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Abstract

We present two new provably secure finality layers for Nakamoto style blockchains. One
is for partially synchronous networks and the other is for networks with periods of synchrony.
Both protocols are player replaceable and therefore enjoy protection against denial of service
attacks when run with a proof-of-stake lottery to elect the parties. The finality layers are
proven secure to run on top of any Nakamoto style blockchain which has a property called
finality friendliness. Both finality layers improve on all existing provably secure finality layers
in terms of communication complexity or security.

A proof-of-stake finality layer has v-validity if whenever it declares a block B final then
honest parties holding a fraction v of the stake had B on the longest chain. Validity is
important to prevent that the finality layer finalises blocks that were not “good” according
to the Nakamoto style blockchain. We prove upper bounds on the achievable validity in
partially synchronous networks and networks with periods of synchrony. Both our finality
layers match these upper bounds.

1 Introduction
Research on blockchain consensus has surged in recent years. Blockchain consensus protocol
design is highly varied, but many blockchains with provable security fall into one of three
design paradigms, Nakamoto style consensus (NSC), committee-based Byzantine fault tolerance
(CBFT), or hybrid consensus.

Nakamoto Style Consensus. In the NSC paradigm a chain of blocks is being built. There
is a lottery which picks a party to extend the existing chain with a new block. No one knows
who won the lottery until the block is sent. This gives strong protection against denial of service
attacks. Due to malicious behaviour or honest parties winning the lottery at the same time, the
chain might fork into a tree. In that case there is a longest chain rule (or in general, best chain
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rule) saying at which leaf in the tree an honest party should add new blocks. It can typically be
proven that if a majority of the winners are honest and the network sufficiently synchronous then
there will be a constant look back length L such that if two honest parties look back L blocks
from the leafs of each their best chains, then they will look at two blocks on the same path. In
other words, if we let the honest stem be the longest chain from the genesis block which is a
prefix of the best chain of all honest parties, then the honest stem is at most L blocks shorter
then the longest chain held by an honest party. And this honest stem is consistent over time.
This means that if an honest party looks back L blocks from the leaf of its current best chain,
then it looks at a block which will forever be on the best chain of any honest party. We call
such a block final. In general we call the process of determining when a block is final a finality
rule. The look back finality rule was the finality rule of the original Bitcoin protocol though no
explicit L was given.

The two most widespread ways to implement the lottery are proof-of-work and proof-of-stake.
In both cases the probability to win lottery is tied to a limited resource, computing power
or stake in the blockchain, to avoid Sybil attacks. The end goal is that most of the time an
honest party wins the lottery. The seminal protocol and proof techniques in [10] gave the first
PoS protocol with provable security. In [14] it was shown that the original PoW based Bitcoin
protocol is in fact secure under well justified lem.

NSC can in general tolerate short periods of asynchrony. They only need that a majority
of the winning events are blocks won by honest parties during periods of synchrony. This will
over time build a growing and consistent honest stem. However, the look back finality length L
can only be computed correctly under some assumptions on how long the “bad” periods are.
Analysing how long L need to be is ongoing work, cf. [3, 15].

Committee-based BFT. In the CBFT paradigm a committee is elected. It is assumed that
at most a constant fraction is corrupted. The committee uses a Byzantine agreement protocol
to agree on the chain of blocks one block at a time. An advantage of CBFT protocols is that
blocks are immediately final, i.e., the look back length is L = 0.

Using Byzantine agreement per block in principle allows to run classic BFT protocols like the
PBFT protocol [7]. However, one reason for the NSC design pattern of having random winners
produce blocks is to protect against denial of service attacks. In protocols like PBFT the servers
have to act several times as the protocol proceeds in rounds where each server speaks in each
round, opening up for denial-of-service attacks. This led to the invention of PoS CBFT protocols
where each party only has to send a single message and at random points in time. The first
provable secure example was ALGORAND [9], which also proposed a novel design paradigm
going via so-called player replaceable (PR) protocols.

A PR protocol is for n parties, P1, . . . , Pn, out of which for instance t < n/3 might be
Byzantine corrupted. The protocol proceeds in rounds. The role of Pi in round R is executed by
a sub-party PR

i . The sub-parties of Pi cannot share secret state. State may be passed from PR
i

to future PR′
i only by public flooding messages. One can then use a given PoS lottery to assign

a separate machine to execute each role PR
i . This gives the same level of protection against

denial-of-service attacks as PoS NSC protocols.
One disadvantage of CBFT protocols is the lower corruption threshold. Typically CBFT

protocols only tolerate t < n/3 Byzantine corruptions, and this is optimal if the protocol tolerates
periods of asynchrony, see, e.g., [11]. Another disadvantage is that they typically break for good
once the t < n/3 assumption breaks, as the Byzantine agreement might break and create a fork
in the chain. NSC can tolerate corrupted majority if only there is honest majority over long
enough periods. There is a huge difference between having honest majority over long enough
periods and always having honest super majority. A last disadvantage is higher communication.
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In CBFT protocol each committee member floods at least one message per block. In NSC only
the single block itself is flooded.

Finality Layers. A third approach is a hybrid approach with an underlying NSC consensus
on top of which a CBFT finality layer is run. Real life examples of this approach is Grandpa
used by the Polkadot blockchain [18], Casper [4] which is planned to be used with Ethereum 2.0,
and Afgjort used by the Concordium blockchain [11].

The idea of the hybrid approach is to use a CBFT Byzantine agreement to agree on what the
honest stem is right now and then declare it final, i.e., the best chain rule of the NSC disregards
chains not including the last block having been declared final. The goal is to reap the best of
both worlds. In NSC the look back parameter L can be huge and sometimes hard to compute
correctly for real world networks. However, in good weather conditions of the network—high
synchrony and high honesty—the honest stem of a NSC will be identical to the longest chain
most of the time. In this scenario the use of a finality layer would lead to blocks becoming
provably final much faster.

There are also advantages of the hybrid approach over pure CBFT. As an example, if the
blocks of the NSC has size B the flooding complexity will be in the order of B. The BFT finality
layer need not agree on the block, it is enough to agree on a hash of the block. The flooding
complexity can therefore be in the order of nκ, where κ is the security parameter. If the finality
layer is run every c blocks this gives a flooding complexity per block in the order of nκ/c + B.
For large B or large c this means that the communication can be in the order of that of the
NSC itself.

It is also conceivable that the system can be designed such that the NSC is live and secure
when there is honest majority and the finality layer kicks in when there is honest super majority.
As as a motivating example of this consider a model with n = 3t + 1 parties with at most t
malicious corruptions, but where some honest parties might be offline in some periods. If we
assume that less than t honest parties are offline, then there is still honest majority among the
online parties and the NSC could still be sure. If the finality layer is designed such that if honest
parties are offline it loses liveness, but not safety, and regains liveness once honest participation
is high again, one would have an overall design where the NSC chain is always live and where
fast finality “kicks in” when honest participation is high. This is meant as a motivating example,
and we do not present a formal model of this or prove this result in the paper. It is an interesting
venue for future work to design and prove “best possible” finality layers which gives finality
when possible and does not interfere with the NSC when finality is not possible.

Security analysis of NSC protocols and CBFT protocols is fairly advanced. Security analysis
of finality layers less so. One challenge in analysing hybrid protocols is that the finality layer
steers the underlying NSC by forcing the hand of the best chain rule. On the other hand, the
input of the finality layer is the tree grown by the NSC. One reason that the security analysis of
the interaction between NSC consensus and finality layers is poorly understood could be the
lack of good methodologies for handling this cycling dependency in the past. Analysing a NSC
blockchain in isolation is hard enough it itself. The same for a finality layer. Analysing the
combined hybrid design monolithically is daunting. To remedy state-of-the-art the paper [11]
introduced a formal framework for analysing finality layers. They define a notion of finality
friendly NSC which is a property of a NSC protocol itself. Then they design a finality layer and
prove that it can be securely run on top of any finality friendly NSC. In [11] the authors argue
common NSC protocol like Bitcoin and Ouroboros Praos [10] are finality friendly, showing that
the methodology is meaningful. We continue this line of work of provably secure finality layers.
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Our Contributions. We introduce two finality layers tolerating t < n/3 malicious corruptions.
One works in the partially synchronous model with an unknown upper bound on the network
delay and finalises blocks with 1-validity. A finality layer has v-validity if whenever a chain is
declared final, then at least v honest parties have, or had, this chain as part of their best chain.
The other finality layer works in the partially synchronous model with a known upper bound
∆net that sometimes holds and has (t + 1)-validity. Both protocols are safe during periods of
asynchrony and are additionally live during synchronous periods. Our motivation for wanting
this is that finality layers are run on top of NSC blockchains which already tolerate periods of
asynchrony. If the finality layer did not have this property it would degrade the security of the
combined protocol.

Both finality layers are guaranteed to finalise the entire honest stem. Our motivation for
wanting this is that the ideal finality layer would discover exactly what the current common
prefix of the honest parties is, and finalise exactly that (which would give (2t + 1)-validity) to
stop unnecessary rollbacks. We show that this is impossible to obtain in a partially synchronous
model or when periods of asynchrony must be tolerated. We then give protocols achieving the
maximal possible validity in these two network models.

Our protocols are player-replaceable protocols and if run during periods of synchrony each
committee member floods an expected constant number of messages.

Compared to [11] we define a weaker notion of finality friendly NSC and prove security under
this definition. By weaker we mean that if a NSC is finalisation friendly in the sense of [11] it is
also finalisation friendly in our weaker sense. We discuss the weakening further in Section 3.
Furthermore, both of our protocols guarantee to finalise the entire honest stem in each iteration
they are run. This is an improvement over Afgjort which, if there is a fork in the underlying NSC,
needs to run for a logarithmic number of iterations in the fork depth to finalise the honest stem.
We also improve communication complexity over Afgjort. In Afgjort each party at some point
floods an index vector of length n making the expected flooding communication complexity in
bits O(n(κ + n)). In our protocols each party floods only messages of size O(κ), giving expected
flooding communication complexity in bits O(nκ). Compared to Afgjort we also give the first
provably secure PR finality layer. The protocol for weak core set selection in Afgjort is not
player replaceable making the overall protocol not PR.

Compared to Casper [4] and Grandpa [18] we show well-defined security properties of the
finality layer based on a well-defined property of the NSC itself. This is not the case for [4, 18].
As an example, in [18] the authors prove that a NSC blockchain run with the Grandpa finality
layer has liveness when modelling the underlying NSC as an “eventually consistent oracle”,
which produces trees with a growing honest stem. They show that on top of such a NSC the
finality layer is live, i.e., it will advance the last final block. But this does not show that the NSC
protocol combined with the finality layer will have liveness. If somehow the steering induced by
the finality layer kills the liveness of the NSC, this would not show up in the model of [18] as the
NSC is modelled using the eventual consistency oracle which assumes liveness. So the proof of
the liveness of the overall construction is of the form that it shows liveness under the assumption
of liveness. This is not satisfactory from a point of view of provable security. This is not a mute
point. The Grandpa protocol in [18] is intricate and interacts with the NSC protocol in several
ways where parties have different notions of what blocks are final and where other blocks than
final blocks are used to steer the best chain rule. There is nothing in [18] which indicates that it
is ruled out that one can construct NSC protocols which are live but which loses liveness when
combined with Grandpa. Similarly, Casper [4] does not come with well defined properties of the
NSC which would make it safe to run Casper on top of the NSC. Maybe as a consequence of
this, the unpublished work [5] which applies Casper on top of a concrete NSC blockchain gives a
monolithic and very substantial proof of the overall construction. Should either the NSC change
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or the finality layer, the proof would a priori have to be redone. And other NSC blockchains
wanting to apply Casper have no specification of properties to implement for this to be secure.
The paper also seems underspecified in term of desirable security properties. It for instance
proves “plausible liveness” which essentially says the protocol can not reach a possible deadlock
state where there does not exist some sequence of future events which could recover from the
deadlock. It does not prove anything about the probability of such a recovery will take place.
Casper also does not address the “updated” property that the finality layer is keeping up with
the NSC.

Finally our protocols seem to be simpler than Afgjort, Casper and Grandpa and have more
intuitive security proofs.

Paper Structure. In Section 2, we introduce relevant network models, background knowledge
on PR protocols, proof-of-stake lotteries, and define how justifications are run light. In Section 3,
we present our notion of a finality friendly NSC, our functionality for a finality layer and discuss
relevant properties of finality layers. In Section 4, we present our bounds for finality layers with
validity when finalising the entire honest stem. In Section 5, we give an overview of our two
finality protocols for the respective network models. Defining our finality layers we make use of
the protocol wBA that again relies on YABBA. We define and prove these secure in Sections 6
and 7 before we finally prove the two finality layers secure in Section 8. Lastly, in Section 9 we
sketch how our protocols can be proven secure in a composable setting.

2 Preliminaries

2.1 Notation

We consider protocols for n parties, P = {P1, . . . , Pn}, out of which t < n/3 might be Byzantine
corrupted. We let H denote the set of parties that have not been corrupted. We let the infix
notation “:=” denote variable assignment. We let B denote the type of all blocks. For two blocks,
b and b′ we write b ⪯ b′ when b is in the chain of b′, writing b ≺ b′ when b is in the prefix of b′

but b = b′.

2.2 Network Model

In the blockchain setting, parties typically have access to a flooding network allowing them to
exchange messages. A party P can send a message m and then m will eventually arrive at all
other parties. We will interchangeably use the terms that P sends m and P floods m. We assume
that the network is authenticated, i.e., from a flooded message we can see who sent it. Flooding
networks typically do not guarantee that messages arrive within a known delay, i.e., they are not
synchronous. We consider two variants of a partially synchronous flooding network [12]. The
first variant is dubbed strong periods of synchrony [8] (SPS).

Definition 1 (partial synchrony with strong periods of synchrony [8]). A network N ∆net
SPS is

partially synchronous with strong periods of synchrony if there exists a bound ∆net such that
• For any period of synchrony [τ0, τ1]: Any message observed, i.e. sent or received, by an

honest party at time τ ≤ τ1 is observed by all honest parties before max(τ0, τ + ∆net).
• The network delay bound ∆net is known to honest parties and protocols may depend on it.

However, honest parties do not know when periods of synchrony are happening.

The SPS model models that a flooding network often is in a good shape and ensures delivery
within some known delay. However, it may happen due to network congestion, physical damage
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on the network, or other unforeseen events, that periods with no known delivery guarantee occur.
Protocols designed for this model should maintain their safety properties even in such periods,
whereas it is sufficient to prove liveness in a period of synchrony.1

The other variant is partial synchrony with hidden bounded delay (HBD).

Definition 2 (partial synchrony with hidden delay bound [12]). A network N ∆net
HBD is partially

synchronous with hidden bounded delay ∆net if the following holds
• A message sent by an honest party at time τ is received by all honest parties before time

τ + ∆net
• A message received by an honest party at time τ (possibly sent by the adversary) is

received by all honest parties before time τ + ∆net.
• The delay ∆net is not known by honest parties. In particular, a protocol cannot depend

on ∆net.

If the flooding network eventually delivers all messages, then protocols proven secure in
this model will terminate. This is an advantage if the known ∆net of SPS if often too small.
Furthermore, their execution time is a function of the actual delay on the network, which is an
advantage if the known ∆net of SPS if often too large.

In Section 4, we show that the achievable amount of validity for finality layers clearly
separates the two network models, and in Section 5, we present two finality layers (one designed
for each model), with optimal validity in their respective model.

2.3 Proof-of-Stake Lotteries

We need a non-trivial leader election protocol, i.e., one which elects a leader which is honest with
at least a constant, positive probability. We assume that parties have access to a proof-of-stake
lottery which for each lottery identifier lid allows a party P to compute a lottery ticket ticketlid,P
with some weight that can be sent to the other parties. The leader Pℓ is defined to be the party
with the largest ticket. Note that discovering who is the leader is a separate problem. Following
[11] we use a very simplistic model of this, where we assume that if we have a committee
Plid

1 , . . . , Plid
n with n − t honest parties for t and we let each Plid

i compute ticketlid,Pi
and define

ℓ = argmaxi ticketlid,Pi
, then there is a probability n−t/t for each lid independently that Plid

ℓ is
honest. We can implement this in the UC model using for instance the lottery from [10], but
most reasonable PoS lotteries should allow such non-trivial leader election. See Appendix A for
a discussion.

2.4 Player-Replaceable Protocols

As discussed above, all our protocols are player-replaceable protocol. Because we assume a model
with periods of asynchrony we need the following slightly more restrictive class of PR protocols
than [9], which we call symmetric PR (SPR). In Appendix B we discuss why we need this more
restrictive class. In each round there are ground population of N parties QR

1 , . . . , QR
N , which we

call roles. Roles can as usual be honest or corrupted (malicious). But now in addition some
roles might be crashed. A crashed role QR

i will simply not execute its role. A role is live if not
crashed. A role is honest if live and not corrupted. The model comes with two thresholds t and
h, where in our case h = 2t + 1. Let n = t + h. In each round the adversary is allowed to crash
roles and corrupt roles, as long as the number of live roles is at most n, the number of corrupted

1This model fits nicely with known NSC protocols, which require that the block-production frequency is set
such that most of the time one block propagates to all parties before the next one is created. The expected
block-production time seems as a natural choice for ∆net in this model, as it by assumption of the underlying
NSC will hold “most of the time”, or the NSC would be insecure itself.
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roles is less than t, and the number of honest parties is at least h. We call a protocol secure
in this model a symmetric PR protocol, as it is only guaranteed that in each round there exist
n = 3t + 1 parties PR

1 , . . . , PR
n for which it is guaranteed that 2t + 1 are honest, but the honest

parties might not agree who these parties are, it can be any subset of the ground population.
Note, however, that in a SPR protocol an honest party can wait for messages from h = n − t
roles without deadlocking as the h honest parties will each send their message. Furthermore, if
two honest parties both wait for h = n − t = 2t + 1 messages, then because there are at most
n live roles, they will have heard from at least (n − t) − t = t + 1 common roles. Since there
are at most t corrupted roles, they will in turn have heard from at least one common honest
role. These will be the central properties exploited when proving liveness and safety of our SPR
protocols.

Note that if roles are assigned using PoS lotteries, then PR protocols immediately give strong
protection against adaptive corruption in models with atomic message delivery. Atomic message
delivery says that if a party floods messages then they are eventually delivered even if the party
becomes corrupted before the messages were delivered at the first honest party. A stronger
model would be to assume that messages not delivered to honest parties yet can be “taken back”
if the sender becomes adaptively corrupted. It has been shown in [16, 1] that this model has
strong impossibility results and indeed most blockchain protocols are not secure in this model.
In a Nakamoto style consensus the adversary can for instance always corrupt the block winner
and take back the block. It was argued in [13] that adaptive corruption with atomic message
delivery is a realistic model of adaptive corruption in real world networks and that it avoids the
impossibility results.

2.5 Justifications

We use the notion of justifications from Afgjort [11] with some simplifying modifications.
Intuitively a message m is justified if the party receiving it has also received a set of messages
that would make an honest sender produce m. Consider a protocol for a flooding network.
Messages are authenticated, so we can represent a received message as (S, m), where S is
the sender. Let Msgs(P)τ be the set of messages (S, m) received by P at time τ . Since we
assume that all messages eventually propagate we know that it holds for all honest parties
Pi and Pj and all times τ1 that there exists τ2 such that if the protocol reaches time τ2 then
Msgs(Pi)τ1 ⊆ Msgs(Pj)τ2 .

Definition 3 (Justification predicates). A justification predicate for a protocol Π is an efficiently
computable predicate J which takes as input a sender-message pair (S, m) and a set of messages
Msgs and outputs ⊥ or ⊤, where we think of ⊤ meaning that it is allowed for S to send m if
it received the messages in Msgs. We require that J is monotone, i.e., if Msgs ⊂ Msgs′ and
J((S, m), Msgs) = ⊤ then J((S, m), Msgs′) = ⊤. We say that Msgs is a justification for (S, m) if
J((S, m), Msgs) = ⊤. If J((S, m), ∅) = ⊤ we call m self-justifying.

When specifying a justification predicate J for a protocol it can be specified by a set of
justification predicates J1, . . . , Jn handling messages from different sub-protocol and rounds.
Then J((S, m), Msgs) = ∨

i Ji((S, m), Msgs).
We say that a protocol is justifying if it has a justification predicate J and each message that

can be sent by an honest party is justified by J . We say that a justifying protocol for a flooding
network is being run light if it has the following behaviour. When flooding a message (S, m)
in a justifying protocol the justification is not sent along, the sender S only sends m. When
receiving a message (S, m) the receiver R will buffer (S, m) until J((S, m), Msgs(R)) = ⊤. Only
then does it add (S, m) to Msgs(R) and start processing (S, m). This will eventually happen as
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all flooded message eventually propagate. Note that the size of the justifications does not affect
the communication complexity, as only the messages themselves are being flooded.

All our protocols will be justifying protocols and will tacitly be run light. All of our
justifications are monotone and efficiently computable. In cases where this is not clear from the
definition of a justification we provide a proof of efficient computability.

3 Abstract Model of Blockchains and Finality Layers
We wish to build our finality layers such that they can be run in combination with as many
existing blockchains as possible. In Afgjort [11] the notion of a finalization friendly blockchain
was introduced as a functionality, FTree. The functionality maintains a tree Treei for each party
Pi ∈ P. It also provides an interface to the adversary to grow these trees subject to certain
constraints, an interface for parties to select final blocks, and an interface for parties to see their
current tree.

The tree in [11] respects canonical blockchain properties such as chain growth and common
prefix which ensures that all trees grow at a certain rate and that the current best path in all
honest trees have a common prefix that are only a constant number of steps from the longest
path known by any honest party. However, also more exotic non-standard properties such as
bounded path growth and dishonest chain growth which limits how fast both honest and dishonest
path can grow within the functionality. These constraints are necessary in Afgjort, in order to
ensure that their finality process will eventually terminate and stay up to date.

In this work, we take a similar approach, defining a finalization friendly blockchain as a
functionality FTree. Our tree-functionality is however, different than the one presented in Afgjort
on two key-points:

1. The finality protocols that we present here does not depend on the underlying properties
of the NSC to function. Such properties might however be important for the combined
protocol. Therefore, we parametrise our tree functionality functionality by a set of trace-
properties P that the underlying functionality enforces. Similarly, we also parametrise the
finality-functionality FP

FinTree by such a set of trace properties. This allows us to prove
for a restricted class of properties that any such property the underlying finality friendly
blockchain FP

Tree has, is preserved when FP
Tree is used as a building block of our finality

protocol. Additionally, our functionality layer brings additional properties such that what
the functionality we really implement is FP′

FinTree for a P′ ⊇ P. The specifics of P′ will be
discussed later in this section and in Section 9.

2. We require that the command for setting final blocks are only used by parties in a way
such that all blocks that declared final, by any honest party must be on a chain. At first
this seems like that we are strengthening the functionality, but in fact this makes the
functionality significantly easier to implement as we allow the properties in P to be broken
in case this restriction is violated.

3.1 The Finalization Friendly Tree

Below we present our tree functionality, FP
Tree. Before presenting the minimalistic tree function-

ality we define the honest tree, as the union of all of the honest parties’ trees:

HonestTree :=
⋃

Pi∈P
Treei.
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When we define our functionality below we let ChainT (B) denote the function returns a path of
blocks in tree T ending in block B. The functionality ensures that the users only input final
blocks on a chain. If this is not the case the functionality sets the Boolean Exploded to true,
after which it will not maintain any other properties. Note that the functionality only checks
that the properties in P are preserved when receiving adversarial inputs. This implies that user’s
interactions are not restricted by these, and any protocol building on top can freely use these.

Functionality FP
Tree

For any Pi ∈ P the functionality maintains the variables Treei, Posi, LastFinali, and
Finalsi. It additionally maintains a global flag Exploded which initially is set to ⊥, and a
global list Trace, initially set to empty.

Initialisation: For any Pi ∈ P let Treei := ((Vi := {G}, Ei := ∅), ri := G), set Posi := G,
and LastFinali := G.

Get Tree: On input GetTree from party Pi ∈ P the functionality returns
(Treei, Posi, LastFinali).

Set Final: On input (SetFinal, R) from party Pi ∈ P the functionality sets LastFinali :=
R and Finalsi := Finals ∪ {R}. Furthermore, it updates Exploded := ⊤ iff∧

Pj∈P
∧

F ∈Finalsj
R ∈ ChainHonestTree(F ) ∨ F ∈ ChainHonestTree(R) or R ̸∈ Treei.

Finally, if R ̸∈ ChainTreei(Posi) the position is updated, Posi := R.

Add Node: On input (AddNode, Pi, B, p) from the adversary, if B ̸∈ Vi and HonestTree
remains a tree after adding B as a child of p in Treei then set Vi := Vi ∪ {B},
Ei := Ei ∪ {(p, B)}.

Set Position: On input (SetPosition, Pi, B) from the adversary then the position of
party Pi is updated, Posi := B.

On input i from the adversary if Exploded∨
∧

P ∈P P (Trace :: i), then the input is processed
and Trace := Trace :: i. Otherwise i is ignored.

Desirable Properties of FTree. The functionality might at first seem unable to capture
interesting properties as only properties that can be evaluated on concrete traces can be enforced.
Standard blockchain properties such as chain-growth, common-prefix and chain-quality are
probabilistic and cannot be evaluated on a single trace. These guarantees can however be
translated into properties that hold for a concrete trace with overwhelming probability.

One property that we need in order to implement our finality layers is that updates of the
position respects the last final block. That is for any input (SetPosition, Pi, B) it must be
that B ∈ Treei and LastFinali ∈ Chain(B). We call this property PFinalityRespecting and only
consider trees FP

Tree where PFinalityRespecting ∈ P.

3.2 The Finalised Tree

Similarly, we describe a functionality for the finalised tree, FP
FinTree, which also respects a set of

properties. The main difference between FTree and FFinTree is that in FFinTree it is the adversary
that decides which nodes will be final – subject to restrictions.
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Functionality FP
FinTree

For any Pi ∈ P the functionality maintains the variables Treei, Posi, and LastFinali. It
additionally maintains a global initially empty list Trace.

Initialisation: For any Pi ∈ P let Treei := ((Vi := {G}, Ei := ∅), ri := G), set Posi := G,
and LastFinali := G.

Get Tree: On input GetTree from party Pi ∈ P the functionality leaks
(Treei, Posi, LastFinali) to the adversary before returning it to Pi.

Set Final: On input (SetFinal, Pi, R) from the adversary the functionality sets
LastFinali := R. If R ̸∈ ChainTreei(Posi) the position is updated, Posi := R.

Add Node: On input (AddNode, Pi, B, p) from the adversary, if B ̸∈ Vi and HonestTree
remains a tree after adding B as a child of p in Treei then set Vi := Vi ∪ {B},
Ei := Ei ∪ {(p, B)} and if p = Posi then set Posi := B.

Set Position: On input (SetPosition, Pi, B) from the adversary then the position of
party Pi is updated, Posi := B.

On input i from the adversary if ∧
P ∈P P (Trace :: i), then the input is processed and

Trace := Trace :: i. Otherwise i is ignored.

Desirable Properties of FFinTree. The job of a finality layer is to detect what honest parties
already agree upon and ensure that this becomes visibly final. That is: we want that final
inputs can only extend and not contradict previous final inputs, and that what an honest party
considers the best chain at all times should respect all final inputs. Furthermore, we want that
two party cannot consider contradicting blocks final. This can be summarized as that all final
blocks (across different parties) should form a chain.

To describe exactly what a finality layer should detect we define the notion of "everything
that honest parties agree upon" as the honest stem of a tree:

HonestStem :=
⋂

Pi∈H
Chain(Posi).

Ideally, a finality layer would then preserve any good property the underlying tree provides, and
each time the finality layer is run it should finalise the entire honest stem for all parties.

As the messages of parties are delayed by a parameter of the network model, we will not try
to agree on the honest stem at a specific point in time, instead we define a more relaxed notion
of an honest stem which is the intersection of any combination of the positions of all honest
parties within a ∆net long interval.

Definition 4. [(τ, ∆net)-HonestStem] For a party Pi, time τ , and network delay ∆net we define
RecentPositionsPi

(τ,∆net) as the set of positions Posi that were kept by FTree in the interval
[τ, τ + ∆net]. We say that a chain is a (τ, ∆net)-HonestStem if it is the intersection of the
positions of a tuple in ΠPi∈HRecentPositionsPi

(τ,∆net).

Ensuring that the entire honest stem is finalised is however not enough. We would also like
that what is finalised has been in the best chain of an honest party. [18] defines a notion of
recent validity: any time a block, b, becomes final at an honest party at time τ then at least one
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honest party had this block in their best chain no more than a bounded time T ago. [11] defines
the similar restriction (k)-support: any time a block, b, becomes final at an honest party then at
least k honest parties previously had b in their best chain at the height being finalised.

Disregarding time and number of parties these restrictions are morally the same. Further-
more, having a concrete bound on the time it takes to terminate and (k)-support implies recent
validity. In that vein we choose to concentrate on the former which we define below.

Definition 5 (k-validity). Any time a block becomes final at an honest party at time τ then
there is at least k honest parties that had this block in their chain at a time earlier than τ .

4 Validity Bounds When Finalising An Honest Stem
We show that the validity lower bounds achieved by our protocols are optimal when composed
with FTree by providing matching upper bounds. The basic FTree imposes almost no restrictions
on how an adversary interacts with the tree, so to justify that the results apply not only in
this setting but also to a NSC we limit the adversary to adhere to a set of rules. The rules
informally model that parties follow a simplified Bitcoin chain rule when choosing their position
and that blocks propagate as specified by the network model.

Chain rule: Positions of honest parties can only be updated to longer chains.
Block propagation: Parties can send the blocks in their tree to other parties. When an
honest party P receives a block b, P will update its position to b if P’s previous position is a
shorter chain than b.

These restrictions on the adversary’s abilities can be specified as trace properties. If the validity
upper bounds holds for a tree with these properties, then it of course also holds for a tree without
these properties as the adversary can just choose to follow the special rules.

In the following proofs we do not need to consider protocols finalising a (τ, ∆net)-HonestStem
and terminating before τ . We note that this is no serious restriction. If a party can finalise a block
B at some time τ ′ < τ , then the adversary could change the position of all honest parties to a
successor of B at some time τ ′′ with τ ′ < τ ′′ < τ , in which case B is not a (τ, ∆net)-HonestStem.

We first show that (n − 2t)-validity is maximal for finality layers that are secure in the N ∆net
SPS

model and finalise an honest stem in periods of synchrony with probability 1.

Theorem 1. If π is a protocol implementing a finality layer tolerating t corruptions in the
N ∆net

SPS model, and π finalises a (τ, ∆net)-HonestStem in polynomial time when a round is
contained in a strong period of synchrony, then the finalised blocks can have at most (max(1 + (n
mod 2), n − 2t))-validity.

Proof. If n = t there is nothing to show. So W.L.O.G. assume n < t and that no honest party
terminates before τ . Partition the parties into sets Q1, Q2, and QP where |QP| = max(1 + (n
mod 2), n − 2t). Let P ∈ QP be an honest party and let the remaining sets have equal size, i.e.
|Q1| = |Q2| ≤ t. Assume that at time τ0 < τ all parties agree on the same block A.

We now describe two worlds which are indistinguishable from the perspective of P. In world
1 the network is in a period of synchrony and thus π must finalise an honest stem, while in world
2 the network is not in a period of synchrony and messages can be delayed indefinitely. The
adversary will simultaneously at time τ0 change the position of QP and Q2 to a block B ≻ A.
and then:

In world 1 corrupt Q1 and let them stay silent.

In world 2 corrupt Q2 but let them act honestly, delay all messages to and from Q1, and
deliver all messages between parties in Q2 ∪ QP as if in a strong period of synchrony.
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Position A B

World 1 Q1 (corrupt, silent) QP, Q2
World 2 Q1 (isolated) QP, Q2 (corrupt)

Figure 1: The position and state of each partition in world 1 and 2.

As the parties in Q1 are corrupted in world 1, the remaining parties must be able to terminate
without hearing from them due to the network being in period of synchrony. Specifically P
must terminate with a (τ, ∆net)-HonestStem at some time τ ′. If in world 2 the adversary delays
all messages to and from parties in Q1 until τ ′ while scheduling the messages between the
remaining parties as in the execution in world 1, then P is unable to distinguish the two worlds
(see Figure 1)at time τ ′ and must also terminate at time τ ′ in world 2 with the same output
distribution as in world 1. Observe that:

In world 1 all honest parties have B as their best block at time τ0 and will not change back to
A by rule 1. So in the interval [τ, τ + ∆net] finalising A would violate the guarantee of
finalising a (τ, ∆net)-HonestStem. I.e. the output of P is B.

In world 2 P terminates at τ ′ with some output f , and the validity of the output is defined
as the number of honest parties who at τ ′ or earlier had f in the prefix of their chain.
Finalising B results in exactly (|QP ∩ H|)-validity.

We conclude that π cannot get more than (max(1+(n mod 2), n−2t))-validity in general.
It is fairly easy to prove analogously that protocols in the N ∆net

HBD model cannot guarantee
more than (n − 2t)-validity if it finalises a (τ, ∆net)-HonestStem. But using the fact that ∆net
is unknown we can prove a stronger bound.

Theorem 2. If a protocol π tolerates t corruptions, terminates in polynomial time in the
N ∆net

HBD model, and guarantees finalisation of a (τ, ∆net)-HonestStem in polynomial time, then
the finalised blocks can at most have guaranteed (max(1 + (n mod 3), n − 3t))-validity.

Proof. Partition the parties into sets Q1, Q2, Q3, and QP where |QP| = max(1+(n mod 3), n−
3t). Let the remaining sets have equal size, i.e. |Q1| = |Q2| = |Q3| ≤ t. We now describe three
worlds which are indistinguishable from the perspective of an honest party P ∈ QP until time
τoutput, which we define based on the execution in world 1. In world 1 the network parameter
∆net is set to ∆1 and in the two other worlds it will be chosen as a function of ∆1. Assume
that all parties agree on some block A at time τpartition = τ − ∆1, and let B and C be different
children of A.

The adversarial strategy will be to exploit a combination of a small fork and a partition to
force low validity when polynomial time termination and finalisation of an honest stem must be
observed. In all worlds the adversary will simultaneously at time τpartition change the position
of the parties in QP and Q3 to B, and the parties in Q2 to C, and then:

In world 1 corrupt Q1 and let them remain silent.

In world 2 corrupt Q2 and change the position of Q1 to B.

In world 3 corrupt Q3 and change the position of Q1 to C.

Observe that in world 1, the honest parties must terminate π in polynomial time. Let τoutput

be an upper bound on when P must terminate. We can then define the message delay bound of

12



world 2 and 3, ∆2,3 = τoutput − τpartition. With this delay bound the adversary is allowed to delay
all messages to and from Q1 in world 2 and 3 in the interval [τpartition, τoutput]. Additionally, as
∆1 ≤ ∆2,3, the adversary can schedule messages in world 2 and 3, exactly as in world 1 for all
parties except those in Q1. It now follows that the view of the parties Q2 ∪ Q3 ∪ QP is identical
in worlds 1, 2, and 3 at every time-step up to τoutput. As P has to output by this time in world
1, it must also output in the other worlds with the same output distribution.

In world 2 all honest parties have B as their best block in the interval [τ, τ + ∆2,3]. Thus B is
the only (τ, ∆2,3)-HonestStem and the only allowed output.

In world 3 B has (|QP ∩ H|)-validity.

We conclude that π cannot guarantee more than (max(1 + (n mod 3), n − 3t))-validity.

Applicability of the Bounds. Any specific protocol implementing FTree could have properties
circumventing our results. E.g. by using a CBFT protocol to get pre-agreement before prevoting
in each round our protocols would always have n − t-validity, however this would defeat the
purpose of a finality layer. It is an interesting open problem if any trace property (short of ones
requiring BFT consensus) would allow better validity results. Note that if forks of the same
length are decided by a chain rule with a global tie-break, the proof of Theorem 2 needs to take
block propagation into account. Tie-breaks are used in some NSC protocols, but in e.g. the
Bitcoin protocol the tie is decided by the order blocks arrive in locally.

5 Enig
In this section we present two finality layers; EnigHBD and EnigSPS. Both protocols guarantee
finalisation of an honest stem assuming n ≥ 3t + 1 parties with at most t corruptions. EnigHBD
achieves n − 3t-validity in the N ∆net

HBD network model, while EnigSPS achieves n − 2t-validity in the
N ∆net

SPS network model. These validity bounds are shown to be optimal for each network model
in Theorem 2 and Theorem 1 respectively.

Weak Byzantine Agreement. EnigHBD and EnigSPS rely on a “Weak Byzantine Agreement”
protocol (wBA), inspired by the FilteredWMVBA protocol of [11]. It accepts an arbitrary set of
inputs, and outputs a value to all honest parties which is either ⊥ or consistent with the input
of at least one honest party. If all honest parties have the same input, then it is guaranteed to
be the output. FilteredWMVBA has the same properties, but it is not player replaceable and
has quadratic flood complexity. However most parts of FilteredWMVBA are – or can trivially
be adapted to be – SPR and have linear flood complexity, except for the subprotocol ABBA
2. To achieve these additional properties we provide the binary byzantine agreement protocol
YABBA3. We will present the details of YABBA in Section 6 and the details of FilteredWMVBA
in Section 7.

Running Enig. Both of the finality layers are presented as running in a loop, in which the
process of finding the next final block begins as soon as the previous final block is determined.
The proofs of security are however agnostic to how the rounds are initiated, as long as: 1) a
round cannot be started before the previous one has an output and 2) if some honest party can
start a finality round at some time, τ , then in a N ∆net

HBD network all other honest parties must be
2Another Binary Byzantine Agreement.
3Yet Another Binary Byzantine Agreement.
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ready to start the same round at time τ + ∆net, while in the case of N ∆net
SPS this only needs to

hold in strong periods of synchrony.

Notation. Formally both of our protocols has access to the tree functionality FTree and uses
it for querying their position in the tree. For simplicity, we will omit such explicit calls to FTree
but instead use Posi for the position of Pi obtained by making such query. Furthermore, each
party will maintain a variable Finalr that denote the block that this party considers final for
round r. When this is changed we assume the party should input (SetFinal, F inalr) to FTree,
but these are also omitted for clarity. Lastly, both protocols takes a parameter sid which is a
unique session identifier that the protocol is to be instantiated with. This is used to generate
a unique round specific finalization identifier faid, which again is used to generate a unique
identifier for running WMVBA.

5.1 Enig in Partial Synchrony with HBD

EnigHBD utilises a slightly generalised version of the ghost function from [18], which finds the
best block with support by some amount of distinct parties from a set of votes on blocks. We
generalize this to a function G that takes a threshold T and a set of prevotes S ⊂ (P × B).
Intuitively, G(S, T) calculates the “best block” b s.t. at least T different parties in S have prevoted
on a block in the subtree of b. However in some NSC’s (e.g. Bitcoin) the chain rule is not
well-defined across different parties. To account for cases where it is not clear across all parties
which block is best we let G return a set of blocks. All blocks in that set are justified and a party
can choose its vote among these by a local chain rule, or any other rule. Our only assumption
on the chain rule is that b ≺ b′ implies b′ is better than b in the view of all honest parties.
Additionally, to mitigate complications arising from a single party voting for more than one
block: whenever a party submits conflicting prevotes (P, b) and (P, b′) the T is lowered by 1 and
all current and future prevotes from P ignored. We define this formally below.

Definition 6 (Threshold GHOST function (G)). Let T be a threshold and let S ⊂ (P × B) be a
set of prevotes. Let E(S) denote be the set of equivocating parties in S, i.e. E(S) = {p ∈ P |
(p, b), (p, b′) ∈ S ∧ b ̸= b′}. Further, let supported(b, S) be a predicate that is true when there
are at least T − |E(S)| non-equivocating prevotes in the subtree of b. We now define G(S, T) to
be the set of all blocks where for any block in the set b, we have supported(b, S) and for any
block b′ where b ≺ b′ we have ¬supported(b′, S).

EnigHBD uses two justifications. The first one ensures that the finalised blocks form a chain.

Definition 7 (Prevote justification). We say that a block is JPrevote-justified for round r if it
is in the subtree of Finalr−1.

A prevote message (faid, Prevote, b) is justified if b is JPrevote-justified.

Definition 8 (Vote justification). We say that a block, b, is JVote,T justified for round r if there
is a set of JPrevote-justified prevotes from n − t different parties, S, such that b ∈ G(S, T).

A vote message (faid, Vote, b) is justified if b is JVote,n−2t-justified.
Remark 1. It is efficiently computable to check whether or not a particular block b is JVote,T
justified from a set of JPrevote-justified prevotes. Initially, let S be the set of received prevotes
and let L(S, b) be the blocks in the subtree of b which are in G(S, T). I.e. L(S, b) = {b′ ∈
G(S, T)|b ⪯ b′}. While |S| ≥ T and L(S, b) ̸= ∅:

1. If L(S, b) = {b} then b ∈ G(S, T), i.e. b is JVote,T and we are done.
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2. Otherwise for each b′ ∈ L(S, b). While b′ ∈ G(S, T) remove a prevote in the subtree of b′

from S.

Note that for any block in G(S, T) none of its predecessors can be in G(S, T). This procedure
leaves the maximal number of prevotes in S that does not give T-support to any block better
than b.

Lemma 1. Assuming n participants and at most t corruptions a JVote,T -justified block has at
least T − t prevotes from honest parties in its subtree for t ≤ T ≤ n.

Proof. Let b be a JVote,T-justified block. Then b ∈ G(S, T) for some set of prevotes S. Let k be
the number of equivocating parties in S. Then b has at least T−k prevotes from non-equivocating
parties in its subtree. At most t − k of these are from corrupted parties. Thus there are at least
T − k − (t − k) = T − t prevotes from honest parties in the subtree of b.

With these definitions in place we are now ready to define EnigHBD.

Protocol EnigHBD(sid, δ)

Let Final0 be the genesis block.
In each round r = 1, 2, . . . party Pi does the following:

1: Let faid := (sid, r).
2: Flood (faid, Prevote, Posi).
3: Collect prevotes from at least n − t parties, and set i := 1.
4: while Finalr = ⊥ do
5: Let S be the set of received prevotes, pick b arbitrarily from G(S, n − 2t) and flood

(faid, Vote, b, ticketr,i) at time τ .
6: Wait until τ + δ · i, collect votes from at least n − t parties, and pick

(faid, Vote, b, ticketr,i) with the best ticket received.
7: Using b as proposal, let i := i+1 and Finalr := wBA((faid, i), JVote,n−2t, {k ·δ}k∈N).
8: end while

Remark 2. The running time of the protocol is a polynomial of δ and ∆net. The parameter δ
can for the sake of the proof be chosen as an atomic unit of time. In practice we conjecture that
choosing a good guess on the typical network delay works well, but that is outside the scope of
the theoretical analysis.

Protocol Intuition. Parties send a prevote message for their best block, wait until they have
received at least n − t of such prevotes, and then send a vote message for G(S, n − 2t), where S is
the set of received prevotes. At this point all justified votes are valid candidates for finalisation.
Intuitively justifying votes using JVote,n−2t means that the at most t adversarial prevotes in
the set cannot hinder finalisation of an honest stem by choosing blocks in the prefix of the
intersection of honest prevotes: in that case the result would simply become the intersection of
n − 2t honest prevotes in S. At the same time if the adversarial votes are in the subtree of a the
resulting vote b, then there is still at least n − 3t honest votes in the subtree of b. It follows
that agreeing on any single justified vote will match the validity bound of Theorem 2. To get
agreement on a justified vote the parties attach a ticket to the votes and iteratively run wBA
picking the best seen so far as input until the output is a block. The honest tickets propagate
within a ∆net, and after that the expected number of iterations is constant, as only an expected
constant amount of adversarial tickets are better than all honest tickets.
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5.2 Enig in Partial Synchrony with SPS

EnigSPS is designed for the N ∆net
SPS model and uses the fact that ∆net is known to conclude that

in periods of synchrony all honest messages have propagated within a known timeout, and as
such the threshold of the ghost function can be increased to n − t without hurting liveness in
periods of synchrony. So while we reuse the justification of prevotes, in EnigSPS a vote message
(faid, Vote, b) is justified if b is JVote,n−t-justified.

Notice that the vote justification in contrast to our other justifications does not prove that
the party sending the vote acted as an honest party could have done under certain schedulings
of the messages. While honest parties (in periods of synchrony) will base their vote on all
honest prevotes, corrupted parties could justify a vote based on any n − t prevotes. Determining
whether that is the case is in general hard, but we can get around this by only accepting votes
that are at least as good as t blocks included in other votes, and thus at least as good as the vote
of an honest party. This constraint on inputs to wBA is sufficient to achieve finalisation of the
honest stem. It can be implemented by simply ignoring up to t votes and proceed as in EnigHBD,
which does invalidate up to t honest votes, and consequently might reduce the change of getting
an honest leader. Alternatively one can add an extra round where parties pick a “qualified vote”
and only then publish their tickets. Either approach works but we choose the latter as it results
in a simpler proof and statement of liveness guarantees.

Definition 9 (Qualified vote justification). A block b is JQualifiedVote-justified proposal if it is
JVote,n−t-justified and the set of votes for blocks in the prefix of b contains votes from at least
t + 1 parties.

Protocol EnigSPS(sid)

Let Final0 be the genesis block.
In each round r = 1, 2, . . . party Pi does the following:

1: Let faid := (sid, r).
2: Flood (faid, Prevote, Posi) at time τ .
3: Wait until τ + 2∆net, and collect Prevote messages from at least n − t parties.
4: Let S be the set of received prevotes, pick b arbitrarily from G(S, n − t) and flood

(faid, Vote, b).
5: Collect Vote messages from at least t + 1 parties and set i := 1.
6: while Finalr = ⊥ do
7: Pick (faid, Vote, b), where all other received votes are in the prefix of b.
8: Flood (faid, QualifiedVote, b, ticketr,i) at time τ ′.
9: Wait until τ ′ + 2∆net, and collect QualifiedVote messages from at least n − t

parties.
10: Pick (faid, QualifiedVote, b′, ticketr,i) with the best ticket received.
11: Using b′ as proposal, let i := i + 1 and Finalr :=

wBA((faid, i), JQualifiedVote, {∆net}k∈N).
12: end while

6 Yet Another Binary Byzantine Agreement
In this section we describe YABBA: a binary byzantine agreement inspired by, and usable as a
drop in replacement for ABBA. Additionally YABBA has linear flood complexity and is SPR.
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YABBA is a randomised graded agreement protocol consisting of multiple phases. Instead of
using core-set selection as ABBA, YABBA uses a double proposal stage after which parties make
a graded choice to update their bit. Parties use randomisation in the form of an elected leader to
help choosing their bit in case they did not find a super-majority for one of the proposals. The
pre-agreed parameters of the protocol are a unique id baid, a justification Jin, and a sequence4 of
guesses on the network delay {∆YABBA,k}k∈N. Each party Pi inputs a Jin-justified bit bi ∈ {0, 1}.
The output of each honest party is a Jout-justified bit (cf. Definition 13).

We will show that YABBA (with the right sequences of delays) achieves the following properties
both in the hidden bounded delay and periods of synchrony setting.

Consistency: If some honest Pi and Pj output bits bi and bj , then bi = bj .

Validity: If all honest parties input the same Jin-justified bit b, then no honest party outputs
a bit b′ ̸= b.

Termination: If all honest parties input some Jin-justified bit, then eventually all honest
parties will output some bit.

We require the following justifications in YABBA.

Definition 10 (Jproposal,1). A bit b is Jproposal,1-justified if it is Jin-justified.

Definition 11 (Jproposal,k). A bit b is Jproposal,k-justified for party P if either

• P received at least one double proposal for b from phase k − 1 or;

• P received at least t + 1 proposals for b and n − t double proposals for ⊥ from phase k − 1.

A proposal message (baid, proposal, k, b) is justified for phase k if b is Jproposal,k-justified.

Definition 12 (JdoubleProposal,k). A bit b is JdoubleProposal,k-justified if there are at least n − t
Jproposal,k-justified proposals for b.

⊥ is JdoubleProposal,k-justified if there is a Jproposal,k-justified proposal for both 1 and 0.

A message (baid, double proposal, k, ci) is justified if ci is JdoubleProposal,k-justified.

Definition 13 (Jout). A bit b is Jout-justified if n − t parties in some phase k sent
(baid, double proposal, k, b).

Protocol YABBA(baid, Jin, {∆YABBA,k}k∈N)

The protocol is described from the view point of a party Pi which has Jin-justified input bi. The party starts
both the “Graded Agreement” and the “Closing Down” part of the protocol.
Graded Agreement
In each phase k = 1, 2, . . . do the following:
1: Pi records current time, τstart, then computes its lottery ticket ticketi and floods proposal message

(baid, proposal, k, bi) along with ticketi.
2: Pi collects at least n − t justified proposal messages, and sets

ci =

{ 0 if at least n − t collected proposal bits are 0
1 if at least n − t collected proposal bits are 1
⊥ otherwise

and floods double proposal (baid, double proposal, k, ci).

4The description of this sequence should be polynomial in the security parameter λ.
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3: Finally Pi waits until τstart + 2∆YABBA,k, collects at least n − t double proposal messages, and then sets

bi =

{ 0 if at least one collected double proposal bit is 0
1 if at least one collected double proposal bit is 1
b otherwise

where bit b was in the collected proposals > t times. If this bit is not unique select the proposed bit
b from the party with highest lottery ticket.

Closing Down
Once having receiving at least n − t messages (baid, double proposal, k, b) for any bit b ∈ {0, 1} and
phase k, terminate the protocol and output Jout-justified b.

We first show that double proposals in any phase are for the same bit or ⊥.

Lemma 2. For any phase k, if at least half of the honest parties propose b, then 1 − b cannot
be JdoubleProposal,k-justified.

Proof. Assume m ≥ n−t
2 honest parties propose b in phase k. Then there can be at most n − m

proposals for 1 − b. In order for 1 − b to become JdoubleProposal,k-justified there must be at least
n − t justified proposal messages for 1 − b. Assume for contradiction that n − m ≥ n − t. It
follows that n−t

2 ≤ m ≤ t ⇒ n ≤ 3t; a contradiction to t < n
3 .

We now show that if any bit is uniquely justifiable for some phase, then all honest parties
terminate in that phase.

Lemma 3. If the only Jproposal,k-justified bit is b, then all honest parties terminate with output
b before ending phase k.

Proof. As the only Jproposal,k-justifiable proposal bit in phase k is b, the only JdoubleProposal,k-
justifiable double proposal is b. And thus as soon as honest parties receive n− t double proposals
from phase k (which they do before starting the next phase), they will terminate with output b,
unless they terminated previously using double proposals from another round.

It follows that pre-agreement on a proposal in any phase, causes termination with that
proposal as output in that or the following phase.

Lemma 4. If all honest parties have the same Jproposal,k-justified bit b as their proposal in
phase k, then all honest parties output b before ending phase k + 1.

Proof. Assume all honest parties have Jin-justified input b. By Lemma 2 the only JdoubleProposal,k-
justified ci are b or ⊥. This leaves the following two options for Jproposal,k+1-justified bits. If
there is at least one justified double proposal for b, then b is Jproposal,k+1-justifiable. If there
are at least n − t double proposals with ⊥, any bit proposed by at least t + 1 parties can be
justified. However, as all honest parties proposed b, the only bit justifiable this way is b. As b is
the only Jproposal,k+1-justifiable proposal, Lemma 3 applies in phase k + 1.

Corollary 1 (Validity). If all honest parties input the same Jin-justified bit b, then no honest
Pj outputs a decision b′ ̸= b.

Even stronger, Lemma 4 implies that with pre-agreement on b at the start of YABBA honest
parties will terminate within two phases and output b. In particular, this termination guarantee
does not depend on the delays ∆YABBA,k.

Corollary 2 (Fast Termination). If all honest parties input the same Jin-justified bit b, they
terminate within two phases with output b.
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Consistency follows from Lemma 2 and Lemma 4.

Lemma 5 (Consistency). If some honest Pi and Pj output bits bi respectively bj, then bi = bj.

Proof. Let bi, bj ∈ {0, 1} be the output of two (distinct) honest parties Pi, Pj who each
received n − t messages (baid, double proposal, ki, bi) and (baid, double proposal, kj , bj)
respectively. By Lemma 2 different bits cannot be in justified double proposals of the same
round, so if ki = kj , then bi = bj .

Otherwise, w.l.o.g., let ki < kj . So, in phase ki there were at least n − t double proposals
for bi and therefore ≤ 2t < n − t double proposals for ⊥ (i.e. not enough to justify a proposal
based on a ticket in phase ki + 1). Again by Lemma 2 there cannot be any double proposals for
the other bit. Hence bi is the only Jproposal,ki+1-justifiable bit. So by Lemma 4 at the latest
after phase ki + 2 all honest parties will have terminated with output bi. Thus bj = bi.

To show termination outside the special case of honest pre-agreement we first show that
honest parties stay synchronised within the network delay ∆net throughout phases of YABBA,
and that when the delay is chosen sufficiently large all honest tickets are propagated in time.

Lemma 6. In every phase k, all honest parties move on to the next phase no later than τ + 2r,
where τ is the time the last honest proposal was sent and r = max(∆net, ∆YABBA,k). If additionally
the actual network delay ∆net is smaller than ∆YABBA,k, then all honest parties receive the tickets
of all other honest parties before choosing their best ticket.

Proof. Let τ1 be the last time an honest party is ready to start the first phase. Then no other
honest party was ready to start the protocol earlier than τ1 − ∆net. (Otherwise by message
propagation, the last party would have started earlier.)

Assume now that in some phase k, the last honest party sends a proposal at time τk and all
other honest parties send one no earlier than τk − ∆net. Now all honest parties receive at least
n − t proposals no later than τk + ∆net, and send out their double proposals. Then all honest
parties receive n − t double proposals no later than τk + 2∆net. Let r = max(∆net, ∆YABBA,k).
Then all honest parties are done waiting for messages and timeout no later than τk + ∆net + 2r
and can move on the next phase. Let τk+1 be the first time an honest party can move on to
phase k + 1. Since the parties were at most ∆net out of sync when sending proposals, all other
honest parties are done waiting for the timeout no later than τk+1 + ∆net. And the messages
allowing all parties to begin phase k + 1 will also propagate no later than τk+1 + ∆net.

Finally, the earliest an honest party can finish waiting for timeouts is τk − ∆net + 2∆YABBA,k.
If ∆net ≤ ∆YABBA,k then τk − ∆net + 2∆YABBA,k ≥ τk + ∆net, meaning all honest parties receive all
honest proposals and tickets before choosing their proposal for the next phase.

Using this synchrony guarantee we show that every time an honest party wins the lottery
after the delay is sufficiently large, then the protocol stabilises with probability at least 1

2 .

Lemma 7. If in any phase k the network delay is smaller than ∆YABBA,k and an honest party
has the highest lottery ticket, then with probability at least 1

2 all honest parties will have the same
Jproposal,k+1-justified bit b as their proposal in phase k + 1.

Proof. Let b be the bit proposed by the majority of the honest parties, then b is the only
justifiable bit in a double proposal (Lemma 2). Thus the parties choose their proposals for phase
k + 1 based on receiving a double proposal for b, or by receiving only double proposals for ⊥
and choosing the proposal with the highest lottery ticket. Note that by Lemma 6 all honest
parties will see the winner. As the majority of the honest parties proposed b independently of
their ticket, with probability at least 1

2 the winner proposed b, in which case all honest parties
will choose b as the proposal in phase k + 1.
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In any phase there is a probability of 2
3 that an honest party has the highest ticket.

Corollary 3. If in any phase k the actual network delay is smaller than ∆YABBA,k, then with
probability at least 1

3 all honest parties will have the same Jproposal,k+1-justified bit b as their
proposal in phase k + 1.

Next we can show that in both network models YABBA satisfies consistency, validity, and
termination.

Theorem 3. In N ∆net
HBD , the protocol YABBA satisfies consistency, validity, and termination

assuming strictly monotone increasing {∆YABBA,k}k∈N.

Proof. Consistency follows from Lemma 5 and validity from Corollary 1. The strict monotonicity
of {∆YABBA,k} implies there is a k0 such that for k ≥ k0 ∆YABBA,k ≥ ∆net. By Corollary 3, the
honest parties achieve pre-agreement in expectation within a constant number of phases after k0
and then terminate within two phases (Lemma 4).

The above in particular holds for {∆YABBA,k}k∈N = {k · δ}k∈N for some δ > 0.

Theorem 4. In N ∆net
SPS , the protocol YABBA satisfies consistency, validity, and terminates

in expectation after constant number of phases that fall in periods of synchrony assuming
∆YABBA,k ≥ ∆net for all k.

Proof. Consistency follows from Lemma 5 and validity from Corollary 1. By Corollary 3 and
∆YABBA,k ≥ ∆net, there is a chance of at least 1

3 of achieving pre-agreement among honest parties
if the phase falls into a period of strong synchrony. So in expectation, honest parties will get
pre-agreement within constant number of such phases. After that they will terminate within
two phases (Lemma 4).

Finally we add a concrete time bound for the periods of synchrony network model, using the
very natural choice of {∆net}k∈N for {∆YABBA,k}k∈N.

Theorem 5. In N ∆net
SPS during strong periods of synchrony, if the last honest is party ready to

start YABBA(·, ·, {∆net}k∈N) at time τ , then the last honest party terminates at τ + 2(2 + k)∆net
or earlier, where k is expected constant and k = 0 in case of pre-agreement.

Proof. By Lemma 6 each phase of YABBA lasts at most 2∆net. Thus YABBA terminates at the
last honest party no later τ + 2(2 + k)∆net, where k is expected constant (Theorem 4), and
specifically in case of pre-agreement k = 0 (Corollary 2).

7 Weak Byzantine Agreement
In this section, we describe a protocol for doing a weak multivalued byzantine agreement, wBA.
The protocol is similar to FilteredWMVBA from [11] except it uses YABBA in place of ABBA
and omits WeAreDone messages. The idea of the protocol is to first use a protocol called
FilteredFreeze from [11] which “freezes” a value such that all parties either have a unique output
or ⊥ as output, and then afterwards use YABBA to decide which was the case.

For completeness, before going into details with wBA, we recap FilteredFreeze from [11], as
well as prove a concrete bound for its running time.
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7.1 Filtered Freeze

The protocol is parametric in an input justification J . Each party honest Pi has a J-justified
input pi and the output of Pi is justified by justification Jdec (cf. Definition 17). The protocol
has the following properties.

Weak Consistency: If some honest Pi and Pj output decisions di ̸= ⊥ respectively dj ̸= ⊥,
then di = dj .

Validity: If all honest parties input the same J-justified proposal p, then no honest Pj outputs
a decision p′ with p′ ̸= p.

1-Support: If honest party Pi outputs decision di ̸= ⊥, then at least one honest party had di

as input.

Termination: If all honest parties input some justified proposal, then eventually all honest
parties output some decision.

Below we describe the justifications that are used in the protocol. Note that we describe the
protocol being run light. This is different from the description in [11] where explicit justifications
are send along messages.

Definition 14 ([11]). A proposal message m = (baid, proposal, p) from Pi is considered
Jprop-justified for Pj if m was sent by Pi and p is J-justified for Pj .

Definition 15 ([11]). A filtered proposal message m = (baid, filtered, p) is considered Jfilt-
justified for Pj if either there are Jprop-justified proposal messages for p from t + 1 different
parties or there are Jprop-justified proposal messages from n − t different parties such that no
proposal is contained in more than t of those messages.

Definition 16 ([11]). A vote message m = (baid, vote, v) from Pi is considered Jvote-justified
for Pj if is sent by Pi and either for v ̸= ⊥ Pj has collected Jfilt-justified filtered proposal
messages from at least n−2t parties or for v = ⊥ Pj has collected Jfilt-justified filtered proposal
messages (baid, filtered, p) and (baid, filtered, p′) (from two different parties) where p′ ̸= p.

Definition 17 (Jdec-justification,[11]). A decision message m = (baid, frozen, d) is Jdec-
justified for Pj if Pj collected Jvote-justified messages (baid, vote, d) from at least t + 1 parties.

Protocol FilteredFreeze(baid, J)

Each (honest) party P has a J-justified proposal p as input. Party P does the following:
Propose:

1. Flood proposal message (baid, proposal, p).
Filter:

2. Collect proposal messages (baid, proposal, pi). Once Jprop-justified proposal messages from at at
least n − t parties have been collected do the following (but keep collecting proposal messages).

(a) If your input p is contained in at least t + 1 Jprop-justified proposal messages, flood filtered
proposal message (baid, filtered, p).

(b) Else if there is any p′ which is contained in at least t + 1 Jprop-justified proposal messages, flood
filtered proposal message (baid, filtered, p′). Do this for at most one proposal.

(c) Else flood (baid, filtered, p).

Vote:
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3. Collect filtered proposal messages (baid, filtered, pi). Once Jfilt-justified filtered proposal messages
from at at least n − t parties have been collected do the following (but keep collecting filtered proposal
messages).

(a) If Jfilt-justified filtered proposal messages from at at least n − t parties contain the same
proposal p, flood vote message (baid, vote, p).

(b) Otherwise flood vote message (baid, vote, ⊥).

Freeze:
4. Collects vote messages (baid, vote, pi) messages. Once Jvote-justified vote messages from at least

n − t parties have been collected and there is a value contained in at least t + 1 vote messages do the
following.

(a) If Jvote-justified vote messages from strictly more than t parties contain the same p ̸= ⊥ output
(baid, frozen, p).

(b) Otherwise if Jvote-justified vote messages from strictly more than t parties contain ⊥ output
(baid, frozen, ⊥).

5. Keep collecting vote messages until wBA is terminated (i.e., until Pi gets an output in wBA). Party
Pi keeps track of all decisions (baid, frozen, p) which become Jdec-justified.

The following lemma is proven in Afgjort.

Lemma 8 ([11]). The protocol FilteredFreeze satisfies weak consistency, validity, 1-support, and
termination. The outputs of honest parties are Jdec-justified.

Additionally, we provide the following lemma that provides a concrete bound for the running
time of the protocol.

Lemma 9. In both N ∆net
SPS and N ∆net

HBD , the protocol FilteredFreeze terminates within 3∆net (in a
period of synchrony for N ∆net

SPS ).

Proof. The protocol consists of phases. In each phase parties flood a message and then wait
to collect some of the flooded messages. In the model with hidden bounded delay this requires
at most one ∆net per phase. In N ∆net

SPS , this also holds if protocol is run during a period of
synchrony.

It turns out that FilteredFreeze not only satisfies validity, but has the stronger property that
in case of pre-agreement on some block, the only Jdec-justified output is that block. We state
and prove this below.

Lemma 10. If all honest parties input the same J-justified proposal p, then no decision message
different from (baid, Frozen, p) can become Jdec-justified.

Proof. As all honest parties propose p, any set of n − t proposal messages will contain at
least t + 1 proposals for p and no more than t proposals for any other block. Thus the
only justified filtered message is for (baid, Filtered, p). It follows that the only justified
vote message is (baid, Vote, p), and consequently the only Jdec-justified decision message is
(baid, Frozen, p).

A consequence of this is that whenever there is pre-agreement on the proposals in wBA, then
YABBA will terminate in the first phase. (The same is true for ABBA in both WMVBA and
FilteredWMVBA in [11].)

7.2 wBA
We are now ready to describe the protocol for multivalued byzantine agreement. The notation
is adapted to use 0, 1 as bit values in place of ⊥, ⊤ in order to reserve ⊥ for the undecided

22



double proposal in YABBA. The pre-agreed parameters of the protocol are a unique id baid,
a justification J , and a sequence of delays {∆YABBA,k}k∈N. Each party Pi inputs a J-justified
proposal pi. The output of each honest party is an Jfin-justified decision di (see Definition 19).
The idea of wBA is to first call the FilteredFreeze subprotocol to boil down the choice to a unique
proposal or ⊥. Parties then use YABBA to determine which one is the case.

Justifications. wBA requires the following justifications. First, we define the Jin-justification
for inputs to YABBA. The idea is that parties input 1 if their FilteredFreeze output is d ̸= ⊥
and 0 otherwise.

Definition 18 ([11]). A bit b is Jin-justified (input justified) for party Pi if Pi has a Jdec-justified
tuple (baid, frozen, d) where d ̸= ⊥ if and only if b ̸= 0.

The outputs of wBA are justified as follows.

Definition 19. A decision d is considered justified with respect to final justification Jfin for Pi

if either d ̸= ⊥, d is Jdec-justified, and 1 is Jout-justified, or d = ⊥ and 0 is Jout-justified.

Properties. wBA achieves the following properties.

Weak Consistency: If some honest Pi and Pj output decisions di ̸= ⊥ respectively dj ̸= ⊥,
then di = dj .

Validity: If all honest parties input the same J-justified proposal p, then no honest Pj outputs
a decision p′′ with p′′ ̸= p.

1-Support: If honest party Pi outputs decision di ̸= ⊥, then at least one honest party had di

as input.

With the right sequence of input delays it also achieves.

Termination: If all honest parties input some justified proposal, then eventually all honest
parties output some decision.

Protocol wBA(baid, J, {∆YABBA,k}k∈N)

Party Pi with J-justified input pi does the following.
1. Run FilteredFreeze(baid, J) with input pi. Denote by di the Jdec-justified output for Pi from

FilteredFreeze.
2. Run YABBA(baid, Jin, {∆YABBA,k}k∈N) with input bi where bi = 0 if di = ⊥ and bi = 1 otherwise.

Denote by b′
i the output of YABBA for Pi.

3. If b′
i = 0, then terminate and output ⊥ (which is Jfin-justified), otherwise (if b′

i = 1), once Pi has a
Jdec-justified decision message (baid, frozen, di) with di ̸= ⊥ (from FilteredFreeze) it terminates and
outputs di.

Remark 3. In order to produce a witness of finality as in [11], it can be redefined as a
set of messages Jfin-justifying a decision. Otherwise (in line with [11]) one could send
(baid, WeAreDone, di) messages at the end of wBA, and collect t + 1 of these before ter-
minating.
All properties except termination follow directly from the Theorem for FilteredWMVBA in [11].

Lemma 11 ([11]). The protocol wBA satisfies consistency, validity, 1-support.
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We now show that wBA additionally achieves termination in the N ∆net
HBD and N ∆net

SPS models
respectively, when instantiated with the appropriate delays.

Theorem 6. In N ∆net
HBD , the protocol wBA, satisfies consistency, validity, and termination

assuming strictly monotone increasing {∆YABBA,k}k∈N.

Proof. All properties except termination follow from Lemma 11. Termination follows from
Theorem 3 and Lemma 8 (Section 7.1).

Theorem 7. In N ∆net
SPS , the protocol wBA, satisfies consistency, validity, and terminates in

expectation after constant number of YABBA phases that fall in periods of synchrony assuming
∆YABBA,k ≥ ∆net for all k.

Proof. All properties except termination follow from Lemma 11. Termination follows from
Theorem 4 and Lemma 8 (Section 7.1).

We finally show concrete time bounds for termination in each of the network models.

Lemma 12. In N ∆net
HBD , if all honest parties input the same J-justified proposal p they terminate

with output p within 3∆net + 2 max(∆net, ∆YABBA,1) of the last honest input

Proof. The validity property of FilteredFreeze implies that all honest parties will terminate
FilteredFreeze within 3∆net (see Lemma 9, Section 7.1) with output p. Moreover the only
Jin-justified input for YABBA is 1 (see Lemma 10, Section 7.1). Thus YABBA will terminate
within 2 max(∆net, ∆YABBA,1) given Lemma 3.

As this is independent of timeouts, the same property holds for wBA(·, ·, {∆net}k∈N) in
the N ∆net

SPS model, even outside periods of synchrony, but in that case the time bound will be
3δ + 2 max(∆net, δ) where δ is the maximal network delay experienced during that period.

Lemma 13. In N ∆net
SPS during a period of synchrony, if the last honest party starts wBA(·, ·, {∆net}k∈N)

at time τ , then the last honest party terminates no later than τ + 5∆net + k · ∆net, where k is
expected constant and 0 in case of pre-agreement.

Proof. Assume the last honest party starts wBA at time τ . Then all honest parties will terminate
FilteredFreeze within 3∆net (see Lemma 9) and move on to YABBA. Now Theorem 5 implies
that the last honest party terminates no later τ + 3∆net + (2 + k)2∆net, for expected constant k.
If however there was pre-agreement on a proposal p, then by Lemma 10 the only Jin-justified bit
for YABBA is 1. With only one justified input YABBA terminates after a single phase at time
τ + 5∆net (see Lemma 3).

The bound in case of pre-agreement even holds outside periods of synchrony, but then it will
instead be 6 consecutive rounds of communication.

8 Security analysis of Enig
With the sub-protocols analysed we are ready to prove the security properties of EnigHBD and
EnigSPS.

8.1 Properties of Enig in Partial Synchrony with HBD

The consistency of EnigHBD follows immediately from the consistency property of wBA.

Corollary 4 (Consistency). If two honest parties have Finalr ̸= ⊥ in round r, they have the
same value for Finalr.
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Theorem 8 (n − 3t-validity). Any finalised block has at least n − 3t-validity.

Proof. By the 1-support property of wBA(·, JVote,n−2t, ·), when an honest party outputs a
decision different from ⊥, that decision is JVote,n−2t justified. By Lemma 1 a block that is
JVote,n−2t-justified has n − 3t honest prevotes in its subtree.

Theorem 9 (Finalisation of an honest stem). If the first honest message of round r is sent at
time τ then there is a (τ, ∆net)-HonestStem, H, s.t. H ⪯ Finalr.

Proof. If any honest party sends a message for round r at time τ , then all other honest parties
are ready to send their prevote at time ≤ τ + ∆net. This means all honest parties will send their
prevotes for their best block at the time somewhere between τ and τ + ∆net. Denote by H the
intersection of all the honest prevotes. Note that H is a (τ, ∆net)-HonestStem. We will show
show that H ⪯ Finalr.

As Finalr is the output of wBA(·, JVote,n−2t, ·) it must be JVote,n−2t-justified (by 1-support
of wBA). So by Lemma 1 Finalr has n − 3t honest prevotes in its subtree, which when n > 3t
implies that either H ⪯ Finalr (and we are done) or Finalr ⪯ H as they have at least one
common successor. Hence, it suffices to show that Finalr ⊀ H. Let S be any set of prevotes
from n − t parties JVote,n−2t-justifying Finalr. Then Finalr ∈ G(S, n − 2t), which implies
supported(Finalr, S) and for any block b we have, Finalr ≺ b =⇒ ¬supported(b, S). As H is in
the prefix of all honest prevotes it is supported in all sets of prevotes from n−t parties, specifically
supported(H, S) holds. But Finalr ≺ H would imply ¬supported(H, S), a contradiction. We
conclude H ⪯ Finalr.

Next, we state two theorems ensuring that EnigHBD terminates. The first states that EnigHBD
will terminate no matter the circumstances, while the second ensures fast termination when
there is already pre-agreement.

Theorem 10 (Termination). Each round of EnigHBD eventually terminates.

Proof. If the first honest party has advanced to round r at time t. Then all honest parties
advance to round r at time τ + ∆net or earlier and immediately send their prevote. All honest
parties consequently receive at least n − t prevotes at the latest at time τ + 2∆net, allowing them
to send a vote in the first iteration of the loop. Assuming the first honest party is ready to run
the ith iteration of the loop at time τi, then all parties ready at time τi + ∆net. The first party
will await votes until τi + max(∆net, i · δ), while all parties are done waiting for votes at time
τi + ∆net + max(∆net, i · δ) allowing them to start an instance of wBA. When i · δ ≥ 2∆net this
implies all honest parties receive the votes of all other honest parties before starting wBA. If
additionally the lottery is won by an honest party, then all honest parties have the same proposal
in wBA, and by the validity property it terminates with that proposal as output. In iterations
where either of these conditions are not satisfied, we will not assume anything about the outcome
of wBA except that it eventually terminates allowing parties to move on to the next iteration.
But as long as the round has not terminated eventually i · δ ≥ 2∆net will hold for all future
iterations. After this point only an expected constant number of iterations are needed before
the best lottery ticket is won by an honest party, as this is expected to happen with constant
probability in every iteration. We conclude that each round will eventually terminate.

Theorem 11 (Pre-agreement causes constant time termination). If all honest parties have
the same chain when starting a finalisation round, then they terminate with that block within
4∆net + 3 max(∆net, δ) of the last honest party starting that round.

Proof. Assume all honest parties prevote for the same block before time τ . This means they are
ready to send a vote before time τ + ∆net, and start wBA before time τ + ∆net + max(∆net, δ).
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By Theorem 8 and Theorem 9 we know that all justified votes have Pn−2t-validity and extend
an honest stem. When all honest prevotes are on the same block B, then B is the only block
with both properties. It follows that all honest parties choose the same proposal in wBA and by
Lemma 12 that it terminates before τ + ∆net + max(∆net, δ) + 3∆net + 2 max(∆net, δ).

As most (if not all) NSC protocols rely on the majority of the parties not only being honest
but also having received the most recent honest block, we conjecture that the conditions of the
theorem apply most of the time.

8.2 Properties of Enig in Partial Synchrony with SPS

The consistency of EnigSPS follows immediately from the consistency property of wBA.

Corollary 5 (Consistency). If two honest parties have Finalr ̸= ⊥ in round r, they have the
same value for Finalr.

Theorem 12 (n − 2t-validity). Any finalised block has at least n − 2t-validity.

Proof. By the 1-support property of wBA(·, JQualifiedVote, ·), when an honest party outputs a
decision different from ⊥, that decision is JQualifiedVote justified. A block that is JQualifiedVote-
justified is also JVote,n−t-justified and thus by Lemma 1 has n − 2t honest prevotes in its
subtree.

Lemma 14. All JVote,n−t-justified blocks are on a chain.

Proof. Any JVote,n−t-justified block has at least n − 2t honest prevotes in its subtree (see
Lemma 1), and thus any two will have at least n − 3t ≥ 1 honest prevotes in common. Since
they are in the prefix of the same block, one must be a prefix of the other.

Theorem 13 (Finalisation of an honest stem). If the first honest message of round r is sent at
time τ , and the round is in a strong period of synchrony then there is a (τ, ∆net)-HonestStem,
H, s.t. H ⪯ Finalr.

Proof. We fix a specific (τ, ∆net)-HonestStem, H, to be the intersection of all blocks included
honest prevotes of round r. By the 1-support property of wBA(·, JQualifiedVote, ·), when an honest
party outputs a decision different from ⊥, that decision is JQualifiedVote justified. This means that
Finalr has blocks voted for by at least t + 1 parties in its prefix. Specifically some honest party
voted for a JVote,n−t-justified block, b, where b ⪯ Finalr. By Lemma 15 the sender of b received
all honest prevotes, meaning b ∈ G(S, n − t) for some set S containing all honest prevotes. The
set of all honest prevotes ensures that H is JVote,n−t-justified, and hence by Lemma 14 this
implies that either b ⪯ H or H ⪯ b. As b is the output of G(S, n − t) this implies that H ⪯ b.
Thus H ⪯ Finalr.

Lemma 15 (Synchronous rounds). When a finality round is contained in a strong period of
synchrony, then all honest parties receive the prevotes of all other honest parties before voting,
and the “qualified votes” of all other honest parties before starting wBA. Additionally all parties
are ready to start wBA no later than 6∆net after the first honest party sends a prevote.

Proof. Let P be the first honest party ready to prevote in a round. Let τ be the time P is ready
to prevote. By strong synchrony, all other honest parties are ready to prevote at time τ + ∆net
and all honest prevotes are received by all honest parties no later than τ + 2∆net. As τ was the
first time an honest party could prevote, all honest parties receive all honest prevotes before
voting at some time no earlier than τ + 2∆net.
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The first honest party sending their qualified vote, P′, must send it at some time τ ′ ≥ τ +2∆net.
By strong synchrony all other honest parties will be ready to send their qualified vote no later
than τ ′ + ∆net ≥ τ + 3∆net (notice that they are not waiting in the vote step as it started
at τ + ∆net or earlier). This means that all honest parties receive the qualified votes of all
other honest parties at time τ ′ + 2∆net or earlier. As τ ′ was the earliest possible time to send a
qualified vote, all honest parties receive every honest qualified vote before entering wBA.

The last honest vote is sent no later than τ + 3∆net and received by everyone no later than
τ + 4∆net. This prompts a qualified vote and wait for 2∆net, meaning every honest party enters
wBA no later than τ + 6∆net.

Finally, we state that in a synchronous period then EnigSPS terminates in expected constant
time. Again we defer the proof to ?? due to space constraints.

Theorem 14 (Expected constant time termination). If the first honest party is ready to prevote
at time τ and the round is contained in a strong period of synchrony, then the round terminates
in time at most τ + (11 + k)∆net, where k = 0 in case of pre-agreement or if the best ticket is
won by an honest party. Otherwise k is expected constant.

Proof. Lemma 15 gives us that all honest parties are ready to start wBA at time τ + 6∆net.
By Lemma 13 all honest parties have then terminated wBA no later than τ+6∆net+5∆net+k·∆net
for expected constant k, where k = 0 and the output is a block in case of honest pre-agreement.
If all honest parties gave a prevote for the same block, then this block is the only justifiable
proposal and all parties must use it as input to wBA. If there was not pre-agreement but an
honest winner then all honest party choose the vote of that winner as their proposal. In either
of these two cases the protocol terminates at τ + 11∆net.

In the remaining case we do not assume anything about the output of wBA but simply note
that it is expected constant time, and the expected number of rounds before an honest party
wins the lottery is constant.

9 On Proving Universally Composable Security
In this section we give an overview of how to prove that our two finality layers are secure in
a composable sense. For this we choose to work in the UC-framework [6], and wishes to show
that our finality layers UC realises our ideal functionality FP

FinTree. Clearly, both protocols are
dependent upon time which is not present in the standard UC-framework. So before providing
our actual theorems and sketch the proofs we discuss a solution for adding this to UC.

Time. In order to allow the set of properties, that our functionalities are parametrised over,
to also include canonical blockchain properties, our functionality need the to have access to
time. Furthermore, we need channels which ensures delivery within a certain time. Therefore we
adapt the notion of time from TARDIS [2]. For completeness we provide a brief recap here.

TARDIS models time via. a global functionality called a "ticker". This is functionality is
written ḠTicker. The ticker allows the environment to progress time, under the restriction that
it ensures that all parties are ready to do progress. A party declares itself when it is ready
to progress by providing this as an input to ḠTicker. Importantly, the ticker does not expose
any information about the current time to the parties them self - only ideal functionalities can
query the ticker to observe whether or not a tick has happened. This ensures that even though
that parties are to notify the ticker about that they are ready to progress, they are themselves
oblivious to the passing of time. Therefore using this modelling of time does not impose any
specific synchrony model on protocols.
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We adopt the convention from TARDIS that instead of letting the functionalities query the
ḠTicker as the first thing they are activated leave this implicit and only describe their behaviour
in case that a "tick" has happened via an activation rule Tick.

Having time available within the UC model, it is easy to define flooding functionalities
providing the guarantees of the network models discussed in Section 2.2. We let FFloodBD denote
a network functionality that respects Definition 2 and let FFloodSPS denote a functionality that
respects Definition 1.

UC Protocols from EnigHBD and EnigSPS. The protocols EnigHBD and EnigSPS are protocols that
describes how to rounds of finality. However, in order to implement FFinTree it must additionally
forward any request to see the current tree of a party GetTree to the underlying tree FTree.
We let πEnigHBD

and πEnigSPS
denote any two implementations respecting this requirement, using

EnigHBD and EnigSPS respectively. Furthermore, in these protocols, each time a party floods a
message we assume that this is done through the respective flooding functionality (FFloodBD or
FFloodSPS).

Properties. The functionality FP
FinTree is parametrised by a set of safety properties P. We

consider the following safety properties.

PConsistency: Only blocks that are actually in the tree of party can be declared final, and any
two SetFinal inputs are chain-forming.

Pk-validity: Any SetFinal input has k-validity.

PHonestStem: For any SetFinal input there exists a time s.t. τ s.t. the input extends
(τ, ∆net)-HonestStem.

We now define the set of properties that our two finality layers provides:

PHBD := {PConsistency, P(n−3t)-validity, PHonestStem}
PSPS := {PConsistency, P(n−2t)-validity, PHonestStem}.

As we cannot introduce functionalities with exponential running time in the UC model (this
does not compose) we define the class of poly-time-checkable properties.

Definition 20 (Poly-time-checkable properties). We say that a property P is poly-time-checkable
if there exists and algorithm that for any trace t in polynomial time decides P (t).

We note that the properties described in PHBD and PSPS are poly-time-checkable.

Theorems and Proofs. In [17, Chapter 3] it is shown that to prove that any protocol which
leaks all I/O behaviour to an adversary, securely realises a functionality, it is enough to prove
that it correctly realises the functionality. We note that FP

FinTree has the property that all I/Os
are leaked to the adversary and we will therefore make use of this theorem when proving our
theorems below.

We now state our results in the UC-model and provide a sketch of how it can be proven.

Theorem 15. Let P be a set of polynomial time checkable properties with PFinalityRespecting ∈ P.
We have that

1. the protocol πEnigHBD
using FP

Tree UC-emulates FP∪PHBD
FinTree ,
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2. and the protocol πEnigSPS
using FP

Tree UC-emulates FP∪PSPS
FinTree .

Proof (Sketch). We start out proving Item 1. By the note above it is sufficient to argue that
πEnigHBD

correctly realises FP∪PHBD
FinTree . We first note that during any execution the Exploded-flag of

FP
Tree never will be set. Corollary 4 ensures that the output of any final round will be equal for

all parties. This, in combination with that the next round only starts after the previous round
ends, that FP

Tree enforces that Posi is below the last final block (by PFinalityRespecting) ensures that
Exploded = ⊥ for the entire execution. Furthermore, πEnigHBD

relays GetTree-requests directly
to the underlying functionality. Hence, as FTree respects all properties in P when Exploded = ⊥,
then the composed protocol also respects all properties in P. What is left is thus to show that
the properties in PHBD are respected. This is ensured by Corollary 4 and Theorem 8 and 9.

The proof for Item 2 follows the proof for Item 1 but instead uses Corollary 5 and Theorem 12
and 13.
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Appendix
A Proof of Stake Lotteries
Our protocol can be analysed in the UC model using the model of lotteries in [10]. We by
far use all the details of the model, so the proof will hold for most PoS lotteries. We here for
completeness recap the parts of the model we need.

All proof-of-stake blockchains rely on some sort of lottery. In each round, or for each job
to be carried out, each party gets a ticket which has some weight. We will here identify each
lottery by a lottery identifier lid. They take the same role as the slots in [10]. They just name
the individual lotteries. Very simplified the tickets are a verifiable random function of the lottery
identifier lid and the party identifier P, we write ticketlid,P. This hides many important details.
The ticket for instance also depend on a nonce which is needed for proving security in the case
of a dynamic stake distribution. The weight of the ticket is scaled with the party’s amount of
stake. This makes it hard to predict which party will win lid. It at the same time makes it easy
to prove if one won the lottery and ensures that the probability that the largest ticket is held by
an honest party is proportional to the fraction of honest stake.

How the probability of winning scales with the relative stake can vary. In [10] a party with
relative stake α wins the lottery (has the highest ticket) with probability

ϕ(α) = 1 − (1 − f)α

for a tweakable hardness coefficient f . This means that the probability of having the highest
ticket is not linear in α but slightly concave. This function is chosen to have the property that
1 − ϕ(α + β) = (1 − ϕ(α))(1 − ϕ(β)). This ensures that the probability of winning the lottery
does not depend on whether you have all you stake on one account or several accounts. Ensuring
that a party P with probability αP wins with probability ϕ(αP) is done simply by defining that
a party wins is the output of the VPRF is below a threshold which is a fraction ϕ(αP) of the
output range of the VPRF.

It is important that the lottery identifiers lid are fixed by the protocol. If they are dynamically
chosen by the adversary it could pick the lid giving better tickets for corrupted parties. It follows
by inspection of our protocols that all lid’s are fixed values out of the control of the adversary.

We will use PoS lotteries for two purposes. First of all we will use them for compiling PR
protocols by selecting parties for “small” committees for a round. We will also use them within
PR protocols. When a PR protocol is compiled, then for each round a small committee of
size n is elected. Once this happened and each committee members sends a message it can be
convenient to be able to do leader election within the committee.

A.1 For Compiling PR Protocols

We first discuss how to use PoS lotteries to compute PR protocols. Instead of electing a unique
winner for a lid, one can elect a set of winners. To do this one uses a tweakable threshold T . A
party is called a winner if the weight of its ticket is below T . For a lottery identifier lid we use
P(lid) to denote the set of parties with a ticket below T .

In [10, Definition 6] the authors define for lid the characteristic value

wlid =


⊥ if P(lid) = ∅
0 if |P(lid)| = 1 and the winner is honest
1 if |P(lid)| > 1 or some winner is malicious.
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We call a lottery inactive if P(lid) = ∅. We call it active if P(lid) ̸= ∅.
As part of the analysis in [10] it is shown that if there is fraction 1/2 + ϵ honest stake for a

positive ϵ, then the hardness of the protocol can be set such that for each lid independently it
holds that Pr[wlid = 0] > Pr[wlid = 1]. In other words, when the lottery is active, then typically
it is won by a single honest party. The price is that Pr[wlid = ⊥] = 1 − β for some small positive
constant β, i.e., there is a large fraction of inactive slots lid. One essentially just sets the hardness
of the lottery such that the probability that there is more than a single winner is below some
sufficiently small ϵ. This analysis easily generalises to other fractions than 1/2. In particular, if
there is fraction 2/3 + ϵ + γ honest stake for positive ϵ, γ, then the hardness of the lottery can be
set such that Pr[wlid = 0] > (2 + ϵ) Pr[wlid = 1] and Pr[wlid = ⊥] = 1 − β for positive constant β.
This in turn implies that Pr[wlid = 0] > 2 Pr[wlid = 1] + α and Pr[wlid = ⊥] = 1 − β for positive
constants α, β. We will assume a lottery with this property.

To avoid confusion we add a comment to the use of two slack values α and β. Below we
essentially only need honest super majority, Pr[wlid = 0] > 2 Pr[wlid = 1], but we need to leave a
slack α to do a Chernoff bound.

A.2 Leader Election

Another simpler use of PoS lotteries is leader election. Say a small committee of n parties
P1, . . . , Pn has been elected, where parties are elected according to stake. I.e., if we let C be the
committee then

Pr[P ∈ C] ∝ ϕ(αP) .

Say that we want one party Pℓ, the leader, to execute a special role. We want that Pℓ is
honest with constant probability. This is easy to do. Let cid be an identifier uniquely naming
the committee. Let all parties P generate a ticket ticket(cid,Lead),P. All parties send along
ticket(cid,Lead),P. Now define the leader to be the small committee member with the largest
ticket(cid,Lead),P. When the small committee members have been elected according to stake, as is
the case for our applications here, then the leader election lottery should not be scaled with
stake, each P should win with the same probability 1/n. I.e., if we let C be the small committee
with size n and let L be the leader, then we should ensure that

Pr[P = L | P ∈ C] ≈ 1/n .

This is easy to do with the lottery in [10], as one will not operate with a threshold hold depending
on αP. All parties simply send along ticket(cid,Lead),P and the winner is the one with the highest
ticket. Now note that

Pr[P ∈ C ∧ P = L] = Pr[P = L | P ∈ C] · Pr[P ∈ C] ∝ 1/n · ϕ(αP) ∝ ϕ(αP) .

This in particular gives us that if there is a positive fraction of honest parties on the small
committee, then an honest party is elected with positive probability, which is all we need.

Note that if the leader election had been scaled according to stake of committee members
then the probability of Pr[P ∈ C ∧ P = L] would essentially have been proportional to ϕ(αP)2,
which would allow the adversary an advantage by concentrating stake. This would not directly
be insecure for our applications, as we only need a positive constant probability that an honest
party wins (cid, Lead). It would however slow down liveness, as liveness of some of our protocols
depend on having an honest leader. It might also indirectly affect security by leading to
concentration of stake. We therefore promote the flat leader election within already elected
committees.
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B Player-Replaceable Protocols
We assume that the protocols proceed in rounds where each party has a role to act in each
round. In [9] Micali introduces the notion of a player-replaceable protocol. This is a syntactic
notion on a protocol saying that each party in the protocol consists of one sub-party PR

i for
each round R and that each PR

i only sends messages once and that PR
i cannot pass secret state

to future sub-parties PR′>R
i . Furthermore, PR

i and PR′
i can be independently corrupted. The

idea behind player-replaceable protocols is that when they are deployed each role PR
i can be

executed by a fresh party elected using a proof-of-stake lottery. This gives strong mitigation
against denial-of-service attack. All our protocols are player replaceable.

Because we assume a model with periods of asynchrony we need the following slightly more
restrictive class of PR protocols than [9], which we call symmetric PR (SPR). This has to do
with how a PR protocol can be compiled into a real-world protocol using a proof-of-stake lottery.
For comparison, let us first look at how this is done in a synchronous network.

In a synchronous network we could assign a party to a role PR
i as follows. All parties P

compute a ticket ticket(R,i),P using the proof-of-stake lottery and sends the ticket. Here we
use lid = (R, i) as the lottery identifier. To avoid too much communication a cut-off hardness
can be set and only tickets heavier than this threshold will be flooded. Set the threshold such
that except with negligible probability there is at least one ticket below the threshold, i.e.,
Pr[wlid = ⊥] = negl. Now use that the network is synchronous and wait long enough that all
honest tickets to have arrived at all honest parties. Along with the ticket a party sends the
message m it would compute in the protocol if it was to win the role PR

i . For each role use the
message m sent by the party with the largest ticket. When the party with the largest ticket is
honest this guarantees that all honest parties agree on m and we therefore get an honest and
consistent execution of the role PR

i .
Consider now the case where the network is asynchronous. Consider running the above

protocol for role assignment. Even if the party with the highest ticket for a role is honest the
adversary can use network delays to assign a corrupted winner to the role as long as there is a
single corrupted party with a ticket heavy enough to be flooded. And even if all honest parties
with a ticket heavy enough to be flooded are honest the adversary can use message delays to have
different honest parties adopt different winners, as long as there is more than one tickets heavier
that the threshold. This essentially renders all roles corrupted. A solution to this problem would
be to set the hardness such that there is at most one heavy enough ticket per role. Then the
honest parties can asynchronously wait for a ticket for each role. When there is a single winner
of the role and that winner is honest, then the role is honest. It is, however, impossible to set
the hardness such that typically there is at most one winner and at the same time at least one
winner. If one sets the hardness such that typically there is at most one winner when there is
a winner, then most of the time there will be no winner of the role. A problem similar to the
one discussed above is faced in [10], where the analysis is done in a so-called semi-synchronous
model. This is the motivation for the definition of the definition of the characteristic value wlid.
We can use the same ideas here.

We first describe how to compile a PR using a PoS lottery. Then we analyse what kind of
model this gives us. We run a PR protocol in the asynchronous setting as follows. We use a
population size N , a small committee size n << N , a threshold T , and a corruption threshold
t < n/3. We discuss how to set these below. Assume a proof-of-stake lottery where

Pr[wlid = 0] > 2 Pr[wlid = 1] + α

and Pr[wlid = ⊥] = 1 − β for some positive constants α and β.
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In each round there are ground population of N names QR
1 , . . . , QR

N , which we call the ground
population roles. For each role QR

i all parties P compute a ticket ticket(R,i),P and flood the ticket
if it is below the threshold T . It sends along the message m that it should compute for the role.
Now all parties wait to receive n − t messages from distinct roles. This is done asynchronously.
The party simply deadlocks until it received messages from winners of n − t distinct roles. We
will set up the framework such that this will not kill liveness. There will always be n − t honest
winners, so n − t distinct messages will eventually arrive.

We now discuss how to set the parameters N , T , n and t. Say that QR
i is crashed if w(R,i) = ⊥,

say that QR
i is honest if w(R,i) = 0, and say that QR

i is malicious if w(R,i) = 1.
Let H be the number of the N roles which are honest. Let M be the number of roles which

are malicious. Clearly

E[H] = Pr[w(R,i) = 0]N
E[M ] = Pr[w(R,i) = 1]N .

It follows that
E[H] − 2E[M ] > αN .

Let

h = E[H] − (α/5)N
m = E[M ] + (α/5)N .

It follows from a Chernoff bound that for all positive α we can set N to be a large enough, and
linear in the security parameter, to ensure that

Pr[H ≤ h] = negl
Pr[M ≥ m] = negl .

Note that we have
h − 2m > (2α/5)/N .

It in particular follows that

Pr[H − 2M > (2α/5)N ] = negl , (1)

which we use below. By now we have a model where in each round there are at least h honest
active roles and at most m malicious active roles, and h > 2m. However, it turns out that we
also need a known upper bound n on how many roles might be active.

Let n = E[H] + E[M ] + (α/5)N . Call n the small committee size. This is what we will think
of as the size of the committee in each round of the SPR protocol. It is on purpose slightly
larger than the expected number of active parties H + M . It follows from a Chernoff bound
that for all positive α we can set N to be a large enough, and linear in the security parameter,
to ensure that

Pr[H + N ≥ n] = negl .

When H + N < n we think of it as there being a committee of size n but n − H − T of the
members are crashed. For mental clarity we can even promote n − H − M of the inactive ground
population roles to be small committee members and then immediately declare them crashed.
This is just a definitional hack, there is of course no way for the parties in the protocol to know
who these crashed small committee member are.
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Let t = n − h. This is the number of malicious or crashed small committee members, so we
can think of this as t corrupted small committee members. We have that

h = E[H] − (α/5)N
t = n − h = (E[H] + E[M ] + (α/5)N) − (E[H] − (α/5)N) = E[M ] + (2α/5)N .

It follows that

h − 2t = E[H] − (α/5)N − 2E[M ] − (4α/5)N = E[H] − 2E[M ] − α > 0 .

This gives a model with three known thresholds n, h and t, where h > 2t and n = t + h. In
each round the number of live roles is at most n, the number of corrupted roles is less than t,
and the number of honest parties is at least h.

We call a protocol secure in the above model a symmetric PR protocol, as it is only guaranteed
that in each round there exist n > 3t parties PR

1 , . . . , PR
n for which it is guaranteed that 2t + 1

are honest, but the honest parties might not agree who these parties are, it can be any subset of
the ground population. The only way to discover small committee members is to see a message
from them.

Note, however, that in a SPR protocol an honest party can wait for messages from h = n − t
roles without deadlocking as H ≥ h except with negligible probability and the h honest parties
will each send their message. Furthermore, if two honest parties both wait for h = n − t = 2t + 1
messages, then because there are at most n live roles, except with negligible probability, they
will have heard from at least (n − t) − t = t + 1 common roles. To see this, note that there are at
most t small committee members that a given party did not hear from. So there are at most 2t
small committee members that one of the two parties did not hear from. Finally, if two honest
parties have heard from t + 1 common small committee members, then since there are at most t
corrupted small committee members, they will in turn have heard from at least one common
honest small committee member. These will be the central properties exploited when proving
liveness and safety of our SPR protocols.

In the above discussion we focused on compiling SPR protocol using PoS lotteries. It seems
like a harder problem to compile SPR protocols using proof-of-work in an asynchronous setting.
In a PoW lottery any role will eventually be won by some party solving the puzzle. Indeed, any
role will eventually be won by some corrupted party. So if the adversary controls the network
completely, it can make all roles of a round be run by corrupted parties by delaying messages
long enough to solve all puzzles. We leave the compilation of asynchronous SPR protocols to
PoW lotteries as interesting future work.
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