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Abstract.
Post-quantum cryptography addresses the increasing threat that quantum computing
poses to modern communication systems. Among the available "quantum-resistant"
systems, the Niederreiter cryptosystem is positioned as a conservative choice with
strong security guarantees. As a code-based cryptosystem, the Niederreiter system
enables high performance operations and is thus ideally suited for applications such
as the acceleration of server workloads. However, until now, no ASIC architecture
is available for low latency computation of Niederreiter operations. Therefore, the
present work targets the design, implementation and optimization of tailored archi-
tectures for low latency Niederreiter decryption. Two architectures utilizing different
decoding algorithms are proposed and implemented using a 22nm FDSOI CMOS
technology node. One of these optimized architectures improves the decryption
latency by 27% compared to a state-of-the-art reference and requires at the same
time only 25% of the area.
Keywords: Application-Specific Architecture · Post-Quantum Cryptography ·
Niederreiter Cryptosystem · Hardware Implementation

1 Introduction
Advances in the development of quantum computers are raising concerns that large-scale
quantum computers could threaten the confidentiality of modern communications systems,
provided by cryptographic algorithms. In order to maintain secure communications, post-
quantum cryptography (PQC) aims to defend against attacks from quantum computers by
the introduction of so-called quantum-resistant cryptosystems. To assess the suitability
of these cryptosystems with respect to diverse applications, the National Institute of
Standards and Technology (NIST) is currently evaluating post-quantum key encapsulation
mechanisms (KEM) and digital signature algorithms, with the goal to standardize at least
one system from each category. For key encapsulation, one of the second round finalists
is a scheme called Classic McEliece, which is based on the Niederreiter cryptosystem
[AASA+20]. This code-based Niederreiter cryptosystem, whose associated characteristics
allow for high-speed operations, represents a conservative choice among quantum-resistant
systems. Confidence in the security of this cryptosystem follows from an extensive history
of cryptanalysis.

Despite its conservative and well-researched security guarantees, the Niederreiter
cryptosystem never experienced wide-spread adoption, due to relatively large key sizes.
Nevertheless, the accomplishment of high-speed operations as well as strong security levels
suggest the suitability of this cryptosystem for applications in data centers and other
application fields, where security and performance are critical. These fields are expected to
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rank among the early adopters of post-quantum cryptography, where hardware-accelerated
high-speed operations are desirable. However, up to now, no ASIC architecture has been
proposed for the Niederreiter cryptosystem. Therefore, the present work targets the design
and implementation of ASIC architectures for the code-based Niederreiter cryptosystem.
In consistency with the application scenarios described above, the focus thereby lies on
facilitating a low latency decryption operation of the Niederreiter system with high area
efficiency.

The development of highly efficient hardware architectures for the Niedereiter cryp-
tosystem is aided by employing suitable decoding algorithms for low latency processing.
Additionally, an appropriate polynomial evaluation approach which also takes remaining
steps of Niederreiter decryption into account allows for advantageous operational character-
istics. Where possible, algorithmic optimizations are introduced, in order to improve either
the decryption latency or area footprint of an associated architecture. Corresponding
ASIC architectures are derived and subsequently optimized, thus allowing for low latency
computation of the Niederreiter decryption operation.

The remainder of this paper is structured as follows: Section 2 gives a brief background
of the Niederreiter cryptosystem as well as binary Goppa codes and their associated
decoding algorithms. Section 3 provides an overview of previous hardware implementation
approaches of this cryptosystem, while the proposed ASIC architectures are detailed in
Section 4. Some implementation aspects of these architectures are described in Section 5.
Section 6 discusses results of the proposed architectures and compares them to previous
approaches. Finally, Section 7 summarizes the findings and results of this paper.

2 Code-Based Cryptography
The use of error-correcting codes in the design of cryptosystems was already proposed in
1978 by Robert McEliece [McE78]. The code-based Classic McEliece KEM builds upon
the Niederreiter cryptosystem, which is a "dual" variant of the McEliece cryptosystem
[ABC+20]. However, the aforementioned KEM bears the name of the original proposal
by Robert McEliece, which used binary Goppa codes and remains unbroken, apart from
parameter modifications. Niederreiter’s variant of this system allows for an increase
in performance, when considering key encapsulation [WSN17]. However, the original
publication also proposed the use of Reed-Solomon codes, which led to successful attacks
of this system [SS92]. Therefore, this work considers the Niederreiter cryptosystem using
binary Goppa codes.

2.1 Binary Goppa Codes
Binary Goppa codes are a class of linear error-correcting codes, which, due to their
structure, exhibit certain characteristics, that are advantageous for applications in code-
based cryptography. As a sub-class of Goppa codes, binary Goppa Codes operate in
GF (2m) and possess a minimum distance of dmin ≥ 2t + 1, where t is the number of
correctable errors [Ber73].

A binary Goppa code is defined by a monic generator polynomial g(x) and a support
vector of field elements L, described by

g(x) = xt +
t−1∑
i=0

gix
i, gi ∈ GF (2m) (1)

and
L = (L0, ..., Ln−1), Li ∈ GF (2m), (2)
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where n is the code length [HP03]. When the generator polynomial g(x) is an irreducible
polynomial, the resulting code is called an irreducible Goppa code and in the following
this property is assumed for all discussed Goppa codes.

2.2 Decoding Binary Goppa Codes
In order to decode binary Goppa codes and recover a transmitted codeword c ∈ GF (2n)
from an erroneous codeword c̃ = c+ e with error vector e, a decoding procedure is applied,
which comprises three major steps: Syndrome computation, solving the key equation and
determining the roots of the error locator polynomial [McE02].

The first step in the decoding process is the computation of the syndrome polynomial
S. This syndrome is obtained from a received word c̃ as the product S = H × c̃, where the
t× n matrix H is called a parity check matrix, with Hij = Li−1

j−1/g(Lj−1) [LC87].
Subsequently, a decoding algorithm is utilized in conjunction with the computed

syndrome in order to construct an error locator polynomial λ, whose roots correspond to
the error positions. The process of computing the aforementioned error locator polynomial
is also referred to as solving the key equation [Ber15] given by S(x)λ(x) ≡ ω(x) mod g(x) ,
where the error evaluator polynomial ω can be omitted in the present case of binary
codes [Hey13]. Since the error locations are represented by the roots of the error locator
polynomial, these locations can subsequently be determined by evaluating the error locator
polynomial λ for all support elements Li, where the indices of support elements that are
roots of λ indicate an erroneous position. By obtaining the error vector from the roots of
λ, the initial codeword can be reconstructed as c = c̃− e, which equals c = c̃+ e in the
binary case.

Various decoding algorithms are available for solving the key equation of binary Goppa
codes. Since Goppa codes are a sub-class of alternant codes, alternant decoding algorithms
can be utilized in the decoding process for Goppa codes [MBR15]. However, when applying
general decoding algorithms, which were not specifically designed for Goppa codes, only t/2
errors can be corrected directly, while the Niederreiter cryptosystem requires a correction
capability of t errors. This limitation is overcome by computing a double-sized syndrome
S(2) = H(2) × (S|0) [HG13], with the double-sized parity check matrix

H(2) =


1

g2(L0)
1

g2(L1) · · · 1
g2(Ln−1)

L0
g2(L0)

L1
g2(L1) · · · Ln−1

g2(Ln−1)
...

...
. . .

...
L2t−1

0
g2(L0)

L2t−1
1

g2(L1) · · · L2t−1
n−1

g2(Ln−1)

 . (3)

By using S(2) as an input for a general decoding algorithm instead of S, up to t errors are
correctable.

Even though the approach stated above allows for the selection of a decoding algorithm
from a broad spectrum, this work focuses on variants of the two most commonly employed
algorithms that allow for efficient hardware implementations. These Algorithms, Patterson’s
algorithm as well as the inversionless Berlekamp-Massey algorithm, will be described in
the following.

2.2.1 Patterson’s Algorithm

In 1975, Patterson proposed an algorithm that was specifically designed for the purpose of
decoding binary Goppa codes. This algorithm, whose pseudocode is shown in Algorithm 1,
builds upon the ideas of the decoding algorithms by Berlekamp and Massey as well as
Sugiyama et al. [Pat75]. After syndrome inversion, which corresponds to Sugiyama’s ap-
proach, Patterson’s decoding algorithm employs a decomposition of the inverted syndrome



4 Efficient ASIC Architectures for Low Latency Niederreiter Decryption

T . Patterson’s decoding procedure thereby exploits unique properties of irreducible binary
Goppa codes [EOS06]. Due to this tailored approach, Patterson’s algorithm is capable of
correcting t errors directly, without the use of a double-sized syndrome.

Algorithm 1 Patterson’s algorithm for decoding binary Goppa codes
1: function Patterson’s Algorithm(S, g(x))
2: T (x)← S−1 mod g(x)
3: if T (x) = x then
4: λ(x)← x

5: return λ(x)
6: end if
7: R(x)←

√
T (x) + x

8: (a(x), b(x))← EEA(R(x), g(x)) with deg(a) ≤ t−1
2 , deg(b) ≤ t

2
9: λ(x)← a(x)2 + x · b(x)2

10: return λ(x)
11: end function

2.2.2 Inversionless Berlekamp-Massey Algorithm

Another commonly employed decoding algorithm for binary Goppa codes is the Berlekamp-
Massey algorithm (BM). Even though this algorithm relies on mostly simple field operations,
it also requires field inversions in an iterative loop. In order to facilitate an efficient hardware
implementation without repeated inversions, a variant of the BM algorithm is used for one
of the proposed ASIC architectures, called the inversionless Berlekamp-Massey algorithm
(iBM) [Bur71].

The pseudocode of the iBM algorithm is shown in Algorithm 2. It can be seen, that
during the coefficient update step (line 5 of Algorithm 2), the coefficients of the error-
locator polynomial are multiplied by a scalar field element γ, which causes the inversion
of the discrepancy in the subsequent steps to vanish. Due to this scalar multiplication of
the coefficients of λ(x), the resulting error-locator polynomial is a scalar multiple of the
polynomial determined by the original BM algorithm [SS01]. Since only the roots of λ(x),
which remain unaffected by scalar multiplication, are of interest for decoding Goppa codes,
this property of the iBM algorithm does not impact the final solution.

Algorithm 2 Inversionless Berlekamp-Massey algorithm
1: function Inversionless Berlekamp-Massey(S)
2: λ(x)← 1, b(x)← 1, l← 0, γ ← 1, δ ← 0
3: for k from 0 to 2t− 1 do
4: d← δ, δ ←

∑t

i=0 λi · Sk−i

5: λ(x)← γ · λ(x)− δ · b(x) · x
6: if δ = 0 or l < 0 then
7: b(x)← x · b(x), l← l + 1, γ ← γ

8: else
9: b(x)← λ(x), l← −1− l, γ ← δ

10: end if
11: end for
12: return λ(x)
13: end function
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2.3 Niederreiter Cryptosystem
In 1986, Niederreiter proposed an asymmetric code-based cryptosystem [Nie86], which is
considered a variant of the McEliece cryptosystem [BLP08]. Instead of encoding a plaintext
message in a codeword, Niederreiter’s approach employs the error vector e as the plaintext
and consequentially the syndrome S as the ciphertext, thus the codeword is thereby
negligible. The resulting cryptosystem exhibits a smaller ciphertext than McEliece’s
system and requires no CCA2-conversion [HG13], thus this system is favorable for key
exchange applications. Nevertheless, the Niederreiter cryptosystem is equivalent to the
McEliece cryptosystem in terms of security [LDW94]. In the following, a "modern" variant1
of the Niederreiter cryptosystem will be employed. The operations of the Niederreiter
cryptosystem are summarized in Algorithm 3, with a notation similar to the work of Wang
et al. [WSN18].

Key generation of the Niederreiter cryptosystem allows for the selection of system
parameters m (field size), n (code size), t (maximum error number) and k̄ (code dimension).
With these parameters, a random permutation L = (L0, ..., Ln−1), with Li ∈ GF (2m)
of n distinct field elements is selected, which is called the support vector [WSN18]. By
storing a permutation implicitly in the support vector, the use of a permutation matrix
P̄ , as it is employed in the McEliece cryptosystem, can be avoided [HG13]. Thereafter, a
random irreducible generator polynomial g(x) of degree t is chosen. The support vector
and generator polynomial subsequently allow for the computation of the t× n parity check
matrix H. In the "modern" variant of the Niederreiter cryptosystem, this parity check
matrix is then transformed into its systematic form H = [Imt|Kpub], which reduces the size
of the public key to mt× (n−mt) [WSN18]. Afterwards, the public key is given by the
non-systematic part of H, i.e. Kpub, while the private key Kpriv comprises the generator
polynomial g(x) as well as the support vector L.

1The distinction between "classic" and "modern" variants follows the nomenclature of [HG13]. Other
authors, e.g. [WSN17], apply the modern variant without further differentiation.

Algorithm 3 Operations of the Niederreiter Cryptosystem
1: System parameters m,n, k̄, t
2: function key generation(m,n, k̄, t)
3: Select a random permutation L = (L0, ..., Ln−1) of n field elements in GF (2m).
4: Select a random irreducible polynomial g(x) of degree t.
5: Determine the associated parity check matrix H.
6: Find the systematic form of H using Gaussian elimination as H = [Imt|Kpub].
7: return the public key Kpub and the private key Kpriv = (g(x), L).
8: end function

9: function Encryption(Kpub, e)
10: S ← [Imt|Kpub]× e
11: return the ciphertext S.
12: end function

13: function Decryption(Kpriv = (g(x), L), S)
14: Determine the double-sized parity check matrix H(2) according to Equation 3.
15: Determine the double-sized syndrome S(2) ← H(2) × (S|0)
16: Retrieve the error-locator polynomial λ(x) from S(2) by use of a decoding algorithm.
17: Retrieve the roots of λ(x) as e, i.e. ei = 1 ⇐⇒ λ(Li) = 0.
18: return the plaintext e.
19: end function
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Table 1: System parameters, security levels and key sizes for the Niederreiter
cryptosystem.

Security Parameters Size g(x) Size L Size H Size Kpriv Size Kpub

Level n m t [kbit] [kbit] [kbit] [kbit] [kbit]

80 bit 1632 11 33 0.374 18 592 18 461
128 bit 2960 12 56 0.684 36 1989 37 1538
256 bit 6624 13 115 1.508 86 9903 88 7668
266 bit 6960 13 119 1.560 90 10767 92 8374

Encryption in the Niederreiter cryptosystem requires the representation of a plaintext
message as an error vector e of Hamming weight t. Various constant-weight encoding
algorithms were proposed for this task, e.g. [HCG17], although they are not further
considered here. Encryption in the Niederreiter cryptosystem is then equivalent to syndrome
computation of binary Goppa codes, given by the product of the plaintext e and the parity
check matrix [Imt|Kpub], yielding the ciphertext, i.e. the syndrome S = [Imt|Kpub]× e.

Decryption of Niederreiter ciphertexts, which is the subsequent focus of the present
work, is accomplished by decoding the error vector e (the plaintext) from the syndrome
S (the ciphertext). Assuming the application of a general decoding algorithm, the first
step in the decryption process is the computation of the double-sized syndrome as the
product S(2) = H(2)×(S|0), where H(2) denotes the 2t×n double-sized parity check matrix
given by Equation 3 and (S|0) denotes the syndrome, right-padded with zeros to n bit.
Afterwards, an error-locator polynomial λ(x) of degree t is constructed from S(2) by means
of a decoding algorithm. By evaluating the error-locator polynomial for each element Li

of the secret support L, its roots can be found, where indices of support elements that are
roots of λ(x) correspond to indices of bits in the error-vector e for which ei = 1.

2.3.1 Parameter Selection

The system parameters n, m and t of the Niederreiter cryptosystem allow for a tradeoff
between security level and performance. A selection of parameter sets considering effects
from attacks on the Niederreiter system [BLP08] are listed in Table 1. Due to its high-
speed operations and confidence in its security guarantees, the Niederreiter cryptosystem
is inherently well suited for applications in critical environments, such as data centers. The
proposed architectures target this scenario with its high-speed and low-area objectives.
Therefore, architectures supporting long-term security for critical data are appropriate,
where the selected parameter set should also comply with the Classic McEliece KEM
proposal. Due to this reason, a parameter set resulting in a security level of 266 bit
was selected, with the associated parameters n = 6960, m = 13 and t = 119. This
parameter set still provides a 128 bit "quantum-resistant" security level when considering
attacks using quantum computers executing Grover’s algorithm [WSN18] and follows the
recommendations for PQC given in [ABB+15].

3 Previous Work
Due to its history and associated position as a reliable conservative choice, the McEliece
cryptosystem has received significantly more attention than the variant proposed by
Niederreiter. Nevertheless, several implementations of the Niederreiter cryptosystem do
exist, which are listed in Table 2, in addition to McEliece implementations for comparison.
"Low-reiter", for instance, is a Niederreiter software implementation, which targets 8-bit
AVR microcontrollers and provides a security level of 80 bit, while utilizing Patterson’s
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Table 2: Overview of code-based PQC hardware implementations.
Designa

Device Security Decoding fclk Slicesb Latencyc [µs]

Level [Bit] Algorithm [GHz] Key. Enc. Dec.

[SWM+10] (M) Xilinx LX110T 103 Patterson 0.163 14537 9000 500 1290

[GV14] (M) Xilinx XC6VHX255T 128 Patterson 0.254 5357 - 4.74 920

[MBR15]d (M) Xilinx 3AN-1400 80 — 256 Arguello 0.123 2108 - - 601

[CCKA21] (M) Xilinx XC7K70T 266 Patterson 0.050 n.d. - n.d. n.d.

[HG13] (N) Xilinx LX240 80 Sugiyama 0.220 2474 - 0.91 49.72

[HDYC18] (N) Xilinx XC6VLX240T 76.5 Patterson 0.250 4252 - 1.41 798.57

[WSN18] (N) Altera 5SGXEA7N 256 BM 0.248 121806 3896.52 21.83 68.77
a (M) = McEliece, (N) = Niederreiter
b Results are given for the total slices of an implementation.
c Key. = key generation, Enc. = encryption, Dec. = decryption
d Results are listed for a 128 bit parameter set.

algorithm for decoding [Hey10]. Considering FPGA implementations, architectures for
Niederreiter encryption and decryption with 80 bit security were proposed in [HG12]
and [HG13]. This led to two designs employing Patterson’s algorithm and the BM
algorithm, respectively, although the results are not directly transferable2 to Niederreiter
implementations conforming to the Classic McEliece KEM submission, which was proposed
later. In 2018, Hu et al. presented an ASIP design implemented on an FPGA, which
supports Niederreiter encryption as well as decryption. This architecture is furthermore
capable of generating signatures using the Niederreiter cryptosystem [HDYC18]. Lastly, an
FPGA implementation of the complete Niederreiter system providing long-term security
with a security level of 266 bit is given in [WSN17] and [WSN18]. The aforementioned
implementation is scalable with respect to different parameter sets and employs the BM
algorithm for constant-time decryption. To the best of our knowledge, no ASIC architecture
apart from a HLS-based comparison of PQC KEM algorithms [BSNK19] exists for the
Niederreiter cryptosystem.

4 Architecture Design
Two application-specific hardware architectures were designed in the context of the present
work, an iBM-based as well as a Patterson-based architecture. An overview of these
architectures is shown in Figure 1. For both decryption modules, ciphertext and private
keys are assumed to be located in external key memories, which facilitates a fair comparison
of architectures without the influence of a constant large area contribution of the key
memory.

The iBM-based decryption module comprises two sub-modules: A combined
evaluation module for computation of double-sized syndromes and polynomial evaluation
as well as an iBM module for computation of the error-locator polynomial. A decryption
operation is executed by first computing the double-sized syndrome using the combined
evaluation module. This double-sized syndrome is then employed by the iBM module
to construct an error-locator polynomial λ(x) from the syndrome. This error-locator
polynomial is fed back into the combined evaluation module, which evaluates the polynomial
at all points corresponding to support vector elements Li and returns the plaintext
represented by an error-vector e, thus completing the decryption.

The Patterson-based decryption module exhibits less complex sequencing, as
utilization of Patterson’s algorithm for decryption renders the use of a double-sized
syndrome unnecessary. Therefore, the ciphertext syndrome and generator polynomial are

2This is due to the fact, that the implementation in [HG13] assumes the double-sized parity check
matrix H(2) as a part of the private key.
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(a) iBM Decryption
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Patterson Decryption Module
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Figure 1: Overview of the proposed (a) iBM-based and (b) Patterson-based Niederreiter
decryption architectures.

applied directly in the Patterson decoding module, in order to obtain the error locator
polynomial. Using the secret support vector, the error-locator polynomial is then evaluated
by the polynomial evaluation module, which subsequently provides the plaintext bits.

4.1 Finite Field Arithmetic
Since arithmetic modules for finite field arithmetic represent the fundamental components
of the aforementioned modules of Niederreiter decryption architectures, they should be
carefully designed, such that low latency architectures with reasonable area efficiency are
facilitated. In the following, irreducible polynomials required for operations in GF (2m) as
well as GF (2m)[x]/f are assumed to match the polynomials given in the Classic McEliece
KEM proposal [ABC+20]. For all arithmetic modules a standard basis representation, i.e.
a representation as coefficients of a polynomial, is assumed, thus allowing for fast multiplier
implementations [DInS09]. Efficient design points for these arithmetic modules will be
detailed in the following.

4.1.1 Operations in GF (2m)

Addition in a finite field GF (2m) with elements represented as polynomials equals the
addition of polynomials. GF (2m) addition is straightforward and performed by bit-wise
XOR of field elements, because polynomial addition is achieved by addition of coefficients,
which in GF (2) is equivalent to the logical XOR operation.

Multiplication in a finite field can be implemented by using a multitude of approaches.
For fast multiplication algorithms, such as Montgomery or Karatsuba-Ofman multiplication,
it is assumed that these algorithms do not allow for efficient implementations for the
choice of m = 13 , which is congruent with the findings of Wang et al. [WSN17]. Hence,
Mastrovito multiplication is employed in the proposed decryption architectures, as an
approach featuring low latency multiplication with moderate area footprint. Low latency
operations are thereby achieved by combining the partial product computation with the
reduction steps [Mas89]. A finite field multiplier can thereby be designed as a combinatorial
function with low latency. Although optimizations for Mastrovito’s approach exist (see e.g.
[PDCS07b] or [PDCS07a]), improvements for the present case of an irreducible pentanomial
are marginal compared to the additional design effort, hence the original approach by
Mastrovito is used here.
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Squaring in GF (2m) is implemented using a field multiplier, when an idle field
multiplier is available, e.g. in the last step of Patterson’s algorithm. However, if this
is not the case, squaring using multipliers is relatively costly in terms of area footprint.
Exploiting the observation that in binary fields, squaring can be expressed as

c = a2 mod f(x) ≡ a2
m−1x

2(m−1) + a2
m−2x

2(m−2) + ...+ a2
1x

2 + a2
0 mod f(x) , (4)

less complex implementations are possible [DInS09]. By applying a reduction to the
aforementioned squared polynomial, squaring is also implemented by a combinatorial low
latency approach similar to the Mastrovito multiplication.

Square root computations for field elements may exploit the fact, that due to Fermat’s
little theorem

a2m ≡ amod f(x) , (5)

where f(x) is a binary irreducible polynomial with deg(f(x)) = m. Therefore,
√
a = a2m−1 ,

with
√
a

2 = (a2m−1)2 = a2m ≡ amod f(x). The exponentiation required to determine the
square root is thereby computed using a square-and-multiply approach. Because square
roots only have to be computed in the context of Patterson’s algorithm and idle multipliers
are always available, the square-and-multiply scheme is mapped onto a field multiplier,
similar to the approach of Ghosh and Verbauwhede [GV14].

Inversion is an expensive operation in a finite field GF (2m). Available inversion
approaches, such as application of the EEA, exponentiation or table lookup, differ in
the attainable latencies and area costs [WM15]. In order to balance area footprint and
decryption latency, two approaches were selected, while considering the respective operation
characteristics: For inversion operations that appear in an iterative loop and are therefore
repeatedly executed, a very low latency lookup approach was used, in order to avoid a
significant impact on the total decryption latency. Inversion operations that are only
performed once and require a high throughput instead of low latency processing were
implemented using a smaller array of multipliers and squaring modules. By using Fermat’s
little theorem, as described above, inversion can thereby be evaluated by computing a2m−2

in a square-and-multiply scheme [DPBM00]. As the squared inverses of field elements
are required for the computation of a double-sized syndrome, these squared inverses
can be directly obtained by computing the power a2m−3 ≡ a−2 mod f(x) instead of
a2m−2 ≡ a−1 mod f(x).

4.1.2 Polynomial Operations in GF (2m)[x]/g

Addition in a polynomial extension field GF (2m)[x]/g is achieved by addition of poly-
nomial coefficients, similar to addition in GF (2m). Since the addition of polynomial
coefficients in GF (2m) corresponds to the bit-wise XOR operation, addition in a binary
polynomial extension field is also implemented as a bit-wise XOR operation. Due to the
relatively low cost of m = 13 XOR gates per coefficient, polynomial adders are assumed to
operate completely in parallel with m(t+ 1) = 1560 XOR gates per adder.

Multiplication in GF (2m)[x]/g is considerably more complex than multiplication in
GF (2m). It was shown that especially Karatsuba-Ofman multiplication is suited to achieve
efficient multiplier architectures in large binary fields [AESI10]. However, polynomial
multiplication is only required for two multiplication operations in Patterson’s algorithm,
where the multiplicants in each case possess a maximum degree of t+ 1/2 = 60 and during
each operation an available GF (2m) multiplier array is idle. Therefore, in order to avoid
overhead and to limit the design effort, polynomial multiplication is implemented in the
present work as an interleaved operation with alternating scalar multiplication with partial
product accumulation and modular reduction controlled by a finite state machine (FSM).

Scalar multiplication, i.e. the multiplication of a polynomial in GF (2m)[x]/g with a
multiplier element from GF (2m) is easily achieved by multiplying each coefficient of the
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multiplicand, which constitutes an element in GF (2m), with the multiplier element. This
operation is implemented by t+ 1 = 120 parallel GF (2m) multiplier modules.

Squaring in a polynomial extension field can be realized by multipliers or by dedicated
squaring modules. Since no dedicated polynomial multiplier was employed, squaring has
to be implemented differently. As an alternative, Equation 4 can be applied for polynomial
squaring in GF (2m)[x]/g. Simplifications are possible, since polynomial squaring is only
necessary for polynomials exhibiting a maximum degree of t+ 1/2 = 60. Therefore, no
reduction is required and polynomial squaring is implemented by squaring of individual
coefficients as well as a hard-wired coefficient reordering.

Inversion approaches in polynomial extension fields are theoretically equivalent to
approaches in the underlying extension field GF (2m). Nevertheless, different latency-area
design points have to be considered for the case of larger polynomial extension fields. Due to
exponential scaling behaviour, a lookup-table approach becomes infeasible for GF (2m)[x]/g.
Additionally, inversion by exponentiation would require mt = 1547 square-and-multiply
iterations, thus rendering this approach also unsuitable. Therefore, as a balanced design
point, inversion using the EEA was selected for field inversions in GF (2m)[x]/g.

4.2 Decoding Algorithms
4.2.1 Patterson Decoding

The Patterson decoding module, which is depicted in Figure 2, comprises two major modules,
namely a polynomial EEA module, used for polynomial inversion and decomposition,
and a polynomial square root module, used for determining polynomial square roots in
GF (2m)[x]/g. Both modules execute all field multiplications on a shared array of t+1 = 120
GF (2m) multipliers, which allows for significant area reduction of the associated decoding
module.

A Patterson decoding operation starts by reading generator and syndrome polynomial
coefficients into shift registers acting as serial-to-parallel converters, thus limiting the
required memory bandwidth. Subsequently, the polynomial EEA module is enabled in
order to obtain the inverse syndrome T (x) = S−1. The following case distinction in the
original Patterson algorithm can be neglected for the Niederreiter cryptosystem, because
the error-locator polynomial will always have t distinct roots. Therefore, the polynomial
square root of T (x) + x is then computed using the polynomial square root module. This
square root is decomposed by the polynomial EEA module into polynomials a(x) and
b(x). In order to construct the error-locator polynomial as λ(x) = a(x)2 + x · b(x)2,
the polynomials a(x) and b(x) are reordered as even and odd parts of the error-locator
polynomial, respectively. Thereafter, coefficient-wise squaring of the reordered polynomial
using the multiplier array results in the desired error-locator polynomial λ(x).

Polynomial EEA
g(x) a(x) α · β

α, β

Polynomial SQRT

√
T + x T (x) α · β

α, β

MUL
Array

S

g(x)
λ(x)

Figure 2: Block diagram of the Patterson decoding module with a shared multiplier array.
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4.2.2 Polynomial EEA

The proposed architecture for polynomial EEA computations achieves latency and area
advantages over standard EEA approaches by utilizing various optimizations. For instance,
the computation of the second Bézout coefficient is omitted and polynomial divisions are
combined with the coefficient update operation of scratch polynomials. These measures
were adapted from the McEliece software implementation given in [BS08].

The update procedure of scratch polynomials in the EEA usually comprises the com-
putation of a quotient polynomial q(x), followed by a polynomial multiplication of the
quotient polynomial with the scratch polynomials of the previous iteration. Since poly-
nomial division and multiplication are costly operations, the EEA architecture presented
here combines the division and multiplication steps. Exemplified by the update of the
scratch polynomial u(i), the update procedure can thus be formulated as follows:

u(i+1) = u(i−1) + r
(i−1)
∆+j

r
(i)
∆

u(i)xj , (6)

where ∆ = deg(r(i)) and the update step given by the equation above is repeated for all j
from δ(i) = deg(r(i−1))− deg(r(i)) to zero. Furthermore, polynomial degree computation
is realized as a separate module based on a priority encoding approach.

In addition to the operations described above, the EEA module supports two operational
modes, selected by a mode input signal. The first mode corresponds to the computation
of an inverse polynomial, while the second mode allows for polynomial decomposition.

4.2.3 Polynomial Square Root

Square root computation by multiplying a polynomial by a suitable matrix, as proposed by
Patterson [Pat75], does not reduce the required multiplicative complexity to an adequate
level. Therefore, a method described by Huber is used here for efficient square root
computation, as it facilitates a balance between square root computation latency and area
footprint.

Huber’s method computes the square root of a polynomial z(x) as√
z(x) ≡

√
ẑ(x) +

√
x
√
z̃(x) mod g(x) , (7)

where ẑ(x) and z̃(x) represent the even and odd parts of z(x), respectively, such that
z(x) ≡ ẑ(x) + x · z̃(x) [Hub96]. Since ẑ(x) and z̃(x) only have even non-zero coefficients,
it follows from Equation 4 that square roots of these polynomials are easily obtained as
(
√
ẑ)i =

√
ẑ2i and (

√
z̃)i =

√
z̃2i. For the generator polynomial g(x) a similar decomposition

into even and odd parts ĝ(x) and g̃(x) can be applied. With these polynomials, the root√
x can be determined with respect to the generator g(x) as [Hub96]

√
x ≡

√
ĝ(x) ·

(√
g̃(x)

)−1
mod g(x) . (8)

The proposed polynomial square root module computes the roots
√
ẑ(x) and

√
z̃(x) by

determining the square roots of each coefficient of z(x) = T (x) + x in parallel using
the shared multiplier array. The reordering into even and odd parts is realized without
additional overhead by appropriate wiring of the multiplier result to the associated registers.
Since the operations for the decomposition of z(x) and g(x) are identical, the same resources
are used for these operations, where only the root

√
x has to be stored separately. For the

inversion of
√
g̃(x) the EEA module described above is utilized in inversion mode.
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4.2.4 iBM Decoding

Inversionless Berlekamp-Massey decoding allows for constant time decoding while employing
simple finite field operations. The iBM decoding module presented below aims to reduce
the decoding latency compared to previous implementations while at the same time
maintaining a balanced design point with high area efficiency. Latency reduction without
adverse effects on the area footprint is achieved by various novel approaches, which are
described below.

The architecture of the proposed iBM decoding module (shown in Figure 3) comprises
two sub-modules, associated with the primary steps of the iBM algorithm, discrepancy
computation and coefficient update. In order to avoid a large and thus inefficient decoding
module, fully parallelized operation on all t + 1 = 120 coefficients of the error-locator
polynomial should be avoided. Therefore, the iBM decoding module operates on subsets of
20 coefficients in parallel. This block-wise computation allows for the introduction of two
primary measures for latency reduction: pipelined operation and coefficient update bypass.

Pipelined operation thereby implies that as soon as the first block of coefficients is
updated during an iteration, this block is fed into the discrepancy computation module, in
order to start discrepancy computation of the next iteration. With this scheme the cycles
for a single iBM operation are reduced from 2(t+ 1)/20 + 1 = 13 to t+ 1/20 + 2 = 8 with
a constant number of 2 cycles for the final accumulation step and the update of the first
coefficient block. Thus, the total decoding latency is reduced by approximately 38%.

It was shown that for the iBM algorithm the upper t−k coefficients of the error-locator
polynomial are 0 in iteration k [SS01]. Therefore, considering architectures with block-wise
operations on these coefficients, it is possible to bypass updates of coefficient blocks that
only contain zero coefficients. This measure reduces the total amount of cycles for pipelined
decoding from 2t · (t+ 1/20 + 2) = 1904 to t · (t+ 1/20 + 2) +

∑(t+1)/20
i=1 20 · (i+ 2) = 1612,

corresponding to a relative latency reduction of approximately 15%.

4.2.5 Discrepancy Computation

Discrepancy computation constitutes the first step in an iBM iteration. As described
before, the discrepancy δ(k+1) in an iteration k is computed as

δ(k+1) =
t∑

i=0
λ

(k)
i · S(2)

k−i . (9)

Due to the relative shift of syndrome against error-locator coefficients in each iteration,
implementation of this structure can be performed using a shift register. The proposed
discrepancy computation module features a shift register that shifts only once per iteration
and selects blocks of coefficients via multiplexers, in order to reduce switching activity.

Coefficient Update

Discrepancy ComputationS(2)

δ γ

λ[i]

Figure 3: Block diagram of the pipelined iBM decoding module, operating on blocks λ[i]
of the error-locator polynomial.
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λ20i λ20i+1 λ20i+18 λ20i+19
S

(2)
k

δ γ

Figure 4: Block diagram of the iBM discrepancy computation module.

This approach, which is shown in Figure 4, furthermore facilitates the coefficient update
bypass described before.

It can be observed in Figure 4 that syndrome-error-locator products are pairwise added
followed by a register stage. The remaining additions after the register stage are realized as
an adder tree with an additional accumulator register. This split, involving an intermediate
register stage, ensures a short critical path of the whole module.

4.2.6 Coefficient Update

Following the discrepancy computation, coefficients of the error-locator polynomial are
updated in the coefficient update module according to

λ(x)(k+1) = γ(k) · λ(x)(k) − δ(k+1) · b(x)(k) · x . (10)

Since the formulation of the coefficient update procedure exhibits a regular structure,
this procedure is ideally suited to be implemented using a systolic array. Therefore, the
coefficient update module relies on such a systolic array, which is depicted in Figure 5. In
the proposed systolic array, blocks of error-locator polynomial coefficients remain stationary
in an associated processing element (PE), while the auxiliary coefficients bi are shifted
between the PEs, which corresponds to the multiplication by x. Furthermore, the currently
updated subset of coefficients is also stored in dedicated registers, which makes these
coefficients accessible for the discrepancy computation module. The use of multiplexed
registers in this coefficient update module allows for the coefficient update bypass.

4.3 Polynomial Evaluation
Polynomial evaluation in finite fields is an essential operation for the decryption of
Niederreiter ciphertexts, as it is necessary for computation of the double-sized syndrome
as well as root searching of the error-locator polynomial. Assuming the availability of a
low latency decoding module, polynomial evaluation might account for the majority of the
resulting decryption latency and area footprint of a Niederreiter decryption architecture,
e.g. as seen in [WSN18]. Therefore, careful design of a polynomial evaluation architecture
is mandatory for efficient implementation of the whole decryption process.

Even though sophisticated polynomial evaluation approaches, e.g. FFT-based schemes,
are available, the large number of intermediate results that have to be stored when
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PE0
b20i

λ20i

δ γ

PEj
b20i+j

λ20i+j

PE19
b20i+19

λ20i+19

b20i+j−1

δ γ

λ20i+j

λ b
b20i+j

Figure 5: Block diagram of the iBM coefficient update module’s systolic array (top) with
detail view of a processing element (PE) at the bottom.

using these schemes results in large memories, thus negatively impacting area efficiency.
Furthermore, evaluating a polynomial in a specific order necessitates a subsequent root
sorting, which deteriorates decryption latency. Therefore, Horner’s method is employed
in this work for polynomial evaluation. This approach, which will be described in the
following, brings the additional advantage that the resulting architecture can be reused for
double-sized syndrome computation.

4.3.1 Horner’s Method

Horner’s rule allows for the computation of the polynomial point g(Li) as

g(Li) = (((gtLi + gt−1)Li + gt−2) ...)Li + g0 , (11)

which eliminates exponentiations and thus allows for the evaluation of a polynomial using
solely finite field multiplication and addition.

The proposed polynomial evaluation module considers coefficient stationary processing.
Hereby t + 1 coefficients are stored in t PEs and field elements are fed into a systolic
array, while partial sums are transferred between PEs of such an array. Even though a
polynomial of degree t possesses t+ 1 coefficients, the coefficient of xt can be treated as
the first partial sum and thus only t PEs are required. A systolic array was derived from
this approach, which features reduced fanout and memory bandwidth requirements.

The aforementioned systolic array for polynomial evaluation is suited to directly evaluate
the error-locator polynomial and is therefore employed in the Patterson decryption module.
For iBM-based decryption, however, in addition to polynomial evaluation, computation of
a double-sized syndrome is necessary, which is described in the following.

4.3.2 Double-sized Syndrome

The double-sized syndrome, which is required for correcting t errors using Berlekamp-
Massey decoding, can be computed as the product of the zero-padded syndrome S and a
double-sized parity check matrix H(2) as H(2)× (S|0). With the definition of each element
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of the double-sized parity check matrix as H(2)
i,j = Li

j/g
2(Lj), with i ∈ [0, 2t − 1] and

j ∈ [0, n− 1], several observations facilitate optimizations of the double-sized syndrome
computation. First, the computation of the double-sized parity check matrix H(2) can be
merged with the following vector-matrix multiplication by multiplying each value of g2(Lj)
by the corresponding syndrome bit before constructing the double-sized parity check matrix
and accumulating its columns [WSN18]. Since a field element thereby gets multiplied by a
single syndrome bit, this operation is easily realized by the AND operation of each element
bit and the syndrome bit. Furthermore, due to zero-padding of the syndrome polynomial,
the last columns of H(2) have no influence on the final vector-matrix product and can thus
be omitted from computation entirely, where only the first mt = 1547 columns have to
be computed. Lastly, it can be observed that each row of the double-sized parity check
matrix can be obtained from the previous row by element-wise multiplication of a row by
the truncated support vector (L0, ..., Lmt−1). This allows for the iterative computation of
the double-sized parity check matrix by a single multiplication per matrix element.

Using above observations, a systolic array can be designed for double-sized syndrome
computation. The double-sized syndrome systolic array operates in a partial sum stationary
scheme, where generator polynomial values and support vector elements are transferred
between PEs. Instead of focusing on a single row or column of the double-sized parity
check matrix, the array computes entries of multiple rows and columns in parallel, i.e.
the entries H(2)

i,0 , H
(2)
i−1,1, H

(2)
i−2,2, ...,H

(2)
i−mt,mt are calculated in parallel in iteration i of this

scheme. This approach exhibits the advantage of reduced storage and memory bandwidth
requirements, with additional improvements for fanout of support vector elements. In
the present case, an array consisting of t PEs computes t coefficients of the double-sized
syndrome concurrently.

4.3.3 Combined Evaluation Module

Even though the aforementioned optimizations for polynomial evaluation and double-sized
syndrome systolic arrays enable a significant circuit size reduction compared to unoptimized
designs, these arrays would still occupy a majority of the area of an associated Niederreiter
decryption architecture. Hence, it is desirable to further decrease the area footprint of the
modules for these operations. When analyzing the systolic arrays for polynomial evaluation
and double-sized syndrome computation, it becomes apparent that these arrays resemble
each other. Instead of instantiating two distinct arrays for evaluation and syndrome
computation, it is therefore advantageous to employ a single combined systolic array, which
executes both operations. This combined evaluation module3 will be described in the
following in greater detail.

The systolic array of the combined evaluation module employed for iBM-based de-
cryption is illustrated in Figure 6. Apart from the combined systolic array, this module
comprises m = 13 parallel AND gates for multiplying generator polynomial values by
syndrome bits and a constant delay FIFO used to buffer generator polynomial values as
well as values of the double-sized parity check matrix. Furthermore, a shift register for
parallel-to-serial and serial-to-parallel conversion, a comparator for determining roots of
the error-locator polynomial, and a squared inversion module are used in the combined
evaluation module.

Double-sized syndrome computation is initiated on the combined evaluation module by
sequentially loading coefficients of the generator polynomial g(x) into the shift-register.
Subsequently, these coefficients are loaded into the combined systolic array and support
vector elements are read from memory to obtain generator polynomial values g(Li). The

3Note, that the combined double-sized syndrome computation and polynomial evaluation approach
was developed independently from another implementation, which also combines these two operations
[MBR15]. However, the implementation of Massolino et al. employs a different dataflow and does not
consider interleaving of syndrome computation and decoding.
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Figure 6: Block diagram of the combined systolic array (top) with detail view of the jth
PE (bottom).

squared inverses of these values are then stored in the constant delay FIFO. Afterwards,
these polynomial values are multiplied by the corresponding syndrome bits and are fed
back into the systolic array4, in order to compute the first half of a double-sized syndrome,
which is loaded into the shift register, hence allowing to immediately resume double-sized
syndrome computation. The product of support element powers and the squared inverses of
generator polynomial values that exit the systolic array in this first iteration are required to
resume computation of the double-sized syndrome and are thus stored in the constant delay
FIFO. After completing the computation of the first half of the double-sized syndrome,
the respective products and support vector elements are read from memory and from the
FIFO to obtain the second half of the double-sized syndrome. Using this sequence, the
complete double-sized syndrome computation is completed within

Ncyc,t,S(2) = t+m− 1 +mt+ 1 + t+mt+ 1 + t+mt = 5012 (12)

cycles, where t or t + m − 1 cycles are required to fill the array, mt cycles are required
to iterate over support vector elements and single cycles are required for multiplying the
generator values by syndrome bits and to store the first half of the double-sized syndrome.

For root search of the error-locator polynomial the sequence of operations is considerably
simpler: After block-wise loading of error-locator coefficients into the combined systolic
array (not shown in Figure 6), the error-locator polynomial is evaluated for all support
vector elements and the downstream comparator module converts polynomial values to
bits of the error vector, where a root of this polynomial correspond to a 1 in the error
vector.

4Note, that the first PE of the combined systolic array is slightly modified, since it is possible to omit
the multiplication by a support element for the first row of H(2).
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5 Implementation
All modules described in Section 4 were implemented in Verilog and SystemVerilog,
respectively. Two ASIC designs, corresponding to the iBM- and Patterson-based decryption
modules, were developed using a digital design flow relying on Cadence Genus and Innovus
software systems for the 22nm FDSOI CMOS technology node from GlobalFoundries (GF).

The combined evaluation module’s FIFO in the iBM-based design was implemented
using a memory macro from the GF 22nm FDSOI memory portfolio. While the iBM- and
Patterson-based decryption ASIC architectures operate at a clock frequency of 1 GHz,
higher clock frequencies are achievable, since the clock frequency is limited by the delay of
memory macros and not by the decryption logic itself. Therefore, the layout design adopts
multicycle paths across the key memory, which allows for clock frequencies of up to 2 GHz.
The aforementioned ASIC designs were verified using testbench driven simulations as well
as formal verification methods.

6 Evaluation
In order to evaluate the designed Niederreiter decryption ASIC architectures and to
assess their suitability for efficient low latency decryption, these architectures should be
compared to previous state-of-the-art approaches. However, no previous ASIC designs
are available for comparison. The FPGA design introduced by Wang et al. is the only
available Niederreiter decryption architecture that supports the parameter set selected
in our research. The authors of that architecture state that the majority of their FPGA
design can be re-used for the development of an ASIC design [WSN17]. Therefore, such
an ASIC design was created from the given Verilog source using the given speed-optimized
design point for comparison purposes, where only the block RAM modules, instantiated for
polynomial evaluation, were exchanged with appropriate memory macros. The resulting
ASIC design will subsequently be referred to as the reference design.

6.1 Decoding Algorithms
Results for the proposed iBM and Patterson decoding modules as well as the BM decoding
module from the reference design are shown in Table 3. When juxtaposing the iBM module
and the reference Berlekamp-Massey module, it can be seen, that while the proposed iBM
decoding module requires significantly fewer arithmetic modules and registers, it still allows
for a decoding speedup of approximately 91%. This can be explained by the systolic array
approach of the iBM module that specifically considers operations on coefficient blocks
and introduces various optimizations, such as the pipelined discrepancy and coefficient
update computations. Comparison of these modules to the proposed Patterson decoding
module shows a significantly increased utilization of arithmetic modules and registers
as well as an increased cycle count in the latter, which results from the complex and
specialized operations of Patterson decoding. However, Patterson decoding eliminates
the need for double-sized syndrome computation. Therefore, when complete decryption
architectures are compared below, the apparent disadvantage of Patterson decoding is put
into perspective.

Table 3: Arithmetic module and cycle counts for different decoding designs.
Design Adders Multipliers Inversions Registers Cycles

iBM 40 60 0 5109 1619
Patterson 241 121 1 17966 5739
Reference 240 80 1 13079 3095
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6.2 Error-Locator Polynomial Evaluation
Both of the two proposed iBM-based and Patterson-based ASIC architectures employ
systolic arrays derived from Horner’s method for polynomial evaluation, while the reference
design uses an additive FFT approach, which allows for a reduction of the multiplicative
complexity [GM10]. With the latency of Horner’s method for polynomial evaluation
depending on the number of evaluated elements the scenario of error-locator polynomial
evaluation for n = 6960 elements is assumed here for comparison.

Arithmetic module as well as cycle counts for both approaches are shown in Table 4.
The FFT approach of the reference design is thereby advantageous both in the number
of required arithmetic modules and the resulting cycle count for polynomial evaluation.
However, using this approach, a large number of intermediate results have to be accessed in
parallel, which requires large memory macros and a high register count, thus reducing the
area efficiency of the FFT polynomial evaluation module. Furthermore, since FFT-based
polynomial evaluation requires a specific evaluation order, evaluation has to be followed
by a root sorting operation, which ultimately eliminates the latency advantage of the
polynomial evaluation in the reference design.

Table 4: Module and cycle counts for error-locator polynomial root search approaches.

Design Adders Multipliers Registers
Memory Cyclesa

Size Eval. Sort
Horner 119 119 6240 - 7086 -
FFT 128 40 20069 2 · (768× 70) 1082 6972
a Eval. = evaluate error-locator polynomial, Sort = sort roots

6.3 Double-sized Syndrome Computation
Double-sized syndrome computation in the iBM-based decryption architecture is executed
on the combined evaluation module, while in the reference design this operation is performed
by the FFT polynomial evaluation module and a dedicated double-sized syndrome module.
For the reference design this double-sized syndrome module comprises 40 multipliers and
a fast field inversion module. The proposed combined evaluation module, on the other
hand, computes squared inverses using a square-and-multiply approach.

Results of both approaches are shown in Table 5. Syndrome computation in the reference
design requires fewer multipliers than in the proposed iBM architecture, resulting from
the use of FFT-based polynomial evaluation, which leads to an increased area requirement
from the associated memory macros. While the polynomial evaluation portion exhibits a
longer latency in the proposed iBM architecture, the actual syndrome construction is faster
than in the reference design, due to the use of the combined evaluation and syndrome
computation approach using a higher number of field multipliers.

Table 5: Module and cycle counts for double-sized syndrome computation approaches.

Design Adders
Multipliers /

Inversions Registers
Memory Cyclesa

Squarers Size Eval. Synd.

iBM 119 130 / 12 0 6552 1568× 13 1800 3338

Reference 170 80 / 1 1 25757 2 · (768× 70) 1082 4658
a Eval. = evaluate generator polynomial, Synd. = compute double-sized syndrome
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6.4 Design Space Comparison
In addition to the assessment of decryption architectures on a module-wise basis, as
described above, these architectures should also be evaluated in their entirety, in order to
consider dataflow dependencies and interactions across module boundaries. Therefore, the
two proposed ASIC designs are compared to the reference design with respect to the key
performance indicators decryption latency, area footprint and power dissipation, which
allow to determine different points in the design space. All designs are compared at a clock
frequency of fclk = 1 GHz.

Results of the aforementioned designs after PNR are summarized in Table 6, where
additional area efficiency figures are given as the reciprocal of the product of decryption
latency and area requirements. Table 6 also includes results of a 2 GHz iBM design, as an
example of a decryption design operating at a higher clock frequency. The aforementioned
results thereby prove the effectiveness of the introduced optimization measures for the
design of efficient Niederreiter decryption architectures.

In terms of latency, the proposed Patterson-based decryption architecture achieves the
lowest latency of the compared designs, due to the elimination of the double-sized syndrome
computation step. The iBM-based decryption architecture exhibits only a slightly longer
decryption latency, which follows from the fast decoding module in conjunction with opti-
mized polynomial evaluation and double-sized syndrome computation. While the reference
design features the fastest polynomial evaluation of all compared designs, the longer latency
of remaining decryption steps in this architecture outweigh this advantage. Therefore, it
follows that the total decryption latency for the reference design is approximately 28% and
32% higher than the latencies of the proposed iBM-based and Patterson-based decryption
architectures, respectively.

The differences of the compared approaches also manifests in the attainable area of the
associated implementations. By combining multiple decryption steps into the same module
and balancing the number of parallel units, the iBM-based architecture achieves a very low
area requirements, which positively impacts the area efficiency. The proposed Patterson-
based design results in a significantly larger footprint, due to the complex operations
of Patterson decoding. Even though the memory-intensive FFT polynomial evaluation
approach of the reference design might prove advantageous for FPGA implementations, in
the derived ASIC architecture, this approach leads to a considerable larger area footprint
compared to the proposed designs, with a 297% and 145% area increase relative to the iBM
and Patterson decryption designs. The impact of large memory macros in the reference
design furthermore becomes apparent for power dissipation figures, were the iBM- and
Patterson-based architectures achieve approximately four times lower power dissipation
compared to the reference design.

It should also be mentioned, that while the iBM decryption architecture as well as
the reference design only employ constant-time operations, the EEA implementation of
the Patterson decryption architecture may result in input dependent latency variations.

Table 6: Summary of results of the compared ASIC designs after PNRa.

Design
fclk Latency Area Power Energy/Op.b AT-Efficiency

[GHz] [Cycles] [µs] [mm2] [mW] [nJ] [(µs ·mm2)−1]

iBM 2 13271 6.64 0.0750 107.91 716.0 2.0080
iBM 1 13185 13.19 0.0744 56.80 748.9 1.0190
Patterson 1 12825 12.83 0.1205 60.71 778.6 0.6468
Reference 1 16889 16.89 0.2955 248.11 4190.0 0.2004
a All designs were implemented using the GF 22nm FDSOI CMOS node.
b Energy per decryption operation.
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These variations render the aforementioned architecture susceptible to timing side-channel
attacks. The iBM-based design and the reference design, on the other hand, are not
vulnerable to timing side-channel attacks.

7 Conclusion
The presented research aims to facilitate low latency decryption for the Niederreiter cryp-
tosystem with high area efficiency. This objective is achieved by the design, implementation
as well as the optimization of two ASIC architectures for Niederreiter decryption, which
target the GF 22nm FDSOI CMOS technology node. Furthermore, optimizations consid-
ering the memory bottleneck allow to place-and-route the inversionless Berlekamp-Massey
(iBM) decryption architecture at 2 GHz.

The proposed iBM-based and Patterson-based decryption architectures enable an
unprecedented decryption latency, area footprint and power dissipation. Compared to
previous solutions, the improved performance in this work is achieved due to the proposed
novel dataflow optimizations, especially for inversionless decoding, which allows for a 27%
speedup in terms of cycle count compared to previous state-of-the-art approaches. At the
same time, the occupied area of the iBM ASIC design is reduced to approximately 25%
of the area of previous approaches, through optimization techniques, such as a combined
systolic array for double-sized syndrome computation and polynomial evaluation. Therefore,
the aforementioned design exhibits an area efficiency that is over an order of magnitude
higher than the efficiency of prior approaches. By selecting a large parameter set, the
implemented designs were shown to support decryption of long-term secure Niederreiter
ciphertexts. With the constant-time operations of the iBM-based decryption design, this
architecture is efficiently hardened against timing side-channel attacks. Hence, it can be
assumed that the proposed iBM design is ideally suited for applications in high security
and high performance environments.
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