Universally Composable XY-protocols in the
Global Random-Oracle Model

Anna Lysyanskaya and
Leah Namisa Rosenbloom

Brown University, Providence RI 02906, USA
{anna_lysyanskaya,leah rosenbloom}@brown.edu

Abstract. Numerous cryptographic applications require efficient non-
interactive zero-knowledge proofs of knowledge (NIZKPoK) as a build-
ing block. Typically they rely on the Fiat-Shamir heuristic to do so,
as security in the random-oracle model is considered good enough in
practice. However, there is a troubling disconnect between the stand-
alone security of such a protocol and its security as part of a larger,
more complex system where several protocols may be running at the
same time. Provable security in the general universal composition model
(GUC model) of Canetti et al. is the best guarantee that nothing will
go wrong when a system is part of a larger whole, even when all parties
share a common random oracle. In this paper, we prove the minimal nec-
essary properties of generally universally composable (GUC) NIZKPoK
in any global random-oracle model, and show how to achieve efficient
and GUC NIZKPoK in both the restricted programmable and restricted
observable (non-programmable) global random-oracle models.

Table of Contents

Introduction

Preliminaries

2.1 X-protocols, Revisited
2.2 Straight-Line Compilers o i i i
2.3 OR-Protocolso.iiii

Properties of GUC NIZKPoK

3.1 Groro and Grporo, Revisited o
3.2 The NIZKPoK Ideal Functionality
3.3 The CRS Ideal Functionality...........
3.4 GUC Security Definitions.,
3.5 GUC NIZKPoK Are Complete, NIM-SHVZK, and NI-SSS

GUC NIZKPoK in the Programmable Global ROM

GUC NIZKPoK in the Observable Global ROM

5.1 Generating a CRS that Plays Nice with YX-protocols
5.2 GUC Compileroui e
5.3 Realizing Fyrzx in the Gro-Feps-hybrid Model

Constructions via the Randomized Fischlin Transform

6.1 The Randomized Fischlin Transform, Revisited
6.2 Efficient, GUC NIZKPoK in the Grpopg-hybrid Model...........
6.3 Efficient, GUC NIZKPoK in the Gyoro-Fcrs-hybrid Model

Supplementary Definitions

AT Notationt
A.2 Extended Discussion of Privileges in the Global ROM(s)
A.3 Protocol Template.
Ad 2protocolS. ..o
A.5 Standard X-protocol Security Definitions
A.6 Non-Interactive Special Soundness...........................
A.7 Additional Properties of NI-Compliant Y-protocols
A.8 The OR-protocolot e
A.9 The GUC Real- and Ideal-World Experiments.................
A.10 Discussion of Strong Special Soundness.
A.11 The Original Fischlin Transform
A .12 The Randomized Fischlin Transform

11
11
12
15

17
17
18
19
19
20

22

24
24
25
26

28
29
30
30

UC XY-protocols in the Global ROM 3

B Supplementary Proofs 47
B.1 SHVZK Implies Multi-SHVZK 47
B.2 Full Proof of Theorem 1.......... 48
B.3 Full Proof of Theorem 2. 51
B.4 Full Proof of Theorem 3. 55

B.5

Full Proof of Theorem 4. 59

4 A. Lysyanskaya and L.N. Rosenbloom

1 Introduction

Non-interactive zero-knowledge proofs of knowledge (NIZKPoK) [5,28,42] form
the basis of many cryptographic protocols that are on the cusp of widespread
adoption in practice. For example, the Helios voting system [1] and other effi-
cient systems employing cryptographic shuffles [46] use zero-knowledge proofs of
knowledge to ensure that each participant in the system correctly followed the
protocol and shuffled or decrypted its inputs correctly. Anonymous e-cash [12]
and e-token [11] systems use them to compute proofs of validity of an e-coin or
e-token. In group signatures [18,2] they are used to ensure that the signer is in
possession of a group signing key. In anonymous credential constructions [13,14],
they are used to ensure that the user identified by a given pseudonym is in pos-
session of a credential issued by a particular organization.

The non-interactive aspect of NIZKPoK is especially important to most of
these applications—it enables a prover to form a proof of some attribute for a
general verifier rather than forcing the prover to talk to each verifier individually,
which is inefficient in most cases and infeasible for some applications. It is also
extremely important that the NIZKPoK be efficient. Thus, the constructions
cited above use efficient X-protocols [26] made non-interactive via the Fiat-
Shamir heuristic [29] to instantiate the NIZKPoK in the random-oracle model
(ROM) [3]. Recall that a X-protocol for a relation R is, in a nutshell, a (1—negl)-
sound honest-verifier three-move proof system in which the single message from
the verifier to the prover is a random /¢-bit string. The Fiat-Shamir transform
makes the proof system non-interactive by replacing the message from the verifier
with the output of a random oracle (RO).

Recently, a better understanding of how badly such NIZKPoK fare in the con-
current setting emerged [44,27,4,39]. Allowing for secure concurrent executions
is of vital importance for the real-world application of any of the cryptographic
protocols mentioned above, and especially for distributed protocols. But Drijvers
et al. [27] demonstrated subtleties in the proofs of security for concurrent pro-
tocol executions that often go undetected, leaving building-block cryptographic
protocols vulnerable to attacks like Wagner [44] and Benhamouda et al.’s ex-
ploitation of the ROS problem [4].

One way to circumvent the unique subtleties of composing cryptographic
primitives is to prove that each primitive is universally composable using Canetti’s
universal composition (UC) framework [19]. In the UC framework, the security
of a particular session of a protocol is analyzed with respect to an environment,
which represents an arbitrary set of concurrent protocols. The environment in
the UC framework can talk to and collude with the traditional “adversary” in
cryptographic protocols, directing it to interfere with the protocol. However, the
original UC framework did not provide a mechanism for parties in different set-
tings to use a shared global functionality, for instance a shared RO or common
reference string (CRS). In real-world applications, it is virtually guaranteed that
parties will share setup and state between sessions.

To address the issue of shared state and concurrency in the UC framework,
Canetti, Dodis, Pass, and Walfish developed the general UC (GUC) framework,

UC XY-protocols in the Global ROM 5

which considers “global” functionalities G that can be queried by any party
in any session at any time, including the environment [20]. Canetti, Jain, and
Scafuro later showed several practical applications of the GUC framework with
a restricted observable global RO G,opg as the only trusted setup. They include
commitment, oblivious transfer, and secure function evaluation protocols, all
GUC in the Gyopo-hybrid model [22]. Building on Canetti et al.’s framework,
Camenisch, Drijvers, Gagliardoni, Lehmann, and Neven developed a restricted
programmable observable global RO, denoted Grporg, that allows for more efficient
GUC commitments in the Gypopo-hybrid model [10].

Thus, the Gropo- and Grperg-hybrid models are attractive ones for constructing
and analyzing practical and composable non-interactive zero-knowledge proofs.
Obtaining an efficient NIZKPoK (for a relation R) in either global ROM from an
efficient X-protocol (for the same relation) is a natural goal. We begin by showing
that any protocol that can be considered a GUC NIZKPoK in any global ROM
must satisfy particular flavors of completeness, zero-knowledge, and soundness
(formalized in Definitions 3, 4, and 5, respectively) — i.e., that these flavors are
necessary to achieve security in the global RO model.

Theorem 1 (Informal). If a protocol is a GUC NIZKPoK in any global
ROM, then it satisfies Definitions 3, 4, and 5.

Next, we obtain GUC NIZKPoK in the (programmable) Gyporo-hybrid model
by using a straight-line compiler on any X-protocol. A straight-line compiler [30]
transforms a X-protocol into a non-interactive zero-knowledge proof system in
which the knowledge extractor uses the proof itself as well as the adversary’s
random-oracle query history in order to compute an adversarial prover’s witness.
(More formally, the resulting protocol satisfies our Definitions 3-5.)

Theorem 2 (Informal). The non-interactive proof system obtained by
running any X-protocol for relation R through any straight-line compiler is a
GUC NIZKPoK for relation R in the Grporo-hybrid model.

While the programming property of Grporo is helpful in proving security, it
also localizes aspects of the global RO by providing a programming verification
interface that concurrent protocols cannot access. It is unclear how localized
interfaces that are vital to the security of component protocols might impact
the security analysis of composed protocols.

Therefore, we also consider NIZKPoK in the less restrictive (non-program-
mable) Gyopo-hybrid model, where Gy opo’s interfaces are completely public. Un-
fortunately, Pass [40] and Canetti et al. [22] point out that it is not possible
to construct NIZKPoK using only a global functionality, because there is no
way for the simulator in the security experiment to exercise control over it. We
introduce a new model called the G,opg-Fcrs-hybrid model, in which protocol
participants have access to a trusted common reference string (CRS) function-
ality. Participants can compute this CRS for a one-time cost at the beginning
of the session using only G,.rg and Canetti et al.’s GUC non-interactive secure
computation (NISC) protocol [22]. We prove that any straight-line compiler in

6 A. Lysyanskaya and L.N. Rosenbloom

conjunction with our new construction, which uses a special type of X-protocol
called an OR-protocol [26,24], is sufficient to transform any X-protocol into a
GUC NIZKPoK in the groRD—fCRs—hybI'id model.

Theorem 3 (Informal). The non-interactive proof system obtained by
composing any X -protocol for relation R with a local CRS relation S and
running the combined OR-protocol through any straight-line compiler is a GUC
NIZKPoK for relation RV S in the Gporg-Fers-hybrid model.

The straight-line compiler we use ensures that the protocols we obtain satisfy
the flavors of completeness, zero-knowledge, and soundness from Definitions 3,
4, and 5. Combined with Theorem 1, this demonstrates that these flavors are
both necessary and sufficient.

Finally, we realize our GUC transforms for X-protocols using Kondi and
shelat’s randomized version of the Fischlin transform [35,30], demonstrating that
it is possible to construct efficient GUC NIZKPoK from a broad class of X-
protocols in both the Grporg and Grerg-Fers-hybrid models.

Along the way, we uncover theoretical observations that may be of indepen-
dent interest. First, that straight-line compilers afford strong security guarantees:
because they work exclusively using information the adversary already knows,
we can compose them with other building blocks such as zero-knowledge simula-
tors without compromising the security of the overall system. This “decoupling”
property [30], and security properties of non-rewinding extractors in general,
are of interest in the quantum random-oracle model (QROM), where rewinding
is tricky because of the no-cloning theorem [45,34,43]. It is the subject of fu-
ture work to explore whether other mechanisms of straight-line extraction (for
example, ones that do not rely on the adversary’s query history) [17,40,34,43]
are sufficient to bootstrap X-protocols into GUC NIZKPoK in the Grpero- or
Groro-Fers-hybrid models, a different global ROM, or the QROM.

Organization. In the remainder of the introduction, we provide general back-
ground information on X-protocols, the GUC model, the global ROM(s), and
straight-line extraction. In Section 2, we give formal definitions of X-protocols
and straight-line compilers. Section 3 contains definitions of GUC-security in
various global ROMs and a proof of Theorem 1 (that any GUC NIZKPoK must
have the security properties afforded by straight-line compilers). In Section 4, we
prove Theorem 2 (that any straight-line compiler is sufficient to transform any
XY-protocol into a GUC NIZKPoK in the Gypopo-hybrid model), and in Section 5
we prove Theorem 3 (that any straight-line compiler in conjunction with our
OR-protocol construction is sufficient to complete the transform in the Gorg-
Fers-hybrid model). Finally in Section 6, we leverage the randomized Fischlin
transform to efficiently realize our constructions in both global ROMs.

X-Protocols. A X-protocol for a binary NP relation R is a three-round, public-
coin proof system. On input z and w such that (z,w) € R, the prover generates

UC XY-protocols in the Global ROM 7

its first message com (in the literature on X' protocols, this first message is often
referred to as a “commitment”). In response, the honest verifier sends a unique /-
length random “challenge” chl to the prover. Finally, the prover “responds” with
a value res. The resulting transcript (com, chl, res) is then fed to a verification
algorithm that determines whether the verifier accepts or rejects.

XY -protocols must additionally satisfy three properties. First, they must sat-
isfy completeness: if the prover has a valid witness and both parties engage in the
protocol honestly, the verifier always accepts. Next, they must be special honest-
verifier zero-knowledge: there must exist a simulator algorithm that on input
x and chl € {0,1}¢ outputs an accepting transcript (com,chl,res) for z such
that, if chl was chosen uniformly at random, (com,chl,res) is indistinguish-
able from that output by an honest prover on input x. Finally, they must have
special soundness: if there are two accepting transcripts for any statement with
the same commitment com but different challenges chl # chl’, there exists an
extractor algorithm that can produce a valid witness from the transcripts. The
stronger version of soundness, special simulation soundness, says that special
soundness must still hold even if an adversary has oracle access to the simulator.

The X-protocol format captures many practical zero-knowledge proof sys-
tems. For example, Wikstrom [46] shows X-protocols for proving a rich set of
relations between ElGamal ciphertexts, which in turn allow proving that a set
of ciphertexts was shuffled correctly; similar protocols exist for Paillier cipher-
texts [23,17]. A robust body of literature exists giving X-protocols for proving
that values committed using Pedersen [41] and Fujisaki-Okamoto [32] commit-
ments satisfy general algebraic and Boolean circuits [8,15,16] and lie in certain
integer ranges [6,36]. For all the X-protocols listed above, the size and complexity
of the proof system is a O(1) factor of the complexity of verifying the underlying
relation R(x,w), making Y-protocols extremely desirable in practice.

X-protocols are also the most efficient technique to achieve zero-knowledge
proofs of knowledge of a commitment opening in the lattice setting [38,25], where
the complexity grows by a factor of O(k) in order to achieve soundness (1—27%).
Thus, for all the relations R cited above, our results immediately yield the most
efficient known GUC NIZKPoK in the global ROM.

The General Universal Composability (GUC) Model. Our security ex-
periment is that of the GUC model of Canetti et al. [20], which enables the
UC-security analysis of protocols with global functionalities.

Briefly, the UC and GUC modeling of the world envisions an adversarial
environment Z, which provides inputs to honest participants, observes their
outputs, and (at a high level) directs the order in which messages are passed
between different system components. Additionally, the world includes honest
participants (that receive inputs from Z and let Z observe their outputs) and
adversarial participants controlled by the adversary </ (whose behavior is also
directed and observed by Z).

The ideal world additionally contains an ideal functionality F and an ideal
adversary S, also called the simulator. In the ideal world, the honest partici-

8 A. Lysyanskaya and L.N. Rosenbloom

pants pass their inputs directly to F and receive output from it. The real world
does not contain such a functionality; instead, the honest participants run a
cryptographic protocol. The corrupted participants in the ideal world always
communicate through S, who simulates their view and may pass their inputs
to F through a private channel. There are also worlds in between these two: in
a G-hybrid world, the honest participants run a protocol that can make calls
to an ideal functionality G. In the GUC model, G is accessible not only to the
honest participants, but also to Z. A cryptographic protocol is said to be (G)UC
with respect to a functionality F (in other words, the protocol (G)UC-realizes
F) if for any real-world adversary 7, there exists an “ideal” adversary (simu-
lator) S which creates a view for the environment (in the ideal world) that is
indistinguishable from its view of the cryptographic protocol.

In our case, the ideal functionality is the NIZKPoK ideal functionality, or
JFurzk, which works as follows. An honest participant in a protocol session s can
compute a proof 7 of knowledge of w such that (z,w) € R by querying Fyrz’s
Prove interface and giving it (s, 2, w). The string 7 itself is computed according
to the algorithm SimProve provided by the ideal adversary S. The functionality
guarantees the zero-knowledge property because SimProve is independent of
w. An honest participant can also verify a supposed proof 7 for & by querying
Furze’s Verify interface on input (z, 7). Fyrzx ensures the soundness of the proof
system as follows: if the proof 7 was not issued by JFy1zx, then it runs an extractor
algorithm Extract provided by S to try to compute a witness w from the proof
7. The Extract algorithm may also require additional inputs from S.

The Global Random-Oracle Models (Global ROMs). The traditional
random oracle (RO) H : {0,1}* — {0,1} is a function that takes any string
as input and returns a uniformly random ¢-bit string as output [3]. The global
random-oracle model (global ROM) allows us to capture the realistic scenario in
which the same RO is reused by many parties over many (potentially concurrent)
executions of numerous distinct protocols. As envisioned by Canetti et al. [22]
and formalized by Camenisch et al. [10], the “strict” global RO functionality
Gsro 18 a public, universally-accessible RO that can be queried by any party in
any protocol execution, including by the arbitrary concurrent protocols modeled
by the environment in the UC framework [20].

Pass [40], Canetti and Fischlin [21], Canetti et al. [20,22], and Camenisch
et al. [10] have all discussed the limitations of Ggpg. In particular, Canetti and
Fischlin [21] demonstrated that it is impossible to achieve UC commitments with
only a global setup, and Canetti et al. extended this argument to commitments
and zero knowledge in the GUC framework [20] and the Gyopo-hybrid model [22].
The limitation stems from the fact that in a “strict” setup, the simulator does not
have any special advantage over a regular protocol participant. In our setting,
JFrizk needs to observe the adversary’s RO queries in order to extract witnesses
and ensure the special soundness property. Most zero-knowledge simulators also
rely on the extra ability to program the RO at selected points in order to simulate
proofs of statements without witnesses.

UC XY-protocols in the Global ROM 9

Canetti et al. first introduced a global RO Gyorg with a restricted “observ-
ability” property [22]. The ideal adversary (simulator) S in the security proof
of a protocol Il emulating an ideal functionality F in the G .po-hybrid model is
able to observe all adversarial queries to Gyorg as follows. First, S can observe the
corrupted parties’ queries to Gyopg by directly monitoring their input and output
wires (recall that in the ideal world, corrupted parties communicate through S).
The environment’s queries to Gropg, On the other hand, are not directly moni-
tored by S. Since Gyopg is completely public, the environment is free to query it
anytime; however, the environment is not free to query it with the same session
identifier (SID) as the participants in IT or F, because it is external to legitimate
sessions of IT by definition. In order to ensure the environment’s queries are still
available to the simulator, Gy.pg checks whether the SID for a query matches the
SID of the querent. In the event that it does not, this query is labelled “illegit-
imate,” creating the restriction. G.o,rp makes a record of all illegitimate queries
available to an ideal functionality F with the correct SID, if it exists. We will
see that for our construction of GUC NIZKPoK in the Grpopo- and Grorg-Fers-
hybrid models, Fyzxk can leverage these queries to extract witnesses from the
environment’s proofs.

Camenisch et al.’s restricted programmable observable global RO Gyporg [10]
builds on the functionality of G,.rg as follows. In order to ensure that program-
ming is restricted to the simulator, Grporg has an IsProgrammed interface that
allows participants with a particular SID to check whether the output of Grporo
was programmed on some input pertaining to the same session. Honest par-
ties in the challenge session can therefore check whether the adversary has pro-
grammed Grporo, and can refuse to continue the protocol if so. In the real world,
no programming occurs; in the ideal world, the simulator, who controls the cor-
rupted parties’ views of the experiment, can program Grporg and then pretend
it did not program anything by returning “false” to all of the corrupted parties’
IsProgrammed queries. Since only parties running a legitimate protocol session
s are allowed to use the IsProgrammed interface for s, the environment can-
not make IsProgrammed queries for s—if it could, it would easily be able to
distinguish between the real and ideal experiments by checking whether honest
parties’ responses were programmed.

We show how to construct efficient, GUC NIZKPoK in the Giporg-hybrid
model. However, we believe there may be downsides to programmable global
ROs like Grporo: it is not clear how compromising the fully-public aspect of the
global RO with a locally-restricted interface might impact the overall compos-
ability of protocols proven secure in the Gypopo-hybrid model.! In order to achieve
efficient GUC NIZKPoK without this localized interface, we build a new hybrid
model called the Gpopg-Fcrs-hybrid model. The G org-Fcrs-hybrid model shifts
the localized interface from inside of the global RO to inside of the protocol.
For a one-time cost at the beginning of the protocol execution, participants can
compute this CRS securely and realize Fy1zx using only the observable global RO

! For a full discussion of the subtle differences between observation and programming
privileges in the global ROM(s), see Appendix A.2.

10 A. Lysyanskaya and L.N. Rosenbloom

Groro by leveraging Canetti et al.’s GUC NISC protocol [22]. Similar mechanisms
are used in practice to obtain practical NIZKPoK in other ROMs [7].

In the real world, our ideal CRS functionality Fcgs returns a random string
CRS (the CRS our real-world participants might compute using the NISC proto-
col). In the ideal world, the simulator generates CRS itself, along with a trapdoor
trap that only it knows. The proof-generation process in our construction of
GUC NIZKPoK in the Gyoro-Fers-hybrid model is to show that the prover either
knows a “real” witness w for a statement x such that (z,w) € R, or it knows
the trapdoor to the CRS. The Prove and SimProve algorithms differ only in
the witness used: a real prover must use a real witness, while the simulator can
use trap in a way that we will show is imperceptible to the environment. We
formalize this intuition using an OR-protocol [24,26] over the original relation
R and what we call a samplable-hard relation for the CRS.

Straight-Line Extraction and the Fischlin Transform. The original Fis-
chlin transform [30] is a non-interactive transform for X-protocols in the stan-
dard ROM that allows for straight-line (or online) extraction. Straight-line ex-
traction is a process by which the extractor can produce a witness straight from
a valid proof without any further interaction with the prover. (In order to do so,
it will need additional, auxiliary information available to the extractor algorithm
only.) This is in contrast to extraction in the “rewinding” model, in which the
extractor resets the prover to a previous state and hopes for a certain pattern of
interaction before it can obtain a witness. Straight-line extraction is necessary
in the (G)UC model, which does not allow the simulator to rewind the envi-
ronment [20]. Furthermore, straight-line extraction produces a tight reduction,
which avoids security nuances surrounding the forking lemma [33].

In order to create a straight-line extractable proof system from a X-protocol,
the Fischlin transform essentially forces the prover to rewind itself, requiring
multiple proofs on repeated commitments until the probability that the prover
has generated at least two responses to different challenges on the same com-
mitment is overwhelming. Kondi and shelat recently showed that because the
Fischlin prover is deterministic—that is, because it tests challenges by iterating
from zero to some fixed constant—the original transform is open to a “replay”
attack that breaks the the witness indistinguishability property of OR-protocols
[35]. To avoid the attack, Fischlin’s original construction requires the underly-
ing XY-protocols to have a property called quasi-unique responses, which Kondi
and shelat demonstrate precludes the transformation of OR-protocols. Kondi
and shelat show how this property can be omitted (and most OR-protocols
transformed) by randomizing the challenge selection process and replacing the
quasi-unique responses property with a (more general) property called strong
special soundness. We review the details of the resulting “randomized” Fischlin
transform [31,35] in Appendix A.12.

UC XY-protocols in the Global ROM 11

2 Preliminaries

We use standard notation, available in Appendix A.1.

2.1 X-protocols, Revisited

Let R be any efficiently computable binary relation. For pairs (z,w) € R, or
equivalently such that R(z,w) = 1, we call a statement in the language of R,
denoted L, and say w is a witness to x € Lr. We consider Y-protocols over a
relation R between a prover P and a verifier V that have the general commit-
challenge-respond format discussed in Section 1, which Damgard formalizes as a
protocol template [26]. Since we will later introduce compilers for X-protocols—
first to make them non-interactive and straight-line extractable and then to make
them GUC—it will be helpful to define X-protocol interfaces with precise inputs
and outputs. We begin by formalizing an algorithmic version of the protocol tem-
plate 7 as a tuple of algorithms (Setup, Commit, Challenge, Respond, Decision),
the details of which are provided alongside Damgard’s original version in Ap-
pendix A.4.

XY -protocols must also satisfy the properties of completeness, special honest-
verifier zero-knowledge (SHVZK), and special soundness (SS). The SHVZK prop-
erty requires the existence of a simulator algorithm SimProve for simulating
proofs, and the SS property requires an extractor algorithm Extract for extract-
ing witnesses. Therefore, our algorithmic specification of a X-protocol includes
three additional algorithms: SimSetup, SimProve, and Extract.

In order to more easily translate our definition of X-protocols into the non-
interactive setting, we combine the Commit, Challenge, and Respond algorithms
of the protocol template into a Prove interface. For now we are still dealing with
the interactive version, and the specification of Prove below is a two-party pro-
tocol where the first input to the algorithm is the prover’s input, and the second
input is the verifier’s. After running Prove, both parties obtain the same copy
of the proof transcript 7 = (com, chl,res). In the next section, we will intro-
duce a straight-line compiler that makes the Prove interface a non-interactive
algorithm in the random-oracle model (ROM). The non-interactive, straight-line
extractable (NISLE) proof system resulting from the transformation will have
different versions of the SHVZK and SS properties; because we will work almost
exclusively with these versions, we defer formal definitions and discussions of the
original formulations to Appendix A.5.

Definition 1 (X-protocol). A Y-protocol for a relation R based on a proto-
col template T (Definition 15 in [37]) is a tuple of efficient procedures X'r . =
(Setup, Prove, Verify, SimSetup, SimProve, Extract), defined as follows.

— ppm < Setup(1*): Given a security parameter 1%, invoke 7.Setup(1*) to
obtain the public parameters ppm.

12 A. Lysyanskaya and L.N. Rosenbloom

— 7 « Prove((ppm, z,w), (ppm, z)): Let the first (resp. second) argument to
Prove be the input of the prover (resp. verifier), where both parties get ppm
and the statement x, but only the prover gets w. P and V run 7.Commit,
7.Challenge, and T.Respond. Output m = (com, chl, res).

— {0,1} « Verify(ppm,z,7): Given a proof 7 for statemenet x, parse
as (com,chl,res) and output the result of running T.Decision on input
(z, com, chl,res). Verify must salisfy the completeness property from Def-
inition 18 in Appendiz A.5.

— (ppm,) < SimSetup(1*): Generate ppm and the simulation trapdoor z. To-
gether, SimSetup and SimProve must satisfy the special honest-verifier zero-
knowledge property from Definition 19 in Appendiz A.5.

— m < SimProve(ppm, z,x,chl) : Given public parameters ppm, trapdoor z,
statement x, and a challenge chl, produce a proof m = (com, chl, res).

— w < Extract(ppm,z, 7, 7’) : Given two proofs m = (com, chl,res) and 7’ =
(com, chl’ res’) for a statement x such that T.Decision(z,7) = 7.Decision
(z,7') = 1 and chl # chl’, output a witness w. Extract must satisfy the
special soundness property from Definition 20 in Appendiz A.5.

For convenience and when the meaning is clear, we use X'r to represent X »
and omit ppm from the input of the algorithms.

2.2 Straight-Line Compilers

Inspired by the straight-line transform due to Fischlin [31,30] described in Sec-
tion 1, our formalization of a straight-line compiler (SLC) for X-protocols in
the random-oracle model (ROM) takes any interactive X-protocol Xp for re-
lation R and creates a non-interactive, straight-line extractable (NISLE) proof
system II3C for the same relation. Both the proof simulation and witness ex-
traction procedures in a NISLE proof system are non-interactive algorithms in
the ROM—the challenger in the security experiment may not rely on rewinding
the prover, but is permitted to use the adversary’s previous queries to the RO.

The non-interactive equivalent of the special honest-verifier zero-knowledge
(SHVZK) game must reflect the fact that the zero-knowledge simulator might
be programming the RO. The SHVZK property must continue to hold even as
the RO is updated, meaning that if the simulator changes the RO at all, it
must be done in a way that is imperceptible to to the adversary /. Note that
the definition does not imply that the simulator has to program the RO—just
that if it does, it must do so imperceptibly. This nuance is important because
we will later give a construction in Section 5.3 for GUC NIZKPoK in the (non-
programmable) Gpopo-Fers-hybrid model—this construction should not (and does
not) contradict our result from Theorem 1, which says that any GUC NIZKPoK
must meet the requirements of non-interactive (multiple) SHVZK.

In the non-interactive version of the special soundness (SS) game in Fischlin’s
construction, the Extract algorithm works on input (x, 7, Qg), where Q. are

UC XY-protocols in the Global ROM 13

o/’s queries to the RO. Fischlin’s approach is not the only one for achieving
straight-line extraction. Verifiable encryption [17,9] provides a different mech-
anism: the parameters ppm contain a public key, and the proof 7w contains an
encryption of the witness under this key. The extractor’s trapdoor is the decryp-
tion key. The latter approach requires additional machinery: it needs a proof
system for proving that a plaintext of a particular ciphertext is a witness w, and
thus cannot be constructed directly from Y. It is the subject of future work to
determine how such a “key-based” extractor would fare; for now, we assume the
extractor works on the adversary’s queries to the RO.

Finally, Fischlin proposes an optional (negligible) weakening of the complete-
ness property, which we call overwhelming completeness, that allows protocol
designers to optimize other parameters for efficiency reasons. Certainly any SLC
that satisfies the regular notion of completeness will also satisfy the weaker no-
tion, so we recall the weaker property below and demonstrate in Section 3.5 that
it is sufficient for GUC NIZKPoK.

Definition 2 (Straight-Line Compiler). An algorithm SLC is a straight-
line compiler (SLC) in the random-oracle model if given any X-protocol Xp
for relation R (Definition 1) as input, it outputs a tuple of algorithms IT5¢ =
(SetupH,ProveH,VerifyH,SimSetup,SimProve,EXtract) with access to ran-
dom oracle H that satisfy the following properties: overwhelming completeness
(Definition 3), non-interactive multiple special honest-verifier zero-knowledge
(Definition 4), and non-interactive special simulation-soundness (Definition 5).
We refer to II5-° < SLC(Xr) as a non-interactive, straight-line extractable
(NISLE) proof system for R, and proofs generated by II3° as non-interactive,
straight-line extractable zero-knowledge proofs of knowledge (NISLE ZKPoK).

Definition 3 (Overwhelming Completeness). A NISLE proof system I13-°
= (Setup’,Prove’ Verify”,SimSetup, SimProve, Extract) for relation R in
the random-oracle model has the overwhelming completeness property if for any
security parameter X, any random oracle H, any (x,w) € R, and any proof
7+ II5° Prove” (z,w),

Pr[IT5C Verify (z,7) = 1] > 1 — negl()).

Recall from the introduction of this section that the simulator in the non-
interactive version of the SHVZK experiment is allowed to program the RO. In
order to precisely describe this programming, we differentiate in Figure 1 the
traditional RO Hy, which is parameterized by a function f <—g F' selected from
random function family F', from the programmable RO Hp, which is parameter-
ized by a list L that can be added to (but not edited by) the simulator. We call
this type of oracle a “Random List Oracle,” and provide the simulator algorithms
in the non-interactive SHVZK game oracle access to an interface Prog; , which
allows the caller to map any (previously unmapped) input z to an output v of
its choice. The adversary’s inability to distinguish between the real-world oracle
Hj that is simply a random function and the ideal-world oracle Hy that is a
list managed by the simulator is an essential part of the non-interactive SHVZK

14 A. Lysyanskaya and L.N. Rosenbloom

experiment—it ensures that the introduction of the non-interactivity property
(via queries to a programmable RO) does not compromise the SHVZK property.

RO Hy(z) Random List Oracle Hr(z) Interface Prog; (z,v)
1: return f(z) 1: if v st (x,v) € L: 1: if o' st (v,0)) €L
2: return v 2: L.append(z, v)
3: else :
4: v« {0, 1}£
5: L.append(z,v)
6: return v

Fig. 1. Random Oracle Functionalities for NIM-SHVZK and NI-SSS Games.

In the standard definition of SHVZK, <7 is only permitted to issue one Prove
query. In the GUC security experiment (and in most natural applications of X-
protocols), the environment is allowed to issue polynomially-many Prove queries,
and we will still need the SHVZK property to hold. Therefore, we present a
version of non-interactive multiple SHVZK (NIM-SHVZK) [30].

Definition 4 (Non-Interactive Multiple SHVZK). A NISLE proof system
II3° = (Setup”, Prove Verify! SimSetup,SimProve,Extract) for relation
R in the random-oracle model has the non-interactive multiple special honest-
verifier zero-knowledge (NIM-SHVZK) property if for any security parameter A,
any random oracle H, any PPT adversary <7, and a bit b <—g {0,1}, there exists
some negligible function negl such that Pr[b’ = b] < 1 + negl()), where V' is the
result of running the game NIMszVZKZ*,E%C(lA, b) from Figure 2. We say </
wins the NIM-SHVZK game if Pr[t/ = b] > 3 + negl()).

Similarly, the environment in the ideal-world GUC experiment will have ac-
cess to polynomially-many proofs generated by the SimProve algorithm, which
Furzx will use to simulate proofs. We therefore define our straight-line compilers
to have the NI special simulation soundness property (NI-SSS), which says that
special soundness must still hold even after an adversary has seen polynomially-
many proofs from the simulator. Fischlin’s original construction is both NIM-
SHVZK and NI-SSS [30]. We will use his results in Section 6.1 to prove that the
randomized Fischlin transform [35,30] is also NIM-SHVZK and NI-SSS.

Definition 5 (Non-Interactive Special Simulation-Soundness). A NISLE
proof system ITS-° = (Setup’, Prove Verify SimSetup, SimProve, Extract)
for relation R in the random-oracle model has the non-interactive special simula-
tion-soundness property if for any security parameter A, any random oracle H,
and any PPT adversary <f , there exists some negligible function negl such that

Pr[Fail « NI-SSST-PE8(1%)] < negl()),
"R

UC XY-protocols in the Global ROM 15

NIMszVZKZf;%C(l*,O) : REAL NIMSHVZKZ*”E%?(P, 1) : IDEAL

1: f+gF 1: L+ 1

2: ppm < H%C.Setupr(l)‘) 2: ppm,2z < H%C.SimSetupprOg"(l)‘)
3: st <« /71", ppm) 3: st "1, ppm)

4: while st ¢ {0,1}: 4: while st ¢ {0,1}:

5: (Prove, z, w, st) « o'/ (st) 5: (Prove, z,w, st) « oL (st)
6: if R(z,w)=1: 6: if R(z,w)=1:

7: 7« II3° Prove™’ (z,w) 7 7 I1%°.SimProve ™ 8L (2, x)
8: else : 8: else :

9: T L 9: T L

10 : st « /M1 (st,) 10 : st « /L (st,)

11: return st 11: return st

Fig. 2. Non-Interactive Multiple SHVZK (NIM-SHVZK) Game.

where NI-SSS is the game described in Figure 3. We say </ wins if Pr[Fail «

lesssﬁj};%;g(ﬂ)] > negl()\).

X-protocols that maintain the SHVZK property under any non-interactive
transform in the ROM must additionally have com messages with entropy that is
superlogarithmic in the security parameter [31], such that the adversary cannot
exhaustively query commitments to the RO and check whether the challenge
supplied by the prover matches what it receives. We recall and discuss Fischlin’s
superlogarithmic commitment entropy property further in Appendix A.7.

2.3 OR-protocols

Rather than producing a proof corresponding to a single statement x in a lan-
guage Lg, the prover in an OR-protocol proves that it knows a witness for either
a statement xg in Lr, or another statement x; in Lg,. At a high level, the prover
does this by simulating the proof of the statement for which it does not have
a witness, while computing the proof of the statement for which it does have a
witness honestly.

Our definition is adapted directly from Damgard’s [26], with a few minor
tweaks to make it more general. Since we will use the OR~protocol functionality
as a black box in our construction, it suffices for the purpose of understanding our
results to treat the OR-protocol as a X-protocol (according to Definition 1) with
compound inputs. For example, we represent the compound statement xg V 1
with the upper-case variable X = (zg,21). The witness W = (w,b) includes
a witness along with a bit b such that (zp,w) € Rp,. We provide the detailed
version of our definition alongside Damgard’s, as well as a discussion of the
minor differences between them, in Appendix A.8.

16 A. Lysyanskaya and L.N. Rosenbloom

NI-SSSHProg(12)

o T3S

1: L+ L

2: ppm, z + II5°.SimSetup™ 8L (1%)
3: st o717 ppm)

4: pflist,Response < L

5: while st # L:

6 (Query, Q.7 st) « o/ (st)

7 if Query = (Prove,z,w) :

8: if R(z,w)=1:

9: 7 I3°.SimProve ™ 8L (2, x)
10 : pflist.append(z,)

11 : Response « (z,)

12: elseif Query = (Challenge,z,)
13 : if I15° Verify"t (z,m) = 1A (z,7) ¢ pflist :
14 : w + I3 Extract(z, m, Qu)
15 : if R(z,w)=0:

16 : return Fail

17 st « /" (st, Response)

18 : return Success

Fig. 3. Non-Interactive Special simulation-soundness (NI-SSS) Game.

UC XY-protocols in the Global ROM 17

3 Properties of GUC NIZKPoK

In this section we formalize the definitions of the programmable global RO Gyporg
and the observable global RO G;org, the ideal NIZKPoK functionality Fyrzx, the
CRS ideal functionality Fers, and the security requirements for protocols that
GUC-realize Fyrzx in the Grporo- and Gropo-Fers-hybrid models. We then show
that the non-interactive multi-SHVZK and non-interactive special simulation-
soundness properties are strictly necessary to obtain GUC NIZKPoK in any
global ROM.

3.1 Giorg and Giporg, Revisited

Building on the overview of the global ROM(s) given in Section 1, we now for-
malize Canetti et al.’s restricted observable global RO G,.ro [22] and Camenisch
et al.’s restricted programmable observable global RO Gyporo. As with traditional
ROs, both oracles act as functions that respond to each input string z; € {0,1}*
with a uniformly random ¢-bit string v; € {0,1}*. We call this original algo-
rithm Query. Since Grporo builds on the interfaces of Gropg, we will start with the
specification of Gyorg and follow with the extra interfaces of Grporo-

The first thing G,.rg does when it receives a query is to check whether the
querent’s SID sid matches the session s for which it has requested randomness. If
sid # s, Gropog assumes this is an “illegitimate” query made by the environment,
and records the query in its special list of illegitimate queries for s, denoted Q.
In the original version of the definition [22], only the ideal functionality F* for
session s can query Groro using the Observe interface to get the list of illegitimate
queries for s. However, note that no honest provers’ queries will ever be recorded
in this list, as they will only ever be querying G,oro for randomness sessions in
which they are participating legitimately. Therefore, we follow Camenisch et al.’s
version of the restricted observability property [10] and simply release the list
Q, to anyone who wants it.

Definition 6 (Observable Global RO G o). [22,10] The observable global
RO Groro is a tuple of algorithms (Query, Observe) defined over an output length
0 and an initially empty list of queries Q:

— v + Query(z) : Parse x as (s,x’) where s is an SID. If a list Qs of ille-
gitimiate queries for s does not yet exist, set Qs = L. If the caller’s SID
s, add (z,v) to Qg. If there already exists a pair (x,v) in the query list Q,
return v. Otherwise, choose v uniformly at random from {0,1}¢, store the
pair (z,v) in Q, and return v.

— Q, « Observe(s) : If a list Qs of illegitimate queries for s does not yet exist,
set Qg = 1. Return Q.

In addition to the Query and Observe interfaces, Camenisch et al.’s restricted
programmable observable global RO Gyperg has two extra interfaces, Program and
IsProgrammed. Grporo keeps track of which queries have been programmed us-
ing the set prog. Note that since privileged (simulator-only) programming is

18 A. Lysyanskaya and L.N. Rosenbloom

not allowed in the GUC model, anyone can program Grporo. In order to func-
tionally restrict this privilege to the simulator, Camenisch et al. introduces the
IsProgrammed interface, which reveals whether or not Gyp.ro Was programmed
on an index x = (s,2’), but only to a calling party with sid = s. Notably, this
interface directly restricts the environment from ever seeing whether or not the
oracle was programmed (since the environment is by definition not part of any
legitimate protocol session), and indirectly restricts the adversary from ever see-
ing whether or not the oracle was programmed (since the simulator is in charge
of its view in the ideal-world experiment in which programming is employed.)

Definition 7 (Restricted Programmable Observable Global RO Qrpogo).
[10] The restricted programmable observable global random oracle Grporo 15 @ lu-
ple of algorithms (Query, Observe, Program, IsProgrammed) defined over an out-
put length £ and initially empty lists Q (queries) and prog (programmed queries):

— v+ Query(x) : Same as Definition 6 above.

— Q, < Observe(s) : Same as Definition 6 above.

— {0,1} < Program(z,v) : If I’ € {0,1}* such that (z,v') € Q and v # v/,
output 0. Otherwise, add (x,v) to @ and prog and output 1.

— {0,1} + IsProgrammed(x) : Parse x as (s,z’). If the caller’s SID # s,
output 1. Otherwise if x € prog, output 1. Otherwise, output 0.

3.2 The NIZKPoK Ideal Functionality

We now formalize the NIZKPoK ideal functionality Fyrzx. Recall from the intro-
duction that in the “ideal” world, the honest parties who would execute protocol
II are actually dummy parties who do not perform any computations of their
own. Instead, they pass all of their inputs to an ideal functionality Fyrzx, who
instructs them on how to respond. As is standard in the (G)UC framework
[19,20,22], there is one ideal functionality for each SID s. A dummy party with
SID s can only send input and receive output from the Fyrzx with the same SID,
denoted Fyiz-

Each Fyiz will need to run some kind of setup, then process proofs and
verifications on behalf of the honest parties in its session. Recall that in order
to be NIZKPoK, the proofs must be non-interactive, zero-knowledge (satisfying
the SHVZK property), and proofs of knowledge (satisfying the SS property).
These properties imply the existence of SHVZK simulator algorithms SimSetup
and SimProve that do not take the prover’s witness as input, as well as of the
SS algorithm Extract that can compute witnesses from adversarially-created
proofs. During Fyrzx’s Setup procedure, Fyzx requests the specifications of these
algorithms from the ideal adversary (simulator) S.

Note that there are two conditions in which Fyrzx can output Fail. The first
is a completeness error, where Fyrz’s execution of the SimProve algorithm on
input (z,w) € R fails to produce a proof m such that Verify(z,7) = 1. The
second is an extraction error, where Fyizx’s execution of the Extract algorithm
on input a valid, non-simulated proof tuple (z,7) fails to produce a witness

UC XY-protocols in the Global ROM 19

w such that R(xz,w) = 1. In the proof of Theorem 1 in Section 3.5, we will
draw a direct correspondence between these failures and the functionality of a
X -protocol.

Definition 8 (NIZKPoK Ideal Functionality). The ideal functionality Fyrzx
of a non-interactive zero-knowledge proof of knowledge (NIZKPoK) is defined
as follows.

Setup: Upon receiving the request (Setup, s) from a party P = (pid, sid), first
check whether sid = s. If it doesn’t, output L. Otherwise, if this is the first time
that (Setup, s) was received, pass (Setup, s) to the ideal adversary S, who returns
the tuple (Algorithms, s, Setup, Prove, Verify, SimSetup, SimProve, Extract)
with definitions for the algorithms Fyizx will use. Fyizx stores the tuple.

Prove: Upon receiving a request (Prove, s,x,w) from a party P = (pid,sid),
first check that sid = s and R(x,w) = 1. If not, output L. Otherwise, com-
pute w according to the SimSetup and SimProve algorithms and check that
Verify(x,n) = 1. If it doesn’t, output Fail. Otherwise, record then output the
message (Proof,s,z,).

Verify: Upon receiving a request (Verify,s,x,m) from a party P = (pid, sid),
first check that sid = s. If it doesn’t, output L. Otherwise if Verify(z,m) =0,
output (Verification, s, z,,0). Otherwise if (Proof,s,z,m) is already stored,
output (Verification, s, x,m, 1). Otherwise, compute w according to the Extract
algorithm. If R(x,w) = 1, output (Verification,s,z,m, 1) for a successful ex-
traction. Else if R(x,w) =0, output Fail.

3.3 The CRS Ideal Functionality

Below is the ideal common reference string (CRS) functionality, which relies on
a generic “GenCRS” algorithm. In Section 5.1, we will articulate the properties
that GenCRS must have for the purposes of our construction.

Definition 9 (CRS Ideal Functionality). The ideal functionality Fers of a
common reference string (CRS) for a particular CRS generation mechanism
GenCRS is defined as follows.

Query: Upon receiving a request (Query,s) from a party P = (pid,sid), first
check whether sid = s. If it doesn’t, output L. Otherwise, if this is the first time
that (Query, s) was received, compute x according to the algorithm GenCRS and
store the tuple (CRS, s, x). Return (CRS,s,x).

3.4 GUC Security Definitions

We are now ready to formalize what it means for a protocol IT to be a GUC
NIZKPoK in the Grporg- and Grorg-Fers-hybrid models. We review the standard
GUC model real- and ideal-world experiments given by Canetti et al. [20] in
Appendix A.9; noting that we are working in the passive corruption model—
i.e. Z must decide at the time of a party’s invocation whether or not they are
corrupt.

20 A. Lysyanskaya and L.N. Rosenbloom

Definition 10 (GUC NIZKPoK in the G,poro-hybrid Model). A protocol
IT = (Setup,Prove, Verify, SimSetup, SimProve, Extract) with security param-
eter A GUC-realizes the NIZKPoK ideal functionality Fyizx in the Grporo-hybrid
model if for all efficient <f , there exists an ideal adversary S efficient in expec-
tation such that for all efficient environments Z,

IDEALS™™ ¢ (1%, aux) ~. REAL7™™ (1%, aux),

where Grporo 5 the restricted programmable observable global RO (Definition 7)
and aux is any auziliary information provided to the environment.

Definition 11 (GUC NIZKPoK in the G,oro-Fers-hybrid Model). A pro-
tocol I = (Setup,Prove,Verify, SimSetup, SimProve, Extract) with security
parameter A GUC-realizes the NIZKPoK ideal functionality Fyrzx in the Groro-
Fers hybrid model if for all efficient of , there exists an ideal adversary S efficient
in expectation such that for all efficient environments Z,

IDEAL:™ o (1%, aux) ~, REAL™ 7% (1%, aux),

where Gropg s the restricted observable global RO (Definition 6), Fers is the ideal
CRS functionality (Definition 9), and aux is any auziliary information provided
to the environment.

3.5 GUC NIZKPoK Are Complete, NIM-SHVZK, and NI-SSS

We prove in this section that any protocol IT = (Setup, Prove, Verify, SimSetup,
SimProve, Extract) that GUC-realizes Fyrz in any global ROM must be over-
whelmingly complete, non-interactive multiple special honest-verifier zero-know-
ledge (NIM-SHVZK) and non-interactive special simulation simulation-sound
(NI-SSS) according to the definitions in Section 2.2. In other words, the NIM-
SHVZK and NI-SSS properties guaranteed by a straight-line compiler (SLC) are
strictly necessary to create GUC NIZKPoK in the global ROM.

As we show briefly in Appendix B.1, any ordinary X-protocol that is regular
SHVZK is also multi-SHVZK. The more interesting result is the necessity of
special simulation-soundness, since that is not a property guaranteed by all X-
protocols—it will be up to the SLC to create a special simulation-sound NISLE
proof system even when the underlying X-protocol is only regular special-sound.
In the proof of Theorem 3 in the full version of his paper [30], Fischlin shows
that the NISLE proof systems resulting from his transform satisfy both NIM-
SHVZK and NI-SSS. A key element in Fischlin’s proof that will surface again in
the proof of Theorem 1 below, as well as in the proofs of Theorems 3 and 4, is the
observation that an Extract algorithm based on the adversary’s query history
functionally decouples the extraction process from the rest of the experiment—
interacting with the extractor does not influence the adversary’s view in any way.
Intuitively, this is because Extract works solely using inputs that the adversary
already knows.

UC XY-protocols in the Global ROM 21

Since the following result is independent of the choice of global RO, we recall
the strict global RO Ggp outlined by Canetti et al. [22] and formalized by Ca-
menisch et al. [10] described in the introduction. Gerg has the same parameters as
Grporo and Gropg but only one interface, Query, which acts as globally accessible
random function. The functionality of Ggpg is the minimal-most assumption of
an RO in the GUC model, creating a direct correspondence to the standard RO
H in the NIM-SHVZK and NI-SSS experiments. Because the point of using Ggrg
here is to convey the minimal assumption needed (and not to prove the result
only for Gero), we use the generic notation Ggg, which represents any global RO
with a minimum of Ggrg’s Query interface. The GUC security definition in the
Gro-hybrid model is the same as in Definition 10, except that Gyperg is replaced
with Ggg in the notation.

Theorem 1. Let IT be a protocol that GUC-realizes Fyizx in the Gpg-hybrid
model (Definition 10 where Grpora is replaced with Grg). Then IT must be over-
whelmingly complete (Definition 3), NIM-SHVZK (Definition 4) and NI-SSS
(Definition 5).

Proof Sketch. We proceed by cases and show that if IT is not overwhelmingly
complete and NIM-SHVZK then it does not GUC-realize Fyzx, and similarly
that if IT is not NI-SSS then it does not GUC-realize Fyrzx. The full proof is
available in Appendix B.2.

In the first half of the proof, we construct a reduction that uses an adversary
&/ that can win the NIM-SHVZK experiment from Figure 2 with non-negligible
advantage to determine whether it is living in the real- or ideal-world GUC
experiment. The reduction forwards .@7’s oracle queries to and from Ggg and
Prove queries to the GUC challenger, returning the proofs it receives back to 7.
We note that since the reduction has no control over Ggg, its view of Gyg is exactly
the same as @7’s, so anything &7 can learn about the proofs from interacting with
Gro, the reduction can also learn. Furthermore if the GUC challenger is running
the ideal-world experiment and Fyrzx outputs Fail (indicating that Simulate
failed to compute a valid proof for a statement-witness pair (z,w) € R), the
reduction can immediately tell it is living in the ideal world. As long as Fyrz
does not produce Fail, the reduction simulates .&7’s exact view of the challenger
in the NIM-SHVZK game and succeeds in distinguishing the real- from ideal-
world GUC experiments with the same probability as 7.

The second reduction uses an « that can win the NI-SSS game from Fig-
ure 3 with non-negligible advantage in order to distinguish between the GUC
experiments. This reduction proceeds similarly to the last, forwarding all of 7’s
queries to the relevant parties. The argument regarding the reduction’s view of
Gro is identical to the argument above. In this case, however, there is a nuance
to @’s view: the regular NI-SSS challenger always produces simulated proofs,
while the reduction will only produce simulated proofs if the GUC challenger is
running the ideal-world experiment. We argue that in the case that the GUC
challenger is running the real-world experiment, /’s view from the reduction
reduces to the regular non-interactive special soundness property given in Ap-
pendix A.6, in which &/ can only run the regular Prove algorithm itself (and

22 A. Lysyanskaya and L.N. Rosenbloom

does not have oracle access to the simulator). The reduction therefore runs two
copies of &7, returning proofs from the GUC challenger to the first copy </ and
generating proofs for the second copy &’ itself using II.Prove. If the GUC chal-
lenger is running the ideal-world experiment, the reduction is able to simulate
/s exact view of the NI-SSS game, and the reduction will be able to determine
that it is living in the ideal-world experiment with the same probability that
&/ is able to output a proof that causes Fyizx’s Extract algorithm to output
Fail. If the GUC challenger is running the real-world experiment and 7’ can
output a valid proof such that IT.Extract fails but the GUC challenger does not
fail, the reduction knows it is playing against the real-world GUC challenger,
and can therefore distinguish the experiments with the same probability that
&/’ succeeds in winning the NI-SS game.

Note that in order to check the result of II.Extract against the GUC chal-
lenger’s verification, the reduction must be able to be able to compute I1.Extract
itself, which it can only do because it operates using Qg o . It is the subject
of future work to attempt the reduction in the case that the Extract algorithm
requires a secret decryption key, as discussed in Section 2.2. Finally, note the
reduction would not work if IT were only SS, since the adversary in the NI-SS
game does not have well-defined behavior with respect to simulated proofs. O

4 GUC NIZKPoK in the Programmable Global ROM

We will now prove that any straight-line compiler (SLC) is sufficient to transform
any X-protocol into a GUC NIZKPoK in the the G;poro-hybrid model.

Theorem 2. Let X' be any X-protocol for relation R (Definition 1), Grporo be
the restricted programmable observable global random oracle (Definition 6), and
SLC be any straight-line compiler (Definition 2). Then the NISLE proof system
IT3€ + SLC(Xg) GUC-realizes Fyrzx in the Grporo-hybrid model (Definition 10).

Proof Sketch. In the ideal-world experiment, our simulator S hands the ideal
functionality Fyrzx the tuple of algorithms I73-C, returns false to the corrupted
parties’ IsProgrammed queries, and otherwise functions as a dummy adversary,
forwarding communications between the environment and the protocol.

We proceed by creating a hybrid reduction starting in the real-world exper-
iment that replaces each piece of the real-world protocol II3-¢ with the func-
tionality of Fyrzx. First, we replace all of the environment’s and adversary’s
connections to the real-world protocol participants with the “challenger” of our
reduction, C. This difference is syntactic, so the first two hybrids are identical.

In the next hybrid, we replace C’s Prove functionality with the Prove in-
terface of Fyrzk, and show the environment’s views are indistinguishable be-
tween these experiments as long as IT7-¢ has the non-interactive multiple special
honest-verifier zero-knowledge (NIM-SHVZK) property. The reduction proceeds
as follows. First, C always returns false to any of the adversary’s IsProgrammed
queries. As long as 1) II3-°.SimProve produces valid proofs for statements = €

UC XY-protocols in the Global ROM 23

Lr with overwhelming probability (which follows from overwhelming complete-
ness), and 2) the environment’s view of G;poro remains statistically indistinguish-
able between the hybrids (which follows from the NIM-SHVZK property and the
restriction of the IsProgrammed interface), it remains to show that the outputs
of II$F° Prove and II5°.SimProve are similarly indistinguishable. If the outputs
are statistically indistinguishable—i.e. if X' is statistical SHVZK and SLC pre-
serves this property such that IT9-C is statistical NIM-SHVZK—we are done.
In the event that IT3¢ is only computationally NIM-SHVZK, we construct a
(tight) reduction that uses an environment that can distinguish the two hybrids
to win the NIM-SHVZK game from Figure 2. The reduction simply proceeds
by forwarding all of the environment’s RO queries to Grporg, all Prove queries
to the NIM-SHVZK challenger, and answering Verify queries itself by running
II3C Verify. If the NIM-SHVZK challenger is playing with bit b = 0 and the
proofs are according to II3-¢.Prove, the reduction produces the environment’s
exact view of the first hybrid; otherwise if b = 1 and the proofs are according to
IT3€ simProve, it produces a view of the second hybrid. Therefore, our reduc-
tion succeeds with the same probability as the hybrid-distinguisher environment,
contradicting the NIM-SHVZK property of II5-C.

In the penultimate hybrid, we replace C’s Verify functionality with the
Verify interface of Fyrzx, and show the environment’s views are computationally
indistinguishable between these hybrids as long as IT5¢ has the non-interactive
special simulation-soundness (NI-SSS) property. Recall that the Verify function-
ality of Fyrz uses the IT5-C.Extract algorithm, and fails whenever the witness
extracted from a valid (non-simulated) proof is such that R(x,w) = 0. Our re-
duction uses an environment that can distinguish the simulate-only hybrid from
the simulate-and-extract hybrid as a black-box to produce a proof that wins the
NI-SSS game from Figure 3 as follows.

For Prove queries, the reduction simulates proofs according to either hy-
brid (both use IT3-°.SimProve). Any time the environment wants to verify a
proof that the reduction did not create itself, it gathers the environment’s
queries (which are freely available—recall that all of the environment’s wires
pass through C) and sends the proof along with the environment’s queries to the
NI-SSS challenger. Note that since the only difference between the hybrids is
that the second hybrid can output Fail while the first never does, the only way
for the environment to distinguish between them is to produce such a failure by
outputting a valid (non-simulated) proof that causes IT7¢.Extract to fail. Since
the challenger in the NI-SSS game also uses the II3-°.Extract algorithm, the
reduction succeeds with the same probability as the environment, contradict-
ing the NI-SSS property and proving that the hybrids must be computationally
indistinguishable.

The final step is to replace C with Fyrzx and S. Note that since C already runs
the algorithms of Fyrzx and returns false to corrupted parties’ IsProgrammed
queries, this is again only a syntactic difference, and the last two hybrids are
identical. The full proof is available in Appendix B.3. O

24 A. Lysyanskaya and L.N. Rosenbloom

5 GUC NIZKPoK in the Observable Global ROM

Recall from the introduction that in order to avoid the localized IsProgrammed
interface, we pursue GUC NIZKPoK in the G org-Fcrg-hybrid model, where Fegrs
is the ideal CRS functionality from Section 3.3. We begin by discussing the
specific properties of Feps’s CRS generation mechanism GenCRS, then introduce
a compiler that creates GUC NIZKPoK from any X-protocol and any SLC in
the Groro-Fers-hybrid model.

5.1 Generating a CRS that Plays Nice with Y-protocols

In our construction, the prover convinces the verifier that either it knows a “real”
witness, or else it knows the trapdoor to the CRS. In the real world, nobody
knows the trapdoor (as long as the CRS is generated securely, for instance using
Canetti et al.’s NISC protocol and only Groro [22]). Therefore, all proofs executed
by the regular Prove algorithm will be using real witnesses. In the ideal world,
the simulator gets to generate the CRS for each session s with a trapdoor as part
of the SimProve algorithm. SimProve is otherwise the same as Prove, except the
witness is always the trapdoor for the CRS.

In order for this OR-proof to work, Prove and SimProve must be able to
interpret the CRS as a statement z = CRS,; with a corresponding trapdoor
witness w = trap,, such that the pair (CRS,, trap,) satisfies some binary NP
relation S. For efficiency purposes (since the simulator must run in polynomial-
time) the CRS must be efficiently computable, and for security purposes, the
trapdoor must be difficult to compute from the CRS. We call a relation that
satisfies the efficiency property samplable and a relation that satisfies the security
property hard. The intuition is similar to that of Fischlin’s one-way instance
generator [31].

Definition 12 (Samplable-Hard Relation). A binary NP relation S is samp-
lable-hard with respect to a security parameter X if it has the following properties.

1. Sampling a statement-witness pair is easy. There exists a sampling
algorithm kg that on input 1* outputs (z,w) such that S(z,w) = 1 and
2] = poly(A).

2. Computing a witness from a statement is hard. For a randomly sam-
pled statement-witness pair (x,w) < kg(1*) the probability that an efficient
adversary </ can find a valid witness given only the statement is negligible.
Formally, for all PPT <,

Pr[(z,w) + ks(1*),w' + o/ (1}, x, ks) : (z,w") € R] < negl(\).

Finally, we require that the relation S underlying the CRS has an efficient
corresponding X-protocol YXg. Our construction will instantiate an OR-protocol
Jrvs based on Yr and Xg for the relation RV S.

Putting the pieces together, the CRS generation mechanism GenCRS for Fegg
in our construction fixes S as a samplable-hard relation with corresponding

UC XY-protocols in the Global ROM 25

efficient Y-protocol Yg, and consists of running (CRS, trap,) + rs(1?). We
combine this Fepg with the restricted observable global RO G..rg to instantiate
the Groro-Fers-hybrid model, and are now ready to introduce our GUC compiler.

5.2 GUC Compiler

We propose a compiler that uses any SLC in conjunction with the OR-protocol
discussed in Sections 2.3 and 5.1 to transform any X-protocol into a GUC
NIZKPoK in the Goro-Fers-hybrid model. The compiler works as follows.

First, Fegs is fixed as described in Section 5.1. The real-world Setup function-
ality runs the OR-protocol Ygys for relation RV S through any SLC to obtain
IT3%S, and returns the same setup parameters as IT5-S.

For each session s, provers in the real world query the CRS ideal functionality
Férs to obtain CRS,. Each time a real prover with SID s needs to create a proof of
a statement x using witness w, it obtains CRS; and sets the compound statement
X = (z,CRS;). It then generates a proof IT using ITs-$.Prove(X, W), where
W = (w,0) to indicate it knows a witness for the first statement x. In order to
verify the proof, a verifier first obtains CRS, from Fgg, then checks whether it is
the correct CRS for session s. If it is, it the verifier outputs the result of running
IIYS Verify (X, IT).

In the ideal world, the SimSetup algorithm begins by generating an empty
list in which to store the simulated CRS for each session, denoted simcrs. When
it is time to prove a statement on behalf of an honest (dummy) party in session
s, the compiler’s SimProve algorithm generates (CRS;,trap,) < rs(1*) (if one
has not been generated already), and computes the proof using II15L$.Prove, this
time using trap, as the witness.

Given a non-simulated proof and a list Q%. of adversarial provers’ queries for
session s, the compiler’s Extract algorithm runs IT35%.Extract using Q5. and
tests the compound witness W = (wq, w1). If Rpys(X, W) = 1 but R(zo,wp) = 0,
Extract outputs Fail. Otherwise, it outputs W.

Note that this formulation diverges from the general intuition of an OR-
protocol extractor (see Appendix A.8) in that we require any valid witness W
to imply that R(xg,wq) = 1, not that either R(zg,wo) =1 or S(z1,w;) = 1.
This is because we need to account for the fact that Fyrzx will never invoke the
Extract algorithm on proofs it has generated using SimProve, and nobody else
should ever have access to the CRS trapdoor. If Fyrzx gets a proof that verifies
because S(CRS,;,wy) = 1, it must be the case that an adversarial prover has
acquired the trapdoor, and Extract forms its output in such a way that Fyizx
will output Fail. In our proof of security, we will bound the probability of this
failure by constructing a reduction to the hardness property of S.

We give a formal construction of the candidate compiler below, and prove in
Section 5.3 that it creates GUC NIZKPoK in the G,org-Fcrs-hybrid model.

Definition 13 (Candidate Compiler). Let X'i be any X-protocol for relation
R (Definition 1), Groro be the restricted observable global random oracle (Defi-
nition 6), Xg be an efficient X-protocol for samplable-hard relation S (Defini-
tion 12), Fers be the ideal CRS functionality (Definition 9) where GenCRS := kg,

26 A. Lysyanskaya and L.N. Rosenbloom

and SLC be any straight-line compiler (Definition 2). Then our candidate com-
piler guc is an algorithm that, on input X'r and SLC, produces a tuple of algo-
rithms H§3§ = (Setupgrm, Provegr"““’}-c“s, Verifygr"“’fc“s, SimSetup, SimProve,
Extract), defined in Figure 4.

5.3 Realizing Fyiz in the Ggg-Feps-hybrid Model

We now prove that the algorithm guc from Definition 13 compiles any X'-protocol
into a GUC NIZKPoK in the Ggg-Fcrs-hybrid model.

Theorem 3. Let XY'r be any X-protocol for relation R (Definition 1), Gropo be
the restricted observable global random oracle (Definition 6), Xs be an efficient
X-protocol for samplable-hard relation S (Definition 12), Fers be the ideal CRS
functionality (Definition 9) where GenCRS := kg, SLC be any straight-line com-
piler (Definition 2), and guc be our candidate compiler (Definition 13). Then
1175 + guc(Xg, SLC) GUC-realizes Fyrzk in the Gropo-Fers-hybrid model (Defi-
nition 11).

Proof Sketch. The proof proceeds similarly to that of Theorem 2 in Section 4,
where we construct a sequence of hybrids that transition between the real- and
ideal-world GUC experiments. In the ideal-world experiment, our simulator S
hands the ideal functionality Fyrzx the tuple of algorithms IT§,g and otherwise
functions as a dummy adversary, forwarding communications between the en-
vironment and the protocol. Throughout the proof when we say an argument
is identical to an argument from the proof of Theorem 2, we mean identical
up to the handling of the IsProgrammed interface, which does not exist in the
Groro-Fers-hybrid model.

The first hybrid is identical to the first hybrid in the proof of Theorem 2: we
replace all of the real-world protocol participants, Grorg, and now Fegg with a
challenger C who controls all of the wires in and out of the environment and the
adversary, noting this step permits C to program Gyopg.? The second hybrid is also
identical to the one in the proof of Theorem 2 above, except instead of jumping
straight to replacing C’s real-world Prove algorithm with the Prove interface
of the ideal functionality, which will use I1§,5.SimSetup and II85.SimProve, we
instead replace Prove with IT§L%.SimSetup and [I§5%.SimProve. This step allows
us to postpone giving the reduction access to the CRS trapdoors, since we will
need to ensure that any adversarially-created proofs in the next hybrid will
only avoid extraction if the adversary is somehow able to generate the trapdoor
itself. By the arguments used in the proof of Theorem 2, we can reduce the
indistinguishability of the first two hybrids to the NIM-SHVZK property of ITgS.

The third hybrid is identical to the third hybrid in the proof of Theorem 2 in
that we replace C’s Verify procedure with Fyrz’s Verify interface, which uses

2 As discussed by Camenish et al. [10], the challenger in such a hybrid experiment can
make use of techniques like programming and rewinding that are otherwise “illegal”
for the simulator to employ in the GUC model.

UC XY-protocols in the Global ROM

27

guc Compiler Parameters

1", R, Xr, S, X5, SLC, Groro, Fors With GenCRS := (z,w) + rs(1)

T8, Setup™ (1*)

1: ppm IS Setup? (1%)

2: return ppm

Gro, Fers (

guc
II%s.Prove S, T, W)

1: if R(z,w) #1:
return |
CRS, + Fgps-Query(s)
X < (x,CRS;)
W+ (w,0)
6: &« IIS= Prove™ (X, W)
7: return (s, X,P)

=W N

t

I8 Verify 9o Fus (s X &)

IT8, . SimSetup(17)

1: ppm < T35 .SimSetup(1t)
2: simcrs + L

3: return (ppm, simcrs)

IT)5.SimProve(simers, s, z, w)

"

if R(z,w)#1:
return 1

if B(CRS,, trap,) s.t.
(s,CRSs, trap,) € simcrs :

(=S R V]

(CRS,, trap,) < ks(1%)

X « (x,CRS,)
W < (trap,,1)
&+ 1155 Prove™ (X, W)

10: return (s, X,®,simcrs)

o I O w

©

IIE875 Extract (X, d, Qp+)

simcrs.append(s, CRS,, trap,)

1: parse X = (wz,CRS;)
2: CRS, « Fers-Query(s)

3: if CRSs; = CRS,A

4: Hs@cs.Verifng” (X,?)=1:
5: return 1

6: else :

7: return 0

1: W« IS Extract(X, &, Qp~)

2: parse X = (z,CRS)

3: parse W = (w,trap)

4: if Revs(X,W)=1AR(z,w) =0:
5: return Fail

6: else :

7: return W

Fig. 4. Compiler II85 < guc(Xr, SLC) for X in the Groro-Fers-hybrid Model

28 A. Lysyanskaya and L.N. Rosenbloom

IIE)5 Extract. The proof of indistinguishability of the second and third hybrids
will differ slightly due to the new failure condition in the IT§ g.Extract algo-
rithm: namely, the clause that says if the overall witness W = (w, trap,) is a
valid witness for the statement X = (z,CRS,) but w is not a valid witness for z,
output Fail. We can limit the probability of this failure by constructing a reduc-
tion to the hardness property of the samplable-hard relation: if the environment
is able to produce a proof that meets the failure condition, the reduction can
produce a tuple (CRS, trap,) given only CRS,; < rg(1%). Since the probability
of generating such a tuple is negligible by the hardness property of S, the proba-
bility of such a failure is similarly negligible. The only other way for the environ-
ment to distinguish the hybrids is to produce a valid, non-extractable proof of a
statement X—i.e. such that Rgys(X, W) = 0 for W « II5LS Extract(X,W). In
this case, C can use this proof to contradict the NI-SSS (or NI-SS) property of
II3% in the exact same way as the parallel reduction in the proof of Theorem 2.

Finally, the penultimate hybrid replaces IIfLS.SimSetup and [75L%.SimProve
with the candidate compiler’s algorithms ITf,s.SimSetup and I1§ s.SimProve.
This step effectively reverts the proofs back to the real-world Prove mechanism,
except C is using trapdoors rather than real witnesses. If IISLS is statistical
NIM-SHVZK, then there is automatically negligible difference in view between
the third and penultimate hybrids. If, however, there is computational wiggle
room between the proofs in the two experiments, and the distinguisher envi-
ronment now has access to the extractor, we must ensure that the only way
the environment can distinguish the hybrids is by the contents of the proofs
(as opposed to somehow using its view of the new proofs, which use the CRS
trapdoor, to cause the extractor to fail). We argue here that because the straight-
line extractor works exclusively based on statements, proofs, and oracle queries
that the environment made itself, anything the environment can learn from the
extractor it could have learned on its own. Therefore, it cannot have possibly
learned anything new about the hybrids from the extractor, and the reduction
to computational NIM-SHVZK proceeds the same as before.

The last hybrid replaces C with Fyizx and S—this is again a syntactic rear-
rangement, and is functionally identical to the ideal-world experiment. The full
version of this proof is available in Appendix B.4. O

6 Constructions via the Randomized Fischlin Transform

We demonstrated in the last two sections that any straight-line compiler (SLC)
that satisfies Definition 2 is sufficient to transform any X-protocol X'r into a
GUC NIZKPoK in the Gypopg-hybrid model, and sufficient in conjunction with
our OR-protocol compiler to complete the transformation in the G,oro-Fcrs-
hybrid model. In this section, we will show that the randomized Fischlin trans-
form [31,35] meets our definition of an SLC for a broad class of X-protocols, and
therefore enables us to practically instantiate both sets of GUC NIZKPoK. The
efficiency of the resulting proof systems reduce to the efficiency of the random-

UC XY-protocols in the Global ROM 29

ized Fischlin transform, which requires only a linear increase in the size of the
proofs for small multiplicative and additive constants.

In this section, we review the randomized Fischlin transform rFis and show
that it meets our definition of an SLC. We then apply rFis to efficiently realize
GUC NIZKPoK in the Grporo- and Groro-Fers-hybrid models, respectively.

6.1 The Randomized Fischlin Transform, Revisited

Recall from Section 1 that the randomized Fischlin transform due to Kondi and
shelat [35] is a version of the Fischlin transform [31,30] in which the challenges
are selected uniformly at random from the challenge space. In Fischlin’s origi-
nal construction, the X-protocols under transformation need a property called
quasi-unique responses, which Kondi and shelat demonstrate precludes the trans-
formation of OR-protocols. In order to use the randomized Fischlin transform on
our OR-protocol construction in a way that preserves security, the OR-protocol
must have the (more general) strong special soundness property. We consolidate
the two properties below, and a brief discussion of the necessity of strong special
soundness in Appendix A.10.

Definition 14 (Required Properties for rFis). A Y-protocol X'r for re-
lation R (Definition 1) has required properties for the randomized Fischlin
transform rFis if it has the superlogarithmic commitment entropy property
(Definition 22 in Appendixz A.7), and either the quasi-unique responses prop-
erty (Definition 26 in Appendiz A.10) or the strong special soundness property
(Definition 25 in Appendiz 25).

In the full version of his paper, Fischlin proves that his transform over
X-protocols with quasi-unique responses creates a protocol that is both NIM-
SHVZK and NI-SSS in the standard ROM [30]. Kondi and shelat show that the
randomized Fischlin transform over a X-protocol with the more general strong
special soundness property creates a protocol that is standard (non-multi) NI-
SHVZK and standard (non-simulation) strong NI-SS [35]. Therefore, it remains
to show that the NI multi-SHVZK and strong special simulation soundness
properties are similarly preserved under the randomized transform for strong
special-sound X-protocols. Our proof of the theorem below draws heavily on
arguments from Fischlin [30] and Kondi and shelat [35]; the only novelty is in
the (nearly verbatim) application of Fischlin’s arguments for NIM-SHVZK and
NI-SSS to the randomized transform. We therefore defer the technical details of
the randomized Fischlin transform to Definition 29 in Appendix A.12, and the
full proof to Appendix B.5.

Theorem 4. Let X'r be any X-protocol for relation R (Definition 1) with the
required properties for tFis (Definition 14). Then the randomized Fischlin trans-
form rFis (Definition 29 in Appendiz A.12) is a straight-line compiler for X'
(Definition 2).

30 A. Lysyanskaya and L.N. Rosenbloom

Proof sketch. Recall that a straight-line compiler according to our definition
must create protocols that are NIM-SHVZK and NIM-SSS. Kondi and shelat
prove in Theorem 6.4 [35] that the tuple of algorithms ITE** (denoted Ty
in their paper) produced by running the randomized Fischlin transform on any
strong special sound X-protocol X'p for relation R is a NISLE ZKPoK for Lp
in the standard random-oracle model. Since Kondi and shelat use the standard
definitions of SHVZK and strong special soundness (Definitions 19 and 14 in
the full version, respectively [37]), it remains to show that IT5*s satisfies NIM-
SHVZK and NIM-SSS.

Fischlin shows in the proof of Theorem 3 [30] that his original transform sat-
isfies the NIM-SHVZK and NI-SSS properties. Since the strong special soundness
property replaces the quasi-unique responses property and the challenges in the
randomized version are identically distributed to those in the original version,
the proof of NIM-SHVZK and NI-SSS for the randomized Fischlin transform is
almost identical to Fischlin’s proof of Theorem 3. We discuss the minor differ-
ences in the full proof (Appendix B.5). O

6.2 Efficient, GUC NIZKPoK in the G .zo-hybrid Model

We demonstrated in Section 4 that any SLC is sufficient to compile any X-
protocol into a GUC NIZKPoK in the Grporo-hybrid model, and argued in Sec-
tion 6.1 above that the transform rFis is an SLC. Therefore, given any X-
protocol Xr that meets the requirements for rFis, IT5 ' < rFis(Yg) is suffi-
cient to create GUC NIZKPoK in the Grporo-hybrid model.

Corollary 1. Let Xg be any X-protocol for a relation R (Definition 1) with
the required properties for rFis (Definition 1) and rFis be the randomized
Fischlin transform (Definition 29 in Appendiz A.12). Then IIFC < rFis(Xg)
GUC-realizes Fyizx in the Grpora-hybrid model (Definition 10).

Proof. The corollary follows directly from Theorems 2 and 4. O

6.3 Efficient, GUC NIZKPoK in the G,.zo-Fcrs-hybrid Model

Our construction for the Gropo-Fers-hybrid model requires two layered com-
pilers: any SLC, and our OR-protocol compiler guc from Definition 13. We
proved in Theorem 3 that IT§,5 + guc(Xg, SLC) GUC-realizes Fyrzk for any -
protocol X'g, and again in Section 6.1 that rFis is an SLC. Therefore, ITfvg <
guc(Xg, rFis) creates GUC NIZKPoK in the Gyopo-Fers-hybrid model.

Corollary 2. Let X'p be any X-protocol for a relation R (Definitions 1) with
the required properties for rFis (Definition 14), rFis be the randomized Fischlin
transform (Definition 29 in Appendiz A.12), and guc be the candidate compiler
from Definition 13. Then II§,s < guc(Xg,rFis) GUC-realizes Fyizx in the
Groro-Fers-hybrid model (Definition 11).

Proof. The corollary follows directly from Theorems 3 and 4. O

UC XY-protocols in the Global ROM 31

Acknowledgements

Many thanks to Yashvanth Kondi and abhi shelat for crucial security analysis
of our original OR-protocol construction, and to Jack Doerner for insightful
discussions about Fyrzx that inspired our results in Section 3.5. This research
was supported by NSF grant 2154170, and by grants from Meta.

References

10.

11.

12.

13.

14.

15.

Ben Adida. Helios: Web-based open-audit voting. In Paul C. van Oorschot, editor,
Proceedings of the 17th USENIX Security Symposium, pages 335-348, 2008.
Giuseppe Ateniese, Jan Camenisch, Marc Joye, and Gene Tsudik. A practical
and provably secure coalition-resistant group signature scheme. In Mihir Bellare,
editor, CRYPTO 2000, volume 1880, pages 255-270, 2000.

Mihir Bellare and Phillip Rogaway. Random oracles are practical: A paradigm
for designing efficient protocols. In Proceedings of the 1st ACM Conference on
Computer and Communications Security, pages 62-73, 1993.

Fabrice Benhamouda, Tancrede Lepoint, Julian Loss, Michele Orru, and Mariana
Raykova. On the (in) security of ros. In Annual International Conference on the
Theory and Applications of Cryptographic Techniques, pages 33—53. Springer, 2021.
Manuel Blum, Alfredo De Santis, Silvio Micali, and Guiseppe Persiano. Non-
interactive zero-knowledge. SIAM Journal of Computing, 20(6):1084-1118, 1991.
Fabrice Boudot. Efficient proofs that a committed number lies in an interval. In
EUROCRYPT 00, pages 431-444, 2000.

Sean Bowe, Ariel Gabizon, and Ian Miers. Scalable multi-party computation for
zk-snark parameters in the random beacon model. ePrint Archive, 2017.

Stefan Brands. Rethinking Public Key Infrastructure and Digital Certificates—
Building in Privacy. PhD thesis, Eindhoven Inst. of Tech., The Netherlands, 1999.
Jan Camenisch and Ivan Damgard. Verifiable encryption, group encryption, and
their applications to separable group signatures and signature sharing schemes. In
International Conference on the Theory and Application of Cryptology and Infor-
mation Security, pages 331-345. Springer, 2000.

Jan Camenisch, Manu Drijvers, Tommaso Gagliardoni, Anja Lehmann, and Gre-
gory Neven. The wonderful world of global random oracles. In Annual Interna-
tional Conference on the Theory and Applications of Cryptographic Techniques,
pages 280-312. Springer, 2018.

Jan Camenisch, Susan Hohenberger, Markulf Kohlweiss, Anna Lysyanskaya, and
Mira Meyerovich. How to win the clonewars: efficient periodic n-times anonymous
authentication. pages 201-210. ACM, 2006.

Jan Camenisch, Susan Hohenberger, and Anna Lysyanskaya. Compact E-cash. In
Ronald Cramer, editor, Advances in Cryptology — Eurocrypt 2005, volume 3494,
pages 302-321. Springer, 2005.

Jan Camenisch and Anna Lysyanskaya. An efficient system for non-transferable
anonymous credentials with optional anonymity revocation. In Birgit Pfitzmann,
editor, FEUROCRYPT 2001, volume 2045, pages 93-118. Springer Verlag, 2001.
Jan Camenisch and Anna Lysyanskaya. A signature scheme with efficient protocols.
In SCN 2002, volume 2576, pages 268—-289, 2003.

Jan Camenisch and Markus Michels. Proving in zero-knowledge that a number n
is the product of two safe primes. In EUROCRYPT ’99, pages 107-122, 1999.

32

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

A. Lysyanskaya and L.N. Rosenbloom

Jan Camenisch and Markus Michels. Separability and efficiency for generic group
signature schemes. In CRYPTO ’99, volume 1666, pages 413-430, 1999.

Jan Camenisch and Victor Shoup. Practical verifiable encryption and decryption
of discrete logarithms. In CRYPTO ’03, volume 2729, pages 126-144, 2003.

Jan Camenisch and Markus Stadler. Efficient group signature schemes for large
groups. In CRYPTO ’97, pages 410-424. Springer Verlag, 1997.

Ran Canetti. Universally composable security: A new paradigm for cryptographic
protocols. In Proceedings 42nd IEEE Symposium on Foundations of Computer
Science, pages 136-145. IEEE, 2001.

Ran Canetti, Yevgeniy Dodis, Rafael Pass, and Shabsi Walfish. Universally com-
posable security with global setup. In Theory of Cryptography Conference, pages
61-85. Springer, 2007.

Ran Canetti and Marc Fischlin. Universally composable commitments. In Annual
International Cryptology Conference, pages 19—40. Springer, 2001.

Ran Canetti, Abhishek Jain, and Alessandra Scafuro. Practical uc security with
a global random oracle. In Proceedings of the 2014 ACM SIGSAC Conference on
Computer and Communications Security, pages 597-608, 2014.

Ronald Cramer, Ivan Damgard, and Jesper Buus Nielsen. Multiparty computa-
tion from threshold homomorphic encryption. In Birgit Pfitzmann, editor, EURO-
CRYPT 2001, volume 2045, pages 280-300. Springer Verlag, 2001.

Ronald Cramer, Ivan Damgard, and Berry Schoenmakers. Proofs of partial knowl-
edge and simplified design of witness hiding protocols. In Annual International
Cryptology Conference, pages 174-187. Springer, 1994.

Ronald Cramer, Ivan Damgard, Chaoping Xing, and Chen Yuan. Amortized com-
plexity of zero-knowledge proofs revisited: Achieving linear soundness slack. In
Advances in Cryptology - EUROCRYPT 2017, volume 10210 of Lecture Notes in
Computer Science, pages 479-500, 2017.

Ivan Damgard. On o-protocols. University of Aarhus, Department of Computer
Science, 2002.

Manu Drijvers, Kasra Edalatnejad, Bryan Ford, Eike Kiltz, Julian Loss, Gregory
Neven, and Igors Stepanovs. On the security of two-round multi-signatures. In
2019 IEEE Symposium on Security and Privacy, pages 1084-1101. IEEE, 2019.
Uriel Feige, Dror Lapidot, and Adi Shamir. Multiple noninteractive zero knowledge
proofs under general assumptions. 29(1):1-28, 1999.

Amos Fiat and Adi Shamir. How to prove yourself: Practical solutions to identi-
fication and signature problems. In Conference on the theory and application of
cryptographic techniques, pages 186—194. Springer, 1986.

Marc Fischlin. Communication-efficient non-interactive proofs of knowl-
edge with online extractors. 2005. Manuscript. Available from
http://www.cryptoplexity.informatik.tu-darmstadt.de/media/crypt/
publications_1/fischlinonline-extractor2005.pdf.

Marc Fischlin. Communication-efficient non-interactive proofs of knowledge with
online extractors. In Annual International Cryptology Conference, pages 152-168.
Springer, 2005.

Eiichiro Fujisaki and Tatsuaki Okamoto. Statistical zero knowledge protocols to
prove modular polynomial relations. In CRYPTO 97, pages 16-30, 1997.

Eu-Jin Goh and Stanistaw Jarecki. A signature scheme as secure as the diffie-
hellman problem. In International Conference on the Theory and Applications of
Cryptographic Techniques, pages 401-415. Springer, 2003.

http://www.cryptoplexity.informatik.tu-darmstadt.de/media/crypt/publications_1/fischlinonline-extractor2005.pdf
http://www.cryptoplexity.informatik.tu-darmstadt.de/media/crypt/publications_1/fischlinonline-extractor2005.pdf

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

UC XY-protocols in the Global ROM 33

Shuichi Katsumata. A new simple technique to bootstrap various lattice zero-
knowledge proofs to qrom secure nizks. In Annual International Cryptology Con-
ference, pages 580—610. Springer, 2021.

Yashvanth Kondi and abhi shelat. Improved straight-line extraction in the random
oracle model with applications to signature aggregation. Cryptology ePrint Archive,
2022.

Helger Lipmaa. Statistical zero-knowledge proofs from diophantine equations.
Manuscript. Available from http://eprint.iacr.org/2001/086, 2001.

Anna Lysyanskaya and Leah Namisa Rosenbloom. Universally composable sigma-
protocols in the global random-oracle model. Cryptology ePrint Archive, 2022.
Vadim Lyubashevsky. Lattice signatures without trapdoors. In Advances in Cryp-
tology - EUROCRYPT 2012, volume 7237 of Lecture Notes in Computer Science,
pages 738-755. Springer, 2012.

Jonas Nick, Tim Ruffing, and Yannick Seurin. Musig2: simple two-round schnorr
multi-signatures. In Annual International Cryptology Conference, pages 189-221.
Springer, 2021.

Rafael Pass. On deniability in the common reference string and random oracle
model. In Annual International Cryptology Conference, pages 316—337, 2003.
Torben Pryds Pedersen. Non-interactive and information-theoretic secure verifiable
secret sharing. In CRYPTO ’92, volume 576, pages 129-140, 1992.

Alfredo De Santis, Giovanni Di Crescenzo, Rafail Ostrovsky, Giuseppe Persiano,
and Amit Sahai. Robust non-interactive zero knowledge. In CRYPTO, volume
2139 of Lecture Notes in Computer Science, pages 566-598. Springer, 2001.
Dominique Unruh. Non-interactive zero-knowledge proofs in the quantum random
oracle model. In Annual International Conference on the Theory and Applications
of Cryptographic Techniques, pages 755-784. Springer, 2015.

David Wagner. A generalized birthday problem. In Annual International Cryptol-
ogy Conference, pages 288—-304. Springer, 2002.

John Watrous. Zero-knowledge against quantum attacks. SIAM Journal on Com-
puting, 39(1):25-58, 2009.

Douglas Wikstrom. A commitment-consistent proof of a shuffle. In Colin Boyd
and Juan Manuel Gonzélez Nieto, editors, ACISP, pages 407-421. Springer, 2009.

http://eprint.iacr.org/2001/086

34 A. Lysyanskaya and L.N. Rosenbloom
Appendix

A Supplementary Definitions

A.1 Notation

We use A for the security parameter, and say an algorithm < is efficient in A
if its runtime can be expressed as a polynomial poly(A) on input A\. We say a
function negl is negligible in A if for every positive polynomial p there exists a
threshold N such that for all A > N, negl(\) < ﬁ.

When we write y < z where z is a quantity, we mean that y is assigned the
value z. Similarly, y < </ (x) means that y is assigned the output of algorithm
&/ on input x. We write L < &/ (z) to indicate that &/ has halted on input x
with no output, such that any process that invoked 7 can resume. By y <—g Z
where Z is a set or a probability distribution, we mean that y is assigned an
element sampled uniformly at random from Z.

If two distributions Y and Z are equivalent, we use the notation ¥ = Z.
If Y and Z are statistically indistinguishable, we use the notation Y =~ Z.
If Y and Z are only computationally indistinguishable, we use the notation
Y ~. Z. When we say two distributions are statistically (resp. computationally)
indistinguishable, we mean that for all A, the probability that any algorithm
&/ (resp. PPT algorithm) can determine whether a mystery element z was
sampled from Y or Z is only negligibly greater than a random guess, or % +
negl()\). We might also say in this case that 7 distinguishes Y from Z with
negligible advantage over a random guess.

A.2 Extended Discussion of Privileges in the Global ROM(s)

We first recall the functionality of the observable RO G opg due to Canetti et
al. [22]. The simulator (ideal adversary) S in the security proof of a protocol &
emulating an ideal functionality F in the G opg-hybrid model is able to observe all
adversarial queries to Grorg as follows. First, S can observe the corrupted parties’
queries t0 Gyopg by directly monitoring their input and output wires (recall that in
the ideal world, corrupted parties communicate through §). The environment’s
queries to Grorg, On the other hand, are not directly monitored by S. Since Groro
is completely public, the environment is free to query it anytime; however, the
environment is not free to query it with the same SID as the participants in @
or F, because it is external to @ by definition.

In order to ensure the environment’s queries are still available to the simula-
tor, Groro checks whether the SID for a query matches the SID of the querying
party. In the event that it does not, this query is labelled “illegitimate,” creating
the restriction. G,opg makes a record of all illegitimate queries available to an
ideal functionality F with the correct SID, if it exists.

A key feature of this relaxation of the strict global setup is that it does not
hide any of its interfaces from the environment. G..rg might be checking quer-
ents’ SIDs and disclosing information to Fyrzg, but its “front-facing” interface

UC XY-protocols in the Global ROM 35

looks no different to the environment than it does to any other party. While
in the original formulation of the definition G .rg makes the list of illegitimate
queries available to F, it is reasonable to imagine a world in which all of the
illegitimate queries are simply posted to a global public bulletin—honest parties
will never attempt to interfere with other parties’ sessions, so their queries will
never be disclosed to anyone. Put differently, since the list of illegitimate queries
contains adversarial queries only, the environment (who is also puppet-mastering
the corrupted parties) cannot learn anything from seeing the list of illegitimate
queries that it did not already know—any information it would glean from the
global bulletin would be self-simulatable. Therefore, the observability property
of Grorg does not functionally change the view of the environment.

We contrast this with the “programmability” property of the restricted pro-
grammable observable global RO, Grporo [10]. Technically since Grporo is public,
anybody can program it. While there are uses for a non-restricted programmable
global RO [10], it would not work for NIZKPoK since anybody could forge a
proof. In order to ensure that programming is restricted to the simulator only,
Grporo has an IsProgrammed interface that allows participants with a particular
SID to check whether the output of Grporg Was programmed on some input per-
taining to the same session. Honest parties in the challenge session can therefore
check whether the adversary has programmed Grporg, and can refuse to continue
the protocol if so. Camenisch et al. argue that since the simulator controls the
corrupted parties’ view of the experiment in the ideal world, it can pretend that
the simulator did not program anything and return “false” to all of the corrupted
parties’ IsProgrammed queries. Since only parties running a legitimate protocol
session s are allowed to use the IsProgrammed interface for s, the environment
cannot make IsProgrammed queries for s—if it could, it would easily be able to
distinguish between the real and ideal experiments by checking whether honest
parties’ responses were programmed. Unlike the former observability property,
the programmability property afforded by the IsProgrammed interface creates a
local restriction—it does not allow the environment to interact freely with the
interfaces of the RO just like any other party would.

We believe there may be downsides to Grpoerg: it is not clear how compromising
the fully-public aspect of the global ROM with a locally-restricted interface
might impact the overall composability of protocols proven secure in the Grporo-
hybrid model. In order to achieve efficient GUC NIZKPoK without this localized
interface, we build a new hybrid model called the G opg-Fcrs-hybrid model. The
Groro-Fers-hybrid model shifts the localized interface from inside of the global RO
to inside of the protocol—as long participants realize the functionality Fcrs with
a secure common reference string (CRS), our GUC NIZKPoK are guaranteed to
retain composability with primitives that are provably secure in (fully) global
ROMs.

36 A. Lysyanskaya and L.N. Rosenbloom

A.3 Protocol Template

Definition 15 (Our Y-protocol Template). The protocol template for a re-
lation R is a tuple of efficient algorithms 7 = (Setup, Commit,Challenge, Respond,
Decision), defined as follows.

— ppm Setup(l)‘): Given a security parameter, generates a set of public
parameters ppm which minimally include the challenge length €.

— com ¢ Commit(ppm,z,w): P sends V a message com.
— chl « Challenge(ppm,x,com): V sends P a random {-bit string chl.
— res < Respond(ppm, x, w, com, chl): P sends V a reply res.

— {0,1} + Decision(ppm, x, com, chl, res): V decides whether to output 1 (ac-
cept) or 0 (reject) based on the input (ppm,x, com, chl, res).

The tuple (com, chl,res) is called a transcript or proof. We say a transcript or
proof is valid or accepting if Decision(ppm,x, com, chl, res) outputs I.

Definition 16 (Original Protocol Template for Relation R). [26] Let the
common input to P and V' be x, and the private input to P be a value w such
that (x,w) € R. The protocol template is the following three-round transaction:

P sends V a message a.

V sends P a random /-bit string e.

P sends V a reply z.

V decides to accept (output 1) or reject (output 0) based solely on the values
(z,a,e,z2).

™o e =

We say a transcript (a,e,z) is an accepting transcript for x if the protocol
instructs V' to accept based on the values (z,a, e, z).

A.4 XY-protocols

Definition 17 (Original Y-protocol). [26] A protocol P is a X-protocol for
relation R if it is a three-round public-coin protocol of the form in Definition 15
and the following requirements hold:

— Completeness: If P and V follow the protocol on input x and private input
w to P where (x,w) € R, then V always accepts.

— Special Soundness: There exists a polynomial-time algorithm E that given
any x and any pair of accepting transcripts (com, chl,res) and
(com, chl’, res’) for x where chl # chl’, outputs w such that (z,w) € R.

— Special honest verifier zero knowledge: There exists a PPT simulator
M, which on input x and chl outputs a transcript of the form (com, chl, res)
with the same probability distribution as transcripts between the honest P and

UC XY-protocols in the Global ROM 37

V' on common input x. Formally, for every x and w such that (z,w) € R
and every chl € {0,1}¢ it holds that

{M(:E, chl)} = {(P(:z:, w), V(x, w))}

where M (x,chl) denotes the output of simulator M on input x and chl,
and (P(z,w),V(x,w)) denotes the output transcript of an execution between
P and V', where P has input (x,w), V has input x, and V'’s random tape
(determining its query) equals chl.

The value £ is called the challenge length.

A.5 Standard X-protocol Security Definitions

We will now formalize the completeness, special honest-verifier zero-knowledge,
and special soundness properties. Other than notational differences, our formu-
lation is due to Damgard [26].

The completeness property requires that any proof computed using the Prove
algorithm on a valid statement-witness pair should induce the Verify algorithm
to accept.

Definition 18 (Completeness). A Y-protocol g for relation R is complete
if for all (x,w) € R and 7 < X'p.Prove((z,w),z), Yr.Verify(z,m) = 1.

The special honest-verifier zero-knowledge (SHVZK) property essentially says
that no efficient algorithm should be able to distinguish between proofs generated
using the Setup and Prove algorithms from proofs generated using the SimSetup
and SimProve algorithms. We formalize the SHVZK property as a game between
an adversary algorithm 7 and a challenger C who is running one of two experi-
ments: the b = 0 experiment in which C responds to ./’s queries (Prove, z,w) by
returning 7 < Y'r.Prove((x,w), (x,chl)), and the b = 1 experiment in which C
responds to Prove queries by returning w + X'g.SimProve(x, z, chl) for z gen-
erated using Y'r.SimSetup. Note that since we are in the honest-verifier (public-
coin) setting, we can assume C runs the proof process with the correct verifier
algorithm whose challenge chl is the contents of its random tape. As a result, the
challenges in X'p.Prove((z,w), (z, chl)) and X'g.SimProve(z, z, chl) are identi-
cally distributed. The word “special” here refers to the fact that the SimProve
algorithm gets to see the honest verifier’'s random tape, and thus the challenge,
prior to computing the simulated proof. That is the simulator’s advantage over
a real prover who gets its challenge from the verifier only after it has issued its
commit message. We say a X-protocol is SHVZK with respect to a security pa-
rameter A if the probability that <7 can distinguish between the two experiments
is only negligibly better than a random guess.

In the original definition of X-protocols given in Appendix A.4, SHVZK
is a statistical security property—that is, the experiments described above are
statistically indistinguishable, and even an unbounded (non-PPT) &7 cannot dis-
tinguish them. Later in the paper we will prove that our GUC-compiler works for

38 A. Lysyanskaya and L.N. Rosenbloom

both statistical and computational SHVZK X-protocols. Therefore, we write our
definition to permit both versions. Where there is no qualifier before SHVZK,
the reader can assume we mean the traditional (statistical) notion of SHVZK.

Definition 19 (Special Honest-Verifier Zero-Knowledge). A X-protocol
X'r for relation R is statistical (resp. computational) special honest-verifier zero-
knowledge (SHVZK) if there exist algorithms SimSetup and SimProve such that
for any security parameter A, any adversary (resp. any PPT adversary) <, and a
bit b < {0,1}, there exists some negligible function negl such that Pr[b’ =b] <
% + negl()\), where b is the result of running the game SHVZK o 5, (1,b) from
Figure 5. We say &/ wins the SHVZK game if Pr[t/ = b] > 1 + negl(}).

SHVZK. 5, (1*,0): REAL SHVZK . 5, (1*,1): IDEAL

1: ppm < Yg.Setup(1t) 1: (ppm,z) < Yr.SimSetup(1*)
2: (Prove,z,w),st + d(lA,ppm) 2: (Prove,z,w),st + Jaf(l)‘,ppm)
3: if R(z,w)=1: 3: if (r,w) € R:

4: m < Ypr.Prove((z,w), (v, chl)) 4: 7« Yr.SimProve(w, z, chl)
5: else : 5: else :

6 : T L 6: T L

70 b o (st,m) 7: b« o(st,T)

8: return b’ 8: return b’

Fig. 5. Special Honest-Verifier Zero-Knowledge (SHVZK) Game.

Finally, the special soundness property essentially says that for any pair of
valid proofs generated by an adversary o for a statement x that have the same
commitment but different challenges, the Extract algorithm can extract a wit-
ness such that R(z,w) = 1 with overwhelming probability. The word “special”
here refers to the fact that the Extract algorithm relies on access to multiple
valid transcripts in order to obtain a witness; by default, “special” soundness
actually refers to “two-special” soundness (such that Extract needs two tran-
scripts), but X-protocols can also be n-special sound for some integer n > 2. To
maintain consistency with the original definitions and keep things simple in the
proofs, we have left our definition as two-special, but it is easy to replace any
mention of two transcripts 7, 7’ throughout the paper with m1,...,7,.

We again formalize the intuition of special soundness with a game in which
& issues a challenge tuple (z, 7, 7") that is designed to force the Extract algo-
rithm to fail—that is, the witness w returned by Extract(x,w,n’) is such that
R(z,w) = 0.

Definition 20 (Special Soundness). A X-protocol X'r for relation R is spe-
cial sound if there exists a PPT algorithm Extract such that for any security

UC XY-protocols in the Global ROM 39

parameter X, any PPT adversary <7 ,
Pr[Fail <SS 5, (1%)] < negl()),

where SS is the special soundness game described in Figure 6. We say o/ wins
the SS game if Pr[Fail < SS. 5, (17)] > negl()\).

SSwr,sp (1)
1: ppm <+ Yr.Setup(1’)

(Challenge,z,,7') + (1", ppm)
parse m = (com, chl, res), = (com’,chl’, res’)
if Yp.Verify(z,n) = Tg.Verify(z, ') =1 A
com = com’ A chl # chl’ :
w ¢+ Yg.Extract(z,m,7')
if R(z,w)=0:

return Fail

© 00 N O O ke W N

return Success

Fig. 6. Special Soundness (SS) Game.

A.6 Non-Interactive Special Soundness

Non-interactive special soundness (NI-SS) is a weakened version of the NI-SSS
game where &7 does not get to issue Prove queries to the simulator.

Definition 21 (Non-Interactive Special Soundness). A NISLE proof sys-

tem IT3 = (Setup®!, Prove!! | Verify! SimSetup, SimProve, Extract) non-interactive
special sound (NI-SS) in the random-oracle model if there exists an algorithm

IIHC Extract such that for any security parameter X\ any random oracle H, and

any PPT adversary <7,

Pr[Fail < NI-SS, rsic(1%)] < negl(}),

where NI-SS is the NI-SS game described in Figure 7. We say &/ wins the NI-SS
game if Pr[Fail < lessgﬂ%c(lk)] > negl(\).

A.7 Additional Properties of NI-Compliant Y-protocols

By introducing a random oracle into the security experiment, NI transforms of
any kind open up a new sort of security vulnerability for X-protocols rooted in

40 A. Lysyanskaya and L.N. Rosenbloom

lessgﬂ%c(ﬂ)

1: ppm« I13° Setup(1™)
2: st 71", ppm)
3: while st # L:

4 (z,7, Q7 st) « T (st)

5 Response +— L

6 : if H%C.VerifyH(m,W) =1:

7: w « II3° Extract(z, , Qd)
8 : if R(z,w)=0:

9: return Fail

10 : st « &/ " (st,Response)

11 : return Success

Fig. 7. Non-Interactive Special Soundness (NI-SS) Game.

the adversary’s ability to freely interact with the RO. In particular, if an ad-
versary ./ can predict how the prover is going to query the oracle in order to
generate a proof of a statement x, &7 can go through this process itself and “pre-
dict” the challenge that will be returned. In other words, if &7 is able to predict
com and query the RO on (x, com) before the prover does, it will be able to learn
the RO’s original response chl* before the simulator has had a chance to pro-
gram a different one. &7 will then be able to distinguish the NIM-SHVZK games
based on whether or not the chl returned by the SHVZK challenger matches
chl*. To handle this vulnerability, we follow Fischlin [31] in assuming that the
com messages of the underlying X-protocols have entropy that is superlogarith-
mic in the security parameter. We stress that any X-protocol that maintains
the SHVZK property under any NI transform in the ROM, including the plain
Fiat-Shamir transform, must have this property.

Definition 22 (Superlogarithmic Commitment Entropy). Let Xi be any
X -protocol for binary NP relation R and template T as specified in Definition 1.
Y'r has superlogarithmic commitment entropy if for all (z,w) € Lgr, the min-
entropy of com < 7.Commit(x,w) is superlogarithmic in .

A.8 The OR-protocol

The first definition in this section is the original OR-protocol as imagined by
Cramer [24] and formalized by Damg(a)rd [26]. Given both statements zg, 1
and a witness w;, for one of the statements x;,, the OR-protocol prover first
samples a random challenge chl;_; to correspond to the statement for which it
does not have a witness, x1_p. It then invokes the Simulate algorithm on input
(x1-p,chli_p) to obtain the entire simulated proof transcript (comj_p, chly_p,

UC XY-protocols in the Global ROM 41

resi_p). The prover then forms the first message commitment com; for x; hon-
estly according to the Commit algorithm, and sends the tuple (comg, com) to the
verifier, who returns the overall protocol challenge CHL.

Once it receives CHL from the verifier, the prover sets the second individual X-
protocol challenge chl, = chl;_; ®CHL. Note this step “fixes” the challenge chl,
such that the prover cannot cheat and simulate the proof of both statements.
Given chly, the prover can compute res; according to the Respond algorithm.
Finally, the prover sends both transcripts (comg, chlg, resg) and (comj, chly, res;)
to the verifier, who checks that both are transcripts are valid and also that
chly @ chl; = CHL.

Definition 23 (Original OR-Protocol). [26] Let the common input to P and
V be a pair (zo,z1), and the private input to P be a value w and a bit b such
that (zp, w) € R. The OR~protocol is the following transaction:

1. P computes the first message a, according to the template using (xp,w)
as input. P chooses e;_; at random and runs the simulator M on input
(1-p,e1-p); let (a1-p, €1-p, 21—p) be the output of M. P sends V (ag,aq).

2. V sends P a random {-bit string s.

3. P sets e, = s @ e;_p and computes the answer 2z to challenge e, according
to the template using (xy, ap, ey, w) as input. P sends (eo, 20, €1,21) to V.

4. V checks that eg®e; = s and that both transcripts (ao, €, 20) and (a1, e1, 21)
are accepting on inputs x¢ and x1, respectively.

Note that the original formulation does not explicitly state which template
or Y-protocol specification the prover uses at each step of the protocol execu-
tion. Since the proofs of statements xy and x; are computed independently, it is
reasonable to consider the case in which x¢ and x; are associated with different
relations, protocol templates, and X-protocols. In the spirit of keeping the CRS
generation mechanism that we introduced for our OR-protocol construction in
Section 5.1 as general as possible, we consider the case in which Ry and R; are
independent. Our version of the OR~protocol therefore depends on two different
X-protocols X'r, and Xg,, allowing the prover to differentiate its instructions
depending on the witness it has. For example, if the prover has wy for a state-
ment 2, it would use the SimProve algorithm of X'z, , to obtain the transcript
for x1_p, then use the algorithms in the protocol template 7r, to generate the
transcript for xp.

In order to keep the notation consistent with Y-protocols while avoiding
variable clutter, we use capital letters to represent compound objects as follows.
The statement X to be proven in an OR-protocol consists of a tuple representing
both statements o and x1, or X = (¢, z1). The compound proof @ is a tuple
including m9p = (comg, chlp,resg) and m = (comj,chly,res;), as well as the
verifier’s challenge, CHL. We write this tuple & = (mg, 7, CHL). Similarly, the
witness W must include not only the witness w for one of the statements, but
also a bit b indicating the statement to which w corresponds. In other words,
if (zg,w) € Rp then b = 0 and the witness tuple is W = (w,0). Otherwise if

42 A. Lysyanskaya and L.N. Rosenbloom

(x1,w) € Ry, then the tuple is W = (w, 1). In the special case that W is returned
from the extractor, we let W = (wp, wy), with the acknowledgement that only
one of the witnesses produced by the Extract operation must be legitimate—
either Ro(xg,wo) =1 or Ry(xz1,wy) = 1.
Definition 24 (OR-Protocol). An OR-protocol for a relation Ror = Ro V
Ry based on X-protocols Xr, -, and X, - (Definition 1) is a tuple of proce-
dures Xor = (Setup,Prove,Verify, SimSetup, Simulate, Extract) defined as
follows.
— PPM < Setup(1?): Given a security parameter 1%, run Xg,.Setup(1*) to
obtain ppm, and X'g,.Setup(1*) to obtain ppm,. Output PPM = (ppm,, ppm,).
— & < Prove(X,W): Parse X = (zg,x1) and W = (w,b), and let b be the bit
such that (zp, w) € Ry. Ezecute the following:
e Com + Commit(X,W): P computes com;, according to T,.Commit(zp,w).
P chooses chly_y at random and generates (comj_p, chly_p, resi_p) by
running X'g,_,.Simulate(x;_p,chly_p). P sends V Com = (comg, comy).
e CHL < Challenge(X,Com): V sends P a random (-bit string CHL.
e Res < Respond(X, W, Com, Chl): P sets chl, = CHL @ chly_; and com-
putes resy, according to T, Respond(xy, w, comp, chly). P sends (Chl, Res)
= (chlp, chly, resp,res;) to V.
The output “proof” @ is a tuple (mp, 71, CHL), where m, = (comy, chly, resy).
— {0,1} < Verify(X,®): Parse P as (mo, w1, CHL), where m, = (comy, chly, resy).
Ezxecute the following:
e {0,1} + Decision(X, Com,Chl,Res): If 7p.Decision(zg, comg, chlp, resy)
=1 and 11.Decision(z, comy, chly, resy) = 1, return 1. Otherwise, re-
turn 0.
IfDecision(X,Com,Chl,Res) =1 and chlo@chly = CHL, output I (accept).
Otherwise, output 0 (reject).

(PPM, Z) < SimSetup(1*): Generate (ppmy, z0) by running X', .SimSetup(1*)
and (ppm,, z1) by running Yg,.SimSetup(1*). Return (PPM, Z) where Z =
(20, 21).

— & < SimProve(X, Z,CHL) : Parse X = (zo,x1) and Z = (zo,z1). Generate
chly uniformly at random and set chly = chlg @ CHL. Obtain mg by running
YR, -Simulate(xg, chly) and w1 by running X'g, .Simulate(z1, chly). Return
P = (7T0,7T1,CHL).

W « Extract(X,®,9'): Parse X = (xg,21), & = (m,m1), and &' =
(w4, 7). Obtain wy by running X' r, .Extract(zg, mo, 7)) and wy by running
Xr, Extract(xy,m,). Return W = (wg,w1).

Theorem 5. Given X-protocols X'r, for a relation Ry and X', for relation R,
the protocol YXor from Definition 24 is a X-protocol for relation Ror = Ry V
Ry. Moreover, for any verifier V*, the probability distribution of conversations
between P and V* where w is such that (zp, w) € Ry is independent of b.

Proof. We refer the reader to Damgard’s proof [26]. O

UC XY-protocols in the Global ROM 43

A.9 The GUC Real- and Ideal-World Experiments

Real-World Experiment. The real-world experiment REAL

gR_D 7]:CRS

A .
Zﬁgc,d,z(l ,aux) is ex

ecuted as follows.

The experiment invokes the environment Z on input (1%, aux).

. Z invokes & on input of its choice and Ggg on input 1¢.2

Z invokes arbitrary parties with arbitrary SIDs. Z can corrupt up to all but
one of the parties by sending messages through 7. Z can invoke new parties
whenever it chooses,* but must decide at the time of invocation whether or
not they are corrupted (passive corruption model).

As is standard in the UC and GUC models, Z passes inputs and receives
outputs to the input-output tapes of all parties to the protocol on its own.
Additionally, it communicates with corrupted parties through 7. In par-
ticular (briefly), Z can send arbitrary Setup, Prove, and Verify requests
to any party, and have corrupted parties send any corrupted Setup, Prove,
and Verify requests on its behalf. It can also arbitrarily query Ggg using any
SID, and execute any version of Setup, Prove, and Verify itself.

In order to respond honestly to Setup, Prove, and Verify requests, the
parties run the protocols X%'°.Setup, X% Prove, and X% .Verify, respec-
tively.

Ideal-World Ezperiment. The ideal world experiment IDEALY (1*, aux) is

I8 S =z

executed as follows.

GUR L=

3

4

5

The experiment invokes the environment Z on input (1%, aux).

Z invokes S on input of its choice® and Ggg on input 1¢.

Same as Step 3 in the real world experiment.

Same as Step 4 in the real world experiment.

Rather than respond to Setup, Prove, and Verify requests themselves, hon-
est parties invoke the (local) ideal functionality Fyrzx for their SID s. At
initialization, Fyrzx obtains specifications for the algorithms Setup, Prove,
Verify, Simulate, and Extract from S. After the ideal functionality is set
up, honest parties with SID s forward all Prove and Verify requests directly
to Fyrzx, which responds according to its specification, given in Definition 8.

One can also imagine that Grg with output length ¢ already exists, or was invoked

by the experiment. Since a precise invocation of Ggg is not clear in the literature, we
chose to maintain internal consistency with the rest of the definition and have the
experiment initialize Gpg during setup.

In order to guarantee that the experiment runs in time polynomial in the security
parameter, the UC model places certain restrictions on the runtime of the arbitrary
parties Z invokes. For a full discussion, we refer readers to Canetti et al. [19].

To the environment, this process looks exactly the same as in the real world. However
in the ideal world, the simulator comes pre-programmed with special instructions to
help the ideal functionality simulate the protocol.

44 A. Lysyanskaya and L.N. Rosenbloom

A.10 Discussion of Strong Special Soundness

The strong special soundness property says that the extractor must still work
as long as there is some difference between the challenges and responses of two
transcripts—in particular, it could be that chl = chl’, as long as res # res’.

Definition 25 (Strong Special Soundness). A X-protocol X' for relation R
(Definition 1) has the strong special soundness property if the condition chl #
chl’ in the specification of the X .Extract algorithm is replaced with the condition
(chl,res) # (chl/,res’).

The strengthening of the extractor afforded by strong special soundness al-
lows the randomized Fischlin prover to iterate over the same challenge without
compromising soundness. If, for example, the X-protocol allowed both (com, chl,
res||0) and (com, chl,res||1) to verify without extraction, repeating the proto-
col for the same challenge (as is the case with the Fischlin prover) would not
guarantee soundness, since a cheating prover could simply simulate one instance
and tack on some extra bits at the end.

Fischlin navigated around this issue using the quasi-unique responses prop-
erty [30], which states that if two proofs have the same first message and chal-
lenge, then their responses may only differ with negligible probability.

Definition 26 (Quasi-Unique Responses). A X-protocol for relation R (Def-
inition 1) has the quasi-unique responses property if for any PPT «f, security
parameter \, and (z,com, chl, res,res’) + o/ (1*), we have

Pr[Yr.Verify(x, com,chl, res) = Yp.Verify(z, com, chl,res’) =1
A res # res’] < negl()).

As noted by Kondi and shelat, this also prevents two provers with differ-
ent witnesses, wg and w; for the same statement x, from answering the same
challenge in a different way. This situation always occurs when the simulator is
using a different witness than a real prover (as is the case with our OR~protocol
transform from Definition 13), and also occurs during the normal functioning of
most OR-protocols. For a more in depth discussion on the Fischlin transform
applied to OR-protocols and the strong special soundness property, we refer the
reader to Section 6 of Kondi and shelat [35].

A.11 The Original Fischlin Transform

Definition 27 (Original Fischlin Transform). [31] Let (Prgs,Vrs) be an
interactive Fiat-Shamir (FS) proof of knowledge over relation R with challenge
length £ = O(log A\) bits. Let b be the number of test bits, r be the number of
repetitions, S be the maximum sum over all repetitions, and t be the number
of bits per trial such that br = w(log\), 2t7% = w(log\), b,r,t = O(log \) and
b<t<{ Let H:{0,1}* — {0,1}* be a random oracle that maps to b bits.
Define the following NI proof system for relation R in the ROM as follows.

UC XY-protocols in the Global ROM 45

Prover. The prover P runs the prover of the underlying FS proof system
Prgs(z,w) in r independent repetitions to obtain the commitment vector a =
ai,...,a,. Then for each repetition 1 < i < r, PH tests t-bit challenges e; =
0,1,...2¢ — 1 and computes the response z; using Prgs until it finds one such
that H(x,@,i,e;,2;) = 0°. If no such tuple is found, the prover picks the minimal
value over all 2¢ oracle queries. The prover outputs the proof (x,7) where ™ =
(ai e, 2;) for 1 <i<r.

Verifier. The verifier VH accepts (outputs 1) if and only if V1 ps(z,m;) =1 for
1 < i <7 where m; = (a;,e;,2;), and if Y._, H(z,a,i,e;,2) < S. Otherwise,
the verifier rejects (outputs 0).

A.12 The Randomized Fischlin Transform

We recall the high-level details of the randomized Fischlin transform [31,35]
that we leverage in our constructions. First, the prover generates a vector of
r commitments, where r is a parameter of the system. For each commitment,
the prover draws challenges uniformly at random from the ¢-bit challenge space,
computes responses, and queries the RO on the complete transcript until it finds
one that causes the RO to return a value with b leading zeroes, where ¢ and b
are also parameters. If the prover does not find such a response, it chooses the
transcript such that, on input this transcript, the RO returns the smallest value
in lexicographic order.

In the end, the prover sends only the responses with minimal return values
for each of the r repetitions to the verifier. The verifier is therefore only able to
see a single transcript for each commitment, and can check the validity of the
transcripts and oracle queries as usual. Since the transform allows the prover
some flexibility in choosing a minimal oracle response value (rather than forcing
all b bits to be leading zeroes), the verifier checks that the sum of the oracle’s
responses to the transcripts is less than some maximal parameter, S.

The parameters b,7, S, and t are set such that there are guaranteed to be
(with overwhelming probability) two matching transcript queries, (z, com, chl,
res) and (z, com, chl’, res’), with the same commitment but different challenges.
When the extractor obtains these oracle queries via either the simulator in the
security experiment or the observability interface of the global RO, it is able
to extract a witness w such that (z,w) € R with overwhelming probability, as
guaranteed by the special soundness property.

Before we can apply the transform, we need a random oracle that maps to
b bits. For the purposes of this general defintion, we let the global RO be the
general global RO Ggrg described in Section 3.5. Since Ggg is global and can be
reused for different setups, rather than alter the output length or introduce a
second RO, we construct the truncation function suggested by Fischlin [31] that
maps the output of Ggg to b bits by cutting off all but b bits of the output.

Definition 28 (Bit Truncation Function). The RO bit truncation function

trunc : {0, 1} — {0, 1}® maps the £-bit output of H to a b-bit output by cutting
off the £ — b leading bits.

46 A. Lysyanskaya and L.N. Rosenbloom

The RO functionality of the (randomized) Fischlin transform where the RO
H :{0,1}* — {0,1}" is replaced by trunc(H) : {0,1}* — {0,1}°.

Definition 29 (Randomized Fischlin Transform). Let Xp ., be any X-
protocol for relation R (Definition 1) based on protocol template T (Definition 15)
with the strong special soundness property (Definition 14) and a challenge length
¢ = O(log \) bits. Let H be any random oracle. Then the randomized Fischlin
transform of Xr -, denoted rFis, is an algorithm that takes X'r ; as input and
creates a tuple of algorithms I = (Setup®, Prove® ,Verify”, SimSetup,
SimProve, Extract), defined as follows.

— ppm + Setup (1) : H is fized. Let b,r,S,t be set according to the Fis-
chlin transform (see Appendix A.11 for details). Then the public parame-
ters are ppm = (ppmy, b, 7, S,t,trunc), where ppmy, s obtained by running
7.Setup(1*) and trunc is the bit truncation function (Definition 28).

— (z,8) « Provell (z,w) : Compute the vector of v commitments com =
(comg, comy, ..., com,), by running T.Commit(x,w) r times. To compute each
response res;, test each t-bit challenge chl; as follows. First, select chl; uni-
formly at random from the challenge space. Then, repeat T.Respond(z,w, com,
chl) until trunc(Ggo(z,com, i, chl;, res;)) = 0°, or else take the minimal
over all of the responses. Finally, return (z,), where ® = (71,...,7.), and
each m; = (com;, chl;, res;).

— {0,1} «+ Verify! (z,®) : Parse & = (my,...,m.). Output 1 (accept) if and
only if YgNerify(z,m;) =1 and)_,_, trunc(Gro(z,<om, i, chl;, res;)) < S
for 1 <i <r. Otherwise, output 0 (reject).

— (ppm, 2) < SimSetup(1*) : Fiz H and generate ppm the same as in I15 . Setup.
Generate the simulator state information z by running Xp r.SimSetup and
return (ppm, z).

— (x,P) « SimProve(x, z,chly,...,chl,) : For each proof 1 < i < r, sample
2t random b-bit strings and assign them to the t-bit challenges chl;. Let
w: {01} — {0,1}° represent the map between the challenges and the b-bit
outputs, which are potential outputs of H. Let the final challenge for the it"
proof chl; be the first challenge in lexicographic order to map to the minimal
response. Run Yg r.Simulate(z, z,chl) to obtain m; = (com;,chl;, res;).
Repeat this process for all v proofs. For each proof, program the output of H
on input (z,<com, i, chl;, res;) to end with the b-bit output p;(chl;), and let
the £ —b leading bits be random. Finally, output the proof tuple (x,P), where
b= (Dy,...,9,).

— w + Extract(X,®, Q) : Parse ® = (m1,...,7,) and each w; = (com;, chl;,
res;). Given a list Qg the adversary’s queries to H, search for two queries
(x,com, 4, chl;, res;) and (x,com, i, chl}, res]) such that (chl;, res;) # (chl},

res)) and YpVerify(x,m;) = Xg.Verify(z,n)) = 1. If no such queries ex-

ist, output Fail. Otherwise, obtain w by running Xr.Extract(x,m, 7).

The full proof that the randomized Fischlin transform described above is a
straight-line compiler can be found in Appendix B.5.

UC XY-protocols in the Global ROM 47
B Supplementary Proofs

B.1 SHVZK Implies Multi-SHVZK

Definition 30 (Multiple SHVZK). A Y-protocol X'r for relation R is mul-
tiple special honest-verifier zero-knowledge (multi-SHVZK) if there exist algo-
rithms Xp.SimSetup and Xg.SimProve such that for any security parameter X,
any PPT adversary o, and a bit b <—¢ {0,1}, there exists some negligible func-
tion negl such that Pr[b = b] < % + negl(X\), where V' is the result of running
the game M-SHVZK . 5. (1*,b) from Figure 8. We say o/ wins the M-SHVZK
game if Prlt/ =b] > £ + negl()).

M-SHVZK .y 5, (1*,0) M-SHVZK . s, (1*,1)

1: ppm < Yg.Setup(1t) 1: ppm,z <+ Yg.SimSetup(1*)
2: st <« /(1" ppm) 2: st <« /(1" ppm)

3: while st #b': 3: while st #b':

4: (Prove,z,w), st + </ (st) 4: (Prove, z,w), st + </ (st)
5: if R(z,w)=1: 5: if R(z,w)=1:

6: 7 < Xr.Prove((z,w), (z, chl)) 6: 7 — Yr.SimProve(z, z, chl)
7 else : 7 else :

8: T+ L 8: T L

9: st « /(st,m) 9: st « &/(st,m)

10: returnd’ 10: return b’

Fig. 8. Multiple SHVZK (Multi-SHVZK) Game.

Lemma 1. If a X-protocol X' is SHVZK (Definition 19), then it is multi-
SHVZK (Definition 30).

Proof. We proceed by contrapositive and show that a protocol that is not multi-
SHVZK cannot be SHVZK. In particular, consider an adversary ./ who can
distinguish the following worlds: world 1) the first j proofs returned by the
multi-SHVZK challenger are real and the j + 1%% onward are simulated, and
world 2) the first j + 1 proofs are real and the j + 2"% onward are simulated.
We construct a reduction that uses 7 as a black box to win the regular SHVZK
game from Figure 5 as follows. The reduction proceeds by answering the first j
of @’s queries (Prove,x,w) by running X r.Prove(z,w). On the j + 15¢ query
(Prove,xj,w;), & issues (Prove,z;,w;) to its SHVZK challenger and receives
m; that is either a result of running X'r.Prove((x;, w;), (z;,chl;)) or a result of
running X'r.SimProve(x;, z, chl;). It returns 7; to &7, sets up the simulator state

48 A. Lysyanskaya and L.N. Rosenbloom

z by running X'r.SimSetup(1*), and proceeds to answer the rest of &/’s queries
(Prove, z,w) by running Y'r.SimProve(x, z, chl) (note that since challenges are
guaranteed to be independently distributed in the honest-verifier model, the
reduction can simulate the rest of the proofs for &7 without “cheating” on its
own challenge instance chl;). The reduction continues until < returns b’ at
which point the reduction also outputs ¢’. Clearly if .&/ has distinguished the
proof in the j + 1% slot as real or simulated, so has the reduction—the reduction
wins the SHVZK game with the same probability that o/ distinguishes the j-
and j + 1-hybrids of the multi-SHVZK game. Therefore, the probability that .«
can distinguish the 5% from the j 4+ 15 hybrid must be negligible in \. Since
&/ is PPT and the reduction is tight, the overall probability that </ can win the
multi-SHVZK game is similarly negligible.

B.2 Full Proof of Theorem 1
The following is the full proof of Theorem 1 from Section 3.5.

Recall Theorem 1: Let I be a protocol that GUC-realizes Fyrzx in the Gpg-
hybrid model (Definition 10 where Gyporg is replaced with Grg). Then I must be
overwhelmingly complete (Definition 3), NIM-SHVZK (Definition 4) and NI-SSS
(Definition 5).

Proof. We proceed by contrapositive and demonstrate that any protocol IT that is
not overwhelmingly complete, NIM-SHVZK, and NI-SSS cannot possibly GUC-
realize Fyrzx. We begin by showing that if IT is not overwhelmingly complete
and NIM-SHVZK, it does not GUC-realize Fy1z¢ in any global ROM.

Lemma 2. Any protocol II that is not overwhelmingly complete and NIM-SHVZK
in the Gro-hybrid model according to Definitions 3 and 4 does not GUC-realize
Fuizk in the Gro-hybrid model (Definition 10 where Grpopo is replaced with Grg).

Proof. We construct a reduction that uses an algorithm 279 that wins the NIM-
SHVZK game from Figure 2 with non-negligible advantage as a black box to
distinguish between the real- and ideal-world GUC experiments. The reduction
gets ppm from its GUC challenger C, who either calculates ppm < I1.Setup9(1*)
if it is running the real-world experiment or ppm,z < II.SimSetup(1?*) if it is
running the ideal-world experiment, and the reduction initializes </ on (1*, ppm).
The reduction passes all of &/’s random oracle queries to and from Ggy and all
of @’s queries (Prove,x;,w;) to C under some protocol session s. In response
to the query (Prove,s,x;,w;), C returns 7 that is either the result of running
I1.Prove¥® (z;,w;) or the result of running I1.SimProve(z;, 2, chl;) (where Ggo
is potentially programmed). Clearly if the simulator hands Fyrzx algorithms
SimSetup and SimProve that cause a completeness error (such that R(z;,w;)
= 1 but Verify(x;,m;) = 0) and Fyrzx outputs Fail, the reduction can tell
immediately that it is living in the ideal-world experiment without any further
interaction with &7, and we arrive at the contradiction. Similarly if the reduction
notices any inconsistencies in Gyg it can immediately output “ideal”—the reduc-
tion itself does not have any control over Gy and therefore o/’s view of Ggg in

UC XY-protocols in the Global ROM 49

the NIM-SHVZK experiment directly depends on whether the GUC experiment
is real-world (such that Ggg does not change) or ideal-world (such that Gz may
change depending on the specification of SimSetup and SimProve and whether
or not Gyg is programmable).

The reduction proceeds in the manner above until &/ outputs a bit b’ to
indicate whether it is talking to NIM-SHVZK9®(1*,0) or NIM-SHVZK9® (1, 1),
and the reduction outputs whatever &/ outputs. Note that if b = 0 and the re-
duction is getting proofs from the standard IT.Prove¥® algorithm, the reduction
produces &7’s exact view in the experiment NIMfSHVZKgRD(l)‘,O) which also
generates proofs using IT.Prove?=. If b = 1 and the reduction is getting proofs
from an Fyrzxg whose Prove functionality never outputs Fail, this is exactly what
&/ expects to see from the experiment NIMfSHVZKg““(l’\, 1), which generates
proofs using I7.SimSetup and I/.SimProve. Therefore, the reduction succeeds in
distinguishing the real from ideal experiments with the same (non-negligible)
probability as &7, completing the contradiction. O

We now show that if IT is not NI special simulation-sound, it does not GUC-
realize JFyrzx in any global ROM.

Lemma 3. Any protocol IT that is not NI-SSS (Definition 5) does not GUC-
realize Fyizx in the Gro-hybrid model (Definition 10 where Grporg is replaced with
Gro)-

Proof. We again construct a reduction that uses an algorithm .79°—this time
one that wins the NI-SSS game from Figure 3—as a black box to distinguish
between the real- and ideal-world GUC experiments. The reduction gets ppm
from its GUC challenger C, where ppm < IT.Setup9®(1*) if C is running the
real-world experiment or ppm,z < I1.8imSetup(1*) if C is running the ideal-
world experiment, and the reduction initializes ./ on (1%, ppm). The reduction
passes all of &7’s random oracle queries to and from Grg and all of .&7’s queries
(Prove, x;, wz) to C as (Prove, s, z;, wi) under some challenge protocol session s.
In response to the query (Prove, s, x;, w;), C returns m that is either the result
of running IT.Prove¥® (z;, w;) or the result of running I7.SimProve(z;, z, chl;)
(where Ggg is potentially programmed). Let the set of proofs returned by C up to
query % be denoted P = mq,...,m;. The argument surrounding the reduction’s
view of Ggg is the same as above—if the C is running the ideal-world experiment
and Fyrzx's Prove interface makes any noticeable changes to Ggg, the reduction
will be able to tell immediately that it is living in the ideal world. Similarly if
JFrizk's Prove interface has a completeness error that causes Fyrzx to output
Fail, the reduction outputs “ideal” without any further interaction with <.
When & issues a query (Challenge, ;,

7;), A issues the query (Verify, s, z;, m;) to C. By assumption, & will eventually
issue a challenge proof (x;, ;) such that II.Verify(x;,m;) = 1 and (x;,m;) ¢ P
but R(z;,w;) = 0 for w < II.Extract(x;, m;, Qo), causing the NI-SSS experi-
ment to output Fail. When the reduction outputs this proof to the C, we argue
that it will succeed in distinguishing the real from ideal worlds with the same
probability as 7. Note that if the reduction is talking to the ideal-world GUC

50 A. Lysyanskaya and L.N. Rosenbloom

experiment then the challenger’s responses to the queries (Prove, s, z;,w;) and
(Verify, s, x;,m;) will be distributed identically to what <7 is expecting from the
queries (Prove, z;, w;) and (Challenge, x;, 7;) in the NI-SSS game for the follow-
ing reasons. First, assuming the Prove interface of Fyrzx does not output Fail
and o/’s view of Ggg remains consistent as discussed above, Fyrzx’s SimSetup
and SimProve algorithms must respond to queries (Prove, s, z;, w;) with proofs
7; that are indistinguishable from the m; produced by I1.SimSetup(1*) and
I1.SimProve(x;, z,chl;) via the same argument as in Lemma 2 above. Second,
JFrizk's Extract algorithm makes the same checks on Extract as the challenger
makes on IT.Extract in the NI-SSS game. Therefore, if the reduction is talking
to the ideal-world experiment, .@7’s proof will cause Fyrzx to output Fail with
the same non-negligible advantage as 7 has in the NI-SSS game.

If the reduction is talking to the real-world experiment, we argue that the
reduction succeeds with the same probability as an & playing the regular non-
interactive special soundness (NI-SS) game from Figure 7 in Appendix A.6. Note
that if the reduction is talking to the real-world GUC experiment then the chal-
lenger’s responses to the queries (Prove, s, z;,w;) and (Verify, s, z;,m;) will be
distributed identically to what 7 is expecting from the queries (Prove,x;,w;)
and (Challenge, z;, ;) in the NI-SS game for the following reasons. First, Ggg re-
mains consistent throughout the protocol and C responds to queries (Prove, s, x;,
w;) with proofs m; < II.Prove(s, z;,w;), exactly as o/ expects from the NI-SS
challenger. Whenever & issues a query (Challenge, z;,m;) for a proof (z;,m;) ¢
P where II.Verify(x;,m;) = 1 but (x;,7;) ¢ P, the reduction runs IT.Extract(z;,
iy Qo) itself (recall from the NI-SS and NI-SSS experiments that we assume &7
outputs its RO query history whenever it issues a challenge). If IT.Extract(z;, m;,
Q.s) outputs Fail, then the reduction knows it has a proof that succeeds in
breaking the regular special soundness property. When it queries this proof
(Verify,s,x;,m;) to C and gets a response (Verify,s,z;,m;,1) rather than a
message Fail, it knows it is living in the real-world experiment, since Fyrzgk
would have made the same checks as the reduction. Therefore, the reduction
succeeds in this case with the same probability as &/ can win the NI-SS game,
completing the contradiction. O

To see why it was necessary for us to use the special simulation soundness
property in the proof of Lemma 3, consider the case in which the reduction is
talking to the ideal-world GUC challenger: the regular special soundness adver-
sary is not defined to handle proofs from the simulator, so its behavior in this
case is undefined and therefore useless to the reduction. To see why it was nec-
essary for us to use the non-interactive versions of multi-SHVZK and special
simulation-soundness definitions, note that the Prove and Verify interfaces of
JFyizk are non-interactive with respect to the oracle Ggg—in order for the simu-
lation and extraction algorithms of IT to correspond with the interfaces of Fyizx
they must be similarly non-interactive with respect to Ggg.

We have now shown that both the NI multi-SHVZK and NI special simulation-
soundness properties are necessary for a protocol IT to GUC-realize Fyrzg in the
Gro-hybrid model, completing the proof of Theorem 1. O

UC XY-protocols in the Global ROM 51

B.3 Full Proof of Theorem 2

Recall Theorem 2: Let X'p be any X-protocol for relation R (Definition 1),
Grporo be the restricted programmable observable global random oracle (Defini-
tion 6), and SLC be any straight-line compiler (Definition 2). Then the NISLE
X-protocol II§° < SLC(Xg) GUC-realizes Fyizx in the Grporo-hybrid model
(Definition 10).

Proof. We must demonstrate that II3-¢ < SLC(Xg) GUC-realizes Fyrz in the
Grporo-hybrid model—that is, we must satisfy Definition 10. Briefly, we must
show that for all efficient .o, there exists an ideal adversary S efficient in expec-
tation such that for all efficient environments Z,

IDEALSZ® 5 (1%, aux) ~ REALJEE , (1%, aux).

We review the GUC experiments in Appendix A.9.

Construction of the Simulator S. The simulator (also known as the ideal ad-
versary) S, works as follows. When the ideal functionality Fyrzx asks it for the
specification of algorithms, S returns the algorithms in H%LC. When Fyrzx asks
it for the queries of adversarial provers for an SID s, & returns the corrupted
parties’ Grporg queries Q7. If any of the corrupted parties issue an IsProgrammed
query to Grporo through & (recall that the environment cannot issue such queries
to Grporo directly, but must instruct a corrupted party with the correct sid to
do so, and this way the query must go through S), § “lies” as described by
Camenisch et al. [10] and outputs false regardless of whether Grpopg Was pro-
grammed or not. Otherwise, S behaves identically to the dummy adversary <7,
forwarding communications between Z and the corrupted parties.

Now we wish to show that the real world, in which parties prove statements
using real witnesses and verify proofs according to the protocol, is indistinguish-
able from the ideal world, in which the ideal functionality (with help from the
simulator) proves statements by programming the RO and verifies proofs by
extracting witnesses. We start with the real-world experiment and show it is
possible to construct a series of hybrid experiments, each negligibly different
from the last, that transform the real world experiment into the ideal world
experiment.

Experiment A. The first experiment is the same as the real world experiment,
except there is a “challenger” C who controls the environment’s and adversary’s
views of the rest of the protocol. In particular, the challenger simulates all of
the honest parties and Grporo. The challenger does everything on behalf of all
parties exactly the same as the parties would do for themselves in the real world
experiment.

Lemma 4 (REAL = Experiment A). In the view of the environment, Exper-
iment A is identical to the real world experiment. Formally,

Grporo; Fer
REALH%E?ﬂfg(lA’ aux) = Eprc7%’Z(1>\,aux).

52 A. Lysyanskaya and L.N. Rosenbloom

Proof. The challenger simulates all of the real world parties in Experiment A,
and the simulated output is defined to be identical to the output of the parties
in the real world. O

In other words, there is no way for Z to tell whether it is interacting with
separate parties, including the “real” Grporo, or whether it is interacting with a
puppet master who simulates all of the parties, including Grporo-

Experiment B. Experiment B is the same as Experiment A, except that instead
of executing real proofs on behalf of the honest parties, the challenger C runs
the SimProve algorithm of II$-°. That is, given a statement z to prove for a
session s, C runs IT5:°.SimProveY (1) to obtain 7. C then checks to make sure
that II3-°.Verify(z, 7) = 1. If it does not, C outputs Fail; otherwise, it outputs
(z,7). If any of the corrupted parties make IsProgrammed queries, chl simply
returns false, regardless of whether Grpono Was programmed on the queried
index.

Lemma 5 (Experiment A ~, Experiment B). Provided II3:C is statistically
(resp. computationally) NIM-SHVZK (Definition /), Experiment B is statisti-
cally (resp. computationally) indistinguishable from Experiment A. Formally,

EXpAC,d,Z(1A7 aux) %s(c) EXpBC,%,Z (1A7 aux).

Proof. Note that in both experiments, the challenger C returns random strings
as the output of Grperg. However, in Experiment B, C must program Grporg’s
outputs after the adversary begins issuing Prove queries, in order to maintain
consistency with the simulated proofs. Recall from Definition 2 that the SLC
simulator IT3-°.SimProve essentially forks the RO by programming it, such that
the adversary sees either the “normal” RO gfpom used by a real-world prover, or
it sees the programmed RO g}pom that contains programmed outputs. Therefore,
in order to guarantee that the hybrids are indistinguishable, we must first argue
that there is only a negligible difference between prom and erpoRU.

First, recall from Definition 7 of Grpopo that Z is not part of any legitimate
protocol session and is therefore not allowed to make IsProgrammed queries of
its own, and C answers all of the corrupted parties’ IsProgrammed queries by re-
turning false. If I75-°.SimProve changes the oracle in a way that is perceptible
to Z, then we can construct a reduction that wins the NIM-SHVZK game (con-
tradicting the assumption of NIM-SHVZK) simply by distinguishing the view of
the oracle in the real- and ideal-world NIM-SHVZK experiments. Therefore, Z’s
view of the random oracle in Experiment A must be at least computationally
close to its view in Experiment B.

The only other potential difference between Experiments A and B is the con-
tents of the proofs, and that Experiment B can output Fail, while Experiment
A never does. If ITF}€ is statistically NIM-SHVZK, the contents of the proofs are
statistically close. If IT3-C is only computationally NIM-SHVZK, assume for a
contradiction that Z4p can distinguish the proof process in Experiment B from
the proof process in Experiment A. We can again use Z4p as a black box to
break the NIM-SHVZK property of II5- as follows.

UC XY-protocols in the Global ROM 53

Note first that Experiment B only outputs Fail if there is some internal in-
consistency with the simulator, such that a proof of (z,) for some x € Lg does
not verify. In this case, after receiving a query Prove(z,) from Z45 and a corre-
sponding response (x,) from its challenger, the reduction can tell immediately
if the challenger is running I75-°.SimProve, triggering the contradiction.

Otherwise, Z4p must be able to tell the difference between Experiments A
and B by looking at the proofs themselves. If X'y is statistical NIM-SHVZK,
then the outputs of IT7-°.SimProve(z) are statistically close to the outputs of
IIC Prove(z,w), and we are done. If X'y is only computational SHVZK, the
reduction continues as follows.

When Z issues any query (Prove, x, w) for a proof of some statement z, C for-
wards the query to its SHVZK challenger and receives either a simulated proof
(produced by running II5-°.8imProve) or a real proof (produced by running
II3HC Prove). C forwards the response back to Z, and repeats until Z outputs a
bit indicating that it is living either in Experiment A or in Experiment B. If Z
outputs “A”, C outputs “Real” to indicate its challenger was using II3-°.Prove;
otherwise if Z outputs “B”, C outputs “Simulated” to indicate its challenger
was using IT3-¢.SimProve. C succeeds in breaking the (computational) SHVZK
property of IT3¢ with this method whenever Z succeeds in distinguishing Ex-
periments A and B, completing the contradiction. Therefore, the distributions
representing Z’s view of Experiment A and Experiment B are computationally
indistinguishable. O

In the next experiment, Experiment C, we replace the real-world verification
mechanism with extraction.

Experiment C. Experiment C is the same as Experiment B, except now in-
stead of running the normal verification protocol on non-simulated (adversar-
ial) proofs, the challenger C attempts to extract a witness as follows. Given
a proof (z,m) for a session s that C did not previously simulate itself, C pro-
ceeds as follows. If II3¢.Verify(x,7) = 0, C simply outputs 0. Otherwise if
II$€ Verify(x,) = 1, C gathers the environment’s and adversary’s queries Q%.
t0 Grporg from reviewing the traffic on its wires. It then runs 11 IS,?ILC.Extractgrl’"RU (z,
7, Q%) to obtain w. If R(z,w) = 1, C outputs 1. Otherwise, it outputs Fail.

Lemma 6 (Experiment B ~. Experiment C). Provided II3:° is NI-SSS
(Defintiion 5), Ezperiment C is computationally indistinguishable from Exzperi-
ment B. Formally,

ExpBC’d’Z(l/\, aux) =, ExpCc,mZ(l)‘, aux).

Proof. Given an environment Zp¢ that can distinguish between Experiment
B and Experiment C, we construct a reduction that contradicts the special
simulation-soundness property of II3/C.

Consider the circumstances under which it is possible for Zpc to notice
a difference between Experiment B and Experiment C. The only difference in
output between Experiments B and C is that Experiment C can fail, while
Experiment B never does. In particular, Experiment C fails only when Zp¢ is

54 A. Lysyanskaya and L.N. Rosenbloom

able to produce a proof tuple (x,7) such that IT3-C.Verify9me (x,) = 1 but
R(z,w) = 0, where w was obtained by running IT3:°.Extract9 (z,m, Q%.).
Given oracle access to its challenger the IT3-¢.Extract algorithm, the reduction
uses Zpc to break the special soundness property as follows.

For Prove queries, the reduction proceeds as Experiment B (identical to Ex-
periment C). Any time Zgc wants to verify a proof tuple (z, 7) for session s that
the reduction did not create itself, the reduction gathers the queries Q%. and
sends (z,m, @%.) to its challenger, who returns w. By the logic in the preced-
ing paragraph, an environment that can distinguish Experiments B and C with
non-negligible advantage must eventually issue some proof tuple (z,) such that
I8¢ Verify9m (.) = 1, but the witness returned by IT5€.Extract9e (z, m,
Q3%.) is such that R(x,w) = 0. By passing this tuple to the extractor, the reduc-
tion has also successfully produced a proof (z, 7) such that I75:°.Verify9m=o (z,)
=1, but R(z,w) = 0. The non-negligible existence of such a proof tuple contra-
dicts the special soundness property, which says if IT5:°.Verify9w (z, 1) = 1,
R(z,w) must equal 1 with overwhelming probability. Therefore, Experiment B
must be computationally indistinguishable from Experiment C. O

Finally, we show that Experiment C is identical to the ideal-world experiment
by rearranging the components to get rid of the challenger. Note that at this
point, the functionality of the challenger is identical to that of Fyizx for both
the Prove and Verify procedures. Therefore, we can replace C with Fyrzx and
S, who keeps track of the corrupted parties’ communications with Grporg-

Lemma 7 (Experiment C = IDEAL). In the view of the environment, Ex-
periment C'is identical to the ideal world experiment. Formally,

ExpCcprf,Z(l/\,aux) = IDEAL%"I*‘Z?hS,Z(l)‘,aux).

Proof. Note that in Experiment C, the challenger C answers honest parties’
Prove queries by running I75-¢.SimProve% (z), and Verify queries by running
HIS%LC.Extractger (z,m, Q%.), with the same surrounding checks and procedures.
Therefore, we can replace C in Experiment C with Fyzx in the ideal-world ex-
periment. Since there is no longer a challenger controlling the wires in and out of
the adversary, we must additionally replace o7 with the ideal adversary S. Recall
that & is the dummy adversary, and that S behaves exactly like ./ throughout
the execution of the experiment, except that it forwards Z’s communications
with the corrupted parties to Fyrzx through a private channel upon request, and
also returns false to IsProgrammed queries. Furthermore, since C programs
Grporo the same way as S, the environment’s view of Grporg is identical in both
experiments. Therefore, the environment’s view of Experiment C is identical to
its view of the ideal-world experiment. O

We have now shown that the real-world experiment, which uses our construc-
tion H%LC, and the ideal-world experiment, which uses Fyzk, are indistinguish-
able, completing the proof of Theorem 2. O

UC XY-protocols in the Global ROM 55

B.4 Full Proof of Theorem 3

Recall Theorem 3: Let Xi be any X-protocol for relation R (Definition 1),
Groro be the restricted observable global random oracle (Definition 6), SLC be any
straight-line compiler (Definition 2), Fegs be the ideal CRS functionality (Def-
inition 9), X's be a YX-protocol for a samplable-hard relation S (Definition 12),
and guc be the algorithm described in Definition 13. Then the NISLE proof sys-
tem IT§ g < guc(Xg,SLC) GUC-realizes Fyrzx in the Gropo-Fers-hybrid model
(Definition 11).

Proof. We must show that I18)5 < guc(Xg, SLC) GUC-realizes Fyrz in the Ggo-
Fers-hybrid model—that is, we must satisfy Definition 11. Briefly, we must show
that for all efficient <7, there exists an ideal adversary S efficient in expectation
such that for all efficient environments Z,

Grol A ~ Grorgs T A
IDEALE™ s 2(1%, aux) ~, REALT# 7%, (1%, aux).

Construction of the Simulator S. The simulator (also known as the ideal ad-
versary) S, works as follows. When the ideal functionality Fyrzx asks it for the
specification of algorithms, S returns the algorithms in I18,5. When Fyrzx asks it
for the queries of adversarial provers for an SID s, S returns the corrupted par-
ties’ Groro queries Q3,. Otherwise, S behaves identically to the dummy adversary
&, forwarding communications between Z and the corrupted parties.

Now we wish to show that the real world, in which parties prove statements
using real witnesses and verify proofs according to the protocol, is indistinguish-
able from the ideal world, in which the ideal functionality (with help from the
simulator) proves statements using the trapdoor to the CRS and verifies proofs
by extracting witnesses. We again start with the real world experiment and show
it is possible to construct a series of hybrid experiments, each negligibly differ-
ent from the last, that transform the real world experiment into the ideal world
experiment.

Experiment A. The first experiment is the same as the real-world experiment,
except there is again a “challenger” C who controls the environment’s and ad-
versary’s views of the rest of the protocol. In particular, the challenger simulates
all of the honest parties (including the subroutine calls to Feps) and Grorg. The
challenger does everything on behalf of all parties exactly the same as the parties
would do for themselves in the real world experiment.

Lemma 8 (REAL = Experiment A). In the view of the environment, Exper-
iment A is identical to the real world experiment. Formally,
T
REALIQYRE@CS:;;Z(IA’ aux) = EprC,Q{7Z(1)‘, aux).
Proof. The challenger simulates all of the real world parties in Experiment A,

and the simulated output is defined to be identical to the output of the parties
in the real world. O

56 A. Lysyanskaya and L.N. Rosenbloom

In other words, there is no way for Z to tell whether it is interacting with
separate parties, including the “real” Giorg, or whether it is interacting with
a puppet master who simulates all of the parties, including Gyope. In the next
experiment, the challenger will leverage this identical view to invoke the “tradi-
tional” simulator of the straight-line extractable OR-protocol II55%, which uses a
programmable RO. Hiding the CRS trapdoor from the challenger while allowing
it to simulate proofs via programming will allow us to construct a reduction (in
future steps) that can either break special soundness or extract the CRS trap-
door. Eventually, we will arrive at the conclusion that the programming view in
Experiment B is indistinguishable from the “unconventional” simulator in IT§,g,
which uses the trapdoor to the CRS.

Experiment B. Experiment B is the same as Experiment A, except that instead
of executing real proofs on behalf of the honest parties, the challenger C programs
Groro in order to simulate both components of the OR-protocol. That is, given
a statement x to prove for a session s, C prepares the compound statement
X = (x,CRS;) by simulating the functionality of Fég. It then computes the proof
(X, II) by running the simulator of the straight-line extractable OR-protocol,

I35 .SimProve(X), and outputs (X, IT).

Lemma 9 (Experiment A ~; Experiment B). Provided Xyys is statistical
(resp. computational) NIM-SHVZK (Definition /), Experiment B is statistically
(resp. computationally) indistinguishable from Experiment A. Formally,

EprC’M’Z(1A7aux) ~g(e) Exch’ﬁ’Z(l’\,aux).

Proof. The proof is the same the proof of Lemma 5 in Section 4, except that we
do not have to consider the Fail condition. O

In the next experiment, Experiment C, we again replace the real-world veri-
fication mechanism with extraction. We proceed to show via a reduction that an
environment that can distinguish between Experiment B, which uses real-world
verification, and Experiment C, which uses the same extraction functionality as
JFrizk, can be used to contradict either the special simulation-soundness prop-
erty of II5LS or the hardness property of the samplable hard relation used to
construct the CRS.

Experiment C. Experiment C is the same as Experiment B, except now in-
stead of running the normal verification algorithm on non-simulated (adversar-
ial) proofs (X,IT), the challenger C proceeds as follows. If C previously sim-
ulated (X, IT), C outputs 1. If II§L Verify(X,II) = 0, C outputs 0. Other-
wise if (X, IT) is not a simulated proof and IT3-5.Verify(X,II) = 1, C runs
11875 Extract (X, IT) to obtain W = (wq, w1). If W is such that Rgys(X, W) =1,
C outputs 1. Otherwise if Rpys(X, W) = 0 or II§,.Extract outputs Fail, C out-
puts Fail.

Lemma 10 (Experiment B ~. Experiment C). Provided II3° is NI-SSS
(Definition 5), experiment C is computationally indistinguishable from Exzperi-
ment B. Formally,

ExchﬁQ{’Z(l)‘, aux) /2, ExpCC,mz(l)‘, aux).

UC XY-protocols in the Global ROM 57

Proof. Note that there are now two conditions under which Experiment C can fail
and behave differently from Experiment B. Given an environment Zp¢ that can
distinguish between Experiment B and Experiment C, we construct a reduction
that contradicts either the special simulation-soundness property of IToe% or the
hardness property of the samplable hard relation used to construct the CRS. The
first part of the reduction—the reduction to special soundness—is identical to
the reduction from Lemma 6 in Section 4 above. This rules out the first failure:
that II55S . Verify(X, IT) = 1, but Rpys(X, W) = 0.

The second failure condition occurs when Zg¢ is able to produce some proof
(X, IT) in some session s that causes IT§,g.Extract(X, IT) to output Fail. Recall
that this condition happens when Rgys(X, W) = 1 but R(xg,wg) = 0—that is,
Rrvs(X, W) = 1 because S(z1,w1) = 1, where 1 = CRS; and w; = trap,. In
other words, the failure occurs if Zg¢ is able to produce a proof that verifies
using the CRS trapdoor that should only be available to the simulator for session
s in the ideal world.

We use this Zgc as a black box to construct a reduction that breaks the
hardness property of the samplable hard relation S as follows. For Prove queries,
the reduction proceeds as Experiment B/C, except that it obtains the CRS CRS;
for each SID s from its challenger the samplable-hard CRS sampling algorithm
ks. The reduction sets CRSy; = z and answers Prove(x,w) queries as usual,
by setting X = (z,CRS;) and running II5-S.SimProve(X). It answers queries
Verify(X, IT) for X = (x,CRS;) according to Experiment C until Zp¢ produces
a proof (X, IT) for session s that causes II§,g.Extract(X,II) to return a W =
(wp,w1) such that S(CRSs,w1) = 1. The reduction can now produce a witness
wy such that S(CRSs,w;) = 1, contradicting the hardness property of S, which
says that the probability of computing a w’ for some x + kg(1*) such that
S(x,w") =1 is negligible in .

Therefore, both failure conditions happen with negligible probability, and
Experiment B is computationally indistinguishable from Experiment C. O

Finally, we replace the simulated proof process from Experiment B, which
uses straight-line extractable OR-protocol simulator II35%.SimProve, with the
GUC-transform simulator I185.SimProve, which proceeds as a “genuine” prover
using the trapdoor to the CRS rather than a witness to the statement x. This
process essentially reverts the change between Experiments A and B, since the
challenger is going back to using the ITg,.Prove algorithm, only this time with
the witness W = (trap,, 1) rather than the witness W = (w, 0).

Experiment D. Experiment D is the same as Experiment C, except in how
it generates the honest participants’ proofs. Rather than programming Giero,
the challenger computes proofs of statements x for the honest parties by run-
ning I18,s.SimProve(z). Recall that this process consists of generating the CRS
and trapdoor pair (CRS,,trap,) for each session s according to the sampling
algorithm rkg(1%), then running I75L.Prove(X, W) for X = (z,CRS,) and W =
(trap,,1).

58 A. Lysyanskaya and L.N. Rosenbloom

Lemma 11 (Experiment C ~, Experiment D). Provided IT5-% is statistical
(resp. computational) NIM-SHVZK (Definition 4), Experiment D is statistically
(resp. computationally) indistinguishable from Experiment C. Formally,

ExpCC7d7Z(1A,aux) ~(c) ExpDC,Wz(l)‘, aux).

Proof. This step reverts the proofs to being effectively non-simulated as in exper-
iment A, since using the trapdoor witness involves computing the OR-protocol
honestly according to IIgLS.Prove(X, W) for X = (z,CRS;) and W = (trap,, 1).
Moreover, the environment’s view of the CRS is the same as in Experiment A,
since we defined Fegs to use £g(1*) as the CRS generation functionality. There-
fore, the argument for statistical indistinguishability between the OR-protocol-
simulated proofs in Experiment C and the GUC-transform-simulated proofs in
Experiment D is again identical to the (statistical) argument from Lemma 5.

If there is computational wiggle room between the proofs in Experiments C
and D, and the Experiment C-D distinguisher environment Z¢p is now dealing
with the extractor rather than a normal verifier, we cannot use the exact same
argument from the proof of Lemma 5. In particular, we have to make sure that
the only way that Zop can distinguish between hybrid j and hybrid j + 1 is
if it can tell the difference between a real and a simulated proof in the j + 15
slot. Otherwise—if Zop could somehow compose its knowledge of the simu-
lated proofs with whatever it obtains from the extractor in order to construct
a proof that causes the extractor to fail—Zcp would be able to distinguish the
experiments immediately, regardless of the nature of the j + 1% proof.

We argue that because anything Z&p can learn from a straight-line extractor
it can learn from itself, it must not learn anything new about the proofs between
Experiments C and D. This is a substantial bonus of straight-line extraction—it
stops the the extractor from getting in the way of other desirable properties of
the system.

Consider the inputs (X, IT, 9%.) to the algorithm II§,g.Extract that is re-
sponsible for the verification procedure in Experiments C and D. (X, II) is a
proof that Z¢p itself produced. Similarly, Q%. is a list of queries to Gropg made
by either Zop itself, or by the corrupted parties through o7 at Zcp’s request.
Therefore, Zcp can fully simulate its own view of the extractor, and cannot
possibly learn anything new about whether it is living in Experiment C or Ex-
periment D from the proof verification process.

We have shown that if Z-p is able to distinguish between the hybrids, it must
be able to distinguish whether the proof in the j + 1% slot is real or simulated.
The rest of the argument is the same as the computational section of the proof
of Lemma 5.

Finally, we show that Experiment D is identical to the ideal world experiment
by rearranging the components to get rid of the challenger. Note that at this
point, the functionality of the challenger is identical to that of Fyiz for both
the Prove and Verify procedures. Therefore, we can replace C with Fyrzx and
S, who takes over keeping track of the corrupted parties’ communications with
groRO-

UC XY-protocols in the Global ROM 59

Lemma 12 (Experiment D = IDEAL). In the view of the environment, Ex-
periment D is identical to the ideal world experiment. Formally,

ExpDe .y z(1*, aux) = IDEALE™ . (1%, aux).

Proof. Note that in Experiment D, the challenger C answers honest parties’
Prove queries by running II§,s.SimProve(z), and Verify queries by running
1185 Extract (X, IT), with the same surrounding checks and procedures. There-
fore, we can replace C in Experiment D with Fy1zx in the ideal-world experiment.
Since there is no longer a challenger controlling the wires in and out of the adver-
sary, we must additionally replace </ with the ideal adversary S. Recall that <7
is the dummy adversary, and that S behaves exactly like o/ throughout the ex-
ecution of the experiment, except that it forwards Z’s communications with the
corrupted parties to Fyrzx through a private channel upon request. Furthermore,
since C is no longer programming G,.gg in order to simulate proofs in Experi-
ment D, the functionality of G,.ro is identical in both experiments. Therefore,
the environment’s view of Experiment D is identical to its view of the ideal-world
experiment. [

We have now shown that the real-world experiment, which uses our construc-
tion IT§g, and the ideal-world experiment, which uses Fyrz, are indistinguish-
able, completing the proof of Theorem 3. O

B.5 Full Proof of Theorem 4

Recall Theorem 4: Provided X'y is a Y-protocol for relation R according to
Definition 1 with strong special soundness as given in Definition 14, the random-
ized Fischlin transform rFis for X'p described in Definition 29 is a straight-line
compiler according to Definition 2.

Proof. Kondi and shelat prove in Theorem 6.4 of their work [35] that the tu-
ple of algorithms ITEF** (denoted my in their paper) produced by running
the randomized Fischlin transform on any strong special sound X-protocol X'g
for relation R is a non-interactive straight-line extractable zero-knowledge proof
of knowledge for Ly in the random-oracle model. Since Kondi and shelat use
the standard definitions of special SHVZK and strong special soundness (Defini-
tions 19 and 14, respectively), it remains to show that IT5*® satisfies the special
multi-SHVZK property from Definition 4 and the special simulation-soundness
property from Definition 5.

We argue that almost the exact same arguments from the proof of Theorem
3 of the full version of Fischlin’s paper [30] can be used to show that Kondi and
shelat’s transform also satisfies special multi-SHVZK and special simulation-
soundness. We briefly review the identical aspects of the proof and discuss the
differences in depth below.

The multi-SHVZK property follows identically from regular (single-proof)
SHVZK because of the independence and superlogarithmic entropy of the com-
mitments (such that the oracles in both experiments are still indistinguishable),

60 A. Lysyanskaya and L.N. Rosenbloom

along with a hybrid argument that distinguishing the j from the j + 1¢ proof
of a multi-proof simulator would allow a reduction to distinguish whether the
j + 1%¢ proof from its SHVZK challenger was real or simulated.

simulation-soundness follows from a reduction to the multi-SHVZK prop-
erty and the regular special soundness extractor as follows. First, Fischlin rules
out some trivial attacks in which the adversary modifies an existing proof m =
(com, chl,res) for a statement x to produce some new accepting transcript
7’ = (com, chl, res’) where res # res’. In Fischlin’s proof this attack is ruled out
by the unique responses property, which guarantees that if X'g.Verify(z,7) =
YrVerify(x,n') = 1, res = res’ with overwhelming probability. In our proof,
this attack is ruled out by strong special soundness, which guarantees that
Y p.Extract(z,m, ') will still produce a witness w such that R(z,w) = 1 for
res # res’. The extractor still works in both cases for proofs m = (com, chl, res)
and 7’ = (com,chl’,res’) where chl # chl’. Therefore, Fischlin proceeds as-
suming the adversary has generated a proof with a fresh commitment vector for
its statement x, and shows that for such a proof, the multi-SHVZK property
implies special simulation-soundness.

The rest of the argument is identical to the proof of Theorem 3. Briefly,
Fischlin proceeds by contradiction, using an algorithm B with oracle access
to the simulator that can produce a proof causing the extractor to fail as a
black box in order to contradict either the multi-SHVZK property or the regular
special soundness property of IT5*°. First, the reduction creates a distinguisher
algorithm D¥ with oracle access to H to encompass the “real” B that simply
passes inputs and outputs between B, the reduction, and H, and returns 1
whenever B is able to produce a valid but non-extractable proof (z;,7;) such
that IT5*s Verify(z;, m;) = 1 but R(x,w;) = 0. Next, the reduction creates a
second distinguisher algorithm A¥ also with oracle access to H that simulates
a different copy of B, denoted B’, that similarly passes inputs and outputs and
returns 1 whenever B’ is able to produce a valid but non-extractable proof.

When the real B issues the i*" query (Prove,z;,w;), D passes this query
to the reduction, who queries its multi-SHVZK challenger for a proof 7 that is
either the result of running IT% *S.Prove(xz;, w;) or II5 **.SimProve(x;, ;, chl;)
for some chl. The reduction returns m to D who returns it to B. When the
simulated copy B’ running inside of A issues queries (Prove, x;,w;), A creates a
real proof 7' « IT5*s Prove! (z;,w;) and returns 7’ to B’. This step essentially
reduces B’ to the adversary in the regular special soundness experiment for X',
who is free to run the Prove algorithm on anything it wants. We note here that
since the challenges produced by Kondi and shelat’s transform are distributed
identically to those produced by Fischlin’s, B and B’’s views of the proofs in
this experiment are identical to those in the original experiment conducted by
Fischlin. Any time B (res. B’) issues a proof (x;,m;), D (resp. A) checks that
IIEF3s Verify(x;, m;) = 1, obtains w by running IT% S Extract(z;, 7;) and out-
puts 1 if R(xz,w;) = 0. The reduction outputs whatever D outputs.

Consider the eventual outputs of D and A. If the reduction is communicat-
ing with the simulator in the ideal-world multi-SHVZK experiment, then the

UC XY-protocols in the Global ROM 61

reduction successfully outputs 1 to indicate it is running inside the ideal world
whenever D successfully outputs 1 to indicate that B has produced a valid non-
extractable proof. Since we assumed this probability to be non-negligible by
assumption, we arrive at a contradiction of the multi-SHVZK property. If the
reduction is communicating with a real prover in the real-world multi-SHVZK
experiment, D and therefore B must succeed with the same probability as A
by the following logic. Because extraction relies only on the relevant adver-
sary’s queries, the functionality of the extractor for adversary B’ is independent
of whether the multi-SHVZK challenger is also running real Prove queries—in
other words, A’s output does not rely on the RO queries issued by the multi-
SHVZK challenger and vice versa. D and A are therefore essentially identical,
parallel (independent) experiments, such that D’s output (sourced from B) and
A’s output (sourced from B’) must be identically distributed. Therefore if B
succeeds with non-negligible probability, so does A, contradicting the underly-
ing special soundness property of I . O

	Introduction
	Preliminaries
	-protocols, Revisited
	Straight-Line Compilers
	OR-protocols

	Properties of GUC NIZKPoK
	GroRO and GrpoRO, Revisited
	The NIZKPoK Ideal Functionality
	The CRS Ideal Functionality
	GUC Security Definitions
	GUC NIZKPoK Are Complete, NIM-SHVZK, and NI-SSS

	GUC NIZKPoK in the Programmable Global ROM
	GUC NIZKPoK in the Observable Global ROM
	Generating a CRS that Plays Nice with -protocols
	GUC Compiler
	Realizing FNIZK in the GRO-FCRS-hybrid Model

	Constructions via the Randomized Fischlin Transform
	The Randomized Fischlin Transform, Revisited
	Efficient, GUC NIZKPoK in the GrpoRO-hybrid Model
	Efficient, GUC NIZKPoK in the GroRO-FCRS-hybrid Model

	Supplementary Definitions
	Notation
	Extended Discussion of Privileges in the Global ROM(s)
	Protocol Template
	-protocols
	Standard -protocol Security Definitions
	Non-Interactive Special Soundness
	Additional Properties of NI-Compliant -protocols
	The OR-protocol
	The GUC Real- and Ideal-World Experiments
	Discussion of Strong Special Soundness
	The Original Fischlin Transform
	The Randomized Fischlin Transform

	Supplementary Proofs
	SHVZK Implies Multi-SHVZK
	Full Proof of Theorem 1
	Full Proof of Theorem 2
	Full Proof of Theorem 3
	Full Proof of Theorem 4

