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Abstract

We present a protocol for checking the values of a committed polynomial f(X) ∈
F<n[X] over a multiplicative subgroup H ⊂ F of size n are contained in a table
t ∈ FN . After an O(N logN) preprocessing step, the prover algorithm runs in time
O(n log n). Thus, we continue to improve upon the recent breakthrough sequence
of results[ZBK+22, PK22, GK22, ZGK+22] starting from Caulk [ZBK+22], which
achieve sublinear complexity in the table size N . The two most recent works in this
sequence [GK22, ZGK+22] achieved prover complexity O(n · log2 n).

Moreover, cq has the following attractive features.

1. As in [ZBK+22, PK22, ZGK+22] our construction relies on homomorphic table
commitments, which makes them amenable to vector lookups.

2. As opposed to [ZBK+22, PK22, GK22, ZGK+22] the cq verifier doesn’t involve
pairings with prover defined G2 points, which makes recursive aggregation of
proofs more convenient.

1 Introduction

The lookup problem is fundamental to the efficiency of modern zk-SNARKs. Somewhat
informally, it asks for a protocol to prove the values of a committed polynomial f(X) ∈
F<n[X] are contained in a table T of size N of predefined legal values. When the
table T corresponds to an operation without an efficient low-degree arithmetization in
F, such a protocol produces significant savings in proof construction time for programs
containing the operation. Building on previous work of [BCG+18], plookup [GW20] was
the first to explicitly describe a solution to this problem in the polynomial-IOP context.
plookup described a protocol with prover complexity quasilinear in both n and N . This
left the intriguing question of whether the dependence on N could be made sublinear
after performing a preprocessing step for the table T . Caulk [ZBK+22] answered this
question in the affirmative by leveraging bi-linear pairings, achieving a run time of O(n2+

*Pronounced “seek you”.
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n logN). Caulk+ [PK22] improved this to O(n2) getting rid of the dependence on table
size completely.1

Naturally, the quadratic dependence on n of these works made them impractical for
a circuit with many lookup gates. This was resolved in two more recent protocols -
baloo [ZGK+22] and Flookup [GK22] achieving a runtime of O(n log2 n). While Flookup
has better concrete constants, baloo preserved an attractive feature of Caulk - using a
homomorphic commitment to the table. This means that given commitments cm1, cm2

to tables T1, T2 with elements {ai},{bi} respectively; we can check membership in the
set of elements {ai + αbi} by running the protocol with cm := cm1+α · cm2 as the table
commitment. This is crucial for vector lookups that have become popular in zk-SNARKs,
as described in Section 4 of [GW20].

One drawback of all four recent constructions - Caulk,Caulk+,baloo,Flookup; is that
they require the verifier perform a pairing where both G1 and G2 pairing arguments
are not fixed in the protocol, but prover defined. This makes it harder to recursively
aggregate multiple proofs via random combination, in the style described e.g. in Section
8 of [BCMS20].

1.1 Our results

In this paper, we present a protocol called cq - short for “cached quotients” which is
a central technical component in the construction (and arguably in all four preceding
works). cq

1. Improves asymptotic prover performance in field operations from O(n log2 n) to
O(n log n), and has smaller constants in group operations and proof size compared
to baloo.

2. Uses homomorphic table commitments similarly to Caulk,Caulk+ and baloo, en-
abling convenient vector lookups.

3. Achieves for the first time in this line of work convenient aggregatability by having
all verifier pairings use fixed protocol-defined G2 arguments.

Table 1: Scheme comparison. n = witness size, N = Table size, “Aggregatable”= All
prover defined pairing arguments are in G1

Scheme Preprocessing Proof size Prover Work Verifier Work Homomorphic? Aggregatable?

Caulk [ZBK+22] O(N logN) F,G1 14 G1, 1 G2, 4 F O(n2 + n · log(N)) F,G1 4P ✓ ✗

Caulk+ [PK22] O(N logN) F,G1 7 G1, 1 G2, 2 F O(n2) F,G1 3P ✓ ✗

Flookup [GK22] O(N log2N) F,G1 6 G1, 1 G2, 4 F 6n G1, n G2, O(n log2 n) F 3P ✗ ✗

baloo [ZGK+22] O(N logN) F,G1 12 G1, 1 G2, 4 F 13n G1 n G2, O(n log2 n) F 5P ✓ ✗

cq (this work) O(N logN) F,G1 8 G1, 3 F 8n G1, O(n log n) F 5P ✓ ✓

1A nuance is that while the number of field and group operations are independent of table size, the
field and group must be larger than the table in all these constructions, including this paper.
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1.2 Technical Overview

We explain our protocol in the context of the line of work starting from [ZBK+22].

The innovation of Caulk To restate the problem, we have an input polynomial f(X), a
table t of size N encoded as the values of a polynomial T (X) ∈ F<N [X] on a subgroup
V of size N . We want to show f ’s values on a subgroup H of size n are contained in t;
concisely that f |H ⊂ t. We think of the parameters as n << N . We want our prover
P to perform a number of operations sublinear in N , or ideally, a number of operations
depending only on n.

One natural approach - is to send the verifierV a polynomial Tf encoding the n values
from t actually used in f , and then run a lookup protocol using Tf . The challenging
problem is then to prove Tf actually encodes values from T . Speaking imprecisely, the
“witness” to Tf ’s correctness is a quotient Q of degree N−n. It would defeat our purpose
to actually compute Q - as that would require O(N) operations.

The central innovation of Caulk [ZBK+22] is the following observation: If we pre-
compute commitments to certain quotient polynomials, we can compute in a number
of operations depending only on n, the commitment to Q. Moreover, having only a
commitment to Q suffices to check, via pairings, that Tf is valid.

This approach was a big step forward, enabling for the first time lookups sublinear
in table size. However, it has the following disadvantage: “Extracting” the subtable of
values used in f , is analogous to looking at restrictions of the original table polynomial
to arbitrary sets - far from the nice subgroups we are used to in zk-SNARK world.
Very roughly speaking, this is why all previous four works end up needing to work
with interpolation and evaluation of polynomials on arbitrary sets. The corresponding
algorithms for working on such sets have asymptotics of O(n · log2 n) rather than the
O(n log n) we get for subgroups (of order 2k for example).

Our approach The key difference between [ZBK+22, PK22, GK22, ZGK+22] and cq is
that we use the idea of succinct computation of quotient commitments, not to extract a
subtable, but to directly run an existing lookup protocol on the original large table more
efficiently. Specifically, we use as our starting point the “logarithmic derivative based
lookup” of [Eag22, Hab22].

[Hab22] utilizes the following lemma (cf. Lemma 2.4 or Lemma 5 in [Hab22]): f |H ⊂ t
if and only if for some m ∈ FN

∑
i∈[N ]

mi

X + ti
=

∑
i∈[n]

1

X + fi
,

as rational functions. [Hab22] checks this identity on a random β, by sending commit-
ments to polynomials A and B whose values correspond to the summands evaluated
at β of the LHS and RHS respectively. Given commitments to A,B, we can check the
above equality holds via various sumcheck techniques, e.g. as described in [BCR+19] (cf.
Lemma 2.1). The RHS is not a problem because it is a sum of size n. Computing A’s
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commitment is actually not a problem either, because the number of its non-zero values
on V is at most n. So when precomputing the commitments to the Lagrange base of V,
we can compute A’s commitment in n group operations.

The main challenge is to convince the verifier V that A is correctly formed. This is
equivalent to the existence of a quotient polynomial QA(X) such that

A(X)(T (X) + β)−m(X) = QA(X) · ZV(X).

It can be seen that this is the same QA(X) as when writing

A(X)T (X) = QA(X)ZV(X) +R(X),

for R(X) ∈ F<N [X].
Here is where our central innovation, and the term “cached quotients” come from. We

observe that while computing QA would take too long, we can compute the commitment
[QA(x)]1 to QA in O(n) operations as follows. We precompute for each Li(X) in the
Lagrange basis of V its quotient commitment when multiplying with T (X), i.e. the
commitment to Qi(X) such that for some remainder Ri(X) ∈ F<N [X].

Li(X)T (X) = Qi(X) · ZV(X) +Ri(X).

Given the commitments [Qi(x)]1, [QA(x)]1 can be computed in O(n) G1-operations
via linear combination. Moreover, all the elements [Qi(x)]1 can be computed in an
O(N logN) preprocessing phase leveraging the work of Feist and Khovratovich[FK].
See Section 3 for details on this.

2 Preliminaries

2.1 Terminology and Conventions

We assume our field F is of prime order. We denote by F<d[X] the set of univariate
polynomials over F of degree smaller than d. We assume all algorithms described receive
as an implicit parameter the security parameter λ.

Whenever we use the term efficient, we mean an algorithm running in time poly(λ).
Furthermore, we assume an object generator O that is run with input λ before all
protocols, and returns all fields and groups used. Specifically, in our protocol O(λ) =
(F,G1,G2,Gt, e, g1, g2, gt) where

� F is a prime field of super-polynomial size r = λω(1) .

� G1,G2,Gt are all groups of size r, and e is an efficiently computable non-degenerate
pairing e : G1 ×G2 → Gt.

� g1, g2 are uniformly chosen generators such that e(g1, g2) = gt.

We usually let the λ parameter be implicit, i.e. write F instead of F(λ). We write G1

and G2 additively. We use the notations [x]1 := x · g1 and [x]2 := x · g2.
We often denote by [n] the integers {1, . . . , n}. We use the acronym e.w.p. for

“except with probability”; i.e. e.w.p. γ means with probability at least 1− γ.
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universal SRS-based public-coin protocols We describe public-coin (meaning the verifier
messages are uniformly chosen) interactive protocols between a prover and verifier; when
deriving results for non-interactive protocols, we implicitly assume we can get a proof
length equal to the total communication of the prover, using the Fiat-Shamir transform/a
random oracle. Using this reduction between interactive and non-interactive protocols,
we can refer to the “proof length” of an interactive protocol.

We allow our protocols to have access to a structured reference string (SRS) that
can be derived in deterministic poly(λ)-time from an “SRS of monomials” of the form{[

xi
]
1

}
a≤i≤b

,
{[
xi
]
2

}
c≤i≤d

, for uniform x ∈ F, and some integers a, b, c, d with absolute

value bounded by poly(λ). It then follows from Bowe et al. [BGM17] that the required
SRS can be derived in a universal and updatable setup requiring only one honest par-
ticipant; in the sense that an adversary controlling all but one of the participants in
the setup does not gain more than a negl(λ) advantage in its probability of producing a
proof of any statement.

For notational simplicity, we sometimes use the SRS srs as an implicit parameter in
protocols, and do not explicitly write it.

The Aurora lemma Our sumcheck relies on the following lemma originally used in the
Aurora construction ([BCR+19], Remark 5.6).

Lemma 2.1. Let H ⊂ F be a multiplicative subgroup of size t. For f ∈ F<t[X], we have∑
a∈H

f(a) = t · f(0).

2.2 The algebraic group model

We introduce some terminology from [GWC19] to capture analysis in the Algebraic
Group Model of Fuchsbauer, Kiltz and Loss[FKL18].

In our protocols, by an algebraic adversary A in an SRS-based protocol we mean a
poly(λ)-time algorithm which satisfies the following.

� For i ∈ {1, 2}, whenever A outputs an element A ∈ Gi, it also outputs a vector v
over F such that A =< v, srsi >.

First we say our srs has degree Q if all elements of srsi are of the form [f(x)]i for f ∈
F<Q+1[X] and uniform x ∈ F. In the following discussion let us assume we are executing
a protocol with a degree Q SRS, and denote by fi,j the corresponding polynomial for
the j’th element of srsi.

Denote by a, b the vectors of F-elements whose encodings in G1,G2 an algebraic
adversary A outputs during a protocol execution; e.g., the j’th G1 element output by A
is [aj ]1.

By a “real pairing check” we mean a check of the form

(a · T1) · (T2 · b) = 0
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for some matrices T1, T2 over F. Note that such a check can indeed be done efficiently
given the encoded elements and the pairing function e : G1 ×G2 → Gt.

Given such a “real pairing check”, and the adversary A and protocol execution during
which the elements were output, define the corresponding “ideal check” as follows. Since
A is algebraic when he outputs [aj ]i he also outputs a vector v such that, from linearity,
aj =

∑
vℓfi,ℓ(x) = Ri,j(x) for Ri,j(X) :=

∑
vℓfi,ℓ(X). Denote, for i ∈ {1, 2} the vector

of polynomials Ri = (Ri,j)j . The corresponding ideal check, checks as a polynomial
identity whether

(R1 · T1) · (T2 ·R2) ≡ 0

The following lemma is inspired by [FKL18]’s analysis of [Gro16], and tells us that
for soundness analysis against algebraic adversaries it suffices to look at ideal checks.
Before stating the lemma we define the Q-DLOG assumption similarly to [FKL18].

Definition 2.2. Fix integer Q. The Q-DLOG assumption for (G1,G2) states that given

[1]1 , [x]1 , . . . ,
[
xQ

]
1
, [1]2 , [x]2 , . . . ,

[
xQ

]
2

for uniformly chosen x ∈ F, the probability of an efficient A outputting x is negl(λ).

Lemma 2.3. Assume the Q-DLOG for (G1,G2). Given an algebraic adversary A partic-
ipating in a protocol with a degree Q SRS, the probability of any real pairing check passing
is larger by at most an additive negl(λ) factor than the probability the corresponding ideal
check holds.

See [GWC19] for the proof.

The log-derivative method We crucially use the following lemma from [Hab22].

Lemma 2.4. Assume the characteristic of F is larger than max(n,N). Given f ∈ Fn,
and t ∈ FN , we have f ⊂ t as sets if and only if for some m ∈ FN the following identity
of rational functions holds ∑

i∈[n]

1

X + fi
=

∑
i∈[N ]

mi

X + ti
.

3 Cached quotients

Notation: In this section and the next we use the following conventions. V ⊂ F denotes
a mutliplicative subgroup of orderN which is a power of two. We denote by g a generator
of V. Hence, V =

{
g,g2, . . . ,gN = 1

}
. Given P ∈ F[X] and integer i ∈ [N ], we denote

Pi := P (gi). For i ∈ [N ], we denote by Li ∈ F<N [X] the i’th Lagrange polynomial of V.
Thus, (Li)i = 1 and (Li)j = 0 for i ̸= j ∈ [N ].

For a polynomial A(X) ∈ F<N [X], we say it is n-sparse if Ai ̸= 0 for at most n
values i ∈ [N ]. The sparse representation of such A consists of the (at most) n pairs
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(i, Ai) such that Ai ̸= 0. We denote supp(A) := {i ∈ [N ]|Ai ̸= 0}.

The main result of this section is a method to compute a commitment to a quotient
polynomial - derived from a product with a preprocessed polynomial; in a number of
operations depending only on the sparsity of the other polynomial in the product.

The result crucially relies on the following lemma based on a result of Feist and
Khovratovich[FK].

Lemma 3.1. Fix T ∈ F<N [X], and a subgroup V ⊂ F of size N . There is an algorithm
that given the G1 elements

{[
xi
]
1

}
i∈{0,...,N−1} computes for i ∈ [N ], the elements qi :=

[Qi(x)]1 where Qi(X) ∈ F[X] is such that

Li(X) · T (X) = Ti · Li(X) + ZV(X) ·Qi(X)

in O(N · logN) G1 operations.

Proof. Recall the definition of the Lagrange polynomial

Li(X) =
ZV(X)

Z ′
V(g

i)(X − gi)
.

Substituting this definition, we can write the quotient Qi(X) as

Qi(X) =
T (X)− Ti

Z ′
V(g

i)(X − gi)
= Z ′

V(g
i)−1Ki(X),

for Ki(X) := T (X)−Ti

X−gi . Note that the values {[Ki(x)]1}i∈[N ] are exactly the KZG opening

proofs of T (X) at the elements of V. Thus, the algorithm of Feist and Khovratovich
[FK, Tom] can be used to compute commitments to all the proofs [Ki(x)]1 in O(N logN)
G1-operations. This works by writing the vector of [Ki(x)]1 as a the product of a matrix
with the vector of

[
xi
]
1
. This matrix is a DFT matrix times a Toeplitz matrix, both of

which have algorithms for evaluating matrix vector products in O(N logN) operations.
Thus, all the KZG proofs can be computed in O(N logN) field operations and operations
in G1.

Finally, the algorithm just needs to scale each [Ki(x)]1 by Z ′
V(g

i)−1 to compute
[Qi(x)]1. Conveniently, these values admit a very simple description when ZV(X) =
XN − 1 is a group of roots of unity.

Z ′
V(X)−1 = (NXN−1)−1 ≡ X/N mod ZV(X)

In total, the prover computes the coefficients of T (X) in O(N logN) field operations,
computes the KZG proofs for T (gi) = ti in O(N logN) group operations, and then scales
these proofs by gi/N in O(N) group operations. In total, this takes O(N logN) field
and group operations in G1.
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Theorem 3.2. Fix integer parameters 0 ≤ n ≤ N such that n,N are powers of two
dividing |F| − 1. Fix T ∈ F<N [X], and a subgroup V ⊂ F of size N . Let srs ={[

xi
]
1

}
i∈[0,...,N−1]

for some x ∈ F. There is an algorithm A that after a preprocess-

ing step of O(N logN) F- and G1-operations starting with srs does the following.
Given input A(X) ∈ F<N [X] that is n-sparse and given in sparse representation,

A computes in O(n) F-operations and n G1-operations each of the elements cm1 =
[Q(x)]1 , cm2 = [R(x)]1 for Q(X), R(X) ∈ F<N [X] such that

A(X) · T (X) = Q(X) · ZV(X) +R(X).

Proof. The preprocessing step consists of computing the quotient commitments [Qi(X)]1
in O(N logN) operations, as described in Lemma 3.1. As stated in the lemma, for each
i ∈ [N ] we have

Li(X) · T (X) = Ti · Li(X) + ZV(X) ·Qi(X).

By assumption, the polynomial A(X) can be written as a linear combination of at most
n summands in the Lagrange basis of V.

A(X) =
∑

i∈supp(A)

Ai · Li(X)

Substituting this into the product with T (X), and substituting each of the products
Li(X)T (X) with the appropriate cached quotient Qi(X) we find

A(X)T (X) =
∑

i∈supp(A)

Ai · Li(X)T (X) =
∑

i∈supp(A)

Ai · TiLi(X) +Ai · ZV(X)Qi(X)

=
∑

i∈supp(A)

Ai · TiLi(X) + ZV(X) ·
∑

i∈supp(A)

Ai ·Qi(X).

Observing that the terms of the first sum are all of degree smaller than N , we get that

Q(X) =
∑

i∈supp(A)

Ai ·Qi(X)

R(X) =
∑

i∈supp(A)

AiTi · Li(X)

Hence, commitments to both the quotient Q(X) and remainder R(X) can be computed
in at most n group operations as

[Q(x)]1 =
∑

i∈supp(A)

Ai · [Qi(x)]1

[R(x)]1 =
∑

i∈supp(A)

AiTi · [Li(x)]1
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4 cq - our main protocol

Before describing our protocol, we give a definition of a lookup protocol secure against
algebraic adversaries.

Definition 4.1. A lookup protocol is a pair P = (gen, IsInTable) such that

� gen(N, t) is a randomized algorithm receiving as input parameters integer N and
t ∈ FN . Given these inputs gen outputs a string srs of G1 and G2 elements.

� IsInTable(cm, t, srs,H; f) is an interactive public coin protocol between P and V
where P has private input f ∈ F<n[X], and both parties have access to t, cm and
srs = gen(N, t); such that

– Completeness: If cm = [f(x)]1 and f |H ⊂ t then V outputs acc with proba-
bility one.

– Knowledge soundness in the algebraic group model: The probability
of any efficient algebraic A to win the following game is negl(λ).

1. A chooses integer parameters N,n and a table t ∈ FN .

2. We compute srs = gen(t, N).

3. A sends a message cm and f ∈ F<d[X] such that cm = [f(x)]1 where d is
such that all G1 elements in srs are linear combinations of

{[
xi
]
1

}
i∈{0,...,d−1}.

4. A and V engage in the protocol IsInTable(t, cm, srs,H), where H ⊂ F is a
subgroup of order n, with A taking the role of P.

5. A wins if

* V outputs acc, and

* f |H ̸⊂ t.

We say a lookup protocol is homomorphic if for any fixed parameter N and fixed ran-
domness, gen(t, N) can be written as (gen1, gen2(t)) such that gen1 is fixed, and gen2 is
an F-linear function of t.

4.1 The cq protocol

gen(N, t):

1. Choose random x ∈ F compute and output
{[
xi
]
1

}
i∈{0,...,N−1} ,

{[
xi
]
2

}
i∈{0,...,N}.

2. Compute and output [ZV(x)]2.

3. Compute T (X) =
∑

i∈[N ] tiLi(X). Compute and output [T (x)]2.

4. For i ∈ [N ], compute and output:
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(a) qi = [Qi(x)]1 such that

Li(X) · T (X) = ti · Li(X) + ZV(X) ·Qi(X).

(b) [Li(x)]1.

(c)
[
Li(x)−Li(0)

x

]
1
.

Before describing IsInTable, we explain an optimization we use in Step 6 of Round 2.
Since we know in advance we are going to open B at zero, it is more efficient to commit
to the the opening proof polynomial B0(X) := B(X)−B(0)

X of B at 0 instead of committing
to B. To evaluate B, V can use the relation B(X) = B0(X) ·X + b0.

We note that it’s possible to make a similar optimization for A to further reduce
proof size and prover time. However, this entails an additional verifier pairing for the
check in Step 11 of Round 2.

IsInTable(cm, t, srs,H; f):

Round 1: Committing to the multiplicities vector

1. P computes the polynomial m(X) ∈ F<N [X] defined by setting2 mi, for each
i ∈ [N ], to the number of times ti appears in f |H.

2. P sends m := [m(x)]1.

Round 2: Interpolating the rational identity at a random β; checking correctness of A’s
values + degree check for B using pairings

1. V chooses and sends random β ∈ F.

2. P computes A ∈ F<N [X] such that for i ∈ [N ], Ai = mi/(ti + β).

3. P computes and sends a := [A(x)]1.

4. P computes and sends qa := [QA(x)]1 where QA ∈ F<N [X] is such that

A(X)(T (X) + β)−m(X) = QA(X) · ZV(X)

5. P computes B(X) ∈ F<n[X] such that for i ∈ [n], Bi = 1/(fi + β).

6. P computes B0(X) ∈ F<n−1[X] defined as B0(X) := B(X)−B(0)
X .

2We assume here that t’s values are distinct. If there are duplicate values in t, one must rather set
mi = 0 for the indices i of the duplicates.

10



7. P computes and sends b0 := [B0(x)]1.

8. P computes QB(X) such that

B(X)(f(X) + β)− 1 = QB(X) · ZH(X).

9. P computes and sends qb := [QB(x)]1.

10. P computes and sends p = [P (x)]1 where

P (X) := B0(X) ·XN−1−(n−2).

11. V checks that A encodes the correct values:

e(a, [T (x)]2) = e(qa, [ZV(x)]2) · e(m− β · a, [1]2)

12. V checks that B0 has the appropriate degree:

e
(
b0,

[
xN−1−(n−2)

]
2

)
= e(p, [1]2).

Round 3: Checking correctness of B at random γ ∈ F

1. V sends random γ ∈ F.

2. P sends b0,γ := B0(γ), fγ := f(γ).

3. P computes and sends the value a0 := A(0).

4. V sets b0 := (N · a0)/n.

5. As part of checking the correctness of B, V computes ZH(γ) = γn − 1, bγ :=
b0,γ · γ + b0 and

Qb,γ :=
bγ · (fγ + β)− 1

ZH(γ)
.

6. To perform a batched KZG check for the correctness of the values b0,γ , fγ , Qb,γ

(a) V sends random η ∈ F. P and V separately compute

v := b0,γ + η · fγ + η2 ·Qb,γ .

(b) P computes πγ := [h(x)]1 for

h(X) :=
B0(X) + η · f(X) + η2 ·QB(X)− v

X − γ
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(c) V computes
c := b0 + η · cm+ η2 · qb

and checks that

e(c− [v]1 + γ · πγ , [1]2) = e(πγ , [x]2).

7. To perform a KZG check for the correctness of a0

(a) P computes and sends a0 := [A0(x)]1 for

A0(X) :=
A(X)− a0

X

(b) V checks that
e(a− [a0]1 , [1]2) = e(a0, [x]2).

Note that although the above description contains nine pairings, we can reduce to
five pairings via the standard technique of combining several pairings equations into one
pairing product via randomness, and then grouping pairings that share the same G2

argument. (The different G2 arguments are [1]2 , [x]2 ,
[
xN−1−(n−2)

]
2
, [ZV(x)]2 , [T (x)]2.)

It is easy to check that cq is homomorphic according to Definition 4.1.
The main things to address are the efficiency of the gen algorithm used for prepro-

cessing, the efficiency of P in IsInTable, and the knowledge soundness of IsInTable.

Runtime of gen: We claim that gen requires O(N logN) G1- and F-operations and O(N)
G2-operations. The claim regarding the G2 operations is obvious. The elements {qi} can
be computed in O(N logN) operations according to Lemma 3.1. The elements {[Li(x)]1}
can be computed in O(N logN) via FFT as explained in Section 3.3 of [BGG17]. Given

the element [Li(x)]1, the element
[
Li(x)−Li(0)

x

]
1
can be computed as[

Li(x)− Li(0)

x

]
1

= g−i · [Li(x)]1 − (1/N) ·
[
xN−1

]
1
.

Runtime of P: Note first that the computation of m, a can be done in n G1-operations
as m(X) and A(X) are n-sparse. The main thing to address is the computation of qa;
that can be done in n G1-operations given srs according to Theorem 3.2. The only
step requiring O(n log n) F-operations is the computation of the quotient QB(X) which

involves FFT on H. We also note that the commitment a0 =
[
A(x)−A(0)

x

]
1
can be

computed in n G1-operations as the linear combination[
A(x)−A(0)

x

]
1

=
∑

i∈supp(A)

Ai ·
[
Li(x)− Li(0)

x

]
1

.
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Knowledge soundness proof: Let A be an efficient algebraic adversary participating
in the Knowledge Soundness game from Definition 4.1. We show its probability of
winning the game is negl(λ). Let f ∈ F<N [X] be the polynomial sent by A in the
third step of the game such that cm = [f(x)]1. As A is algebraic, when sending the
commitments m,a,b0,p,qa,qb,πγ ,a0 during protocol execution it also sends polynomials
m(X), A(X), B0(X), P (X), QA(X), QB(X), h(X), A0(X) ∈ F<N [X] such that the for-
mer are their corresponding commitments. Let E be the event that V outputs acc. Note
that the event that A wins the knowledge soundness game is contained in E. E implies
all pairing checks have passed. Let A ⊂ E be the event that one of the corresponding
ideal pairing checks as defined in Section 2.2 didn’t pass. According to Lemma 2.3,
Pr(A) = negl(λ). Given that A didn’t occur, we have

� From Round 2, Step 11

A(X)(T (X) + β)−M(X) = QA(X) · ZV(X)

Which means that for all i ∈ [N ],

Ai =
Mi

Ti + β

� From Round 2, Step 12

XN−1−(n−2)B0(X) = P (X),

which implies that deg(B0) ≤ n− 2. Note also that we know deg(A) < N simply
from

[
xN−1

]
1
being the highest G1 power in srs.3

� Moving to Round 3, from the checks of steps 6c and 7b, e.w.p. n/|F| over η ∈ F
(see e.g. Section 3 of [GWC19] for an explanation of batched KZG [KZG10]), we
have b0,γ = B0(γ), Qb,γ = QB(γ), fγ = f(γ), a0 = A(0).

� Define B(X) := B0(X)·X+b0 for b0 set as in step 4. Note that we have deg(B) < n.
Let ω by a generator of H.

� By how bγ , Qb,γ are set in step 5, the above implies that e.w.p. (N +n)/|F| over γ

B(X) · (f(X) + β) = 1 +QB(X)ZH(X),

which implies for all i ∈ [n] that B(ωi) = 1
f(ωi)+β

.

� We now have using Lemma 2.1 that

N · a0 =
∑
i∈[N ]

Ai =
∑
i∈[N ]

mi

Ti + β
,

3An important point is that when using an SRS built with higher degrees in G1, A must also be
degree checked via an additional pairing. In such a case, we must also change the power of X in Step
12 of Round 2 from N − 1− (n− 2) to d− (n− 2) where d is the maximal SRS degree in G1.
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n · b0 =
∑
i∈[n]

B(ωi) =
∑
i∈[n]

1

f(ωi) + β
.

Recall that b0 was set such that N · a0 = n · b0. Multiplying denominators, we see
that e.w.p. (n+N)/|F| over β ∈ F, we have∑

i∈[N ]

mi

Ti +X
=

∑
i∈[n]

1

f(ωi) +X
,

which implies f |H ⊂ t by Lemma 2.4.

In summary, we have shown the event that V outputs acc while f |H ̸⊂ t is contained in
a constant number of events with probability negl(λ); and so cq satisfies the knowledge
soundness property.
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