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Abstract

All existing works building non-interactive zero-knowledge (NIZK) arguments for NP from
the Learning With Errors (LWE) assumption have studied instantiating the Fiat-Shamir paradigm
on a parallel repetition of an underlying honest-verifier zero knowledge (HVZK) Σ protocol, via
an appropriately built correlation-intractable (CI) hash function from LWE. This technique has
inherent efficiency losses that arise from parallel repetition.

In this work, we show how to make use of the more efficient “MPC in the Head” technique for
building an underlying honest-verifier protocol upon which to apply the Fiat-Shamir paradigm.
To make this possible, we provide a new and more efficient construction of CI hash functions
from LWE, using efficient algorithms for polynomial reconstruction as the main technical tool.

We stress that our work provides a new and more efficient “base construction” for building
LWE-based NIZK arguments for NP. Our protocol can be the building block around which other
efficiency-focused bootstrapping techniques can be applied, such as the bootstrapping technique
of Gentry et al. (Journal of Cryptology 2015).

1 Introduction

A recent line of work instantiates the Fiat-Shamir heuristic by building correlation-intractable hash
functions from the Learning With Errors (LWE) assumption [PS19, CCH+19, HLR21], yielding
the first Non-Interactive Zero-Knowledge (NIZK) protocols for NP from LWE. Such protocols are
particularly desirable as LWE is believed to be hard even for quantum computers. While this line
of work has been exciting in terms of achieving new feasibility based on LWE, our understanding of
how to optimize the efficiency of such constructions is still in its infancy.

In particular, before our work, all known papers constructing NIZK arguments for NP from
the LWE assumption studied instantiating the Fiat-Shamir paradigm on a parallel repetition of an
underlying honest-verifier zero knowledge (HVZK) Σ protocol. Unfortunately, parallel repetition
entails inherent efficiency loss. Can we do better?

∗riddhi@cs.ucla.edu
†pslou@cs.ucla.edu
‡sahai@cs.ucla.edu

1



Our Work. In this work, we study how to apply the “MPC-in-the-Head” paradigm [IKOS07] to the
construction of NIZK arguments for NP from the LWE assumption. Moreover, we do so by directly
using simple and efficient polynomial reconstruction algorithms [Sud97, GS98], avoiding the need
for more complex coding previously used in [HLR21]1. We note that this paradigm has previously
been used to yield practically efficient constructions in other contexts [AHIV17, GMO16, CDG+17].

The starting point: Zero Knowledge Protocols. A zero knowledge protocol [GMR85] is an
interactive protocol which allows a prover to prove to a verifier that an input x is in some NP
language L without revealing anything more than the fact that x ∈ L. A classic example of such
a protocol was introduced by Goldreich, Micali and Wigderson [GMW87b] for Graph 3-Coloring.
The NP-completeness of Graph 3-Coloring implies that the GMW protocol indeed leads to zero
knowledge proofs for all problem in NP. The basic version of this protocol is public coin and has
large soundness error, but this error can be made negligible while still preserving honest-verifier
zero-knowledge by parallel repetition. However, such parallel repetition is a source of significant
inefficiency, both asymptotically and concretely. This is especially true if the number of parallel
repetitions required is large – an issue that we will come back to later!

An alternative to using parallel repetition of such classic protocols is the MPC-in-the-head
paradigm introduced by Ishai, Kushilevitz, Ostrovsky and Sahai [IKOS07], which allow us to con-
struct highly sound general zero knowledge proof systems for any NP relation R(x,w), where w is a
witness to the fact that x ∈ L. Such a protocol makes black box use of an honest-majority MPC pro-
tocol Πf for a functionality f for the circuit for NP relation R. This approach bypasses the computa-
tional overhead of a Karp reduction. Moreover, there is a successful line of work on producing highly
efficient perfectly-robust MPC with minimal communication [DI06, DIK10, GPS21, BGJK21].

The MPC-in-the-head paradigm avoids the need for parallel repetition entirely. At a high level,
the paradigm works by having the prover run the MPC protocol among q virtual servers entirely in
the imagination of the prover, and then commit to the views of these virtual servers. The verifier
then specifies a small random subset of these servers to the prover. The prover then opens the
commitments to the inputs of the chosen servers, and all messages sent and received by those
servers. This allows the verifier to check that the prover correctly executed the MPC protocol for
almost all servers. It is absolutely crucial that the number of servers that the verifier specifies to
open is significantly smaller than the number of servers q, otherwise no security would remain for
the prover.

Using the Fiat-Shamir paradigm with Correlation-Intractable Hash Functions to obtain
NIZK. A non-interactive zero knowledge protocol (NIZK) [Gol01] lets the prover eliminate the
need for interaction by assuming a common random string (CRS2) that is given as input to both
parties. A beautiful tool for constructing NIZKs is the Fiat Shamir heuristic [FS87]: it starts
with a public-coin honest-verifier zero knowledge proof system and transforms it into a NIZK. This
works by placing a random hash key in the CRS and replacing each of the verifier’s messages in
the interactive protocol with the hash of the input and the entire transcript so far. A sequence
of works [CCR16, CCRR18, CCH+19, BKM20, PS19, HL18, KRR17] has shown that if this hash
function is correlation-intractable for certain relations, then the resulting NIZK is sound.

1In personal correspondence after the initial posting of our result, Alex Lombardi showed us that it was possible to
use the construction in [HLR21] using Parvaresh-Vardy codes over extension fields to achieve parameters compatible
with our variant of MPC-in-the-head, albeit at a significant efficiency cost relative to what we achieve here.

2More generally, CRS can also refer to a common reference string, but our work will achieve NIZKs with a
common random string.
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The recent work of [PS19, HLR21] constructs such a correlation-intractable hash function from
the LWE assumption and demonstrates how to apply the Fiat-Shamir transformation to a broad class
of public-coin honest-verifier zero knowledge protocols built using parallel repetition. However, it is
worth noting that the number of parallel repetitions needed for the technique of [HLR21] to apply
is actually a rather large polynomial. Specifically, if k is the security parameter for LWE and if the
size of the verifier’s challenge set is bounded by any polynomial in k, then the number of repetitions
required is roughly O(k2). One crucial reason for this polynomial expression being quadratic in
k is that list-recoverable error correcting codes play a starring role in the work of [HLR21], and
unfortunately the best-known such codes require large block lengths to achieve the parameters
needed for [HLR21] to work3.

Our New Idea in a Nutshell. Our starting technical observation is that the correlation that
needs to be intractable for the hash function is in fact far more structured in the case of a variant
of the MPC-in-the-head protocol that we consider, than in the case of parallel repetition based
protocols. The looser structure of the correlation behind parallel repetition based protocols is what
led to the work of [HLR21] requiring general list-recoverable codes. The greater structure present
in the case of MPC-in-the-head protocols allows us to significantly relax the requirements, and
in particular lets us use an aggregate size analysis when decoding. As a result, we are able to
use standard polynomial reconstruction algorithms [Sud97, GS98] directly to solve our problem.
To highlight this structure, we define a new variant of list-recoverability, that we call Recurrent
List-Recoverability, over product sets where each term in the product is the same set.

Definition 1.1 (Recurrent List-Recoverable Codes). An ensemble of codes {Cλ : Mλ → Znλ
qλ
} is

said to be a (ℓ(·), L(·))-recurrent list recoverable (for ℓ, L : Z+ → Z+) if there is a polynomial-time
algorithm Recover that:

• Takes as input λ ∈ Z+ and explicit descriptions of “constraint” sets S ⊆ Zn
q where |S| ≤ ℓ(λ).

• Produces as output a list of at most L(λ) messages, containing all m ∈M for which C(m)i ∈ S
for all i ∈ [n].

We show that this aggregate size analysis and polynomial reconstruction algorithms implies the
existence of recurrent list-recoverable codes with the desired parameters, resulting in the following
theorem.

Theorem 1.2. For arbitrary constants 0 < η, α < 1 and 0 < δ ≤ ε < 1, there exists a probabilistic
constructible ensemble for codes {

Ck : Zk+1
q2
→ Zηq

q

}
such that Ck is (αq, T 2)-Recurrent List Recoverable with probability at least 1 − e−ω(k log k), where
q = k log1+ε+ δ

2 k and T = O(k log2ε−
δ
2 k)

Main Technical Milestone: Quadratic improvement to blocklength. As noted above, the
(ordinary) list-recoverable codes constucted in [HLR21] have block length quadratic in the number
of input symbols k above. In contrast, in our theorem above, we achieve quasi-linear blocklength
Õ(k). This improvement is despite using a qualitatively weaker algebraic component (polynomial

3In particular, the alternative method pointed out to us by Lombardi using Parvaresh-Vardy codes over extension
fields would also incur this O(k2) overhead.
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reconstruction) in our codes compared to the one used previously (Parvaresh-Vardy codes over
extension fields). We discuss why this is possible in our technical overview below.

Composing this recurrent list-recoverable code with the Peikert-Shiehian correlation intractable
hash function allows us to instantiate the Fiat-Shamir technique with the MPC-in-the-head tech-
nique.

Theorem 1.3. Assuming that LWE m
2 log q

,m,q,χ holds for the particular parameter settings where χ is a

B-bounded distribution for B = qΩ(1), q = poly(m), and a MPC protocol with perfect αn-robustness
and perfect, statistical, or computational security exists, where α ∈ (0, 1/2) is a constant and n
is the size of the challenge set in the interactive protocol, there exists NIZKs with computational
soundness for all of NP whose proof size is

O(|C|+ q · depth(C)) + poly(k)

where C is an arithmetic circuit for the NP verification function and q = k log1+ϵ k for any ϵ > 0.

Bootstrapping. A NIZK with proof size |w|+poly(λ) for witness w and security parameter λ can
be constructed using Fully Homomorphic Encryption [GGI+15] to bootstrap an underlying NIZK.
Their construction uses this NIZK to prove that the fully homomorphic encryption key generation
and evaluation is performed correctly by the Prover. Our construction provides an efficient base
NIZK construction and can be used in conjunction with the construction of [GGI+15] to yield a
more efficient form of this bootstrapping. Similarly, other (future) methods of bootstrapping for
efficiency can potentially make use of our NIZK as a base construction.

1.1 Technical Overview

1.1.1 MPC-in-the-head

An MPC protocol [BGW88, CCD88, GMW87a, Yao86] allows us to compute a q-party functionality
(a function of their inputs) while maintaining privacy of the inputs and correctness of the output.
In a n-private MPC protocol, any adversary that corrupts at most n players is unable to learn any
information about the non-corrupted players’ private inputs beyond that obtainable from learning
the output of the function. Zero-knowledge protocols can be viewed as a special case of secure
two-party computation, where the function verifies the validity of a witness held by the prover.

Recall that we will be using the Fiat-Shamir paradigm (more on this below) to convert a public
coin honest-verifier zero knowledge (HVZK) proof into a NIZK argument. All previous work studied
using parallel repetition of a HVZK protocol. We aim to avoid this by starting with an HVZK
protocol based on the MPC-in-the-head paradigm [IKOS07], as we now explain.

Let RL be a relation corresponding to a NP language L. In other words, RL(x,w) = 1 if and
only if x ∈ L and w is a witness for x. Define a functionality fL such that fL(x,w1, w2, ..., wq) =
RL(x,w1 ⊕ w2 ⊕ · · · ⊕ wq). Thus, fL can be viewed as a function computed by q parties where x
is the public input and wi is the private input for Player i. The HVZK protocol ΠZK begins with
the Prover carrying out all the steps of a q-party MPC protocol ΠfL in her head. First, she secret
shares w into w1, . . . , wq and executes the q-party MPC protocol to produce the protocol transcript
of inputs, initial randomness, and messages sent. The Prover sends commitments to the transcript
of the execution to the Verifier. Now the Verifier picks a random set S of n < q parties, challenging
the prover to open the commitments to the private inputs, their randomness, and all messages sent
or received by parties in S. The Verifier accepts if the openings form a consistent MPC protocol
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(that is, every message sent matches what the MPC’s next message function would output given
the previous messages received) and every party in the set S outputs 1.

The HVZK property follows from the privacy guarantee of the MPC. Assuming that the under-
lying MPC protocol ΠfL is perfectly robust, violating the soundness requires a cheating prover to
commit to many messages that are not consistent with the rest of the transcript and we show in
Lemma 5.2 that such a cheating prover gets caught with overwhelming probability.

1.1.2 Fiat-Shamir Heuristic

We begin by reviewing the Fiat-Shamir Heuristic, a generic technique that compresses public-coin
interactive arguments into non-interactive arguments in the CRS model. The Fiat-Shamir Heuristic
is defined with respect to a public hash function family H. Let us consider the following three-round
interactive proof between a prover P and verifier V , in which P ’s goal is to convince V that x ∈ L,
for some language L ∈ NP:

1. P sends a first message α.

2. V responds with a uniform randomly chosen string β.

3. P finally sends a message γ to V .

Note that V accepts the proof (α, β, γ) if and only if x ∈ L. In order to convert this to a non-
interactive proof, the CRS consists of a randomly chosen hash function h ← H. P computes
β = h(x, α) and uses this compute γ. Finally, V can recompute β using the publicly known h and
checks if the transcript (x, α, β, γ) is accepting.

This technique requires a careful analysis of soundness, because V no longer has the capability to
generate uniformly random strings β. One way to ensure that the Fiat-Shamir transform is indeed
sound is to instantiate the hash function with one that is Correlation Intractable (CI), which we
now define.

Suppose x /∈ L. Let us define the set of “bad" βs as:

Badα = {β | ∃γ such that V (x, α, β, γ) = 1},

A CI hash requires that it is computationally infeasible for an efficient cheating prover to come
up with an α such that h(x, α) ∈ Badα when given h ← H as input, where H is a Correlation
Intractable hash family with respect to Badα. Formally, we say that H is a correlation intractable
hash function family for Badα if for all PPT adversaries A,

Pr
h←H

[h(x, α) ∈ Badα | A(h, x) = α] ≤ negl(λ).

Peikert and Shiehian [PS19] constructed a CI hash family when |Badα| = 1 from the LWE
assumption. In fact, Canetti et. al. [CCH+19] have shown that this construction can be extended
to settings when |Badα| is polynomially bounded.

1.1.3 Correlation Intractable Hash Functions from List Recoverable Codes

In their recent work, [HLR21] propose a correlation intractable hash function family for any three
round public coin commit and open protocol. The classical GMW protocol for 3-coloring with
parallel repetition falls in the category of the protocols that [HLR21] dealt with. To illustrate the
techniques from [HLR21], we briefly review them in the context of parallel repetition of the basic
GMW protocol.
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In the GMW protocol, the Prover who knows a 3-coloring of a graph G first commits to a
randomly chosen permutation on the 3-coloring. The Verifier then randomly picks an edge of
G and asks the Prover to open the vertex colors incident to that edge. If the colors differ, the
Verifier accepts; otherwise, the verifier rejects. Repeating the interactive protocol in parallel achieves
negligible soundness error while keeping the round complexity low. In any iteration of the interactive
protocol there are at most |E| − 1 edges which can allow the prover to cheat (referred to as the
“bad" challenge set). We define Si to be the bad challenge set in the ith iteration of the interactive
protocol. In a parallel repetition of the protocol n times, these bad challenge sets form a product
of sets S1 × · · · × Sn, where ∀ i ∈ [n], |Si| ≤ |E| − 1. For G ̸∈ 3-COL, a malicious Prover is able to
convince the Verifier to accept if for all iterations i ∈ [n] the challenge edges selected by the Verifier
in the ith iteration belong to Si. This product of sets defines a product relation R = S1× · · · ×Sn.

The usefulness of CI hash families prior to the work of [HLR21], such as those in [PS19, CCH+19],
were limited to functions and polynomially bounded relations. Our relation R does not fall in this
category as there may be exponentially many bad challenges on which an adversary can find the
desired correlation. The work of [HLR21] addresses this concern by constructing new correlation
intractable hash functions for such product relations that are efficiently verifiable (defined in Sec-
tion 6). In order to do so, they use list recoverable codes to construct another relation R′ which is
“efficiently enumerable" and therefore amenable to the techniques of [PS19, CCH+19].

To build this relation R′, they use a derandomization approach based on list-recoverable error
correcting codes. Informally, an error correcting code is a function C :M→ Zn

q . Here, n is called
the block length of the code. We say that an error correcting code C is (ℓ, L)-list recoverable if
for all sets S1, S2, . . . , Sn ⊆ Zq each of size at most ℓ, the number of messages v in M such that
C(v) ∈ S1 × · · · × Sn is less than L + 1. Moreover, there must exist an efficient algorithm Recover
which extracts all such v. This notion was introduced in [GI01]. The parameters of the codes can
be interpreted as follows in the context of the GMW protocol:

• The size of the alphabet q is the maximum size of the Verifier’s challenge set, i.e. q = |E|.

• The input list size ℓ is |E| − 1 which corresponds to the maximum size of a bad challenge set
for a single execution of the GMW protocol.

• The block length n is the number of parallel repetitions.

• The output list size L must be polynomially bounded.

The new CI Hash function they construct is given byH′ := C(H(·)) where C is the list recoverable
error correcting code as defined above and H is the previous CI hash function from [PS19].

Our recurrent list-recoverable codes achieve a quasi-linear block size of O(k log1+ϵ k) for arbitrary
ϵ > 0. We emphasize that this block size is not known to be achievable by any previous framework.

1.1.4 Exploiting the MPC-in-the-head Product Relation

We first highlight the structure of the bad challenge set when using MPC-in-the-head to build a zero-
knowledge protocol. Consider a cheating Prover that simulates a q-party MPC protocol and corrupts
an α fraction of them in an attempt to fool the Verifier. The Prover commits to a transcript of the
execution (denoted by com). The Verifier then specifies n parties to the Prover. The Prover must
decommit to the corresponding commitments to inputs and the randomness of the specified parties
as well as the messages incident (sent or received) to these parties. Let Scom ⊆ [q] be the set of the
parties for which the messages sent are consistent with the input, the randomness, and the previous
messages received and where the final output of the party is 1. The bad challenge set (equivalently
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the bad challenge relation) that convinces a Verifier to accept, denoted by RMPC ⊆ [q]n, is therefore
seen to be the product Scom × · · · × Scom︸ ︷︷ ︸

n times

. Observe that this product relation is a specific product

relation where each component is the same set Scom. The special structure of the bad challenge set
in the MPC-in-the-head setting opens up a new avenue for us to exploit in order to construct a CI
hash for RMPC.

Revisiting Random Codes A common technique in coding theory introduced by Forney in
1966 [FJ66] is that of code concatenation. Code concatenation involves two codes, an inner code
Cin and an outer code Cout. The code concatenation encoding scheme first encodes a message m
with the outer code Cout to produce e = Cout(m). Then it encodes each symbol in e with the inner
code Cin. We denote the resulting code as Cout ◦ Cin 4.

This technique was used by [HLR21] to obtain list-recoverable codes. In particular, their list-
recoverable codes result from concatenating an inner code, given by a family of random codes, with
an outer code, given by an algebraic code instantiated by the Parvaresh-Vardy code. The inner
code reduces the size of the lists to be fed as input to the outer code, achieving an overall smaller
block length. The question before us is: Can we use the inner code to help us reduce the size of the
lists to be fed as input to the outer code, thereby helping us achieve an overall block length that is
smaller than the input list size to the outer code?

Suppose we have a random code Crand : ZQ → Zm
q , where the parameters Q, q,m are all polyno-

mial in the security parameter. Then a list recovery algorithm is trivial to implement by enumerating
every codeword and checking to see if the components of the codeword lie in the input lists. If one
analyzes the list recoverability of such a code, one immediately encounters a fundamental barrier:
If ℓ is the input list size to the list recovery algorithm, then the output list size must also sometimes
be at least ℓ. This is simply because the input lists can correspond to the union of ℓ different
codewords in Crand. Indeed, the work of [HLR21] analyzed the list recoverability of a single random
code further to show that this worst case is close to tight, but as we noted above, their analysis is
not good enough for us.

Can we exploit the fact that the inputs lists must all be equal, and equal to Scom in particular?
Unfortunately the output list size of the random code must be at least ℓ/m, as the worst case
Scom could be equal to the union of all the symbols found in ℓ/m codewords. This seems to
present a fundamental barrier to us regarding the applicability of random codes as “inner” codes in
concatenated codes, since the random code blows up the overall blocklength of the concatenated
code by a factor of m, while only shrinking the list size by at most a factor of m. In other words,
we seem to have made no progress.

Many random codes are better than one. The key insight behind our work is that while the
barrier above applies to a single random code, a much different picture emerges if we consider the
sum of the list sizes output by the recover algorithm of many random codes.

Indeed, suppose we have t completely independently chosen random codes C(i)rand : ZQ → Zm
q

for i ∈ [t]. While it is true that for each code there exist input sets Scom that would lead to an
output list of size ℓ/m, with overwhelming probability, these input sets would have tiny intersections
because of the independence of the choice of each code. For i ∈ [t], let Li be the list obtained as

4The standard notation for code concatenation Cout◦Cin differs in two ways from the standard function composition
notation in which f ◦ g(x) = f(g(x)). Firstly, Cout is used first to encode the message m. Secondly, Cin is applied
index-by-index to each symbol in the Cout(m)
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output of the list recovery algorithm of C(i)rand on input lists all equal to Scom. It is hopeless to get a
better bound on maxi {|Li|}. So instead we aim to bound

∑
i |Li|.

In our work, we give a new analysis of this quantity for t independently chosen random codes.
We formulate a new variant of Chernoff’s Bound (see Lemma 3.1), and use this to give our analysis
in Theorem 4.2. This shows that with suitably chosen parameters, with overwhelming probability.
for every input list Scom,

∑
i |Li| will be bounded by roughly Õ(t+ ℓ/m). In other words, we get t

output lists roughly for the “price” of a single output list!

Using Polynomial Reconstruction to leverage the aggregate list bound. Now that we
have this bound, how can we take advantage of it to build a CI Hash function? We do so by
departing from the language of list recoverability of error correcting codes, and instead adopting
the more basic algebraic tool of polynomial reconstruction.

In the polynomial reconstruction problem, we are given as input a prime Q, a degree bound
k, and n distinct pairs {(αi, yi)}i∈[n] where each αi, yi ∈ ZQ. The algorithm of Guruswami and
Sudan [GS98] outputs a list of every polynomial f over ZQ of degree at most k, such that f(αi) = yi
for at least

√
kn indices i ∈ [n]. Furthermore, this output list has size at most n2. Combining

polynomial reconstruction to leverage the aggregate list bound results in a recurrent list-recoverable
code with the desired parameter settings.

The existence of this code and the Peikert-Shiehan correlation-intractable hash function gives rise
to our final construction of a CI hash function as follows: Let H be the Peikert-Shiehan correlation-
intractable hash and let α be the first message of the protocol (including the instance x being
proven). Interpret H(α) as coefficients for a degree k polynomial over field ZQ. Then use the
evaluation map on this polynomial at t fixed distinct elements in ZQ to yield the code Calg : Zk+1

Q →
Zt
Q to obtain t field elements in ZQ. We assume that we have already sampled t independent random

codes C(i)rand : ZQ → Zm
q for i ∈ [t] at setup time (this is part of the description of the hash function).

Then we apply the ith random code C(i)rand on the ith element of Calg(H(α)). If Crand = {C(i)rand}i∈[t], we
denote this operation by Ck(H (α)) where Ck = (Calg ◦ Crand). This operation, (Calg ◦ Crand) (H (·)),
defines our final construction of a CI hash function.

This construction indeed satisfies correlation-intractability by observing an efficient recovery
algorithm for (Calg ◦ Crand) (H (·)). Namely a brute force enumeration of the codewords for the
random codes in Crand gives an output list of size Õ(t + ℓ/m) that consists of pairs {(αi, yi)}i. Of
these, at most t pairs can be consistent with a degree-k polynomial. The polynomial reconstruction

algorithm of [GS98] will succeed as long as t >
√

k · Õ(t+ ℓ/m). This provides us with ample
room to set parameters, and indeed we have significant freedom when choosing values of k, t, ℓ,m
to make this work. Then the polynomial reconstruction algorithm outputs at most Õ(t2 + ℓ2/m2)
many polynomials. Therefore this efficient recovery algorithm produces a polynomial-size set so the
Peikert-Shiehian CI hash function can now be applied, yielding a CI hash function for the MPC-
in-the-head setting, achieving our goal. In the remainder of the paper, we show how to instantiate
parameters precisely and provide all details regarding our analysis.

2 Preliminaries

2.1 Proof Systems

Zero Knowledge: We define the standard notion of zero knowledge as well known in prior
work [GMR89, GMW87b, IKOS07].
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An NP Relation R(x,w) is an efficiently decidable binary relation which can be viewed as a
boolean function that outputs 0 or 1. Any NP relation defines a language L = {x : ∃w,R(x,w) = 1}.
A zero knowledge proof consists of two PPT algorithms, namely, a prover P and verifier V . The
prover is given access to instance x and witness w, whereas the verifier only has the instance w.

Definition 2.1 (Interactive Honest Verifier Zero Knowledge Proof). The protocol (P, V ) for a
language L defined above consists of an interactive P and V with the following requirement:

• Completeness: If x ∈ L, and both P, V are honest, then V must always accept.

• Statistical Soundness: If x /∈ L, then for any malicious and computationally unbounded prover
P ∗, V accepts with a negligible probability only.

• Zero Knowledge: If x ∈ L, then for any non-malicious PPT verifier V ∗, there exists a PPT
simulator M such that the view of V ∗ upon interaction with P is computationally indistin-
guishable from the output distribution of M(x). Here, view of V ∗ consists of its input x, its
random coins and all incoming messages.

Definition 2.2 (Public Coin). An interactive proof system is said to be public coin if for every
x ∈ {0, 1}n, and some l(n), the messages sent by an honest verifier V are i.i.d uniform l(n) bit
strings. Moreover, the final output of V must be efficiently computable in polynomial time given x
and the transcript upon interaction with P .

Definition 2.3 (Non-Interactive Zero Knowledge(NIZK) Arguments in the CRS model). A non
interactive zero knowledge argument for a language L in the Common Reference String (CRS) model
is defined three PPT algorithms:

• Setup(1n, 1λ) outputs a uniform random string crs given a statement of length n and security
parameter λ.

• Prover P (crs, x, w) outputs a proof π given a statement witness pair (x,w) in the NP relation
R.

• Verifier V (crs, x, π) either accepts or rejects.

The following properties must be satisfied:

• Completeness: V (crs, x, π) must always accept if x ∈ L and π ← P (crs, x, w).

• Computational Soundness: for every non-uniform poly time prover P ∗, there exists a negligible
function ϵ(λ) such that for any n ∈ N and x /∈ L,

Pr[crs← Setup(1n, 1λ), π∗ ← P (crs, x), V (crs, x, π∗) accepts] ≤ ϵ(λ).

• Non Interactive Zero Knowledge: There exists a PPT simulator M such that for every x ∈ L
such that the distribution of the transcript output by Setup and P , i.e., (crs, P (crs, x, w)) :
crs ← Setup(1n, 1λ) is statistically indistinguishable from the output of M(x). Note that M is
allowed to generate its own CRS.
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2.2 Cryptographic Assumptions and Commitment Schemes

Definition 2.4 (Decisional Learning with Errors Problem [Reg03]). Let n ≥ 1 be a parameter for
dimension, and let q = q(n) ≥ 2 be a modulus. Let m ≥ 1 be a parameter for number of samples. Let
χ = χ(n) be an error distribution over Zq. The decisional learning with errors problem LWEn,m,q,χ

is to distinguish between the following two distributions:{
(A,As+ e) | A $←− Zm×n

q , s
$←− Zn

q , e
$←− χm

}
and {

(A, u) | A $←− Zm×n
q , u

$←− Zm
q

}
Definition 2.5 (Bounded Error Distributions). Let B = B(λ) such that B(λ) ∈ N. We say that a
family of distributions χ = {χλ}λ∈N over the integers is B-bounded if for all λ ∈ N,

Pr [x← χλ | |x| ≤ B(λ)] = 1.

Definition 2.6 (Statistically Binding Commitment Scheme in the CRS model). A Statistically bind-
ing commitment scheme in the CRS model is a pair of efficiently computable functions (Setup,Com),
where,

• Setup(1λ) outputs a common reference string crs.

• Com(crs,m; r) takes as input crs, a message m to be commited, and uses randomness r to
output a commitment com.

They have the following security properties:

• Statistical Binding: With high probability over the choice of crs ← Setup(1λ), there does
not exists r0, r1, and messages m0 ̸= m1 such that Com(crs,m0; r0) = Com(crs,m1; r1).

• Computational Hiding: For messages m0 ̸= m1, and randomness r0, r1 the distribution of
(crs, com0) is computationally indistinguishable from (crs, com1). Here, crs← Setup(1λ), com0 ←
Com(crs,m0; r0), and com1 ← Com(crs,m1; r1).

Given a commitment com and crs, a valid corresponding pair (m, r) is known as the opening for
com.

Remark 2.7. [Non-interactive Perfectly Binding Commitment Schemes from LWE-based PKEs]
Any PKE with perfect decryption correctness gives a non-interactive commitment. As observed pre-
viously [LS19], this perfect decryption correctness implies perfect binding even though the committer
is allowed to choose the public key maliciously. Since LWE with polynomial modulus-to-noise ratio
under a bounded error distribution gives Regev encryption with perfect decryption error [AEKP19],
it also gives non-interactive perfectly binding, computationally hiding non-interactive commitments.

2.3 Error Correcting Codes

Definition 2.8. A q-ary code is a function C :M→ Zn
q , where n is called the block length, M is

called the message space, and Zq is called the alphabet of C.

Definition 2.9 (List-Recoverable Codes [GI01, GS98, Gur07]). An ensemble of codes {Cλ :Mλ →
Znλ
qλ
} is said to be a (ℓ(·), L(·))-list recoverable (for ℓ, L : Z+ → Z+) if there is a polynomial-time

algorithm Recover that:
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• Takes as input λ ∈ Z+ and explicit descriptions of “constraint” sets S1, . . . , Sn ⊆ Zn
q with each

|Si| ≤ ℓ(λ), and

• produces as output a list of at most L(λ) messages, containing all m ∈M for which C(m)i ∈ Si

for all i ∈ [n].

Definition 2.10 (N -independent Concatenated Code). Let C =
{
C(2)1 , . . . , C(2)N

}
be a collection of

N codes where for i ∈ [N ], C(2)i : ZQ → Zm
q . Let C(1) :M → ZN

Q be a code. The N -independent
concatenated code C(1) ◦ C :M→ ZNm

q is defined by

(C1 ◦ C )(x)(i−1)m+j = C
(2)
i

((
C(1)(x)

)
i

)
j
,

for all x ∈M, i ∈ [N ], and j ∈ [m].

Definition 2.11 (Reed-Solomon codes [RS60]). A Reed-Solomon code Cλ : Zk+1
Q → Zt

Q is parame-
terized by a base field size q = q(λ), a degree d = k(λ), a block length t = t(λ), and a set of values
Qλ = {α1, . . . , αt}. Cλ takes as input a polynomial p of degree k over Zq, represented by its k + 1
coefficients, and outputs the vector of evaluations (p(α1), . . . , p(αt)) of p on each of the points αi.

We look into the problem of list recovery for Reed-Solomon Codes for our desired parameters.
Note that as mentioned in section 1.1.4, the primary challenge for us is to have list recoverability
of Reed-Solomon with list sizes larger than what is standard in the error correcting codes world.
We point out that the problem of list recovery for Reed-Solomon Codes boils down to the following
notion of polynomial reconstruction due to Sudan’s algorithm [Sud97].

Polynomial Reconstruction

• INPUT: Integers kp and np distinct pairs {(αi, yi)}i∈[np], where αi, yi ∈ ZQ.

• OUTPUT: A list of all polynomials p(X) ∈ ZQ[X] of degree at most kp which satisfy
p(αi) = yi, ∀ i ∈ [np].

This polynomial reconstruction can be performed efficiently by interpolation. We refer readers to
Chapter 4 of [Gur07] for a detailed analysis of the algorithm and how to use it for list recovery. In
this work we use the following theorem from Guruswami and Sudan [GS98] as a black-box.

Definition 2.12 (Agreement Parameter). For a Reed-Solomon Code Calg : Zk+1
Q → Zt

Q, the L
many reconstructed polynomials {pj}j∈[L] are said to have an agreement parameter tA ≤ t if ∀j ∈
[L], pj(αi) = yi for at least tA many pairs (αi, yi), i ∈ [t].

Note that tA = t denotes the case of perfect polynomial reconstruction which is the setting of
interest in this work.

Theorem 2.13 (Efficient Polynomial Reconstruction of Reed-Solomon Codes). The polynomial
reconstruction problem with np input pairs, degree kp, and agreement parameter tA can be solved
in polynomial time as long as tA is at least

√
kp · np. Furthermore, at most n2

p polynomials will be
output by the algorithm.
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2.4 Correlation Intractable Hash Function Family and the Fiat-Shamir Trans-
form

We present this section by following the same flavor as [HLR21].

Definition 2.14 (Hash Family). A hash family is a collection H = {hλ : Iλ ×Xλ → Yλ}λ of keyed
hash functions such that {Iλ} is uniformly poly(λ)-time sampleable and {hλ} is uniformly poly(λ)-
time evaluable. We will also write Hλ to denote the distribution on functions hλ(i, ·) obtained by
sampling i ∈ Iλ.

Definition 2.15 (Correlation-Intractability [CGH98]). For a hash family H = {hλ : Iλ×Xλ → Yλ}λ
and a relation ensemble R = {Rλ ⊆ Xλ × Yλ}, the correlation intractability game is the following
game, played by any adversary A against a fixed challenger C:

1. On input 1λ, C samples i ∈ Iλ and sends i to A.

2. A sends x ∈ Xλ to C, and wins the game if (x, hλ(i, x)) ∈ Rλ.

We say that H is correlation intractable for R if every nonuniform poly-time A wins the correlation-
intractability game only with probability negligible in the security parameter λ.

Definition 2.16. Let Π be a public coin interactive protocol where the messages exchanged between P
and V are denoted by (α1, β1, . . . , αr, βr) for r rounds of interaction. Here αi and βi denote messages
sent by P and V respectively. If the verifier’s messages are l bits long, then for a hash function
family H : {0, 1}∗ → {0, 1}l, we define FSH[Π] to be the non interactive protocol by sampling a
common reference string h ← H and computing the message βi if V as h(x, α1, β1, . . . , αi). The
verifier for FSH(Π) accepts iff the verifier for the interactive protocol accepts and all βi are correctly
computed.

Definition 2.17 (FS Compatible). We say that a hash function family H is FS- compatible for
an interactive proof Π for language L if the non interactive protocol FSH(Π) defined above is a non
interactive argument.

2.5 Secure Multiparty Computation (MPC)

We define the standard notion of a Multiparty Computation along with some of the necessary
properties of a MPC protocol necessary in our work. All the definitions are standard in litera-
ture [Can00, IKOS07, Gol01].

Definition 2.18 (q-Party Protocol). Let P1, . . . , Pq be q parties, and let each Pi each have a shared
public input x, a private input wi, and private randomness ri. Let m(i)

j be the messages received by
party Pi in the jth round. We specify a q-party protocol by its next message function NEXT which on
input (1λ, i, x, wi, ri, (m

(i)
1 , . . . ,m

(i)
j )) where λ is the security parameter, outputs all messages sent

or output by Pi in round j + 1 given inputs x,wi, ri and round messages (m
(i)
1 , . . . ,m

(i)
j ).

Definition 2.19 (View of a Party). The view Vi of a party Pi during protocol Π contains common
input x, private input wi, randomness ri, its received messages {m(i)

j }, and all messages sent or
output by Pi.

Definition 2.20 (Transcript of an Execution). The transcript Ξ of an execution of a q-party protocol
Π is a set containing the public input, every party’s randomness ri, every party’s private input wi,
every message sent in each round.

12



Definition 2.21 (Correctness). Let f be a deterministic functionality that on inputs (x,w1, . . . , wq)
outputs (f(x,w1, . . . , wq))i∈q. We say that a q-party protocol Πf realizes f with perfect (respectively
statistical) correctness if for all inputs (x,w1, . . . , wq), the probability that there exists an i ∈ [q]
such that the output of party Pi is not equal to f(x,w1, . . . , wq) is 0 (respectively negl(λ)).

Definition 2.22 (n-Privacy). Let 1 ≤ n < q. We say that Πf realizes f with perfect (respectively
statistical) n-privacy if there is a PPT simulator Sim such that for all inputs x,w1, . . . , wq and every
set of corrupted players T ⊆ [q] where |T | ≤ n, the joint views {Vi}i∈T of players in T is distributed
identically (respectively statistically close) to Sim(T, x, (wi)i∈T , (fi(x,w1, . . . , wq))i∈T ).

Definition 2.23 (n-Robustness (imported from [IKOS07]). We say that Πf realizes f with perfect
(resp., statistical) n-robustness if it is perfectly (resp., statistically) correct in the presence of a
semi-honest adversary as in Definition 2.21, and furthermore for any computationally unbounded
malicious adversary corrupting a set T of at most n players, and for any inputs (x,w1, . . . , wq), the
following robustness property holds. If there is no (w′1, . . . , w

′
q) such that f(x,w′1, . . . , w

′
q) = 1, then

the probability that some uncorrupted player outputs 1 in an execution of Πf in which the inputs of
the honest players are consistent with (x,w1, . . . , wn) is 0 (resp., is negligible in λ).

2.5.1 Efficiently Instantiable Perfectly Robust MPC Protocol

Remark 2.24. Several previous works give perfectly robust communication-efficient MPC proto-
cols [DIK10, BGJK21, GPS21].

Theorem 2.25 (Theorem 7 from [GPS21]). In the client-server model, let c denote the number of
clients, and n = 2s+ 1 denote the number of parties (servers). Let k be the security parameter and
let F denote a finite field. For an arithmetic circuit C over F and for all 1 ≤ o ≤ s, there exists an
information-theoretic MPC protocol which securely computes the arithmetic circuit C in the presence
of a semi-honest adversary controlling up to c clients and s − o + 1 parties. The communication
complexity of this protocol is O(|C| · n/k + n · (c+ depth(C)) + n5 · k) elements in F.

Remark 2.26. The client-server generalizes the standard MPC model of parties. To translate this
communication complexity into the standard MPC model, every party has a single client and single
server so if there are q parties there are q clients and q servers. Choose o = s, then in the standard
MPC model, the communication complexity is given by,

O(|C|+ q · depth(C)) + poly(k).

where o, k, |C| are as defined in the previous theorem.

Remark 2.27. The protocol defined above was proved to have perfect security in the Universal
Composability (UC) Model [Can00].

3 A Chernoff bound

In our work, we will analyze the sum of n Bernoulli random variables Xi where the probability p
that Xi = 1 is much smaller than 1/n. We derive a “custom” Chernoff bound that is useful for this
case:

Lemma 3.1 (Chernoff for Bernoulli distributions Ber(p) with small p). For i ∈ [n] let Xi ∼ Ber(p)
be independent identically distributed Bernoulli random variables for p = p(n) ∈ (0, 1]. Let X ≜∑n

i=1Xi.Then for t ≥ 0, we have:

Pr[X − np ≥ t] ≤
(
1

e
+

t

enp

)−t
13



Proof. Let τ = np+ t. For tidiness, we use the notation exp(a) to denote ea for any a ∈ R. For all
λ ≥ 0, by Markov’s inequality,

Pr[X ≥ τ ] ≤
E
[
eλX

]
eλτ

=

(
peλ + (1− p)

)n
eλτ

=

(
1 + p

(
eλ − 1

))n
eλτ

≤
exp

(
np(eλ − 1)

)
exp(λτ)

= exp
(
np
(
eλ − 1

)
− λ(np+ t)

)
.

Minimizing for λ ≥ 0, we choose λ = ln (1 + t/np). Plugging in for λ gives,

exp
(
np
(
eλ − 1

)
− λ(np+ t)

)
= et

(
1 +

t

np

)−(t+np)

≤ et
(
1 +

t

np

)−t
=

(
1

e
+

t

enp

)−t
.

This immediately yields:

Corollary 3.2. For i ∈ [n] let Xi ∼ Ber(p) be independent identically distributed Bernoulli random
variables for p = p(n) ∈ (0, 1]. Let X ≜

∑n
i=1Xi.Then for t > enp,

Pr[X − np ≥ t] ≤
(

t

enp

)−t
.

4 Recurrent List Recoverable Error Correcting Codes

We present a new notion of Recurrent List Recoverable error correcting codes by N -independent
concatenating Reed Solomon with random codes. This is a special case of general list recoverability
of concatenated codes which we shall formally define later in the section. First, we introduce
Aggregate List Recovery for Random Codes where a collection of independent random codes have
identical constraint sets which are input to their corresponding Recover algorithm.

4.1 Aggregate List Recoverability of Random Codes

Definition 4.1 (Aggregate List Recoverability). Given a collection of t independent codes {Cj :
ZQ → Zn

q }tj=1, we say that they are (t, ℓ, T )-aggregate list recoverable if the constraint sets Sj1, . . . , Sjn

that the Recover algorithm corresponding to the jth code takes as input are such that ∀i ∀j, Sji = S
and |S| ≤ ℓ. Furthermore the output list for Recover of the jth code is of size Lj, where

∑
j∈[t] Lj ≤

T .

Theorem 4.2 (Aggregate List Recoverability of t independent random codes). Let {Crand,i : ZQ →
Zm
q }i∈[t] be a collection of t independent random codes, and assume that there exist ε, δ, α, T such

that the following hold,

• q = k log1+ε+ δ
2 k, ε > δ > 0,

14



• t = k logε k

• Q = q2,

• l = αq, for some constant α ∈ (0, 1)

• T ≤ 1
k2 log2+2ε+δ k

+ k log2ε−
δ
2 k, and

• αm ≤ 1
q4t

,

then t of such independent random codes are (t, l, T )-aggregate list recoverable with probability at
least 1− e−ω(k log k).

Proof. Given a function Crand,i : ZQ → Zm
q , let S ⊆ Zq be a subset of size l. Let Xi,x be an indicator

variable such that,

Xi,x =

{
1 if (Crand,i(x))j ∈ S, ∀, j ∈ [m],

0 otherwise

Thus, T =
∑

i,xXi,x. Now, Pr[Xi,x = 1] = |S|
q = αm, where the probability is taken over the choice

of the set S. Thus, E[T ] = Qtαm.
A direct application of Corollary 3.2 immediately gives an upper bound on the size of T . We

have,

Pr[T −Qtαm ≥ k0] ≤
(

k0
eQtαm

)−k0
.

Plugging in Q,αm, t, k0 as q2, 1
q4t

, k logϵ k, k log2ϵ−
δ
2 k respectively, we get,

Pr[T ≥ 1

k2 log2+2ε+δ k
+ k log2ε−

δ
2 k] ≤

(
q2k0
e

)−k log2ε−
δ
2 k

≤

(
k3 log2+4ε+ δ

2 k

e

)−k log2ε−
δ
2 k

.

Taking a union bound over all choices of S, the probability that there exists a set S for which the
size of T is greater than 1

k2 log2+2ε+δ k
+ k log2ε−

δ
2 k is upper bounded by,
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(
q

αq

)(
k3 log2+4ε+ δ

2 k

e

)−k log2ε−
δ
2 k

≤
( e
α

)αq (k3 log2+4ε+ δ
2 k

e

)−k log2ε−
δ
2 k

=
exp {αq − αq lnα+ k log2ε−

δ
2 k}(

k3 log2+4ε+ δ
2 k
)k log2ε−

δ
2 k

=
exp {α′q + k log2ε−

δ
2 k}(

k3 log2+4ε+ δ
2 k
)k log2ε−

δ
2 k

where, α′ = α(1− lnα)

= exp

{
α′k log1+ε+ δ

2 k + k̃ − k̃ ln k̃ − k̃ ln
(
k2 log2+2ε+δ k

)}
where, k̃ = k log2ϵ−

δ
2 k

=exp

{
k̃
(
α′ log1−ε+δ k + 1− ln k̃ − ln

(
k2 log2+2ε+δ k

))}
=exp

{
k̃
(
α′ log1−ε+δ k + 1− 3 ln k − ln

(
log4ε+2+ δ

2 k
))}

=exp
{
k̃ (−ω(log k))

}
=exp {−ω (k log k)}

Thus, the probability that Crand,i are (αq, Li)-list recoverable such that
∑

i Li ≤ 1
k2 log2+2ε+δ k

+

k log2ε−
δ
2 k is at least 1− e−ω(k log k).

4.2 Recurrent List Recoverability

We first define recurrent list-recoverability as a special case of list-recoverability where the sets are
identical, S1 = . . . = Sn.

Definition 4.3 (Recurrent List-Recoverable Codes). An ensemble of codes {Cλ : Mλ → Znλ
qλ
} is

said to be a (ℓ(·), L(·))-recurrent list recoverable (for ℓ, L : Z+ → Z+) if there is a polynomial-time
algorithm Recover that:

• Takes as input λ ∈ Z+ and explicit descriptions of “constraint” sets S ⊆ Zn
q where |S| ≤ ℓ(λ).

• Produces as output a list of at most L(λ) messages, containing all m ∈M for which C(m)i ∈ S
for all i ∈ [n].

Theorem 4.4. For arbitrary constants 0 < η, α < 1 and 0 < δ ≤ ε < 1, there exists a probabilistic
constructible ensemble for codes {

Ck : Zk+1
q2
→ Zηq

q

}
such that Ck is (αq, T 2)-Recurrent List Recoverable with probability at least 1 − e−ω(k log k), where
q = k log1+ε+ δ

2 k and T = O(k log2ε−
δ
2 k)
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Proof. Let C be a collection of t independent random codes {Crand,i : ZQ → Zm
q }i∈[t] with t = k logε k,

Q = q2 and m such that αm ≤ 1
q4t

. Then, Theorem 4.2 tells us that with parameters set as above,
the collection C is (t, αq, T )- aggregate list recoverable with probability at least 1− e−ω(k log k), for
T ≤ 1

k2 log2+2ε+δ k
+ k log2ε−

δ
2 k.

Let Calg,k : Zk+1
Q → Zt

Q be a Reed Solomon Code. Theorem 2.13 tells us that if Calg,k is a Reed
Solomon Code, then O(k2 log4ε−δ k) polynomials can be recovered by polynomial reconstruction as
long as t ≥

√
k · T , where T is the total number of input pairs. Choose T = O(k log2ϵ−

δ
2 k) and

t = k logε k ,then the necessary condition is satisfied. Thus, we can feed this list T to the polynomial
reconstruction algorithm of Calg,k.

Combining these two results and our choice of parameters which satisfy the list recoverability
constraint for Reed-Solomon in Theorem 2.13, we get that polynomial reconstruction outputs a list
Lst of size O(k2 log4ε−δ k). Moreover, our choice of parameter ensures that there exists a constant
0 < η < 1 such that mt = 2k log1+ϵ k+23k log k log log k

log 1
α

≤ ηk log1+ϵ k.

Thus, our code ensemble Ck can be constructed by an t-independent concatenation of Calg,k with
C , i.e., Ck = Calg,k ◦ C . To elaborate further, according to Definition 2.10, we first apply Calg,k on a
message m ∈ Zk+1

q2
. This produces Calg,k(m) := (m′1, . . . ,m

′
t) ∈ Zt

Q. The final code output is then
Ck = Calg,k ◦ C (m) := (Crand,i(m′1), . . . , Crand,t(m′t)).

5 Zero Knowledge from Secure Computation

Definition 5.1 (Functionality fL). For a language L ∈ NP and its corresponding relation RL, let
fL be the functionality for q players P1, . . . , Pq. Given a public input x and q shares of the witness
w1, . . . , wq received from the Prover, the functionality delivers to all players 1 if (x,w) ∈ RL and 0
otherwise.

Following [IKOS07], we slightly modify their zero knowledge protocol which makes “black box"
use of an MPC protocol ΠfL . This means that the zero knowledge protocol simply implements the
next message function for each party without looking into the details of the circuits that describe
these functions. The next message function NEXT is used by the prover and verifier to interact.
NEXT determines the next message to be sent based on the inputs and messages received so far. In
particular, we commit to a single transcript of the entire protocol rather than committing to views
of a party. We also note that Protocol 1 achieves only honest-verifier zero knowledge. Although, the
scheme can be extended to obtain a standard zero knowledge proof, it leads to an increase in the
number of rounds (cf. Theorem 4.4 in [IKOS07]). Hence, we stick to honest-verifier zero knowledge
which suffices for the purpose of producing a NIZK argument.

Completeness and Honest Verifier Zero Knowledge. The correctness property follow
directly from an identical argument to that in [IKOS07]. However, we present a sketch here for the
sake of completeness. If (x,w) ∈ RL and the prover is honest and w1 ⊕ . . . ⊕ wq = w, then the
perfect correctness of ΠfL implies that all the messages which were a part of the transcript Ξ will
always be consistent with the application of the next-message function NEXT, and the outputs of
each party must be 1. This implies correctness.

Let x belong to the language L, i.e., the functionality fL outputs 1. For Honest Verifier Zero
Knowledge, we construct a simulator M that simulates the view of an honest verifier as follows: M
samples a challenge set of cardinality β of indices chosen uniformly at random among q parties. Let
the set be S′Ch ≜ {i1, . . . , iβ}. Sim simulates the MPC protocol ΠfL in its head using the parties with
indices in S′Ch. Hence, M picks strings w′1, . . . , w

′
β uniformly at random and simulates an execution
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Protocol 1 (Honest Verifier Zero Knowledge Interactive Protocol ΠHVZK).

1. Prover picks at random w1, . . . , wq whose exclusive-or equals the witness w. She simulates
the execution of the MPC protocol ΠfL on input (x,w1, . . . , wq). The prover then com-
putes the transcript Ξ at the end and commits to each element of Ξ using a statistically
binding commitment scheme ComSB. Finally, she sends the commitments to the Verifier.
Such a commitment scheme can be instantiated from Remark 2.7

2. Verifier sends to Prover a challenge set of indices SCh ≜ {i1, . . . , iβ}.

3. Prover opens all commitments to private inputs wi, and all messages sent or received by
players indexed by i ∈ SCh in Ξ.

4. Given the public values x, the Verifier accepts if and only if the Prover successfully opens
all the requested commitments, all sent messages are consistent with the application of the
next-message function NEXT on the appropriate set of received messages, and the output
of all parties (computed deterministically by the received messages and their inputs) is 1.

Figure 1: HVZK Interactive Protocol using MPC.

of ΠfL on input x,w′1, . . . , w
′
β by invoking the MPC simulator Sim on input (S′Ch, x, (w

′
i)i∈S′

Ch
, 1).

Sim outputs a transcript Ξ′. Recall that the transcript Ξ′ consists of the public input, every party’s
randomness, every party’s private input, and every message sent in each round. Along with a
commitment to the public input, for all i ∈ S′Ch, M commits to the ith party’s input, randomness,
private input, and messages sent and received in Ξ′. Let com(S′Ch) be defined to be the tuple of
commitments listed in the previous sentence. For the remaining values in the transcript Ξ′, M
commits to 0. M sends all commitments, S′Ch, and openings to all commitments in com(S′Ch). The
opened values of the transcript generated by Sim has an identical (statistically-close) distribution
to the view of an Honest-Verifier due to the perfect (statistical) t-privacy of ΠfL . Moreover, the
hiding property of the commitment scheme implies that the Verifier cannot distinguish between the
unopened commitments of 0 from commitments to values in transcript Ξ′.

Lemma 5.2 (Statistical Soundness). Let L ∈ NP be a language. Let ComSB be a statistically-
binding commitment scheme. Suppose that protocol ΠfL realizes the q-party functionality fL with
perfect β-robustness (in the malicious model), and perfect, statistical or computational β-privacy (in
the honest-but-curious model) for β < ⌈q/2− 1⌉, then the soundness error in ZK protocol ΠHVZK is
given by negl(q).

Proof. Suppose x ̸∈ L so that there does not exist w such that (x,w) ∈ RL for relation RL on NP
language L.

If the Prover commits to inputs, randomness, and messages from an honest execution of ΠfL ,
all parties output 0 and the Verifier will reject for any choice of SCh.

Otherwise, there exists a message m
(j)
i in Ξ that is not consistent with the previous received

messages and the next-message function NEXT. For any party Pi who sends an inconsistent message,
we say that Pi is a “corrupted" party. There are two cases to consider: If malicious prover P ∗ corrupts
at most β parties and if P ∗ corrupts strictly more than β parties. For a fixed execution of ΠfL and
its corresponding commitments made by malicious Prover P ∗, we let B be the set of the indices of
all corrupted parties.
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In the first case, the β-perfect robustness property guarantees that for all indices i ̸∈ B, the
output of Pi is 0. If the Verifier chooses any index i ̸∈ B, then the Verifier will observe the output of
Pi is 0 and the Verifier will catch the Prover cheating. Therefore, with probability at least 1−1/

(
q
β

)
, the Verifier will choose a set of indices of size β that is not contained in set B (if |B| < β then the
probability that Verifier catches the prover is 1).

In the second case, the Prover has chosen strictly more than β parties to corrupt. Here, we
argue that the Verifier will ask for the commitment openings to a corrupted party with overwhelming
probability. Suppose the Prover has chosen as little as β+1 many corrupted parties. The probability
that the Verifier chooses a subset of size β that does not contain any of these corrupted parties is
given by (

q−β−1
β

)(
q
β

) =

β∏
i=0

q − β − i

q − i

=

β∏
i=0

(
1− β

q − i

)

≤
β∏

i=0

e−β/(q−i)

≤
(
e−β/(q−β)

)β+1

where we apply the inequality 1 − x ≤ e−x for all real x. Then observe that by our assumption
β = αq for some constant α < 1, so (

e−β/(q−β)
)β+1

≤ e−c
2q−c.

Observe this probability forms an upper bound for the probability the Verifier is fooled for when
the Prover chooses at least β + 1 many corrupted parties. Formally, for all i ≥ 1,(

q − β − i

β

)
≤
(
q − β − 1

β

)
.

Therefore the probability that the Verifier fails to catch the Prover in this setting is negligible in q
and therefore negligible in security parameter λ.

Finally, by a union bound the soundness error is then e−c
2q−c + 1/

(
q
β

)
= negl(q).

6 Instantiating Fiat-Shamir via Correlation Intractable Hash Func-
tions.

We would like to reintroduce the notions of Efficient Product Verifiability and Product Sparsity
from [HLR21].

Definition 6.1 (Product Relation). A relation R ⊂ X × Yt is a product relation, if for any x, the
set Rx = {y | (x, y) ∈ R} is the Cartesian product of several sets S1,x, S2,x, . . . , St,x,

Rx = S1,x × S2,x × . . .× St,x.

Definition 6.2 (Efficient Product Verifiability, Definition 3.3). A relation R is efficiently product
verifiable, if there exists a polynomial-sized circuit C such that, for any x, the sets S1,x, S2,x, . . . , St,x

(in Definition 6.1) satisfy for any i, yi ∈ Si,x if and only if C(x, yi, i) = 1.
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Definition 6.3 (Product Sparsity, Definition 3.4). A relation R ⊆ X ×Yt has sparsity ρ, if for any
x, the sets S1,x, S2,x, . . . , St,x (in Definition 6.1) satisfies |Si,x| ≤ ρ|Y|.

Definition 6.4 (Bad Challenge Set). For Protocol 1, let com be a string containing all commitments
the prover sends to the verifier and let Vi denote the view of Pi formed by taking the appropriate
subset of decommitments to com. We say that Vi is consistent if there exists an honest execution of
the the q-party Protocol Πf with Pi’s inputs, randomness, and messages sent and received. Then we
have the following set of bad challenges

B = S
|I|
com = Scom × Scom × · · · × Scom︸ ︷︷ ︸

|I| times

where Scom = {i | Vi is consistent}.

Remark 6.5. The set Scom is efficiently verifiable by the MPC next message function. Also,
|Scom| ≤ αq, for some tiny constant α ∈ {0, 1}. Here q is the number of parties involved in the
MPC-in-the-Head protocol so the size of the Bad Challenge Set is the maximum number of parties
in the MPC protocol that can be corrupted.

6.1 Construction of CIH family

Lemma 6.6 (CIH for Efficient Enumerable Relations [PS19, CCH+19]). Assuming that LWE m
2 log q

,m,q,χ

holds for the particular parameter settings where χ is a B-bounded distribution for B = qΩ(1),
q = poly(m). Then, for every triplet of polynomials T = T (λ), n = n(λ),m = m(λ), there exists
a hash function family H : {0, 1}n → {0, 1}m log q that is correlation-intractable for relation that is
enumerable in time T .

Lemma 6.7 ([HLR21]). Let R ⊆ ×X ×Zn
q be an efficiently verifiable product relation with sparsity

α. Moreover, let C : M → Zn
q be a code that is (αq, L) list recoverable and H be a hash function

family that is correlation intractable for all efficiently enumerable relations R′ ⊆ X ×M, then C ◦H
is correlation intractable for R.

Theorem 6.8. Let Cconcat = Calg ◦ C : Zk+1
Q → Zηq

q , η < 1 be the Recurrent List Recoverable Code
with parameters as in Theorem 4.4. Let H be a Correlation Intractable Hash Function Family for
an efficiently enumerable relation as in Lemma 6.6. Then the hash function family Cconcat ◦ H is a
correlation intractable hash function family for the efficiently verifiable relation B.

Proof. From Theorem 4.4, the recurrent list recovery of Cconcat tells us that a list of size O(k2 log4ε−δ k),
for arbitrary constants 0 < δ < ε < 1 can be efficiently recovered. This is indeed bound by a polyno-
mial, hence is certainly efficiently enumerable. Thus, from Lemma 6.6 and Lemma 6.7, we conclude
that C ◦ H is indeed Correlation Intractable for the relation B.

This leads to our final theorem.

Theorem 6.9. Assuming that LWE m
2 log q

,m,q,χ holds for the particular parameter settings where χ

is a B-bounded distribution for B = qΩ(1), q = poly(m), and a MPC protocol with perfect αn-
robustness and perfect, statistical, or computational security, where α ∈ (0, 1/2) is a constant and
n is the size of the challenge set in the interactive protocol, there exists NIZKs with computational
soundness for all of NP whose proof size is

O(|C|+ q · depth(C)) + poly(λ)

where C is an arithmetic circuit for the NP verification function at q = k log1+ϵ k for any ϵ > 0.
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This theorem is a direct consequence of the following results:

• Theorems 6.6 and 6.8 combine to provide a hash function family which is Fiat-Shamir com-
patible with parameters aligning with the “MPC-in-the-Head" paradigm.

• Applying the Fiat-Shamir compatible hash to Protocol 1 gives us a computational sound NIZK
from the MPC-in-the-Head model without parallel repetition.

• There exists perfect αn-robust MPC protocols with the aforementioned communication com-
plexity for α < 0.5 (Theorem 2.25).
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