
Promise Σ-protocol: How to Construct Efficient
Threshold ECDSA from Encryptions Based on

Class Groups

Yi Deng1,2, Shunli Ma1,2, Xinxuan Zhang1,2, Hailong Wang1,2, Xuyang Song3,
and Xiang Xie3

1 State Key Laboratory of Information Security, Institute of Information
Engineering, Chinese Academy of Sciences, Beijing, China

{deng, mashunli, zhangxinxuan, wanghailong9065}@iie.ac.cn
2 School of Cyber Security, University of Chinese Academy of Sciences, Beijing,

China
3 Shanghai Key Laboratory of Privacy-Preserving Computation, Shanghai, China

{songxuyang, xiexiang}@matrixelements.com

Abstract. Threshold Signatures allow n parties to share the ability of
issuing digital signatures so that any coalition of size at least t + 1 can
sign, whereas groups of t or fewer players cannot. The currently known
class-group-based threshold ECDSA constructions are either inefficient
(requiring parallel-repetition of the underlying zero knowledge proof with
small challenge space) or requiring rather non-standard low order as-
sumption. In this paper, we present efficient threshold ECDSA protocols
from encryption schemes based on class groups with neither assuming the
low order assumption nor parallel repeating the underlying zero knowledge
proof, yielding a significant efficiency improvement in the key generation
over previous constructions.

Along the way we introduce a new notion of promise Σ-protocol
that satisfies only a weaker soundness called promise extractability. An
accepting promise Σ-proof for statements related to class-group-based
encryptions does not establish the truth of the statement but provides
security guarantees (promise extractability) that are sufficient for our
applications. We also show how to simulate homomorphic operations
on a (possibly invalid) class-group-based encryption whose correctness
has been proven via our promise Σ-protocol. We believe that these tech-
niques are of independent interest and applicable to other scenarios where
efficient zero knowledge proofs for statements related to class-group is
required.

1 Introduction

Threshold Digital Signature Schemes [Des88] enable distributed signing amongst
a group of individuals such that any subgroup which is larger than a certain pre-
determined size can jointly sign, whereas any group with fewer players cannot.
Specifically, a t-out-of-n threshold signature scheme is a protocol that allows n

parties to jointly generate a common public verification key, along with n shares
of the corresponding secret signing key, and allows any subgroup of at least t+1
parties to securely sign a given message distributedly. In addition to satisfy-
ing the standard unforgeability of signature schemes, threshold variants should
provide security that no malicious party can subvert the protocol to extract an-
other party’s secret share, and no more than t cannot collude to generate a valid
signature.

The Elliptic Curve Digital Signature Algorithm (ECDSA) has been widely
used in various applications including TLS, DNSSec, SSH and cryptocurren-
cies such as Bitcoin and Ethereum. The efficiency and widespread adoptions of
ECDSA make its threshold version become an active research topic recently.
After the work [GJKR96] and [MR01], many improved protocols have been
proposed in recent years both for the specific two-party case [Lin17, DKLs18,
CCL+19] and for the more general t-out-of-n case [GGN16, BGG19, GG18,
LN18, DKLs19, CCL+20]. Among these schemes, a common used primitive to
study threshold ECDSA is additively homomorphic encryption such as Paillier
encryption and CL encryption [CL15, CLT18]. The latter is an ElGamal-like en-
cryption scheme based on class groups of unknown order that contain a prime-
order subgroup where the discrete logarithm (DL) problem is tractable, and such
a distinguished property enables the CL encryption scheme to support much
larger message space than the traditional ElGamal scheme.

Protocols based on Paillier encryption. Gennaro et al. [GGN16] extended
the technique of [MR01], and introduced a six-round t-out-of-n threshold signa-
ture. Boneh et al. [BGG19] optimized their extension in terms of computational
efficiency, and reduced the number of rounds to four. Meanwhile Lindell [Lin17]
optimized the protocol framework and proposed an efficient protocol in the two-
party setting. Subsequently, Gennaro and Goldfeder[GG18, GG20], Lindell and
Nof [LN18] presented efficient protocols in the multi-party case that supported
efficient distributed key generation. Unfortunately, mainly due to the mismatch
between the Paillier modulus and the ECDSA modulus, these schemes all require
expensive zero knowledge proofs, such as costly range proofs.

Protocols based on CL encryption. Castagnos et al. [CCL+19, CCL+20]
employed the CL encryption and presented bandwidth efficient protocols for the
two-party case and multi-party case, respectively. The modulus, which defines
the underlying message space of CL encryption, could be set as the same prime
modulus as in ECDSA. Thus, these protocols are able to eliminate the expensive
range proofs which are required in the Paillier-based protocols, and achieve low
communication cost. However, it is challenging to design efficient zero knowl-
edge proofs for CL ciphertexts. As discussed in Section 1.2, a malicious prover
holding low-order elements can convince the verifier of an invalid ciphertext with
high probability. In order to resist this low-order-element attack, the two-party
protocol in [CCL+19] adopts a zero knowledge proof with a single bit challenge
to prove the validity of a CL ciphertext, and repeats this subprotocol in parallel
to achieve a negligible soundness error. To overcome the inefficiency caused by
repetition, [CCL+20] proposed more efficient threshold ECDSA protocols rely-

2

ing on stronger and non-standard low order assumption, which essentially says
that no one can find a low order element efficiently in the given class group.

On low order assumption and non-uniform security. We would like to
stress that the new low order assumption on the class group of imaginary
quadratic fields has been much less studied. Following the Cohen-Lenstra heuris-
tic [Coh00], the probability that any integer d divides the order of the class group
is approximately 1/d + 1/d2, and it seems inherent that the class group often
contains low order elements. Boneh et al. [BBF18] suggested one possible ap-
proach to find low order elements in the class group. As stated in [CCL+19],
computing square roots or finding elements of order 2 can be efficiently done in
class groups knowing the factorization of the discriminant (which is public in
the associated schemes). Recently Belabas et al. [BKSW20] show that breaking
the low-order assumption is possible if the discriminant belongs to some special
class of prime numbers.

We note that the low order assumption on class groups that actually con-
tains low order elements would become false in the presence of non-uniform
adversaries, which can be simply hardwired with a low order element in theory.
Note that non-uniform security is implicitly required by almost all cryptographic
protocols, since we often need to compose them with other protocols.

1.1 Our Contribution

In this paper, we introduce a new notion of promise Σ-protocol that satisfies only
a weaker soundness called promise extractability. The promise Σ-protocols for
statements involved in class-group-based encryptions relax the requirements of
soundness but does provide security guarantees (promise extractability) that are
sufficient for our applications. We also show how to simulate homomorphic op-
erations on a (possibly invalid) class-group-based encryption whose correctness
has been proven via our promise Σ-protocol. We believe that these techniques
are of independent interests and applicable to other scenarios where efficient zero
knowledge proofs for statements related to class-group is required.

Building on promise Σ-protocols, we present efficient two-party and multi-
party threshold ECDSA from CL encryptions based on class groups under stan-
dard assumptions. Compared to [CCL+19] (resp. [CCL+20]), in the key gener-
ation phase our two-party protocol is about 15× (resp. about 2×) faster, and
about 17× (resp. 2×) less in bandwidth. Compared to [CCL+20], without re-
sorting to the low order assumption and strong root assumption, our multi-party
protocol removes the time-consuming interactive setup phase. It also reduces the
number of expensive exponential operation in class groups of each party from
14t − 10 in [CCL+20] to 10t − 6 in the signing phase, where t is the threshold.
Note that 40-bit soundness error is considered in the above comparison. The
improvement will be much better if 128-bit soundness error is required.

3

1.2 Technical Overview

In this section we mainly give a high-level overview on our new techniques in the
two-party ECDSA, which can be naturally extended to the multi-party case.

Before going into a technical discussion, we briefly recall the ECDSA algo-
rithm and its threshold variant. Given a group of points of an elliptic curve
G with a generator G of prime order p, the verification key of a ECDSA al-
gorithm is a point Q ∈ G and the signing key is x such that Q = x · G. To
sign a message m one first hashes it using a (publicly known) hash function
H, chooses a random k ∈ Zp and computes R = kG, then sets r = rx mod p
where rx is the x-coordinate of the elliptic curve point R. The signature is
(s = (k−1(H(m) + rx) mod p, r).

Let us give an example of two-party ECDSA of [Lin17] to illustrate how a
distributed ECDSA works. In this case, two parties P1 and P2, holding multi-
plicative shares x1 and x2 respectively, execute a coin-tossing-like protocol to
generate a verification key Q = x1x2G, then P1 computes a ciphertext ckey
of x1 using a homomorphic encryption scheme and sends it, together with a
zero knowledge proof of its correctness, to P2. To sign a message m, P1 and
P2 choose k1 and k2 at random respectively, and execute another coin-tossing-
like protocol to generate a point R = k1k2G and set r = rx mod p. Finally,
P2 homomorphically computes an encryption of s′ = k−1

2 H(m) + k−1
2 rx2x1 on

the ciphertext ckey and sends the ciphertext to P1, who decrypts the ciphertext
and obtains s′, and outputs a signature (r, s = k−1

1 s′). As we mentioned before,
both of the two popular Paillier and CL schemes for encrypting x1 incur large
computation/communication overheads.

Promise Σ-protocol for equality of messages. Towards achieving more
efficient constructions of two-party ECDSA, our first idea is to use CL encryption
scheme to encrypt x1 and introduce a promise Σ-protocol for proving equality
of message encoded into Q1 = x1 ·G and the one encrypted in the CL ciphertext.

To better explain our new notion let us briefly describe a CL encryption
scheme and see how a traditional efficient Σ-protocol fails to prove a CL cipher-
text. CL encryption scheme works on a tuple of parameters of groups (s̃, g, f, gp, Ĝ,
G,F ,Gp) [CL15]. The finite abelian group Ĝ is of order pŝ where p is prime, ŝ is
unknown but with an upper bound s̃ and gcd(p, ŝ) = 1. The cyclic group G := 〈g〉
of order ps is a subgroup of Ĝ in which the Decisional Diffie-Hellman (DDH) as-
sumption holds and s|ŝ is also unknown. G contains a unique cyclic subgroup
of order p, F := 〈f〉, where the DL problem is solvable. Group Gp := 〈gp〉 is
the subgroup of p-th powers in G (of unknown order s). Similar to the ElGamal
scheme, the public and secret keys of a CL scheme are (gp, f, h) and d (such that
h = gdp) respectively, and a ciphertext of m is of the form (c1, c2) = (grp, h

rfm),
where r ← [0, S] and S chosen in practice is a rough upperbound on the un-
known order s of group Gp. Note that since the DL problem over F is easy, one
can decrypt such a CL ciphertext even when |m| = p.

When applying a traditional Σ-protocol with large challenge space to prove
the plaintext knowledge of a CL ciphertext, one will obtain a transcript ((a1 =
gsrp , a2 = hsrfsm), e, (zr = sr + er, zm = sm + em mod p)) where sr ← [0, U) for

4

some sufficiently large U and sm ∈ Zp are randomness used to mask r and m,
respectively. If this transcript is accepted, then it holds that zr ∈ [0, U+(p−1)S),
gzrp = a1c

e
1 and hzrfzm = a2c

e
2. However, an accepting proof does not imply

the correctness of the ciphertext. That is, a traditional Σ-protocol with large
challenge space does not enjoy special soundness here. For example, it is easy
to see that a malicious prover P∗ holding low-order elements (g′, h′) (g′ may be
equal to h′) could convince the verifier of a false statement (c′1 = g′c1, c

′
2 = h′c2)

as long as the challenge e is divided by both the order of g′ and h′. This is why
the work [CCL+19] adopts a Σ-protocol with a single-bit challenge for proving
knowledge of plaintext then parallelizes it to achieve a negligible soundness error.

To overcome this efficiency issue, we have P1 encode x1 twice to obtain Q1 =
x1 ·G and a CL ciphertext ckey and then use a promise Σ-protocol (with large
challenge space) to prove equality of the plaintexts. Let ckey = (ckey,1, ckey,2) be
an encryption of x1 under the public key pk = (gp, f, h) of CL scheme, where
ckey,1 = grp, ckey,2 = hrfx1 and r is the randomness used to encrypt x1. Our
promise Σ-protocol can be built from the Schnorr protocol and the above “Σ-
protocol” (that does not enjoy special soundness) for CL ciphertext (see Sec-
tion 3.1 for a detailed description).

An interesting observation on the above “Σ-protocol” for CL ciphertext
is that, given two accepting transcripts (a1, a2, e, zr, zm) and (a1, a2, e

′, z′r, z
′
m)

(e 6= e′), one could obtain cẽkey,1 = gp
z̃r and cẽkey,2 = hz̃rf z̃m , where ẽ =

e − e′ ∈ Zp, z̃r = zr − z′r ∈ Z and z̃m = zm − z′m ∈ Zp. Since the Schnorr
protocol for Q1 = x1G enjoys special soundness, one can extract x1 by stan-
dard rewinding technique and deduce that, if a prover can make a verifier ac-
cept a promise Σ-proof for equality of plaintexts of (Q1, ckey), it holds that
cẽkey,2 = hz̃rf z̃m = hz̃rf ẽx1 . That is, we can modify ckey = (ckey,1, ckey,2) into a

valid ciphertext (c′key,1 = cẽkey,1, c
′
key,2 = cẽkey,2) by picking e, e′ (with e 6= e′) at

random and setting ẽ = e − e′. This provides us with an additional extraction
strategy using the secret key sk: Given the secret key sk, one could efficiently
decrypt (c′key,1, c

′
key,2) and recover x1 from the decrypted plaintext ẽx1, and

output x1 if it satisfies x1 ·G = Q1.
Specifically, our promise Σ-protocol for equality of ciphertexts (Q1, ckey)

guarantees the following promise extractability: for any prover that makes the
verifier accept with high probability,

1. With oracle access to this prover, there is an efficient extractor that extracts
the message x1 of Q1 with probability negligibly close to 1.

2. If the public key pk are honestly generated, then there is an efficient extractor
(without access to the prover) that, given the corresponding sk as input, it
extracts the plaintext x1 of Q1 with probability negligibly close to 1.

Both properties turn out to be very useful in our constructions of two-party
and multi-party ECDSA.

Simulating homomorphic operations on an invalid ciphertext. Suppose
in the key generation of a two-party ECDSA P1 sends to P2 a pair (Q1, ckey)
which both encode x1, along with a promise Σ-proof of equality of their plain-
texts. Following the framework of [Lin17, CCL+19], in the final step of a two-

5

party signing subprotocol, P1 and P2 hold (x1, k1, r) and (x2, k2, r) respectively,
and compute a signature on message m as follows. P2 computes b = k−1

2 m′

(where m′ is the hash value of m), a = k−1
2 rx2, and a ciphertext of ax1 + b by

homomorphic operations on (ckey,1, ckey,2), then sends the ciphertext to P1, who
decrypts the ciphertext and computes a signature (r, k−1

1 (ax1 + b)).
Let us abuse notation slightly and denote by P2(r1) the last step of P2 in

which it generates a ciphertext of ax1 + b using randomness r1. (It is conve-
nient to think that a and b (along with the public keys) are “hardwired” into
P2(r1).) Suppose the ciphertext (ckey,1, ckey,2) is computed under a public key
pk = (s̃, p, gp, f, h) of the CL encryption scheme. As shown in [CCL+19], if the ci-
phertext (ckey,1, ckey,2) is valid, say ckey,1 = grp and ckey,2 = hrfx1 , then P2(r1)

can compute the ciphertext (gr1p · cakey,1, hr1f b · cakey,2) homomorphically. Fur-
thermore, there is a simulator S that given only s′ = ax1 + b (without any
knowledge of a or b) simulates the honest party P2 by computing (gr2p , h

r2 · fs′),
no matter how the public key pk is generated. However, as mentioned, in order
to ensure the correctness of (ckey,1, ckey,2), P1 needs to run a parallel version of
the standard Σ-protocol with single bit challenge for (ckey,1, ckey,2) due to the
low-order-element attack, which is the major efficiency bottleneck.

In our case, when using promise Σ-protocol for proving equality of plaintexts
of (Q1, ckey), as we showed, it guarantees only that the (ckey,1, ckey,2) satisfies

ckey,1 = g
z̃/ẽ
p and ckey,2 = hz̃/ẽfx1 for some ẽ ∈ [−p + 1, p − 1] \ {0}, z̃ ∈

[−U − (p− 1)S + 1, U + (p− 1)S − 1] \ {0}. Now if we have the same P2 and S,
we obtain the following two ciphertexts4:

P2(r1) : (gr1p · cakey,1, hr1f b · cakey,2) = (gr1+az̃/ẽ
p , hr1+az̃/ẽ · fax1+b);

S(r2) : (gr2p , h
r2 · fs

′
).

We observe that it is possible for a malicious P∗1 to launch a low-order-element
attack and tell these two ciphertexts apart. P∗1 chooses a y∈Ĝ of low order (say,
order 2) and produces an invalid ciphertext (ckey,1 = grp, ckey,2 = yhrfx1). (one
can verify that there always exist ẽ and z̃ such that the above equations hold
for this ciphertext.) Note also that P∗1 can carry out the promise Σ-protocol
with success probability 1

2 . Once P∗1 receives the ciphertext from P2 as above, it
can compute yafax1+b using his secret key and then obtain a mod 2. (Note that
a = 0 mod 2 if and only if one can solve yafax1+b and obtain ax1 + b since the
DL problem is tractable in group F .) But if the ciphertext is computed by the
simulator S, then P∗1 always obtains a = 0 mod 2.

We have P2 randomize a in computing the ciphertext of ax1 +b to get around
this issue. That is, P2 chooses a random t, raises ckey,1 and ckey,2 to the power
a+t, and then computes a ciphertext (ca+t

key,1, f
b·ca+t

key,2) (Note that, by introducing
randomness t, we can drop gr1p and hr1 here). For an honest P1 to decrypt and
obtain ax1 + b, P2 sends back this ciphertext along with t mod p

4 In our construction of the two-party protocol, P2 does homomorphic operations
only on (ckey,1, ckey,2) (and not on (Ckey,1, Ckey,2)) and sends back the resulting CL
ciphertext.

6

It appears that revealing information about t would make this randomization
useless. However, as we will prove in Section 4, as long as the random string t is
sufficiently long and both p - ord(gp), p - ord(h) (we denote by ord(y) the order of
y), the above randomization actually works, i.e., the following two distributions
are indistinguishable:

P2(t1) : (ca+t1
key,1, f

b · ca+t1
key,2, t1 mod p), and S(t2) : (ct2key,1, f

s′ · ct2key,2, t2 mod p).

To make sure p - ord(gp) and p - ord(h), one can have P1 generate a CL public
key of the form (g0, gp = gp0 , h0, h = hp0). P2 checks if gp = gp0 and h = hp0 hold,
and if so, it takes (gp, h) as the public key of a standard CL encryption scheme.

Promise Σ-protocol for homomorphic operations. In the multi-party set-
ting, in the signing phase one party needs to prove that it did the same ho-
momorphic operations on given a linear encoding and a CL ciphertext. We also
construct a promise Σ-protocol for proving such a statement. As before, though
a promise Σ-proof does not guarantee the statement is true, but the promise
extractability suffices to prove the security of our protocol.

1.3 Related Work

ECDSA based on oblivious transfer. Instead of using additively homomor-
phic encryption, Doerner et al. [DKLs18, DKLs19] constructed two-party and
multi-party threshold ECDSA based on oblivious transfer. As a consequence,
these schemes are fast in computational complexity but at the cost of increasing
the bandwidth.

Concurrent work. Very recently, Yuen et al. [YCX21] optimize the underly-
ing zero knowledge proof related to class-group encryption, and construct more
efficient two-party and multi-party ECDSA protocols. However, their schemes
still rely on the low order assumption and the strong root assumption and the
security is proved in the generic group model.

2 Preliminaries

Notation. Let λ be the security parameter. A non-negative function negl(λ)
is negligible if for every polynomial p(λ), it holds that negl(λ) ≤ 1/p(λ) for
sufficiently large λ ∈ N. Let poly(λ) be a polynomial of λ. PPT stands for prob-
abilistic polynomial time. Denote ord(g) the order of the element g in a given
group.

2.1 CL Encryption from HSM Assumption

Castagnos et al. [CCL+19] gave a specific hard subgroup membership assumption
(HSM) [CLT18] which is defined in the context of a group with an easy Dlog
subgroup. Their instantiation makes use of class groups of imaginary quadratic
fields. We list the definitions and constructions below and refer to [CCL+19] for
more details.

7

Definition 1 ([CCL+19]). Let GenGroup be a pair of algorithms (Gen,Solve).
The Gen algorithm taking as inputs the security parameter λ and a prime p
outputs a tuple param = (s̃, g, f, gp, Ĝ,G,F ,Gp). The set (Ĝ, ·) is a finite abelian
group of order p · ŝ where the bitsize of the unknown ŝ with an upper bound s̃
is a function of λ and gcd(p, ŝ) = 1. It is also required that one can efficiently
recognise valid encodings of elements in Ĝ. The set (F , ·) is the unique cyclic
subgroup of Ĝ of order p. The set (G, ·) is a cyclic subgroup of Ĝ of order p · s
where s divides ŝ. By construction F ⊂ G, and, denoting Gp := {xp, x ∈ G}
the subgroup of order s of G, it holds that G = Gp × F . The elements f, gp
and g = f · gp are respective generators of F , Gp and G. Let D (resp. Dp) be
a distribution over the integers such that the distribution {gx|x ← D} (resp.
{gxp |x ← Dp}) is at distance less than 2−λ from the uniform distribution in G
(resp. in Gp). The Solve algorithm is a deterministic polynomial time algorithm
that solves the discrete logarithm problem in F . We suppose moreover that:

(1) The Dlog problem is easy in F :

Pr

 param← Gen(1λ, p);
x← Zp, y = fx,

x? ← Solve(p, param, y)
: x = x?

 = 1.

(2) The HSM problem is hard even with access to the Solve algorithm:

Pr


param← Gen(1λ, p);
x← D, x′ ← Dp;
z0 = gx, z1 = gx

′

p ;
b← {0, 1};

b? ← A(p, param, zb,Solve(·))

: b = b?

 ≤ 1

2
+ negl(λ),

for arbitrary PPTadversary A.

In practice, we will use for Dp the uniform distribution on {0, . . . , S} where
S = 2λ−2 · s̃. Following the notations of [CCL+19], we now describe a stan-
dard IND-CPA secure encryption scheme (called CL encryption) under the HSM
assumption.

Definition 2. The additively homomorphic public-key encryption scheme CL
consists of the following algorithms.

• CL.KGen(1λ, p) : Let (s̃, g, f, gp, Ĝ,G,F ,Gp) ← Gen(1λ, p). Choose x ← Dp
and compute h = gxp . Set pk = (s̃, p, gp, f, h) and sk = x.
• CL.Encpk(m) : Pick r ← Dp, and output c = (grp, h

rfm).
• CL.Decsk(c): Parse c = (c1, c2), and output m← Solve(c2/c

x
1).

As stated in [CCL+19], we also use the double encoding assumption to ensure
the security of the presented two-party ECDSA in the case that the party P2 is
corrupted. The intuition behinds this assumption is that given a one way function
evaluated in x ∈ Zp (in our protocol this is the elliptic curve point Q := xG) –
no polynomial time adversary can produce two invalid CL encryptions of x.

8

Definition 3 (Double Encoding Assumption [CCL+19]). The double en-
coding (DE) problem is δDE-hard for the one way function expG : x 7→ xG if for
any PPT A, it holds that:

Pr


ppG := (G, G, p)

ppG := (s̃, f, gp,G,F ,Gp)← Gen(1λ, p)
x← Zp, Q = xG

(pk, (u1, u
sk
1 f

x), (u2, u
sk
2 f

x)← A(ppG, ppG , Q))

:
u1, u2 ∈ G\Gp
u2 · u−1

1 ∈ G\Gp
and pk = gskp

 ≤ δDE,

where G is a group of points of an elliptic curve with a generator G of prime
order p.

The DE assumption holds if for any λ-bit prime p, δDE is negligible in λ.

2.2 Σ-protocol

Denote L an NP language and R the associated binary relation. We say an
instance x lies in L if and only if there exists a witness w s.t. (x,w) ∈ R.
Consider two-party protocols with the following pattern: The prover P taking
input (x,w) computes a commitment a and hands it to V. The verifier V taking
input x samples a random challenge e from a given challenge space and sends it
to P. Then P responses z to V. Depending on the transcript (a, e, z), the verifier
chooses to accept or reject it.

Definition 4 (Σ-protocol). A 3-round protocol with the above form is called
a Σ-protocol for an NP language L with an efficiently recognizable relation R iff.
it satisfies the following properties:

• Completeness. If P and V behave honestly on input x and private input w to
P where (x,w) ∈ R, then V always accepts.
• Special soundness. There exists a PPT algorithm Ext which, given any in-

stance x ∈ L and two accepting transcripts (a, e, z) and (a, e′, z′) with e 6= e′,
computes a witness w s.t. (x,w) ∈ R.
• Special honest verifier zero knowledge (HVZK). There exists a PPT algorithm
S which, taking x ∈ L and a challenge e as inputs, outputs (a, z) such that
the tuple (a, e, z) is indistinguishable from an accepting transcript generated
by a real protocol run between the honest P(x,w) and V(x).

Σ-protocols can be transformed to non-interactive zero knowledge (NIZK)
arguments via the Fiat-Shamir heuristic [FS87] and achieve zero knowledge in
the random oracle model.

2.3 Threshold ECDSA and Its Security

Let ECDSA run on the elliptic curve group G of prime-order p with base point
G. For a threshold t and a number of parties n ≥ t, a (t, n)-threshold ECDSA
consists of the following two interactive protocols:

9

IKeyGen: The interactive key generation protocol, which takes the public
parameter (G, G, p) as input. Each party Pi in the end receives the public key Q
and its secret key xi. The values x1, . . . , xn constitute a (t, n)-threshold secret
sharing of the secret signing key x.

ISign: The interactive signing protocol, which take a message m as common
input as well as a private input xi from each party. It outputs an valid signature
(r, s) of m or abort the execution.

The verification algorithm Verify is the same as that of the standard ECDSA.

Simulation-based Security and Ideal Functionalities. In this paper, we
prove the security of two-party ECDSA according to the standard simulation
paradigm with the ideal/real model, in the presence of static adversaries that
choose which parties are corrupted before the protocol begins. The ideal/real
simulation paradigm is to imagine what properties one would have in an ideal
world, then a real world (constructed) protocol is said to be secure if it pro-
vides similar properties. Specifically, when proving that a constructed protocol
Π achieves the simulation-based security, we always define an ideal function-
ality F executed by a trusted party to capture all the properties that need to
be met. Then, we construct a simulator S (essentially plays the role of honest
parties) that interacts with the trusted party computing F , invokes the PPT
adversary A internally, and simulates an execution of the real protocol. If A has
negligible advantage to distinguish a real execution with honest parties from the
simulation, then Π is considered secure.

We first describe the ECDSA ideal functionality between parties P1, . . . ,Pn
as follows. Note that when considering two-party ECDSA, we only need to set
n = 2.

The ECDSA Functionality FECDSA

• Upon receiving KeyGen(G, G, p) from all parties P1, . . . ,Pn, where G is
an Elliptic-curve group of order p with generator G, then:
1. Generate a pair of ECDSA keys (x,Q), where x ← Z∗p is the secret

signing key, and Q = x ·G is the verification key.
2. Send Q to all parties.
3. Ignore future calls to KeyGen.

• Upon receiving Sign(sid,m) from P1, . . . ,Pn, if KeyGen was already
called and sid has not been stored, then:
1. Compute an ECDSA signature (r, s) on m.
2. Send (r, s) to all parties, and store (sid,m).

As in [Lin17, LN18, CCL+19], we prove the security of our protocol in a
hybrid model using the ideal zero knowledge functionality Fzk, and the ideal
commit-and-prove functionality Fcom-zk.

We now describe the ideal commitment functionality Fcom.

10

The Commitment Functionality Fcom

• Upon receiving (commit, sid, x) from party Pi for i ∈ [n], if sid has
already been stored then ignore the message. Otherwise, store (sid, i, x)
and send (receipt, sid, i) to all other parties Pj for all j ∈ [n]\{i}.

• Upon receiving (decommit, sid, i) from party Pi, if (sid, i, x) has been
stored, then send (decommit, sid, i, x) to all other parties Pj for all j ∈
[n]\{i}.

The ideal zero knowledge functionality, denoted Fzk, is defined for a relation
R by (∅, (x,R(x,w))) ← Fzk((x,w), ∅), where ∅ denotes the empty string, and
R(x,w) = 1 iff. (x,w) ∈ R.
On HVZK in practice. We note that, in all previously known works in this
line, the zero knowledge functionalities are realized by Σ-protocols or its NIZK
version by Fiat-Shamir transformation, which achieve only honest verifier zero
knowledge or zero knowledge in the random oracle model.

The Zero Knowledge Functionality FRzk for Relation R
Upon receiving (prove, sid, i, x, w) from party Pi for i ∈ [n], if sid has al-
ready been stored then ignore the message. Otherwise, store sid and send
(proof, sid, i, x,R(x,w)) to all other parties Pj for all j ∈ [n]\{i}.

We also use an ideal functionality FRcom-zk to commit to NIZK proofs of
knowledge for a relation R. This can be achieved by having the prover commit
to a NIZK proof of knowledge using the ideal commitment functionality Fcom.

The Committed NIZK Functionality FRcom-zk for Relation R

• Upon receiving (com-prove, sid, x, w) from party Pi for i ∈ [n], if sid has
already been stored then ignore the message. Otherwise, store (sid, i, x)
and send (proof-receipt, sid, i) to all other parties Pj for all j ∈ [n]\{i}.

• Upon receiving (decom-proof, sid, i) from party Pi, if (sid, i, x) has been
stored, then send (decom-proof, sid, i, x,R(x,w)) to all other parties Pj
for all j ∈ [n]\{i}.

Game-based Security. Following [GJKR96, CCL+20], our construction of
multi-party ECDSA is secure under a game-based definition: threshold unforge-
ability under chosen message attacks described as follows.

Definition 5 (Threshold Signature Unforgeability [GJKR96]). A (t, n)-
threshold signature scheme (IKeyGen, ISign,Verify) is said to be unforgeable, if

11

for any PPT adversary A who corrupts at most t parties, given the view of the
protocols IKeyGen and ISign on input messages m1, . . . ,mk of its adaptive choice
as well as signatures on those messages, the probability that A can produce a
signature on any new message m (m /∈ {m1, . . . ,mk}) is negligible.

3 Promise Σ-protocols

For our purpose, we ideally want an additively homomorphic encryption scheme
over large message space and an efficient Σ-protocol to prove the validity of
certain statements about ciphertexts. Unfortunately, as mentioned before, all
currently known constructions are far from satisfactory: The ElGamal encryption
scheme admits an efficient Σ-protocol but only supports a very small message
space, while the CL encryption scheme supports large message space but does
not admit an efficient Σ-protocol.

We obtain the best of both worlds using the following approach. Consider the
following two keyed linear-homomorphic encoding schemes (we stress that these
secret keys do not necessarily enable one to decode a codeword efficiently)5

• (DL.Gen,DL.Code) over elliptic curve group of prime order: (pk0, sk0) ←
DL.Gen(1λ), cw0 ← DL.Codepk0(m);
• (CL.Gen,CL.Code) over class group of unknown order: (pk1, sk1)← CL.Gen(1λ),
cw1 ← CL.Codepk1(m).

We encode a message m twice independently, and then compose in parallel
the efficient Σ-protocol for DL.Codepk0 with the efficient insecure Σ-protocol for
CL.Codepk1 to prove that “DL.Codepk0(m) and CL.Codepk1(m) encode the same
message m”, i.e., a statement in the following language:

L = {(pk0, pk1, cw0, cw1)|∃m
cw0 = DL.Codepk0(m) and cw1 = CL.Codepk1(m)}.

We observe that, though the composed Σ-protocol does not enjoy the special
soundness, it provides some interesting security guarantees that are sufficient for
our applications.

We call it promise Σ-protocol. Roughly, a promise Σ-protocol for the above
statement weakens the special soundness property and promises only that one
can extract the message m encoded into DL.Codepk0(m) by rewinding a successful
prover, or, extract certain information ρ(m) (for some efficiently computable
function ρ(·)) about m using both secret keys sk0 and sk1 without access to the
prover.

Definition 6 (Promise Σ-protocol). Let λ be the security parameter and ρ(·)
be an efficiently computable function. Let encoding schemes (DL.Gen,DL.Code),

5 These encoding schemes DL.Code and CL.Code may vary with applications, and may
be randomized.

12

(CL.Gen,CL.Code) and language L be as above. A promise Σ-protocol (P,V) for
L with respect to ρ(·) is a 3-round public coin protocol (with transcript being of
the form (a, e, z)) that satisfies the following conditions:

• Completeness and special honest verifier zero knowledge defined in the same
way as Σ-protocol.

• Promise extractability. For any inverse polynomial ε(λ), any PPT P∗ that
makes the verifier accept with probability ε(λ), there is a PPT extractor Ext
such that the following conditions hold.
1. Extraction by rewinding (Special-soundness) for DL.Codepk0(m). With

oracle access to P∗, ExtP
∗
(cw0, cw1) extracts m of DL.Codepk0(m) with

probability negligibly close to 1.
2. Straight-line extraction for DL.Codepk0(m) using secret keys. If both key

pairs (pk0, sk0) and (pk1, sk1) are honestly generated, then given (sk0, sk1)
as input the extractor Ext(sk0, sk1, cw0, cw1) (without access to P∗) ex-
tracts ρ(m) with probability negligibly close to 1, where m is message
encoded into DL.Codepk0(m).

Remark 1. Note that the promise extractability is a weaker notion than the
special soundness: An accepting promise Σ-proof does not even guarantee the
second codeword cw1 is valid.

However, the second condition of promise extractability implies that if a
prover can make the verifier accept the statement with high probability (hence
there exist at least two accepting transcripts with the same first message a but
different challenges e 6= e′), then the one who holds the honestly generated secret
keys could extract ρ(m).

Remark 2. As we will see, in our applications the first secret key sk0 would not
allow us to efficiently recover the message encoded into cw0, but sk1 would if cw1

is valid. As explained above, since cw1 may be invalid, our straight-line extractor
will depart from the normal “decryption” procedure associated with CL.Code.
Although we cannot use the first secret key sk0 to decode cw0, but it is useful
for the straight-line extractor to check if the message extracted out is the right
message (see the construction in Section 3.1).

Remark 3. One may use different (rewinding or straight-line) extractor in sim-
ulation strategies. Suppose that a malicious party sends out two codewords cw0

and cw1, along with a promise Σ-proof, to an honest party in a step of a proto-
col. In case cw0 and cw1 are computed under the public keys generated by the
malicious party, then the promise Σ-proof guarantees that the malicious party
“knows” the message encoded into cw0 , which can be extracted using rewinding
by the simulator (playing the role of the honest party) in the security proof.
Otherwise, if the corresponding public keys are generated by the honest party,
then the promise Σ-proof promises that the codeword cw1 is “decodable”, and
the simulator can use straight-line extractor (with the corresponding secret keys
which are actually generated by itself in a simulation) to extract certain useful
information about the message encoded into cw0.

13

Theoretically, we can achieve Σ-protocol for such a statement with fully spe-
cial soundness. Our promise Σ-protocol is motivated purely out of efficiency
consideration. As we shall see, the weak notion of Σ-protocol is sufficient for our
application, and it achieves much better performance than the known construc-
tions of Σ-protocols.

Promise NIZK in the random oracle model. In practice, one can apply
the Fiat-Shamir transform to our promise Σ-protocol to obtain a non-interactive
protocol. One can verify that the resulting protocol also enjoys the promise ex-
tractability in the random oracle model using the forking technique from [PS96],
as well as completeness and zero knowledge property.

Definition 7 (Promise NIZK). Let λ be the security parameter and ρ(·) be an
efficiently computable function. Let (DL.Gen,DL.Code), (CL.Gen,CL.Code) and
language L be defined as above. A promise NIZK proof (P,V) for L in the random
oracle model with respect to ρ(·) satisfies the following conditions:

• Completeness and zero knowledge defined in the same way as a NIZK proof.
• Promise extractability. For any inverse polynomial ε(λ), any PPT P∗ that

generates a proof with an accepted probability ε(λ), there is a PPT extractor
Ext such that the following conditions hold.

1. Extraction by rewinding for DL.Codepk0(m). With oracle access to P∗ and

the programmability of the random oracle H, ExtP
∗,H(cw0, cw1) extracts

m of DL.Codepk0(m) with probability negligibly close to 1.
2. Straight-line extraction for DL.Codepk0(m) using secret keys. If both key

pairs (pk0, sk0) and (pk1, sk1) are honestly generated, then given (sk0, sk1)
as input the extractor Ext(sk0, sk1, cw0, cw1) (without access to P∗) ex-
tracts ρ(m) with probability negligibly close to 1, where m is message
encoded into DL.Codepk0(m).

3.1 Promise Σ-protocol for Encryptions

In this section we first consider the following encoding schemes:

• DL.CodeG : m → m ·G, where G is a random generator of an elliptic curve
group G of prime order p, serving the public key pk0 (and there is no secret
key).
• CL.Codepk : m → CL.Encpk(m; r), i.e., CL.Codepk is the CL encryption algo-

rithm CL.Enc (see Section 2), where pk is generated by its corresponding key
generation algorithm (pk, sk)← CL.KGen(1λ).

and the following language:

LDLCL = {(G, pk, Q, c)|∃m ∈ Zp, r ∈ [0, S], s.t.

Q = m ·G and c = CL.Encpk(m; r)}.

14

We construct a promise Σ-protocol by composing two “Σ-protocols” for
discrete logarithm and CL ciphertext in parallel. Though the latter “Σ-protocol”
is insecure as mentioned before, we can still show the composed protocol is a
promise Σ-protocol. In the following, we fix U such that (p−1)S/U is negligible.

Protocol Σ1
prom for proving the consistency of messages

Common input: G,pk=(s̃, p, gp, f, h),Q, c=(c1, c2).
P’s Private input: m ∈ Zp and r ∈ [0, S] s.t. Q = m · G, c1 = grp and
c2 = hrfm.

1. P chooses sm ← Zp and sr ← [0, U) at random, computes A = smG,
a1 = gsrp , a2 = hsrfsm . P sends A, a1, a2 to verifier V.

2. V chooses and sends a random e← Zp to P.
3. P computes zm = sm + em mod p and zr = sr + er, then sends zm, zr

to V.
4. V outputs 1 iff. zr ∈ [0, U + (p − 1)S), zmG = A + eQ, gzrp = a1c

e
1 and

hzrfzm = a2c
e
2.

Theorem 1. If (p − 1)S/U is negligible, then protocol Σ1
prom is a promise Σ-

protocol with respect to the identity function ρ : m→ m.

The construction and security proof of protocol Σ1
prom are actually subsumed

by the following promise Σ-protocol in which the first encoding scheme is re-
placed with the ElGamal encryption scheme6.

With replacement of the first encoding scheme in the above with the ElGamal
key generation and encryption algorithm (EG.KGen,EG.Enc) (Note that here the
secret key does not allow one to decrypt ciphertexts since the plaintext is too
long), we present a promise Σ-protocol for the following language:

LEGCL = {(pk0, pk1, C, c)|∃m ∈ Zp, r1 ∈ Zp, and r2 ∈ [0, S], s.t.

C = EG.Encpk0(m; r1) and c = CL.Encpk1(m; r2)}.

Protocol Σ2
prom for proving the equality of plaintexts

Common input: pk0 =(G,P),pk1 =(s̃, p, gp, f, h),C=(C1, C2), c=(c1, c2).
P’s Private input: m ∈ Zp,r1 ∈ Zp and r2 ∈ [0, S] s.t. C1 = r1G, C2 =
r1P +mG,c1 = gr2p and c2 = hr2fm.

6 It is easy to verify that the straight-line extractor for protocol Σ1
prom, similar to the

one for protocol Σ2
prom, does not require the knowledge of sk0 (which does not exist

in protocol Σ1
prom).

15

1. P chooses s1 ← Zp, s2 ← [0, U) and sm ← Zp at random, and com-
putes A1 = s1G, A2 = s1P + smG, a1 = gs2p , a2 = hs2fsm . P sends
A1, A2, a1, a2 to verifier V.

2. V chooses and sends a random e← Zp to P.
3. P computes z1 = s1+er1 mod p, z2 = s2+er2 and zm = sm+em mod p,

and sends z1, z2, zm to V.
4. V outputs 1 if z2 ∈ [0, U + (p − 1)S),z1G = A1 + eC1,z1P + zmG =
A2 + eC2,gz2p = a1c

e
1 and hz2fzm = a2c

e
2.

Theorem 2. If (p − 1)S/U is negligible, then protocol Σ2
prom is a promise Σ-

protocol with respect to the function ρ : m→ m.

Proof. Completeness is obvious. Special honest verifier zero knowledge property
follows from the same arguments as in [CCL+19, GPS06], which we omit here.

We now prove the promise extractability. Suppose there is a prover P∗ that
can make the honest verifier accept with probability ε(λ), we can fix a good
random tape r∗p for P∗ and define G′r∗p := {e ∈ Zp : P∗(r∗p) answers e correctly},
which is of size greater than pε(λ).

By applying standard rewinding strategy to the prover P∗(r∗p), we have an ef-

ficient extractor ExtP
∗(r∗p) that computes two accepting transcripts (A1, A2, a1, a2,

e, z1, z2, zm) and (A1, A2, a1, a2, e
′, z′1, z

′
2, z
′
m) with e 6= e′. From (A1, A2, e, z1, zm)

and (A1, A2, e
′, z′1, z

′
m) one can compute the plaintext m = (zm − z′m)/(e −

e′) mod p of the ElGamal ciphertext (C1, C2) (since theΣ-protocol for an ElGamal
ciphertext satisfies special soundness).

It remains to prove the second condition of promise extractability holds.
In this case we assume both the public keys pk0 and pk1 are honestly gen-
erated. Let sk0 and sk1 are the corresponding secret keys. From the above
two accepting transcripts, we also have that gz2p = a1c

e
1, h

z2fzm = a2c
e
2 and

g
z′2
p = a1c

e′

1 , h
z′2fz

′
m = a2c

e′

2 . Set z̃2 = z2 − z′2, z̃m = zm − z′m, ẽ = e − e′. By
z̃m = mẽ mod p as above, we conclude

gz̃2p = cẽ1, and hz̃2fmẽ = cẽ2. (1)

This implies that we can efficiently modify the second ciphertext (c1, c2) into
a valid ciphertext (c′1 = cẽ1, c

′
2 = cẽ2) of the message mẽ. Furthermore, combining

zm − z′m = mẽ mod p with the first condition of promise extractability, we have

ẽ · (C2 − sk0 · C1) = mẽ ·G and (
c2
c1sk1

)ẽ = fmẽ.

This gives rise to the following extractor Ext that can compute the plaintext m
from the two secret keys and the two ciphertexts without access to the prover
P∗ with probability negligibly close to 1.

16

Extractor Ext(sk0, sk1, (C1, C2), (c1, c2)):

1. Run the decryption algorithm CL.Decsk1 on input ((c1, c2)), if it outputs
a plaintext m such that C2− sk0 · C1 = mG, then return m (In this case
(c1, c2) is a valid ciphertext).

2. Pick two random e, e′ ∈ Zp, compute (c2
c1sk1

)e−e
′

and run z̃m ←
CL.Solve((c2

c1sk1
)e−e

′
). If e 6= e′ and (e − e′) · (C2 − sk0C1) = z̃mG

holds for the ElGamal ciphertext (C1, C2), then compute m by solving
(e− e′)m = z̃m mod p and return m; otherwise, repeat this step.

Note that if e 6= e′ and (e − e′) · (C2 − sk0 · C1) = z̃m ·G, then the ElGamal
ciphertext is valid and we can compute the unique plaintext m from (e−e′)m =
z̃m mod p. Since the size of G′r∗p is greater than pε(λ), a single step 2 of Ext will

output the plaintext of (C1, C2) with probability at least ε2(λ)− 1
2λ

, and hence

it will succeed in expected time at most O
(

1
ε(λ)2T

)
, where T is the running time

of a single repetition of step 2. ut

3.2 Promise Σ-protocol for Homomorphic Operations

Suppose we have a tuple (pk0, pk1, C = (C1, C2), c = (c1, c2)) that has already
been proven to be in LEGCL via the promise Σ-protocol Σ2

prom described in the
previous section. We call such a pair (C, c) semi-equal.

Given such a (pk0, pk1, C = (C1, C2), c = (c1, c2)), we consider the following
encoding schemes both derived from homomorphic operations:

• DL.Codepk′0=(pk0,C1,C2) : (a, b) → (aC1 + rG, aC2 + bG + rP), where pk0 =
(G,P) is the public key of the ElGamal encryption, r is selected randomly
from Zp. We let the secret key corresponding to pk′0 be the secret key of the
ElGamal encryption.
• CL.Codepk′0=(pk1,c1,c2) : (a, b)→ (ca1 , c

a
2f

b), where pk1 is the public key of the

CL encryption. We let the secret key corresponding to pk′1 be the secret key
of the CL encryption.

We now present a promise Σ-protocol for the following language with respect
the above two schemes:

Laffine = {((pk0 =(G,P),C1,C2), (pk1 =(̃s, p, gp, f, h), c1, c2), (C ′1, C
′
2), (c′1, c

′
2))|

∃a∈ [0,pS),b,r∈Zp, s.t. C ′1 = aC1+rG∧C ′2 = aC2+bG+rP∧c′1 = ca1∧c′2 = ca2f
b}

Such a statement essentially says that the tuple (C ′ = (C ′1, C
′
2), c′ = (c′1, c

′
2)) is

generated from (C = (C1, C2), c = (c1, c2)) by doing the same affine homomor-
phic operations.

The protocol proceeds as follows.

17

Protocol Σ3
prom for correctness of homomorphic operations

Common input: (((G,P),C1,C2), ((̃s, p, gp, f, h), c1, c2), (C ′1, C
′
2), (c′1, c

′
2)).

P’s Private input: a ∈ [0, pS), b, r ∈ Zp.

1. P randomly chooses sa ∈ [0, pU), sb, sr ∈ Zp, and computes A1 =
saC1 + srG,A2 = saC2 + sbG + srP, a1 = csa1 , a2 = csa2 f

sb , then sends
(A1, A2, a1, a2) to V.

2. V chooses randomly e ∈ Zp and sends it to P.
3. P computes za = sa+ea in Z, zb = sb+eb mod p and zr = sr+er mod p,

then sends (za, zb) to V.
4. V first checks whether za ∈ [0, p(U + (p − 1)S)), and accepts iff. the

following conditions hold: zaC1 + zrG = A1 + eC ′1, zaC2 + zbG+ zrP =
A2 + eC ′2, c

za
1 = a1c

′
1
e
, cza2 f

zb = a2c
′
2
e
.

Theorem 3. If (p− 1)S/U is negligible, and ((C1, C2), (c1, c2)) is a semi-equal
pair under the encoding schemes EG.Encpk0 and CL.Encpk1 respectively, then pro-
tocol Σ3

prom is a promise Σ-protocol with respect to the function ρm : (a, b) →
(am+ b mod p), where m is such that (C1, C2) = EG.Encpk0(m).

Proof. Again, here we omit the proofs of completeness and the HVZK property,
and just prove the promise extractability.

Suppose an adversarial prover P∗ convinces V with a non-negligible proba-
bility, we could obtain two accepting transcripts (A1, A2, a1, a2, e, za, zb, zr) and
(A1, A2, a1, a2, e

′, z′a, z
′
b, z
′
r) with e 6= e′ mod p using the similar proof strat-

egy as the previous section. Subsequently following the special soundness of
the Σ-protocol for ElGamal ciphertexts, one can compute the affine factors
(a mod p) = (za − z′a)/(e − e′) mod p and b = (zb − z′b)/(e − e′) mod p, as well
as the randomness r = (zr − z′r)/(e − e′) mod p such that C ′1 = aC1 + rG and
C ′2 = aC2 + bG+ rP .

We now turn to the second property of promise extractability. Note that from
the above two accepting transcripts it yields

c∆za1 = c′1
∆e
, c∆za2 f∆zb = c′2

∆e
, (2)

where ∆za = za − z′a, ∆zb = zb − z′b and ∆e = e− e′.
From the fact that (C = (C1, C2), c = (c1, c2)) are semi-equal, it follows from

the equality (1) that cẽ1 = gz̃p , c
ẽ
2 = hz̃fmẽ for some ẽ. Combining these two

equalities with the equality (2), we have

gz̃∆zap = c′1
ẽ∆e

, hz̃∆zbf (am+b)ẽ∆e = c′2
ẽ∆e

. (3)

This essentially says that one can efficiently modify the second codeword
(c′1, c

′
2) into a valid codeword (c′′1 = c1

ẽ∆e, c′′2 = c′2
ẽ∆e

) of the message (am +
b)ẽ∆e.

18

We set ê = ẽ∆e and ẑ = z̃∆za. Let (sk0, sk1) be the (honest generated) secret
keys of the underlying ElGamal and CL encryption scheme. Thus, combining the
first condition of promise extractability and the equality (3), we have

(am+ b)G = C ′2 − sk0 · C ′1, c′1
ê

= gẑp , c
′
2
ê

= hẑf (am+b)ê,

which allow us to construct a straight-line extractor Ext(sk0, sk1, ·) to extract
ρ(m) = am+ b in the same way as in Section 3.1. ut

We prove in Appendix A that the promise Σ-protocols described above are
indeed promise NIZKs in the random oracle model after applying Fiat-Shamir
transformation.

4 Simulating Homomorphic Operations on an Invalid
Ciphertext

Recall that in the final stage of a two-party signing subprotocol of [Lin17,
CCL+19], P2 holds (x2, k2, r) and computes b = k−1

2 m′ (where m′ is the hash
value of m), a = k−1

2 rx2, and a ciphertext of ax1 +b by homomorphic operations
on the ciphertext (ckey,1, ckey,2) of x1, which it received in the key generation
phase. P2 sends the resulting ciphertext of ax1 + b to P1, who decrypts the
ciphertext and computes a signature (r, k−1

1 (ax1 + b)).
In our settings, in the key generation phase P1 computes a pair (Q1, ckey =

(ckey,1, ckey,2)) which both encode x1, and then runs an efficient promise Σ-
protocol (with challenge of polynomial length) to prove the knowledge of x1. This
promise Σ-proof guarantees only that the (ckey,1, ckey,2) satisfies cẽkey,1 = gz̃p and

cẽkey,2 = hz̃f ẽx1 for some ẽ ∈ [−p + 1, p − 1] \ {0}, z̃ ∈ [−U − (p − 1)S + 1, U +
(p− 1)S − 1] \ {0}. As discussed in the introduction, if we have the same P2 as
in [CCL+19], then the same simulator S would fail.

Instead, we have P2 choose a random t, raise ckey,1 and ckey,2 to the power
a+ t (randomizing a), and then compute a ciphertext (ca+t

key,1, f
b · ca+t

key,2). For an
honest P1 to decrypt and obtain ax1 + b, P2 sends back this ciphertext along
with t mod p. Specifically, we consider the following P2 and S (think that a,b
and s′ = ax1 + b (along with the public keys) are “hardwired” into P2 and S,
respectively):

P2(t1) : (ca+t1
key,1, f

bca+t1
key,2, t1 mod p), and S(t2) : (ct2key,1, f

s′ct2key,2, t2 mod p). (4)

We now give a formal proof that, if the random string t is sufficiently long and
p - ord(gp), p - ord(h), then these two distributions above are statistically close.
As mentioned, the last two conditions can be achieved by having P1 generate
a public key of the CL encryption scheme of the form (g0, gp = gp0 , h0, h = hp0).
Recall the following notations and their properties:

• param := (s̃, g, f, gp, Ĝ,G,F ,Gp) and S are the parameters of groups we work

on, satisfying that 1) p is a prime, |Ĝ| = pŝ for some unknown ŝ < s̃ and
S = 2λ−2s̃; 2) gcd(p, ŝ) = 1.

19

• pk := (s̃, p, gp, f, h) is the public key such that p - ord(gp) and p - ord(h). As
discussed above, this property can be easily achieved even if the public key
is maliciously generated.

• (x1, a, b, s
′) satisfies s′ = ax1 + b mod p.

• (ckey,1, ckey,2) and h′. (ckey,1, ckey,2) is the ciphertext as above, and satisfies
cẽkey,1 = gz̃p and cẽkey,2 = hz̃f ẽx1 for some ẽ ∈ [−p + 1, p − 1] \ {0}, z̃ ∈
[−U − (p− 1)S,U + (p− 1)S] \ {0}. h′ is an arbitrary ẽ-th root of hz̃, which
satisfies that ckey,2 = h′fx1 .

We define p := (param, pk, x1, a, b, s
′, ckey,1, ckey,2, h

′), and prove the following
lemma.

Lemma 1. Let p be defined as above. Then the statistical distance between the
two distributions {t1 ← [0, pS) : P2(t1)} and {t2 ← [0, pS) : S(t2)} in (4) is
exponentially small.

Proof. From the facts that p - ord(gp), p - ẽ and cẽkey,1 = gz̃p , it follows p - ord(gz̃p)

and gcd(p, ord(gz̃p) = ord(cẽkey,1)) = 1. Since

ord(cẽkey,1) = ord(ckey,1)/ gcd(ord(ckey,1), ẽ) and p - ẽ,

we have gcd(p, ord(ckey,1)) ≤ gcd(p, ord(cẽkey,1)) · gcd(p, gcd(ord(ckey,1), ẽ)) = 1,
i.e., p - ord(ckey,1).

Similarly, one can deduce p - ord(h′) from the facts that p - ord(h), p - ẽ and
h′ẽ = hz̃. Observe also that ord(ckey,1)|pŝ and ord(h′)|pŝ, we have

ord(ckey,1)|ŝ and ord(h′)|ŝ. (5)

We define the following deterministic algorithm f with p hardwired:

fp(t′) = (ca+t′

key,1, h
′a+t′fax1+t′x1+b, t′ mod p),

and observe that,

P2(t1) = (ca+t1
key,1, f

b · ca+t1
key,2, t1 mod p);

= (ca+t1 mod ŝ
key,1 , h′a+t1 mod ŝ · fax1+t1x1+b mod p, t1 mod p) = fp(t1) (6)

By defining t∗2 := t2−p−1pa mod pŝ, where p−1 satisfies that p−1p ≡ 1 mod ŝ
(recall gcd(p, ŝ) = 1), we have:

S(t2) = (ct2key,1, f
s′ · ct2key,2, t2 mod p)

= (c
t∗2+p−1pa mod ŝ
key,1 , h′t

∗
2+p−1pa mod ŝ · fax1+t∗2x1+b mod p, t∗2 + p−1pa mod p)

= (c
t∗2+a mod ŝ
key,1 , h′t

∗
2+a mod ŝ · fax1+t∗2x1+b mod p, t∗2 mod p) = fp(t∗2) (7)

It is easy to verify that {t1 ← [0, pŝ) : fp(t1)} is identical to {t2 ← [0, pŝ) :
fp(t∗2 = t2 − p−1pa mod pŝ)}, which implies that

{t1 ← [0, pŝ) : P2(t1)} ≡ {t2 ← [0, pŝ) : S(t2)}. (8)

20

Denote by D1 the distribution {t1 ← [0, pS) : t1 mod pŝ} and by D2 the
distribution {t1 ← [0, pŝ) : t1}. The statistical distance SD(D1, D2) between the
two distributions D1 and D2 is

SD(D1, D2) =
1

2

∑
t∈[0,pŝ)

|Pr[t1 ← D1 : t1 = t]− Pr[t1 ← D2 : t1 = t]|.

Suppose that s̃ = kŝ for some k > 1. We have pS = 2λ−2ps̃ = k2λ−2pŝ, and
therefore

Pr
t∈[0,pŝ)

[t1←D1 : t1 = t] =
bk2λ−2c
k2λ−2pŝ

or
bk2λ−2c+ 1

k2λ−2pŝ
∈ [

1

pŝ
− 1

k2λ−2pŝ
,

1

pŝ
+

1

k2λ−2pŝ
].

Thus, we conclude

SD(D1, D2) =
1

2

∑
t∈[0,pŝ)

|Pr[t1 ← D1 : t1 = t]− Pr[t1 ← D2 : t1 = t]| < 1

k2λ−1
.

Then SD(fp(D1), fp(D2)) ≤ 1/k2λ−1 since the deterministic fp doesn’t am-
plify the statistical distance. And we have SD(P2(D1),P2(D2)) ≤ 1/k2λ−1

from (6) . Similarly, the statistical distance between {t2 ← [0, pS) : S(t2)} and
{t2 ← [0, pŝ) : S(t2)} is also less than 1/k2λ−1. Combining (8), it follows

SD({t1 ← [0, pS) : P2(t1)}, {t2 ← [0, pS) : S(t2)}) < 1

k2λ−2
.

ut

5 Two-party ECDSA

We now present an efficient construction for two-party ECDSA protocol and
prove its security under a simulation-based definition. We follow the framework
of [Lin17, CCL+19], but apply the promise Σ-protocol to avoid doing parallel
repetition which is the main efficiency bottleneck in [CCL+19]. Our protocol, as
depicted in Fig. 1, differs from [CCL+19] as follows (labeled with colored boxes
in Fig. 1):

1. P1 is required to generate a CL public key of the form (gp = ĝpp , h = ĥp) to
make it sure p - ord(gp) and p - ord(h).

2. P1 proves via the promise Σ-protocol Σ1
prom described in Section 3.1 that

Q1 and the CL ciphertext ckey encode the same message x1, i.e., (Q1, ckey)∈
LDLCL.

3. In the signing phase, P2 generates a ciphertext by homomorphic operations
together with tp = t mod p in the same way described in Section 4.

We use the ideal zero knowledge functionality Fzk for the following NP re-
lation (where the parameters of the elliptic curve (G, G, p) are implicit public

21

P1 IKeyGen(G, G, p) P2

x1 ← Zp, Q1 = x1G
(com-prove, 1, Q1, x1)FRDL

com-zk
(proof-receipt, 1)

x2 ← Zp, Q2 = x2G
(prove, 2, Q2, x2)FRDL

zk
(proof, 2, Q2, 1)

Abort if (proof, 2, Q2, 1)
not received

(decom-proof, 1) FRDL
com-zk

(decom-proof, 1, Q1, 1)

(pk′, sk′)← CL.KGen
(
1λ, p

)
pk′ =

(
s̃, p, ĝp, ĥ, f

)
, sk′ = x

pk =
(
s̃, p, gp = ĝpp , h = ĥp, f

)
sk = sk′

pk′, pk
Abort if h 6= ĥp or gp 6= ĝpp

r1 ← [0, S]
ckey ← CL.Encpk(x1; r1)

stprom := ((G,Q1), pk, ckey) Σ1
prom for stprom ∈ LDLCL

Abort if
(decom-proof, 1, Q1, 1)
not received

Abort unless
Σ1

prom proof verified.

Q = x1Q2 Q = x2Q1

P1 ISign(sid,m) P2

k1 ← Zp, R1 = k1G
(com-prove, sid||1, R1, k1)FRDL

com-zk
(proof-receipt, sid||1)

k2 ← Zp, R2 = k2G
(prove, sid||2, R2, k2)FRDL

zk
(proof, sid||2, R2, 1)

Abort if (proof, sid||2, R2, 1)
not received

(decom-proof, sid||1)FRDL
com-zk

(decom-proof, sid||1, R1, 1)

Abort if
(decom-proof, 1, R1, 1)
not received

R := (rx, ry) = k1R2

r = rx mod p

m′ = H(m)
R := (rx, ry) = k2R1

r = rx mod p

c1 = (1, fk
−1
2 m′)

t← [0, pS), tp = t mod p
c2 = ckey ⊗ (k−1

2 rx2 + t)
c3 = c1 ⊕ c2c3, tp

s′′ = CL.Decsk(c3)− x1tp mod p

s′ = k−1
1 s′′, s = min(s′, p− s′)

Abort if 0← Verify(Q,m, (r, s))
else return (r, s).

Fig. 1: Two-party ECDSA Key Generation and Signing Protocols

22

inputs): RDL = {(Q;w)|Q = wG}. Functionality Fzk can be efficiently instanti-
ated by Schnorr protocol. Note that instead of using the Fzk-hybrid model, we
use the promise Σ-protocol directly in our construction.

In Fig 1 we denote by ⊗ and ⊕ the homomorphic operations, defined as
ckey ⊗ k = (ckkey,1, c

k
key,2) and c1 ⊕ c2 = (c1,1 · c2,1, c1,2 · c2,2), where ckey, c1, c2

are CL ciphertexts and k is an integer.

Theorem 4. Under the DDH assumption, the HSM assumption and the Double
Encoding assumption, the protocol described in Fig. 1 securely computes FECDSA

for a two-party case in the (Fzk,Fcom-zk)-hybrid model in the presence of a ma-
licious static adversary under the simulation-based definition.

Our construction is to some extent derived from the one in [CCL+19] except
that the promise Σ-protocol only enjoys a weaker special soundness. On one
hand, if the adversary A corrupts party P2 which only verifies a promise Σ-
proof, we can simulate P1 in the same manner as in [CCL+19]; On the other
hand, if P1 is corrupted by A who plays the role of a prover in a promise Σ-
protocol, we could construct a simulator to generate an indistinguishable view
from the adversarial perspective by leveraging the extraction by rewinding (the
first property of promise extraction) and the technique to simulate homomorphic
operations (described in Section 4). The detailed proof of Theorem 4 is presented
in Appendix B.

6 Multi-party (Threshold) ECDSA

In this section, we show how to use promise Σ-protocols to remove the low order
assumption and strong root assumption for the multi-party (threshold) ECDSA
of [CCL+20]. The resulting protocol is more efficient than the one of [CCL+20]
in terms of both bandwidth and computational efficiency. Our techniques also
apply the multi-party protocol of [LN18] to improve bandwidth efficiency at the
cost of relatively high computational complexity as in the case [CCL+20].

6.1 Improvment on [CCL+20] with promise Σ-protocols

In the threshold ECDSA of [CCL+20], their zero knowledge proof for proving
the well-formedness of a CL ciphertext requires a random group generator gp due
to the need of strong root assumption. This leads to a costly interactive setup
phase to generate such gp. Without relying the assumption, we could remove
this phase.

We modify the threshold ECDSA protocol in [CCL+20] with promise Σ-
protocols in the following way (labeled with colored boxes in Fig. 2 and Fig. 3):

1. After generating the CL public/secret key pair (p̂ki = (s̃, p, ĝp, ĥ, f), ŝki), we
have each party refresh the public key to obtain a new pki = (s̃, p, gp =

ĝpp , h = ĥp, f) as in the two-party case, and additionally generate a pub-

lic/secret key pair of ElGamal encryption (pk′i, sk
′
i) ← EG.KGen(1λ) in the

key generation and broadcast (pk′i, p̂ki, pki).

23

2. In Phase 1 of the signing phase of [CCL+20], we have each party Pi encrypt
ki using CL encryption scheme, as well as encoding it using ElGamal encryp-
tion scheme, then use the promise Σ-protocol Σ2

prom decsribed in Section 3.1
to prove the plaintexts equality.

3. In Phase 2 of the signing phase of [CCL+20], instead of generating a CL
ciphertext ckjγi of kjγi − βj,i mod p, Pi, like P2 in its final step of the two-
party signing protocol described in the previous section, homomorphically
computes a CL ciphertext of kjγi + kj t̂j,i − βj,i mod p, where t̂j,i is selected
uniformly from a sufficient large space [0, pS). Pi generates a ciphertext ckjwi
of kjwi+kjtj,i−vj,i mod p in the same way. And Pi sends ckjγi , ckjwi , along

with t̂p,ji = t̂j,i mod p and tp,ji = tj,i mod p (for Pj to derandomized the
plaintexts) to Pj .

IKeyGen (G,G,p)Pi All players {Pj}j 6=i
ui ← Zp
(kgci, kgdi)← Com(uiG)

(ŝki = di, p̂ki)← CL.KGen
(
1λ, p

)
where p̂ki =

(
s̃, p, ĝp, ĥi, f

)
pki =

(
s̃, p, gp = ĝpp , hi = ĥpi , f

)
, ski = ŝki

(pk′i, sk′i)← EG.KGen
(
1λ
)

p̂ki, pki, pk
′
i and kgci

kgdi

Abort if ∃i s.t.
gp 6= ĝpp or hi 6= ĥpi

Qi ← Open(kgci, kgdi)
s.t. Qi = uiG
Q =

∑n
i=1Qi

Perform (t, n)-VSS share of ui:
pi(X) = ui +

∑t
k=1 ai,kX

k mod p
Set {σi,j := pi(j)}j∈[n] and
{Vi,k := ai,kG}k∈[t] Send σi,jto Pj

{Vi,k}k∈[t]

{σj,i}j are additive shares of xi :=
∑
j∈[n] pj(i)

where {xi}i∈[n] are (t, n)-Shamir shares of x.
πkg,i ← ZKPoKXi{(xi) : Xi = xiG} πkg,i Abort if ∃i πkg,i is rejected

Fig. 2: Multi-Party Key Generation Protocol

Following [GG18, CCL+20], we also use cryptographic primitives such as
Feldman’s verifiable secret sharing (VSS) scheme and a non-malleable equivo-
cable commitment. We refer to [GG18, CCL+20] for more details of the two
schemes.

To enable a threshold signing protocol where a subset S ⊆ [n] of parties
collaborate to sign a message m, given the (t, n) shares {xi}i∈[n] of x obtained

24

Pi Phase 1 All players {Pj}j 6=i
ki, γi ← Zp, ri ← [0, S]
cki ← CL.Encpki(ki; ri)
(ci, di)← Com(γiG)

r′i ← Zp
Cki ← EG.Encpk′i(ki; r

′
i)

sti := (pki, pk
′
i, Cki, cki)

ci, cki, Cki

Σ2
prom-proof πi for sti ∈ LEGCL

Abort if a proof fails

Phase 2

βj,i, vj,i ← Zp, Bj,i = vj,iG

tj,i, t̂j,i ← [0, pS)
tp,ji = tj,i mod p, t̂p,ji = t̂j,i mod p

ckjγi ← ckj ⊗ (γi + t̂j,i)⊕
(
1, f−βj,i

)
ckjwi ← ckj ⊗ (wi + tj,i)⊕

(
1, f−vj,i

) ckjγi , ckjwi , Bj,i, tp,ji, t̂p,ji αj,i ← CL.Decskj (ckjγi)− kj t̂p,ji
µj,i ← CL.Decskj (ckjwi)− kjtp,ji
Abort if µj,iG+Bj,i 6= kjWi

δi = kiγi +
∑
j 6=i(αi,j + βj,i)

σi = kiwi +
∑
j 6=i(µi,j + vj,i)

Phase 3

δi δ =
∑
i∈Sδi = kγ

Phase 4

di

πγi ← ZKPoKΓi{(γi) : Γi = γiG} πγi Γi ← Open(ci, di) = γiG
Abort if a proof fails.
(R := (rx, ry)) = δ−1

(∑
i∈SΓi

)
and r = rx mod p

Phase 5

m′ = H(m), si = m′ki + rσi
`i, ρi ← Zp
Vi = siR+ `iG,Ai = ρiG

(ĉi, d̂i)← Com(Vi, Ai)
π̂i ← ZKPoK(Vi,Ai){(si, `i, ρi) :

Vi = siR+ `iG ∧Ai = ρiG}

Ui = ρiV, Ti = `iA(
c̃i, d̃i

)
← Com(Ui, Ti)

ĉi

d̂i

π̂i

c̃i

d̃i

si

Abort if a proof fails
V = −m′G− rQ+

∑
i∈SVi

A =
∑
i∈S Ai

Abort if
∑
i∈S T i 6=

∑
i∈S U i

s =
∑
i∈S si

Abort if (r, s) is not valid,
else return (r, s).

Fig. 3: Multi-Party Threshold Signing Protocol

25

in the key generation phase, each party can compute the additive shares {wi}i∈S
of x using the appropriate Lagrangian coefficients, as well as {Wi = wiG}i∈S .
We also use the symbols ⊗,⊕ defined in Section 5 to represent homomorphic
operations.

Note that the only subprotocol of the construction of [CCL+20] that requires
the low order assumption and the strong root assumption is the Σ-protocol
for the correctness of CL ciphertexts. When replacing such a subprotocol with
our promise Σ-protocol (as in the above second modification), we remove these
two stronger assumptions since our promise Σ-protocol per se does not rely on
any assumptions. Thus we have the following theorem, and leave its proof in
Appendix C.

Theorem 5. Under the assumption that the standard ECDSA is existentially
unforgeable, the DDH assumption, the HSM assumption, and the assumption
that Com is equivocable and non-malleable, then the protocol of Fig. 2 and 3 is
an existentially unforgeable threshold signature scheme.

6.2 Improving the bandwidth efficiency of [LN18]

Lindell and Nof [LN18] propose an efficient multi-party ECDSA but with higher
bandwidth due to the usage of Paillier encryption and expensive zero knowledge
range proofs in a subprotocol, called πpriv

mult. In the first round of the protocol
each party Pi sends a Paillier encryption ci of xi (under its own public key), and
receives back cj . In the second round Pi selects a random ri→j and homomor-
phically generates ci→j which is an encryption of xj · yi + ri→j , then sends it to
Pj .Pi decrypts cj→i to obtain zj→i, and computes zi =

∑
j∈[n]\{i} zj→i + xiyi−∑

j∈[n]\{i} ri→j .To ensure the parties follow the protocol, each party provides
two zero knowledge proofs for every other one at the end of each round: One
zero knowledge proof for correctness of the ciphertext, and the other for proving
the correctness of the homomorphic operations in generating ci→j .

Similarly, within the subprotocol πpriv
mult, we can replace the above two zero

knowledge proofs with our promise Σ-protocol Σ2
prom and Σ3

prom described in
Section 3 via encoding the secret message into an ElGamal ciphertext and an
CL ciphertext instead of a Paillier ciphertext, which achieves better bandwidth
efficiency. We stress that, due to the relatively heavy computation over class
groups, this replacement will increase the computational complexity as the case
in [CCL+20].

7 Comparisons

In this section, we compare implementations of our protocols with the state-of-
the-art ones. For fair comparison, we implement four two-party protocols with
Rust, including our protocol, the protocol in [CCL+19], its variant in [CCL+20]
and the protocol in [Lin17], and two multi-party ECDSA including our protocol
and the one in [CCL+20]. The elliptic curve is secp256k1 and the bit length of the

26

discriminant of the class group is chosen as 1827, which ensures that our protocols
have 128-bit security. We use Pari C library to handle arithmetic operations in
class groups and Paillier encryption. The running times are measured on a single
core of an Intel(R) Core(TM) i7-9700K @ 3.6GHz.

Two-Party ECDSA Protocol. In the theoretical aspect, we compare our two-
party ECDSA protocol with [CCL+19] and its improved variant in [CCL+20]
which reduces the repetition rounds of the zero knowledge proof to κ/10 times
with soundness error 2−κ.

The theoretical comparisions are given in Table 1 and Table 2. Since the
exponential operation in class groups is much costly than in elliptic curve and
dominates the computation cost, we only list the number of exponentiations in
class groups, and denote it as #CL-Exp. |G| and |G| are size of group elements
in G and G, respectively. L,Lp are the length of the integers sampled from Dp
and Zp. In our implementation, |G| = 33 Bytes, |G| = 345 Bytes, L = 115 Bytes
and Lp = 32 Bytes.

Keygen (#CL-Exp) Signing (#CL-Exp) Assumptions (related to class group)

Ours 11 3 HSM + Double Encoding

[CCL+19] 4κ + 2 5 HSM + Double Encoding

[CCL+20] (6κ)/10 + 2 5 HSM + Double Encoding

Table 1: Theoretical Comparisons in Computation of Two-Party Protocols

Keygen (Bytes) Signing (Bytes)

Ours 5|G|+ 4|G|+ 8Lp + L 4|G|+ 2|G|+ 7Lp
[CCL+19] (4 + κ)|G|+ (2κ+ 2)|G|+ (6 + κ)Lp + κL 4|G|+ 2|G|+ 6Lp
[CCL+20] (4 + κ/10)|G|+ (κ/5 + 2)|G|+ (6 + κ/10)Lp + (κ/10)L 4|G|+ 2|G|+ 6Lp
Table 2: Theoretical Comparisons in Communication of Two-Party Protocols

Keygen (ms) Signing (ms) Keygen (Bytes) Signing (Bytes)

Ours 967 391 1916 1046

[CCL+19] (κ = 40) 14107 442 35814 1014

[CCL+20] (κ = 40) 2275 442 4494 1014

[Lin17] (κ = 40) 6120 41 96805 1092

[CCL+19] (κ = 128) 44740 442 112374 1014

[CCL+20] (κ = 128) 6471 442 11454 1014

[Lin17] (κ = 128) 19032 41 305189 1092

Table 3: Concrete Performance of Two-Party Protocols

As shown in Table 1, in the key generation phase our two-party ECDSA
protocol is about 15× (resp. about 2×) faster than the protocol in [CCL+19]
(resp. in [CCL+20]) when κ = 40. The improvement is about 44× (resp. about

27

7×) when κ = 128. Our protocol is slightly better than the ones in [CCL+19]
and [CCL+20] in the signing phase.

Our protocol also reduces the communication cost significantly. As in Table
2, the improvement of communication is about 17× (resp. 2×) in the key gen-
eration phase compared to the protocol in [CCL+19] (resp. in [CCL+20]) when
κ = 40. The improvement is about 54× (resp. about 6×) when κ = 128. The
communication cost in the signing phase is almost the same.

In the concrete apsect, we compare all the four protocols. The running time
and consumed bandwidth of our protocol and the protocols in [CCL+19] and
[CCL+20] shown in Table 3 meet the theoretical analysis above. Further, we
compare our protocol with the one in [Lin17], where Paillier modulus is chosen
as 3072 to get 128-bit security. In the key generation phase, our protocol improves
the computation performance by a factor about 6× (resp. 20×) when κ = 40
(resp. κ = 128). Our protocol also reduces the bandwidth by a factor about 47×
(resp. 149×) when κ = 40 (resp. κ = 128).

Keygen (#CL-Exp) Signing (#CL-Exp) Assumptions (related to class group)

Ours 2n+ 1 10t− 6 HSM

[CCL+20] ((2n− 1)κ)/10 + 2 14t− 10 HSM + Low Order + Strong Root

Table 4: Theoretical Comparisons in Computation of Multi-Party Protocols

Multi-Party ECDSA Protocol. The improvement of our multi-party ECDSA
protocol on [CCL+20], which is essentially based on [GG18], is very obvious. Us-
ing the same notations as above, we show the theoretical comparisons in Table 4
and Table 5, and the concrete comparison in Table 6.

Keygen (Bytes) Signing (Bytes)

Ours ((4 + t)|G|+ |G|+ 5Lp)(n− 1) (17|G|+ 8|G|+ 19Lp + L)(t− 1)

[CCL+20] ((3 + t)|G|+ (κ/10 + 3)|G|+ 10Lp + (κ/10)L)(n− 1) (9|G|+ 8|G|+ 16Lp + L)(t− 1)

Table 5: Theoretical Comparisons in Communication of Multi-Party Protocols

Keygen (ms) Signing (ms) Keygen (Bytes) Signing (Bytes)

Ours 186n+ 95 1137t− 539 33tn+ 637n− 33t− 637 4044t− 4044

[CCL+20] (κ = 40) 739n− 163 1258t− 834 33tn+ 3792n− 33t− 3792 3684t− 3684

[CCL+20] (κ = 128) 2287n− 934 1252t− 842 33tn+ 7434n− 33t− 7434 3684t− 3684

Table 6: Concrete Performance of Multi-Party Protocols

In terms of computational complexity, our multi-party ECDSA protocol is
about 4× (resp. 12×) faster than the protocol in [CCL+20] in the key generation
phase when κ = 40 (resp. κ = 128), which can be seen both in the theoretical
and concrete aspects. The signing phase of our construction is slightly better
than that in [CCL+20], and it is about 10% faster in the concrete aspect.

28

In terms of communications, since we eliminate the need of costly interactive
setup phase, our protocol outperforms the one in [CCL+20] in the key generation
phase for both κ = 40 and κ = 128, factors vary according to the number of
parties n and the threshold t. In the signing phase the communication overhead
is slightly larger while our solution remains of the same order of magnitude.

Finally, it is worth noting that all our constructions are based on HSM
assumption (along with other assumptions in elliptic curve group) just as in
[CCL+19], instead of using stronger and non-standard assumptions: the low or-
der assumption and the strong root assumption as in [CCL+20].

Acknowledgments

We would like to thank the anonymous reviewers for their valuable suggestions.
We are supported by the National Natural Science Foundation of China (Grant
No. 61932019, No. 61772521 and No. 61772522) and the Key Research Program
of Frontier Sciences, CAS (Grant No. QYZDB-SSW-SYS035).

Bibliography

[BBF18] Dan Boneh, Benedikt Bünz, and Ben Fisch. A survey of two verifiable
delay functions. Cryptology ePrint Archive, Report 2018/712, 2018. https:
//eprint.iacr.org/2018/712.

[BGG19] Dan Boneh, Rosario Gennaro, and Steven Goldfeder. Using level-1 homo-
morphic encryption to improve threshold dsa signatures for bitcoin wallet
security. In Tanja Lange and Orr Dunkelman, editors, Progress in Cryp-
tology – LATINCRYPT 2017, pages 352–377, Cham, 2019. Springer Inter-
national Publishing.

[BKSW20] Karim Belabas, Thorsten Kleinjung, Antonio Sanso, and Benjamin
Wesolowski. A note on the low order assumption in class group of an
imaginary quadratic number fields. Cryptology ePrint Archive, Report
2020/1310, 2020. https://eprint.iacr.org/2020/1310.

[CCL+19] Guilhem Castagnos, Dario Catalano, Fabien Laguillaumie, Federico
Savasta, and Ida Tucker. Two-party ecdsa from hash proof systems and
efficient instantiations. In Alexandra Boldyreva and Daniele Micciancio,
editors, Advances in Cryptology – CRYPTO 2019, pages 191–221, Cham,
2019. Springer International Publishing.

[CCL+20] Guilhem Castagnos, Dario Catalano, Fabien Laguillaumie, Federico
Savasta, and Ida Tucker. Bandwidth-efficient threshold ec-dsa. In Agge-
los Kiayias, Markulf Kohlweiss, Petros Wallden, and Vassilis Zikas, edi-
tors, Public-Key Cryptography – PKC 2020, pages 266–296, Cham, 2020.
Springer International Publishing.

[CL15] Guihem Castagnos and Fabien Laguillaumie. Linearly homomorphic en-
cryption from ddh. In Topics in Cryptology — CT-RSA 2015, pages 487–
505. Springer International Publishing, 2015.

[CLT18] Guilhem Castagnos, Fabien Laguillaumie, and Ida Tucker. Practical fully
secure unrestricted inner product functional encryption modulo p. In Ad-
vances in Cryptology – ASIACRYPT 2018, pages 733–764. Springer Inter-
national Publishing, 2018.

29

https://eprint.iacr.org/2018/712
https://eprint.iacr.org/2018/712
https://eprint.iacr.org/2020/1310

[Coh00] Henri Cohen. A Course in Computational Algebraic Number Theory.
Springer, 2000.

[Des88] Yvo Desmedt. Society and group oriented cryptography: a new concept.
In Carl Pomerance, editor, Advances in Cryptology — CRYPTO ’87, pages
120–127, Berlin, Heidelberg, 1988. Springer.

[DKLs18] Jack Doerner, Yashvanth Kondi, Eysa Lee, and abhi shelat. Secure two-
party threshold ecdsa from ecdsa assumptions. In 2018 IEEE Symposium
on Security and Privacy (SP), pages 980–997, 2018.

[DKLs19] Jack Doerner, Yashvanth Kondi, Eysa Lee, and abhi shelat. Threshold
ecdsa from ecdsa assumptions: The multiparty case. In 2019 IEEE Sym-
posium on Security and Privacy (SP), pages 1051–1066, 2019.

[FS87] Amos Fiat and Adi Shamir. How to prove yourself: practical solutions
to identification and signature problems. In Advances in Cryptology -
CRYPTO’86, LNCS 263, pages 186–194. Springer, 1987.

[GG18] Rosario Gennaro and Steven Goldfeder. Fast multiparty threshold ecdsa
with fast trustless setup. In Proceedings of the 2018 ACM SIGSAC
Conference on Computer and Communications Security, CCS ’18, page
1179–1194, New York, NY, USA, 2018. Association for Computing Ma-
chinery.

[GG20] Rosario Gennaro and Steven Goldfeder. One round threshold ecdsa with
identifiable abort. Cryptology ePrint Archive, Report 2020/540, 2020.
https://eprint.iacr.org/2020/540.

[GGN16] Rosario Gennaro, Steven Goldfeder, and Arvind Narayanan. Threshold-
optimal dsa/ecdsa signatures and an application to bitcoin wallet secu-
rity. In Mark Manulis, Ahmad-Reza Sadeghi, and Steve Schneider, editors,
Applied Cryptography and Network Security, pages 156–174, Cham, 2016.
Springer International Publishing.

[GJKR96] Rosario Gennaro, Stanis law Jarecki, Hugo Krawczyk, and Tal Rabin. Ro-
bust threshold dss signatures. In Ueli Maurer, editor, Advances in Cryp-
tology — EUROCRYPT ’96, pages 354–371, Berlin, Heidelberg, 1996.
Springer.

[GPS06] Marc Girault, Guillaume Poupard, and Jacques Stern. On the fly authen-
tication and signature schemes based on groups of unknown order. Journal
of Cryptology, 19:463–487, 2006.

[Lin17] Yehuda Lindell. Fast secure two-party ecdsa signing. In Jonathan Katz
and Hovav Shacham, editors, Advances in Cryptology – CRYPTO 2017,
pages 613–644, Cham, 2017. Springer International Publishing.

[LN18] Yehuda Lindell and Ariel Nof. Fast secure multiparty ecdsa with practi-
cal distributed key generation and applications to cryptocurrency custody.
In Proceedings of the 2018 ACM SIGSAC Conference on Computer and
Communications Security, CCS ’18, page 1837–1854, New York, NY, USA,
2018. Association for Computing Machinery.

[MR01] Philip MacKenzie and Michael K. Reiter. Two-party generation of dsa
signatures. In Joe Kilian, editor, Advances in Cryptology — CRYPTO
2001, pages 137–154, Berlin, Heidelberg, 2001. Springer.

[PS96] David Pointcheval and Jacques Stern. Security proofs for signature
schemes. In Advances in Cryptology - EUROCRYPT’96, LNCS 1070, pages
387–398. Springer, 1996.

[YCX21] Tsz Hon Yuen, Handong Cui, and Xiang Xie. Compact zero-knowledge
proofs for threshold ECDSA with trustless setup. In Public-Key Cryptog-
raphy - PKC 2021, volume 12710, pages 481–511. Springer, 2021.

30

https://eprint.iacr.org/2020/540

A Promise NIZK in the Random Oracle Model

Let (DL.Gen,DL.Code), (CL.Gen,CL.Code) and language L be defined as in Sec-
tion 3. We here present a concept of promise NIZK in the random oracle model.

Definition 8 (Promise NIZK). Let λ be the security parameter and ρ(·) be
an efficiently computable function. A promise NIZK protocol (P,V) for L with
respect to ρ(·) satisfies the following conditions:

• Completeness and zero knowledge defined in the same way as a NIZK pro-
tocol.
• Promise extractability. For any inverse polynomial ε(λ), any PPT P∗ that

generates a proof with an accepted probability ε(λ), there is a PPT extractor
Ext such that the following conditions hold.
1. Extraction by rewinding for DL.Codepk0(m). With oracle access to P∗ and

the programmability of the random oracle, ExtP
∗,H(cw0, cw1) extracts m

of DL.Codepk0(m) with probability negligibly close to 1.
2. Straight-line extraction for DL.Codepk0(m) using secret keys. If both key

pairs (pk0, sk0) and (pk1, sk1) are honestly generated, then given (sk0, sk1)
as input the extractor Ext(sk0, sk1, cw0, cw1) (without access to P∗) ex-
tracts ρ(m) with probability negligibly close to 1, where m is message
encoded into DL.Codepk0(m).

Applying the Fiat-Shamir transform to our promise Σ-protocol Σ2
prom for

equality of plaintexts, we could obtain the following promise NIZK Πprom by
using a hash function H in the random oracle model.

Protocol Πprom for proving the equality of plaintexts

Common input: stprom = ((G,P), (s̃, p, gp, f, h), (C1, C2, c1, c2)).
P′s Private input: m ∈ Zp, r1 ∈ Zp and r2 ∈ [0, S] s.t. C1 = r1G,
C2 = r1P +mG, c1 = gr2p and c2 = hr2fm.

Proof generation by P.

1. Choose s1 ← Zp and s2 ← [0, U) and sm ← Zp at random.
2. Compute A1 = s1G, A2 = s1P + smG, a1 = gs2p , a2 = hs2fsm .
3. Compute e = H(stprom, {Ai}2i=1, {ai}2i=1).
4. Compute z1 = s1 +er1 mod p, z2 = s2 +er2 and zm = sm+em mod p.
5. Send πprom = ({Ai}2i=1, {ai}2i=1, z1, z2, zm) to V.

Proof verification by V.

1. Parse πprom = ({Ai}2i=1, {ai}2i=1, z1, z2, zm).
2. Compute e = H(stprom, {Ai}2i=1, {ai}2i=1).
3. Output 1 iff z2 ∈ [0, U + (p − 1)S), z1G = A1 + eC1, z1P + zmG =
A2 + eC2, gz2p = a1c

e
1 and hz2fzm = a2c

e
2.

31

Lemma 2. If (p− 1)S/U is negligible, then protocol Πprom is a promise NIZK
proof in the random oracle with respect to the identity function ρ : m→ m.

Proof. Note that it follows from standard arguments that the protocol Πprom

satisfies completeness, zero knowledge in the random oracle model.
Here we just give a proof sketch for the promise extractability. Observe that

if the probability that P∗ makes the verifier accept Πprom is greater than ε(λ)
in the random oracle model, then we can define the set G′r∗p with a fixed good
random tap r∗p as in the previous section, and show that the size of G′r∗p is greater
than pε(λ) using the forking lemma in [PS96], which yields an extractor Ext with
failing probability 0 as showed previously, and thus the first condition of promise
extractability holds.

With the same way as in proving Theorem 2, we could extract the plaintext
m using the both secret keys without rewinding the prover, thus conclude the
second condition of promise extractability : straight-line extraction.

Similarly, we can obtain promise NIZK proofs for the other two promise
Σ-protocols Σ1

prom and Σ3
prom described in Section 3.1 and 3.2 respectively.

B Proof of Theorem 4

Proof. We prove the security by constructing a PPT simulator S such that any
polynomial-time adversary A which either corrupts P1 or P2 cannot distinguish
a real execution of the protocol from a simulated one with non-negligible proba-
bility. Specifically, the simulator S only has access to a trusted party computing
the ideal functionality FECDSA, it learns in the ideal world the verification key
Q and the signature (r, s) for message m as outputs of KeyGen and Sign, respec-
tively.

First, we show how to simulate the key generation and signing when A cor-
rupts P1.

Simulating Key Generation Phase When A Corrupts P1:

1. Given input KeyGen(G, G, p), the simulator S sends it to FECDSA and
receives a verification key Q.

2. S invokes A on input KeyGen(G,G, p) and receives (com-prove, 1, Q1, x1)
as A intends to send to FRDL

com-zk.
3. S verifies whether Q1 = x1 ·G (S uses the extractor to compute x1). If

so, then computes Q2 = x−1
1 ·Q; otherwise just chooses a random Q2.

4. S sends (proof, 2, Q2, 1) to A as if sent by FRDL

zk .

5. S receives (decom-proof, 1) as A intends to send to FRDL

com-zk. If Q1 6= x1G,
then S sends abort to the trusted party computing FECDSA.

6. S verifies h = ĥp, gp = ĝpp and the promise Σ-protocol for LDLCL. If all
pass, S continues; otherwise aborts the simulation.

32

7. S sends continue to FECDSA for P2 to receive the output, and stores
(x1, Q, ckey).

Simulating Signing Phase When A Corrupts P1:

1. Upon receiving input Sign(sid,m), the simulator S sends it to FECDSA

and receives a signature (r, s).
2. S computes R = (r, ry) with the ECDSA verification algorithm.
3. S invokesA with input Sign(sid,m), and simulates the first three rounds,

which is the same as in the key generation stage to computeQ. We briefly
describe the procedure as follows:
(a) S receives (com-prove, sid||1, R1, k1) as A intends to send to FRDL

com-zk.
(b) S verifies R1 = k1 ·G. If so, it computes R2 = k−1

1 ·R; otherwise it
samples a random R2. S sends (proof, sid||2, R2, 1) to A.

(c) S receives (decom-proof, sid||1) as A intends to send to FRDL

com-zk. If
R1 6= k1 · G, then S sends abort to the trusted party computing
FECDSA.

4. S computes s′ = k1 · s mod p and fs
′
. Then S chooses t ← [0, pS),

computes c3,1 = ctkey,1, c3,2 = ctkey,2 · fs
′
, and sends (c3,1, c3,2) and tp =

t mod p to A.

In this case, the differences between the real protocol and the simulated one
is the way S generates Q2, R2 and (c3, tp).

Since Q received from FECDSA is uniformly random, the distribution of Q2 =
x−1

1 · Q is uniform as well, which is identical to the real protocol. The analysis
of R2 is similar to Q2.

We now show that the distributions of (c3, tp) in the two protocols are neg-
ligibly close. S does not abort in the key generation phase in this case, which
means the promise Σ-protocol passes the verification and h = ĥp, gp = ĝp

p,
which implies p - ord(h), p - ord(gp).

Let a = k−1
2 rx2, b = k−1

2 m′. The distribution of (c3, tp) in the real protocol
is {t← [0, pS) : (ca+t

key,1, f
b ·ca+t

key,2, t mod p)}, while in the simulated protocol, the

distribution is {t← [0, pS) : (ctkey,1, f
ax1+b ·ctkey,2, t mod p)}. Since p - ord(h), p -

ord(gp) and the promise Σ-protocol passes the verificiation, all the preconditions
of Lemma 1 hold. Therefore, by Lemma 1 we have the above two distributions
are negligibly close according to Lemma 1. This completes the proof of the case
where A corrupts P1.

We now shows how to simulate the key generation and signing when A cor-
rupts P2.

Simulating Key Generation Phase When A Corrupts P2:

1. Given input KeyGen(G, G, p), the simulator S sends it to the trusted
party computing FECDSA and receives a verification key Q.

33

2. S invokes A on input KeyGen(G, G, p) and sends (proof-receipt, 1) to A
as if sent by FRDL

com-zk.

3. S receives (prove, 2, Q2, x2) as A intends to send to FRDL

zk . S checkes
if Q2 = x2 · G. If so, computes Q1 = x−1

2 · Q, and sends
(decom-proof, 1, Q1, 1) to A as if sent by FRDL

com-zk; otherwise S simulates
P1 aborting.

4. S runs (pk′, sk′) ← CL.KGen(1λ), where pk′ = (s̃, p, ĝp, ĥ, f), sk′ = x. S
computes h = ĥp, gp = ĝpp , sets pk = (s̃, p, gp, h, f), sk = sk′, and sends

(pk′, pk) to A.
5. S chooses x̃1 ← Zp, r̃1 ← [0, S], computes ckey ← CL.Encpk(x̃1; r̃1). Then
S runs the simulator ofΣ1

prom on the (invalid) instance ((G,Q1), pk, ckey)
to generate a proof of euqality of messages.

6. S sends continue to FECDSA for P1 to receive ouput, and stores (x2, Q).

Simulating Signing Phase When A Corrupts P2:

1. On input Sign(sid,m), the simulator S sends it to FECDSA and receives
a signature (r, s) on the message m.

2. S computes R = (r, ry) with the ECDSA verification algorithm.
3. S invokes A with input Sign(sid,m), and sends (proof-receipt, sid||1) to
A as if sent by FRDL

com-zk.

4. S receives a query (prove, sid||2, R2, k2) to FRDL

zk by A. S verifies
that R2 = k2 · G. If so, it computes R1 = k−1

2 · R, and sends
(decom-proof, sid||1, R1, 1) to A as it expects to receive from FRDL

com-zk;
otherwise, S simulates P1 aborting.

5. S receives (c3, tp) from A, and decrypts c3 to get s′ ∈ Zp using sk2.
S checks whether s′ − x̃1tp = k−1

2 (m′ + rx2x̃1) mod p. If so S sends
continue to the trusted party computing FECDSA such that P1 receives
the output; otherwise it sends abort to FECDSA.

We prove the security in this case by constructing a sequence of hybrids,
where the first hybrid is the real execution and the last one is the simulation.
We show the views of A in adjacent hybrids are indistinguishable, which implies
the real execution is indistinguishable from the simulated one.

Hybrid0: This is the real execution of the protocol.

Hybrid1: This hybrid is the same as Hybrid0, except that in the key generation
phase, the secret key sk = x is used to encrypt x1 instead of using the public key
h. More specifically, ckey is computed as (u, ux · fx1), where u = gr1p , r1 ← [0, S].

It is easy to know that the views in Hybrid0 and Hybrid1 are identical.

Hybrid2: This hybrid is the same as Hybrid1, except that P1 runs the simulator
for Σ1

prom protocol to generate the proof of euqality of messages. Due to (honest-

34

verifier) zero-knowledge property of promise Σ-protocol7, we have that Hybrid2

is indistinguishable from Hybrid1 .

Hybrid3: This hybrid is the same as Hybrid2, except that in the key generation
phase, ckey is generated as (u, ux · fx1), where u = gr1 , r1 ← D.

There is a minor change of the public key of CL encryption in the protocol.
h and gp are computed as h = ĥp and gp = ĝpp , respectively. Where ĝpp and

ĥ are generated from Gen(1λ, p). Note that since gcd(p, ord(Gp)) = 1, then gp
is a generator of Gp. Due to the HSM assumption, we have that Hybrid3 is
indistinguishable from Hybrid2.

Hybrid4: This hybrid is the same as Hybrid3, except that it switches to the
ideal world as follows: 1) Q and R are received from FECDSA; 2) x2 and k2

are extracted from (prove, 2, Q2, x2) and (prove, sid||2, R2, k2), respectively, 3)
S computes ckey by encrypting a fresh random message x̃1 ← Zp using CL
encryption scheme; 4) In the last step of signing, S checks both a) s′′ = k−1

2 (m′+
rx̃1x2) and b) (s′′k2) ·P = m′ ·P +r ·Q. If both fail, S aborts. Otherwise, returns
(r, s).

Note that the differences of 1) and 2) do not change the distribution of
Hybrid3. Observing that the CL encryption scheme used in our protocol is ex-
actly the same as the one based on Hash Proof System described in [CCL+19] 8,
in other words, our CL encryption scheme can be viewed as being derived from
the projective hash family in [CCL+19]. Thus, one can verify the indistinguisha-
bility of the two ciphertexts ckey in Hybrid4 and Hybrid3 using the same
reasoning as in the proof of Game2 to Game3 in Theorem 1 of [CCL+19]. As
stated in [CCL+19], the extra check b) ensures that if a PPT adversary tells
apart these two hybrids by causing one to abort while the other does not, then
it can be used to break the double encoding assumption. Due to the space limit,
we do not repeat the proof and refer to [CCL+19] for more details. We conclude
the indistinguishability of Hybrid4 and Hybrid3.

Hybrid5: This hybrid is the same as Hybrid4, except that S does not check b)
in the last step of signing.

These two hybrids differ if and only if check a) fails in both of them, while
check b) passes. If this happens S has decrypted c3 to the value s′′ = k−1

2 (m′ +
rx1x2). Since S has extracted k2, x2, receives r from FECDSA and knows m′, S
can compute x1 from s′′, thereby computing the discrete logarithm of point Q.
Thus distinguishing these two hybrids reduces to the hardness of breaking the
DL problem in G. We have that Hybrid5 is indistinguishable from Hybrid4.

Hybrid6: This game is the same as Hybrid5, except that in the key generation
phase, ckey is computed as (u, ux · f x̃1), where u = gr1p , r1 ← [0, S].

7 As mentioned before, one can obtain a promise NIZK via the Fiat-Shamir transfor-
mation and achieve zero knowledge in the random oracle model.

8 When the public key of a CL encryption scheme generated by an honest P1, the
distribution of CL public key pk2 in our protocol is identical to that of CL public
keys in [CCL+19] since p - ord(Gp).

35

The analysis is the same as the proof of the indistinguishability of Hybrid2

and Hybrid3, and we have that Hybrid6 is indistinguishable from Hybrid5.

Hybrid7: This game is the same as Hybrid6, except that in the key generation
phase ckey is generated in an honest way using the public key. The same proof
of the indistinguishability of Hybrid0 and Hybrid1 applies here, and we have
that Hybrid7 is indistinguishable from Hybrid6.

Putting the above together, we conclude Theorem 4.

C Proof of Theorem 5

Proof. Observe that simulating the key generation phase can be done in a similar
way to the work of [CCL+20], since the changes we made have no impact on the
security of the protocol. Here we just give a simulator S for the signing phase.

Simulating P1 in Signing

1. As in a real execution, S samples k1, λ1 ← Zp. It computes Ck1 ←
EG.Encpk′1(k1), ck1 ← CL.Encpk1(k1), and (c1, d1) ← Com(γ1G), then
generates a promise Σ-proof π1 for the equality of plaintexts of Ck1 , ck1 .
It broadcasts (c1, Ck1 , ck1 , π1) before receiving {cj , Ckj , ckj , πj}j∈S,j 6=1

from A. S checks the proofs are valid and extracts the encrypted values
{kj}j∈S,j 6=1 and computes k̃ = Σi∈Ski using ExtA(Ckj , ckj).

2. (a) For j ∈ S, j 6= 1, S computes βj,1, t̂
′
j,1, ckjγ1 as in a real execution of

the protocol, it samples a random µj,1 ← Zp, t′j,1 ← [0, pS) and sets
ckjw1 = cki ⊗ t′j,1 ⊕ (1, fµj,1), and Bj,1 = kj ·W1 − µj,1 ·G. S sends

(ckjγ1 , t̂
′
p,j1, ckjw1

, t′p,j1, Bj,1) to Pj , where t̂′p,j1 = t̂′j,1 mod p, t′p,j1 =
t′j,1 mod p.

(b) When it receives (ck1γj , t̂
′
p,j1, ck1wj , t

′
p,j1, B1,j) from Pj , it decrypts

as in a real execution of the protocol to obtain α1,j and µ1,j .
(c) S verifies that µ1,jG+B1,j = k1Wj . If so, since S also knows k1 and

wj , it computes ν1,j = k1wj − µ1,j mod p.
S computes δ1 = k1γ1 +Σk 6=1α1,k +Σk 6=1βk,1. It can compute

Σi>1σi = Σi>1(kiwi +Σj 6=i(µi,j + νj,i))

= Σi>1Σj 6=i(µi,j + νj,i) +Σi>1kiwi

= Σi>1(µi,1 + ν1,i) +Σi>1,j>1kiwj ,

and chooses the random values µi,1 and it compute all of the shares
ν1,j = k1wj − µ1,j mod p.

3. S broadcasts δ1 and receives all the {δj}j∈S,j 6=1 from A. Let δ = Σi∈Sδi.
4. (a) S broadcasts d1 which decommits to Γ1, and A reveals {dj}j∈S,j 6=1

which decommit to {Γj}j∈S,j 6=1.

36

(b) S proves knowledge of γ1 s.t. Γ1 = γ1G, and for j ∈ S, j 6= 1, receives
the PoK of γj s.t. Γj = γjG. S extracts {γj}j∈S,j 6=1 and computes
γ = Σi∈Sγi mod p and k = δ · γ−1 mod p.

If k = k̃ mod p, S proceeds as follows:
(c) requests a signature (r, s) for m from its ECDSA signing oracle.
(d) computes R = (rx, ry) = s−1(H(m) · G + r · Q) ∈ G (note that

r = rx mod p).
(e) rewinds A to the decommitment step at 4.(a) and equivocates P1’s

commitment to open to Γ̂1 := δ · R − Σi>1Γi. It also simulates the
proof of knowledge of γ̂1 s.t. Γ̂1 = γ̂1G. Note that δ−1(Γ̂1+Σi>1Γi) =
R.

Else if k 6= k̃ mod p, then S proceeds as follows:
(c) computes R = (rx, ry) = δ−1(Σi∈SΓi) = k ·G and r = rx mod p

5. If k̃ = k, now S knows Σj∈S,j 6=1sj held by A since sj = kjm+ σjr, and
proceeds as follows:
(a) computes s1 held by P1 as s1 = s−Σj∈S,j 6=1sj
(b) continues the steps of phase 5 as in a real execution.
If k̃ = k, S does the following
(a) sample a ramdom s̃1 ← Zp
(b) sample `1, ρ1 ← Zp, compute V1 = s1R+ `1G;A1 = ρ1G; (ĉ1, d̂1)←

Com(V1, A1) and send ĉ1 to A
(c) receive {ĉj}j 6=1 and decommit by broadcasting d̂1. Prove knowledge

of (s1, `1, ρ1) s.t. (V1 = s1R+ `1G) ∧ (A1 = ρ1G).

(d) for j ∈ S, j 6= 1, S receive d̂j and the ZKPoK of (sj , `j , ρj) s.t.
(Vj = sjR+ `jG) ∧ (Aj = ρjG).

(e) compute V = −H(m)G− rQ+Σi∈SVi, A = Σi∈SAi, T1 := `1A and
sample a random U1 ← G.

(f) compute (c̃1, d̃1) ← Com(U1, T1) and send c̃1 to A. Upon receiving
{c̃j}j 6=1 from A, broadcast d̃1 and receive the {d̃j}j 6=1.

(g) now since Σi∈STi 6= Σi∈SUi both A and S abort.

To argue our protocol remains secure, we first construct P̃1 which is statisti-
cally indistinguishable from real P1, and then prove that S is indistinguishable
from P̃1. We construct P̃1 as follows.

P̃1 acts the same way as P1 except that in Phase 2, for every j, instead of
choosing a random νj,1 and generating ckjw1 , Bj,1, P̃1 does the following:

1. Compute kj ← ExtA(Ckj , ckj).
2. Sample a random µj,1 ← Zp.
3. Set ckjw1

= ckj ⊗ tj,1⊕ (1, fµj,1) where tj,1 ← [0, pS), Bj,1 = kj ·W1−µj,1 ·G
and νj,1 = kjw1 − µj,1.

In P1, we have ckjw1
= ckj ⊗ (w1 + tj,1) ⊕ (1, f−νj,1), Bj,1 = νj,1 · G, and

{νj,1} is a uniform distribution over Zp, while in P̃1, we have ckjw1
= ckj ⊗

37

tj,1 ⊕ (1, fw1kj−vj,1), Bj,1 = vj,1 ·G. Note that {νj,1 = kjw1 − µj,1} is a uniform
distribution over Zp, since µj,1 is sampled from Zp uniformly. It follows from
Lemma 1 that the distribution {ckjw1 , Bj,1, tj,1 mod p, νj,1} of P1 is statistically

close to the one of P̃1. Thus, P̃1 is statistically indistinguishable from real P1

for any malicious A.

We distinguish three cases accoring to the result of the check k̃ = k in step
4 of the simulator:

Case 0: The adversary A aborts befor the check;
Case 1: k computed by S equals k̃;
Case 2: k computed by S does not equal k̃.

We now prove S is indistinguishable from P̃1 in each case.

Case 0. Note that P̃1 and S proceed exactly in the same way before the check,
and thus P̃1 is indistinguishable from S.

Case 1. We construct a series of hybrids to complete the proof in this case.

Hybrid0: S0 acts the same way as P̃1.

Hybrid1: S1 acts the same way as S0 except that it simulates the promise
Σ-proof in Phase 1 and proofs of ZKPoK in Phase 4 and Phase 5 using
corresponding simulators and equivocates the commitment c1 to open to γ1G.

It follows from the hiding of the equivocable commitment and (HV)ZK
of promise Σ-protocol and ZKPoK that Hybrid1 is indistinguishable from
Hybrid0.

Hybrid2: S2 acts the same way as S1 except that it uses the secret key sk1

instead of the public key pk1 and r1 to compute ck1 ← (u1, u
sk1
1 fk1) where

u1 = gr1p .
It is easy to know that Hybrid2 is identical to Hybrid1.

Hybrid3: S3 acts the same way as S2 except that it replaces the first element
u1 in ck1 with ū1 = gr1p f

b1 ∈ G\Gp by sampling r1 ∈ Zs and b1 ∈ Zp at random.
From HSM assumption, we have that Hybrid3 is indistinguishable from

Hybrid2.

Hybrid4: S4 acts the same way as S3 except that it generates Ck1 ← EG.Encpk′1(0n),
and (c1, d1)← Com(G).

Observe that the secret key of ElGamal encryption is not used during the
entire execution. It is easy to verify that the indistinguishability of Hybrid4

and Hybrid3 follows from the IND-CPA security of ElGamal encryption and the
hiding property of the commitment.

Hybrid5: S5 acts the same way as S4 except that when k̃ = k, it gets a signature
(r, s) from the signing oracle and follows the simulation stretagy as S.

38

One can apply the same argument of indistinguishability of Game2 and Game3

in Lemma 4 of [CCL+20] and prove that, conditioning on k̃ = k, Hybrid5 is
statistically indistinguishable from Hybrid4.

Hybrid6: S6 acts the same way as S5 except that it replaces the first element
ū1 of ck1 with u1 ∈ Gp, where u1 = gr1p , r1 ← [0, S].

From the HSM assumption, we have that Hybrid6 and Hybrid5 are indis-
tinguishable.

Hybrid7: S7 acts the same way as S6 except that it uses the public key pk1

instead of sk1 to compute ck1 ← (gr1p , h
r1fk1), where r1 ← [0, S].

It’s easy to verify that Hybrid7 is identical to Hybrid6.

Hybrid8: S8 computes Ck1 ← EG.Encpk′1(k1) and (c1, d1) ← Com(γ1G), which
is the only difference with S7.

From the IND-CPA security of ElGamal encryption and the hiding of the
commitment, we have that Hybrid8 is indistinguishable from Hybrid7.

Hybrid9: S9 is identical to S. Note that the differences between Hybrid9 and
Hybrid8 are: 1). In Hybrid9 S9 acts as an honest prover to generate promise
Σ-proof in Phase 1 and zero knowledge proofs in step 4(b), while S8 invokes
the corresponding simulators, and 2). S9 open c1 in an honest way, while S8

equivocates it to open in step 4(a).
From the same reasoning for indistinguishability of Hybrid0 and Hybrid1,

it follows Hybrid9 and Hybrid8 are indistinguishable.

It remains to prove the following lemma to complete the proof for Case 1.

Case 2. We construct three new hybrids between the simulator and the adver-
sary here. In Hybrid0, S0 acts the same way as P̃1; In Hybrid1, S1 acts the same
way as S0 except that it chooses U1 as a random group element; In Hybrid2,
S2 is identical to S. Following the reasoning similar to that in [CCL+20], one
can prove these three hybrids are computationally indistinguishable under the
DDH assumption.

In sum, if the adversary A could output a new signature to break the existen-
tial unforgeability of our threshold protocol, then we have an efficient algorithm
AS that breaks the existential unforgeability of the standard ECDSA. This con-
cludes Theorem 5.

39

	Promise -protocol: How to Construct Efficient Threshold ECDSA from Encryptions Based on Class Groups
	Introduction
	Our Contribution
	Technical Overview
	Related Work

	Preliminaries
	CL Encryption from HSM Assumption
	-protocol
	Threshold ECDSA and Its Security
	Simulation-based Security and Ideal Functionalities.
	Game-based Security.

	Promise -protocols
	Promise -protocol for Encryptions
	Promise -protocol for Homomorphic Operations

	Simulating Homomorphic Operations on an Invalid Ciphertext
	Two-party ECDSA
	Multi-party (Threshold) ECDSA
	Improvment on CCL+20 with promise -protocols
	Improving the bandwidth efficiency of LN18

	Comparisons
	Two-Party ECDSA Protocol.
	Multi-Party ECDSA Protocol.

	Promise NIZK in the Random Oracle Model
	Proof of Theorem 4
	Proof of Theorem 5
	Case 0.
	Case 1.
	Case 2.

