refresh of its output. Note that

this gadget is either glitch-robust or iterated transition-robust, but

not both at the same time. In this work, we focus our consideration

on the case where both, glitches and transitions, happen simultane-

ously, as this is the relevant case for hardware implementations.

O-PINI2 [19]. For the purpose of achieving trivial composability

in the presence of iterated transitions and glitches, Cassiers and

Standaert introduced O-PINI2 in the same work. In comparison

to O-PINI1, it introduces an additional register stage at the end of

the design, subsequent to the refresh of HPC2’s output, further
restricting propagation of output probes and hence enabling trivial

composition, even in the presence of both transitions and glitches.

4.3 Low-Latency Hardware Designs
CMSLL [38]. In this work, Molteni et al. adapted the original

Consolidating Masking Schemes (CMS) multiplier to be effectively

realized in a single clock cycle by adding pre-computed sums of

random bits to the cross domains. Although the achieved design is

glitch-robust SNI and not PINI – and hence linear operations cannot

be trivially (share-wise) implemented – it is the only other existing

composable gadget which realizes anAND operation within a single

clock cycle for arbitrary security orders. Hence, we give a detailed

comparison between this scheme and our construction later in this

section.

LMDPL [45]. In their work, Sasdrich et al. presented a first-order

secure, masked AES with a latency of a single cycle per round by uti-

lizing the concept of LUT-based masked dual-rail pre-charge logic

(LMDPL). Although the scheme can be seen as a gadget-based ap-

proach, the application of LMDPL gadgets requires circuit-specific

signals, generated by a dedicatedmodule called “masked table gener-

ator”. The authors themselves alleviated the scheme’s generality by

stating that the underlying technique might not guarantee the same

level of SCA resistance when used in ciphers with smaller/fewer

SBOXes. As it is only restricted to the first security order and may

offer lower levels of security when applied in other contexts, we

omit a further, more detailed comparison to this design scheme.

To the best of our knowledge, other non-linear, composable

hardware gadgets like DOM [23, 27] offer strictly worse latency

than our newly proposed gadget. In [25], Gross et al. proposed an

8

Low-Latency Hardware Private Circuits

Table 1: Comparison of existing trivially composable Hard-
ware Private Circuits

Scheme Latency Randomness Function Ref.

HPC1 2 𝑑 (𝑑 + 1)/2 + 𝑟 [𝑑]∗ AND [17]

HPC2 2 𝑑 (𝑑 + 1)/2 AND [17]

GHPC† 2 𝑚 F : F𝑛
2
↦→ F𝑚

2
[34]

GHPCLL
†

1 2
𝑛 ·𝑚 F : F𝑛

2
↦→ F𝑚

2
[34]

HPC3 1 𝑑 (𝑑 + 1) AND [new]

O-PINI2‡ 3 𝑑 (𝑑 + 1)/2 + 𝑑 AND [19]

HPC3+ ‡ 2 𝑑 (𝑑 + 1) + 𝑑 AND [new]

∗ 𝑟 [𝑑] = [1, 2, 4, 5, 7, 9, 11, 12, 15, 17] for 𝑑 ≤ 10

†
restricted to 𝑑 = 1

‡
with robustness against iterative transitions+glitches

Table 2: Comparison of single-cycle glitch-robust AND gad-
gets

Scheme Framework 𝑑 Randomness Ref.

CMSLL SNI 1 2 [38]

2 6

3 16

≥ 4 2(𝑑 + 1)2

HPC3 PINI 1 2 [new]

2 6

3 12

≥ 4 𝑑 (𝑑 + 1)

algorithmic-level hardware masking scheme to achieve low latency

for arbitrary security orders which is rooted in the idea of skipping

the compression layer of non-linear DOM gadgets whenever possi-

ble while ensuring that the sharing of inputs to every non-linear

function are independent. Albeit its good results in terms of latency

reduction, no formal security proof is given in the robust probing

model and, as elaborated in [39], the scheme may suffer from com-

posability issues for higher security orders when instantiated in

different settings.

4.4 Comparison
A comparison of our designs with other state-of-the-art PINI gad-

gets is given in Table 1. Here, the latency is given as the number of

register stages, and the required number of random bits is listed.

Note that GHPC and GHPCLL are the only gadgets limited to the

first security order. Similar toHPC2, our newly presentedHPC3 has
a constant latency regardless of the security order, while requiring

only a single register stage instead of two. On the other hand, the

number of required random bits for HPC3 is doubled compared

to HPC2. We would like to highlight that due to the mandatory

blinding of one share domain in order to derive the cross terms

𝑋 𝑖 · 𝑌 𝑗
, our construction achieves an optimal latency with respect

to achieving trivial composability under the notion of PINI in the

glitch-extended probing model. As a consequence, HPC3 allows the
designer to trade double the randomness for half of the latency, or

even combining HPC3 and HPC2 gadgets (as they are both compos-

able under the PINI notion), providing significantly more flexibility

with respect to adjusting the latency and randomness requirements

of a masked implementation in different use cases.

We further compare the existing transition-robust gadget with

our newly introduced one. Applying the same methodology as

described in [19] to our HPC3, we derived HPC3+. Similar to O-
PINI2, our HPC3+ construction offers trivial composability under

the simultaneous presence of both, iterated transitions and glitches,

while again trading one clock cycle less for 𝑑 (𝑑 + 1)/2 additional

fresh random bits.

In Table 2, a comparison between the required fresh masks of the

aforementioned single-cycle robust-SNI gadget [38] and our HPC3
is given. While our design is already advantageous for 𝑑 = 3, it

needs less than half of their randomness requirements for𝑑 ≥ 4. An-

other advantage stems from simpler composition conditions of PINI

in comparison to SNI. As shown in [5, 17], trivial, i.e., share-wise,

implementations of linear operations are not SNI. This possibly -

depending on the circuit structure - demands for additional robust-

SNI refresh gadgets to be inserted into the circuit, further increasing

the introduced overhead. As the original composition approach by

Barthe et al. [5] was over-conservative with respect to the insertion

of refresh gadgets, Belaïd et al. introduced a new method in [12],

drastically reducing the number of required refresh gadgets. They

even utilize their method to generate a secured SNI-based AES

implementation without any need for additional refresh gadgets.

Although this approach immensely reduces the number of neces-

sary refresh gadgets in the SNI context, the overhead still has a

higher dependency on the circuit’s structure than in the context of

PINI where each non-linear gate can simply be substituted by its

gadget variant and the latency is hence simply determined by the

maximum number of non-linear gates in any signal path.

To sum up, while there exist certain circuit structures where our

approach will achieve similar results for low security orders when

compared to CMSLL, the latency, the randomness requirements,

and the area (additional registers, larger sources to generate ran-

domness) of an arbitrary design (including all linear operations and

layers of the cipher) composed of HPC3 gadgets will be favorable
to using CMSLL in most of the cases - and for all cases when 𝑑 ≥ 3.

4.5 Algorithmic-Level Masking vs. Composable
Gadgets

Instead of utilizing composable gadgets, there exist several works

aiming to derive highly optimized masked version for a certain

cipher and design architecture by manually and carefully construct-

ing each block/module in order to ensure security of the entire over-

arching design [45, 47, 48, 50, 50]. We refer to these approaches as

algorithmic-level masking. The main advantage of these approaches

is that they typically lead to a highly optimized implementation

with respect to the introduced overhead. On the downside, these ap-

proaches result in implementations that are commonly restricted to

a low (mostly the first or second) security order. Extending them to

9

David Knichel and Amir Moradi

higher orders and translating them to other ciphers or design archi-

tectures is not trivially possible, or not possible at all. They further

require a high expertise while the top-level designs’ security cannot

be easily proved in the formal 𝑑-probing model which is rooted in

the fact that current formal verification tools like SILVER [33] and

IronMask [10] are not able to cope with large circuits. Although

these works typically present a leakage assessment of the result-

ing implementation, we would like to highlight that these leakage

assessments are limited to making security statements about the

implementation in a very specific setup, while the 𝑑-probing model

aims to generalize the SCA resilience of an implementation.

Following a divide-and-conquer approach, composable gadgets,

on the other hand, enable automated construction of masked cir-

cuits [32] by leveraging composability notions like PINI in order to

ensure a provably secure top-level implementation, while typically

coming at the cost of higher overheads. These schemes are not

bounded to any cipher or design architecture but enable straight-

forward transformation of any circuit into its masked variant at

any security order (with GHPC/GHPCLL being an exception re-

stricted to the first order). In order to provide a fair comparison

and as algorithmic-level masking and composable gadgets are con-

ceptually different techniques, we omit any further benchmark

comparison with algorithmic-level masking schemes in this work.

4.6 Discussion on Latency-Optimized Logic
Representations of Masked Circuits

In [17], Cassiers et al. described an optimized design strategy for

small SBOXes using a SAT solver to find a Boolean representation

such that one input to each HPC2 gadget in a later circuit stage

is a linear combination of inputs to an earlier stage. Due to the

unbalance with respect to the input latency of HPC2, this leads
to additional overall latency reduction. They showed, for example,

that they can realize some 4-bit SBOXes utilizing only 3 register

stages instead of trivially using 4 in a binary-tree multiplication of

each monom in the respective coordinate functions. Despite the fact

that this optimization approach is not practical for more complex

functions, e.g., the AES SBOX, our HPC3 gadget still outperforms

HPC2 latency-wise even in these cases where the SBOX represen-

tation is optimized in favor of HPC2. Note that only 2 clock cycles

are necessary to realize a 4-bit SBOX in a trivial way. Hence, in

favor of trivial composability, this optimization step is not required

anymore when employing our HPC3 gadgets.

5 EXPERIMENTS AND EVALUATIONS
In order to give an overview of the performance figures of our

constructed gadgets and the circuits composed of them, in this

section, we present several case studies followed by experimental

evaluation results.

5.1 Case Studies
Before we explain the details of our covered case studies, we re-

fer to the recently introduced tool for automated generation of

masked hardware implementations, AGEMA [32], which is publicly

available through GitHub
1
. As given in Section 2.6, it receives the

1
https://github.com/Chair-for-Security-Engineering/AGEMA

Table 3: Performance figures, 2-input AND.

Scheme Security Latency Rand. Area Ref.
[order] [cycle] [bit] [GE]

HPC2 1 2 1 53 [17]

2 2 3 156

3 2 6 311

HPC3 1 1 2 43 [new]

2 1 6 125

3 1 12 249

O-PINI2 1 3 2 137 [19]

2 3 5 301

3 3 9 529

HPC3+ 1 2 3 69 [new]

2 2 8 167

3 2 15 306

gate-level netlist of the unprotected implementation and generates

a masked version of the same design using the specified gadgets.

Although different processing methods are offered by AGEMA,

we limit our comparisons to the naive approach which does not

re-synthesize the given netlist and just replaces the gates with

their corresponding gadgets. For the sake of comparability, we fo-

cus only on utilizing HPC2, O-PINI2, HPC3, and HPC3+ gadgets
which can all be instantiated for arbitrary security orders. To this

end, we adopted the customized library of AGEMA and specified

the gates of the aforementioned gadgets. We further constructed

generic VHDL code of these gadgets (for all 2-input gates), where

the desired security order 𝑑 can be arbitrary adjusted. For area

comparison, we utilized Synopsys Design Compiler, together with

the publicly-available standard library Nangate 45 for synthesizing

the design.

Small Circuits. As the first case study, we compare single real-

izations of each of the considered AND gadgets, instantiated for

the first three security orders 𝑑 ∈ {1, 2, 3}. The corresponding re-

sults are shown in Table 3, clearly indicating the benefits of our

constructed gadgets with respect to latency and area requirements.

Our newly introduced HPC3 requires 20% less area compared to

their counterpart HPC2 gadget. This advantage reaches even to

around 55% in case of HPC3+ compared to O-PINI2.
As a more realistic case study, we consider the 4-bit SBOX of the

SKINNY-64 cipher [8]. The authors of [17] have provided a netlist

for the SKINNY SBOX, which is optimized for HPC2 gadgets. The
same netlist has been used for benchmarking purposes of AGEMA

in [32]. Hence, we have taken the same netlist and constructed the

SKINNY SBOX using our constructed gadgets. The results, which

are shown in Table 4, reflect roughly the same conclusion as for the

2-input AND. The benefit of our gadgets with respect to latency is

highly visible, but the area advantage is slightly mitigated, which

is justified by the presence of the same XOR gadgets in all designs

independent of the employed gadget family. More precisely, the

application of our gadgets would still lead to a lower area overhead

by a magnitude of 10%−20% while halving the latency. Note that

for the SBOX and full-cipher case studies, we compare the results

10

https://github.com/Chair-for-Security-Engineering/AGEMA

Low-Latency Hardware Private Circuits

Table 4: Performance figures, Skinny SBOX [17] and AES
SBOX [16].

Scheme Security Latency Rand. Area Ref.
[order] [cycle] [bit] [GE]

Skinny SBOX

HPC2 1 4 4 281 [17]

2 4 12 730

3 4 24 1384

HPC3 1 2 8 241 [new]

2 2 24 606

3 2 48 1133

AES SBOX

HPC2 1 8 34 2189 [17]

2 8 102 5923

3 8 204 11469

HPC3 1 4 68 1849 [new]

2 4 204 4855

3 4 408 9261

corresponding to only HPC2 and HPC3, since we believe that O-
PINI2 and HPC3+ are mainly relevant for the iterative designs

shown in Figure 3 which we already compared in Table 3.

For the AES SBOX, we refer to [16], where a description for

the inversion in GF(28) is given which needs a low number of

cascaded 2-input gates. The same design has been used in the case

studies of AGEMA as well. Hence, our AES SBOX case study is made

based on this netlist, which has 4 layers of cascaded 2-input AND
gates. Since our HPC3 gadgets make use of only one register stage,

this naturally leads to 4 clock cycles latency for the entire masked

AES SBOX at any arbitrary order. The corresponding results are

illustrated in Table 4, indicating 15%−20% area reduction in addition

to a naturally lower latency compared to the equivalent state-of-

the-art designs. As a side note, in all results presented above, we

have not considered extra registers required to construct pipeline

designs, which is a feature of AGEMA.

Full Ciphers. In order to have a better overview on the benefit

and overhead of our constructed gadgets, we took all full-cipher

designs used by AGEMA as the case study, including SKINNY-64-

64 round-based encryption, AES-128 byte-serial encryption, AES-

128 round-based encryption function, round-based encryption of

CRAFT [9], nibble-serial encryption of PRESENT [15], round-based

encryption of LED-64 [29], and round-based encryption/decryption

design of Midori-64 [2]. The corresponding results of the first two

case studies (round-based SKINNY and AES) are given in Table 5

and Table 6. We give the remaining results in Tables 7 to 11 in

Appendix A.

We provided the comparative results for the first three security

orders 𝑑 ∈ {1, 2, 3} as well as for the pipeline and non-pipeline

designs. The pipeline designs, which naturally have higher area

footprints, can process multiple sequentially-given inputs. For ex-

ample, we refer to Table 5, where HPC2 designs have 165 clock

cycles latency and HPC3 designs 99 clock cycles. The non-pipeline

Table 5: Synthesis results, SKINNY-64-64 round-based encryp-
tion.

Gadget Pipel. Security Area Delay Rand. Latency
[order] [GE] [ns] [bits] [cycles]

unprotected - 0 1494 0.52 - 33

HPC2

1 6895 0.55 64 165

2 15193 0.61 192 165

3 26777 0.65 384 165

✓ 1 20210 0.53 64 165

✓ 2 36147 0.59 192 165

✓ 3 56096 0.63 384 165

HPC3

1 6467 1.06 128 99

2 13517 1.18 384 99

3 23171 1.19 768 99

✓ 1 13462 0.59 128 99

✓ 2 23956 0.64 384 99

✓ 3 37051 0.66 768 99

Table 6: Synthesis results, AES-128 round-based encryption.

Gadget Pipel. Security Area Delay Rand. Latency
[order] [GE] [ns] [bits] [cycles]

unprotected - 0 9906 1.85 - 11

HPC2

1 52597 2.04 680 99

2 131631 2.39 2040 99

3 246924 2.53 4080 99

✓ 1 161440 0.82 680 99

✓ 2 305274 0.89 2040 99

✓ 3 492077 0.93 4080 99

HPC3

1 44581 2.11 1360 55

2 108476 2.34 4080 55

3 200307 2.33 8160 55

✓ 1 94450 0.79 1360 55

✓ 2 182883 0.83 4080 55

✓ 3 299013 0.86 8160 55

designs, receive a single plaintext and key and perform the encryp-

tion after 165 (resp. 99) clock cycles, what the unprotected design

does in 33 clock cycles. The HPC2 pipeline design can process 4

individual plaintext-key pairs in 165 clock cycles, and the HPC3
pipeline design 2 individual inputs in those 99 clock cycles.

The results are indeed along the same line as those given for

SBOX case studies. More precisely, the area overhead and latency

of the circuits made by HPC3 gadgets are less than those made

by HPC2 gadgets while demanding for double amount of fresh

randomness. The area advantage becomes more obvious at higher

orders – particularly for pipeline designs. We should highlight that,

in contrast to the SBOX cases studies, the latency of HPC3 circuits
is not exactly half of the latency of HPC2 circuits since registers
already exist in the unprotected designs. AGEMA models the given

unprotected design as a Mealy machine made by a single-stage

register and a fully combinational circuit whose inputs consists

the circuit’s primary input and the output of the registers provided

by a feedback loop (for more details see [32, § 2.6]). The role of

HPC2, HPC3 or any other gadget lies in how the combinational

circuit is converted into a secure one. Therefore, the register stage

11

David Knichel and Amir Moradi

of the Mealy machine stays as it is; just being extended based on

the number shares, i.e., the desired security order 𝑑 . As a result, if

we denote the latency of the unprotected circuit by 𝜂, the latency of

the converted circuit becomes (𝑙 + 1)𝜂 cycles, where 𝑙 stands for the

latency of the combinational circuit realized by HPC2 gadgets. This
means that the latency of the same circuit implemented by HPC3
gadgets becomes (𝑙/2 + 1)𝜂 clock cycles which can also be seen

in Tables 5 to 11. It is worth to highlight that all our HDL designs

of the gadgets and the case studies are provided in the GitHub:

https://github.com/Chair-for-Security-Engineering/HPC3.

5.2 Leakage Assessment
Although (robust) probing security is implied by our gadget’s con-

formity to the PINI notion, we conducted further analysis for the

purpose of presenting a complete work and showing our method-

ologies final practical security. By means of SILVER [33], we have

verified the security of the constructed SBOXes (reported in Sec-

tion 5.1) under the glitch-extended probing model. In short, all our

constructions are reported secure up to the desired security order.

However, evaluation of larger designs, e.g., a cipher round, is out

of the feasibility limits of such verification tools. Therefore, the

remaining choice to evaluate a full cipher implementation is to con-

duct experimental analyses. To this end, we employed a Spartan-6

FPGA-based evaluation platform (SAKURA-G [44]), and collected

power consumption traces of different designs to conduct various

fixed-versus-random t-tests [7].

Setup. We monitored the output of the embedded AC-amplifier

of the SAKURA-G which senses the voltage drop over a 1Ω shunt

resistor placed on the VDD path of the target FPGA, and collected

power consumption traces by sampling such an amplified signal at

a sampling frequency of 500MS/s. During this time, the underlying

design under test was supplied by a stable and jitter-free clock at a

frequency of 6MHz.

For the sake of comparability with the state of the art, we choose

the SKINNY-64-64 encryption function for experimental analysis,

since the same has been used in [32]. This choice has indeed neither

an effect on the validity of our experiments nor on the security

of our constructions. An obvious choice is to examine the AES

implementations. However, the third-order round-based AES can

hardly fit into our FPGA setup, while all variants of SKINNY-64-64

easily fit.

Nevertheless, we have taken the first- to third-order pipeline

designs reported in Table 5. In short, our designs require 99 clock

cycles to accomplish the encryption, in contrast to 33 clock cycles

for the unprotected design and 165 clock cycles for the designs

protected by HPC2 gadgets. Further, our designs require 128, 384,
and 768 freshmask bits, for first- to third-order security respectively,

which should be updated at every clock cycle (the same when using

HPC3 gadgets).
When measuring the power consumption of our designs, we

made sure to cover all 99 clock cycles of each entire encryption

process. In order to supply the required fresh masks, we made

use of the FPGA-optimized construction illustrated in [37], which

realizes an individual 31-bit Linear Feedback Shift Register (LFSR)
2

2
With feedback polynomial 𝑥31 + 𝑥28 + 1.

for every fresh mask bit, seeded randomly at the power-up of the

device and updated at every clock cycle.

Results. To analyze the implementations, we conducted various

forms of a fixed-versus-random t-test, commonly referred to as

TVLA [7, 46]. It is a well-known leakage assessment technique

that is able to detect SCA leakage in measurements collected from

cryptographic implementations by examining whether the leakages

associated to two groups are distinguishable; one group with a fixed

plaintext and the other one with randomly-chosen plaintexts, while

a constant and identical key is used in both groups. In all cases, the

entire inputs (plaintext + key) are given to the circuit in a masked

form with respect to the security order of the underlying design.

Starting with our first-order design (𝑑=1), we performed the

ordinary t-test on each sample point individually (i.e., univariate),

whose corresponding results – shown in Figure 5b – confirm its

first-order security. As expected, this does not hold true when

conducting high-order t-tests on this implementation. For higher

orders t-tests, we made the traces mean-free (for each group of

fixed and random individually). Afterwards, each mean-free sample

point is squared (resp. cubed), before calculating the t-statistics for

univariate second-order (resp. univariate third-order) t-tests (see

Figure 5c and Figure 5d).

For the bivariate second-order t-tests, we should perform an

individual t-test for each combination of every two possible sample

points by multiplying the corresponding mean-free power values.

In our experiments, each power trace contains 10 000 sample points,

which translates to 10 000× 10 000/2 = 50 000 000 individual t-tests,

hence a very time-intensive computation even using large CPU

clusters. Since our constructions utilize fresh masks (updated every

clock cycle), the bivariate leakage is expected to be present for a

combination between sample points in close proximity. Therefore,

we limited our bivariate analysis to sample points within a distance

of at most five clock cycles. This strongly reduces the amount of

computations and allows us to accomplish the evaluations in a

reasonable time frame. As expected, the corresponding results –

shown in Figure 5e – confirm the existence of second-order bivariate

leakages.

For the third-order multivariate analysis, the processing is even

more complex. If we limit the maximum distance between the sam-

ple points to, e.g., five clock cycles, the number of possible combina-

tions of three sample points is way above the feasibility threshold.

In order to find an alternative approach, we refer to Figure 5c

and common knowledge indicating that the amount of leakage (in

power traces) associated to a clock cycle is approximately the same

for the entire clock cycle. Therefore, an appropriate sample point

per clock cycle should suffice for such analyses. Indeed, this is a

known concept referred to as memory effect in power consumption

measurements due to the low-pass filter inherently built by the

components involved in the measurement setup, e.g., the shunt

resistor, the chip package, and the Printed Circuit Board (PCB) [40].

Therefore, we down-sampled the traces by taking a sample point

for each clock cycle (carefully selected at the middle of the cycle).

Note that such a down sampling and restricting the multivariate

analysis to a small period of time has been done in the sate of the

art as well [13, 21, 49, 52]. The result of this analysis is shown by a

3D pyramid in Figure 5f, indicating some tuples (of three points)

12

https://github.com/Chair-for-Security-Engineering/HPC3

Low-Latency Hardware Private Circuits

0 4 8 12 16 20
Time [s]P

ow
er

 &
 T

rig
ge

r

(a) A sample power trace

-4
-2
0
2
4

t-
st

at
is

tic
s

0 4 8 12 16 20
Time [s]

(b) 1st-order t-test

-200

0

200

t-
st

at
is

tic
s

0 4 8 12 16 20
Time [s]

(c) 2nd-order t-test

-10

0

10
t-

st
at

is
tic

s

0 4 8 12 16 20
Time [s]

(d) 3rd-order t-test

4.5

100

200

300

t-
st

at
is

tic
s

0 4 8 12 16 20
Time [s]

0

4

8

12

16

20

T
im

e
[

s]

(e) 2nd-order bivariate t-test

4.5
t-s

ta
tis

tic
s

16

12

8

0 5 10 15 20

Time [s]0
5

10
15

20

Time [s]

0
5
10
15
20

Ti
m

e
[

s]

(f) 3rd-order multivariate t-test

Figure 5: Experimental analysis of SKINNY-64-64 encryption
round-based design, masked with first-order HPC3 gadgets
using 100 million traces.

whose combination (mean-free product) leads to a detectable leak-

age. Note that higher-order univariate and multivariate leakages

are expected in case of this first-order design; we just showed the

detailed results of such analyses as a proof of functionality of our

setup.

The same procedure has been repeated on the second- and third-

order designs (𝑑=2 and 𝑑=3 respectively). The corresponding results

are depicted in Figure 6 and Figure 7 in Appendix B, confirming the

expected security levels. More precisely, no first- and second-order

univariate/multivariate leakage has been detected from the traces

of the second-order design, and no first-, second- and third-order

univariate/multivariate leakage from the third-order design. Note

that we have verified the correctness of our setup and its ability to

detect univariate and multivariate higher-order leakages using our

first-order design (Figure 5).

6 CONCLUSIONS
Summary. In this work, we presentedHPC3, a low-latency Hard-

ware Private Circuit that is trivially composable under the PINI

notion in the glitch-extended robust probing model. To the best

of our knowledge, this is the first PINI-based hardware gadget

that realizes a masked AND-gate in a single clock cycle for any

arbitrary security order. We further gave the algorithm for its con-

struction and formally proved its conformity to the PINI notion

in the glitch-extended 𝑑-probing model. We should stress that the

achieved latency of a single clock cycle is the lowest bound for

trivial composability of an AND gadget under the notion of PINI.

This is due to the necessary computation of cross terms, i.e., mul-

tiplication of shares from different share domains. Hence, HPC3
is the first proposed gadget achieving this lowest bound for arbi-

trary security orders. We additionally presented HPC3+, a masked

AND-gate that is trivially composable under the presence of both, it-

erated transitions and glitches and can be instantiated for arbitrary

security orders 𝑑 . Moreover, we practically verified the security of

our constructions by means of various case studies and leakage

assessments.

Compared to existing state-of-the-art Hardware Private Circuits,

HPC3 enables the designers to make use of more fresh random-

ness to halve the latency while maintaining trivial composability

(PINI) in the glitch-extended probing model. This offers a signifi-

cant speedup of cryptographic implementations for different use

cases and paving the ground for secure, low-latency applications.

A similar trade-off can be made with HPC3+, which – compared

to OPINI-2 – enables the designers to omit one register stage and

hence reducing the design’s latency by a factor of 2/3.

Future Works. It remains an interesting open topic, if such a

trade-off between the demand for fresh randomness and latency

can be also found for larger gates, i.e., with more inputs than two.

Constructing composable and generic hardware gadgets for 3- or 4-

input non-linear gates can highly increase the efficiency of masked

implementation with respect to latency. Further, there still exists

yet no detailed cost function to examine the overhead introduced

by different metrics. For example, it is not clear at which point area

consumption required to generate additional fresh randomness

compensates the area gain by requiring fewer register stages. It

would be hence beneficial for the research community to have

detailed and realistic cost functions for these factors.

ACKNOWLEDGMENTS
The work described in this paper has been supported in part by the

Deutsche Forschungs-gemeinschaft (DFG, German Research Foun-

dation) under Germany’s Excellence Strategy- EXC 2092 CASA -

390781972 and through the projects 35264177 SAUBER and 393207943

GreenSec.

13

David Knichel and Amir Moradi

A PERFORMANCE COMPARISON RESULTS

Table 7: Synthesis results, AES-128 byte-serial encryption.

Gadget Pipel. Security Area Delay Rand. Latency
[order] [GE] [ns] [bits] [cycles]

unprotected - 0 3263 0.83 - 227

HPC2

1 10090 2.11 34 2043

2 17649 2.66 102 2043

3 27026 2.71 204 2043

✓ 1 42146 0.98 34 2043

✓ 2 65583 1.41 102 2043

✓ 3 91149 1.01 204 2043

HPC3

1 9140 2.27 68 1135

2 15661 2.55 204 1135

3 23597 2.47 408 1135

✓ 1 24852 0.89 68 1135

✓ 2 38875 0.99 204 1135

✓ 3 54304 1.07 408 1135

Table 8: Synthesis results, CRAFT round-based encryption.

Gadget Pipel. Security Area Delay Rand. Latency
[order] [GE] [ns] [bits] [cycles]

unprotected - 0 1066 0.58 - 32

HPC2

1 15680 0.94 256 288

2 43172 1.03 768 288

3 84024 1.12 1536 288

✓ 1 42367 0.55 256 288

✓ 2 87291 0.57 768 288

✓ 3 148316 0.50 1536 288

HPC3

1 13072 1.05 512 160

2 35145 1.18 1536 160

3 67550 1.43 3072 160

✓ 1 27036 0.55 512 160

✓ 2 55896 0.57 1536 160

✓ 3 95257 0.50 3072 160

Table 9: Synthesis results, PRESENTnibble-serial encryption.

Gadget Pipel. Security Area Delay Rand. Latency
[order] [GE] [ns] [bits] [cycles]

unprotected - 0 1613 0.59 - 543

HPC2

1 4160 0.99 4 2715

2 6478 1.13 12 2715

3 8977 1.18 24 2715

✓ 1 12103 0.59 4 2715

✓ 2 18270 0.55 12 2715

✓ 3 24692 0.67 24 2715

HPC3

1 3421 0.97 8 1629

2 5307 1.02 24 1629

3 7345 1.05 48 1629

✓ 1 7212 0.56 8 1629

✓ 2 10916 0.56 24 1629

✓ 3 14785 0.56 48 1629

Table 10: Synthesis results, LED-64 round-based encryption.

Gadget Pipel. Security Area Delay Rand. Latency
[order] [GE] [ns] [bits] [cycles]

unprotected - 0 2056 150 - 33

HPC2

1 7691 1.98 64 165

2 16375 2.07 192 165

3 28322 2.33 384 165

✓ 1 20743 1.07 64 165

✓ 2 36890 1.14 192 165

✓ 3 57021 1.18 384 165

HPC3

1 7029 2.19 128 99

2 14367 2.16 384 99

3 24290 2.46 768 99

✓ 1 13697 1.08 128 99

✓ 2 24300 1.12 384 99

✓ 3 37483 1.15 768 99

Table 11: Synthesis results, Midori-64 round-based encryp-
tion/decryption.

Gadget Pipel. Security Area Delay Rand. Latency
[order] [GE] [ns] [bits] [cycles]

unprotected - 0 2035 0.97 - 17

HPC2

1 17801 1.10 256 153

2 46371 1.21 768 153

3 88246 1.27 1536 153

✓ 1 54309 0.95 256 153

✓ 2 105198 0.67 768 153

✓ 3 172179 0.69 1536 153

HPC3

1 14910 1.18 512 85

2 37892 1.32 1536 85

3 71207 1.55 3072 85

✓ 1 31718 0.67 512 85

✓ 2 62944 0.64 1536 85

✓ 3 104657 0.65 3072 85

14

Low-Latency Hardware Private Circuits

B LEAKAGE ASSESSMENT RESULTS

0 4 8 12 16 20
Time [s]P

ow
er

 &
 T

rig
ge

r

(a) A sample power trace

-4
-2
0
2
4

t-
st

at
is

tic
s

0 4 8 12 16 20
Time [s]

(b) 1st-order t-test

-4
-2
0
2
4

t-
st

at
is

tic
s

0 4 8 12 16 20
Time [s]

(c) 2nd-order t-test

-5

0

5

t-s
ta
tis
tic
s

0 4 8 12 16 20
Time [s]

(d) 3rd-order t-test

1

2

3

4

t-
st

at
is

tic
s

0 4 8 12 16 20
Time [s]

0

4

8

12

16

20

T
im

e
[

s]

(e) 2nd-order bivariate t-test

1

t-
st

at
is

tic
s4

3

2

0
5 10 15 20

Time [s]0
5

15
20
0
5
10
15
20

10

Time [s]

T
im

e
[

s]

5

(f) 3rd-order multivariate t-test

Figure 6: Experimental analysis of SKINNY-64-64 encryption
round-based design,maskedwith second-orderHPC3 gadgets
using 100 million traces.

0 4 8 12 16 20
Time [s]P

ow
er

 &
 T

rig
ge

r

(a) A sample power trace

-4
-2
0
2
4

t-
st

at
is

tic
s

0 4 8 12 16 20
Time [s]

(b) 1st-order t-test

-4
-2
0
2
4

t-
st

at
is

tic
s

0 4 8 12 16 20
Time [s]

(c) 2nd-order t-test

-4
-2
0
2
4

t-
st

at
is

tic
s

0 4 8 12 16 20
Time [s]

(d) 3rd-order t-test

0 4 8 12 16 20
Time [s]

0

4

8

12

16

20

T
im

e
[

s]
1

2

3

4

t-
st

at
is

tic
s

(e) 2nd-order bivariate t-test

1

t-
st

at
is

tic
s

4

3

2

0
5 10 15 20

Time [s]
0

5

15
20
0
5
10
15
20

10

Time [s]

T
im

e
[

s]

(f) 3rd-order multivariate t-test

Figure 7: Experimental analysis of SKINNY-64-64 encryption
round-based design, masked with third-order HPC3 gadgets
using 100 million traces.

15

David Knichel and Amir Moradi

REFERENCES
[1] Prabhanjan Ananth, Yuval Ishai, and Amit Sahai. 2018. Private Circuits: A Mod-

ular Approach. In CRYPTO 2018 (Lecture Notes in Computer Science), Vol. 10993.
Springer, 427–455.

[2] Subhadeep Banik, Andrey Bogdanov, Takanori Isobe, Kyoji Shibutani, Harunaga

Hiwatari, Toru Akishita, and Francesco Regazzoni. 2015. Midori: A Block Cipher

for Low Energy. InASIACRYPT 2015 (Lecture Notes in Computer Science), Vol. 9453.
Springer, 411–436.

[3] Gilles Barthe, Sonia Belaïd, Gaëtan Cassiers, Pierre-Alain Fouque, Benjamin Gré-

goire, and François-Xavier Standaert. 2019. maskVerif: Automated Verification

of Higher-Order Masking in Presence of Physical Defaults. In ESORICS 2019
(Lecture Notes in Computer Science), Vol. 11735. Springer, 300–318.

[4] Gilles Barthe, Sonia Belaïd, François Dupressoir, Pierre-Alain Fouque, Benjamin

Grégoire, and Pierre-Yves Strub. 2015. Verified Proofs of Higher-Order Masking.

In EUROCRYPT 2015 (Lecture Notes in Computer Science), Vol. 9056. Springer,
457–485.

[5] Gilles Barthe, Sonia Belaïd, François Dupressoir, Pierre-Alain Fouque, Benjamin

Grégoire, Pierre-Yves Strub, and Rébecca Zucchini. 2016. StrongNon-Interference

and Type-Directed Higher-Order Masking. In CCS 2016. ACM, 116–129.

[6] Gilles Barthe, François Dupressoir, Sebastian Faust, Benjamin Grégoire, François-

Xavier Standaert, and Pierre-Yves Strub. 2017. Parallel Implementations of

Masking Schemes and the Bounded Moment Leakage Model. In EUROCRYPT
2017 (Lecture Notes in Computer Science), Vol. 10210. Springer, 535–566.

[7] G. Becker, J. Cooper, E. DeMulder, G. Goodwill, J. Jaffe, G. Kenworthy, T. Kouzmi-

nov, A. Leiserson, M. Marson, P. Rohatgi, and S. Saab. 2013. Test vector leakage

assessment (TVLA) methodology in practice. In International Cryptographic
Module Conference.

[8] Christof Beierle, Jérémy Jean, Stefan Kölbl, Gregor Leander, Amir Moradi,

Thomas Peyrin, Yu Sasaki, Pascal Sasdrich, and Siang Meng Sim. 2016. The

SKINNY Family of Block Ciphers and Its Low-Latency Variant MANTIS. In

CRYPTO 2016 (Lecture Notes in Computer Science), Vol. 9815. Springer, 123–153.
[9] Christof Beierle, Gregor Leander, Amir Moradi, and Shahram Rasoolzadeh. 2019.

CRAFT: Lightweight Tweakable Block Cipher with Efficient Protection Against

DFA Attacks. IACR Trans. Symmetric Cryptol. 2019, 1 (2019), 5–45.
[10] Sonia Belaïd, Darius Mercadier, Matthieu Rivain, and Abdul Rahman Taleb. 2022.

IronMask: Versatile Verification of Masking Security. In IEEE SP 2022. IEEE.
[11] Sonia Belaïd, Pierre-Évariste Dagand, Darius Mercadier, Matthieu Rivain, and

Raphaël Wintersdorff. 2020. Tornado: Automatic Generation of Probing-Secure

Masked Bitsliced Implementations. In EUROCRYPT 2020 (Lecture Notes in Com-
puter Science), Vol. 12107. Springer, 311–341.

[12] Sonia Belaïd, Dahmun Goudarzi, and Matthieu Rivain. 2018. Tight Private

Circuits: Achieving Probing Security with the Least Refreshing. In ASIACRYPT
2018 (Lecture Notes in Computer Science), Vol. 11273. Springer, 343–372.

[13] Tim Beyne, Siemen Dhooghe, Amir Moradi, and Aein Rezaei Shahmirzadi. 2022.

Cryptanalysis of Efficient Masked Ciphers: Applications to Low Latency. IACR
Trans. Cryptogr. Hardw. Embed. Syst. 2022, 1 (2022), 679–721.

[14] Roderick Bloem, Hannes Groß, Rinat Iusupov, Bettina Könighofer, Stefan Man-

gard, and Johannes Winter. 2018. Formal Verification of Masked Hardware

Implementations in the Presence of Glitches. In EUROCRYPT 2018 (Lecture Notes
in Computer Science), Vol. 10821. Springer, 321–353.

[15] Andrey Bogdanov, Lars R. Knudsen, Gregor Leander, Christof Paar, Axel

Poschmann, Matthew J. B. Robshaw, Yannick Seurin, and C. Vikkelsoe. 2007.

PRESENT: An Ultra-Lightweight Block Cipher. In CHES 2007 (Lecture Notes in
Computer Science), Vol. 4727. Springer, 450–466.

[16] Joan Boyar and René Peralta. 2012. A Small Depth-16 Circuit for the AES S-Box.

In Information Security and Privacy Conference, SEC 2012 (IFIP), Vol. 376. Springer,
287–298.

[17] Gaëtan Cassiers, Benjamin Grégoire, Itamar Levi, and François-Xavier Standaert.

2021. Hardware Private Circuits: From Trivial Composition to Full Verification.

IEEE Trans. Computers 70, 10 (2021), 1677–1690.
[18] Gaëtan Cassiers and François-Xavier Standaert. 2020. Trivially and Efficiently

Composing Masked Gadgets With Probe Isolating Non-Interference. IEEE Trans.
Inf. Forensics Secur. 15 (2020), 2542–2555.

[19] Gaëtan Cassiers and François-Xavier Standaert. 2021. Provably Secure Hardware

Masking in the Transition- and Glitch-Robust Probing Model: Better Safe than

Sorry. IACR Trans. Cryptogr. Hardw. Embed. Syst. 2021, 2 (2021), 136–158.
[20] Suresh Chari, Charanjit S. Jutla, Josyula R. Rao, and Pankaj Rohatgi. 1999. To-

wards Sound Approaches to Counteract Power-Analysis Attacks. In CRYPTO
1999 (Lecture Notes in Computer Science), Vol. 1666. Springer, 398–412.

[21] Thomas De Cnudde, Oscar Reparaz, Begül Bilgin, Svetla Nikova, Ventzislav

Nikov, and Vincent Rijmen. 2016. Masking AES with d+1 Shares in Hardware.

In CHES 2016 (Lecture Notes in Computer Science), Vol. 9813. Springer, 194–212.
[22] Alexandre Duc, Stefan Dziembowski, and Sebastian Faust. 2014. Unifying Leak-

ageModels: From Probing Attacks to Noisy Leakage. In EUROCRYPT 2014 (Lecture
Notes in Computer Science), Vol. 8441. Springer, 423–440.

[23] Sebastian Faust, Vincent Grosso, Santos Merino Del Pozo, Clara Paglialonga, and

François-Xavier Standaert. 2018. Composable Masking Schemes in the Presence

of Physical Defaults & the Robust Probing Model. IACR Trans. Cryptogr. Hardw.
Embed. Syst. 2018, 3 (2018), 89–120.

[24] Karine Gandolfi, Christophe Mourtel, and Francis Olivier. 2001. Electromagnetic

Analysis: Concrete Results. In CHES 2001 (Lecture Notes in Computer Science),
Vol. 2162. Springer, 251–261.

[25] Hannes Groß, Rinat Iusupov, and Roderick Bloem. 2018. Generic Low-Latency

Masking in Hardware. TCHES 2018 2018, 2 (2018), 1–21.
[26] Hannes Groß and StefanMangard. 2018. A unified masking approach. J. Cryptogr.

Eng. 8, 2 (2018), 109–124.
[27] Hannes Groß, Stefan Mangard, and Thomas Korak. 2016. Domain-Oriented

Masking: CompactMaskedHardware Implementationswith Arbitrary Protection

Order. In TIS@CCS 2016. ACM, 3.

[28] Hannes Groß, Stefan Mangard, and Thomas Korak. 2017. An Efficient Side-

Channel Protected AES Implementation with Arbitrary Protection Order. In

CT-RSA 2017 (Lecture Notes in Computer Science), Vol. 10159. Springer, 95–112.
[29] Jian Guo, Thomas Peyrin, Axel Poschmann, andMatthew J. B. Robshaw. 2011. The

LED Block Cipher. In CHES 2011 (Lecture Notes in Computer Science), Vol. 6917.
Springer, 326–341.

[30] Michael Hutter and Jörn-Marc Schmidt. 2013. The Temperature Side Channel

and Heating Fault Attacks. In CARDIS 2013 (Lecture Notes in Computer Science),
Vol. 8419. Springer, 219–235.

[31] Yuval Ishai, Amit Sahai, and David A. Wagner. 2003. Private Circuits: Securing

Hardware against Probing Attacks. In CRYPTO 2003 (Lecture Notes in Computer
Science), Vol. 2729. Springer, 463–481.

[32] David Knichel, Amir Moradi, Nicolai Müller, and Pascal Sasdrich. 2022. Auto-

mated Generation of Masked Hardware. IACR Trans. Cryptogr. Hardw. Embed.
Syst. 2022, 1 (2022), 589–629.

[33] David Knichel, Pascal Sasdrich, and Amir Moradi. 2020. SILVER - Statistical

Independence and Leakage Verification. In ASIACRYPT 2020 (Lecture Notes in
Computer Science), Vol. 12491. Springer, 787–816.

[34] David Knichel, Pascal Sasdrich, and Amir Moradi. 2022. Generic Hardware

Private Circuits Towards Automated Generation of Composable Secure Gadgets.

IACR Trans. Cryptogr. Hardw. Embed. Syst. 2022, 1 (2022), 323–344.
[35] Paul C. Kocher. 1996. Timing Attacks on Implementations of Diffie-Hellman, RSA,

DSS, and Other Systems. In CRYPTO 1996 (Lecture Notes in Computer Science),
Vol. 1109. Springer, 104–113.

[36] Paul C. Kocher, Joshua Jaffe, and Benjamin Jun. 1999. Differential Power Analysis.

In CRYPTO 1999 (Lecture Notes in Computer Science), Vol. 1666. Springer, 388–397.
[37] Lauren De Meyer, Amir Moradi, and Felix Wegener. 2018. Spin Me Right Round

Rotational Symmetry for FPGA-Specific AES. IACR Trans. Cryptogr. Hardw.
Embed. Syst. 2018, 3 (2018), 596–626.

[38] Maria Chiara Molteni, Jürgen Pulkus, and Vittorio Zaccaria. 2022. On robust

strong-non-interferent low-latency multiplications. IET Inf. Secur. 16, 2 (2022),
127–132.

[39] Thorben Moos, Amir Moradi, Tobias Schneider, and François-Xavier Standaert.

2019. Glitch-Resistant Masking Revisited or Why Proofs in the Robust Probing

Model are Needed. IACR Trans. Cryptogr. Hardw. Embed. Syst. 2019, 2 (2019),

256–292.

[40] AmirMoradi and OliverMischke. 2013. On the Simplicity of Converting Leakages

from Multivariate to Univariate - (Case Study of a Glitch-Resistant Masking

Scheme). In CHES 2013 (Lecture Notes in Computer Science), Vol. 8086. 1–20.
[41] Svetla Nikova, Vincent Rijmen, and Martin Schläffer. 2011. Secure Hardware

Implementation of Nonlinear Functions in the Presence of Glitches. J. Cryptol.
24, 2 (2011), 292–321.

[42] Emmanuel Prouff and Matthieu Rivain. 2013. Masking against Side-Channel

Attacks: A Formal Security Proof. In EUROCRYPT 2013 (Lecture Notes in Computer
Science), Vol. 7881. Springer, 142–159.

[43] Oscar Reparaz, Begül Bilgin, Svetla Nikova, Benedikt Gierlichs, and Ingrid Ver-

bauwhede. 2015. Consolidating Masking Schemes. In CRYPTO 2015 (Lecture
Notes in Computer Science), Vol. 9215. Springer, 764–783.

[44] SAKURA. 2022. Side-channel Attack User Reference Architecture. http://satoh.

cs.uec.ac.jp/SAKURA/index.html. (2022).

[45] Pascal Sasdrich, Begül Bilgin, Michael Hutter, and Mark E. Marson. 2020. Low-

Latency Hardware Masking with Application to AES. IACR Trans. Cryptogr.
Hardw. Embed. Syst. 2020, 2 (2020), 300–326.

[46] Tobias Schneider and Amir Moradi. 2015. Leakage Assessment Methodology -

A Clear Roadmap for Side-Channel Evaluations. In CHES 2015 (Lecture Notes in
Computer Science), Vol. 9293. Springer, 495–513.

[47] Aein Rezaei Shahmirzadi, Dusan Bozilov, and Amir Moradi. 2021. New First-

Order Secure AES Performance Records. IACR Trans. Cryptogr. Hardw. Embed.
Syst. 2021, 2 (2021), 304–327.

[48] Aein Rezaei Shahmirzadi and Amir Moradi. 2021. Re-Consolidating First-Order

Masking Schemes Nullifying Fresh Randomness. IACR Trans. Cryptogr. Hardw.
Embed. Syst. 2021, 1 (2021), 305–342.

[49] Aein Rezaei Shahmirzadi and Amir Moradi. 2021. Second-Order SCA Security

with almost no Fresh Randomness. IACR Trans. Cryptogr. Hardw. Embed. Syst.
2021, 3 (2021), 708–755.

16

http://satoh.cs.uec.ac.jp/SAKURA/index.html
http://satoh.cs.uec.ac.jp/SAKURA/index.html

Low-Latency Hardware Private Circuits

[50] Takeshi Sugawara. 2019. 3-Share Threshold Implementation of AES S-box with-

out Fresh Randomness. IACR Trans. Cryptogr. Hardw. Embed. Syst. 2019, 1 (2019),
123–145.

[51] Elena Trichina. 2003. Combinational Logic Design for AES SubByte Transforma-

tion on Masked Data. IACR Cryptol. ePrint Arch. 2003 (2003), 236.
[52] Sara Zarei, Aein Rezaei Shahmirzadi, Hadi Soleimany, Raziyeh Salarifard, and

Amir Moradi. 2021. Low-Latency Keccak at any Arbitrary Order. IACR Trans.
Cryptogr. Hardw. Embed. Syst. 2021, 4 (2021), 388–411.

17

	Abstract
	1 Introduction
	2 Background
	2.1 Notations
	2.2 Circuit Model
	2.3 Boolean Masking
	2.4 Adversary Model
	2.5 Circuit Composition
	2.6 Automated Masking

	3 Low-Latency Hardware Private Circuits
	3.1 Glitch-Robust Variant
	3.2 Iterated Glitch+Transition-Robust Variant

	4 Comparison to state-of-the-art HPCs and Low-Latency Designs
	4.1 Glitch-Robust Hardware Private Circuits
	4.2 Iterated Transition-Robust Hardware Private Circuits
	4.3 Low-Latency Hardware Designs
	4.4 Comparison
	4.5 Algorithmic-Level Masking vs. Composable Gadgets
	4.6 Discussion on Latency-Optimized Logic Representations of Masked Circuits

	5 Experiments and Evaluations
	5.1 Case Studies
	5.2 Leakage Assessment

	6 Conclusions
	Acknowledgments
	A Performance Comparison Results
	B Leakage Assessment Results
	References

