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Abstract

Onion routing is a popular approach towards anonymous communication. Practical imple-
mentations are widely used (for example, Tor has millions of users daily), but are vulnerable
to various traffic correlation attacks, and the theoretical foundations, despite recent progress,
still lag behind. In particular, all works that model onion routing protocols and prove their
security only address a single run, where each party sends and receives a single message of fixed
length, once. Moreover, they all assume a static network setting, where the parties are stable
throughout the lifetime of the protocol. In contrast, real networks have a high rate of churn
(nodes joining and exiting the network), real users want to send multiple messages, and realistic
adversaries may observe multiple runs of the protocol.

In this paper, we initiate a formal treatment of onion routing in a setting with multiple runs
over a dynamic network with churn. We provide the following contributions.

1. We define the cryptographic primitive of poly onion encryption, which is appropriate for
a setting with churn. This primitive is inspired by duo onions, introduced by Iwanik,
Klonowski, and Kutylowski (Communications and Multimedia Security, 2005) towards
improving onion delivery rate. We generalize the idea, change it to add auxiliary helpers
towards supporting better security, and propose formal definitions.

2. We construct an instantiation of poly onion encryption based on standard cryptographic
primitives (CCA secure public key encryption with tags, PRP, MAC, and secret sharing).
Our construction is secure against an active adversary, and is parameterized to allow
flexible instantiations supporting a range of corruption thresholds and churn limits.

3. We formally model anonymous onion routing for multiple runs in the setting with churn,
including a definition of strong anonymity, where the adversary has CCA-like access to
oracles for generating and processing onions.

4. We prove that if an onion routing protocol satisfies a natural condition we define (“simu-
latability”), then strong single-run anonymity implies strong multiple-run anonymity. This
condition is satisfied by existing onion routing schemes, such as the Πp protocol of Ando,
Lysyanskaya, and Upfal (ICALP 2018). As a consequence, these schemes are anonymous
also for multiple runs (although not when there is churn).

5. We provide an anonymous routing protocol, “Poly Πp,” and prove that it is anonymous in
the setting with churn, against a passive adversary. We obtain this construction by using
an instance of our poly onion encryption within the Πp protocol.
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1 Introduction

Anonymous communication. Privacy is a fundamental human right, and it is increasingly
under threat. We need to be able to connect to our desired websites and communicate with each
other privately without being subject to scrutiny and interference, and, in some cases — such as
when dissidents are trying to help each other in an oppressive regime — physical threats. While
encryption provides confidentiality of message content, much information can still be gleaned from
observed traffic patterns in a network, revealing such information as who is communicating with
whom, when, and for how long.

Our goal is to implement anonymous channels over a point-to-point network, such as the In-
ternet. Specifically, we want every user to be able to send a message to another user so that an
adversary monitoring the network and controlling (passively or actively) a fraction of its nodes,
possibly including the recipient of the message, should not be able to tell who is communicating
with whom. That is, the scenario in which Alice sends a message to Bob should be indistinguishable
from the one in which she sends one to Carol, instead.

How can we achieve such anonymous communication? A trivial solution is to use a secure
computation protocol among all parties, where each party inputs their message and destination,
and the functionality delivers the messages (where the output of each party is the set of all messages
sent to that party, in lexicographic order). This solution is clearly not adequate: it is extremely
inefficient and involves massive communication among the parties, all of whom should be available
and interact back and forth throughout the protocol run. A few other approaches towards achieving
anonymity have been proposed, but the gap between what is needed and the existing solutions
remains large. In this paper, we focus on bridging this gap, working within the onion routing
framework.

Onion routing. Onion routing [10,15, 19] is a popular approach towards achieving anonymity.
The basic idea is that when Alice wants to send a message to Bob, she chooses random intermediate
nodes constituting a path from her to Bob. She then prepares a cryptographic object called an
“onion,” which consists of layered ciphertexts, with one layer per node on the path. Alice then
sends the onion through the path, with each intermediate party “peeling” a layer of the onion to
discover the next node on the path until the onion reaches its destination. When several onions
are peeled by the same honest intermediary in the same round, the adversary cannot correlate
the incoming onions with the outgoing ones; we refer to this as “mixing.” Thanks to mixing, it
is possible to expect anonymity with onion routing. Tor (“The onion router”) is the most widely
used anonymity network, consisting of thousands of routers and used by millions of users daily [19].
While clearly practical, it is also vulnerable to traffic correlation attacks [26,29,31].

Starting with [9], in recent years there have been several works attempting to put onion routing
on a solid theoretical foundation. For example, we know that sufficiently shuffling the onions
provides anonymity from the passive adversary [3] and that a polylog number of rounds is both
necessary (e.g., [12,17,18]) and sufficient (e.g., [3,27]) for this. Providing anonymity from the active
adversary is significantly more challenging than shuffling. Surprisingly, a polylog number of rounds
is still sufficient for achieving anonymity in the active adversary setting with fault tolerance [3].
Several other works address only onion construction without discussing or analyzing the onion
routing protocol (e.g., [2, 22]).

However, the theoretical modeling, while solving important challenges, is still quite far from
what we need in practice. Perhaps the most glaring issue is the fact that all the works that
model and analyze onion routing protocols only address a single instance of message routing for
a restricted set of communication patterns. Specifically, each party is instructed to send a (fixed
length) message to another party such that everyone sends a message and everyone receives a
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message, and the protocol for communicating all messages only occurs once. This is in contrast
to real-world scenarios where parties send messages of varying lengths and many times without
coordinating with other parties. An additional challenge for a system that supports ongoing traffic
is network churn: the nodes on the network may go offline or join back. Realistic networks have
high rates of churn, but this has not been addressed by the above works. Other recent protocols
addressing anonymity [24,32,33] also operate only in the static network setting (without any nodes
joining or exiting the network).

Network churn. Onion routing schemes rely on communication through intermediate nodes,
which should be known at the time the onion is created. However, practical networks are dynamic,
allowing for significant node churn. For example, measurement studies of real-world P2P networks
[20, 30] show that the churn rate is quite high: nearly 50% of peers in real-world networks can be
replaced within an hour.

Churn poses significant challenges for anonymous routing, even at the definitional level. One
obvious issue is that in standard onion routing, the entire route of an onion is chosen in advance
when the onion is created. Thus, if only just one of the parties on the route churns out and goes
offline, the onion is lost. We note that this is a problem not only with correctness and reliability,
but also with security/anonymity. Indeed, if an adversary observes an onion originating with Alice
and going to an offline node (hence dropped), and then sees that Bob ended up receiving fewer
onions than other parties, the adversary may conclude that the dropped onion from Alice was likely
intended for Bob.

1.1 Our contributions

In this work we initiate the formal treatment of onion routing in a setting with multiple runs over
a dynamic network with churn.

Poly onions. A natural idea towards overcoming churn is to construct an onion in a way that
allows for more than one option for each hop on the route. This way the onion will not be dropped if
one intermediate node is offline, and can instead be routed to a backup intermediary. This idea was
put forward by Iwanik, Klonowski, and Kuty lowski [21], who suggested “duo onion” encryption as
a way to improve onion delivery rates when there is network churn. A duo onion has two candidate
intermediary servers for each onion layer. If the first candidate is offline, the onion can be sent
to the second candidate. While Iwanik et al. proposed a duo onion construction and did a back-
of-the-envelope analysis of its efficiency, they did not formalize duo onion routing nor prove the
security of this scheme. In fact, duo onions may be less secure than regular onion routing because
the adversary has the ability to influence the path of the onion in a way that may allow it to trace
it through the network.

Our first contribution (Definitions 1 and 2) is a formal definition of poly onion encryption. Poly
onion encryption is inspired by duo onion encryption described above, but it does not suffer from
the same security flaw.

Our definition introduces auxiliary parties, called helpers, for each hop in the routing path. The
helpers can ensure that an onion is routed to its backup intermediary for the next hop only if the
preferred one is offline. This fixes the flaw in duo onions: a corrupted party can no longer choose any
candidate it wishes in the next round. It also makes onion encryption more complicated: processing
a poly onion is an interactive protocol involving the current intermediate node, the candidates for
where to send it next, and the helpers.

In part because of this interactivity, defining correctness and security for a poly onion requires
some care. Intuitively, correctness (Definition 1) captures the requirement that the onion will reach
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its intended destination, and the intended message will be recovered, as long as some condition holds
(for standard onion routing, the condition is that every intermediate party on the path behaves
honestly). Security (Definition 2) captures the requirement that the adversary will not be able
to correlate an input onion with one of several output onions coming out of a processing party,
as long as some condition holds (for standard onion routing, the condition is that the processing
party is honest). These conditions can be complex, since they depend on who is online, and each
hop involves many potential parties (candidates and helpers). We capture these conditions through
correctness and security predicates. (Note that different poly onion encryption schemes may be
correct/secure with respect to different predicates.)

Our second contribution is a construction of poly onions from standard cryptographic primitives:
CCA secure public-key encryption with tags [13,14], PRP, MAC, and secret sharing. Our construc-
tion, Poly Onion Encryption (Section 4), is parameterized in terms of the number of candidates κ,
the size ν of the helper committee, and the secret sharing reconstruction threshold α.

In our construction, the committee members are responsible for ensuring that a processing party
indeed sends its onion to the first online candidate in its list. At a high level, an onion is valid only
if it comes with a key header used for processing it. An onion typically comes with a key header
encrypted for the first candidate in its next hop. If the first candidate is offline, the processing party
must enlist the help of the committee to construct this key header for an alternate candidate. For
this purpose, each onion comes with inputs for the onion processing protocol. The processing party
distributes these inputs to the committee members, who check that the first candidate is indeed
offline and select the next online candidate in the list. The committee members return secret shares;
given at least α · ν shares the processing party reconstructs the header for the alternate candidate.

We prove that our construction is correct and secure against an active adversary, with respect
to corresponding predicates that we define. The correctness predicate for each step roughly requires
that the processing party is honest and online, and that at most α · ν members of the committee
are corrupted. The security predicate roughly requires that there are no corrupted parties appear-
ing before the first honest and online party in the list of next candidates, and that fewer than
α · ν members of the committee are corrupted. This is analogous to the condition for standard
onions (where the processing party is required to be honest), so our predicate is only minimally
stronger than that of standard onion encryption. As long as enough parties overall are honest, and
committees are chosen randomly, we can increase the committee size to boost the probability that
fewer than α · ν committee members are corrupted. These parameters can be instantiated so that
the predicates are satisfied with high enough probability to achieve anonymity in the overall onion
routing protocol, discussed below.

Anonymous onion routing. Let us revisit why achieving anonymity in the presence of churn is
difficult. As an illustrative example, consider the simple onion routing protocol Πp [3]. In Πp, each
sender routes an onion randomly through a network of server nodes such that the onion mixes with
a polylog number of onions, a polylog number of times. It was shown that Πp is anonymous from
the passive adversary who corrupts up to a constant fraction of the servers (in the static setting)
just by shuffling the onions in this way. However, it is not anonymous when we add churn to the
equation: if the adversary observes that Alice’s onion churns out before it gets a chance to mix
with too many onions, then she may be able to infer who Alice’s recipient is by observing who
doesn’t receive an onion at the end of the protocol. Intuitively, Iwanik et al.’s duo onion idea [21]
is a partial solution to this problem; it is more difficult for Alice’s onion to churn out if, at each
hop, it can route to an alternative random server if the preferred one is offline. However, duo
onions (without helper parties) don’t necessarily mix at honest servers. This is, in part, because an
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adversarial intermediary Pi may behave honestly and route Alice’s onion to the honest preferred
next server P+

i+1 but still learn what the peeled onion looks like if the alternative next server P−
i+1

is adversarial: in this case, Pi knows what the alternative onion O−
i+1 for P−

i+1 looks like, and P−
i+1

knows how to peel it. The purpose of having helper parties in poly onions is to prevent this. Thus,
a natural question is: can we make Πp anonymous in the setting with churn by using poly onions?

Before we could answer this question, it was necessary to first define what it means for an onion
routing protocol to be anonymous in the presence of churn. Prior definitions of anonymity are
defined only for a single protocol run in the static setting, whereas most applications operate over
multiple runs over a long period of time, and so we should model them as operating (concurrently
with other runs) in a dynamic setting. For our third contribution, we present a definition of
anonymity for the multi-run setting with churn.

Our definition of anonymity (Definition 3) is as follows. An onion routing protocol is anonymous
if the adversary cannot tell whether it is interacting with the challenger over L runs on input vectors
σ01, . . . , σ

0
L or on input vectors σ11, . . . , σ

1
L. It is strongly anonymous if the adversary can query the

challenger to peel onions before and after the L challenge runs. It is adaptively anonymous if the
adversary chooses the inputs and who is online/offline for the ith run based on the prior i − 1
runs. The strongest definition that is most helpful in an operational setting is the strong multi-run
adaptive version of the definition.

Our fourth contribution is to show (Theorem 2) that for a large class of onion routing protocols,
which we call simulatable, multi-run anonymity in the static (resp. dynamic) setting is equivalent to
single-run anonymity in the static (resp. dynamic) setting. Informally, a simulatable onion routing
protocol (Definition 4) is one where the adversary cannot tell whether it is interacting in the real
setting in which the challenger runs the protocol on behalf of honest parties using the honest parties’
secret keys, or in the ideal setting in which the challenger fakes the run without knowledge of the
honest parties’ secret keys. Since most onion routing protocols are simulatable, including Πp, an
immediate consequence is that practical onion routing protocols that satisfy multi-run anonymity
exist – albeit in the static setting without churn.

Armed with a definition of anonymity for the dynamic setting and Theorem 2, we answer our
question about Πp in the affirmative. For our final contribution, we present a new onion routing
protocol, Poly Πp, that uses Poly Onion Encryption instead of standard onion encryption and prove
that it satisfies (strong) multi-run (adaptive) anonymity when fewer than half of the parties can be
offline or (passively) corrupted.

Open problems. Our work makes significant progress towards bridging the gap between the-
oretical foundations of onion routing, and required anonymity in realistic settings. Still, some
important problems remain open.

First, can we achieve anonymous routing with churn against active adversaries? Note that
Poly Πp already provides protection against some types of active malicious behavior: poly onion
encryption is secure against active adversaries, and Poly Πp is also secure against an adversary that
decides the churn schedule. However, anonymity breaks when an active adversary can selectively
drop onions in a more “adaptive” way, namely in the middle of a run. We also note that in the
static setting, the protocol Π▷◁ of Ando, Lysyanskaya and Upfal [4] achieves anonymity even against
active adversaries. However, simply replacing their onions with our poly onions would still not yield
a scheme that is anonymous in the setting with churn, because used as is, their protocol would
equate churn with malicious activity and simply not work; an added complication is that Π▷◁ is not
simulatable.

A second open problem is to address more general communication patterns. As in prior work [3,
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4,32,33], a single run of our protocol is also restricted to the so called “Simple I/O” setting, where
each party sends and receives exactly one message of a fixed length. The fact that we address the
multi-run case partially mitigates the issue, as it provides a way to handle longer messages, by
breaking them to several runs. Nonetheless, the assumption that the communication pattern in
each run is a permutation is still limiting. Defining what anonymity should mean for more general
communication patterns, which patterns can be efficiently supported anonymously, and how to
construct such protocols, is a challenging and interesting topic for future work.

1.2 Related work

To the best of our knowledge, all existing onion routing works either (i) do not have any theoretical
modeling or provable security, or deviate from standard notions of indistinguishability [6–8,11,16,21,
22]; (ii) address only onion construction, without discussing or analyzing the routing algorithm [2,
9, 21–23]; (iii) consider routing only in the single run static network setting [3, 4, 24, 28, 32, 33]; or
(iv) focus on lower bounds [4, 12,17,18].

2 Modeling the problem

Here, we introduce the setting used for our formal definitions in Section 3 and Section 5. Because our
setting involves network churn, our model is more involved than previous models used for analogous
definitions in the static setting. We base our treatment of churn on practical onion routing, namely
Tor [19], which consists of thousands of routers and is used by millions of users. Tor relies on five
to ten semi-trusted directory authorities to maintain up-to-date information on relay nodes and
their availabilities and capabilities including network capacity. In the latest version (version 3) of
Tor, routers periodically upload “router descriptors” that list their keys, capabilities, etc. to the
directory authorities [1]. From these descriptors, the directory authorities update their view of the
routers every 12 to 18 hours. Tor users and routers download “diffs” of the updated views from
multiple directory authorities; these contain information on the currently available routers. The
bulletins in our model are loosely modeled on this; like in Tor, at the start of every run, the parties
obtain a global view of who’s currently online. During a run, some parties may churn out; we allow
the adversary to control who these parties are and when the churn happens since this corresponds
to the most pessimistic scenario.

Notation. For a natural number n, [n] is the set {1, . . . , n}. For a set Set, we denote the
cardinality of Set by |Set|, and item←$ Set is an item from Set chosen uniformly at random. If Dist
is a probability distribution over Set, item ← Dist is an item sampled from Set according to Dist.
For an algorithm Algo, output ← Algo(input) is the (possibly probabilistic) output from running
Algo on input. A function f(λ) of the security parameter λ is said to be negligible if it decays faster
than any inverse polynomial in λ. An event occurs with overwhelming probability if its complement
occurs with negligible probability.

System parameters. Let λ be the security parameter. Let N be the number of parties.

Time. We assume the synchronous setting and model time as passing in rounds, with some fixed
number of rounds making up each larger run. Let R1, ..., RL be a series of runs. Assume that L is
bounded above by a polynomial in λ.
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Parties. Let P1, ..., PN be the N parties in our universe. Assume that N is bounded above by
a polynomial in λ. Let Bad ⊆ {P1, ..., PN} be the set of corrupted parties. Corrupted parties are
those that can be observed or controlled by the adversary, depending on the adversary’s abilities,
which we define later.

Churn bulletins. Let B1, ..., BL be the bulletins, which accurately indicate which parties are
online at the beginning of each run. More precisely, Bi ⊆ {P1, ..., PN}, and party Pj is online at
the beginning of run Ri if and only if Pj ∈ Bi.

Churn schedule. Let C1, ..., CL be the churn schedule for the runs. For each i, Ci is a set of
party-round pairs: Ci = {(Pi1 , r1), (Pi2 , r2), ...}, where a pair (Pij , rj) indicates that in run Ri,
party Pij goes offline at the beginning of round rj of that run. All parties in the list Ci must be
online at the start of the run according to Bi. We allow parties to come online at the start of a run
but not during a run. Thus the churn schedule specifies only which parties go offline and when.
Since parties come online only at the start of a run, this will be specified in the bulletins rather
than in the churn schedule.

Churn limit. Let c(N), a function of N (e.g., N
2 ), be the churn limit [5]; that is, at most c(N)

parties can be offline at any point in time. We require that the number of offline parties specified by
the bulletins and churn schedule does not exceed the churn limit c(N). More precisely, for every i,
N − |Bi|+ |Ci| ≤ c(N) since N − |Bi| parties are offline at the start of run Ri, and |Ci| additional
parties go offline during Ri.

Inputs. We represent an input for a run Ri as a vector σi = (σi,1, σi,2, ..., σi,N ) where σi,j is the
input for party Pj . Each party’s input is either a recipient-message pair (Pk,m) specifying that
that party sends message m to party Pk, or it is ⊥. An input of ⊥ indicates that that party sends
no information in that run (although that party can still send dummy messages in a protocol).

For run i, we say an input vector σi is valid if there exists some permutation f : [Bi] → [Bi]
such that for each party Pj ∈ Bi, the input to Pj is (f(Pj),mj) for some message mj . Furthermore,
the input for each party Pj /∈ Bi is ⊥. Our allowed inputs here are analogous to the “Simple I/O”
setting in prior work (e.g., [3, 4, 32,33]), adapted for churn.

For defining anonymity using a game-based approach, we allow the adversary to choose a pair
of inputs for an onion routing protocol, and its goal is to determine, by running the protocol,
which of these inputs the challenger chose. If the adversary can choose any two inputs without any
constraints on its choices, then it can trivially win, for example, by choosing two inputs that differ
on a corrupted party’s input. Thus, the adversary is constrained to choose the two inputs from
the same equivalence class [4]. We say two input vectors σ = (σ1, ..., σN ) and σ′ = (σ′1, ..., σ

′
N ) are

equivalent w.r.t. the set of corrupted parties Bad if for all Pj ∈ Bad, σj = σ′j , and the number of
honest messages for which Pj is the recipient in σ is the same as the number of honest messages for
which Pj is the recipient in σ′. The content of these honest messages for which Pj is the recipient
must also be the same in σ and σ′. We denote this equivalence σ ≡Bad σ

′.

Adversary model. The adversary can control the churn, observe the network traffic, and choose
which parties to corrupt (if any). We define three classes of adversaries of varying capabilities:
the network adversary, the passive adversary, and the active adversary. An adversary in any of
these classes can observe all of the network traffic. In particular, it can observe the traffic on all
communication links. The network adversary can control the churn, make these observations, and
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no more. The passive adversary can additionally corrupt a constant fraction of the parties and
observe the computations and states of these parties. It cannot control these parties to deviate
from the protocol. The active adversary can do all of the above and can also control the corrupted
parties to do anything, including deviating from the protocol.

3 Onion encryption for churn

In this section, we formalize a generalization of duo onion encryption [21], where each onion has two
candidate intermediary servers for each layer. As mentioned by Iwanik et al. [21] if the processing
party can choose which candidate to send to next, then whenever possible, a corrupted party
processing an onion can send to a corrupted candidate. If a fraction c of the participants are
corrupted, the probability that at least one of a given list of k candidates is corrupted is 1− ck.

As discussed in the introduction, we address this issue by introducing auxiliary parties, called
helpers. The helpers for an onion O in a hop i are parties that are involved in some way in sending
the peeled onion of O to its next intermediary server. This prevents a corrupted party from choosing
any candidate it wishes for the next hop.

3.1 I/O syntax

Poly onion encryption is parameterized by the security parameter λ, the number of candidates
κ, and the number of helpers ν and consists of algorithms (KeyGen,FormOnion) and protocol
ProcOnion, as follows:

• KeyGen takes as input the security parameter 1λ, and a party name Pi. It outputs the public
key pkPi

and the secret key skPi for Pi.
• FormOnion takes as input a message m; a run number R (recall that a run consists of a

number of rounds; see Section 2); two ordered lists,
P1, . . . ,Pℓ,Pℓ+1 and Q1, . . . ,Qℓ such that for all i, |Pi| = κ and |Qi| = ν, and the public
keys for all the parties on these lists. Pi is the ordered list of parties who are candidates for
intermediaries for hop i. Qi is the list of parties who will serve as helpers for hop i. The first
party Pℓ+1,1 in Pℓ+1 is the recipient.

The output is the list of lists of onions O1, . . . ,Oℓ+1. Each Oi corresponds to the ith layer
of this onion; each Oi consists of κ onions Oi,1, . . . Oi,κ. An onion Oi,j corresponds to the
representation of the ith layer of the onion that is suitable for processing by candidate Pi,j .

• ProcOnion is a protocol that Pi,j ∈ Pi can initiate on input Oi,j and its secret key; the other
participants in the protocol (if any) is the set of helpers Qi, each helper takes its own secret
key as input. As a result of the protocol, Pi,j obtains output Oi+1,j′ ∈ Oi+1 and its intended
recipient Pi+1,j′ ∈ Pi+1; the helpers receive no output.

Remark 1. We fix κ and ν for convenience; while in practice they may vary, fixing them does not
lose much generality.

Remark 2. The list Pi = (Pi,1, . . . , Pi,κ) is ordered. For j > 1, Pi,j is not supposed to serve as the
intermediary for processing the onion unless for all u < j, Pi,u is unavailable.

Remark 3. The candidate list Pℓ+1 may seem superfluous: only the recipient Pℓ+1,1 is important.
As we will see, requiring it as part of the input is helpful for preventing adversarial helpers from
learning whether the onion to be processed has reached the end of the routing path, or not.

Remark 4. The recipient Pℓ+1,1 of the onion, upon receiving the onion Oℓ+1,1 should be able to
process it, infer that he is the recipient, and obtain the original message m. An alternate candidate
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Pℓ+1,j, upon receiving the onion Oℓ+1,j should be able to process it, infer that he is not the recipient,
and output ⊥. Correctness, defined in the next section, will ensure that this is the case.

3.2 Correctness

A standard onion encryption [2, 9, 22] is correct if having each intermediary peel it using the
algorithm ProcOnion will get it to its destination and yield the original message. In poly onions, we
have a set of candidates for each layer rather than a specific intermediary, and a set of helpers with
which an intermediary can run ProcOnion in order to peel the onion; that alone makes correctness
somewhat harder to pin down since now it is a protocol rather than an algorithm.

What makes it really complicated, however, is churn. A processing party may change its
behavior based on whether the candidates for the next hop are online. In other words, processing
an onion correctly depends on factors that cannot be accounted for at the time that the onion was
formed.

We introduce a correctness predicate ϕB,C that corresponds to the bulletin B and churn schedule
C. It takes as input the onion’s candidate lists P, the helper lists Q, the pair of indices (i, j) where
i is a hop in the routing path and j is the index of the jth party Pi,j in Pi, a round r, and a
number of rounds ∆. ∆ should be an upper bound on the number of rounds required to process
an onion. The correctness predicate ϕB,C(P,Q, (i, j), r,∆) accepts if Pi,j and (a sufficient number
of) helpers in Qi are online at round r according to B and C. The definition of correctness is given
with respect to this predicate (which, in turn, dictates how many helpers are sufficient).

In poly onion encryption, there is a set of onions rather than a single onion corresponding to
each hop in the evolution. The path the onion will take through the network (i.e. which candidate
will be picked for each hop) depends on which parties are online and which are corrupted. Recalling
that Pi+1 is a list of candidates in order of preference, Oi should not peel to an onion Oi+1,j for
party Pi+1,j ∈ Pi+1 if there is an honest and online party Pi+1,k ∈ Pi+1 where k < j. Note that if
Pi+1,k is online but corrupted, it may pretend to be offline, in which case we can allow Oi to peel
to Oi+1,j . More formally:

Definition 1 (Correctness with respect to predicate ϕ). Let Σ = (KeyGen,FormOnion,ProcOnion)
be a poly onion encryption scheme, with ProcOnion taking at most ∆ rounds to run. Let
Bad be the set of corrupted parties. Let B be any bulletin. Let C be any churn sched-
ule. Let m be any message. Let R be the current run number. Let P = (P1, . . . ,Pℓ+1) =
((P1,1, . . . , P1,κ), . . . , (Pℓ+1,1, . . . , Pℓ+1,κ)) be any list of ℓ + 1 lists of κ candidates. Let Q =
(Q1, . . . ,Qℓ) = ((Q1,1, . . . , Q1,κ), . . . , (Qℓ,1, . . . , Qℓ,κ)) be any list of ℓ lists of ν helpers. Let pkP∪Q
denote the public keys of the parties in P ∪Q.

Let O = ((O1,1, . . . , O1,κ), . . . , (Oℓ+1,1, . . . , Oℓ+1,κ))← FormOnion(m,R,P,Q, pkP∪Q) be an evo-
lution of onions obtained from running FormOnion on the above parameters.

Σ is correct w.r.t. the predicate ϕB,C if for any candidate location (i, j), round r, and number
of rounds ∆ such that ϕB,C(P,Q, (i, j), r,∆) = 1, the following items are satisfied:

i. Let S ⊆ Pi+1 be the following set of parties. If Pi+1 contains an honest party that is online
in rounds r through r+ ∆, S includes the first honest and online party P ′ in Pi+1, along with
any corrupted parties preceding P ′ in Pi+1.

ii. When ProcOnion is initiated by an intermediary party Pi,j ∈ Pi in round r, and Pi,j follows
the protocol (i.e., if it is adversarial, then it can only be honest-but-curious), Pi,j’s output is
(Pnext, Onext) where Pnext ∈ S ∪ {⊥}. (The presence of ⊥ on this list of parties means that it
is possible that after the participants have processed the ith layer of the onion, the adversary
can drop this onion.)
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iii. Onext = ⊥ if Pnext = ⊥. Otherwise, Onext = Oi+1,k is the onion layer for party Pnext = Pi+1,k

output by FormOnion.
iv. When ProcOnion is initiated by Pℓ+1,1 on input Oℓ+1,1, the output is (m,⊥). When ProcOnion

is initiated by Pℓ+1,j on input Oℓ+1,j, j > 1, the output is (⊥,⊥).

Remark 5. The evolution of an onion includes a representation of every layer of the onion, which
is explicitly output by FormOnion. Implicitly, it also includes the innermost layer, i.e., the message
that will ultimately be output by the recipient. Thus, we will sometimes think of an onion evolution
with ℓ intermediaries as consisting of ℓ+2 onion layers. For 1 ≤ i ≤ ℓ, an honest intermediary Pi,j

receives a representation Oi,j of the ith layer of O and, upon processing it, sends Oi+1,j′ to Pi+1,j′.
If the recipient Pℓ+1,1 is online, it will receive the onion Oℓ+1,1 and, upon processing it, will output
(m,⊥). Sometimes, by Oℓ+2,j we will denote (m,⊥).

3.3 Security

On a high level, an onion scheme is secure if an adversary cannot correlate an honest participant’s
incoming onions with its outgoing onions. For poly onions, this is captured via a security game,
POSecurityGame described below.

One reason that this game is more complicated than the security game for regular onions is
that the adversary controlling the helpers obtains additional information; what the adversary may
learn also depends on the network churn. We introduce a security predicate ψ to capture whether
or not a particular set of circumstances — who is processing an onion, at what round, with what
helpers — dictates whether the adversary should not be able to determine a correlation.

More precisely, the security predicate ψB,C is parameterized by a bulletin B and churn sched-
ule C. Let P = (P1, . . . ,Pℓ+1) = ((P1,1, . . . , P1,κ), . . . , (Pℓ+1,1, . . . , Pℓ+1,κ)) be any list of ℓ+ 1 lists
of κ candidates. Let Q = (Q1, . . . ,Qℓ) = ((Q1,1, . . . , Q1,κ), . . . , (Qℓ,1, . . . , Qℓ,κ)) be any list of ℓ lists
of ν helpers. ψB,C takes as input P, Q, a hop number h, a round r, and a number of rounds ∆.

For example, for regular onion routing, we would define ψ to be 1 if and only if the (only)
candidate in hop h, Ph, is honest. Here, we don’t need to refer to the bulletin or churn, since with
regular onion routing, the adversary should not be able to peel an onion for honest Ph, regardless
of whether or not Ph is online.

Consider another example, the original duo onion encryption [21] without helpers. Here, a
processing party Ph−1 in hop h− 1 can choose which destination in Ph to send the onion to; there
are no helpers verifying that this destination is the first candidate on the list Ph that is online. Here,
we can define ψ to be 1 if and only if all parties in Ph are honest. If all parties in Ph are honest, the
adversary should not be able to peel the onion since it does not know these honest parties’ secret
keys. On the other hand, if any party in Ph is corrupted, a corrupted Ph−1 can choose to send to
the corrupted party in Ph, allowing the adversary to peel the onion in the following hop h. So the
hop number h corresponds to the onion layer that shouldn’t be “peelable” by the adversary.

POSecurityGame. The following game is between an adversary A and a challenger. It is param-
eterized by a security predicate ψB,C(P,Q, h, r,∆), where B is a bulletin, C is a churn schedule,
P = (P1, . . . ,Pℓ+1) is a list of ℓ+1 lists of candidates, Q = (Q1, . . . ,Qℓ) is a list of ℓ lists of helpers,
h is an index of a hop in the path, r is a round, and ∆ is an upper bound on the number of rounds
that ProcOnion takes to complete.

i. A receives the public keys for all parties.
ii. A chooses the set of corrupted parties Bad, the bulletin B, the churn schedule C, and the

public keys for Bad. A sends all of these to the challenger.
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iii. A can invoke the protocol ProcOnion in two ways, as follows.
Honestly initiated A sends to the challenger an onion O to be processed, an honest pro-

cessing party P , and a round rO in which the processing of O should begin. Next, the
challenger acts on behalf of P as well as the honest helpers in the protocol ProcOnion
initiated by P on input O, while A acts on behalf of the participants in Bad. Upon
completing ProcOnion, the challenger reveals P ’s output (O′, P ′) (if any) to A.

Adversarially initiated A initiates ProcOnion on behalf of a participant P ∈ Bad. Next,
the challenger acts on behalf of the honest helpers in the protocol ProcOnion initiated
by P on input O, while A acts on behalf of the participants in Bad (including P ).

iv. A chooses the parameters for the challenge onion. It chooses a routing path length ℓ, a
message m, a routing position 1 ≤ h ≤ ℓ + 1, a round r, a series of helper parties for each
hop (Q1, . . . ,Qℓ), and a path consisting of a series of alternate destinations for each hop
(P1, . . . ,Pℓ+1). For the adversary’s choices, it must hold that ψB,C(P,Q, h, r,∆) = 1.

v. The challenger samples a bit b←$ {0, 1}. If b = 0, the challenger uses FormOnion to create an
onion O0 exactly as specified by the routing path and helper parties. Let O0

1 be the list of
outermost onion layers of this onion.

If b = 1, the challenger creates two lists of lists of onions. The challenger creates the first
list of lists of onions O1 = (O1

1, . . . ,O1
h+1) by running FormOnion with message ⊥, candidates

(P1, . . . ,Ph+1), helpers (Q1, . . . ,Qh), and those parties’ public keys. The challenger creates
the second list of lists of onions O′ = (O′

h+1, . . . ,O′
ℓ+2) by running FormOnion with message

m, candidates (Ph+1, . . . ,Pℓ+1), helpers (Qh+1, . . . ,Qℓ), and those parties’ public keys. Let
O1

1 = O1 as formed above. (Recall that O1
ℓ+2 consists of entries Oℓ+2,j = (m,⊥) as explained

in Remark 5.)
The challenger sends Ob

1 to A.
vi. A can again invoke the ProcOnion in two ways, with a slight modification if honestly initiated.

Honestly initiated A can direct honest participants to invoke ProcOnion as described in
step iii. but with the following modification: it can only query an onion Oj ∈ Ob

h in
round r. If b = 0 was chosen, the challenger follows the protocol ProcOnion.

If b = 1, and A directed Pj ∈ Ph to invoke ProcOnion on input Oj ∈ O1
h, the challenger

begins by faithfully following the protocol on behalf of honest helpers and the honest Pj .
Suppose that doing so produces output Oh+1,j′ ∈ O1

h+1 and candidate Ph+1,j′ ∈ Ph+1.
If h ≤ ℓ (i.e., Pj = Ph+1,j is an intermediary) or (h, j) = (ℓ + 1, 1) (i.e., Pj = Ph,j is
the onion’s recipient), then instead of returning these to A, the challenger switches the
onion and returns Oh+1,j′ ∈ O′

h+1, Ph+1,j′ to A.
Adversarially initiated Behavior is the same as defined in step iii.

vii. A submits a guess b′ of b. See Figure 1 for a schematic of the poly onion security game.
We say A wins POSecurityGame if b′ = b. A poly onion encryption scheme is secure if no efficient

adversary can win POSecurityGame with non-negligible advantage; more formally:

Definition 2 (Poly Onion Security with respect to predicate ψ). We say a poly onion encryption
scheme Σ is poly onion secure with respect to ψ against the class of adversaries A if for every
adversary A ∈ A,

∣∣Pr[A wins POSecurityGame(A,Σ, λ, κ, ν, ψ·,·)]− 1
2

∣∣ = negl(λ).

Remark 6. During the ProcOnion protocol, the adversary may see additional information other
than the oracle’s output, depending on the adversary’s capabilities. For example, the network adver-
sary, passive adversary, and active adversary can see the traffic across all links during the protocol.
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Figure 1: Schematic of the poly onion security game.

4 Our poly onion encryption scheme

In this section, we construct an instance of poly onion encryption, define correctness and security
predicates, and prove its correctness and security with respect to these predicates.

Our construction, Poly Onion Encryption, has parameters κ (the number of candidates per hop),
ν (the number of helpers per hop), α (the fraction of helpers needed to process an onion), and d (for
bounding the length of the routing path). We construct our poly onion encryption scheme, Poly
Onion Encryption, using the following cryptographic primitives: CCA secure public-key encryption
with tags [13, 14], pseudo-random permutations (or block ciphers), a message authentication code
(MAC) (Gen,Tag,Ver), and a (α ·ν, ν) Secret Sharing scheme (Share,Recon). We denote public-key
encryption and decryption as Encpk(·) and Decsk(·) where pk and sk are the public key and secret key,
respectively. Following the work by Camenisch and Lysyanskaya [9] and Ando and Lysyanskaya [2],
we will continue the tradition of using “{·}k” to denote evaluating a PRP in the forward direction
under the symmetric key k, and “} · {k” to denote evaluating a PRP in the backward direction
under k.

Throughout this section, we describe our construction for κ = 2 candidates per hop for ease of
readability, although our construction generalizes to any κ ∈ N. We explain how it generalizes in
Section 4.5.

For every hop of the routing path, let P+
i denote the preferred candidate for the ith hop (this

is the sender’s first choice), and let P−
i denote the alternate candidate for the ith hop (the second

choice). The idea is that (at the ith hop) the onion should be routed to P+
i , unless P+

i is offline, in
which case the onion can be routed to P−

i instead. We sometimes refer to the party Pi for the ith

hop without specifying whether it is the preferred candidate or the alternate.
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Forming an onion on input the message m, the candidate parties P = ((P+
i , P

−
i ))i∈[d], the

helpers (committee members) Q = (Qi)i∈[d], and the public keys pkP∪Q of the candidates and

helpers, produces a list of lists of onions, ((O+
1 , O

−
1 ), . . . , (O+

d , O
−
d ))← FormOnion(m,P,Q, pkP∪Q),

where each O+
i is the onion to be processed by party P+

i , and each O−
i is the onion to be processed

by P−
i . If it is possible for the processing party Pi of an onion Oi to send an onion to the preferred

next candidate P+
i+1, Pi will produce an onion O+

i+1 and send it to P+
i ; otherwise, Pi enlists the

help of the committee members Qi to produce the alternate onion O−
i+1 to send to the alternate

candidate P−
i+1 instead. The point of this committee is to ensure that P−

i+1 can only process the
onion if the preferred candidate P+

i+1 is truly offline. Otherwise, a corrupted Pi could always choose
to send to the corrupted party among P+

i+1 and P−
i+1 if such a party exists, thereby significantly

increasing the effective corruption rate.

4.1 Overview of Poly Onion Encryption

4.1.1 Anatomy of an onion

We describe at a high level the pertinent information contained in each onion Oi = (Ki, Hi, Ui). A
detailed description of how Oi is constructed is given in Section 4.2.

Figure 2: The structure of an onion Oi received by a processing party Pi.

• Ki contains d blocks, including a block for each hop j in the routing path. The first block
K1

i is a ciphertext under the processing party’s public key. It contains a key ki, which will
be used to decrypt the rest of the onion. K1

i also contains the role of the party (whether it is
an intermediary or a recipient), and the identity P+

i+1 of the preferred candidate for the next
hop. The rest of the onion Oi (denoted Oi \K1

i ), as well as the run/round number R, serves
as the tag for this ciphertext; in other words, the ciphertext K1

i will not decrypt correctly
unless the decryption occurs within the context of the correct onion Oi in run/round R:

(ki, role(Pi), P
+
i+1)← DecskPi

(K1
i ;Oi \K1

i , R).

• Hi contains d blocks, including a block for each hop j in the routing path. Each Hj
i is

encrypted using a block cipher with key ki. The first block H1
i contains the identities of the

committee Qi and the set of inputs Ii = {Ii,j}j∈[ν] for the committee to run the protocol.

(Qi, Ii)←}H1
i {ki .

• The input Ii,j for the jth committee member Qi,j ∈ Qi is EncpkQi,j
(P+

i+1, P
−
i+1, σi,j , Ti,j , R),

where P+
i+1 is the preferred candidate for the next hop, P−

i+1 is the alternate candidate for the
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next hop, σi,j is Qi,j ’s share for reconstructing the alternate candidate’s version of the onion,
Ti,j is the authentication tag for σi,j , and R is the run/round number when the ProcOnion
protocol should take place. σi,j verifies under the MAC with the tag Ti,j and key ki; that is,
Verki(σi,j , Ti,j) = “accept.”

• Ui contains the contents of the onion and is similar to the content in regular onion encryption.
Ui is encrypted using a block cipher with key ki.

4.1.2 Overview of processing an onion.

Let Pi be the processing party for onion Oi = (Ki, Hi, Ui). Note that Pi can decrypt K1
i only if the

onion wasn’t modified en route; this is the purpose of using encryption with tags. Pi first decrypts
K1

i with its secret key skPi
, to obtain the symmetric key ki, learn its role role(Pi) (whether it is an

intermediary for the onion or the recipient), and learn the identity of the preferred next destination
P+
i+1. The symmetric key ki will allow Pi to decrypt the rest of the onion.

If the preferred next candidate P+
i+1 is online, then Pi forms the “peeled” onion O+

i+1 by de-

crypting the remaining blocks K2
i , . . . ,K

d
i , H

1
i , . . . ,H

d
i , Ui with ki. Pi then shifts these blocks down

so that, for example, K1
i+1 =}K2

i {ki . The last blocks of Ki+1 and Hi+1 are Kd
i+1 =}11 . . . 1{ki+1

and Hd
i+1 =}00 . . . 0{ki+1

. This shifted, decrypted onion is O+
i+1 = (K+

i+1, Hi+1, Ui+1), the onion for
P+
i+1.

If the preferred next candidate P+
i+1 is offline, Pi enlists the help of the committee Qi to help

peel the onion. It first decrypts H i
1 with ki to obtain Qi (the set of committee members) and Ii

(the set of inputs for Qi). Pi initiates the protocol by sending each share Ii,j to its corresponding
committee member Qi,j in Qi. Each committee member Qi,j decrypts its input Ii,j to obtain P+

i+1,
P−
i+1, σi,j (a sharing of the key block necessary to construct O−

i+1), Ti,j (the authentication tag for
σi,j), and R (a run/round number). If R is not the current run/round, Qi,j aborts and outputs
⊥. If Qi,j determines that P+

i+1 is offline and P−
i+1 is online, it sends EncpkPi

(P−
i+1, σi,j , Ti,j) to Pi.

Thus, if at least α fraction of the committee members are honest and online, and P+
i+1 is offline and

P−
i+1 is online, Pi will receive from the committee members, the identity of P−

i+1 and at least α|Qi|
shares that verify using the set of tags Ti and the key ki. Pi uses these shares to reconstruct the
alternate first key block (K1

i+1)
−. Pi now processes the rest of the onion as in the case where P+

i+1

is online, decrypting the other blocks with ki and shifting them down, then again forming Kd
i+1

and Hd
i+1 as encryptions of 00 . . . 0 and 11 . . . 1 respectively. It then replaces the first key block

(K1
i+1)

+ of K+
i+1 with the reconstructed key block (K1

i+1)
− to obtain K−

i+1. The resulting peeled
onion is the alternate onion O−

i+1 = (K−
i+1, Hi+1, Ui+1).

Pi can then relay the peeled version of the onion to its corresponding candidate, who holds the
secret key required to peel it. We describe our construction in more detail in the following sections.

4.2 Forming an onion

We need to construct the onion such that each component contains the information previously
described. Our onions have d K-blocks, d H-blocks, and a single content block U . We assume that
the length ℓ of the routing path always satisfies ℓ+ 1 < d, so there are enough blocks to complete
the routing path.

We first construct the onions Oℓ for the recipient, then describe a subroutine called “wrapping”
an onion that allows us to form the entire sequence of onions. We are given the onion parameters:
a message m, candidate lists P1, . . . ,Pℓ, and committees Q1, . . . ,Qℓ. An onion has block length d;
that is, each onion has d K-blocks and d H-blocks.
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We begin by sampling the key kℓ using the key generation algorithm for the block ci-
pher. For every i ∈ {2, . . . , d}, we let Ki

ℓ =}11 . . . 1{kℓ . For every i ∈ {2, . . . , d}, we let
H i

ℓ =}00 . . . 0{kℓ . Let P+
ℓ denote the primary candidate for hop ℓ; let P−

ℓ denote the al-
ternate candidate for hop ℓ. Let σℓ ← Share(00 . . . 0), and let each tag Tℓ,j ← Tagkℓ(σℓ,j).
Let each input Iℓ,j ← EncpkQℓ,j

(P+
ℓ+1, P

−
ℓ+1, σℓ,j , Tℓ,j , Rℓ+1), where Rℓ+1 includes the current run

number and the hop number ℓ + 1. Let H1
ℓ = {Qℓ, Iℓ}kℓ , and Hℓ = (H1

ℓ , . . . ,H
d
ℓ ). Let

Uℓ = {m}kℓ . Let (K1
ℓ )+ = Encpk

P+
ℓ

(kℓ, role(P+
ℓ ), P+

ℓ+1) where role(P+
ℓ ) is recipient, and let

(K1
ℓ )− = Encpk

P−
ℓ

(kℓ, role(P−
ℓ ), P+

ℓ+1) where role(P−
ℓ ) is recipient. Both (K1

ℓ )+ and (K1
ℓ )− are

encrypted with tag (K2
ℓ ,K

3
ℓ , . . . ,K

d
ℓ , Hℓ, Uℓ), Rℓ, where Rℓ includes the current run number and

the hop number ℓ.
Let K+

ℓ = ((K1
ℓ )+, . . . ,Kd

ℓ ), and let K−
ℓ = ((K1

ℓ )−, . . . ,Kd
ℓ ). The innermost set of onion layers

is Oℓ = (O+
ℓ , O

−
ℓ ), where O+

ℓ = (K+
ℓ , Hℓ, Uℓ) and O−

ℓ = (K−
ℓ , Hℓ, Uℓ).

We then wrap O+
ℓ using the parameters Pℓ−1,Pℓ,Qℓ−1 to obtain Oℓ−1 = (O+

ℓ−1, O
−
ℓ−1). We

repeatedly wrap O+
i with parameters Pi,Pi+1,Qi to obtain Oi−1 = (O+

i−1, O
−
i−1), until we have O1,

the outermost set of layers for the onion. FormOnion returns the list of onion layers for each hop:

(O+
1 , O

−
1 ), . . . , (O+

ℓ , O
−
ℓ )

4.2.1 Wrapping an onion

Given an onion O+
i+1, we can “wrap” it in a layer of encryption to obtain another list of onions Oi,

each of which peels to O+
i+1 or O−

i+1. Formally, we are given the onion O+
i+1, where

O+
i+1 = (K+

i+1, Hi+1, Ui+1)

and we are given the relevant wrapping parameters for round i: the current candidates Pi, the
next candidates Pi+1, and the committee Qi. We sample a key ki for the block cipher using its
key generation algorithm. We then form the set of shares σi ← Share((K1

i+1)
+) for the committee

members in Qi. Using the shares, we form the set of tags Ti, where Ti,j ← Tagki(σi,j). For each
committee member Qi,j , we create an input Ii,j , where Ri includes the current run number and
hop number i:

Ii,j ← EncpkQi,j
(P+

i+1, P
−
i+1, σi,j , Ti,j , Ri)

We form the first H-block in O+
i and O−

i as follows:

H1
i = {Qi, Ii}ki

We form the rest of O+
i and O−

i by modifying (“wrapping”) blocks of O+
i+1.

Kj
i = {Kj−1

i+1 }ki , 2 ≤ j ≤ d

Hj
i = {Hj−1

i+1 }ki , 2 ≤ j ≤ d
Ui = {Ui+1}ki

We form the blocks (K1
i )+ and (K1

i )−, encrypting them each with the tag
(K2

i ,K
3
i , . . . ,K

d
i , Hi, Ui, Ri):

(K1
i )+ ← Encpk

P+
i

(ki, role(P+
i ), P+

i+1)

(K1
i )− ← Encpk

P−
i

(ki, role(P−
i ), P+

i+1)

We let K+
i = ((K1

i )+,K2
i , . . . ,K

d
i ) and O+

i = (K+
i , Hi, Ui). We let K−

i = ((K1
i )−,K2

i , . . . ,K
d
i )

and O−
i = (K−

i , Hi, Ui).
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4.3 Processing an onion

When a processing party Pi obtains an onion Oi = (Ki, Hi, Ui) in run/round R, Pi first uses its
secret key skPi

and the tags Oi \K1
i , R to decrypt the first block K1

i of Ki and obtain its role, a
key ki, and the identity P+

i+1 of the preferred candidate for the next hop. If Pi’s role is recipient, it
decrypts Ui using ki to obtain the message m and we are done. Otherwise, if Pi is an intermediary, it
must peel Oi. If P+

i+1 is online, Pi need not involve the committee. It peels Oi using the symmetric
key ki, decrypting each block of the K, H, and U sections, and shifting the K and H blocks so
that the first blocks contain the relevant information for the next hop:

(ki, role(Pi), P
+
i+1)← DecskPi

(K1
i ;Oi \K1

i , R)

Hj
i+1 =}Hj+1

i {ki for 1 ≤ j ≤ d− 1

Hd
i+1 =}00 . . . 0{ki

Kj
i+1 =}Kj+1

i {ki for 1 ≤ j ≤ d− 1

Kd
i+1 =}11 . . . 1{ki

Ui+1 =}Ui{ki

Let (Ki+1)
+ = (K1

i+1, . . . ,K
d
i+1), and let Hi+1 = (H1

i+1, . . . ,H
d
i+1). In the case that Pi observes

that P+
i+1 is online, the processed version of Oi is simply O+

i+1 = ((Ki+1)
+, Hi+1, Ui+1).

If Pi observes that P+
i+1 is offline, Pi enlists the help of the committee Qi to construct O−

i+1.
It uses ki to decrypt H1

i and obtain the identities of the committee members Qi and the set of
committee members’ inputs Ii.

Qi, Ii =}H1
i {ki

Pi initiates the ProcOnion protocol by sending input Ii,j to party Qi,j ∈ Qi for j ∈ [|Qi|]. Each
committee member Qi,j , upon receiving its input Ii,j , decrypts Ii,j with its secret key. It obtains
the identities of the candidates P+

i+1 and P−
i+1 for the next hop, its share σi,j , the authentication tag

Ti,j , and a run/round number. If the run/round number is not the current run/round, Qi,j aborts
and sends EncpkPi

(⊥,⊥) to Pi. If P+
i+1 is offline and P−

i+1 is online, Qi,j sends EncpkPi
(P−

i+1, σi,j , Ti,j)

to Pi. If P+
i+1 is online or both P+

i+1 and P−
i+1 are offline, Qi,j sends EncpkPi

(⊥,⊥) to Pi.
Pi decrypts each output with its secret key. For each share σi,j that Pi receives, it checks that

Verki(σi,j , Ti,j) = “accept”. If Pi receives at least α · ν shares that verify, Pi can reconstruct the
block (K1

i+1)
−, which is a version of the first K block for O−

i+1 that can be decrypted using the
secret key of alternate candidate P−

i+1. If the majority of the committee is honest and online, the
protocol will terminate with Pi receiving the name of the party P−

i+1 and (K1
i+1)

−. Pi then replaces

the first block of (Ki+1)
+ with (K1

i+1)
−, yielding (Ki+1)

− = ((K1
i+1)

−,K2
i+1, . . . ,K

d
i+1). Pi then

sends onion O−
i+1 = ((K1

i+1)
−, Hi+1, Ui+1) to P−

i+1.
If Pi does not receive enough verified shares to reconstruct (Ki+1)

−, Oi is dropped. Otherwise,
if processing is successful, Pi relays the peeled onion O+

i+1 or O−
i+1 to the first of P+

i+1 and P−
i+1 that

is online.

4.4 Analysis of Poly Onion Encryption

Here, we analyze Poly Onion Encryption for κ = 2.

Correctness. We define the predicate function ϕpolyB,C,α(P,Q, (i, j), r,∆) to be 1 when Pi,j is honest
and online in rounds r through r + ∆, and fewer than α · ν of the parties in Qi are corrupted.
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Poly Onion Encryption is correct with respect to ϕpolyB,C,α(P,Q, (i, j), r,∆). Suppose Pi,j is honest
and initiates the ProcOnion protocol on an onion Oi,j in round r. We break the scenario into the
following cases:
P+
i+1 honest and online. Pi,j does not need the committee to process Oi,j . Since Pi,j is honest,

it will output (P+
i+1, O

+
i+1) as prescribed by correctness.

P+
i+1 honest and offline. Pi,j will see that P+

i+1 is offline and will enlist the help of the committee.
The committee protocol returns either ⊥ or the key block for O−

i+1. Thus, Pi,j will either
output (P−

i+1, O
−
i+1) or ⊥.

P+
i+1 corrupted. Depending on whether P+

i+1 behaves as if it is online, Pi,j may output
(P+

i+1, O
+
i+1), (P

−
i+1, O

−
i+1), or ⊥.

The output in each of these cases is consistent with the definition of correctness in Definition 1.

Security. Let ψpoly
B,C,α(P,Q, h, r,∆) be the predicate function that returns 1 if and only if the

following both hold:
i. No corrupted party precedes the first honest party in Ph that is online in all rounds r through
r + ∆.

ii. Fewer than α · ν parties in Qh−1 are corrupted.
Recall that ν is the committee size and α is the number of committee members’ shares required

to reconstruct the onion for the alternate candidate. By the above definition of ψpoly
B,C,α, if the first

candidate in Ph+1 is honest and online, and fewer than α · ν members in Qh are corrupted, the
adversary cannot win the security game with non-negligible advantage, i.e., the onion mixes in hop
h+ 1. As long as enough parties in our universe are honest, and committees are chosen randomly,
we can increase the committee size to boost the probability that fewer than α · ν members in Qh

are corrupted; we discuss this further in Section 6. Given that fewer than α · ν members of Qh are
corrupted, the onion mixes in hop h + 1 if the first party in Ph+1 is honest and online. We show
later in Section 6 that ψpoly

B,C,α is indeed satisfied with high enough probability to provide anonymity.

Theorem 1 (Security of construction). Poly Onion Encryption is poly onion secure with respect to

the security predicate ψpoly
B,C,α for 0 < α ≤ 1 and ν ≥ 1

α assuming that all of the underlying standard
primitives exist.

We prove that the scheme is secure using a hybrid argument that is similar to the security proof
of shallot encryption by Ando and Lysyanskaya [2]. We give a proof sketch below and provide thee
full proof in appendix A.

Proof sketch. Let Experiment0 be the same as running the security game with b = 0; this is when
the challenger creates the challenge onion as usual. Let Experiment1 be the same as running the
security game with b = 1; this is when the challenger creates two unrelated sets of onion layers O
and O′, and the onion O ∈ O peels to O′ ∈ O′ at the chosen server.

We construct the following hybrids that act as stepping stones from Experiment0 to Experiment1.
Let i = h − 1. The hybrids involve changing the onion layers Oi+1. In all of the hybrids, the
ProcOnion oracle behaves as if b = 1 in POSecurityGame. That is, when an onion Oj ∈ Oi+1 is
queried, it returns the onion in Oi+2 corresponding to the appropriate candidate. This behavior
is consistent with b = 0 in POSecurityGame for Experiment0 and with b = 1 in POSecurityGame for
Experiment1:

Experiment0: security game with b = 0.
↕ These are identically distributed.

Hybrid1: since onions are layered encryption objects, we form challenge onion by first forming O+
i+2

and then “wrapping” it in more layers of encryption to get O1. We formally define wrapping in
Section 4.2.1.
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↕ Indistinguishable by security of public key encryption.
Hybrid2: same as Hybrid1, except change the oracle so that in step 6 of POSecurityGame, if it is
queried with (O−

i+1)
′ to be processed by P−

i+1, it instead runs ProcOnion with O−
i+1.

↕ Indistinguishable by security of secret sharing/public key encryption.
Hybrid3: same as Hybrid2, except in block H1

i of Oi, change the share of every member of committee
Qi to a share of Encpk

P−
i+1

(00 . . . 0) instead of Encpk
P−
i+1

(ki+1, role(P−
i+1), P

+
i+2).

↕ Indistinguishable by security of public key encryption.
Hybrid4: same as Hybrid3, except in the key block K1

i+1 of Oi+1, change ki+1 to 00 . . . 0.
↕ Indistinguishable by security of the block cipher.

Hybrid5: same as Hybrid4, except change Oi+1 from a wrapping of O+
i+2 to the output for hop (i+1)

of FormOnion on the first segment of the routing path, up to Pi+1.
↕ Indistinguishable by security of public key encryption.

Hybrid6: same as Hybrid5, except in the key block K1
i+1 of Oi+1, change the key back from 00 . . . 0

to ki+1, and change the role of Pi+1 from intermediary to recipient.
↕ Indistinguishable by security of secret sharing/public key encryption.

Hybrid7: same as Hybrid6, except in block H1
i of Oi, change all committee members’ shares back

from shares of Encpk
P−
i+1

(00 . . . 0) to shares of Encpk
P−
i+1

(ki+1, role(P−
i+1), P

+
i+2)

↕ Indistinguishable by security of public key encryption.
Hybrid8: same as Hybrid7, except change the oracle so that it no longer treats (O−

i+1)
′ specially.

↕ These are identically distributed.
Experiment1: security game with b = 1.

4.5 Generalizing to more than two candidate processing parties

We remark that this construction can be generalized for any number of candidates κ. That is,
every onion has κ candidate processing parties per hop. We can do so by modifying the committee
members’ inputs so that each input Ii,j contains the full list of candidates rather than just P+

i+1

and P−
i+1. We also include κ − 1 shares σ2i,j , . . . , σ

κ
i,j in Ii,j instead of just σi,j . Each share σci,j

is used to construct the version of the onion for candidate Pi+1,c ∈ Pi+1. The processing party
knows from the committee members’ responses which candidate each committee member votes for.
If enough committee members vote for one of the candidates, the processing party can reconstruct
that candidate’s version of the onion. Correctness and security still hold with respect to the same
predicates ϕpolyB,C,α and ψpoly

B,C,α defined in Section 4.4. The proof of correctness is given below, and
the proof of security is given in appendix A.

4.6 Correctness of Poly Onion Encryption with multiple candidates

When Poly Onion Encryption is implemented with multiple candidates, correctness still holds with
respect to the same predicate ϕpolyB,C,α from Section 4.4. We again consider honest Pi,j processing an
onion Oi,j and break this down into cases. The first three cases address when an honest and online
party precedes all corrupted parties in P. Again, let P+

i+1 denote the preferred candidate for hop
i+ 1. Let P ∗

i+1 denote the first honest party in P that is online in rounds r through r + ∆.
P+
i+1 online and honest. If P+

i+1 is online and honest, honestly behaving Pi,j will process the
onion to produce (O+

i+1, P
+
i+1) without the help of the committee.

P ∗
i+1 ̸= P+

i+1 precedes all corrupted parties in P. If a different party P ∗
i+1 is the first online

and honest party and is preceded by offline honest parties, Pi,j will enlist the help of the
committee. The honest and online committee members will see that P ∗

i+1 is the first online
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party and will return the corresponding shares. Since at least α · ν committee members are
honest and online, Pi,j will receive a sufficient number of shares to reconstruct (P ∗

i+1, O
∗
i+1).

All parties in Pi+1 are offline and honest. If all parties in Pi+1 are offline and honest, Pi,j will
not receive enough shares and will output ⊥.

A corrupted party precedes P ∗
i+1. Corrupted parties can choose to behave as if they are online

or offline. In doing so, a corrupted party can cause the honest committee members to return
shares corresponding to it, the honest party after it in P, or possible no share at all (if all
parties in P are corrupted or offline). Thus, the output onion could be for P ∗

i+1, for any
corrupted party preceding P ∗

i+1, or ⊥.

5 Anonymity in the setting with churn

So far we have explored new onion encryption techniques for handling network churn, defining poly
onion encryption, and constructing a scheme that satisfies poly onion security. In this section, we
turn our attention to the problem of how to route onions such as those constructed using Poly
Onion Encryption through a dynamic network to achieve anonymity. To begin with, we must first
formally define what it means for an onion routing protocol to be anonymous in a setting with
network churn. Our new definitions of anonymity, including multi-run anonymity, are provided in
Section 5.1.

To establish that our proposed multi-run anonymity definition is a usable notion, we must
also show that it is achievable. In Section 5.3, we prove a general theorem (Theorem 2) that
states that for a class of onion routing protocols, which we call “simulatable” protocols, single-run
anonymity is equivalent to multi-run anonymity. An implication of this is that all previously known
simulatable protocols that are single-run anonymous are also multi-run anonymous. These include
Πp [3]. However, these new multi-run results are for the static setting, without network churn.
In Section 6, we prove (again relying on Theorem 2) that Πp can achieve multi-run anonymity in
the presence of churn. Our formal definition of the class of simulatable onion routing protocols is
provided in Section 5.2.

5.1 Definitions of anonymity

Here, we define what it means for an onion routing protocol to achieve multi-run anonymity. First,
we define an anonymity game, StrongAnonGame, which we then use in the formal definition of
multi-run anonymity (Definition 3).

StrongAnonGame(A,Π, L, λ) is parameterized by the adversary A, the onion routing protocol
Π, the number of runs L, and the security parameter λ. The game proceeds in three phases: (i) the
setup phase where A has access to the oracle for responding to queries for processing onions on
behalf of honest parties, (ii) the challenge phase where A and the challenger run the protocol Π,
and (iii) the final phase where A again has access to the oracle.

During setup, the adversary A first picks the set of corrupted parties Bad and sends Bad to the
challenger. The challenger generates the keys for the honest parties according to Π and sends only
the public portion of these keys to A. A sends the corrupt parties’ public keys to the challenger.
A can now submit ProcOnion queries to the the challenger. For each ProcOnion query, A submits
a bulletin B and a churn schedule C such that the number of parties ever offline is bounded above
by the churn limit c(N), an onion O, an honest processing party P for peeling O, and a round
number r. The challenger interacts with A to run the ProcOnion protocol on O starting in round r,
with the challenger acting on behalf of the honest parties following the protocol and A controlling
the behavior of the corrupted parties.
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In the challenge phase, A and the challenger run the protocol L times. To begin with, the
challenger picks the challenge bit b ∈ {0, 1}. For each of the L runs, A and the challenger repeat
the same procedure. In run i, A picks a bulletin Bi and a churn schedule Ci with at most c(N)
parties offline during that run. A also picks input vectors σi0 and σi1 that are both valid with respect
to Bi, i.e., σi0 ≡Bad σ

i
1. A sends Bi, Ci, σ

i
0, and σi1 to the challenger. A and the challenger interact

in a protocol run of σib with online parties specified by bulletin Bi and churn schedule Ci, and with
the challenger acting as the honest parties, and A acting as the corrupt parties.

After the challenge phase, in the final phase, A can again interact with the challenger by
submitting ProcOnion queries, with the additional restriction that A cannot ask about onions
formed by honest parties during the challenge phase. That is, A picks a bulletin B and churn
schedule C (such that the number of offline parties is at most c(N)), an onion O (not observed
during the challenge phase), and a processing party P . Finally, A outputs a guess b′ of the challenge
bit b. We say A wins StrongAnonGame(A,Π, L, λ) if its guess b′ is equal to b. See Figure 3 for a
schematic of the strong anonymity game.

Figure 3: Schematic of the strong anonymity game.

We now define strong anonymity using the game StrongAnonGame, along with several variants
of this definition.

Definition 3 (Strong Anonymity). An onion routing protocol Π with security parameter λ
is L-strongly anonymous against the class of adversaries A if for every adversary A ∈ A,∣∣Pr[A wins StrongAnonGame(A,Π, L, λ)]− 1

2

∣∣ = negl(λ).
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Multi-run vs. single-run. We say a protocol Π is multi-run anonymous if it is anonymous for
polynomially bounded L > 1 in the above definition. A protocol Π is single-run anonymous if it is
anonymous for L = 1.

Strong vs. weak. We say a protocol Π is weakly anonymous if it satisfies the analogous def-
inition for a modified anonymity game, where the adversary does not have oracle access to the
ProcOnion queries. We say a protocol Π is strongly anonymous if it satisfies the definition using
StrongAnonGame.

Adaptive vs. non-adaptive. In StrongAnonGame, the adversary is adaptive in that it can choose
the bulletin, the schedule, and the inputs before each run based on prior history. We also define
a weaker non-adaptive anonymity definition, in which the adversary must choose all inputs, churn
schedules, and bulletins before observing any protocol runs. Using our terminology above, the
standard anonymity definition in prior papers (e.g., [2,3,24,32,33]) is weak single-run non-adaptive
anonymity in our new terms.

5.2 Simulatable onion routing protocols

Here, we formally define the class of simulatable onion routing protocols. As we will show in Sec-
tion 5.3, simulatability is a property that can reduce multi-run anonymity to single-run anonymity.
The idea is that if a simulatable onion routing protocol is single-run anonymous, then we can prove
that it is also multi-run anonymous via a sequence of reductions that “simulate” extraneous runs for
an adversary that expects to interact in multiple runs. (See our proof of Theorem 2 in Section 5.3.)

Thus, what we mean by “simulatable” is that the reduction should be able to recreate what the
honest parties do in a run, using only information that it has access to – namely, the public keys
of all the parties, the bulletin, the churn schedule, the run number, and the inputs for the honest
parties. Consider the following two settings: (i) the real setting, in which the challenger interacts
with the adversary by following the protocol and (ii) the ideal setting, in which the challenger
interacts with the adversary by using the algorithm GenOnions that generates (from just the public
parameters and the honest parties’ inputs) all possible onions that the honest parties might send out
during the run and the algorithm ScheduleProcOnions that determines (from just the honest parties’
message buffers) if/when these onions are processed. An onion routing protocol is simulatable if
no (efficient) adversary can tell whether it is interacting in the real setting or the ideal one except
with negligible advantage. We define these concepts more concretely below.

The real setting. RealGame(A,Π, λ) is parametrized by the adversary A, the onion routing
protocol Π with onion encryption scheme (KeyGen,FormOnion,ProcOnion), and the security pa-
rameter λ.

The game proceeds as follows. First, the adversary A chooses the adversarial parties Bad, the
bulletin B, the churn schedule C, the run number R, and the keys for the parties in Bad. The
public portions of these keys are relayed to the challenger. The challenger generates the keys for
the honest parties by running KeyGen and relays the public portion of these keys to A. A picks the
input vector σ, and the inputs for the honest parties are relayed to the challenger.

The challenger and A interact in a run of Π on input σ, with the challenger running Π on behalf
of the honest parties, and A controlling the adversarial parties. At the end of the run, A outputs
a bit b.
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The ideal setting. This setting is defined with respect to two algorithms:
• An onion generation algorithm GenOnions takes as input the security parameter 1λ, the public

keys {pkPj
}Nj=1 of all the parties, the bulletin B, the churn schedule C, the run number R,

the identity Pi of an honest party, and the input σi for Pi; and outputs a set O(1)
i of onions

for Pi, i.e., O(1)
i ← GenOnions(1λ, {pkPj

}Nj=1, B,C,R, Pi, σi).

• A scheduling algorithm ScheduleProcOnions takes as input the security parameter 1λ,

the round number r, the identity Pi of an honest party, and the state OnionBuffer
(r)
i

of Pi at round r; and outputs a set O(r)
i of onions to be processed starting

at round r and an updated state OnionBuffer
(r+1)
i , i.e., (O(r)

i ,OnionBuffer
(r+1)
i ) ←

ScheduleProcOnions(1λ, r, Pi,OnionBuffer
(r)
i ).

IdealGame(A,GenOnions,ScheduleProcOnions, λ) is parametrized by the adversary A, the onion gen-
eration algorithm GenOnions, the scheduling algorithm ScheduleProcOnions, and the security pa-
rameter λ.

The game proceeds as follows. Like in the real setting, the adversary first picks Bad, B, C, R,
and the keys {pkPj

}j∈Bad for the adversarial parties, while the challenger runs KeyGen to generate
the keys {pkPj

}j∈[N ]\Bad for honest parties; and A determines the input vector σ = (σ1, . . . , σN )
for the run.

The challenger and A interact in a run of Π on input σ, with the challenger acting as the honest
parties, and A controlling the rest. In contrast to the real setting, the challenger doesn’t run the
protocol Π.

Instead, in the first round, for each honest party Pi, the challenger runs

GenOnions(1λ, {pkPj
}Nj=1, B,C,R, Pi, σi) and sets Pi’s initial state OnionBuffer

(1)
i to the out-

put O(1)
i ← GenOnions(1λ, {pkPj

}Nj=1, B,C,R, Pi, σi). Then, still within the first round, for each

honest party Pi, the challenger runs ScheduleProcOnions(1λ, 1, Pi,OnionBuffer
(1)
i ) to obtain a

set O(1)
i ⊆ OnionBuffer

(1)
i of onions to be processed and an updated state OnionBuffer

(2)
i . The

challenger updates Pi’s state to OnionBuffer
(2)
i . For each onion O ∈ O(1)

i , the challenger initiates
ProcOnion with Pi as the processing party and O as the onion to be processed and sends out the
peeled onion O1,i→j to its next destination P1,i→j (whenever ProcOnion terminates).

In each subsequent round r, and for each honest party Pi, the challenger first adds the

onions that Pi received in the previous round to OnionBuffer
(r)
i . Then, the challenger runs

ScheduleProcOnions(1λ, r, Pi,OnionBuffer
(r)
i ) to obtain O(r)

i and OnionBuffer
(r+1)
i . The challenger

updates Pi’s state to OnionBuffer
(r+1)
i . For each O ∈ O(r)

i , the challenger initiates ProcOnion with
Pi as the processing party and O as the onion to be processed and sends out the peeled onion
Or,i→j to its next destination Pr,i→j (whenever ProcOnion terminates).

At the end of the run, A outputs a bit b.
We define simulatablity using RealGame and IdealGame as follows:

Definition 4 (Simulatablity). An onion routing protocol Π is simulatable if for every p.p.t. adver-
sary A there exist p.p.t. algorithms (GenOnions, ScheduleProcOnions) such that A can distinguish
between RealGame and IdealGame with only negligible advantage, i.e.,

|Pr[1← RealGame(A,Π, λ)]

− Pr[1← IdealGame(A,Π,GenOnions, ScheduleProcOnions, λ)]| = negl(λ).
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5.3 From single-run to multi-run anonymity

Here, we prove that for simulatable onion routing protocols, single-run strong anonymity is equiv-
alent to multi-run strong anonymity.

Theorem 2. Let Π be a simulatable onion routing protocol with security parameter λ. For any
L = poly(λ), Π is L-strongly anonymous from the active (resp. passive) adversary A with churn
limit c(N) if and only if it is single-run strongly anonymous from A.

Proof. It is evident that multi-run anonymity implies single-run anonymity since the former holds
for any (polynomially bounded) number of runs, including one. Thus, to prove the theorem, it
suffices to show that single-run anonymity implies multi-run anonymity. We do this using a hybrid
argument.

Let Π be an onion routing protocol with security parameter λ that is single-run strongly anony-
mous against the active (resp. passive) adversary. Let A be any p.p.t. adversary from the class of
active (resp. passive) adversaries.

Let Experiment0 be the anonymity game StrongAnonGame(A,Π, L, λ) conditioned on the chal-
lenge bit b equaling zero, i.e., b = 0. Let σ0 = (σ10, . . . , σ

L
0 ) denote the sequence of input vectors

that A chooses for the L runs in Experiment0; that is, σi0 is the input vector for the ith run.
Likewise, let Experiment1 be StrongAnonGame(A,Π, L, λ) when b = 1. Let σ1 = (σ11, . . . , σ

L
1 ) be

the L input vectors in Experiment1.
We define a sequence of hybrids as follows. For all 1 ≤ i ≤ L+ 1, let Hybridi be the experiment

where the input vector for run j is σj0 if j < i, and otherwise, it is σj1. Clearly, Experiment0 is the
same as HybridL+1, and Experiment1 is the same as Hybrid1.

To complete the hybrid argument that Π is multi-run anonymous, we show that any
two consecutive hybrids are distinguishable. To do so, we define another anonymity game,
FlipAnonGame(A,Π, λ, L, i), that we use only in this proof. This game is essentially the same
as StrongAnonGame with the same parameters, except the challenger runs Π on σ0 up to (but not
necessarily including) run i and runs Π on σ1 for the remaining runs when b = 1. The index i
specifies where this switch from σ0 to σ1 happens. The challenger chooses b ∈ {0, 1} uniformly at
random. If b = 0, the first run with input σ0 is run i. If b = 1, the first run with input σ0 is run
i+ 1. The adversary A makes a guess b′ of whether the challenger switched in run i or in run i+ 1
and wins if b′ = b.

To prove that consecutive hybrids are indistinguishable, we prove that A wins
FlipAnonGame(A,Π, λ, L, i) with only negligible advantage. Suppose there exists an index i such
that A wins FlipAnonGame(A,Π, λ, L, i) with non-negligible advantage. Then, we can construct
a reduction B that uses A to “break” single-run strong anonymity. B goes between A and the
challenger C in StrongAnonGame(B,Π, λ, 1). We describe the interactions between A, B, and C in
terms of the phases in StrongAnonGame.

The setup phase. During setup, the reduction B serves as a channel between the adversary
A (of FlipAnonGame) and the challenger (of the single-run anonymity game). A sends the set of
adversarial parties to the reduction B; B relays this to C. C sends the honest parties’ public keys
to B; B relays them to A. A sends the adversarial parties’ public keys to B; B relays them to C.
During the first query phase, A can send ProcOnion queries to B. Whenever A sends a ProcOnion
query with a bulletin B and a churn schedule C (such that the number of offline parties is at most
c(N)), an onion O, a processing party P , and a round number r, B relays the query to C and replies
to A with C’s response.

The challenge phase. Since (from the hypothesis) Π is simulatable, it follows that there exist ef-
ficient algorithms (GenOnions,ScheduleProcOnions) such that no efficient algorithm can tell whether
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B is running the protocol Π, or simulating the run by running GenOnions and ScheduleProcOnions
and submitting ProcOnion queries to the challenger, instead.

For each run j of the challenge phase, A sends the run parameters (Bj , Cj , σ
j
0, σ

j
1) to B. If

j < i, B simulates a run of Π with parameters Bj , Cj , and σ0. If j > i, B simulates the run with
parameters Bj , Cj , and σ1 instead. The ith run is the challenge run in FlipAnonGame. In this run, B
uses these parameters in its challenge run, relaying them all to C and serving as a channel between
A and C in running Π on either σj=i

0 or σj=i
1 , depending on the challenge bit b chosen by C.

The final phase. During the second query phase, A is again allowed to submit ProcOnion queries.
Whenever A sends a ProcOnion query with a bulletin B and a churn schedule C (such that the
number of offline parties is at most c(N)), an onion O (where O was not produced by an honest
party during the challenge phase), a processing party P , and a round number r, B relays the query
to C and replies to A with C’s response. Finally, A makes its guess b′ for FlipAnonGame and passes
b′ to B. If A guesses b′ = 0, this means that A suspects that the first run with input σ1 is run i.
Thus if A’s guess is correct, the input in the challenge run i for StrongAnonGame was likely σ1, and
B should output 1. Thus, B outputs the opposite of b′ (i.e., 1 if b′ = 0 and 0 if b′ = 1).

Since B essentially wins whenever A wins, we conclude that no efficient adversary can win
FlipAnonGame with non-negligible advantage.

An immediate consequence of Theorem 2 is that:

Corollary 1. If Π is a simulatable onion routing protocol, then, in the static setting (i.e. for
c(N) = 0), Π is multi-run strongly anonymous from the active (resp. passive) adversary iff it is
single-run strongly anonymous from the active (resp. passive) adversary.

6 Multi-run strongly anonymous onion routing

Note that we can turn any weakly anonymous onion routing protocol strongly anonymous by
using a sufficiently secure onion encryption scheme (e.g., any scheme that realizes Camenisch and
Lysyanskaya’s onion ideal functionality [9]). Thus from Corollary 1, in the static setting, any
simulatable onion routing protocol shown to be single-run anonymous is also anonymous over
multiple runs. For example, Ando, et al. [3] proved that their protocol Πp is anonymous from the
passive adversary in the static setting; since Πp is simulatable (Lemma 2), this means that running
Πp multiple times is still anonymous.

However, Πp is not guaranteed to work in the dynamic setting; e.g., when the churn limit is
linear in the number of participants, Πp either fails to deliver any messages or is not anonymous
(Theorem 3). In this section, we show that we can make Πp multi-run anonymous from the passive
adversary with this churn limit if we use poly onion encryption instead of regular onion encryption
(Theorem 4).

The protocol Πp. Ando, Lysyanskaya, and Upfal [3] showed that the simple protocol Πp is weakly
anonymous from the passive adversary in the (simple I/O) static setting. For this protocol, there
are N users that send and receive messages: P = P1, . . . , PN ; and n < N mix-servers that serve
as intermediaries on routing paths: S = S1, . . . , Sn. During the onion-forming phase of a protocol
execution, each user Pi forms an onion to carry the message mi→j to his recipient Pj . Specifically,
Pi first picks a random sample T1, . . . , Tℓ from the set S of mix-servers (with replacement), i.e.,
T1, . . . , Tℓ←$S, then generates an onion using the message mi→j , the path (T1, . . . , Tℓ, Pj), and
the public keys for all the parties on the path. During the first round of the execution phase, the
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users send the generated onions to their first locations (i.e., first parties on the paths). During
all subsequent rounds, each party peels the onions from the previous round and sends the peeled
onions to their next locations or outputs the received messages for the final round.

Ando et al. [3] proved that Πp is anonymous from the passive adversary that corrupts up to
a constant 0 ≤ β1 < 1 fraction of the servers when both the server load (the average number of
onions per server per round) N

n and the number ℓ of rounds are at least polylog in the security
parameter λ. However, this result holds in the static setting without any churn.

For all the results below, let polylog(λ) denote any polylog function in λ. Additionally, when
we say that a server is online, we mean that it is online throughout the protocol run; otherwise,
the server is offline.

Theorem 3. When the churn limit is c(N) = β2N where 0 < β2 ≤ 1 is any positive constant, a
single run of Πp either fails to deliver any message with overwhelming probability, or else it is not
(single-run weakly) anonymous.

Proof. Let λ denote the security parameter.
Case 1: when the length of the routing path ℓ ≥ polylog(λ). Let Pi be any sender. Let Ei be the

event that the onion generated by Pi makes it to the recipient of Pi. This is the event that all of the
intermediaries T1, . . . , Tℓ that Pi picks are online. Since each Tj is online with probability (1− β2),
Pr[Ei] = (1 − β2)ℓ ≤ (1 − β2)polylog(λ). In other words, Ei occurs with negligible probability. By a
union bound, the probability that any of the ℓ = poly(λ) messages gets through is also negligibly
small. Thus, in this case, Πp fails to route any message.

Case 2: when the length of the routing path ℓ < polylog(λ). We know from previous work [12,
17,18] that with a passive adversary corrupting a constant fraction of the parties, no onion routing
protocol with fewer than polylog rounds is anonymous.

We just showed that the protocol Πp, using standard onion encryption, doesn’t work when the
churn limit is linear in the number of participants. However, we can guarantee anonymous message
delivery even with this churn limit by modifying Πp so that it uses Poly Onion Encryption instead.

Πp with Poly Onion Encryption. To generate a poly onion, each sender Pi first ran-
domly chooses κ candidates Ph = (Ph,1, . . . , Ph,κ) for each intermediary hop h of the
path and κ − 1 candidates (Pℓ+1,2, . . . , Pℓ+1,κ) for the final (ℓ + 1)st hop. Pi then
randomly chooses ν helpers Qh = (Qh,1, . . . , Qh,ν) for each hop h of the path, i.e.,
P1,1, . . . , P1,κ, . . . , Pℓ+1,2, . . . , Pℓ+1,κ, Q1,1, . . . , Q1,ν , . . . , Qℓ,1, . . . , Qℓ,ν ←$S. Pi then forms an onion
using the message m to her recipient Pℓ+1,1, the candidates (P1, . . . ,Pℓ, (Pℓ+1,1, Pℓ+1,2, . . . , Pℓ+1,κ)),
the helpers (Q1, . . . ,Qℓ), and all the required public keys.

For the analysis below, we will make the simplifying assumption that ProcOnion runs within
a single round since making this assumption doesn’t change the results. We use the committee
threshold parameter α = 1

2 . By the security of Poly Onion Encryption (Theorem 1), onions formed
by honest parties “mix” in hop h when the first online candidate in Ph is honest (event E3 in the
proof), and fewer than 1

2 of the members of Qh−1 are corrupted (event E4 in the proof). Note that
these conditions are stronger than what is required for security to hold.

6.1 Poly Πp is multi-run anonymous in the presence of churn

For all the results below, let Poly Πp be the protocol Πp modified to use Poly Onion Encryption
instead of regular onion encryption with the following parameter settings: security parameter λ,
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length of the routing path ℓ ≥ polylog(λ), and number of candidates per hop κ ≥ polylog(λ), and
number of helpers per hop ν ≥ polylog(λ).

Towards showing that Poly Πp is multi-run anonymous when the churn limit is linear in the
number of mix-servers, we now prove that Poly Πp is both single-run anonymous in the setting
with churn (Definition 3) and simulatable (Definition 4).

Lemma 1. Poly Πp is single-run (strongly) anonymous from the passive adversary who corrupts
up to a constant 0 ≤ β1 < 1 fraction of the mix-servers, when the churn limit is c(N) = β2N and
0 ≤ β1 + β2 <

1
2 is a constant. Moreover, it delivers all messages with overwhelming probability.

Proof. An onion is dropped at an intermediary Ph,j ∈ Ph due to churn only if all of the candidates
Ph are offline (event E1), or at least ν

2 of the helpers Qh−1 are offline (event E2). The probability
of E1 is negligibly small since the probability that each randomly chosen candidate is offline is
bounded above by 1

2 . We can show that the probability of E2 is also negligibly small by using a
Chernoff bound for Poisson trials [25, Corollary 4.6]; with overwhelming probability, the fraction
of offline parties in the committee is arbitrarily close to the expected value, which is strictly less
than ν

2 . Since E1 and E2 occur with only negligible probabilities, this onion (layer) at Pi,j is not
dropped. Since the total number of onion layers is polynomially bounded in the security parameter,
by a union bound, it follows that with overwhelming probability, no onion is dropped.

Since no onions are dropped, we can apply the proof of weak anonymity of Πp from Ando et
al. [3], with a slight modification. In that proof, mixing occurs at an intermediary server as long as
that server is honest. This happens with constant probability in Ando et al.’s construction. With
Poly Onion Encryption, mixing occurs when the first online candidate in Ph is honest (event E3),
and fewer than 1

2 of the members of Qh−1 are corrupted (event E4). The probability that any
random party is both honest and online is at least 1 − β1 − β2 > 1

2 since, in the most pessimistic
scenario, the adversary chooses the set of corrupted servers to be disjoint from the set of offline
servers. Thus, E3 happens with probability at least 1

2 . Similar to the analysis of Ē2, from a
Chernoff bound, E4 also occurs with overwhelming probability. Thus, the proof of weak anonymity
of Πp still holds for Poly Πp, and all onions will be untraceable to their senders by the time they
reach their last intermediaries. An onion may be dropped in its final relay to its recipient with
non-negligible probability; however, it is already untraceable to its sender at this point. This proves
that Poly Πp is single-run weakly anonymous. The protocol is also single-run strongly anonymous
since it is constructed with a sufficiently strong encryption scheme that is poly-onion secure.

Lemma 2. Poly Πp is simulatable.

Proof. We describe algorithms GenOnions and ScheduleProcOnions for which Poly Πp is simulatable.
Defining GenOnions. Recall that GenOnions takes as input the security parameter 1λ, the public

keys {pkPk
}Nk=1 of all the parties, the bulletin B, the churn schedule C, the run number R, the

identity Pi of an honest party, and the input σi for Pi; and outputs a set O(1)
i of onions for Pi,

i.e., O(1)
i ← GenOnions(1λ, {pkPk

}Nk=1, B,C,R, Pi, σi). Let Pj denote the recipient and let m denote
the message for that recipient included in σi. GenOnions first generates a list of candidate lists
P1, . . . ,Pℓ,Pℓ+1, where Pℓ,1 = Pj , and all other candidates is chosen independently and uniformly
at random. GenOnions then generates a list of committees Q1, . . . ,Qℓ, where each party in each
list is chosen independently and uniformly at random. Let {pkPk

}k∈P∪Q denote the set of public
keys of all parties in some candidate list Pj or some committee Qj . Each candidate list has
length κ, and each committee has size ν, where κ and ν are our chosen Poly Onion Encryption
parameters. GenOnions then runs FormOnion to obtain ((O1,1, . . . ,O1,κ), . . . , (Oℓ,1, . . . ,Oℓ,κ) ←
FormOnion(m,R, (P1, . . . ,Pℓ+1), (Q1, . . . ,Qℓ+1), {pkPk

}k∈P∪Q).
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The output O(1)
i of GenOnions should be the singleton containing an onion O0 such that pro-

cessing it right away has the same effect as the sender Pi sending the first onion O1,u to the first
available candidate P1,u ∈ P1 for the first hop. We can construct O0 from the onion O1,1 for the
preferred candidate P1,1 by “wrapping” it with an extra layer of encryption using as parameters,
the candidate lists P0 = (Pi, . . . , Pi) and P1 and the helper list Q0 = P0 = (Pi, . . . , Pi). (See
“Wrapping an onion” in Section 4.2 for the exact details on how to do this.)

Defining ScheduleProcOnions. Recall that ScheduleProcOnions takes as input the security pa-

rameter 1λ, the round number r, the identity Pi of an honest party, and the state OnionBuffer
(r)
i

of Pi at round r; and outputs a set of onions O(r)
i to be processed and sent out during round r

and an updated state OnionBuffer
(r+1)
i . We define ScheduleProcOnions for Πp to return all onions

on OnionBuffer
(r)
i to be processed immediately, and to return an empty buffer OnionBuffer

(r+1)
i for

the next round.
Simulatability. Πp is simulatable using GenOnions and ScheduleProcOnions as defined here

because they are defined identically to the honest parties’ behavior in the actual protocol. In Πp,
each party sends its onion on the first round, processes onions immediately when it receives them,
and forwards onions immediately when processed. Thus, RealGame is identical to IdealGame.

We just showed that Poly Πp is single-run (strongly) anonymous (Lemma 1) and simulatable
(Lemma 2). Thus, from Theorem 2, it follows that:

Theorem 4. Poly Πp is multi-run (strongly) anonymous from the passive adversary who corrupts
up to a constant 0 ≤ β1 < 1 fraction of the mix-servers, when the churn limit is c(N) = β2N and
0 ≤ β1 + β2 <

1
2 is a constant. Moreover, it delivers all messages with overwhelming probability.
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A Security of Poly Onion Encryption

A.1 Hybrid1 ≈ Hybrid2

Fix an encryption c = Encpk
P−
i+1

(00 . . . 0) unknown to the adversary. By security of Enc, the

probability that the adversary queries c to the oracle is negligible.

A.2 Hybrid2 ≈ Hybrid3

Recall that in Hybrid2, we form the challenge onion by first forming Oi+2, then wrapping O+
i+2 to get

O1. Hybrid3 is identical to Hybrid2, but we change the share σi,j of each member Qi,j of committee
Qi to a share of Encpk

P−
i+1

(00 . . . 0) instead of Encpk
P−
i+1

(ki+1, role(P−
i+1), P

+
i+2) and construct the

corresponding authentication tag Ti,j for this modified share.
More precisely, in Hybrid3, the challenger forms O+

i+2 as in Hybrid2, then wraps it to obtain
Oi+1. The challenger then wraps O+

i+1, but replaces the shares σi in the resulting block H1
i+1 of O+

i

with shares of Encpk
P−
i+1

(00 . . . 0). It forms the set of tags Ti+1 using these modified shares. Let this

modified wrapping be Oi. The challenger then wraps O+
i to obtain Oi. Let (O−

i+1)
′ denote O−

i+1,
but with K1

i+1 replaced by Encpk
P−
i+1

(00 . . . 0). We modify the ProcOnion such that in the second

query phase, if asked to process (O−
i+1)

′ by P−
i+1, it instead processes O−

i+1 by P−
i+1.

We split the proof that Hybrid2 and Hybrid3 are indistinguishable into two cases. In the first
case, P+

i+1 is honest and online. The proof for this case involves three subproofs. First, we show
that in H1

i , the shares of the honest members of Qi can be replaced by random strings. Second,
we show that in H1

i , the shares of the corrupted members of Qi can be replaced by shares of
Encpk

P−
i+1

(00 . . . 0). Third, we show that in H1
i , the honest members’ random strings can be replaced

by shares of Encpk
P−
i+1

(00 . . . 0).

In the second case, P+
i+1 is honest and offline; since the security predicate must be satisfied,

this means that P−
i+1 is honest. Here, we can prove that Hybrid2 ≈ Hybrid3 by a reduction to the

security of public key encryption for party P−
i+1.

Proposition 1. If P+
i+1 is honest and online, Hybrid2 ≈ Hybrid3.

Proof. First, we show that we can replace the share of each honest committee member Qi,j with
a random string of the same length by a reduction to the security of public key encryption under
pkQi,j

. Thus, by a hybrid argument, we can replace all committee members’ shares.

Suppose that there exists A that can distinguish between Hybrid2 with a subset S ⊆ Qi of the
honest committee members’ shares replaced with random strings, and Hybrid2 with S ∪Qi,j ⊆ Qi

of the honest committee members’ shares replaced with random strings. We will construct B that
can break the security of Enc.

1. B generates the public and private keys for all parties except for Qi,j , whose public key B
obtains from the challenger. B sends the public keys for all parties to A.

2. A sends the set of corrupted parties Bad, the bulletin B, the churn schedule C, and the public
keys for Bad to B.
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3. B gives A oracle access to ProcOnion on behalf of the honest parties.
4. B receives from A the challenge parameters: a path length ℓ, a message m, a routing position
i < ℓ, a round r, committees Q1, . . . ,Qℓ, and candidates P1, . . . ,Pℓ.

5. B samples keys k1, . . . , ki+1. B forms O+
i+2 and wraps it once using ki+1 to form Oi+1 like

in Hybrid2. B creates shares of Encpk
P−
i+1

(ki+1, role(P−
i+1), P

+
i+2) for all parties in Qi. Let σi,j

denote the share of Encpk
P−
i+1

(ki+1, role(P−
i+1), P

+
i+2) for party Qi,j . B also samples uniformly

random strings of the same length of the shares for each party in Qi. Let ri,j denote the
random string of length |σi,j | for party Qi,j .

6. B sends messages m0 = (P+
i+1, P

−
i+1, σi,j) and m1 = (P+

i+1, P
−
i+1, ri,j) to the challenger and

receives back ciphertext c = EncpkQi,j
(mb). B samples a tag Ti,j ← Tagki(σi,j). B continues

to form Oi, using the random strings (and their corresponding authentication tags) instead
of the shares for the inputs for parties in S, using c and Ti,j in the input for Qi,j , and using
the shares of Encpk

P−
i+1

(ki+1, role(P−
i+1), P

+
i+2) for the corrupted committee members. B then

wraps O+
i to obtain O1, as in Hybrid2.

7. B gives O1 to A and gives A query access to ProcOnion on behalf of the honest parties. This
query access is modified such that if A queries (O−

i+1)
′ to be processed by P−

i+1, B instead
runs ProcOnion by P−

i+1 on O−
i+1.

B does not need to decrypt c in order to simulate this query access. Because P+
i+1 is honest and

online in the challenge rounds, if Qi,j receives c as an input during the ProcOnion protocol,
it simply returns ⊥.

8. B submits the guess b′ returned by A.
Since A can distinguish between the two scenarios, B can determine which message was chosen by
the challenger with non-negligible probability. By repeating this argument, we can replace all of
the honest committee members’ shares of Encpk

P−
i+1

(ki+1, role(P−
i+1), P

+
i+2) with random strings.

Next, we show that we can replace all corrupted parties’ shares of
Encpk

P−
i+1

(ki+1, role(P−
i+1), P

+
i+2) with shares of Encpk

P−
i+1

(00 . . . 0).

Recall that the secret sharing protocol we use has the security property that if the adversary
has fewer than α · ν shares (α is the committee threshold, and ν is the committee size), it cannot
distinguish between whether the shares are of a message m0 or a message m1. There are fewer than
α · ν corrupted committee members in Qi, as ensured by the security predicate.

Suppose the honest parties’ shares are replaced with random strings, and there exists
an adversary A that can distinguish between whether the corrupted parties’ shares are of
Encpk

P−
i+1

(ki+1, role(P−
i+1), P

+
i+2) or Encpk

P−
i+1

(00 . . . 0). We will construct B that can break the

security of the secret sharing scheme.
1. B generates the public and private keys for all parties. B sends the public keys for all parties

to A.
2. A sends the set of corrupted parties Bad, the bulletin B, the churn schedule C, and the public

keys for Bad to B.
3. B gives A oracle access to ProcOnion on behalf of the honest parties.
4. B receives from A the challenge parameters: a path length ℓ, a message m, a routing position
i < ℓ, a round r, committees Q1, . . . ,Qℓ, and candidates P1, . . . ,Pℓ.

5. B samples keys k1, . . . , ki+1. B forms O+
i+2 and wraps it once using ki+1 to form Oi+1 like

in Hybrid2. B creates shares of Encpk
P−
i+1

(ki+1, role(P−
i+1), P

+
i+2) for all parties in Qi. Let σ0i,j

denote the share of Encpk
P−
i+1

(ki+1, role(P−
i+1), P

+
i+2) for party Qi,j . B also samples uniformly
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random strings of the same length of the shares for each party in Qi.
6. B sends m0 = Encpk

P−
i+1

(ki+1, role(P−
i+1), P

+
i+2) and m1 = Encpk

P−
i+1

(00 . . . 0) to the challenger

and receives back shares σbi of mb for all parties in Qi. (Note that Encpk
P−
i+1

(00 . . . 0) is the

same encryption of 00 . . . 0 used to define (O−
i+1)

′). B uses the corrupted parties’ shares in σbi
to create their inputs, and it uses the honest parties’ random strings to create their inputs.
B forms Oi by wrapping O+

i+1, with these modified inputs. B then wraps O+
i as in Hybrid2 to

obtain O1.
7. B gives O1 to A and gives A query access to ProcOnion on behalf of the honest parties. This

query access is modified such that if A queries (O−
i+1)

′ to be processed by P−
i+1, B instead

runs ProcOnion by P−
i+1 on O−

i+1.
8. B submits the guess b′ returned by A.

Thus, the adversary cannot distinguish between whether the corrupted parties’ shares are replaced
with shares of Encpk

P−
i+1

(00 . . . 0).

Finally, we can switch the honest parties’ random strings to shares of Encpk
P−
i+1

(00 . . . 0) by the

same reduction used to switch their shares to random strings. Thus, we arrive at Hybrid3.

Proposition 2. If P+
i+1 is honest and offline, Hybrid2 ≈ Hybrid3.

Proof. We reduce to CCA2-security of public key encryption under pkP−
i+1

. By definition of the

security predicate, if P+
i+1 is honest and offline, P−

i+1 must be honest and thus the adversary does
not know skP−

i+1
.

Suppose that there exists A that can distinguish between Hybrid2, where each σi,j is a share of
Encpk

P−
i+1

(ki+1, role(P−
i+1), P

+
i+2), and Hybrid3, where each σi,j is a share of Encpk

P−
i+1

(00 . . . 0). We

will construct B that can break the security of Enc.
1. B generates the public and private keys for all parties except for Qi,j , whose public key B

obtains from the challenger. B sends the public keys for all parties to A.
2. A sends the set of corrupted parties Bad, the bulletin B, the churn schedule C, and the public

keys for Bad to B.
3. B gives A oracle access to ProcOnion on behalf of the honest parties.
4. B receives from A the challenge parameters: a path length ℓ, a message m, a routing position
i < ℓ, a round r, committees (Q1, . . . ,Qℓ+1), and candidates (P1, . . . ,Pℓ+1) such that the
security predicate holds.

5. B samples keys k1, . . . , ki+1. B forms O+
i+2 and wraps it once using ki+1 to form Oi+1 like in

Hybrid1.
6. B sends messages m0 = (ki+1, role(P−

i+1), P
+
i+2) and m1 = 00 . . . 0 to the challenger and

receives back ciphertext c = Encpk
P−
i+1

(mb). B creates shares of c, with one share σi,j for each

committee member Qi,j . B forms Oi using these shares. B then wraps O+
i to obtain O1, as

in Hybrid1.
7. B sends O1 to A and gives A modified query access to ProcOnion on behalf of the honest

parties. Let (O−
i+1)

′ equal O−
i+1, with K1

i+1 replaced by c. If A queries (O−
i+1)

′ to be processed
by P−

i+1, B instead runs the ProcOnion protocol on O−
i+1.

8. B submits the guess b′ returned by A.
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Remark. In step 7, although B cannot query c to be decrypted by the challenger, it can still
simulate query access to ProcOnion. Since we use encryption with tags, the honest party P−

i+1 will
only process an onion with K1 = c when the remaining blocks are from the challenge onion O−

i+1.
In this case, we defined the ProcOnion oracle to run the processing protocol on O−

i+1, which does
not require decrypting c since B formed O−

i+1 and thus knows its contents.

A.3 Hybrid3 ≈ Hybrid4

Hybrid4 is identical to Hybrid3, except that ki+1 is changed to 00 . . . 0 in the key block K1
i+1. We

prove that Hybrid3 and Hybrid4 are indistinguishable by a reduction to the security of Enc, the
public key encryption scheme used in the key block.

Proof. Suppose that there exists A that can distinguish between Hybrid3 and Hybrid4. We construct
B as follows.

1. B generates the public and private keys for all parties except for Pi+1, whose public key it
obtains from the challenger. B sends the public keys for all parties to A.

2. A sends the set of corrupted parties Bad, the bulletin B, the churn schedule C, and the public
keys for Bad to B.

3. B gives A oracle access to ProcOnion on behalf of the honest parties.
4. B receives from A the challenge parameters: a path length ℓ, a message m, a routing position
i < ℓ, a round r, committees Q1, . . . ,Qℓ, and candidates P1, . . . ,Pℓ.

5. B constructs Oi+2 using FormOnion given the challenge parameters, as in Hybrid3. B samples
keys k1, . . . , ki+1 for constructing the rest of the onion.

6. B chooses messages m0 = (ki+1, role(Pi+1), Pi+2) and m1 = (00 . . . 0, role(Pi+1), Pi+2) and
sends them to the challenger. B obtains c = EncpkPi+1

(mb) from the challenger. B forms Oi+1

by wrapping O+
i+2 and replacing the key block K1

i+1 with c. B then wraps O+
i+1 as in Hybrid3,

again replacing the committee Qi’s shares, to obtain O1.
7. B gives O1 to A and gives A query access to ProcOnion on behalf of the honest parties.

Let (O−
i+1)

′ equal O−
i+1, with K1

i+1 replaced by Encpk
P−
i+1

(00 . . . 0). If A queries (O−
i+1)

′ to be

processed by P−
i+1, B instead runs the ProcOnion protocol on O−

i+1.
8. B submits the guess b′ returned by A.

If m0 is chosen, K1
i+1 contains key ki+1, and the onion is constructed exactly as in Hybrid3. If m1

is chosen, K1
i+1 contains key 00 . . . 0, and this version of the experiment is exactly Hybrid4. Thus,

since A can distinguish between Hybrid3 and Hybrid4, B can guess the challenger’s chosen bit.

Remark. Changing ki+1 in K1
i+1 does not affect O−

i+1 for the oracle access in step 7.

A.4 Hybrid4 ≈ Hybrid5

Hybrid5 is identical to Hybrid4, except that Oi+1 is the output of FormOnion on the initial segment
of the routing path, rather than a wrapping of O+

i+2.
More precisely, let Oi+2 be the onion formed with the adversary’s chosen routing path after

the (i+ 1)th hop; let Oi+1 be the onion formed by wrapping Oi+2 once according to the challenge
parameters; let Ôi+1 be the onion formed with the adversary’s chosen routing path up to the
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(i+ 1)th hop. Then:

O+
i+2 = (K1

i+2, . . . ,K
d
i+2), (H

1
i+2, . . . ,H

d
i+2), Ui+2

O+
i+1 = (K1

i+1, {K1
i+2}ki+1

, . . . , {Kd−1
i+2 }ki+1

),

(H1
i+1, {H1

i+2}ki+1
, . . . , {Hd−1

i+2 }ki+1
), {Ui+2}ki+1

Ô+
i+1 = (K1

i+1, {K̂1
i+2}ki+1

, . . . , {K̂d−1
i+2 }ki+1

),

(H1
i+1, {Ĥ1

i+2}ki+1
, . . . , {Ĥd−1

i+2 }ki+1
), {Ûi+2}ki+1

where the K̂, Ĥ, and Û segments in Ô+
i+1 are as defined in the recursive definition of FormOnion for

poly onion encryption. Observe that K1
i+1 and H1

i+1 are identically distributed in O+
i+1 and Ôi+1,

and all blocks that change between O+
i+1 and Ô+

i+1 are encrypted under a PRP with key ki+1.

To prove that Hybrid4 and Hybrid5 are indistinguishable, we use the fact that the replaced parts
of the onion are all encrypted under a PRP with key ki+1. Our proof is a reduction to the CCA2
security of this PRP.

Proof. Suppose A can distinguish between Hybrid4 and Hybrid5. We will construct B that can break
the CCA2 security of our PRP.

1. B generates the public and private keys for all parties. B sends the public keys for all parties
to A.

2. A sends the set of corrupted parties Bad, the bulletin B, the churn schedule C, and the public
keys for Bad to B.

3. B gives A oracle access to ProcOnion on behalf of the honest parties.
4. B receives from A the challenge parameters: a path length ℓ, a message m, a routing position
i < ℓ, a round r, committees Q1, . . . ,Qℓ, and candidates P1, . . . ,Pℓ.

5. B constructs Oi+2 using FormOnion given the challenge parameters, as in Hybrid4. B samples
keys k1, . . . , ki for constructing the rest of the onion. B constructsK1

i+1 as in Hybrid4, replacing
ki+1 with 00 . . . 0. B constructs H1

i+1 as prescribed by FormOnion, as in the previous hybrids.
6. B chooses two series of messages

m0 = K1
i+2, . . . ,K

d−1
i+2 , H

1
i+2, . . . ,H

d−1
i+2 , Ui+2

m1 = K̂1
i+2, . . . , K̂

d−1
i+2 , Ĥ

1
i+2, . . . , Ĥ

d−1
i+2 , Ûi+2

and sends them to the challenger. Call the blocks of the challenger’s chosen message
K∗, H∗, U∗. B receives back c, the encryption of each of the messages in mb using the
challenger’s key ki+1:

c = {K∗1
i+2}ki+1

, . . . , {K∗d−1
i+2 }ki+1

, {H∗1
i+2}ki+1

, . . . , {H∗d−1
i+2 }ki+1

, {U∗
i+2}ki+1

B constructs layer i+ 1 of the challenge onion, O∗
i+1, using these segments:

O∗
i+1 = (K1

i+1,{K∗1
i+2}ki+1

, . . . , {K∗d−1
i+2 }ki+1

),

(H1
i+1, {H∗1

i+2}ki+1
, . . . , {H∗d−1

i+2 }ki+1
), {U∗

i+2}ki+1

B then wraps O∗
i+1 repeatedly to obtain the challenge onions O1, making sure to replace the

shares of ki+1 for committee Qi with shares of 00 . . . 0, as in Hybrid3. B sends O1 to A.
7. B gives A oracle access to ProcOnion on behalf of the honest parties, so that when O∗

i+1 is
queried, B instead runs ProcOnion on O+

i+1. Furthermore, let (O∗−
i+1)

′ equal O∗
i+1, with K∗1

i+1

replaced by Encpk
P−
i+1

(00 . . . 0). If A queries (O∗−
i+1)

′ to be processed by P−
i+1, B instead runs

the ProcOnion protocol on O−
i+1 .

8. B submits the guess b′ returned by A.
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Remark. In step 7, B simulates ProcOnion on O−
i+1 and O+

i+1 by using its knowledge of the
decryptions of Ki+1, Hi+1, and Ui+1, since it formed these blocks.

If m0 is chosen, O∗
i+1 is exactly Oi+1, a wrapping of Oi+2 consistent with A’s challenge pa-

rameters. Wrapping Oi+1 to create O1 gives exactly Hybrid4. If m1 is chosen, O∗
i+1 is exactly the

(i+ 1)th layer of the onion formed using the initial segment of the challenge parameters. Wrapping
O∗

i+1 yields a challenge onion constructed as in Hybrid5. Therefore, if A can distinguish between
Hybrid4 and Hybrid5, B can determine whether the challenger chose m0 or m1 with non-negligible
probability.

A.5 Hybrid5 ≈ Hybrid6

Hybrid6 is the same as Hybrid5, except that in the key block K1
i+1, ki+1 is changed to 00 . . . 0, the

role of Pi+1 is changed from intermediary to recipient, and the identity of Pi+2 is changed to ⊥.
This proof is basically the same as the proof that Hybrid3 ≈ Hybrid4. It involves a reduction to

the security of Enc, the public key encryption scheme used to encrypt K1
i+1.

A.6 Hybrid6 ≈ Hybrid7

Hybrid7 is the same as Hybrid6, except that the shares σi of all committee members Qi are changed
back from shares of Encpk

P−
i+1

(00 . . . 0) to shares of Encpk
P−
i+1

(ki+1, role(P−
i+1), P

+
i+2), where the the

role of P−
i+1 is now the recipient.

This proof is analogous to the proof that Hybrid3 ≈ Hybrid2. It involves a reduction to the
security of the secret sharing scheme, which ensures that the secret shared message cannot be
reconstructed given only the corrupted parties’ shares.

A.7 Hybrid7 ≈ Hybrid8

This proof is analogous to the proof that Hybrid1 ≈ Hybrid2, by security of Enc.
Let O0

i+1 denote the (i + 1)th layer of the challenge onion as constructed when b = 0 in
POSecurityGame; i.e., the output of FormOnion on the challenge paramters. Let O1

i+1 denote the
(i+ 1)th layer of the challenge onion as constructed when b = 1 in POSecurityGame; i.e., the output
of FormOnion on the truncated routing path. Observe that now, in Hybrid8, the ProcOnion oracle
access in the second phase is defined such that if an onion in O1

i+1 is queried, the oracle instead
processes the corresponding onion in O0

i+1. This oracle access is consistent with the access in b = 1
of POSecurityGame.
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