
Lower Bound on SNARGs in the Random Oracle Model

Iftach Haitner∗

iftachh@tauex.tau.ac.il
Tel Aviv University

Daniel Nukrai∗
daniel.nukrai@cs.tau.ac.il

Tel Aviv University

Eylon Yogev
eylon.yogev@biu.ac.il

Bar-Ilan University

November 9, 2022

Abstract

Succinct non-interactive arguments (SNARGs) have become a fundamental primitive in the
cryptographic community. The focus of this work is constructions of SNARGs in the Random
Oracle Model (ROM). Such SNARGs plausibly enjoy post-quantum security and can be deployed
using lightweight cryptography to heuristically instantiate the random oracle. A ROM-SNARG
is (t, ε)-sound if no t-query malicious prover can convince the verifier to accept a false statement
with probability larger than ε. Recently, Chiesa-Yogev (CRYPTO ’21) presented a ROM-
SNARG of length Θ(log(t/ε) · log t) (ignoring log n factors, for n being the instance size). This
improvement, however, is still far from the (folklore) lower bound of Ω(log(t/ε)).

Assuming the randomized exponential-time hypothesis, we prove a tight lower bound of
Ω(log(t/ε) · log t) for the length of (t, ε)-sound ROM-SNARGs. Our lower bound holds for con-
structions with deterministic non-adaptive verifiers and strong soundness notion called salted
soundness, restrictions that hold for all known constructions (ignoring contrived counterexam-
ples). We prove our lower bound by transforming any short ROM-SNARG (of the considered
family) into a same length ROM-SNARG in which the verifier asks only a few oracles queries,
and then apply the recent lower bound of Chiesa-Yogev (TCC ’20) for such SNARGs.

Keywords: Random oracle; SNARGs; high-entropy sets; lower bound

∗The Blavatnik School of Computer Science, Tel-Aviv University. Member of the Check Point Institute for Infor-
mation Security.

Contents

1 Introduction 1
1.1 Our Results . 1
1.2 Related Work . 5
Paper Organization . 6

2 Techniques 6
2.1 Warmup . 6
2.2 Actual Scenario . 7
2.3 Completeness . 8
2.4 Soundness . 9

3 Preliminaries 10
3.1 Notations . 10
3.2 Entropy Measures . 10
3.3 Randomized Exponential Time Hypothesis . 11
3.4 Random Oracles . 11
3.5 Non-Interactive Arguments in the ROM . 11

4 Hitting High-Entropy Distribution using Product Sets 13
4.1 High-Entropy Distributions Have an (Almost) Uniform Large Projection 15
4.2 Hitting almost Full-Entropy Distributions using Product Set 17

5 Lower Bound on the Length of ROM-SNARGs 20
5.1 Proof of Theorem 5.1 . 21
5.2 Short ROM-SNARGs to Low Query ROM-SNARGs, Proving Lemma 5.2 22

6 Lower Bound on the Length of ROM-SVCs 26

Acknowledgments 28

References 28

A Salted Soundness Amplification 32

B A Folklore Lower Bound on ROM-SNARG Length 33

C Proof of Lemma 5.3 34

1 Introduction

Constructions in the random oracle model (ROM) have shaped our understanding of the cryp-
tographic world. Being a simple information-theoretic model, the ROM was found to be a very
useful framework for understating what can be done (sometimes only heuristically), and what is
unlikely to be achieved using (merely) symmetric-key cryptography. A notable example for the
above is key-agreement protocols. Merkle [Mer82] has constructed a key-agreement protocol in the
ROM with a quadratic gap between the query complexity of the players and the eavesdropper.
Barak and Mahmoody-Ghidary [BM17], building on the seminal work of Impagliazzo and Rudich
[IR89], proved that the quadratic gap achieved by [Mer82] is optimal, and Haitner, Mazor, Osh-
man, Reingold, and Yehudayoff [HMORY19], showed that for a large family of constructions, the
communication complexity of [Mer82] is optimal.

Another primitive whose constructions in the ROM have high impact is Succinct Non-interactive
Argument systems (SNARGs): non-interactive computationally sound proofs (arguments) for NP
of succinct proof length (sublinear in the instance length). The first construction of SNARGs was
given by Micali [Mic00] in the ROM. This feasibility result turned out to be very influential both
theoretically and practically. In theory, it was shown how to instantiate SNARGs in the standard
model for many languages of interest by instantiating the Fiat and Shamir [FS86] paradigm with
a specific family of hash functions [CCHLRR18]. In practice, one can heuristically instantiate the
random oracle with a suitable cryptographic hash function. The result is a SNARG that uses
lightweight cryptography (no need for public-key primitives), is easy to deploy (users only need to
agree on a hash function), and has no trusted setup. The succinctness of the proof is imperative in
applications such as cryptocurrency and blockchain, where proofs are broadcast in a peer-to-peer
network and (redundantly) stored at every network node, c.f., [BCGGMTV14; Zc14]. The best
ROM-SNARG appeared in the recent work of Chiesa and Yogev [CY21a], who constructed a (t, ε)-
sound ROM-SNARG of proof length of O(log(t/ε) · log t · log n), where n is the instance length. A
ROM-SNARG is (t, ε)-sound if no t-queries (malicious) prover can convince the verifier to accept a
false statement with probability larger than ε.1

Interestingly, and in contrast to other important primitives such as key-agreement protocols
[IR89; HMORY19] and digital signatures [GGKT05; BMG07], we are lacking crucial lower bounds
on the length of SNARGs in the ROM. Apart from the weak (folklore) lower bound of Ω(log(t/ε))
(see Appendix B), the only exception is the recent bound of Chiesa and Yogev [CY20], who proved
that the verifier query complexity of SNARGs cannot be too small. However, their bound does
not rule out short ROM-SNARGs with verifier query complexity Ω(log 1/ε), which is common for
SNARG constructions. This state-of-affairs naturally leads to the question of finding the shortest
ROM-SNARG. Is it O(log(t/ε) · log t · log n), as the best-known construction achieve, or is it as
short as O(log(t/ε) · log n), as achieved in other security models (see Section 1.2.2). In this work,
we advance our understanding about the existence of short ROM-SNARGs (with arbitrary verifier
query complexity).

1.1 Our Results

Assuming the (randomized) exponential time hypothesis (rETH), see details below, we prove that for
a large family of constructions, the current state-of-the art ROM-SNARG is (essentially) optimal.

1We focus on the bare ROM—no computational assumptions are made beyond bounding the query complexity to
the oracle.

1

Specifically, we show that, for this family of constructions, a proof of 3SAT over n variables is of
length Ω̃(log(t/ε) · log t) (hiding log n factors). Matching (up to log n factors) the construction of
the [CY21a]. The family of constructions we consider includes all constructions that have: (i) non-
adaptive deterministic verifier and (ii) salted soundness. This includes all types of constructions we
are aware of [Mic00; BCS16; CY21b; CY21a]). See details below.

• Exponential time hypothesis. The (randomized) Exponential Time Hypothesis (rETH) (a
stronger version of P ̸= NP) states that solving 3SAT on n variables takes (randomized) time
2Ω(n). Note that some complexity assumption is inevitable for proving lower bounds on a SNARGs
length.2

• Non-adaptive deterministic verifier. The oracle queries are asked by a non-adaptive deter-
ministic3 verifier. That is, the queries are a function of the proof and are independent of the
answers to other queries.4

• Salted soundness. Strengthening of the standard soundness of SNARG introduced in Chiesa
and Yogev [CY20]. A (t, ε)-salted-soundness ROM-SNARG allows a cheating prover to request
the random oracle to re-sample the answer for a chosen query (similar to changing a “salt” for
this query). Each re-sampling costs a unit from the total t query budget allowed. The cheating
prover can also return to previously sampled query answers at no cost.5

While one can easily construct contrived ROM-SNARGs for which salted soundness does not hold,
we are not aware of any ROM-SNARG that exploits the fact that the prover cannot resample
some of the oracle answers in a meaningful way. All constructions we are aware of satisfy salted
soundness.6

With these notions, we are ready to state our main result.

Theorem 1.1 (Conditional lower bound on ROM-SNARG length. Informal). Let ARG = (P,V)
be an s-length ROM-SNARG for n-variable 3SAT, with (t, ε)-salted-soundness, and (deterministic)
non-adaptive verifier. Let qP and qV be the query complexity of P and V, respectively, and let λ
denote the random oracle input and output length.

Assuming rETH, if qV ·λ ∈ o(n), and log2(t/ε) · log−1 qP ∈ o(n) then s ≥ c · log t · log t
ε · log

−1 qP,
for some universal constant c > 0.

We argue that the assumptions on the parameters regime in our theorem are reasonable and
consider the most interesting settings (see Theorem 5.1 for the precise list of requirements). The
goal of a SNARG is to have the proof length and the verifier complexity much smaller than the

2P = NP yields trivial SNARGs for all NP.
3If the verifier is “public-coin” then it can be made deterministic by extracting randomness from the random oracle.

However, this makes the verifier adaptive and thus cannot be used for our lower bound.
4We mention that SNARGs resulting from applying the Fiat and Shamir [FS86] paradigm on interactive proofs do

not require an adaptive verifier, as the queries added by the compilation are determined by the proof (i.e., transcript)
sent by the non-adaptive prover.

5Our notion of salted soundness is a strengthening of the salted-soundness notion considered in Chiesa and Yogev
[CY20]. There, the cheating prover has to decide on a salt for a specific query before moving to the next one. See
details in Section 3.5.1.

6The analysis given in [CY21b] and in [CY21a], see [CY21b, Remark 3.2], explicitly allowed the adversary to
choose a salt for each query in the construction.

2

instance size n (typically proportional to poly(λ, log n)). Thus, our assumption that qV · λ, and
log t · log t

ε/ log qP are of order o(n) is rather mild. The third requirement of qV ≤ t1/10 is almost
trivial. It says that the query complexity of the verifier is much smaller than the query bound t of
the adversary, which is very much expected from any reasonable SNARG.

The proof of Theorem 1.1 immediately follows by combing the following lemma with the recent
lower bound of Chiesa and Yogev [CY20] on the length ROM-SNARG with low query-complexity
verifiers.

Lemma 1.2 (Short ROM-SNARG → low query ROM-SNARG. Informal). Let ARG = (P,V)
be a ROM-SNARG for a language L with a deterministic non-adaptive verifier and (t, ε)-salted-
soundness, proof length s, and verifier query complexity qV. Then there exists a verifier V′ of query
complexity s/ log t, running time 2qV·log t times that of V, such that (P,V′) is a ROM-SNARG for L
with (t, ε)-soundness and completeness ω(ε).

That is, the larger the salted-soundness of ARG, the smaller the number of queries made by V′,
and the better the completeness. While the completeness and verifier running time of the resulting
scheme are rather poor, and we do not encourage to use it as an actual proof system, it is still
non-trivial for the parameters in consideration: V′ running time is 2o(n), for n being the instance
length, and the completeness is larger than the soundness error. By [CY20], the existence of such
ROM-SNARG for 3SAT contradicts rETH.

Using similar means, we can compile ARG into (P′,V′) with (almost) perfect completeness, but
with inefficient prover and slightly longer proof (see details in Section 2). Since this transformation
does not yield better lower bounds, and the resulting scheme is impractical, we present the simpler
transformation above.

Lower bound on the length of ROM subvector commitments. A subvector commitment
(SVC) [LM19] allows to succinctly commit to a sequence of values, and later open the commitment
for a subset of positions (an adversary cannot open any location into two different values). Ideally,
the commitment string and the opening size of the SVC are independent (or at least not strongly
related) of the length of the committed vector and the number of positions to open. This general-
ization of vector commitments [CF13] has a variety of applications, including SNARGs, verifiable
databases with efficient updates, updatable zero-knowledge databases, universal dynamic accumula-
tors, and more. Since SVCs in the (bare) ROM are the main building blocks in all ROM-SNARGs
constructions, finding shorter ROM-SVCs is the obvious approach towards construction shorter
ROM-SNARGs. For this very reason, Theorem 1.1 yields a lower bound on ROM-SVCs for an ana-
log family of constructions: non-adapter deterministic receiver and salted-binding (i.e., the sender
can resample the oracle outputs).

Theorem 1.3 (Conditional lower bound on the length of ROM subvector commitments. Informal).
Let CM be a (t, ε)-salted-sound, non-adaptive deterministic verification ROM-SVC for vectors of
length n. Let qS and qR be the query complexity of the sender and receiver, respectively. Let α
denote the commitment length, and β(ℓ) denote the opening length for subsets of size ℓ.

Assuming rETH, if qR · λ ∈ o(n), and log2(t/ε) · log−1 qS ∈ o(n), then α + β(log t
ε) ∈ Ω(log t ·

log t
ε/ log qS).

That is, unless the commitment itself is large, the opening of subsets of size log t
ε must be large:

about log t/ log n bits per element. SVCs are relatively a strong primitive as they imply SNARGs for

3

NP via the Micali construction (the other direction is not known to hold). However, we only know
how to derive lower bounds for them by a reduction to SNARGs. An interesting open question is
to directly get lower bounds for SVC, presumably for a larger class of constructions. Moreover, we
can hope to get a lower bound for SVCs (in the ROM) without assuming rETH (or any complexity
assumption). Indeed, even P = NP is not known to yield trivial SVCs in the ROM (which is not
the case for SNARGs).

1.1.1 Hitting High-Entropy Distributions

The crux of Lemma 1.2 proof is analyzing the completeness of the resulting low verifier query-
complexity scheme. We translate this challenge into the following task of hitting high-entropy
distributions.

Let X = (X1, . . . , Xm) be a random variable uniformly distributed over ({0, 1}λ)m, let W be
an event, and consider the random variable X|W , i.e., X conditioned on W . It is instructive to
think of this question as How does X appear to an adversary who received log(1/Pr [W]) bits of
information about X? A long sequence of works have studied the question of how “close” X|W is
to the uniformly distributed (unconditioned) X. In particular, these works considered the question
of indistinguishability : showing that parts of X|W are close to being uniform. Some works, e.g.,
[EIRS01; Raz98; SV10], proved that the distribution of (X|W)i is close in statistical distance to the
uniform one, apart from a size log(1/Pr [W]) set of bad i’s. Other works extended the above to
bounded-query adversaries [Unr07; DGK17; CDGS18; GSV18; GLLZ20].

Unlike the above works, the focus of our result is forgeability : can we hit/sample from the
conditional distribution X|W using a simple distribution? We show that after putting aside some
bad indices, one can hit the support of X|W , conditioned on its value in these bad indices, using
a large enough product distribution. Like some of the above works, we state our result for high-
entropy distributions, and not only for the uniform distribution conditioned on a high probability
event.7

Theorem 1.4 (Hitting high-entropy distributions using product sets, informal). Let X = (X1, . . . , Xm)
be a random variable over the product set ({0, 1}λ)m with H(X) ≥ λm− ℓ, and let logm < γ < λ.
Then with probability at least 1/2 over x ← X, there exists an O(ℓ/γ)-size set B ⊆ [m] (of bad
indices) such that

Pr
S←(P2γ ({0,1}λ))

m−|B|
[
S ∩ Supp

(
X[m]\B | XB = xB

)
̸= ∅

]
∈ Ω(1/λm).

Letting Pk(T), for k ∈ N a set T , denote all k-size subsets of T , letting H denote the Shannon
entropy function, and vI , for a vector v, denote the ordered vector (vi)i∈I . Namely with high
probability over x← X, and after a few “bad” locations indexed by B are exposed, one can hit (i.e.,
forge a sample from) the conditional distribution X[m]\B | XB = xB by sampling a tiny, in relative
terms, product set.

Note that Theorem 1.4 does not state that X[m]\B | XB = xB is close to the uniform distribution.
Actually, it might be very far from that, e.g., for X = (U1, . . . , Um) |

⊕
Ui = 0λ where the Ui’s

are uniform and independent random variables over {0, 1}λ, there is no choice of B, apart from
the trivial one of B = [m], that makes X[m]\B | XB = xB being close to uniform. It is also worth
mentioning that one cannot prove Theorem 1.4 using the simple observation that after fixing some

7This is a generalization since for uniformly distributed X it holds that H(X | W) ≥ λm− log 1/Pr[W].

4

bad indices, the projection of X ′
def
= (X | XB = xB) on all other coordinates has large support.

While the latter guarantees that, with high probability, each random subset Si ← {0, 1}γ intersects
the support of X ′i, concatenating these samples together does not necessarily form an element in
X ′. Rather, we prove the theorem by showing that the number of points in S ∩ Supp(X ′[m]\B) is
well-concentrated around its mean.

In our application of Theorem 1.4, the event W is the proof sent by P being a fixed ℓ-bit value π,
and the size of the bad set B translates to the query complexity of the new verier V′. The theorem
yields, see Section 2, that if V′ makes all queries is B, and samples the potential answers for the
other queries by itself, then it will accept (i.e., hitting the support of the accepting distribution)
with good probability.

1.2 Related Work

1.2.1 SNARGs in the Random Oracle Model

There are several approaches to construct ROM-SNARGs. Micali [Mic00] (building on [Kil92; FS86])
showed a transformation that compiles a probabilistically checkable proof (PCP) and a commitment
scheme into ROM-SNARG. Using the best know PCPs, the proof length of Micali’s construction,
to get (t, ε)-soundness, is O((log(t/ε))2 · log n), where n is the instance size. Even when using
the best-conjectured parameters for PCPs, known as the Sliding Scale Conjecture [BGLR93], the
proof length remains the same up to the log n factors (see [CY21b] for a tight analysis of the
Micali construction). Ben-Sasson, Chiesa, and Spooner [BCS16] (hereon BCS) transformed a public-
coin interactive oracle proofs (IOPs) into ROM-SNARG. The benefit of their is approach is that
we are much better at constructing IOPs, with good parameters, than PCPs. Still, even when
using the best known (or conjectured) IOP, the proof length of the BCS construction remains
O((log(t/ε))2 · log n). Recently, Chiesa and Yogev [CY21a] have constructed a ROM-SNARG of
proof length of O(log(t/ε) · log t · log n), and hence slightly overcome the above “quadratic” barrier.

1.2.2 SNARGs in Other Models

The security of SNARGs is unlikely to be proven in a non-idealized model (using falsifiable assump-
tions) Gentry and Wichs [GW11], but if one is willing to rely on “more structured” non-falsifiable
assumptions (in addition or instead of the random oracle), much shorter SNARGs become feasible.
Treating t as the running time of the adversary, constructions that use group-based and pairing-based
assumptions achieve the optimal length (or close to optimal) of O(log(t/ε)) (c.f., [Gro10; GGPR13;
BCIOP13; BCCGP16; BBBPWM18; BFS20; PGHR13; MBKM19; CHMMVW20; Set19]). These
constructions are insecure against quantum adversaries. Lattice based constructions, which are
plausibly post-quantum, either achieve private-verifiability [BISW17; BISW18; GMNO18; ISW21;
Nit19], or are public-verifiabe, but with large proof length in practice [BBCPGL18; BLNS20; BCS21;
CMSZ21]. (All of the above works assume a common random or reference string.) To date, relying
on the ROM is the best way to construct SNARGs that overcome all of the drawbacks mentioned
above (alas, at the price of larger proofs).

1.2.3 Concrete Efficiency

Improving the concrete efficiency of SNARGs is the focus of long line of work c.f., [Gro16; ZGKPP17;
AHIV17; BBHR19; WTSTW18; BBBPWM18; BCRSVW19; CHMMVW20; BFS20; COS20; Sta18;

5

LSTW21; CY21b; CY21a; GNS21].

Paper Organization

In Section 2, we give a high-level overview of the techniques for proving Lemma 1.2 (short ROM-
SNARGs to short ROM-SNARGs with low verifier query complexity). A formal definition of our
notion of salted soundness, along with notations, definitions, and general statements used through-
out the paper are given in Section 3. Theorem 1.4 (hitting high-entropy events using product sets)
is proved in Section 4. Theorem 1.1 (lower bound on the length of ROM-SNARGs) and its accom-
panied Lemma 1.2 are proved in Section 5, and Theorem 1.3 (lower bound on the length of ROM
subvector commitments) is proved in Section 6.

2 Techniques

In this section, we give a high-level overview of our proof for Lemma 1.2, explaining how to transform
a short salted-soundness, deterministic non-adaptive verifier ROM-SNARG into a low verifier query
ROM-SNARG for the same language.

Fix a deterministic non-adaptive ROM-SNARG ARG = (P,V) for a language L with (t, ε)-slated-
soundness. Let s denote the proof length ARG, and let qP and qV denote the query complexity of P
and V, respectively. Moreover, for simplicity of this overview, assume that the scheme has perfect
correctness. (The full proof appears in Section 5.)

2.1 Warmup

As a warmup, assume that the honestly generated proof π, sent by P, only contains information
about outputs of k (“important”) queries, whose identity is independent of the oracle. (The proof
might contain additional information depending only on the instance x and the witness w.) For
this simple scenario, the construction of a k-query V′ is rather straightforward:

Algorithm 2.1 (Low-query verifier V′. Warmup).

Oracle: ζ : {0, 1}λ 7→ {0, 1}λ.
Input: Instance x and a proof π.

Operation:

1. Emulate V(x, π) till it produces a list of oracle queries (w1, . . . , wqV). (Recall that V is non-
adaptive.)

2. Sample a random k-size subset J ⊆ [qV].

3. For i = 1, . . . , qV:

If i ∈ J , set yi = ζ(wi).

Otherwise, sample yi ← {0, 1}λ.

4. Accept if V accepts on the emulation with (y1, . . . , yqV) as the answers to its oracle queries

Namely, V′ guesses the identity of the important queries, and then uses the oracle ζ to answer
them. It samples the answers to the other queries uniformly at random. The query complexity of

6

V′ is small if the number of important queries is small. Let us quickly argue about the completeness
and soundness of ARG′ = (P,V′).

• Completeness. If the set J happens to contain all important queries, then the given proof
π, the instance x, and the witness w, the oracle answers provided to the emulated V have
exactly the same distribution as in its non-emulated execution. Since we assume ARG has perfect
completeness, the completeness of ARG′ is at least 1/

∣∣(qV
k

)∣∣—the probability that J contains all
important queries.

• Soundness: Here we rely on the salted soundness of the original SNARG scheme. Assume there
exists a (t−qV)-query cheating prover P̃′ that makes V′ accept x /∈ L with probability ε. Consider
the following t-query cheating prover P̃ for violating the salted-soundness of ARG.8

1. Run P̃′
ζ

to generate a proof π.
Emulate V(x, π) till it produces a list of oracle queries (w1, . . . , wqV).

2. For i = 1, . . . , qV:
Query ζ on wi with a fresh salt. Set Si = {yi} for yi be the query answer.
If wi was asked by P̃′ in Step 1, add the retrieved answer to Si.

3. If there exists (y1, . . . , yqV) ∈ S1× . . .×SqV that would make V accept (x, π) with (y1, . . . , yqV)
as the answers to its oracle queries, program ζ(wi) = yi for each i ∈ [qV] (this programming is
allowed by the salted soundness security game).

4. Output π.

By definition, if P̃ outputs a proof π then V accepts π on the programmed oracle. In addition, the
probability that P̃ outputs the proof π generated in Step 1, is at least as large as the probability
that V′ accepts π on the non-programmed oracle: P̃ considers for each query the original output
of the oracle, as seen by V′ on queries in J , and a uniform output, as sampled by V′ on inputs
not in J .

2.2 Actual Scenario

Things get way more challenging when the proof π depends on the queries made by P, even in a
slightly more complicated way. For instance, suppose π contains the XOR of some k queries, and V
verifies that the XOR of these queries is consistent with π. Since k might be arbitrarily large, i.e.,
much larger than π, there is no low-query verifier that makes all these queries. So the challenge is
to design a verifier that does not make all queries that effect the value of π, but still has non-trivial
soundness and completeness.

The key observation is that for the general case, where π depends arbitrarily on all oracle
answers, we can modify the verifier so that the completeness and soundness are not that different
from the naïve example considered in the warmup. Very informally, with high probability over the
value of π and apart from k = s/γ “important” queries, the verification verdict does not depend ”too

8Recall that the salted-soundness game allows a cheating prover to resample (many times) the output of the
random oracle on a query. Each resampling costs the cheating prover a single query call from its query budget.
The prover can role-back the oracle on certain queries, to set their answers to a previously answered values. See
Section 3.5.1 for exact definition.

7

much” on the answer to all other “non-important” queries. That is, there are many possible answers
for the non-important queries that lead to acceptance (compared with all possible answers in the
warmup case). See Section 2.3 for details. It follows that the answers for the non-important queries
can be emulated by the verifier (without querying the oracle). Equipped with this understanding,
the low query V′ is defined as follows:

Algorithm 2.2 (Low-query verifier V′).

Oracle: ζ : {0, 1}λ 7→ {0, 1}λ.
Paramters: γ < λ.

Input: Instance x and a proof π.

Operation:

1. Emulate V(x, π) till it produces a list of oracle queries (w1, . . . , wqV). (Recall that V is non-
adaptive.)

2. Sample k′ ∈ [k] at random and sample, a random k′ = ⌈s/γ⌉-size subset J ⊆ [qV].

3. For i = 1, . . . , qV:

If i ∈ J , set Si = {ζ(wi)}.
Otherwise, let Si be a 2γ-size random subset of {0, 1}λ.

4. Accept if there exists (y1, . . . , yqV) ∈ S1 × . . .× SqV that make V accepts on the emulation, with
(y1, . . . , yqV) as the answers to its oracle queries

That is, similar to the warmup scenario, V′ only uses the oracle to answer the k = ⌈s/γ⌉ queries
in the guessed set J . For each other query, V′ samples 2γ candidates answers. It accepts if there
is a choice from the candidate answers that jointly with the oracle answers to the queries in J ,
leads to acceptance. The running-time of V′ is (roughly) 2qV·γ , and the following claim states the
completeness and soundness of ARG′ = (P,V′):

Claim 2.3 (Informal). ARG′ has
(
λ · qP · k ·

(qV
s/γ

))−1-completeness and (t− qV · 2γ , ε)-soundness.

We argue completeness in Section 2.3, using the observation we made above regarding the small
number of important queries, and argue soundness in Section 2.4, by extending the approach we
took for proving soundness in the warmup case.

2.3 Completeness

Let Π and Y = (Y1, . . . , YqP) denote the proof and the random oracle answers to honest prover P
queries on instance x and witness w, respectively. Since the Yi’s are independent uniform values in
{0, 1}λ, it holds that

H(Y) = qP · λ (1)

where H(Y) is the Shannon entropy of Y . A standard entropy argument yields that with probability
at least 1/2 over π ← Π:

H(Y | Π = π) ≥ qP · λ− 2|π| (2)

8

In the following, fix π ∈ Supp(Π) for which Equation (2) holds. Applying Theorem 1.4 with respect
to Y |Π=π and ℓ = 2|π|, yields that with probability 1/2 over the value of (y1, . . . , yqP) ← Y |Π=π,
there exists a set B ⊆ [qP] of size ℓ/γ (omitting constant factors) such that

Pr
[
(S1 × · · · × SqP−|B|) ∩ Supp(Y ′[qP]\B) ̸= ∅

]
∈ Ω(1/λ · qP) (3)

where each of the Si’s is an independent 2γ-size subset of {0, 1}λ, Y ′ def= Y |YB=yB,Π=π, and Y ′I is the
ordered vector (Y ′i)i∈I .

Assume for simplicity that V and P make exactly the same queries. By Equation (3), if the
random set J (sampled by V′) is exactly B = B(π), then with probability Ω(1/λ · qP) over the
choice of the sets Si’s sampled by V′, exit answers {yj ∈ Sj}j /∈J that when combined with the
oracle answers {yj ∈ Sj}j∈J , it holds that y = (y1, . . . , yqP) ∈ Supp(Y |Π=π). Since such a vector
y is possible to occur as random oracle answers in an honest execution of P that results in π, the
perfect completeness of ARG yields that V accepts on (the answers in) y with probability one. We
conclude that V′ accepts with probability Ω(1/λ · qP) times Pr [J = B] ≥ 1/k · 1/

(qV
s/γ

)
. (A similar

argument can also handle imperfect correctness, see Section 5 for the full proof).

Remark 2.4 (Improved completeness). We note that one could slightly modify the transformation
to improve the completeness significantly (at the cost of proof length and prover running time).
However, as this does not improve our lower bound, we only sketch the idea here. Instead of having
the verifier guess the set J , let the prover find J , and send its description to the verifier. The
completeness error now would come only from the error in Equation (2) (i.e., an error of (λ ·qP)−1),
and not from the probability of choosing the right set J . The proof would be slightly larger (as it
needs to contain the description of J), and the running-time of the honest prover would increase,
as it needs to find the right set J (query complexity will stay the same). Even more so, using a
prefix salt for all queries (included in the proof), one can make the completeness error exponentially
small.

2.4 Soundness

Assume there exists a (t − qV · 2γ)-query cheating prover P̃′ that makes V′ accepts x /∈ L with
probability ε, and consider the following t-query cheating prover P̃ for violating the salted-soundness
of ARG.

Algorithm 2.5 (P̃).

Oracle: ζ : {0, 1}λ 7→ {0, 1}λ.
Input: Instance x.

1. Run P̃′
ζ
(x) to generate a proof π.

2. Emulate V on (x, π) to determine its list of oracle queries (w1, . . . , wqV).

3. For i = 1, . . . , qV:

(a) Query ζ on wi for 2γ times. Let Si be the set of answers.

(b) If wi was asked by P̃′ in Step 1, add the retrieved answer to Si.

9

4. If there exists (y1, . . . , yqV) ∈ S1 × . . .× SqV that make V accept (x, π) with (y1, . . . , yqV) as the
answers to its oracle queries, program ζ(wi) = yi for each i ∈ [qV].

5. Output π.

The cheating probability of P̃ it as least as high as that of P̃′. This is shown via a coupling
argument, and the precise details are given in Section 5.2.2.

3 Preliminaries

3.1 Notations

We use calligraphic letters to denote sets, uppercase for random variables, and lowercase for values
and functions. Let poly stand for the set of all polynomials. Throughout the paper, log is the base
2 logarithm. For n ∈ N, let [n] = {1, . . . , n}. Given a vector v ∈ Σn, let vi denote its ith entry.
Similarly, for a set I ⊆ [n], let vI be the ordered sequence (vi)i∈I , let v−I

def
= v[n]\I . For a set S

and k ∈ N, let Pk(S) denote all k-size subsets of S. The support of a random variable X, denoted
Supp(X), is defined as {x : Pr[X = x] > 0}. For an event E, we write X|E to denote the random
variable X conditioned on E.

The language 3SAT over n variables is the set of all satisfiable formulas in conjunctive normal
form where each clause is limited to at most three literals. The class BPTIME[T] refers to all
languages that can be decided by a probabilistic TM that runs in time T (n), on inputs of length n.

Some basic inequalities. We use the following well-known facts:

Fact 3.1. log(1− x) ≤ −x for x ∈ [0, 1], and log(1− x) ≥ −2x, for any x ∈ [0, 1/2].

Theorem 3.2 (Paley–Zygmund inequality). For any finite non-negative random variable X it holds
that Pr[X > 0] ≥ E[X]2/E[X2] .

3.2 Entropy Measures

We refer to several measures of entropy. The relation and motivation of these measures are best
understood by considering a notion that we will refer to as the sample-entropy: for a random variable
X and x ∈ Supp(X), the sample-entropy of x with respect to X is the quantity

HX(x)
def
= log 1

Pr[X=x] ,

letting HX(x) =∞ for x /∈ Supp(X), and 2−∞ = 0.
The sample-entropy measures the amount of “randomness" or “surprise" in the specific sample x,

assuming that x has been generated according to X. Using this notion, we can define the Shannon
entropy H(X) and min-entropy H∞(X) as follows:

H(X)
def
= Ex←X [HX(x)] , H∞(X)

def
= min

x∈Supp(X)
HX(x).

We will also discuss the max-entropy H0(X)
def
= log |Supp(X)|. The term “max-entropy” and its

relation to the sample-entropy will be made apparent below.
It can be shown that H∞(X) ≤ H(X) ≤ H0(X) with each inequality being an equality if and

only if X is flat (uniform on its support). Thus, saying that H∞(X) ≥ k is a strong way of saying
that X has “high entropy” and H0(X) ≤ k a strong way of saying that X has “low entropy”.

10

Conditional entropies. We will also be interested in conditional versions of entropy. For jointly
distributed random variables (X,Y) and (x, y) ∈ Supp(X,Y), we define the conditional sample-
entropy to be HX|Y (x|y) = log 1

PrX|Y [x|y] = log 1
Pr[X=x|Y=y] . Then the standard conditional Shannon

entropy can be written as

H(X | Y) = E(x,y)←(X,Y)

[
HX|Y (x | y)

]
= Ey←Y [H(X|Y=y)] = H(X,Y)−H(Y).

The following fact gives a bound on the amount of entropy that is reduced when conditioning
on an event for uniformly distributed random variables.

Fact 3.3. Let X be a random variable uniform over a set S and let W be an event. Then H(X |
W) ≥ log(|S|)− log 1/Pr [W].

3.3 Randomized Exponential Time Hypothesis

Definition 3.4 (rETH; [DHMTW14]). The randomized Exponential Time Hypothesis (rETH)
states that there exist ε > 0 and c > 1 such that 3SAT on n variables and with c · n clauses cannot
be solved by probabilistic algorithms that run in time 2ε·n.

3.4 Random Oracles

We denote by U(λ) the uniform distribution over all functions ζ : {0, 1}∗ → {0, 1}λ. Given an oracle
algorithm A and an oracle ζ ∈ U(λ), queries(A, ζ) is the set of oracle queries that Aζ makes. We
say that A is t-query if |queries(A, ζ)| ≤ t for every ζ ∈ U(λ). We say that A is non-adaptive if
its queries do not depend on the responses of the random oracle to previous queries. Finally, we
consider the length of oracle queries, i.e., the number of bits used to specify the query: we say that
A has queries of length λ if for every ζ ∈ U(λ) and x ∈ queries(A, ζ) it holds that |x| ≤ λ.

3.5 Non-Interactive Arguments in the ROM

We consider non-interactive arguments in the ROM, where security holds against query-bounded, yet
possibly computationally-unbounded, adversaries. Recall that a non-interactive argument typically
consists of a prover algorithm and a verifier algorithm that prove and validate statements for a
binary relation, which represents the valid instance-witness pairs.

A pair of polynomial-time oracle algorithms ARG = (P,V) is a ROM-SNARG with α-completeness
and (t, ϵ)-soundness, for a relation R, if the following holds.

• Completeness. For every λ ∈ N and (x,w) ∈ R:

Pr
ζ←U(λ)

π←Pζ(x,w)

[
Vζ(x, π) = 1

]
≥ α(|x| , λ) .

• Soundness.9 For every λ ∈ N, t-query P̃ and x /∈ L(R):
9This notion, where x is set before the oracle, is sometimes refereed to as non-adaptive soundness. Clearly, lower

bounds on this weaker notion , as we do in this work, apply also for its adaptive variant (where the cheating prover
is allowed to choose x as a function of the oracle).

11

Pr
ζ←U(λ)

π←P̃ζ

[
Vζ(x, π) = 1

]
≥ ϵ(|x| , λ, t) .

Complexity measures. We consider several complexity measures beyond soundness error. All
of these complexity measures are, implicitly, functions of x and the security parameter λ.
• argument length: s := |π|.
• times: the prover P runs in time pt; the verifier V runs in time vt.
• queries: the prover P is a qP-query algorithm the verifier V is a qV-query algorithm.

3.5.1 Salted Soundness

Chiesa and Yogev [CY20] introduced a stronger notion of soundness for ROM-SNARG that they
named salted soundness. This notion requires soundness to hold also against a malicious prover
that has limited ability to program the oracle: it can obtain a set of random, independent strings as
candidates for random oracle answers to a specific query. After obtaining such sets to the queries
of his choice, the malicious prover can pick an answer of his desire from each set to be the random
oracle answer.10 This notion is formalized via the following salted soundness game defined as follows:

Game 3.5 (SaltedSoundessV,λ,t(A,x)).
Parameters: Algorithm V and λ, t ∈ N.
Input: x ∈ {0, 1}∗

Player: A.
Operation:

1. Initialize keyed-map S of lists (each entry is initialized with the empty list).

2. Repeat the following t times:

(a) A sends a query x ∈ {0, 1}∗.
(b) Send y ← {0, 1}λ to A, and add it to the list S[x].

3. A outputs a proof string π and query-answer list σ = [(x1, y1), . . . , (xn, yn)].

4. Abort if yi /∈ S[xi] for some i ∈ [n].

5. Output Vζσ(x, π).

Definition 3.6 (Salted soundness). We say that ROM-SNARG (P,V) has (t, ε)-salted-soundness for
a language L, if for any λ, x /∈ L and P̃ it holds that Pr

[
SaltedSoundessV,λ,t(P̃,x) = 1

]
≤ ε(|x| , λ, t).

Remark 3.7 (Known constructions satisfy salted soundness). Known constructions of ROM-
SNARGs are usually proven to have standard soundness (as opposed to salted soundness). However,
we observe that the constructions of [Mic00; BCS16; CY21b; CY21a] actually achieve this stronger
notion of security. In particular, the tight analysis given in [CY21b] and in [CY21a] explicitly
allowed the adversary to choose a salt for each query in the construction (e.g., see remark 3.2 in
[CY21b]).

10Our notion slightly strengthens the notion of Chiesa and Yogev [CY20], in which the prover cannot roll back the
oracle answer to a previously seen answer.

12

Amplification. It turns out that salted soundness can be easily amplified (at the expense of the
query complexity). Lemma 3.8 is proved in Appendix A.

Lemma 3.8. Let ARG be an ROM-SNARG for a language L with (t, ε)-salted-soundness for ε ≤ 1/4.
Then ARG has (t/k, 2ε/k)-salted-soundness for any k ∈ N.

4 Hitting High-Entropy Distribution using Product Sets

In this section we formally state and prove Theorem 1.4. Recall that for a set T and k ∈ N, we let
Pk(T) denote all k-size subsets of T . Thus, a uniform sample from (P2γ ({0, 1}λ))m−|B| is a random
product in ({0, 1}λ)m−|B| of width 2γ .

Theorem 4.1 (Hitting high-entropy distributions using product sets, restatement of Theorem 1.4).
Let γ ≤ λ ∈ N, and let X = (X1, . . . , Xm) be a random variable over ({0, 1}λ)m. If H(X) ≥ λm− ℓ
and γ ≥ 4 ⌈logm⌉+4, then with probability at least 1/2 over x← X, then there exists a set B ⊆ [m]
of size at most 8ℓ/γ + 4 such that

Pr
S←(P2γ ({0,1}λ))

m−|B|
[
S ∩ Supp(X[m]\B |XB=xB) ̸= ∅

]
≥ 1/32λm.

Remark 4.2 (Tightness of Theorem 4.1). The size of B in Theorem 4.1 is tight up to a constant:
Let m,λ, γ ∈ N be as in Theorem 4.1, let X = (X1, . . . , Xm) be uniform over ({0, 1}λ)m and let W
be the event that X1 = . . . = Xt = 0λ, for some t ∈ [m]. Clearly, H(X|W) = (m − t)λ. It is also
clear that for every x and every set B ⊆ [m] of size t′ < t, it holds that

Pr
S←(P2γ ({0,1}λ))

m−t′
[
S ∩ Supp(X[m]\B |XB=xB) ̸= ∅

]
≤ 2γ−λ,

which is negligible for sufficiently small γ, e.g., γ = λ/2. This matches, up to a constant, Theo-
rem 4.1, which states that with high probability over x← X |W , there exists a set B of size at most
16t+ 4 for which that the above event occurs with probability at least 1/32λm.

Proving Theorem 4.1. We start with describing the high-level approach of the proof. We need
to prove that with high probability over x← X, there exists a small (i.e., with size at most 8ℓ/γ+4)
subset B ⊆ [m] such that

Pr
S←(P2γ ({0,1}λ))

m̂

[
S ∩ Supp(X̂) ̸= ∅

]
≥ 1/32λm,

for X̂ = X[m]\B |XB=xB and m̂ = m− |B|. We assume, without loss of generality, that the elements
of each Si are chosen in a uniform order, and denote the jth element of Si, according to this order,
by Si[j]. For y = (y1, . . . , ym̂) ∈ [2γ]m̂, let Sy ∈ {0, 1}λ×m̂ be the random variable defined by
(Sy)i = Si[yi]. Let Zy be the indicator for the event Sy ∈ Supp(X̂), and let Z def

=
∑

y∈[2γ]m̂ Zy. That
is, Zy is event that the yth element of S is in Supp(X̂). Given this notation, we need to prove that
Pr [Z > 0] ≥ 1/32λm. We start by proving that the expected value of Z is large. By linearity of
expectation,

E [Z] =
∑

y∈[2γ]m̂
E [Zy] = 2γm̂ · |Supp(X̂)|/2m̂λ = 2(γ−λ)m̂ · |Supp(X̂)| (4)

13

To guarantee that E [Z] is at least one, we chose B to be a maximal subset of [m] with

HXB(xB) ≤ (λ− γ) · |B| (5)

for HY (y) be the sample entropy of y according to Y (see Section 3.2). It is rather straightforward
to show that with respect to this choice of B, the expected value of Z is indeed at least one.
Furthermore, since, by assumption, X has high entropy, the expected size of B, as a function of
x, is small, and therefore, with high probability over x the size of B is also small. (See proof in
Lemma 4.3).

The above would suffice for lower-bounding Pr [Z > 0], if the random variables {Zy} would
have been independent. This, however, is clearly not the case since most Zy are not even pairwise
independent: for a pair y, y′ ∈ [2γ]m̂ with yI = y′I for some I ⊆ [m̂], the event Zy = 1, implying
(Sy′)I ∈ Supp(X̂I), is likely to increase the probability of Zy′ = 1. Yet, we manage to show that
the expected value of Z2 is small enough, implying that Z is well concentrated around its mean,
and therefore Pr [Z > 0] is large. To do that, we notice that for the maximal set B defined above,
it holds that

HXI |XB=xB
(xI) > (λ− γ) · |I| (6)

for every I ⊆ [m] \ B. This condition implies that for every y, y′ with yI = y′I , the probability of
Zy ∧ Zy′ is sufficiently small (quantified by the size of I), implying that E

[
Z2

]
is small.

Moving to the formal proof, Theorem 4.1 is an immediate corollary of the following two lemmata:
Lemma 4.3 states that with high probability over x, there exists a small set B for which Equation (6)
holds, and Lemma 4.4 completes the job by proving the conclusion of the theorem for the random
variable X[m]\B |XB=xB .

Lemma 4.3 (High-entropy events have an almost full-entropy large projection). Let γ ≤ λ ∈ N,
and let X = (X1, . . . , Xm) be a random variable over ({0, 1}λ)m. If H(X) ≥ λ · m − ℓ and γ ≥
2 · ⌈logm⌉ + 2, then with probability at least 1/2 over x ← X, exists a set B ⊆ [m] of size at most
4ℓ/γ + 4 such that for every I ⊆ [m] \ B:

HXI |XB=xB
(xI) ≥ (λ− γ) |I| .

Lemma 4.4 (Hitting almost full-entropy events using product sets). Let γ ≤ λ ∈ N, let X =
(X1, . . . , Xm) be a random variable over ({0, 1}λ)m. Assume γ ≥ 2 · ⌈logm⌉+3, and that for every
x ∈ Supp(X) and I ⊆ [m], it holds that HXI (xI) ≥ (λ− γ/2) · |I|. Then

PrS←(P2γ ({0,1}λ))
m [S ∩ Supp(X) ̸= ∅] ≥ 1/32λm.

We prove Lemmas 4.3 and 4.4 in Sections 4.1 and 4.2, receptively, but first use them for proving
Theorem 4.1.

Proof of Theorem 4.1: Let t
def
= 8ℓ/γ + 4, and let

T def
= {x ∈ Supp(X) : ∃B ⊆ [m], |B| ≤ t : ∀I ⊆ [m] \ B, HXI |XB=xB

(xI) ≥ (λ− γ/2) · |I|} .

Since, by assumption, γ/2 ≥ 2 ⌈logm⌉+ 2, Lemma 4.3 yields that

Pr [X ∈ T] ≥ 1/2 . (7)

14

Fix x ∈ T , let B be the set guaranteed by the definition of T (choose an arbitrary one, if there is
more than one), and let X ′

def
= X[m]\B|XB=xB , and let m′

def
= m− |B|. By Lemma 4.4

Pr
S←(P2γ ({0,1}λ))

m′
[
S ∩ Supp(X ′) ̸= ∅

]
≥ 1/32λm′ ≥ 1/32λm . (8)

Combining Equations (7) and (8), concludes the proof.

4.1 High-Entropy Distributions Have an (Almost) Uniform Large Projection,
Proving Lemma 4.3

Proof of Lemma 4.3. Let m,λ, γ and X be as in Lemma 4.3. For x ∈ Supp(X), let Bx be the (lex.
first) maximal11 subset of [m] with

HXBx (xBx) ≤ (λ− γ) |Bx| (9)

Since Equation (9) holds for the empty set, Bx is always defined. We prove Lemma 4.3 using the
following two claims, proven below.

Claim 4.5. For every x ∈ Supp(X) and I ⊆ [m]\Bx, it holds that HXI |XBx=xBx (xI) ≥ (λ−γ) · |I|.

Claim 4.6. If H(X) ≥ λ ·m− ℓ, then for every random variable I ⊆ [m] it holds that H(XI | I) ≥
(λ− ⌈logm⌉) · E [|I|]− ℓ− ⌈logm⌉.

By Claim 4.5, for every x ∈ Supp(X) and I ⊆ [m] \ Bx, it holds that

HXI |XBx=xBx (xI) ≥ (λ− γ) |I| (10)

Hence, to conclude the proof, it is left to argue that with high probability over x ← X, the size
of Bx is small. For I ⊆ [m], let fI(x) = xI if Bx = I, and fI(x) = ⊥ otherwise, and let
pI = Pr [fI(X) = ⊥]. Compute

11Maximal means relative to inclusion—there is no I strictly containing Bx with HXI (xI) ≤ (λ− γ) · |I|.

15

H(XBX | BX) = EB←BX
[
H(XB | BX = B)

]
(11)

= EB←BX
[
H(fB(X) | BX = B)

]
≤

∑
I

EB←BX
[
H(fI(X) | BX = B)

]
=

∑
I

H(fI(X) | BX)

≤
∑
I

H(fI(X))

=
∑
I

(∑
x : Bx=I

Pr [X = x] ·HXI (xI)
)
+pI · log(1/pI)

≤
∑
I

Pr
[
BX = I

]
· (λ− γ) · |I|+ pI · log(1/pI) (12)

= (λ− γ)E
[∣∣BX ∣∣]+∑

I
pI · log(1/pI)

≤ (λ− γ)E
[∣∣BX ∣∣]+ 1 +

∑
I,pI≥1/2

−pI · log(pI)

≤ (λ− γ)E
[∣∣BX ∣∣]+ 1 +

∑
I,pI≥1/2

pI · 2(1− pI) (13)

= (λ− γ)E
[∣∣BX ∣∣]+ 1 + 2 ·

∑
I,pI≥1/2

pI · Pr
[
BX = I

]
≤ (λ− γ)E

[∣∣BX ∣∣]+ 3.

Inequality 12 holds by the definition of Bx, and Inequality 13 holds since log(1 − x) ≥ −2x for
x ∈ [0, 1/2].

On the other hand since, by assumption, H(X) ≥ λ ·m− ℓ, Claim 4.6 yields that

H(XBX | BX) ≥ (λ− ⌈logm⌉) · E
[∣∣BX ∣∣]− ℓ− ⌈logm⌉ (14)

Combining Equations (11) and (14), we conclude that E
[∣∣BX ∣∣] ≤ ℓ+⌈logm⌉+3

γ−⌈logm⌉ ≤ 2ℓ/γ+2, where
the 2nd inequality follows from the fact that γ ≥ 2 · ⌈logm⌉ + 3. The proof follows by Markov
inequality.

Proving Claim 4.5.

Proof of Claim 4.5. Let B = Bx. Since for every disjoint sets A, C ⊆ [m] and x ∈ Supp(X)

Pr[XA = xA] · Pr[XC = xC | XA = xA] = Pr[XA∪C = xA∪C],

for every I ⊆ [m] \ B

HXB(xB) +HXI |XB=xB
(xI) = HXI∪B(xI∪B).

16

Assume towards a contradiction that HXI |XB=xB(xI) < (λ−γ) |I|. Since, by definition, HXB(xB) ≤
(λ− γ) |B|, it follows that

HXI∪B(xI∪B) < (λ− γ) · (|B|+ |I|) = (λ− γ) · |B ∪ I| ,

in contradiction to the maximality of B.

Proving Claim 4.6.

Proof. Since, by assumption, H(X) ≥ λm− ℓ, and since

H(I) = H(I, |I|) ≤ ⌈logm⌉+H(I | |I|) ≤ ⌈logm⌉+ E [|I|] · ⌈logm⌉ = ⌈logm⌉ (E [|I|] + 1),

we conclude that

H(X | I) ≥ λm− ℓ− (Ex←X [|I|] + 1) ⌈logm⌉ (15)

Therefore,

H(X | I) = H(XI , X[m]\I | I) ≤ H(XI | I) +H(X[m]\I | I) (16)

Finally, since H(X[m]\I | I) ≤ H0(X[m]\I) | I) ≤ λ · (m− Ex←X [|I|]), we conclude that

H(XI | I) ≥λ ·m− ℓ− ⌈logm⌉ (E [|I|] + 1)− λ · (m− E [|I|])
=(λ− ⌈logm⌉) · E [|I|]− ℓ− ⌈logm⌉ .

4.2 Hitting almost Full-Entropy Distributions using Product Set, Proving Lemma 4.4

We start by proving the following variant of Lemma 4.4, stated for flat distributions, i.e., X is
uniform over a set. In Section 4.2.1, we use this variant for proving Lemma 4.4.

Lemma 4.7 (Hitting flat distributions). Let m, γ ≤ λ ∈ N be such that γ ≥ 2 · ⌈logm⌉ + 2, let
δ > 0, and let T ⊆ {0, 1}λ·m be a non-empty set. If for all I ⊆ [m] and a ∈ {0, 1}λ·|I|, it holds that

|{x ∈ T : xI = a}| ≤ |T | · 2(γ/2−λ)|I|/δ , (17)

then

PrS←(P2γ ({0,1}λ))
m [S ∩ T ̸= ∅] ≥ δ/2 .

Proof. Let S = (S1, . . . , Sm) be as in the lemma statement, i.e., uniformly distributed over
(
P2γ ({0, 1}λ)

)m.
We assume, without loss of generality, that the elements of each Si are chosen in a uniform order
and denote the jth element of Si, according to this order, by Si[j]. For y = (y1, . . . , ym) ∈ [2γ]m,
let Sy ∈ {0, 1}λ×m be the random variable defined by (Sy)i

def
= Si[yi]. Let Zy be the indicator for

the event Sy ∈ T , and let Z
def
=

∑
y∈[2γ]m Zy. By the Paley–Zygmund inequality, Theorem 3.2, it

holds that

PrS←(P2γ ({0,1}λ))
m [S ∩ T ̸= ∅] = Pr[Z > 0] ≥ E[Z]2/E[Z2] . (18)

17

Thus, we prove Lemma 4.7 by properly bounding E[Z] and E[Z2]. Let ρ def
= |T |

2mλ . Since we associate
a random order with the elements of each Si, for every y ∈ [2γ]m it holds that E [Zy] = ρ. Hence,

E [Z] =
∑

y∈[2γ]m
E [Zy] = 2γmρ . (19)

For upper bounding E[Z2], we use the following claim (proved in Section 4.2). In the following for
y, y′ ∈ [2γ]m, let Ky,y′

def
= {i ∈ [m] : yi = y′i}.

Claim 4.8. For every y, y′ ∈ [2γ]m it holds that Pr[Zy ∧ Zy′] ≤ 2γ·|Ky,y′ |/2 · ρ2/δ.

For K ⊆ [m], let AK
def
= {(y, y′) ∈ [2γ]m : Ky,y′ = K}. Using Claim 4.8, we deuce that

E
[
Z2

]
=

∑
y,y′∈[2γ]m

Pr[Zy ∧ Zy′] (20)

=
∑
K⊆[m]

∑
y,y′∈AK

Pr[Zy ∧ Zy′]

≤
∑
K⊆[m]

∑
y,y′∈AK

2γ|K|/2 · ρ2/δ

≤ ρ2

δ
·

m∑
k=0

∑
K⊆[m],|K|=k

2γk · (22γ)m−k · 2γk/2

=
ρ2

δ
· 22γm ·

m∑
k=0

(
m

k

)
· 2−γk/2

≤ ρ2

δ
· 22γm ·

m∑
k=0

2−k·(γ/2−logm) ≤ 2·ρ
2

δ
· 22γm.

The first inequality holds by Claim 4.8, and the last one by holds since, by assumption, γ ≥
2 · ⌈logm⌉+ 2. Combining Equations (18) to (20), prove the lemma by deducing that

Pr[Z > 0] ≥ E[Z]2

E[Z2]
≥ (2γm · ρ)2

2·ρ2δ · 22γm
= δ/2.

Proving Claim 4.8.

18

Proof of Claim 4.8. Let K = Ky,y′ , and for a ∈ {0, 1}λ|K| let Ta = {x ∈ T : xK = a}. Compute

Pr
[
Zy ∧ Zy′

]
=

∑
a∈{0,1}λ·|K|

Pr
[
Sy
K = a

]
· Pr

[
Zy ∧ Zy′ | Sy

K = a
]

=
∑

a∈{0,1}λ·|K|
Pr

[
Sy
K = a

]
·
(
|Ta| · (|Ta| − 1)

22λ(m−|K|)

)

≤
∑

a∈{0,1}λ·|K|
2−λ|K| ·

(
|T |

2λ(m−|K|)

)2

·
(
|Ta|
|T |

)2

≤
∑

a∈{0,1}λ|K|
2−λ|K| ·

(
|T |

2λ(m−|K|)

)2

· |Ta|
|T |
· 2(γ/2−λ)·|K|/δ

=
1

δ
·
(
|T |
2λm

)2

· 2γ|K|/2 ·
∑

a∈{0,1}λ|K|

|Ta|
|T |

=
1

δ
· ρ2 · 2γ|K|/2.

The second inequality holds by the assumption of the lemma (Equation (17)).

4.2.1 Proving Lemma 4.4

Proof of Lemma 4.4. Define

T def
= {x ∈ Supp(X) : ∀I ⊆ [m], HXI (xI) ≥ (λ− γ/2) · |I|}

We partition the set T into 2λm subsets, such that the elements of each part have roughly the same
probability under X. Specifically, for i ∈ [2λm] let

T i def= {x ∈ T : HX(x) ∈ [i− 1, i)},

and let T 0 def
= {x ∈ T : HX(x) ≥ 2λm}. By definition,

Pr[X ∈ T 0] =
∑
x∈T 0

Pr[X = x] ≤ 2λ·m · 2−2·λ·m = 2−λ·m,

and therefore 2−λ·m +
∑

i∈[2·λ·m] Pr[X ∈ T i] ≥ 1. Hence, by averaging argument, exists i ∈ [2λm]
such that

Pr[X ∈ T i] ≥ 1− 2−λ·m

2λm
≥ 1

4λm
(21)

The second inequality hold since, by assumption, λ ≥ γ ≥ 2. In the rest of the proof we use
Lemma 4.7 to prove that PrS←P2γ ({0,1}λ)

[
S ∩ T i ̸= ∅

]
. Let Xi = X |X∈T i , and for I ⊆ [m] and

a ∈ Supp(Xi
I), let T i

I,a
def
= {x ∈ T i : xI = a}. Since Xi is almost flat, for every a ∈ Supp(Xi

I) and
x ∈ T i

I,a:

Pr[Xi
I = a] =

∑
x′∈T i

I,a

Pr[Xi = x′] ≥
∣∣T i
I,a

∣∣ · Pr[Xi = x]/2.

19

Similarly,

1 =
∑

a∈Supp(Xi
I)

Pr[Xi
I = a] =

∑
a∈Supp(Xi

I)

∑
x′∈T i

I,a

Pr[Xi = x′]

≤
∑

a∈Supp(Xi
I)

∣∣T i
I,a

∣∣ · 2 · Pr[Xi = x] = 2 ·
∣∣T i

∣∣ · Pr[Xi = x].

Combing the above two inequalities, we get that

Pr[Xi
I = a] ≥

1/2 ·
∣∣∣T i
I,a

∣∣∣ · Pr[Xi = x]

2 · |T i| · Pr[Xi = x]
=

∣∣∣T i
I,a

∣∣∣
4 · |T i|

(22)

By assumption, for every x ∈ T and I ⊆ [m]:

Pr[XI = xI] ≤ 2(γ/2−λ)|I| (23)

Therefore, for every a ∈ Supp(Xi
I):∣∣∣T i

I,a

∣∣∣
|T i|

≤ 4 · Pr[Xi
I = a] ≤ 4 · Pr[XI = a]

Pr[X ∈ T i]
≤ 16λm · 2(γ/2−λ)|I| (24)

The first inequality holds by Equation (22) and the third one by Equation (23). Applying Lemma 4.7
for the set T i with parameter δ = 1/16λm, yields that

PrS←P2γ ({0,1}λ)
[
S ∩ T i ̸= ∅

]
≥ 1

32λm
,

and we deduce that PrS←P2γ ({0,1}λ) [S ∩ Supp(X) ̸= ∅] ≥ 1
32λm .

5 Lower Bound on the Length of ROM-SNARGs

In this section, we present our lower bound on the proof length of ROM-SNARGs, formally stated
below (see Definition 3.4 for the formal definition of rETH, and Section 3.5 for that of salted-
soundness ROM-SNARGs).

Theorem 5.1 (Conditional lower bound on ROM-SNARGs length). Let ARG = (P,V) be an
s-length ROM-SNARG for n-variable 3SAT, with (t, ε)-salted-soundness, and deterministic non-
adaptive verifier. Let qP and qV be the query complexity of P and V, respectively, let v denotes V’s
running time, and let λ denote the random oracle input and output length. Assuming rETH, if

1. ε ≤ 1/4, and completeness error 1/2;
2. qV · λ ∈ o(n), qV + λ ≤ t1/10;
3. log2(t/ε) · log−1 qP ∈ o(n); and
4. v ∈ 2o(n),

then s ≥ 2−15 · log t · log t
ε/ log qP.

20

Theorem 5.1 is proved using the following two lemmata. Lemma 5.2 states that the verifier
query complexity of a short ROM-SNARG can be significantly reduced, and Lemma 5.3, taken
from [CY20], states that the existence of a low verifier query complexity ROM-SNARGs contradicts
rETH. We note that the completeness error in Theorem 5.1 is arbitrary and the proof can be easily
modified to handle any constant.

Lemma 5.2 (Short ROM-SNARGs → Low Query ROM-SNARGs). Let ARG = (P,V) be as in
Theorem 5.1, then for any γ ∈ N, there exists a verifier V′ such that ARG′

def
= (P,V′) is a ROM-

SNARG for L with the following properties:

1. completeness
(
λ · qP · qV20·⌈s/γ⌉)−1;

2. (t− qV · 2γ , ε)-soundness;

3. verifier query complexity 20 · ⌈s/γ⌉; and

4. verifier running time O(2qV·log t · v).

Furthermore, the transformation from V to V′ is efficient (in the description length of V).

In words, Lemma 5.2 states that there exists a generic transformation from short ROM-SNARGs
into the same length ROM-SNARGs with low verifier query complexity (but worse completeness
and soundness). Lemma 5.2 is proven in Section 5.2.

While not explicit in their work, the following lemma follows by similar arguments to the main
proof in [CY20] (see details Appendix C).

Lemma 5.3 (Follows from [CY20]). Let ARG = (P,V) be a (t, ε)-sound ROM-SNARG for n-variable
3SAT with random oracle (input and output) length λ, argument length s, and let qV and qP denote
P’s and V’s query complexity, respectively. Assume

1. s+ λ · qV ∈ o(n);

2. qV ≤ 1/4 · log(1/ε) · log−1 qP;

3. completeness ≥ ε2/3;

4. log2(1/ε) · log−1 qP ≤ o(n); and

5. V’s running time 2o(n),

then 3SAT ∈ BPTIME[2o(n)].

Note that Lemma 5.3 does not require V to be deterministic or non adaptive.

5.1 Proof of Theorem 5.1

Proof of Theorem 5.1. Suppose we are given a SNARG ARG for 3SAT that satisfies the conditions
of the theorem, and assume without loss of generality that qP ≤ t1/10. (Otherwise, for qP > t1/10,
the lower bound we need to prove can be written as s ≥ 2−15 · log t

ε , which follows by Theorem B.1.)
Assume towards contradiction that s ≤ 2−15 · log t · log t

ε/ log qP. Theorem 5.1 is proved via the
following steps:

1. Apply Lemma 3.8 with parameter k = t0.5 which yields a scheme ARG that has (t′, ε′)-salted-
soundness, where t′ = t1/2, and ε′ = 2ε/t1/2.

21

2. Apply Lemma 5.2 with γ = 1/10 · log t, to get a ROM-SNARG ARG′ for 3SAT with the following
parameters:

(a) completeness
(
λ · qP · qV20·⌈s/γ⌉)−1;

(b) (t′ − qV · 2γ , ε′)-soundness.

(c) verifier query complexity qV
′ = 20 · ⌈s/γ⌉; and

(d) verifier running time v′ = O(2qV·log t · v).

3. Apply Lemma 5.3 on ARG′ to contradict rETH. For this, we need to verify that all five conditions
of the lemma apply. Indeed,

(i) s + λ · qV′ ∈ o(n): First, observe that s ≤ 2−15 · log t · log t
ε/ log qP ∈ o(n). Then, since

λ ·qV ∈ o(n), we get that λ ·qV′ = O(λ · s/γ) = O(log t · s/ log t) = o(n). Together, we have
that s+ λ · qV′ ≤ o(n) + o(n) = o(n):

(ii) qV
′ ≤ 1/4 · log(1/ε′) · log−1 qP: the query complexity of the verifier of ARG′ is

qV
′ ≤ 20 · ⌈s/γ⌉ ≤ 20 ·

⌈
2−15 · log t · log t

ε/ log qP
1/10 · log t

⌉
≤ 1/8 · log t

ε
· log−1 qP

≤ 1/4 · log t1/2

2ε
· log−1 qP = 1/4 · log 1

ε′
· log−1 qP .

(iii) completeness ≥ ε′2/3: Observe that 20 ⌈s/γ⌉ ≤ 2−10 · log(t/ε) · log−1 qP. Thus, the com-
pleteness of our scheme satisfies:(

λ · qP · qV20·⌈s/γ⌉
)−1

≥
(
t1/10 · t1/10 · qV2−10·log(t/ε)·log−1 qP

)−1
≥ 2−2/10 log t−2

−10·log(t/ε)

≥ 2−2/10 log t−2
−9·log(t1/2/2ε)

≥ 2−3/10·log(t
1/2/2ε)

= 23/10·log(ε
′)

≥ ε′2/3 .

(iv) log2(1/ε′) · log−1 qP ≤ o(n): By the definition of ε′ and the conditions of the theorem we
get that log2(1/ε′) · log−1 qP = O(log2(t/ε) · log−1 qP) = o(n).

(v) V’s running time 2o(n): The verifier running time of the scheme is O(2qV·log t · v). Since
qV · log t = o(n) and v = 2o(n), its total running time is 2o(n).

4. We conclude that 3SAT ∈ BPTIME[2o(n)], contradicting rETH.

5.2 Short ROM-SNARGs to Low Query ROM-SNARGs, Proving Lemma 5.2

In this section, we prove Lemma 5.2 (see Section 2 for a high-level overview of the proof). Let
ARG = (P,V) be ROM-SNARG with (t, ε)-salted soundness, random oracle of length λ, a non-

22

adaptive deterministic verifier, prover query complexity qP, and verifier query complexity qV. The
low query verifier V′ is defined as follows:

Algorithm 5.4 (Low-query verifier V′).

Oracle: ζ : {0, 1}λ 7→ {0, 1}λ.
Parameter: γ ≤ λ. Let k = 20 ⌈s/γ⌉.
Input: Instance x and proof π.

Operation:
1. Emulate V on (x, π) to get a list of queries w = (w1, . . . , wqV).
2. Sample k′ ∈ [k], uniformly st random and uniformly sample a k′-size subset J ⊆ [qV].
3. For each i ∈ [qV]:

If i ∈ J , set Si = {ζ(wi)}.
Otherwise, let Si be a 2γ-size random subset of {0, 1}λ.

4. Accept if there exists (y1, . . . , yqV) ∈ S1 × . . . × SqV that make V accepts given (y1, . . . , yqV) as
answers to its oracle queries.

It is easy to observe that V′ has the desired query complexity and running time. Thus, it is
left to prove that ARG′ = (P,V′) has the desired completeness and soundness. The completeness
of ARG′ is analyzed in Section 5.2.1 and its soundness in Section 5.2.2. We put things together in
Section 5.2.3

5.2.1 Completeness

We prove the following lower bound on the completeness of ARG′.

Claim 5.5. ARG′ has completeness ≥
(
λ · qP · qV20·⌈s/γ⌉)−1.

In the following, we assume for simplicity that the V’s queries are (always) a subset of the P’s
queries. (The proof without this assumption follows very similar lines, though with more complicated
notation. Also, one could always modify the honest prover to perform all the verifier’s queries, this
comes with a negligible cost that has no effect on our results.)

Proof. We associate the following random variable with the probability space defined by the choice
of ζ over the (honest) execution of (Pζ(w),V′ζ)(x): denote P’s queries by X = (X1, . . . , XqP), define
Z = (Z1, . . . , ZqP) by Zi = ζ(Xi), let Π denote the proof sent by P, and let B be the output of the
verifier on this proof (i.e., B = 1 if and only if the verifier accepts). We assume for ease of notation
that the queries that V would have made on the proof Π are just X1, . . . , XqV .

Since the SNARG has completeness error at most 1/212, and since Z is uniform over {0, 1}λ·qP ,
by Fact 3.3, we have that

H(Z | B = 1) ≥ H(Z)− log
1

Pr[B = 1]
≥ λ · qP − 1 . (25)

By Equation (25) and a chain rule for Shannon entropy, it holds that

H(Z | Π, B = 1) ≥ λ · qP − 1−H(Π) ≥ λ · qP − s− 1 .

12The constant 1/2 is chosen for simplicity, the proof can work with any constant.

23

Since the support size of Z is at most 2λ·qP , Equation (25) yields that

Prπ←Π[H(Z | Π = π,B = 1) ≥ λ · qP − 2 · (s+ 1)] ≥ 1/2 . (26)

Fix any proof π with H(Z | Π = π,B = 1) ≥ λ ·qP− 2 · (s+1), and let Y = (Y1, . . . , YqP) = Z |Π=π.
For ℓ = 2 · (s+ 1), it holds that

H(Y) ≥ λ · qP − ℓ .

Applying Theorem 4.1 on Y yields that with probability 1/2 over y ← Y there exists a subset
B ⊆ [qP] with |B| ≤ ⌊8ℓ/γ⌋+ 4 such that:

Pr
S←(P2γ ({0,1}λ))

qP−|B| [S ∩ Supp(Y |YB=yB) ̸= ∅] ≥
1

32 · λ · qP
. (27)

An immediate corollary of Equation (27) is that with probability at least 1/2 over the choice of
y ← Y , the following process outputs one with probability at least 1

32·λ·qP :

1. For each i ∈ [qV]:

If i ∈ B, set Si = {yi}.
Otherwise, let Si be a 2γ-size random subset of {0, 1}λ.

2. Output 1 if (S1 × . . .× SqV) ∩ Supp((Y |YB=yB)[qV]) ̸= ∅.

Since we conditioned on B = 1 (the verifier accepting), we know that for any π ∈ Supp(Π), it holds
that V(x, π) accepts on any value of z ∈ Supp((Y = Z|Π=π)[qV]) given as oracle answers. Thus, it
accepts any value of z ∈ Supp((Y |YB=yB)[qV]) for any y ∈ Supp(Y).

We deduce that V′ accepts with this probability, assuming that J = B ∩ [qV]. Noting that

|B| ≤
⌊
8ℓ

γ

⌋
+ 4 =

⌊
16(s+ 1)

γ

⌋
+ 4 ≤ 20

⌈
s

γ

⌉
= k ,

the latter happens with probability at least k−1·
(qV
k

)−1. We conclude that V′ accepts with probability
at least

1

2
· 1
2
· 1

32 · λ · qP
· 1
k
· 1(qV

k

) ≥ 1

128 · λ · qP
· 1
k
· (k/e)

k

qVk
(28)

≥ 1

e · 128 · λ · qP
(k/e)k−1

qVk
(29)

≥ 1

e · 128 · λ · qP
(20/e)19

qVk
(30)

≥ 1

λ · qP · qVk
. (31)

24

5.2.2 Soundness

We prove the following upper bound on the soundness error of ARG′.

Claim 5.6. ARG′ has (t− qV · 2γ , ε)-soundness.

Proof. Let P̃′ be a t′ := t− qV · 2γ-query cheating prover such that

Pr
[
⟨P̃′,V′(x)⟩ = 1

]
> ε

for some x /∈ L. We show how to use P̃ to construct the following t-query cheating prover P̃ such
that

Pr
[
SaltedSoundessV,λ,t′(P̃,x) = 1

]
> ε ,

violating the assumed salted-soundness of (P, V).
We assume without loss of generality that P̃′ is deterministic. Indeed, since P̃ is computationally

unbounded (it is only bounded by its query complexity to the random oracle), it has sufficient time
to enumerate all random strings and choose the best one.

Algorithm 5.7 (P̃).

Oracle: ζ : {0, 1}λ 7→ {0, 1}λ.
Input: Instance x.

1. Run P̃′
ζ
(x) to generate a proof π.

2. Emulate V on (x, π) to determine its list of oracle queries (w1, . . . , wqV).

3. For i = 1, . . . , qV:

(a) Iterate in the salted soundness loop with query wi for 2γ times. Let S̃i be the set of obtained
answers.

(b) If wi was asked by P̃′ in Step 1, add the retrieved answer to S̃i.

4. If there exists (y1, . . . , yqV) ∈ S̃1 × . . .× S̃qV that make V accept (x, π) with (y1, . . . , yqV) as the
answers to its oracle queries, output (π, σ = [(w1, y1), . . . , (wqV , yqV)]).

Recall that for i ∈ J , the verifier V′ sets Si to be the output of a single call to the oracle, and for
i /∈ J , it sets Si to 2γ random strings in {0, 1}λ. Hence, for every choice of ζ, there exists a coupling
between the sets Si sampled by V′ to the sets S̃i sampled by P̃ with S̃i ⊇ Si for every i. It follows
that the probability that P̃ makes V accept x is at least as high as the probability that P̃′ makes
P′ accept x, which by assumption is at least ε. This concludes the proof since by construction, P̃′
makes t′ queries.

5.2.3 Putting it Together

Proof of Lemma 5.2. Immediately follows by Claim 5.5 and Claim 5.6.

25

6 Lower Bound on the Length of ROM-SVCs

In this section, we present our lower bound on the length of ROM-SVCs (subvector commitments
in the random oracle model).

We begin with a formal definition of ROM-SVCs. A ROM-SVC is a triplet of oracle-aided
polynomial-time algorithms CM = (CM.Commit,CM.Open,CM.Verify). For a security parameter
λ ∈ N, a message spaceM the algorithms are given (query) access to the random oracle ζ : {0, 1}λ →
{0, 1}λ:

• CM.Commit(m1, . . . ,mq). The algorithm CM.Commit gets as input a sequence of values m1, . . . ,mq ∈
M, and outputs a commitment cm and auxiliary information aux.

• CM.Open(cm, I, aux). The algorithm CM.Open gets as input a commitment cm, a subset I ⊆ [q],
and auxiliary information aux, and outputs a proof π.

• CM.Verify(cm, I,MI , π). The algorithm CM.Open gets as input a commitment cm, a subset I ⊆ [q],
a vector MI of length I and accepts only if π is a valid proof that CM.Commit was created with
a sequence m1, . . . ,mq such that mI = MI (where mI is the subset of m1, . . . ,mq corresponding
to the indices in I).

For correctness, we require that for any M = m1, . . . ,mq ∈Mq, for any I ⊆ [q] we have that

Pr
ζ←U(λ)

(cm,aux)←CM.Commitζ(m1,...,mq)

π←CM.Openζ(cm,I,aux)

[
CM.Verifyζ(cm, I,MI , π) = 1

]
= 1 .

The main complexity measure for a vector commitment is the size of the commitment cm and
its opening π (the subvector itself MI is not included in the size). Thus, we say that the size of the
commitment is bounded by s if for any M = m1, . . . ,mq ∈Mq, I ⊆ [q], and ζ ← U(λ), we have that

• Size: |cm|+|π| ≤ s, where (cm, aux)← CM.Commitζ(m1, . . . ,mq), and π ← CM.Openζ(cm, I, aux).

For binding, we give a security definition with “salts”, in the style of the salted soundness security
for SNARGs (Section 3.5.1). Thus, we begin with a salted binding game, in which the cheating
committer is allowed to re-sample elements of the random oracle (e.g., using different salts) and
only when done giving out a commitment. For player A, we define

Game 6.1 (SaltedBindingλ,t(A)).
Player: A.

Paramters: λ, t ∈ N.

1. Initialize keyed-map S of lists (each entry is initialized with the empty list).

2. Repeat the following t times (or until A decides to exit the loop):

(a) A sends a query x ∈ {0, 1}∗.
(b) Sample y ← {0, 1}λ, and add it to the list S[x].

26

3. A chooses a query-answer list σ = [(x1, y1), . . . , (xn, yn)], commitment cm and two openings
d1 = (I0,M0, π0), d2 = (I1,M1, π1).

4. If yi /∈ S[xi] for some i ∈ [n], set σ = ∅.

5. Output 1 if and only if:

(a) M0[I] ̸= M1[I];
(b) CM.Verifyζσ(cm, I0,M0, π0) = 1; and
(c) CM.Verifyζσ(cm, I1,M1, π1) = 1.

We say that CM = (CM.Commit,CM.Open,CM.Verify) has (t, ε)-salted binding if the following
holds.

Definition 6.2 (Salted binding). For every security parameter λ ∈ N, query bound t ∈ N, and
t-query algorithm A,

Pr[SaltedBindingλ,t(A) = 1] ≤ ε .

Given the above definition of vector commitment, with salted binding, and an amortized defi-
nition of opening size, we can state our lower bound on size of vector commitments in the ROM.
In the theorem below, we require the scheme to have a non-adaptive verification algorithm, that is,
one where all queries to the random oracle are performed in a single round.

Theorem 6.3. Let CM be a (t, ε)-salted-sound, non-adaptive (deterministic) verification ROM-SVC
for vectors of length n. Let qS and qR be the query complexity of the sender and receiver, respectively,
let v be the running-time of the receiver. Let α denote the commitment length, and β(ℓ) denote the
opening length for subsets of size ℓ.

Assuming rETH, if

1. ε ≤ 1/4;
2. qV · λ ∈ o(n), qV + λ ≤ t1/10;
3. log2(t/ε) · log−1 qP ∈ o(n);
4. qV ≤ t1/10; and
5. v ∈ 2o(n),

then α+ β(log t
ε) ∈ Ω(log t · log t

ε/ log n).

Proof. The proof from the Micali construction of SNARGs in the ROM [Mic00]. Micali’s construc-
tion is merely a vector commitment to an appropriate PCP string and an opening to a subset
indices that correspond to the location the PCP verifier reads. That is, the proof size in Micali’s
construction is precisely the vector commitment size for a specific subset I.

If the underlying PCP has soundness error εPCP , then the Micali construction has a soundness
error that can be bounded by t · εPCP +4 · t2

2λ
(see [BCS16]). This tells us how to set parameters for

security: the Micali construction is (t, εPCP)-salted sound secure, e.g., if each term is bounded by
ε
2 . This yields two requirements: (i) εPCP ≤ 1

2 · ε/t (the PCP has small-enough soundness error);
and (ii) λ ≥ log(8 t2

ε) (the random oracle has large-enough output size).

27

Using the PCP theorem, we can get a polynomial-size PCP with soundness error εPCP ≤ 1
2 · ε/t

where the verifier reads q = O(log t/ε) bits from the PCP. Thus, proof size corresponds to the vector
commitment with an opening to a set of size |I| = Θ(log t/ε) (or equivalently, opening O(1) sets each
of size exactly log t/ε). Our lower bound on SNARGs, Theorem 5.1 tells us that the overall proof
size (and thus also the total subvector commitment size) is at least Ω(log t · log t/ε · log−1 n).

Acknowledgments

We thank the anonymous referees for their helpful comments. We thank Gal Arnon and Alessandro
Chiesa for many invaluable discussions.

Iftach Haitner and Daniel Nukrai are supported by the Israel Science Foundation grant 666/19
and the Blavatnik Interdisciplinary Cyber Research Center at Tel-Aviv University. Eylon Yogev
is supported by the BIU Center for Research in Applied Cryptography and Cyber Security in
conjunction with the Israel National Cyber Bureau in the Prime Minister’s Office, and by the Alter
Family Foundation.

References

[AHIV17] Scott Ames, Carmit Hazay, Yuval Ishai, and Muthuramakrishnan Venkitasubramaniam.
“Ligero: Lightweight Sublinear Arguments Without a Trusted Setup”. In: Proceedings of
the 24th ACM Conference on Computer and Communications Security. CCS ’17. 2017,
pp. 2087–2104 (cit. on p. 5).

[BBBPWM18] Benedikt Bünz, Jonathan Bootle, Dan Boneh, Andrew Poelstra, Pieter Wuille, and Greg
Maxwell. “Bulletproofs: Short Proofs for Confidential Transactions and More”. In: Proceed-
ings of the 39th IEEE Symposium on Security and Privacy. S&P ’18. 2018, pp. 315–334
(cit. on p. 5).

[BBCPGL18] Carsten Baum, Jonathan Bootle, Andrea Cerulli, Rafaël del Pino, Jens Groth, and Vadim
Lyubashevsky. “Sub-linear Lattice-Based Zero-Knowledge Arguments for Arithmetic Cir-
cuits”. In: Proceedings of the 38th Annual International Cryptology Conference. CRYPTO ’18.
2018, pp. 669–699 (cit. on p. 5).

[BBHR19] Eli Ben-Sasson, Iddo Bentov, Yinon Horesh, and Michael Riabzev. “Scalable Zero Knowl-
edge with No Trusted Setup”. In: Proceedings of the 39th Annual International Cryptology
Conference. CRYPTO ’19. 2019, pp. 733–764 (cit. on p. 5).

[BCCGP16] Jonathan Bootle, Andrea Cerulli, Pyrros Chaidos, Jens Groth, and Christophe Petit. “Ef-
ficient Zero-Knowledge Arguments for Arithmetic Circuits in the Discrete Log Setting”.
In: Proceedings of the 35th Annual International Conference on Theory and Application
of Cryptographic Techniques. EUROCRYPT ’16. 2016, pp. 327–357 (cit. on p. 5).

[BCGGMTV14] Eli Ben-Sasson, Alessandro Chiesa, Christina Garman, Matthew Green, Ian Miers, Eran
Tromer, and Madars Virza. “Zerocash: Decentralized Anonymous Payments from Bitcoin”.
In: Proceedings of the 2014 IEEE Symposium on Security and Privacy. SP ’14. 2014,
pp. 459–474 (cit. on p. 1).

[BCIOP13] Nir Bitansky, Alessandro Chiesa, Yuval Ishai, Rafail Ostrovsky, and Omer Paneth. “Suc-
cinct Non-Interactive Arguments via Linear Interactive Proofs”. In: Proceedings of the 10th
Theory of Cryptography Conference. TCC ’13. 2013, pp. 315–333 (cit. on p. 5).

28

[BCRSVW19] Eli Ben-Sasson, Alessandro Chiesa, Michael Riabzev, Nicholas Spooner, Madars Virza, and
Nicholas P. Ward. “Aurora: Transparent Succinct Arguments for R1CS”. In: Proceedings of
the 38th Annual International Conference on the Theory and Applications of Cryptographic
Techniques. EUROCRYPT ’19. Full version available at https://eprint.iacr.org/
2018/828. 2019, pp. 103–128 (cit. on p. 5).

[BCS16] Eli Ben-Sasson, Alessandro Chiesa, and Nicholas Spooner. “Interactive Oracle Proofs”. In:
Proceedings of the 14th Theory of Cryptography Conference. TCC ’16-B. 2016, pp. 31–60
(cit. on pp. 2, 5, 12, 27).

[BCS21] Jonathan Bootle, Alessandro Chiesa, and Katerina Sotiraki. “Sumcheck Arguments and
Their Applications”. In: Advances in Cryptology - CRYPTO 2021 - 41st Annual Interna-
tional Cryptology Conference, CRYPTO 2021, Virtual Event, August 16-20, 2021, Pro-
ceedings, Part I. 2021, pp. 742–773 (cit. on p. 5).

[BFS20] Benedikt Bünz, Ben Fisch, and Alan Szepieniec. “Transparent SNARKs from DARK Com-
pilers”. In: Proceedings of the 39th Annual International Conference on Theory and Appli-
cation of Cryptographic Techniques. EUROCRYPT ’20. 2020, pp. 677–706 (cit. on p. 5).

[BGLR93] M. Bellare, S. Goldwasser, C. Lund, and A. Russell. “Efficient Probabilistically Checkable
Proofs and Applications to Approximations”. In: Proceedings of the 25th Annual ACM
Symposium on Theory of Computing. STOC ?93. 1993, pp. 294–304 (cit. on p. 5).

[BISW17] Dan Boneh, Yuval Ishai, Amit Sahai, and David J. Wu. “Lattice-Based SNARGs and
Their Application to More Efficient Obfuscation”. In: Proceedings of the 36th Annual In-
ternational Conference on Theory and Applications of Cryptographic Techniques. EURO-
CRYPT ’17. 2017, pp. 247–277 (cit. on p. 5).

[BISW18] Dan Boneh, Yuval Ishai, Amit Sahai, and David J. Wu. “Quasi-Optimal SNARGs via
Linear Multi-Prover Interactive Proofs”. In: Proceedings of the 37th Annual International
Conference on Theory and Application of Cryptographic Techniques. EUROCRYPT ’18.
2018, pp. 222–255 (cit. on p. 5).

[BLNS20] Jonathan Bootle, Vadim Lyubashevsky, Ngoc Khanh Nguyen, and Gregor Seiler. “A Non-
PCP Approach to Succinct Quantum-Safe Zero-Knowledge”. In: Advances in Cryptology
- CRYPTO 2020 - 40th Annual International Cryptology Conference, CRYPTO 2020,
Santa Barbara, CA, USA, August 17-21, 2020, Proceedings, Part II. 2020, pp. 441–469
(cit. on p. 5).

[BM17] Boaz Barak and Mohammad Mahmoody-Ghidary. “Merkle’s Key Agreement Protocol is
Optimal: An O(n2) Attack on Any Key Agreement from Random Oracles”. In: J. Cryptol.
30.3 (2017), pp. 699–734 (cit. on p. 1).

[BMG07] Boaz Barak and Mohammad Mahmoody-Ghidary. “Lower bounds on signatures from sym-
metric primitives”. In: FOCS. 2007, pp. 680–688 (cit. on p. 1).

[CCHLRR18] Ran Canetti, Yilei Chen, Justin Holmgren, Alex Lombardi, Guy N. Rothblum, and Ron D.
Rothblum. Fiat–Shamir From Simpler Assumptions. Cryptology ePrint Archive, Report
2018/1004. 2018 (cit. on p. 1).

[CDGS18] Sandro Coretti, Yevgeniy Dodis, Siyao Guo, and John Steinberger. “Random oracles and
non-uniformity”. In: Annual International Conference on the Theory and Applications of
Cryptographic Techniques. 2018, pp. 227–258 (cit. on p. 4).

[CF13] Dario Catalano and Dario Fiore. “Vector Commitments and Their Applications”. In:
Public-Key Cryptography - PKC 2013 - 16th International Conference on Practice and
Theory in Public-Key Cryptography, Nara, Japan, February 26 - March 1, 2013. Proceed-
ings. 2013, pp. 55–72 (cit. on p. 3).

29

https://eprint.iacr.org/2018/828
https://eprint.iacr.org/2018/828

[CHMMVW20] Alessandro Chiesa, Yuncong Hu, Mary Maller, Pratyush Mishra, Noah Vesely, and Nicholas
Ward. “Marlin: Preprocessing zkSNARKs with Universal and Updatable SRS”. In: Pro-
ceedings of the 39th Annual International Conference on the Theory and Applications of
Cryptographic Techniques. EUROCRYPT ’20. 2020 (cit. on p. 5).

[CMSZ21] Alessandro Chiesa, Fermi Ma, Nicholas Spooner, and Mark Zhandry. “Post-Quantum Suc-
cinct Arguments”. In: IACR Cryptol. ePrint Arch. (2021), p. 334 (cit. on p. 5).

[COS20] Alessandro Chiesa, Dev Ojha, and Nicholas Spooner. “Fractal: Post-Quantum and Trans-
parent Recursive Proofs from Holography”. In: Proceedings of the 39th Annual Interna-
tional Conference on the Theory and Applications of Cryptographic Techniques. EURO-
CRYPT ’20. 2020 (cit. on p. 5).

[CY20] Alessandro Chiesa and Eylon Yogev. “Barriers for Succinct Arguments in the Random
Oracle Model”. In: Theory of Cryptography - 18th International Conference, TCC 2020,
Durham, NC, USA, November 16-19, 2020, Proceedings, Part II. 2020, pp. 47–76 (cit. on
pp. 1–3, 12, 21, 34, 35).

[CY21a] Alessandro Chiesa and Eylon Yogev. “Subquadratic SNARGs in the Random Oracle
Model”. In: Proceedings of the 41st Annual International Cryptology Conference. CRYPTO ’21.
2021, pp. 711–741 (cit. on pp. 1, 2, 5, 6, 12).

[CY21b] Alessandro Chiesa and Eylon Yogev. “Tight Security Bounds for Micali’s SNARGs”. In:
Theory of Cryptography - 19th International Conference, TCC. 2021, pp. 401–434 (cit. on
pp. 2, 5, 6, 12).

[DGK17] Yevgeniy Dodis, Siyao Guo, and Jonathan Katz. “Fixing cracks in the concrete: Random
oracles with auxiliary input, revisited”. In: EUROCRYPT. 2017, pp. 473–495 (cit. on p. 4).

[DHMTW14] Holger Dell, Thore Husfeldt, Dániel Marx, Nina Taslaman, and Martin Wahlén. “Exponen-
tial time complexity of the permanent and the Tutte polynomial”. In: ACM Transactions
on Algorithms 10.4 (2014), Art. 21, 32 (cit. on p. 11).

[EIRS01] Jeff Edmonds, Russell Impagliazzo, Steven Rudich, and Jiri Sgall. “Communication com-
plexity towards lower bounds on circuit depth”. In: Computational Complexity 10.3 (2001),
pp. 210–246 (cit. on p. 4).

[FS86] Amos Fiat and Adi Shamir. “How to prove yourself: practical solutions to identification
and signature problems”. In: Proceedings of the 6th Annual International Cryptology Con-
ference. CRYPTO ’86. 1986, pp. 186–194 (cit. on pp. 1, 2, 5).

[GGKT05] Rosario Gennaro, Yael Gertner, Jonathan Katz, and Luca Trevisan. “Bounds on the Ef-
ficiency of Generic Cryptographic Constructions”. In: SICOMP 35.1 (2005), pp. 217–246
(cit. on p. 1).

[GGPR13] Rosario Gennaro, Craig Gentry, Bryan Parno, and Mariana Raykova. “Quadratic Span
Programs and Succinct NIZKs without PCPs”. In: Proceedings of the 32nd Annual In-
ternational Conference on Theory and Application of Cryptographic Techniques. EURO-
CRYPT ’13. 2013, pp. 626–645 (cit. on p. 5).

[GH98] Oded Goldreich and Johan Håstad. “On the complexity of interactive proofs with bounded
communication”. In: Information Processing Letters 67.4 (1998), pp. 205–214 (cit. on
p. 35).

[GLLZ20] Siyao Guo, Qian Li, Qipeng Liu, and Jiapeng Zhang. “Unifying Presampling via Concen-
tration Bounds.” In: IACR Cryptol. ePrint Arch. 2020 (2020), p. 1589 (cit. on p. 4).

[GMNO18] Rosario Gennaro, Michele Minelli, Anca Nitulescu, and Michele Orrù. “Lattice-Based zk-
SNARKs from Square Span Programs”. In: Proceedings of the 25th ACM Conference on
Computer and Communications Security. CCS ’18. 2018, pp. 556–573 (cit. on p. 5).

30

[GNS21] Chaya Ganesh, Anca Nitulescu, and Eduardo Soria-Vazquez. “Rinocchio: SNARKs for
Ring Arithmetic”. In: IACR Cryptol. ePrint Arch. (2021), p. 322 (cit. on p. 6).

[Gro10] Jens Groth. “Short Pairing-Based Non-interactive Zero-Knowledge Arguments”. In: Pro-
ceedings of the 16th International Conference on the Theory and Application of Cryptology
and Information Security. ASIACRYPT ’10. 2010, pp. 321–340 (cit. on p. 5).

[Gro16] Jens Groth. “On the Size of Pairing-Based Non-interactive Arguments”. In: Proceedings of
the 35th Annual International Conference on Theory and Applications of Cryptographic
Techniques. EUROCRYPT ’16. 2016, pp. 305–326 (cit. on p. 5).

[GSV18] Aryeh Grinberg, Ronen Shaltiel, and Emanuele Viola. “Indistinguishability by adaptive
procedures with advice, and lower bounds on hardness amplification proofs”. In: 2018 IEEE
59th Annual Symposium on Foundations of Computer Science (FOCS). 2018, pp. 956–966
(cit. on p. 4).

[GW11] Craig Gentry and Daniel Wichs. “Separating Succinct Non-Interactive Arguments From
All Falsifiable Assumptions”. In: Proceedings of the 43rd Annual ACM Symposium on
Theory of Computing. STOC ’11. 2011, pp. 99–108 (cit. on p. 5).

[HMORY19] Iftach Haitner, Noam Mazor, Rotem Oshman, Omer Reingold, and Amir Yehudayoff. “On
the Communication Complexity of Key-Agreement Protocols”. In: ITCS. 2019, 40:1–40:16
(cit. on p. 1).

[IR89] Russell Impagliazzo and Steven Rudich. “Limits on the provable consequences of one-way
permutations”. In: STOC. 1989, pp. 44–61 (cit. on p. 1).

[ISW21] Yuval Ishai, Hang Su, and David J. Wu. “Shorter and Faster Post-Quantum Designated-
Verifier zkSNARKs from Lattices”. In: ACM SIGSAC Conference on Computer and Com-
munications Security CCS. 2021, pp. 212–234 (cit. on p. 5).

[Kil92] Joe Kilian. “A note on efficient zero-knowledge proofs and arguments”. In: Proceedings of
the 24th Annual ACM Symposium on Theory of Computing. STOC ’92. 1992, pp. 723–732
(cit. on p. 5).

[LM19] Russell W. F. Lai and Giulio Malavolta. “Subvector Commitments with Application to
Succinct Arguments”. In: Advances in Cryptology - CRYPTO 2019 - 39th Annual Interna-
tional Cryptology Conference, Santa Barbara, CA, USA, August 18-22, 2019, Proceedings,
Part I. 2019, pp. 530–560 (cit. on p. 3).

[LSTW21] Jonathan Lee, Srinath T. V. Setty, Justin Thaler, and Riad S. Wahby. “Linear-time zero-
knowledge SNARKs for R1CS”. In: IACR Cryptol. ePrint Arch. (2021), p. 30 (cit. on
p. 6).

[MBKM19] Mary Maller, Sean Bowe, Markulf Kohlweiss, and Sarah Meiklejohn. “Sonic: Zero-Knowledge
SNARKs from Linear-Size Universal and Updatable Structured Reference Strings”. In:
ACM SIGSAC Conference on Computer and Communications Security, CCS. 2019, pp. 2111–
2128 (cit. on p. 5).

[Mer82] Ralph C. Merkle. “Secure Communications over Insecure Channels”. In: SIMMONS: Secure
Communications and Asymmetric Cryptosystems. 1982 (cit. on p. 1).

[Mic00] Silvio Micali. “Computationally Sound Proofs”. In: SIAM Journal on Computing 30.4
(2000). Preliminary version appeared in FOCS ’94., pp. 1253–1298 (cit. on pp. 1, 2, 5, 12,
27).

[Nit19] Anca Nitulescu. “Lattice-Based Zero-Knowledge SNARGs for Arithmetic Circuits”. In:
Progress in Cryptology - LATINCRYPT 2019 - 6th International Conference on Cryptology
and Information Security in Latin America, Santiago de Chile, Chile, October 2-4, 2019,
Proceedings. 2019, pp. 217–236 (cit. on p. 5).

31

[PGHR13] Brian Parno, Craig Gentry, Jon Howell, and Mariana Raykova. “Pinocchio: Nearly Prac-
tical Verifiable Computation”. In: Proceedings of the 34th IEEE Symposium on Security
and Privacy. Oakland ’13. 2013, pp. 238–252 (cit. on p. 5).

[Raz98] Ran Raz. “A parallel repetition theorem”. In: SIAM Journal on Computing 27.3 (1998),
pp. 763–803 (cit. on p. 4).

[Set19] Srinath Setty. Spartan: Efficient and general-purpose zkSNARKs without trusted setup.
Cryptology ePrint Archive, Report 2019/550. 2019 (cit. on p. 5).

[Sta18] libstark. libstark: a C++ library for zkSTARK systems. 2018. url: https://github.com/
elibensasson/libSTARK (cit. on p. 5).

[SV10] Ronen Shaltiel and Emanuele Viola. “Hardness amplification proofs require majority”. In:
SIAM Journal on Computing 39.7 (2010), pp. 3122–3154 (cit. on p. 4).

[Unr07] Dominique Unruh. “Random oracles and auxiliary input”. In: Annual International Cryp-
tology Conference. 2007, pp. 205–223 (cit. on p. 4).

[WTSTW18] Riad S. Wahby, Ioanna Tzialla, Abhi Shelat, Justin Thaler, and Michael Walfish. “Doubly-
efficient zkSNARKs without trusted setup”. In: Proceedings of the 39th IEEE Symposium
on Security and Privacy. 2018, pp. 926–943 (cit. on p. 5).

[Zc14] Electric Coin Company. Zcash Cryptocurrency. https://z.cash/. 2014 (cit. on p. 1).

[ZGKPP17] Yupeng Zhang, Daniel Genkin, Jonathan Katz, Dimitrios Papadopoulos, and Charalampos
Papamanthou. A Zero-Knowledge Version of vSQL. Cryptology ePrint Archive, Report
2017/1146. 2017 (cit. on p. 5).

A Salted Soundness Amplification

In this section we prove Lemma 3.8, restated below.

Lemma A.1 (Restatement of Lemma 3.8). Let ARG be an ROM-SNARG for a language L with
(t, ε)-salted-soundness for ε ≤ 1/4. Then ARG has (t/k, 2ε/k)-salted-soundness for any k ∈ N.

Proof. Assume towards a contradiction that there exists a t/k-query cheating prover P̃ that wins
the salted soundness game with probability more than ε′ := 2ε/k. Then, we construct a t-query
cheating prover P̃k that will succeed with probability more than ε, contradicting the soundness
condition.

Roughly speaking, P̃k emulates P̃ for k times, each time it will uses new salts, so that P̃ gets
fresh and independent randomness (for the random oracle) between its runs. Thus, P̃k will succeed
if any of the k iterations of P̃ where successful. More formally, P̃k acts as follows in the salted
soundness game:

Algorithm A.2 (P̃k).

1. For all i ∈ [k]:

(a) Emulate the play of P̃ in the salted soundness game (as described in Section 3.5.1), as
follows:

i. When P̃ choose a query x ∈ {0, 1}∗, P̃k chooses the same query x.
ii. P̃k gets a response y which is given to P̃.

(b) The emulation end with P̃ outputting a proof πi and a list σi.

32

https://github.com/elibensasson/libSTARK
https://github.com/elibensasson/libSTARK
https://z.cash/

(c) Emulate V on πi with the random oracle ζ, while overriding queries with σi (i.e., if (x, y) ∈ σi
then query x will get response y, otherwise respond with ζ(x)).

(d) If the verifier accepts, then output πi and a list σi and halt.

Note that if P̃k outputs σ = σi for some i ∈ [k], we have all the queries in σ asked in the ith

emulation. Therefore, if (x, y) ∈ σ, this means that y ∈ S[x], as required in the salted soundness
game. Since we emulate the salted soundness game in each iteration, we know that for all i ∈ [k]
the probability that (πi, σi) will lead V to accept is at least ε′ = 2ε/k. As the simulations of P̃ are
independent, the probability that all of the emulations will end up in V rejecting is at most

(1− ε′)k =

(
1− 2ε

k

)k

≤ e−2ε ≤ 1− 2ε+ 4ε2 ≤ 1− ε .

This proves that P̃k wins with probability more than 1 − (1 − ε) = ε, which is a contradiction to
the salted soundness of ARG.

B A Folklore Lower Bound on ROM-SNARG Length

We observe that one can derive a simple lower bound of Ω(log t
ε) for any non-trivial SNARGs

with (t, ε)-soundness, where the verifier performs qV to the random oracle. The terms non-trivial
means that there exists an instance x /∈ L and at least one “wrong proof”, i.e., a proof for a false
statement that the verifier accepts (for any random oracle).13 One can derive a similar lower bound
for SNARGs with a CRS (instead of a random oracle).

Theorem B.1 (Lower bound on ROM-SNARG length. Folklore). Let ARG = (P,V) be a non-trivial
s-length ROM-SNARG, with (t, ε)-soundness. Let qV be the query complexity of V. If qV ≤ t1/2,
then s ≥ 1

4 · log
t
ε .

Proof sketch. Fix an instance x /∈ L for which a false proof exists. We first claim a lower bound of
1
2 · log t. If the SNARG has a proof of size 1/2 · log t, a cheating prover can enumerate all possible
proofs (there are t1/2 such proofs), and for each proof, run the verifier to check if it accepts. This
would take the cheating prover at most t1/2 · qV ≤ t queries, where at the end it will find a false
proof with probability 1 (as we assumed that such a proof exists).

Next, we show a lower bound of 1/2·log(1/ε). If a SNARG has proof length at most 1/2·log(1/ε)
then, given a false statement, a cheating prover can simply guess a wrong proof. Since at least one
such proof exists (according to the non-triviality assumption), then it will succeed with probability
at least ε1/2, contradicting the (t, ε) soundness guarantee (note that cheating prover in this case
makes no queries at all).

Combining these two lower bounds together, we get that the SNARG must have a proof of size

min

{
1

2
· log t, 1

2
· log(1/ε)

}
≥ 1

4
· log t

ε
.

13Since the existence of trivial short ROM-SNARG for 3SAT contradicts rETH, one can replace the non-triviality
requirement in the following theorem with the rETH assumption.

33

C Proof of Lemma 5.3

In this section, we give details about the proof of Lemma 5.3, restated below, that follows from
similar arguments to main proof appearing in [CY20].

Lemma C.1 (Lemma 5.3, restated). Let ARG = (P,V) be a (t, ε)-sound ROM-SNARG for n-
variable 3SAT with random oracle (input and output) length λ, argument length s, and let qV and
qP denote P’s and V’s query complexity, respectively. Assume

1. s+ λ · qV ∈ o(n);

2. qV ≤ 1/4 · log(1/ε) · log−1 qP;

3. completeness ≥ ε2/3;

4. log2(1/ε) · log−1 qP ≤ o(n); and

5. V’s running time 2o(n),

then 3SAT ∈ BPTIME[2o(n)].

Proof. We transform the given SNARG to a laconic IP (i.e., one where there is small prover-to-
verifier communication).

Construction C.2. Let ARG = (P,V) be a non-interactive argument in the ROM. We construct
a public-coin interactive oracle proof IP = (P′,V′), parametrized by a choice of security parameter
λ ∈ N. The IP prover P′ takes as input an instance x and a witness w, and will internally simulate
the argument prover P on input (x,w), answering P’s queries to the random oracle as described
below. The IP verifier V′ takes as input only the instance x, and will simulate the argument verifier
V on input x, answering V’s queries to the random oracle as described below.

The interactive phase of the IP protocol proceeds as follows:

• P guesses a subset I ⊆ [qP] of size qV.
• For round j = 1, . . . , qP:

1. P′ simulates P to get its j-th query Xj .
2. If j ∈ I then:

(a) P′ sends Xj to the verifier.
(b) The verifier responds with yj .

3. Otherwise, P′ samples yj at random.
• P′ simulates P until it outputs the non-interactive argument π, which is sent to the verifier.
• The verifier, given π, simulates V(x, π) while answering query w as follows:

1. If w was sent to the verifier during step Item 2a then answer with the corresponding y given
in Item 2b.

2. Otherwise, sample y at random.

For the simplicity of the analysis, we assume that all of the SNARG verifier queries are a subset
of the SNARG prover queries. (This can always be achieved by having the honest prover simulate
the verifier at the end of its execution. This slightly increases the query complexity of the honest
prover but does not effect on our results.)

We now argue completeness and soundness. Let α be the completeness of the SNARG, and let
ε be the soundness error.

34

• The completeness of (P′,V′) is at least (1− α) ·
(qP
qV

)−1.
The IP prover P′ simulates the SNARG prover P, where P′ sends only the queries in I to the
verifier and the rest are self simulated. If the IP prover P′ guessed all queries of the verifier (i.e.,
we never get to Item 2), then the prover and verifier agree on all queries, and thus we get that
the verifier will accept with probability at least α, where α is the completeness of the SNARG.

The probability of the prover guessing I to include all the verifier queries is
(qP
qV

)−1. Notice that
these two events are independent, and therefore the probability of a correct prediction and that
the verifier accepts is at least (1− α) ·

(qP
qV

)−1.
• The soundness error of (P′,V′) is at most ε.

Suppose that there exists a malicious IP prover P̃′ that convinces V′ to accept with probability
at least ε. We construct a malicious SNARG prover P̃ that convinces the SNARG verifier V to
accept with the same probability. The SNARG prover P̃ runs P̃′ while replacing the (public-coin)
IP verifier with the random oracle. If the IP verifier accepts, then the SNARG verifier accepts
as well since the IP verifier makes its decision according to the SNARG verifier, with the same
distribution of queries.

Observe that the number of rounds of the IP is at most qV, and its communication complexity
is bounded by s+O(qV · λ). To finish the proof, we plug in the above IP into the following lemma,
which is proven in [CY20], as a refinement of [GH98].

Lemma C.3 (IP to algorithm). Suppose that a language L has a public-coin IP with completeness
error α, soundness error β, round complexity k, prover-to-verifier communication c, and verifier
running time v(n). Then, for d(n) := c(n) + k(n) · log k(n)

1−α(n)−β(n) the language L is in

BPTIME
[
2O(d) · v(n) · poly(n)]

]
.

Notice that, since v = 2o(n), to conclude the proof, we must show that d(n) = o(n), which will
imply that L is in

BPTIME
[
2O(d) · v(n) · poly(n)]

]
= BPTIME

[
2o(n)]

]
.

Recall that d(n) := c(n) + k(n) · log k(n)
1−α(n)−β(n) . To show that d(n) = o(n) we make the following

observations:

1. c(n) = o(n): This is since we have argued that c(n) = s+O(qV · λ) = o(n), by our assumptions
in the lemma statement.

2. 1 − α(n) − β(n) ≥ 1/20 · ε11/12: since the argument system has completeness at least ε2/3, we
get that the completeness is at least

1− α(n) ≥ ε2/3 ·
(
qP
qV

)−1
≥ ε2/3 · qP−qV ≥ ε2/3 · 2−1/4·log(1/ε) = ε11/12 .

Thus, we get that 1− α(n)− β(n) ≥ ε11/12 − ε ≥ 1/20 · ε11/12.

35

3. k(n) · log k(n)
1−α(n)−β(n) = o(n): Given the previous item, we can bound:

k(n) · log k(n)

1− α(n)− β(n)

≤ qV · log
qV

1/20 · ε11/12

≤ O(log(1/ε) · log−1 qP · log 1/ε)
≤ O(log2(1/ε) · log−1 qP)
≤ o(n) .

4. d(n) = o(n): this follows since d(n) = c(n) + k(n) · log k(n)
1−α(n)−β(n) ≤ o(n) + o(n) ≤ o(n).

This concludes the proof.

36

	Abstract
	Contents
	1 Introduction
	1.1 Our Results
	1.2 Related Work
	Paper Organization

	2 Techniques
	2.1 Warmup
	2.2 Actual Scenario
	2.3 Completeness
	2.4 Soundness

	3 Preliminaries
	3.1 Notations
	3.2 Entropy Measures
	3.3 Randomized Exponential Time Hypothesis
	3.4 Random Oracles
	3.5 Non-Interactive Arguments in the ROM

	4 Hitting High-Entropy Distribution using Product Sets
	4.1 High-Entropy Distributions Have an (Almost) Uniform Large Projection
	4.2 Hitting almost Full-Entropy Distributions using Product Set

	5 Lower Bound on the Length of ROM-SNARGs
	5.1 Proof of thm:LowerBoundOnSnargsLength
	5.2 Short ROM-SNARGs to Low Query ROM-SNARGs, Proving lem:ShortSnargsToLowQuerySnargs

	6 Lower Bound on the Length of ROM-SVCs
	Acknowledgments
	References
	A Salted Soundness Amplification
	B A Folklore Lower Bound on ROM-SNARG Length
	C Proof of lem:CY

