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Abstract

Non-interactive batch arguments for NP provide a way to amortize the cost of NP verification across multiple

instances. In particular, they allow a prover to convince a verifier of multiple NP statements with communication

that scales sublinearly in the number of instances.

In this work, we study fully succinct batch arguments for NP in the common reference string (CRS) model where

the length of the proof scales not only sublinearly in the number of instances 𝑇 , but also sublinearly with the size

of the NP relation. Batch arguments with these properties are special cases of succinct non-interactive arguments

(SNARGs); however, existing constructions of SNARGs either rely on idealized models or strong non-falsifiable

assumptions. The one exception is the Sahai-Waters SNARG based on indistinguishability obfuscation. However,

when applied to the setting of batch arguments, we must impose an a priori bound on the number of instances.

Moreover, the size of the common reference string scales linearly with the number of instances.

In this work, we give a direct construction of a fully succinct batch argument for NP that supports an unbounded

number of statements from indistinguishability obfuscation and one-way functions. Then, by additionally relying

on a somewhere statistically binding (SSB) hash function, we show how to extend our construction to obtain a

fully succinct and updatable batch argument. In the updatable setting, a prover can take a proof 𝜋 on 𝑇 statements

(𝑥1, . . . , 𝑥𝑇 ) and “update” it to obtain a proof 𝜋 ′ on (𝑥1, . . . , 𝑥𝑇 , 𝑥𝑇+1). Notably, the update procedure only requires

knowledge of a (short) proof for (𝑥1, . . . , 𝑥𝑇 ) along with a singlewitness𝑤𝑇+1 for the new instance 𝑥𝑇+1. Importantly,

the update does not require knowledge of witnesses for 𝑥1, . . . , 𝑥𝑇 .

1 Introduction
Non-interactive batch arguments (BARGs) provide a way to amortize the cost of NP verification across multiple

instances. Specifically, in a batch argument, the prover has a collection of NP statements 𝑥1, . . . , 𝑥𝑇 and their goal is

to convince the verifier that 𝑥𝑖 ∈ L for all 𝑖 , where L is the associated NP language. The trivial solution is to have

the prover send over the associated NP witnesses𝑤1, . . . ,𝑤𝑇 and have the verifier check each one individually. The

goal in a batch argument is to obtain shorter proofs—namely, proofs whose size scales sublinearly in 𝑇 .

In this work, we operate in the common reference string (CRS) model where we assume that there is a one-time

(trusted) sampling of a structured reference string. Within this model, we focus on the setting where where the proof

is non-interactive (i.e., the proof consists of a single message from the prover to the verifier) and publicly-verifiable

(i.e., verifying the proof only requires knowledge of the associated statements and the CRS). Finally, we require

soundness to hold against computationally-bounded provers; namely, our goal is to construct batch argument systems.

Recently, there has been a flurry of work constructing batch arguments for NP satisfying these requirements from

standard lattice assumptions [CJJ21b, DGKV22], assumptions on groups with bilinear maps [WW22], and from a

combination of subexponential hardness of the DDH assumption together with the QR assumption [CJJ21a].
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This work: fully succinct batch arguments. The size of the proof in the aforementioned BARG constructions

all scale linearly with the size of the NP relation. In other words, to check 𝑇 statements for an NP relation that is

computable by a circuit of size 𝑠 , the proof sizes scale with poly(𝜆, 𝑠) · 𝑜 (𝑇 ), where 𝜆 is the security parameter. In

this work, we study the setting where the proof size |𝜋 | scales sublinearly in both the number of instances 𝑇 and the

size 𝑠 of the NP relation. More precisely, we require that |𝜋 | = poly(𝜆, log 𝑠, log𝑇 ), and we refer to batch arguments

satisfying this property to be “fully succinct.” Our primary goal in this work is to minimize the communication cost

of batch NP verification.

We note that this level of succinctness is typically characteristic of succinct non-interactive arguments (SNARGs),

and indeed any SNARG directly implies a fully succinct batch argument. However, existing constructions of SNARGs

either rely on random oracles [Mic95, BBHR18, COS20, CHM
+
20, Set20], the generic group model [Gro16], or strong

non-falsifiable assumptions [Gro10, BCCT12, DFH12, Lip13, PHGR13, GGPR13, BCI
+
13, BCPR14, BISW17, BCC

+
17,

BISW18, ACL
+
22]. Indeed, Gentry and Wichs [GW11] showed that no construction of an (adaptively-sound) SNARG

for NP can be proven secure via a black-box reduction to a falsifiable assumption [Nao03].

The only construction of (non-adaptively sound) SNARGs from falsifiable assumptions is the construction by

Sahai and Waters based on indistinguishability obfuscation (𝑖O) [SW14] in conjunction with the recent breakthrough

works of Jain et al. [JLS21, JLS22] that base indistinguishability obfuscation on falsifiable assumptions. However, the

Sahai-Waters SNARG from 𝑖O imposes an a priori bound on the number of statements that can be proven, and in

particular, the size of the CRS grows with the total length of the statement and witness (i.e., the CRS consists of an

obfuscated program that reads in the statement and the witness and outputs a signature on the statements if the input

is well-formed). When applied to the setting of batch verification, this limitation means that we need to impose an a
priori bound of the number of instances that can be proved, and the size of the CRS necessarily scales with this bound.

Our goal in this work is to construct a fully succinct batch argument for NP that supports an arbitrary number of

instances from indistinguishability obfuscation and one-way functions (i.e., the same assumption as the construction

of Sahai and Waters).

An approach using recursive composition. A natural approach for constructing a fully succinct batch argument

that supports an arbitrary polynomial number of statements is to compose a SNARG with polylogarithmic verification

cost (for a single statement) with a batch argument that supports an unbounded number of statements. Namely, to

prove that (𝑥1, . . . , 𝑥𝑇 ) are true, the prover would proceed as follows:

1. First, for each statement 𝑥𝑖 ∈ {0, 1}ℓ , the prover constructs a SNARG proof 𝜋𝑖 . If the SNARG has a polylogarith-

mic verification procedure, then the size of the SNARG verification circuit for checking (𝑥𝑖 , 𝜋𝑖 ) is bounded by

poly(𝜆, ℓ, log 𝑠), where 𝑠 is the size of the circuit for checking the underlying NP relation.

2. Next, the prover uses a batch argument to demonstrate that it knows (𝜋1, . . . , 𝜋𝑇 ) where 𝜋𝑖 is an accepting

SNARG proof on instance 𝑥𝑖 ∈ {0, 1}ℓ . This is a batch argument for checking 𝑇 instances of the SNARG

verification circuit, which has size poly(𝜆, ℓ, log 𝑠). If the size of the batch argument scales polylogarithmically

with the number of instances, then the overall proof has size poly(𝜆, ℓ, log 𝑠, log𝑇 ).

Moreover, using a somewhere extractable commitment scheme [HW15, CJJ21b], it is possible to remove the dependence

on the instance size ℓ .1 This yields a fully succinct batch argument with proof size poly(𝜆, log 𝑠, log𝑇 ). To argue (non-
adaptive) soundness of this approach, we rely on soundness of the underlying SNARG and somewhere extractability

of the underlying batch argument (i.e., a BARG where the CRS can be programmed to a specific (hidden) index 𝑖∗

such that there exists an efficient extractor that takes any accepting proof 𝜋 for a tuple (𝑥1, . . . , 𝑥𝑇 ) and outputs

a valid witness 𝑤𝑖∗ for instance 𝑥𝑖∗ ). We can now instantiate the SNARG with polylogarithmic verification cost

using the Sahai-Waters construction based on 𝑖O and one-way functions, and the somewhere extractable BARG for

an unbounded number of instances with the recent lattice-based scheme of Choudhuri et al. [CJJ21b]. This result

provides a basic feasibility result for the existence of fully succinct batch arguments for NP. However, instantiating
this compiler requires two sets of assumptions: 𝑖O and one-way functions for the underlying SNARG, and lattice-based

assumptions for the BARG.

1
One way to do this is to observe that the above approach already gives a fully succinct batch argument for index languages (i.e., a batch language

where the 𝑇 ≤ 2
𝜆
instances are defined to be (𝑥1, 𝑥2, . . . , 𝑥𝑇 ) = (1, 2, . . . ,𝑇 )). Then, we can apply the index BARG to BARG transformation

from Choudhuri et al. [CJJ21b], which relies on somewhere extractable commitments.
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Our results. In this work, we provide a direct route for constructing fully succinct BARGs that support an unbounded

number of statements from 𝑖O and one-way functions. Notably, combined with the breakthrough work of Jain, Lin,

and Sahai [JLS22], this provides an instantiation of fully succinct BARGs without lattice assumptions (in contrast

to the generic approach above). Using our construction, proving 𝑇 statements for an NP relation of size 𝑠 requires

a proof of length poly(𝜆). This is independent of both the number of statements 𝑇 and the size 𝑠 of the associated

NP relation. Like the scheme of Sahai and Waters, our construction satisfies non-adaptive soundness (and perfect

zero-knowledge). We summarize this instantiation in the informal theorem below:

Theorem 1.1 (Fully Succinct BARG (Informal)). Assuming the existence of indistinguishability obfuscation and one-way
functions, there exists a fully succinct, non-adaptively sound batch argument for NP. The batch argument satisfies perfect
zero knowledge.

Updatable batch arguments. We also show how to extend our construction to obtain an updatable BARG through

the use of somewhere statistically binding (SSB) hash functions [HW15, OPWW15]. In an updatable BARG, a prover

is able to take an existing proof 𝜋𝑇 on statements (𝑥1, . . . , 𝑥𝑇 ) along with a new statement 𝑥𝑇+1 with associated NP
witness𝑤𝑇+1 and update 𝜋 to a new proof 𝜋 ′ on instances (𝑥1, . . . , 𝑥𝑇 , 𝑥𝑇+1). Notably, the update algorithm does not
require the prover to have a witness for any statement other than 𝑥𝑇+1. This is useful in settings where the full set

of statements/witnesses are not fixed in advance (e.g., in a streaming setting). For example, a prover might want to

compute a summary of all transactions that occur in a given day and then provide a proof that the summary reflects

the complete set of transactions from the day. An updatable BARG would allow the prover to maintain just a single

proof that authenticates all of the summary reports from different days, and moreover, the prover does not have to
maintain the full list of transactions from earlier days to perform the update. We show how to obtain a fully succinct

updatable BARG in Section 5, and we summarize this instantiation in the following theorem.

Theorem 1.2 (Updatable BARG (Informal)). Assuming the existence of indistinguishability obfuscation and somewhere
statistically binding hash functions, there exists a fully succinct, non-adaptively sound updatable batch argument for NP.
The batch argument satisfies perfect zero knowledge.

1.1 Technical Overview
In this section, we provide a high-level overview of the techniques that we use to construct fully succinct BARGs.

Throughout this section, we consider the batch NP language of Boolean circuit satisfiability. Namely, the prover has

a Boolean circuit 𝐶 and a collection of instances 𝑥1, . . . , 𝑥𝑇 , and its goal is to convince the verifier that there exist

witnesses𝑤1, . . . ,𝑤𝑇 such that 𝐶 (𝑥𝑖 ,𝑤𝑖 ) = 1 for all 𝑖 ∈ [𝑇 ].

The Sahai-Waters SNARG. As a warmup, we recall the Sahai-Waters [SW14] construction of SNARGs from 𝑖O
for a single instance (i.e., the case where 𝑇 = 1). In this construction, the common reference string (CRS) consists

of two obfuscated programs: Prove and Verify. The Prove program takes in the circuit 𝐶 , the statement 𝑥 , and the

witness 𝑤 , and outputs a signature 𝜎 on (𝐶, 𝑥) if 𝐶 (𝑥,𝑤) = 1 and ⊥ otherwise. The proof is simply the signature

𝜋 = 𝜎 . The Verify program takes in the description of the circuit 𝐶 , the statement 𝑥 , and the proof 𝜋 = 𝜎 , and checks

whether 𝜎 is a valid signature on (𝐶, 𝑥) or not. The signature in this case just corresponds to the evaluation of a

pseudorandom function (PRF) on the input (𝐶, 𝑥). The key to the PRF is hard coded in the obfuscated proving and

verification programs. Security in turn, relies on the Sahai-Waters “punctured programming” technique.

Batch arguments for index languages. To construct fully succinct batch arguments, we start by considering

the special case of an index language (similar to the starting point in the lattice-based construction of Choud-

huri et al. [CJJ21b]). In a BARG for an index language, the statements are simply the indices (1, 2, . . . ,𝑇 ). The prover’s
goal is to convince the verifier that there exists𝑤𝑖 such that 𝐶 (𝑖,𝑤𝑖 ) = 1 for all 𝑖 ∈ [𝑇 ]. We start by showing how to

construct a fully succinct BARG for index languages with an unbounded number of instances (i.e., an index language

for arbitrary polynomial 𝑇 ). Our construction proceeds iteratively as follows. Like the Sahai-Waters construction, the

CRS in our scheme consists of the obfuscation of the following two programs:
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• The proving program takes in a circuit 𝐶 , an index 𝑖 , a witness𝑤𝑖 for instance 𝑖 , and a proof 𝜋 for the first 𝑖 − 1
statements. The program checks that 𝐶 (𝑖,𝑤𝑖 ) = 1 and that the proof 𝜋 on the first 𝑖 − 1 statements is valid.

When 𝑖 = 1, then we ignore the latter check. If both conditions are satisfied, the program outputs a signature

on statement (𝐶, 𝑖). Notably, the size of the prover program only scales with the size of the circuit and the

bit-length of the number of instances (instead of linearly with the number of instances).

Similar to the construction of Sahai and Waters, we define the “signature” on the statement (𝐶, 𝑖) to be

𝜋 = F(𝑘, (𝐶, 𝑖)), where F is a puncturable PRF [BW13, KPTZ13, BGI14],
2
and 𝑘 is a PRF key that is hard-coded

in the proving program.

• To verify a proof on 𝑇 statements (i.e., the instances 1, . . . ,𝑇 ), the verification program simply checks that

the proof 𝜋 is a valid signature on the pair (𝐶,𝑇 ). Based on how we defined the proving program above, this

corresponds to checking that 𝜋 = F(𝑘, (𝐶,𝑇 )). Now, to argue soundness using the Sahai-Waters punctured

programming paradigm, we modify this check and replace it with the check

G(𝜋) ?

= G(F(𝑘, (𝐶,𝑇 ))),

where G is a length-doubling pseudorandom generator (PRG). This will be critical for arguing soundness.

Soundness of the index BARG. To argue non-adaptive soundness of the above approach (i.e., the setting where

the statement is chosen independently of the CRS), we apply the punctured programming techniques of Sahai

and Waters [SW14]. Take any circuit 𝐶∗ and suppose there is an index 𝑖∗ where for all witnesses 𝑤 , we have that
𝐶∗ (𝑖∗,𝑤) = 0. Our soundness analysis proceeds in two steps:

• We first show that no efficient prover can compute an accepting proof 𝜋 on instances (1, . . . , 𝑖∗) for circuit 𝐶∗.

• Then, we show how to “propagate” the inability to construct a valid proof on index 𝑖∗ to all indices 𝑖 ≥ 𝑖∗. This
in turn suffices to argue non-adaptive soundness for an arbitrary polynomial number of statements.

We now sketch the argument for the first step. In the following overview, suppose the output space of the PRF F is

{0, 1}𝜆 and suppose that G : {0, 1}𝜆 → {0, 1}2𝜆 is a length-doubling PRG.

• The real CRS consists of obfuscations of the following proving and verification programs:

Prove(𝐶, 𝑖, 𝑤𝑖 , 𝜋 ) :
– If𝐶 (𝑖, 𝑤𝑖 ) = 0, output ⊥.
– If 𝑖 = 1, output F(𝑘, (𝐶, 𝑖 ) ) .
– If G(𝜋 ) = G(F(𝑘, (𝐶, 𝑖 − 1) ) ) , output F(𝑘, (𝐶, 𝑖 ) ) .
– Output ⊥.

Verify(𝐶, 𝑖, 𝜋 ) :
– If G(𝜋 ) = G(F(𝑘, (𝐶, 𝑖 ) ) ) , output 1
– Output 0.

• First, instead of embedding the real PRF key 𝑘 in the proving and verification programs, we embed a punctured

PRF key 𝑘 ′ that is punctured on the input (𝐶∗, 𝑖∗). Whenever the proving and verification program needs to

evaluate F on the punctured point (𝐶∗, 𝑖∗), we hard-code the value 𝑧 = F(𝑘, (𝐶∗, 𝑖∗)):
Prove(𝐶, 𝑖, 𝑤𝑖 , 𝜋 ) :
– If𝐶 (𝑖, 𝑤𝑖 ) = 0, output ⊥.
– If𝐶 = 𝐶∗ and 𝑖 = 𝑖∗, output ⊥.
– If 𝑖 = 1, output F(𝑘 ′, (𝐶, 𝑖 ) ) .
– If𝐶 = 𝐶∗ and 𝑖 − 1 = 𝑖∗:

∗ If G(𝜋 ) = G(𝑧 ) , output F(𝑘 ′, (𝐶, 𝑖 ) ) .
∗ Otherwise, output ⊥.

– If G(𝜋 ) = G(F(𝑘 ′, (𝐶, 𝑖 − 1) ) ) , output F(𝑘 ′, (𝐶, 𝑖 ) ) .
– Output ⊥.

Verify(𝐶, 𝑖, 𝜋 ) :
– If𝐶 = 𝐶∗ and 𝑖 = 𝑖∗, output 1 if G(𝜋 ) = G(𝑧 ) and 0 otherwise.

– If G(𝜋 ) = G(F(𝑘 ′, (𝐶, 𝑖 ) ) ) , output 1.
– Output 0.

2
A puncturable PRF is a PRF where the holder of the master secret key can “puncture” the key on an input 𝑥∗. The resulting punctured key 𝑘 ′ can
be used to evaluate the PRF on all inputs except 𝑥∗. The value of the PRF at 𝑥∗ remains pseudorandom (i.e., computationally indistinguishable

from random) even given the punctured key 𝑘 ′ . We provide the formal definition in Definition 2.2.
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Since the punctured PRF is functionality-preserving, on all inputs (𝐶, 𝑖) ≠ (𝐶∗, 𝑖∗), we have that F(𝑘, (𝐶, 𝑖)) =
F(𝑘 ′, (𝐶, 𝑖)). Since 𝑧 = F(𝑘, (𝐶∗, 𝑖∗)), the input/output behavior of the verification program is unchanged. Next,

𝐶 (𝑖∗,𝑤) = 0 for all𝑤 , so the input/output behavior of the proving program is also unchanged. Security of 𝑖O
then ensures that the obfuscated proving and verification programs are computationally indistinguishable from

those in the real CRS.

• Observe that both the proving and verification programs can be constructed given just the value of G(𝑧) without
necessarily knowing 𝑧 itself. We now replace the target value G(𝑧) with a uniform random string 𝑡

r← {0, 1}2𝜆 .
This follows by (1) puncturing security of F which says that the value of 𝑧 = F(𝑘, (𝐶∗, 𝑖∗)) is computationally

indistinguishable from a uniform string 𝑧
r← {0, 1}𝜆 ; and (2) by PRG security since the distribution of G(𝑧)

where 𝑧
r← {0, 1}𝜆 is computationally indistinguishable from sampling a uniform random string 𝑡

r← {0, 1}2𝜆 .
With these modifications, the proving and verification programs behave as follows:

Prove(𝐶, 𝑖, 𝑤𝑖 , 𝜋 ) :
– If𝐶 (𝑖, 𝑤𝑖 ) = 0, output ⊥.
– If𝐶 = 𝐶∗ and 𝑖 = 𝑖∗, output ⊥.
– If 𝑖 = 1, output F(𝑘 ′, (𝐶, 𝑖 ) ) .
– If𝐶 = 𝐶∗ and 𝑖 − 1 = 𝑖∗:

∗ If G(𝜋 ) = 𝑡 , output F(𝑘 ′, (𝐶, 𝑖 ) ) .
∗ Otherwise, output ⊥.

– If G(𝜋 ) = G(F(𝑘 ′, (𝐶, 𝑖 − 1) ) ) , output F(𝑘 ′, (𝐶, 𝑖 ) ) .
– Output ⊥.

Verify(𝐶, 𝑖, 𝜋 ) :
– If𝐶 = 𝐶∗ and 𝑖 = 𝑖∗, output 1 if G(𝜋 ) = 𝑡 and 0 otherwise.

– If G(𝜋 ) = G(F(𝑘 ′, (𝐶, 𝑖 ) ) ) , output 1.
– Output 0.

• Since 𝑡 is uniform in {0, 1}2𝜆 , the probability that 𝑡 is even in the image of G is at most 2
−𝜆
. Thus, in this

experiment, with probability 1 − 2−𝜆 , there does not exist any accepting proof 𝜋 for input (𝐶∗, 𝑖∗). This means

that we can now revert to using the PRF key 𝑘 in both the proving and verification programs and simply reject

all proofs on instance (𝐶∗, 𝑖∗). In other words, we can replace the proving and verification programs with

obfuscations of the following programs by appealing to the security of 𝑖O:
Prove(𝐶, 𝑖, 𝑤𝑖 , 𝜋 ) :
– If𝐶 (𝑖, 𝑤𝑖 ) = 0, output ⊥.
– If𝐶 = 𝐶∗ and 𝑖 = 𝑖∗, output ⊥.
– If 𝑖 = 1, output F(𝑘, (𝐶, 𝑖 ) ) .
– If𝐶 = 𝐶∗ and 𝑖 − 1 = 𝑖∗, output ⊥.
– If G(𝜋 ) = G(F(𝑘, (𝐶, 𝑖 − 1) ) ) , output F(𝑘 ′, (𝐶, 𝑖 ) ) .
– Output ⊥.

Verify(𝐶, 𝑖, 𝜋 ) :
– If𝐶 = 𝐶∗ and 𝑖 = 𝑖∗, output 0.
– If G(𝜋 ) = G(F(𝑘, (𝐶, 𝑖 ) ) ) , output 1.
– Output 0.

In this final experiment, there no longer exists an accepting proof 𝜋 on instances (1, . . . , 𝑖∗) for circuit 𝐶∗. Next, we
show how to extend this argument to additionally remove accepting proofs on the batch of instances (1, . . . , 𝑖∗, 𝑖∗ + 1).
We leverage a similar strategy as before:

• We replace the PRF key 𝑘 with a punctured key 𝑘 ′ that is punctured at (𝐶∗, 𝑖∗ + 1) in both the proving and

verification programs. Again, whenever the programs need to compute F(𝑘, (𝐶∗, 𝑖∗ + 1)), we substitute a

hard-coded value 𝑧 = F(𝑘, (𝐶∗, 𝑖∗ + 1)):
Prove(𝐶, 𝑖, 𝑤𝑖 , 𝜋 ) :
– If𝐶 (𝑖, 𝑤𝑖 ) = 0, output ⊥.
– If𝐶 = 𝐶∗ and 𝑖∗ ≤ 𝑖 ≤ 𝑖∗ + 1, output ⊥.
– If 𝑖 = 1, output F(𝑘 ′, (𝐶, 𝑖 ) ) .
– If𝐶 = 𝐶∗ and 𝑖 − 1 = 𝑖∗ + 1:

∗ If G(𝜋 ) = G(𝑧 ) , output F(𝑘 ′, (𝐶, 𝑖 ) ) .
∗ Otherwise, output ⊥.

– If G(𝜋 ) = G(F(𝑘 ′, (𝐶, 𝑖 − 1) ) ) , output F(𝑘 ′, (𝐶, 𝑖 ) ) .
– Output ⊥.

Verify(𝐶, 𝑖, 𝜋 ) :
– If𝐶 = 𝐶∗, and 𝑖 = 𝑖∗, output 0.
– If𝐶 = 𝐶∗, 𝑖 = 𝑖∗ + 1, output 1 if G(𝜋 ) = G(𝑧 ) and 0 otherwise.

– If G(𝜋 ) = G(F(𝑘 ′, (𝐶, 𝑖 ) ) ) , output 1.
– Output 0.

Note that to simplify the notation, we merged the individual checks (𝐶 = 𝐶∗ and 𝑖 = 𝑖∗) and (𝐶 = 𝐶∗ and
𝑖 − 1 = 𝑖∗) in the proving program into a single check that outputs ⊥ if satisfied.

• Observe once again that the description of the proving and verification programs only depends on G(𝑧) (and not
𝑧 itself). By the same sequence of steps as above, we can appeal to puncturing security of F, pseudorandomness
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of G, and security of 𝑖O to show that the obfuscated proving and verification programs are computationally

indistinguishable from the following programs:

Prove(𝐶, 𝑖, 𝑤𝑖 , 𝜋 ) :
– If𝐶 (𝑖, 𝑤𝑖 ) = 0, output ⊥.
– If𝐶 = 𝐶∗ and 𝑖∗ ≤ 𝑖 ≤ 𝑖∗ + 2, output ⊥.
– If 𝑖 = 1, output F(𝑘, (𝐶, 𝑖 ) ) .
– If G(𝜋 ) = G(F(𝑘, (𝐶, 𝑖 − 1) ) ) , output F(𝑘, (𝐶, 𝑖 ) ) .
– Output ⊥.

Verify(𝐶, 𝑖, 𝜋 ) :
– If𝐶 = 𝐶∗ and 𝑖∗ ≤ 𝑖 ≤ 𝑖∗ + 1, output 0.
– If G(𝜋 ) = G(F(𝑘, (𝐶, 𝑖 ) ) ) , output 1.
– Output 0.

We can repeat the above strategy any polynomial number of times. In particular, for any 𝑇 = poly(𝜆), we can replace

the obfuscated programs in the CRS with the following programs:

Prove(𝐶, 𝑖, 𝑤𝑖 , 𝜋 ) :
– If𝐶 (𝑖, 𝑤𝑖 ) = 0, output ⊥.
– If𝐶 = 𝐶∗ and 𝑖∗ ≤ 𝑖 ≤ 𝑇 + 1, output ⊥.
– If 𝑖 = 1, output F(𝑘, (𝐶, 𝑖 ) ) .
– If G(𝜋 ) = G(F(𝑘, (𝐶, 𝑖 − 1) ) ) , output F(𝑘, (𝐶, 𝑖 ) ) .
– Output ⊥.

Verify(𝐶, 𝑖, 𝜋 ) :
– If𝐶 = 𝐶∗ and 𝑖∗ ≤ 𝑖 ≤ 𝑇 , output 0.

– If G(𝜋 ) = G(F(𝑘, (𝐶, 𝑖 ) ) ) , output 1.
– Output 0.

By security of 𝑖O, the puncturable PRF, and the PRG, this modified CRS is computationally indistinguishable from the

real CRS. However, when the verification program is implemented as above, there are no accepting proofs on input

(𝐶∗, 𝑖) for any 𝑖∗ ≤ 𝑖 ≤ 𝑇 . Moreover, the size of the obfuscated programs only depends on log𝑇 (and not 𝑇 ). As such,

the scheme supports an arbitrary polynomial number of statements. We give the full analysis in Section 3.

Adaptive soundness and zero knowledge. Using standard complexity leveraging techniques, we show how to

extend our BARG for index languages with non-adaptive soundness into one with adaptive soundness in Appendix A.

We note that due to the reliance on complexity leveraging, the resulting BARGs we obtain are no longer fully succinct;

the proof size now scales with the size of the NP relation, but critically, still sublinearly in the number of instances.

Moreover, in the case of general NP languages, our adaptively-sound construction has an expensive verification
procedure (i.e., which runs in time poly(𝜆,𝑇 , 𝑠), where𝑇 is the number of instances and 𝑠 is the size of the underlying

NP relation). We also note that much like the construction of Sahai and Waters, both our fully succinct non-adaptive

BARG and our adaptive BARG satisfy perfect zero-knowledge.

From index languages to general NP languages. Next, we show how to bootstrap our fully succinct BARG for

index languages to obtain a fully succinct BARG for NP that supports an arbitrary polynomial number of statements.

In this setting, the prover has a Boolean circuit 𝐶 and arbitrary instances 𝑥1, . . . , 𝑥𝑇 ; the prover’s goal is to convince

the verifier that for all 𝑖 ∈ [𝑇 ], there exists𝑤𝑖 such that 𝐶 (𝑥𝑖 ,𝑤𝑖 ) = 1.

The key difference between general NP languages and index languages is that the tuple of statements (𝑥1, . . . , 𝑥𝑇 )
no longer has a succinct description. This property was critical in our soundness analysis above. The soundness

argument we described above works by embedding the instances 𝑥𝑖∗ , 𝑥𝑖∗+1, . . . , 𝑥𝑇 into the proving and verification

programs (where 𝑥𝑖∗ denotes a false instance) and have the programs always reject proofs on these statements (with

respect to the target circuit 𝐶∗). For index languages, these instances just correspond to the interval [𝑖∗ + 1,𝑇 ], which
can be described succinctly with 𝑂 (log𝑇 ) bits. When 𝑥𝑖∗ , 𝑥𝑖∗+1, . . . , 𝑥𝑇 are arbitrary instances, they do not have a

short description, and we cannot embed these instances into the proving and verification programs without imposing

an a priori bound on the number of instances.

Instead of modifying the above construction, we instead adopt the approach of Choudhuri et al. [CJJ21b] who

previously showed how to generically upgrade any BARG for index languages to a BARG for NP by relying on

somewhere extractable commitment schemes. If the underlying BARG for index languages supports an unbounded

number of instances, then the transformed scheme also does. In our setting, we observe that if we only require

(non-adaptive) soundness (as opposed to “somewhere extraction”), we can use a positional accumulator [KLW15] in

place of the somewhere extractable commitment scheme. The advantage of basing the transformation on positional

accumulators is that we can construct positional accumulators directly from indistinguishability obfuscation and

one-way functions. Applied to the above index BARG construction (see also Section 3), we obtain a fully succinct

6



batch argument for NP from the same set of assumptions. In contrast, if we invoke the compiler of Choudhuri et al.,

we would need to additionally assume the existence of a somewhere extractable commitment scheme which cannot
be based solely on indistinguishability obfuscation together with one-way functions in a fully black-box way [AS15].

Very briefly, in the Choudhuri et al. approach, to construct a batch argument on the tuple (𝐶, 𝑥1, . . . , 𝑥𝑇 ), the
prover first computes a succinct hash 𝑦 of the statements (𝑥1, . . . , 𝑥𝑇 ). Using 𝑦, they define an index relation where

instance 𝑖 is satisfied if there exists an opening (𝑥𝑖 , 𝜋𝑖 ) to 𝑦 at index 𝑖 , and moreover, there exists a satisfying witness

𝑤𝑖 where𝐶 (𝑥𝑖 ,𝑤𝑖 ) = 1. The proof then consists of the hash 𝑦 and a proof for the index relation. In this work, we show

that using a positional accumulator to instantiate the hash function suffices to obtain a BARG with non-adaptive

soundness. We provide the full details in Section 4.

Updatable BARGs for NP. Our techniques also readily generalize to obtain an updatable batch argument (for

general NP) from the same underlying set of assumptions. Recall that in an updatable BARG, a prover can take an

existing proof 𝜋 on a tuple (𝐶, 𝑥1, . . . , 𝑥𝑇 ) together with a new statement 𝑥𝑇+1 and witness𝑤𝑇+1 and extend 𝜋 to a

new proof 𝜋 ′ on the tuple (𝐶, 𝑥1, . . . , 𝑥𝑇 , 𝑥𝑇+1). One way to construct an updatable BARG is to recursive compose a

succinct non-interactive argument of knowledge [BCCT13] or a rate-1 batch argument [DGKV22].
3
Here, we opt for

a more direct approach based on the above techniques, which does not rely on recursive composition.

First, our index BARG construction described above is already updatable. However, if we apply the Choud-

huri et al. [CJJ21b] transformation to obtain a BARG for NP, the resulting scheme is no longer updatable. This is

because the transformation requires the prover to commit to the complete set of statements and then argue that the

statement associated with each index is true (which in turn requires knowledge of all of the associated witnesses).

Instead, we take a different and more direct tree-based approach. For ease of exposition, suppose first that 𝑇 = 2
𝑘

for some integer 𝑘 . Our construction will rely on a hash function 𝐻 . Given a tuple of 𝑇 statements (𝑥1, . . . , 𝑥𝑇 ), we
construct a binary Merkle hash tree [Mer87] of depth 𝑘 as follows: the leaves of the tree are labeled 𝑥1, . . . , 𝑥𝑇 , and

the value of each internal node 𝑣 is the hash 𝐻 (𝑣1, 𝑣2) of its two children 𝑣1 and 𝑣2. The output ℎ of the hash tree is

the value at the root node, and we denote this by writing ℎ = 𝐻Merkle (𝑥1, . . . , 𝑥𝑇 ). A proof on the tuple of instances

(𝑥1, . . . , 𝑥𝑇 ) is simply a signature on the root node 𝐻Merkle (𝑥1, . . . , 𝑥𝑇 ). Now, instead of providing an obfuscated

program that takes a proof on index 𝑖 and extends it into a proof on index 𝑖 + 1, we define our obfuscated proving

program to take in two signatures on hash values ℎ1 = 𝐻Merkle (𝑥1, . . . , 𝑥𝑇 ) and ℎ2 = 𝐻Merkle (𝑦1, . . . , 𝑦𝑇 ) and output

a signature on the hash value ℎ = 𝐻 (ℎ1, ℎ2) = 𝐻Merkle (𝑥1, . . . , 𝑥𝑇 , 𝑦1, . . . , 𝑦𝑇 ). This new “two-to-one” obfuscated

program allows us to merge two proofs on 𝑇 instances into a single proof on 2𝑇 instances. More generally, the

(obfuscated) proving program in the CRS now supports the following operations:

• Signing a single instance: Given a circuit 𝐶 , a statement 𝑥 , and a witness𝑤 , output a signature on (𝐶, 𝑥, 1) if
𝐶 (𝑥,𝑤) = 1 and ⊥ otherwise. This can be viewed as a signature on a hash tree of depth 1.

• Merge trees: Given a circuit 𝐶 , hashes ℎ1, ℎ2 associated with two trees of depth 𝑘 , along with signatures 𝜎1, 𝜎2,

check that 𝜎1 is a valid signature on (𝐶,ℎ1, 𝑘), and 𝜎2 is a valid signature on (𝐶,ℎ2, 𝑘). If both checks pass,

output a signature on (𝐶,𝐻 (ℎ1, ℎ2), 𝑘 + 1). This is a signature on a hash tree of depth 𝑘 + 1.

To construct a proof on instances (𝑥1, . . . , 𝑥𝑇 ) using witnesses (𝑤1, . . . ,𝑤𝑇 ) for arbitrary𝑇 , we now proceed as follows:

• Run the (obfuscated) proving algorithm on (𝐶, 𝑥1,𝑤1) to obtain a signature 𝜎 on (𝐶, 𝑥1, 1). The initial proof 𝜋 is

simply the set {(1, 𝑥1, 𝜎)}.

• Suppose 𝜋 = {(𝑖, ℎ𝑖 , 𝜎𝑖 )} is a proof on the first 𝑇 − 1 statements. To update the proof 𝜋 to a proof on the first 𝑇

statements, first run the proving algorithm on (𝐶, 𝑥𝑇 ,𝑤𝑇 ) to obtain a signature 𝜎 on (𝐶, 𝑥𝑇 , 1). Now, we apply
the following merging procedure:

4

– Initialize (𝑘, ℎ′, 𝜎 ′) ← (1, 𝑥𝑇 , 𝜎) and 𝜋 ′ ← 𝜋 .

– While there exists (𝑖, ℎ𝑖 , 𝜎𝑖 ) ∈ 𝜋 ′ where 𝑖 = 𝑘 , run the (obfuscated) merge program on (𝐶,ℎ𝑖 , ℎ′, 𝑘, 𝜎𝑖 , 𝜎 ′)
to obtain a signature 𝜎 ′′ on (𝐶,𝐻 (ℎ𝑖 , ℎ′), 𝑘 + 1). Remove (𝑖, ℎ𝑖 , 𝜎𝑖 ) from 𝜋 ′ and update (𝑘, ℎ′, 𝜎 ′) ←
(𝑘 + 1, 𝐻 (ℎ𝑖 , ℎ′), 𝜎 ′′).

3
If the underlying BARG is not rate-1, then we can only compose a bounded number of times.

4
In our formal construction (Section 5), we defer the “merging” step to the subsequent update.
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– Add the tuple (𝑘, ℎ′, 𝜎 ′′) to 𝜋 ′ at the conclusion of the merging process.

Observe that the update procedure only requires knowledge of the new statement 𝑥𝑇 , its witness𝑤𝑇 , and the

proof on the previous statements 𝜋 ; it does not require knowledge of the witnesses to the previous statements.

Moreover, observe that the number of hash-signature tuples in 𝜋 is always bounded by log𝑇 .

To verify a proof 𝜋 = {(𝑖, ℎ𝑖 , 𝜎𝑖 )} with respect to a Boolean circuit 𝐶 , the verifier checks that 𝜎𝑖 is a valid signature on

(𝐶,ℎ𝑖 , 𝑖) for all tuples in 𝜋 , and moreover, that each of the intermediate hash values ℎ𝑖 are correctly computed from

(𝑥1, . . . , 𝑥𝑇 ). Non-adaptive soundness of the above construction follows by a similar argument as that for our index

BARG. Notably, we show that if an instance 𝑥𝑖∗ is false, then the proving program will never output a signature on

input (𝐶, 𝑥𝑖∗ , 1). Using the same punctured programming technique sketched above, we can again “propagate” the

inability to compute a signature on the leaf node 𝑖∗ to argue that any efficient prover cannot compute a signature

on any node that is an ancestor of 𝑥𝑖∗ in the hash tree. Here, we will need to rely on the underlying hash function

being somewhere statistically binding [HW15, OPWW15]. By a hybrid argument, we can eventually move to an

experiment where there are no accepting proofs on tuples that contain 𝑥𝑖∗ , and soundness follows. We provide the

formal description in Section 5.

2 Preliminaries
Throughout this work, we write 𝜆 to denote the security parameter. We say a function 𝑓 is negligible in the security

parameter 𝜆 if 𝑓 = 𝑜 (𝜆−𝑐 ) for all 𝑐 ∈ N. We denote this by writing 𝑓 (𝜆) = negl(𝜆). We write poly(𝜆) to denote

a function that is bounded by a fixed polynomial in 𝜆. We say an algorithm is efficient if it runs in probabilistic

polynomial time (PPT) in the length of its input. Throughout this work, we consider security against non-uniform
adversaries (indexed by 𝜆) that run in deterministic polynomial time in the length of their input and takes in an advice

string of poly(𝜆) size.5
For a positive integer 𝑛 ∈ N, we write [𝑛] to denote the set {1, . . . , 𝑛} and [0, 𝑛] to denote the set {0, . . . , 𝑛}. For

a finite set 𝑆 , we write 𝑥
r← 𝑆 to denote that 𝑥 is sampled uniformly at random from 𝑆 . For a distribution 𝐷 , we

write 𝑥 ← 𝐷 to denote that 𝑥 is sampled from 𝐷 . We say an event 𝐸 occurs with overwhelming probability if its

complement occurs with negligible probability.

Some of our constructions in this work will rely on hardness against adversaries running in sub-exponential time

or achieving sub-exponential advantage (i.e., success probability). To make this explicit, we formulate our security

definitions in the language of (𝜏, 𝜀)-security, where 𝜏 = 𝜏 (𝜆) and 𝜀 = 𝜀 (𝜆). Here, we say a primitive is (𝜏, 𝜀)-secure if
for all (non-uniform)

6
polynomial time adversaries running in time 𝜏 (𝜆) and all sufficiently large 𝜆, the adversary’s

advantage is bounded by 𝜀 (𝜆). For ease of exposition, we will also write that a primitive is “secure” (without an

explicit (𝜏, 𝜀) characterization) if for every polynomial 𝜏 = poly(𝜆), there exists a negligible function 𝜀 (𝜆) = negl(𝜆)
such that the primitive is (𝜏, 𝜀)-secure. We now review the main cryptographic primitives we use in this work.

Definition 2.1 (Indistinguishability Obfuscation [BGI
+
01]). An indistinguishability obfuscator for a circuit class

C = {C𝜆}𝜆∈N is a PPT algorithm 𝑖O(·, ·) with the following properties:

• Correctness: For all security parameters 𝜆 ∈ N, all circuits 𝐶 ∈ C𝜆 , and all inputs 𝑥 ,

Pr[𝐶′ (𝑥) = 𝐶 (𝑥) : 𝐶′ ← 𝑖O(1𝜆,𝐶)] = 1.

• Security: We say that 𝑖O is (𝜏, 𝜀)-secure if for all adversaries A running in time at most 𝜏 (𝜆), there exists
𝜆A ∈ N, such that for all security parameters 𝜆 > 𝜆A , all pairs of circuits 𝐶0,𝐶1 ∈ C𝜆 where 𝐶0 (𝑥) = 𝐶1 (𝑥) for
all inputs 𝑥 , we have that ���Pr[A(𝑖O(1𝜆,𝐶0)) = 1] − Pr[A(𝑖O(1𝜆,𝐶1)) = 1]

��� ≤ 𝜀 (𝜆).
5
Recall that in the non-uniform model, we can derandomize any adversary by fixing its random coins to the choice that maximizes the adversary’s

advantage; this fixed set of coins is in turn provided to the adversary as advice.
6
In Remark 3.10, we clarify why we rely on hardness against non-uniform adversaries in our constructions.
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Definition 2.2 (Puncturable PRF [BW13, KPTZ13, BGI14]). A puncturable pseudorandom function family on key

space K = {K𝜆}𝜆∈N, domain X = {X𝜆}𝜆∈N and range Y = {Y𝜆}𝜆∈N consists of a tuple of PPT algorithms ΠPPRF =

(KeyGen, Eval, Puncture) with the following properties:

• KeyGen(1𝜆) → 𝐾 : On input the security parameter 𝜆, the key-generation algorithm outputs a key 𝐾 ∈ K𝜆 .

• Puncture(𝐾, 𝑆) → 𝐾{𝑆}: On input the PRF key 𝐾 ∈ K𝜆 and a set 𝑆 ⊆ X𝜆 , the puncturing algorithm outputs a

punctured key 𝐾{𝑆} ∈ K𝜆 .

• Eval(𝐾, 𝑥) → 𝑦: On input a key 𝐾 ∈ K𝜆 and an input 𝑥 ∈ X𝜆 , the evaluation algorithm outputs a value 𝑦 ∈ Y𝜆 .

In addition, ΠPPRF should satisfy the following properties:

• Functionality-preserving: For every polynomial 𝑠 = 𝑠 (𝜆), every security parameter 𝜆 ∈ N, every subset

𝑆 ⊆ X𝜆 of size at most 𝑠 , and every 𝑥 ∈ X𝜆\𝑆 ,

Pr[Eval(𝐾, 𝑥) = Eval(𝐾{𝑆}, 𝑥) : 𝐾 ← KeyGen(1𝜆), 𝐾{𝑆} ← Puncture(𝐾, 𝑆)] = 1.

• Punctured pseudorandomness: For a bit 𝑏 ∈ {0, 1} and a security parameter 𝜆, we define the (selective)

punctured pseudorandomness game between an adversary A and a challenger as follows:

– At the beginning of the game, the adversary commits to a set 𝑆 ⊆ X𝜆 .
– The challenger then samples a key𝐾 ← KeyGen(1𝜆), constructs the punctured key𝐾{𝑆} ← Puncture(𝐾, 𝑆),

and gives 𝐾{𝑆} to A.

– If 𝑏 = 0, the challenger gives the set {(𝑥𝑖 , Eval(𝐾, 𝑥𝑖 ))}𝑥𝑖 ∈𝑆 to A. If 𝑏 = 1, the challenger gives the set

{(𝑥𝑖 , 𝑦𝑖 )}𝑥𝑖 ∈𝑆 where each 𝑦𝑖
r← Y𝜆 .

– At the end of the game, the adversary outputs a bit 𝑏′ ∈ {0, 1}, which is the output of the experiment.

We say that ΠPPRF satisfies (𝜏, 𝜀)-punctured pseudorandomness if for all adversariesA running in time at most

𝜏 (𝜆), there exists 𝜆A such that for all security parameters 𝜆 > 𝜆A ,

| Pr[𝑏′ = 1 : 𝑏 = 0] − Pr[𝑏′ = 1 : 𝑏 = 1] | ≤ 𝜀 (𝜆)

in the punctured pseudorandomness security game.

For ease of notation, we will often write 𝐹 (𝐾, 𝑥) to represent Eval(𝐾, 𝑥).

Definition 2.3 (Pseudorandom Generator). A pseudorandom generator (PRG) on domain X = {X𝜆}𝜆∈N and range

Y = {Y𝜆}𝜆∈N is a deterministic polynomial-time algorithm PRG : X → Y. We say that the PRG is (𝜏, 𝜀)-secure if for
all adversaries A running in time at most 𝜏 (𝜆), there exists 𝜆A ∈ N, such that for all security parameters 𝜆 > 𝜆A , we
have that ��

Pr[A(PRG(𝑥)) = 1 : 𝑥 ← X𝜆] − Pr[A(𝑦) = 1 : 𝑦 ← Y𝜆]
�� ≤ 𝜀 (𝜆).

2.1 Batch Arguments for NP
We now recall the notion of a non-interactive batch argument (BARG) for NP. We focus specifically on the language

of Boolean circuit satisfiability.

Definition 2.4 (Circuit Satisfiability). For a Boolean circuit𝐶 : {0, 1}ℓ × {0, 1}𝑚 → {0, 1}, and a statement 𝑥 ∈ {0, 1}𝑛 ,
we define the language of Boolean circuit satisfiability LCSAT as follows:

LCSAT = {(𝐶, 𝑥) | ∃𝑤 ∈ {0, 1}𝑚 : 𝐶 (𝑥,𝑤) = 1}.

Definition 2.5 (Batch Circuit Satisfiability). For a Boolean circuit 𝐶 : {0, 1}ℓ × {0, 1}𝑚 → {0, 1}, positive integer
𝑡 ∈ N, and statements 𝑥1, . . . , 𝑥𝑡 ∈ {0, 1}𝑛 , we define the batch circuit satisfiability language as follows:

LBatchCSAT,𝑡 = {(𝐶, 𝑥1, . . . , 𝑥𝑡 ) | ∀𝑖 ∈ [𝑡], ∃𝑤𝑖 ∈ {0, 1}𝑚 : 𝐶 (𝑥𝑖 ,𝑤𝑖 ) = 1}.
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Definition 2.6 (Batch Argument for NP). A batch argument (BARG) for the language of Boolean circuit satisfiability

consists of a tuple of PPT algorithms ΠBARG = (Gen, P,V) with the following properties:

• Gen(1𝜆, 1ℓ , 1𝑇 , 1𝑠 ) → crs: On input the security parameter 𝜆, a bound on the instance size ℓ , a bound on the

number of statements𝑇 , and a bound on the circuit size 𝑠 , the generator algorithm outputs a common reference

string crs.

• P(crs,𝐶, (𝑥1, . . . , 𝑥𝑡 ), (𝑤1, . . . ,𝑤𝑡 )) → 𝜋 : On input the common reference string crs, a Boolean circuit𝐶 : {0, 1}ℓ×
{0, 1}𝑚 → {0, 1}, a list of statements 𝑥1, . . . , 𝑥𝑡 ∈ {0, 1}ℓ , and a list of witnesses𝑤1, . . . ,𝑤𝑡 ∈ {0, 1}𝑚 , the prove
algorithm outputs a proof 𝜋 .

• V(crs,𝐶, (𝑥1, . . . , 𝑥𝑡 ), 𝜋) → {0, 1}: On input the common reference string crs, a Boolean circuit 𝐶 : {0, 1}ℓ ×
{0, 1}𝑚 → {0, 1}, a list of statements 𝑥1, . . . , 𝑥𝑡 ∈ {0, 1}ℓ , and a proof 𝜋 , the verification algorithm outputs a bit

𝑏 ∈ {0, 1}.

Moreover, the BARG scheme should satisfy the following properties:

• Completeness: For all security parameters 𝜆 ∈ N and bounds ℓ ∈ N, 𝑠 ∈ N, 𝑇 ∈ N, 𝑡 ≤ 𝑇 , Boolean circuits

𝐶 : {0, 1}ℓ × {0, 1}𝑚 → {0, 1} of size at most 𝑠 , all statements 𝑥1, . . . , 𝑥𝑡 ∈ {0, 1}𝑛 , and all witnesses𝑤1, . . . ,𝑤𝑡

where 𝐶 (𝑥𝑖 ,𝑤𝑖 ) = 1 for all 𝑖 ∈ [𝑡], it holds that

Pr[V(crs,𝐶, (𝑥1, . . . , 𝑥𝑡 ), 𝜋) = 1 : crs← Gen(1𝜆, 1ℓ , 1𝑇 , 1𝑠 ), 𝜋 ← P(crs,𝐶, (𝑥1, . . . , 𝑥𝑡 ), (𝑤1, . . . ,𝑤𝑡 ))] = 1.

• Succinctness: We require ΠBARG satisfy two notions of succinctness:

– Succinct proof size: There exists a universal polynomial poly(·, ·, ·) such that for all 𝑡 ≤ 𝑇 , |𝜋 | =
poly(𝜆, log 𝑡, 𝑠) in the completeness experiment defined above. We say the proof is fully succinct if for all
𝑡 ≤ 𝑇 , we have that |𝜋 | = poly(𝜆, log 𝑡, log 𝑠).

– Succinct verification time: There exists a universal polynomial poly(·, ·, ·) such that for all 𝑡 ≤ 𝑇 , the
running time of V(crs,𝐶, (𝑥1, . . . , 𝑥𝑡 ), 𝜋) is bounded by poly(𝜆, 𝑡, ℓ) + poly(𝜆, log 𝑡, 𝑠) in the completeness

experiment defined above.

• Soundness: We consider two different notions of soundness:

– Non-adaptive soundness: For a security parameter 𝜆, we define the non-adaptive soundness experiment

between a challenger and an adversary A as follows:

∗ AlgorithmA outputs a bound on the number of instances 1
𝑇
, the maximum circuit size 1

𝑠
, a Boolean

circuit 𝐶 : {0, 1}ℓ × {0, 1}𝑚 → {0, 1} of size at most 𝑠 (𝜆) and statements 𝑥1, . . . , 𝑥𝑡 ∈ {0, 1}ℓ . Here, we
require that 𝑡 ≤ 𝑇 .

∗ The challenger samples crs← Gen(1𝜆, 1ℓ , 1𝑇 , 1𝑠 ) and sends crs to A.

∗ Algorithm A outputs a proof 𝜋 .

∗ The experiment outputs 𝑏 = 1 if V(crs,𝐶, (𝑥1, . . . , 𝑥𝑡 ), 𝜋) = 1 and (𝐶, (𝑥1, . . . , 𝑥𝑡 )) ∉ LBatchCSAT,𝑡 .

Otherwise it outputs 𝑏 = 0.

The scheme satisfies non-adaptive soundness if for every non-uniform polynomial time adversary A,

there exists a negligible function negl(·) such that Pr[𝑏 = 1] = negl(𝜆) in the non-adaptive soundness

experiment.

– Adaptive soundness: For a security parameter 𝜆, we define the adaptive soundness experiment between

a challenger and an adversary A as follows:

∗ Algorithm A outputs a bound on the number of instances 1
𝑇
, the maximum circuit size 1

𝑠
, and the

input size 1
ℓ
.

∗ The challenger samples crs← Gen(1𝜆, 1ℓ , 1𝑇 , 1𝑠 ) and sends crs to A.

∗ Algorithm A outputs a Boolean circuit 𝐶 : {0, 1}ℓ × {0, 1}𝑚 → {0, 1} of size at most 𝑠 (𝜆), statements

𝑥1, . . . , 𝑥𝑡 ∈ {0, 1}ℓ (𝜆) , and a proof 𝜋 . Here, we require that 𝑡 ≤ 𝑇 .
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∗ The experiment outputs 𝑏 = 1 if V(crs,𝐶, (𝑥1, . . . , 𝑥𝑡 ), 𝜋) = 1 and (𝐶, (𝑥1, . . . , 𝑥𝑡 )) ∉ LBatchCSAT,𝑡 .

Otherwise it outputs 𝑏 = 0.

The scheme satisfies adaptive soundness if for every non-uniform polynomial time adversary A, there

exists a negligible function negl(·) such that Pr[𝑏 = 1] = negl(𝜆) in the adaptive soundness experiment.

• Perfect zero knowledge: The scheme satisfies perfect zero knowledge if there exists a PPT simulator S such

that for all 𝜆 ∈ N, all bounds ℓ ∈ N, 𝑇 ∈ N, 𝑠 ∈ N, all 𝑡 ≤ 𝑇 , all tuples (𝐶, 𝑥1, . . . , 𝑥𝑡 ) ∈ LBatchCSAT,𝑡 , and all

witnesses (𝑤1, . . . ,𝑤𝑡 ) where 𝐶 (𝑥𝑖 ,𝑤𝑖 ) = 1 for all 𝑖 ∈ [𝑡], the following distributions are identically distributed:

– Real distribution: Sample crs← Gen(1𝜆, 1ℓ , 1𝑇 , 1𝑠 ) and 𝜋 ← P(crs,𝐶, (𝑥1, . . . , 𝑥𝑡 ), (𝑤1, . . . ,𝑤𝑡 )). Output
(crs, 𝜋).

– Simulated distribution: Output (crs∗, 𝜋∗) ← S(1𝜆, 1𝑇 , 1𝑠 ,𝐶, (𝑥1, . . . , 𝑥𝑡 )).

Definition 2.7 (BARGs for Arbitrary Number of Statements). We say that a BARG scheme ΠBARG = (Gen, P,V) sup-
ports an arbitrary polynomial number of statements if the algorithmGen in Definition 2.6 runs in time poly(𝜆, ℓ, 𝑠, log𝑇 ),
and correspondingly, outputs a CRS of size poly(𝜆, ℓ, 𝑠, log𝑇 ). Notably, the dependence on the bound 𝑇 is polyloga-
rithmic. In this case, we implicitly set 𝑇 = 2

𝜆
as the input to the Gen algorithm. Observe that in this case, the P and V

algorithms can now take any arbitrary polynomial number 𝑡 = 𝑡 (𝜆) of instances as input where 𝑡 ≤ 2
𝜆
.

Batch arguments for index languages. Similar to [CJJ21b], we also consider the special case of batch arguments

for index languages. We recall the relevant definitions here.

Definition 2.8 (Batch Circuit Satisfiability for Index Languages). For a positive integer 𝑡 ≤ 2
𝜆
, we define the batch

circuit satisfiability problem for index languages LBatchCSATindex,𝑡 = {(𝐶, 𝑡) | ∀𝑖 ∈ [𝑡], ∃𝑤𝑖 ∈ {0, 1}𝑚 : 𝐶 (𝑖,𝑤𝑖 ) = 1}
where 𝐶 : {0, 1}𝜆 × {0, 1}𝑚 → {0, 1} is a Boolean circuit.

7

Definition 2.9 (Batch Arguments for Index Languages). A BARG for index languages is a tuple of PPT algorithms

ΠIndexBARG = (Gen, P,V) that satisfy Definition 2.7 for the index language LBatchCSATindex,𝑡 . Since we are considering

index languages, the statements always consist of the indices (1, . . . , 𝑡). As such, we can modify the P and V algorithms

in Definition 2.6 to take as input the single index 𝑡 (of length 𝜆 bits) rather than the tuple of statements (𝑥1, . . . , 𝑥𝑡 ).
Similarly, the generator algorithm Gen only needs the security parameter and the bound on the circuit size 𝑠; the

bound on the instance size is simply 𝜆 (to support up to 𝑇 = 2
𝜆
instances). Specifically, we modify the syntax as

follows:

• Gen(1𝜆, 1𝑠 ) → crs: On input the security parameter 𝜆 and a bound on the circuit size 𝑠 , the generator algorithm

outputs a common reference string crs.

• P(crs,𝐶, 𝑡, (𝑤1, . . . ,𝑤𝑡 )) → 𝜋 : The prove algorithm takes as input the common reference string crs, a Boolean
circuit𝐶 : {0, 1}𝜆 × {0, 1}𝑚 → {0, 1}, the index 𝑡 ∈ N, and a list of witnesses𝑤1, . . . ,𝑤𝑡 ∈ {0, 1}𝑚 , and outputs a

proof 𝜋 .

• V(crs,𝐶, 𝑡, 𝜋) → {0, 1}: The verification algorithm takes as input the common reference string crs, a Boolean
circuit 𝐶 : {0, 1}𝜆 × {0, 1}𝑚 → {0, 1}, the index 𝑡 ∈ N, and a proof 𝜋 , and outputs a bit 𝑏 ∈ {0, 1}.

The completeness and zero-knowledge properties are the same as those in Definition 2.6 (adapted to the unbounded

case where 𝑇 = 2
𝜆
). We define soundness analogously, but require that the adversary outputs the bound on the

number of instances 𝑇 in binary and the challenge number of instances 𝑡 in unary. Thus, the adversary is still

restricted to choosing a polynomially-bounded number of instances 𝑡 = poly(𝜆) even if the upper bound on 𝑡 is𝑇 = 2
𝜆
.

For succinctness, we require the following stronger property on the verification time:

• Succinct verification time: For all 𝑡 ≤ 2
𝜆
, the verification algorithm V(crs,𝐶, 𝑡, 𝜋) runs in time poly(𝜆, 𝑠) in

the completeness experiment.

7
Here, and throughout the exposition, we associate elements of the set [2𝜆 ] with their binary representation in {0, 1}𝜆 , and the value 2

𝜆
with the

all-zeroes string 0
𝜆
.
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3 Non-Adaptive Batch Arguments for Index Languages
In this section, we show how to construct a batch argument for index languages that can support an arbitrary

polynomial number of statements. We show how to obtain a construction with non-adaptive soundness. As described

in Section 1.1, we include two obfuscated programs in the CRS to enable sequential proving and batch verification:

• The proving program takes as input a Boolean circuit𝐶 : {0, 1}𝜆×{0, 1}𝑚 → {0, 1}, an instance number 𝑖 ∈ [2𝜆],
a witness𝑤 ∈ {0, 1}𝑚 for instance 𝑖 as well as a proof 𝜋 for the first 𝑖 − 1 instances. The program validates the

proof on the first 𝑖 − 1 instances and that 𝐶 (𝑖,𝑤) = 1. If both checks pass, then the program outputs a proof for

instance 𝑖 . Otherwise, it outputs ⊥.

• The verification program takes as input the circuit 𝐶 , the final instance number 𝑡 ∈ [2𝜆], and a proof 𝜋 . It

outputs a bit indicating whether the proof is valid or not. In this case, outputting 1 indicates that 𝜋 is a valid

proof on instances (1, . . . , 𝑡).

Construction 3.1 (Batch Argument for Index Languages). Let 𝜆 be a security parameter and 𝑠 = 𝑠 (𝜆) be a bound
on the size of the Boolean circuit. We construct a BARG scheme that supports index languages with up to 𝑇 = 2

𝜆

instances (i.e., which suffices to support an arbitrary polynomial number of instances) and circuits of size at most

𝑠 . The instance indices will be taken from the set [2𝜆]. For ease of notation, we use the set [2𝜆] and the set {0, 1}𝜆
interchangably in the following description. Our construction relies on the following primitives:

• Let PRF be a puncturable PRF with key space {0, 1}𝜆 , domain {0, 1}𝑠 × {0, 1}𝜆 and range {0, 1}𝜆 .

• Let 𝑖O be an indistinguishability obfuscator.

• Let PRG be a pseudorandom generator with domain {0, 1}𝜆 and range {0, 1}2𝜆 .

We define our batch argument ΠBARG = (Gen, P,V) for index languages as follows:

• Gen(1𝜆, 1𝑠 ): On input the security parameter 𝜆 and a bound on the circuit size 𝑠 , the setup algorithm starts by

sampling a PRF key 𝐾 ← PRF.KeyGen(1𝜆). The setup algorithm then defines the proving program Prove[𝐾]
and the verification program Verify[𝐾] as follows:

Constants: PRF key 𝐾
Input: Boolean circuit 𝐶 of size at most 𝑠 , instance number 𝑖 ∈ [2𝜆], witness𝑤𝑖 , proof 𝜋 ∈ {0, 1}𝜆

1. If 𝑖 = 1 and 𝐶 (1,𝑤1) = 1, output PRF.Eval(𝐾, (𝐶, 1)).
2. Else if PRG(𝜋) = PRG(PRF.Eval(𝐾, (𝐶, 𝑖 − 1))) and 𝐶 (𝑖,𝑤𝑖 ) = 1, output PRF.Eval(𝐾, (𝐶, 𝑖)).
3. Otherwise, output ⊥.

Figure 1: Program Prove[𝐾]

Constants: PRF key 𝐾
Input: Boolean circuit 𝐶 of size at most 𝑠 , instance count 𝑡 ∈ [2𝜆], proof 𝜋 ∈ {0, 1}𝜆

1. If PRG(𝜋) = PRG(PRF.Eval(𝐾, (𝐶, 𝑡))), output 1.
2. Otherwise, output 0.

Figure 2: Program Verify[𝐾]

The setup algorithm constructs the obfuscated programs ObfProve ← 𝑖O(1𝜆, Prove[𝐾]) and ObfVerify ←
𝑖O(1𝜆,Verify[𝐾]). Note that both the proving circuit Prove[𝐾] and Verify[𝐾] are padded to the maximum

size of any circuit that appears in the proof of Theorem 3.3. Finally, it outputs the common reference string

crs = (ObfProve,ObfVerify).
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• P(crs,𝐶, (𝑤1, . . . ,𝑤𝑡 )): On input crs = (ObfProve,ObfVerify), a Boolean circuit 𝐶 : {0, 1}𝜆 × {0, 1}𝑚 → {0, 1},
and a collection of witnesses𝑤1, . . . ,𝑤𝑡 ∈ {0, 1}𝑚 , the prove algorithm first sets 𝜋0 ← ⊥. Then, for 𝑖 ∈ [𝑡], the
prove algorithm computes 𝜋𝑖 ← ObfProve(𝐶, 𝑖,𝑤𝑖 , 𝜋𝑖−1). Finally, the algorithm outputs 𝜋𝑡 .

• V(crs,𝐶, 𝑡, 𝜋): On input crs = (ObfProve,ObfVerify), a Boolean circuit 𝐶 : {0, 1}𝜆 × {0, 1}𝑚 → {0, 1}, the
instance count 𝑡 ∈ [2𝜆], and a proof 𝜋 ∈ {0, 1}𝜆 , the verification algorithm outputs ObfVerify(𝐶, 𝑡, 𝜋).

Theorem 3.2 (Completeness). If 𝑖O is correct, then Construction 3.1 is complete.

Proof. Take any security parameter 𝜆 ∈ N, any 𝑠 , any Boolean circuit 𝐶 : {0, 1}𝜆 × {0, 1}𝑚 → {0, 1} of size at most 𝑠

and any instance number 𝑡 ∈ [2𝜆]. Let 𝑤1, . . . ,𝑤𝑡 be a collection of witnesses such that 𝐶 (𝑖,𝑤𝑖 ) = 1 for all 𝑖 ∈ [𝑡].
Suppose crs = (ObfProve,ObfVerify) ← Gen(1𝜆, 1𝑠 ) and 𝜋 ← Prove(crs,𝐶, (𝑤1, . . . ,𝑤𝑡 )).

• Consider the sequence of proofs 𝜋1, . . . , 𝜋𝑡 = 𝜋 computed by the Prove algorithm. By correctness of 𝑖O,
𝜋1 = Prove[𝐾] (𝐶, 1,𝑤1,⊥) = PRF.Eval(𝐾, (𝐶, 1)). Then, for 𝑖 > 1, by correctness of 𝑖O, we have 𝜋𝑖 =

Prove[𝐾] (𝐶, 𝑖,𝑤𝑖 , 𝜋𝑖−1) = PRF.Eval(𝐾, (𝐶, 𝑖)). Thus, 𝜋𝑡 = PRF.Eval(𝐾, (𝐶, 𝑡)).

• Consider the output of Verify(crs,𝐶, 𝑡, 𝜋). By correctness of 𝑖O, the output of Verify is the output of the program
Verify[𝐾] (𝐶, 𝑡, 𝜋), which is 1 by construction.

Thus, the verification algorithm accepts and correctness holds. □

Theorem 3.3 (Soundness). If PRF is functionality-preserving and satisfies punctured pseudorandomness, PRG is a
secure PRG, and 𝑖O is secure, then Construction 3.1 satisfies non-adaptive soundness.

Proof. We start by defining a sequence of hybrid experiments:

• Hyb
0
: This is the non-adaptive soundness experiment:

– Adversary A, on input 1
𝜆
, starts by outputting the maximum circuit size 1

𝑠 (𝜆)
, a Boolean circuit 𝐶∗

𝜆
of

size at most 𝑠 (𝜆), and the number of instances 1
𝑡𝜆
where 𝑡𝜆 ≤ 2

𝜆
. The challenger checks that there exists

an index 𝑖∗
𝜆
∈ [𝑡𝜆] such that 𝐶∗

𝜆

(
𝑖∗
𝜆
,𝑤

)
= 0 for all𝑤 ∈ {0, 1}∗. If such an 𝑖∗ does not exist, the challenger

aborts with output 0. For ease of notation, we simply write 𝐶∗ = 𝐶∗
𝜆
, 𝑡 = 𝑡𝜆 , and 𝑖

∗ = 𝑖∗
𝜆
in the following

description.

– The challenger samples crs← Gen(1𝜆, 1𝑠 ) and gives crs = (ObfProve,ObfVerify) to A.

– Adversary A outputs a proof 𝜋 .

– The output of the experiment is Verify(crs,𝐶∗, 𝑡, 𝜋), which by definition, is ObfVerify(𝐶∗, 𝑡, 𝜋).

• Hyb𝑗 for 𝑗 ∈ {𝑖∗, . . . , 𝑡}: Same as Hyb
0
, except the challenger changes the distribution of the CRS. Specifically,

it defines the modified programs Prove′ [𝐾, 𝑖∗, 𝑖thresh,𝐶∗] and Verify′ [𝐾, 𝑖∗, 𝑖thresh,𝐶∗] as follows:

Constants: PRF key 𝐾 , starting index 𝑖∗, threshold index 𝑖thresh, Boolean circuit 𝐶∗

Input: Boolean circuit 𝐶 of size at most 𝑠 , instance number 𝑖 ∈ [2𝜆], witness𝑤𝑖 , and proof 𝜋 ∈ {0, 1}𝜆

1. If 𝐶 = 𝐶∗ and 𝑖∗ ≤ 𝑖 ≤ 𝑖thresh, output ⊥.
2. Else if 𝑖 = 1 and 𝐶 (1,𝑤1) = 1, output PRF.Eval(𝐾, (𝐶, 1)).
3. Else if PRG(𝜋) = PRG(PRF.Eval(𝐾, (𝐶, 𝑖 − 1))) and 𝐶 (𝑖,𝑤𝑖 ) = 1, output PRF.Eval(𝐾, (𝐶, 𝑖)).
4. Otherwise, output ⊥.

Figure 3: Program Prove′ [𝐾, 𝑖∗, 𝑖thresh,𝐶∗]
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Constants: PRF key 𝐾 , starting index 𝑖∗, threshold index 𝑖thresh, Boolean circuit 𝐶∗

Input: Boolean circuit 𝐶 of size at most 𝑠 , instance number 𝑡 ∈ [2𝜆], proof 𝜋 ∈ {0, 1}𝜆

1. If 𝐶 = 𝐶∗ and 𝑖∗ ≤ 𝑡 < 𝑖thresh, output 0.
2. Else if PRG(𝜋) = PRG(PRF.Eval(𝐾, (𝐶, 𝑡))), output 1
3. Otherwise, output 0

Figure 4: Program Verify′ [𝐾, 𝑖∗, 𝑖thresh,𝐶∗]

To construct the CRS, the challenger computes ObfProve ← 𝑖O(1𝜆, Prove′ [𝐾, 𝑖∗, 𝑗,𝐶∗]) and ObfVerify ←
𝑖O(1𝜆,Verify′ [𝐾, 𝑖∗, 𝑗,𝐶∗]), where Prove′ and Verify′ are the programs in Fig. 3 and Fig. 4. As in the real scheme,

the challenger pads the size of Prove′ and Verify′ to the maximum size of the circuits that appear in the proof

of Theorem 3.3.

For an adversary A, we write Hyb𝑖 (A) to denote the output distribution of Hyb𝑖 (A) with adversary A. In the

following analysis, we model A as a deterministic non-uniform algorithm that takes as input the security parameter

1
𝜆
(and advice string 𝜌𝜆), and outputs the maximum circuit size 1

𝑠 (𝜆)
, a Boolean circuit 𝐶∗

𝜆
of size at most 𝑠 (𝜆), and

the number of instances 1
𝑡𝜆
where 𝑡𝜆 ≤ 2

𝜆
. If the advantage of A is non-zero in the non-adaptive soundness game, it

must be the case that there exists an index 𝑖∗
𝜆
∈ [𝑡𝜆] such that 𝐶∗

𝜆

(
𝑖∗
𝜆
,𝑤

)
= 0 for all𝑤 ∈ {0, 1}∗. If there are multiple

such indices, we define 𝑖∗
𝜆
to be the first such index. In the following, we will consider deterministic non-uniform

reduction algorithms that are provided (𝜌𝜆, 𝑖∗𝜆) as advice.
8
We now show that each pair of adjacent distributions

defined above are indistinguishable.

Lemma 3.4. Suppose 𝑖O is secure. Then, for all non-uniform polynomial time adversaries A, there exists a negligible
function negl(·) such that for all 𝜆 ∈ N, | Pr[Hyb𝑖∗ (A) = 1] − Pr[Hyb

0
(A) = 1] | = negl(𝜆).

Proof. We claim that the programs Prove[𝐾] and Prove′ [𝐾, 𝑖∗, 𝑖∗,𝐶∗] have identical behavior, and similarly for

programs Verify[𝐾] and Verify′ [𝐾, 𝑖∗, 𝑖∗,𝐶∗]:

• By construction, Prove[𝐾] and Prove′ [𝐾, 𝑖∗, 𝑖∗,𝐶∗] have identical functionality except perhaps on inputs of the

form (𝐶∗, 𝑖∗,𝑤, 𝜋) for some 𝑤 ∈ {0, 1}∗ and 𝜋 ∈ {0, 1}𝜆 . On such inputs, program Prove′ [𝐾, 𝑖∗, 𝑖∗,𝐶∗] always
outputs⊥. Next, by assumption,𝐶∗ (𝑖∗,𝑤) = 0 for all𝑤 ∈ {0, 1}∗, so Prove[𝐾] (𝐶, 𝑖∗,𝑤, 𝜋) = ⊥ for all𝑤 ∈ {0, 1}∗
and 𝜋 ∈ {0, 1}𝜆 . Thus, we conclude that Prove[𝐾] and Prove′ [𝐾, 𝑖∗, 𝑖∗,𝐶∗] have identical input/output behavior.

• We claim that Verify[𝐾] and Verify′ [𝐾, 𝑖∗, 𝑖∗,𝐶∗] compute the same functionality. The only difference between

these two programs is the extra check that Verify′ performs. By construction, Verify′ [𝐾, 𝑖∗, 𝑖∗,𝐶∗] only differs

from Verify[𝐾] if the circuit 𝐶 satisfies 𝐶 = 𝐶∗ and the instance number 𝑡 satisfies 𝑖∗ ≤ 𝑡 < 𝑖∗. This latter
condition is always false, so the two programs have identical input/output behavior.

Since Prove[𝐾] and Verify[𝐾] compute identical functions as Prove′ [𝐾, 𝑖∗, 𝑖∗,𝐶∗] and Verify′ [𝐾, 𝑖∗, 𝑖∗,𝐶∗] respectively,
indistinguishability now follows by 𝑖O security and a standard hybrid argument. Note that constructing the programs

Prove′ [𝐾, 𝑖∗, 𝑖∗,𝐶∗] and Verify′ [𝐾, 𝑖∗, 𝑖∗,𝐶∗] requires knowledge of the index 𝑖∗, which would be provided as part of

the advice string in our non-uniform reduction. □

Lemma 3.5. If PRF is functionality-preserving and satisfies punctured pseudorandomness, PRG is a secure PRG, and 𝑖O
is secure, then for all 𝑗 ∈ {𝑖∗, . . . , 𝑡 − 1} and all non-uniform polynomial time adversaries A, there exists a negligible
function negl(·) such that for all 𝜆 ∈ N, | Pr[Hyb𝑗 (A) = 1] − Pr[Hyb𝑗+1 (A) = 1] | = negl(𝜆).

Proof. We begin by introducing a sequence of intermediate hybrids:

8
We rely on non-uniformity here because the index 𝑖∗ may not be efficiently-computable from the challenge circuit𝐶∗. For this reason, we rely on

a non-uniform reduction where the reduction algorithm is given the index 𝑖∗ as advice (we are guaranteed that such an index 𝑖∗ always exists
if algorithm A successfully breaks non-adaptive soundness with non-negligible advantage). Correspondingly, security relies on non-uniform
hardness of the underlying cryptographic primitives. We discuss this further in Remark 3.10.
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• Hyb(1)
𝑗
: Same as Hyb𝑗 except the challenger changes the distribution of the CRS. Specifically, it defines

the modified programs Prove′′ [𝐾{(𝐶∗, 𝑖thresh)}, 𝑖∗, 𝑖thresh,𝐶∗, 𝑧] and Verify′′ [𝐾{(𝐶∗, 𝑖thresh)}, 𝑖∗, 𝑖thresh,𝐶∗, 𝑧] as
follows:

Constants: Punctured PRF key 𝐾𝑝 , starting index 𝑖
∗
, threshold index 𝑖thresh, Boolean circuit 𝐶∗, value 𝑧

Input: Boolean circuit 𝐶 of size at most 𝑠 , instance number 𝑖 ∈ [2𝜆], witness𝑤𝑖 , proof 𝜋 ∈ {0, 1}𝜆

1. If 𝐶 = 𝐶∗ and 𝑖∗ ≤ 𝑖 ≤ 𝑖thresh, output ⊥.
2. Else if 𝑖 = 1 and 𝐶 (1,𝑤1) = 1, output PRF.Eval(𝐾𝑝 , (𝐶, 1)).
3. Else if (𝐶, 𝑖 − 1) = (𝐶∗, 𝑖thresh) and PRG(𝜋) = 𝑧 and 𝐶 (𝑖,𝑤𝑖 ) = 1, output PRF.Eval(𝐾𝑝 , (𝐶, 𝑖)).
4. Else if (𝐶, 𝑖 − 1) ≠ (𝐶∗, 𝑖thresh) and PRG(𝜋) = PRG(PRF.Eval(𝐾𝑝 , (𝐶, 𝑖 − 1))) and 𝐶 (𝑖,𝑤𝑖 ) = 1, output

PRF.Eval(𝐾𝑝 , (𝐶, 𝑖)).
5. Otherwise, output ⊥

Figure 5: Program Prove′′ [𝐾𝑝 , 𝑖
∗, 𝑖thresh,𝐶∗, 𝑧]

Constants: Punctured PRF key 𝐾𝑝 , starting index 𝑖∗, threshold index 𝑖thresh, Boolean circuit 𝐶∗, value 𝑧
Input: Boolean circuit 𝐶 of size at most 𝑠 , instance number 𝑡 ∈ [2𝜆], proof 𝜋 ∈ {0, 1}𝜆

1. If 𝐶 = 𝐶∗ and 𝑖∗ ≤ 𝑡 < 𝑖thresh, output 0.
2. Else if (𝐶, 𝑡) = (𝐶∗, 𝑖thresh) and PRG(𝜋) = 𝑧, output 1.
3. Else if (𝐶, 𝑡) ≠ (𝐶∗, 𝑖thresh) and PRG(𝜋) = PRG(PRF.Eval(𝐾𝑝 , (𝐶, 𝑡))), output 1.
4. Otherwise, output 0.

Figure 6: Program Verify′′ [𝐾𝑝 , 𝑖
∗, 𝑖thresh,𝐶∗, 𝑧]

Next, the challenger computes the punctured key 𝐾{(𝐶∗, 𝑗)} ← PRF.Puncture(𝐾, (𝐶∗, 𝑗)) and the evaluation

𝑧∗ ← PRG(PRF.Eval(𝐾, (𝐶∗, 𝑗))). It then constructs ObfProve ← 𝑖O(1𝜆, Prove′′ [𝐾{(𝐶∗, 𝑗)}, 𝑖∗, 𝑗,𝐶∗, 𝑧∗]) and
ObfVerify ← 𝑖O(1𝜆,Verify′′ [𝐾{(𝐶∗, 𝑗)}, 𝑖∗, 𝑗,𝐶∗, 𝑧∗]). As in the real scheme, the challenger pads the size of

Prove′′ and Verify′′ to the maximum size of the circuits that appear in the proof of Theorem 3.3. The CRS is

still crs = (ObfProve,ObfVerify).

• Hyb(2)
𝑗

: Same as Hyb(1)
𝑗

but when constructing the CRS, the challenger sets 𝑧∗ ← PRG(𝑦∗) where 𝑦∗ r← {0, 1}𝜆 .

• Hyb(3)
𝑗

: Same as Hyb(2)
𝑗

but when constructing the CRS, the challenger samples 𝑧∗ r← {0, 1}2𝜆 .

We now argue that each pair of adjacent hybrid experiments are indistinguishable for all 𝑗 ∈ {𝑖∗, . . . , 𝑡}.

Claim 3.6. Suppose PRF is functionality-preserving and 𝑖O is secure. Then, for all non-uniform polynomial time
adversaries A, there exists a negligible function negl(·) such that for all 𝜆 ∈ N,

| Pr[Hyb(1)
𝑗
(A) = 1] − Pr[Hyb𝑗 (A) = 1] | = negl(𝜆).

Proof. Similar to the proof of Lemma 3.4, it suffices to show that the prover and verifier programs in Hyb𝑗 and

Hyb(1)
𝑗

have identical input/output behavior. First, since the PRF is functionality-preserving property, for all inputs

(𝐶, 𝑖) ≠ (𝐶∗, 𝑗), we have that PRF.Eval(𝐾, (𝐶, 𝑖)) = PRF.Eval(𝐾{(𝐶∗, 𝑗)}, (𝐶, 𝑖)). We first argue that Prove′ [𝐾, 𝑖∗, 𝑗,𝐶∗]
and Prove′′ [𝐾{(𝐶∗, 𝑗)}, 𝑖∗, 𝑗,𝐶∗, 𝑧] have identical input/output behavior:

• Suppose 𝑗 > 1. Since the PRF satisfies functionality-preserving, PRF.Eval(𝐾, (𝐶, 𝑖)) = PRF.Eval(𝐾{(𝐶∗, 𝑗)}, (𝐶, 𝑖))
whenever (𝐶, 𝑖) ≠ (𝐶∗, 𝑗). Next, in Hyb(1)

𝑗
, the challenger sets 𝑧 ← PRG(PRF.Eval(𝐾, (𝐶∗, 𝑗))). As such, the

checks in program Prove′′ are identical to those in Prove′. Thus, the two programs have the same input/output

behavior.

• Suppose 𝑗 = 1. Recall that 𝑗 ≥ 𝑖∗ ≥ 1. In this case, on input (𝐶∗, 1), the first check in Prove′ and Prove′′ ensures
that the output is ⊥. This matches the behavior of Prove′ in Hyb𝑗 . On all other inputs (𝐶, 𝑖) with 𝑖 ≠ 1, the

behavior is identical by functionality-preserving of the underlying punctured PRF.
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Now consider Verify′ [𝐾, 𝑖∗, 𝑗,𝐶∗] and Verify′′ [𝐾{(𝐶∗, 𝑗)}, 𝑖∗, 𝑗,𝐶∗, 𝑧∗]. Once again, since the challenger sets 𝑧 =

PRG(PRF.Eval(𝐾, (𝐶∗, 𝑗))), the verification checks in the two programs are identical. The claim now follows from 𝑖O
security and a standard hybrid argument. Similar to the proof of Lemma 3.4, the formal reduction is non-uniform

(with advice string 𝑖∗) and thus, security relies on non-uniform hardness of 𝑖O. □

Claim 3.7. If PRF satisfies punctured pseudorandomness, then for all non-uniform polynomial-time adversariesA, there
exists a negligible function negl(·) such that for all 𝜆 ∈ N, | Pr[Hyb(2)

𝑗
(A) = 1] − Pr[Hyb(1)

𝑗
(A) = 1] | = negl(𝜆).

Proof. Suppose there exists a non-uniform polynomial time adversary A (with advice string 𝜌𝜆) such that

| Pr[Hyb(2)
𝑗
(A) = 1] − Pr[Hyb(1)

𝑗
(A) = 1] | ≥ 𝜀.

We useA to construct a non-uniform adversary B with advice string (𝜌, 𝑖∗) = (𝜌𝜆, 𝑖∗𝜆) that breaks puncturing security
of PRF. Recall that 𝑖∗ = 𝑖∗

𝜆
is the index of the (first) false instance output by A (on input 1

𝜆
and with advice 𝜌𝜆).

1. Algorithm B runs adversary A on input 1
𝜆
and with advice string 𝜌 . Algorithm A outputs the maximum

circuit size 1
𝑠
, a Boolean circuit 𝐶∗ of size at most 𝑠 , and the number of instances 1

𝑡
where 𝑡 ≤ 2

𝜆
.

2. Algorithm B chooses (𝐶∗, 𝑗) as it challenge point. It receives from the challenger a punctured key 𝐾{(𝐶∗, 𝑗)}
and a challenge 𝑦 ∈ {0, 1}𝜆 .

3. Algorithm B computes 𝑧∗ ← PRG(𝑡), ObfProve ← 𝑖O(1𝜆, Prove′′ [𝐾{(𝐶∗, 𝑗)}, 𝑖∗, 𝑗,𝐶∗, 𝑧∗], and ObfVerify ←
𝑖O(1𝜆,Verify′′ [𝐾{(𝐶∗, 𝑗)}, 𝑖∗, 𝑗,𝐶∗, 𝑧∗). Finally, it sets the crs = (ObfProve,ObfVerify) and gives crs to A.

4. At the end of the game, algorithm A outputs a proof 𝜋 and algorithm B outputs ObfVerify(𝐶∗, 𝑡, 𝜋).

By construction, the challenger samples 𝐾 ← PRF.KeyGen(1𝜆) and constructs the punctured key as 𝐾{(𝐶∗, 𝑗)} ←
PRF.Puncture(𝐾, (𝐶∗, 𝑗)). This coincides with the specification in Hyb(1)

𝑗
and Hyb(2)

𝑗
. Consider now the distribution

of the challenge 𝑡 :

• Suppose 𝑦 = PRF.Eval(𝐾, (𝐶∗, 𝑗)). Then algorithm A perfectly simulates distribution Hyb(1)
𝑗

.

• Suppose 𝑦
r← {0, 1}𝜆 . Then algorithm A perfectly simulates distribution Hyb(2)

𝑗
.

Algorithm B breaks puncturing security of the PRF with advantage 𝜀 and the claim follows. □

Claim 3.8. If PRG is secure, then for all non-uniform polynomial time adversaries A, there exists a negligible function
negl(·) such that for all 𝜆 ∈ N, | Pr[Hyb(3)

𝑗
(A) = 1] − Pr[Hyb(2)

𝑗
(A) = 1] | = negl(𝜆).

Proof. Suppose there exists a non-uniform polynomial time adversary A (with advice string 𝜌𝜆) where

| Pr[Hyb(3)
𝑗
(A) = 1] − Pr[Hyb(2)

𝑗
(A) = 1] | ≥ 𝜀

for some non-negligible 𝜀. We use A to construct an adversary B with advice string (𝜌, 𝑖∗) = (𝜌𝜆, 𝑖∗𝜆) that breaks
PRG security:

1. Algorithm B runs adversary A on input 1
𝜆
and advice string 𝜌𝜆 . Algorithm A outputs the maximum circuit

size 1
𝑠
, a Boolean circuit 𝐶∗ of size at most 𝑠 , and the number of instances 1

𝑡
where 𝑡 ≤ 2

𝜆
.

2. Algorithm B receives a challenge 𝑧∗ ∈ {0, 1}2𝜆 from the PRG challenger.

3. Algorithm B samples 𝐾 ← PRF.KeyGen(1𝜆) and computes the punctured key

𝐾{(𝐶∗, 𝑗)} ← PRF.Puncture(𝐾, (𝐶∗, 𝑗)) .

Next, it computes the obfuscated programsObfProve← 𝑖O(1𝜆, Prove′′ [𝐾{(𝐶∗, 𝑗)}, 𝑖∗, 𝑗,𝐶∗, 𝑧∗]) andObfVerify←
𝑖O(1𝜆,Verify′′ [𝐾{(𝐶∗, 𝑗)}, 𝑖∗, 𝑗,𝐶∗, 𝑧∗]). Algorithm B gives crs = (ObfProve,ObfVerify) to A.
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4. Algorithm A outputs a proof 𝜋 and algorithm B outputs ObfVerify(𝐶∗, 𝑡, 𝜋).

If 𝑧∗ ← PRG(𝑦∗) where 𝑦∗ r← {0, 1}𝜆 , then algorithm B perfectly simulates Hyb(2)
𝑗

for A. Alternatively, if 𝑧∗ r←
{0, 1}2𝜆 , then algorithm B perfectly simulates Hyb(3)

𝑗
for A. The claim follows. □

Claim 3.9. If PRF is functionality-preserving and 𝑖O is secure, then for all non-uniform polynomial time adversaries A,
there exists a negligible function negl(·) such that for all 𝜆 ∈ N, | Pr[Hyb𝑗+1 (A) = 1] − Pr[Hyb(3)

𝑗
(A) = 1] | = negl(𝜆).

Proof. We start by showing that with overwhelming probability over the choice of 𝑧∗ r← {0, 1}2𝜆 , the programs

Prove′′ [𝐾{(𝐶∗, 𝑗)}, 𝑖∗, 𝑗,𝐶∗, 𝑧∗] and Verify′′ [𝐾{(𝐶∗, 𝑗)}, 𝑖∗, 𝑗,𝐶∗, 𝑧∗] in Hyb(3)
𝑗

compute identical functionality as pro-

grams Prove′ [𝐾, 𝑖∗, 𝑗 + 1,𝐶∗] and Verify′ [𝐾, 𝑖∗, 𝑗 + 1,𝐶∗] in Hyb𝑗+1. Since 𝑧
∗ r← {0, 1}2𝜆 ,

Pr[∃𝑦 ∈ {0, 1}𝜆 : PRG(𝑦) = 𝑧∗] ≤ 2
−𝜆 .

Thus, with overwhelming probability, the value 𝑧∗ inHyb(3)
𝑗

is not in the range of PRG. Next, since PRF is functionality-
preserving, PRF.Eval(𝐾, (𝐶, 𝑖)) = PRF.Eval(𝐾{(𝐶∗, 𝑗)}, (𝐶, 𝑖)) whenever (𝐶, 𝑖) ≠ (𝐶∗, 𝑗). Now, consider the programs

Prove′′ [𝐾{(𝐶∗, 𝑗)}, 𝑖∗, 𝑗,𝐶∗, 𝑧∗] and Prove′ [𝐾, 𝑖∗, 𝑗 + 1,𝐶∗]:

• Suppose 𝑗 > 1. By construction of Prove′ and Prove′′, this means that the only inputs on which the programs

can differ are inputs of the form (𝐶∗, 𝑗 + 1,𝑤, 𝜋) for some choice of𝑤 ∈ {0, 1}∗ and 𝜋 ∈ {0, 1}𝜆 . Consider the
behavior of the two programs on inputs of this form:

– Prove′′ [𝐾{(𝐶∗, 𝑗)}, 𝑖∗, 𝑗,𝐶∗, 𝑧∗] (𝐶∗, 𝑗 + 1,𝑤, 𝜋) outputs ⊥ if 𝑧∗ is not in the image of PRG (in which case

PRG(𝜋) ≠ 𝑧∗).
– Prove′ [𝐾, 𝑖∗, 𝑗 + 1,𝐶∗] (𝐶∗, 𝑗 + 1,𝑤, 𝜋) always outputs ⊥ since 𝑖∗ ≤ 𝑗 + 1 ≤ 𝑗 + 1.

We conclude that on all inputs, the output of Prove′ and Prove′′ is identical with overwhelming probability

over the choice of 𝑧∗.

• Suppose 𝑗 = 1. In this case, the two programs’ logic also differ on inputs of the form (𝐶∗, 1,𝑤, 𝜋) for some

𝑤 ∈ {0, 1}∗ and 𝜋 ∈ {0, 1}𝜆 (since the punctured key is used to evaluate at (𝐶∗, 1) in Prove′′ while the real key
is used in Prove′). However, since 𝑗 ≥ 𝑖∗ ≥ 1, both programs output ⊥ on input (𝐶∗, 1,𝑤, 𝜋). The behavior on
all other inputs is identical by the analysis from the previous case.

Consider now the verification programs Verify′ [𝐾, 𝑖∗, 𝑗 + 1,𝐶∗] and Verify′′ [𝐾{(𝐶∗, 𝑗)}, 𝑖∗, 𝑗,𝐶∗, 𝑧∗]. Similar to the

case with the proving circuits, the only inputs on which the programs can differ are inputs of the form (𝐶∗, 𝑗 + 1,𝑤, 𝜋)
for some choice of𝑤 ∈ {0, 1}∗ and 𝜋 ∈ {0, 1}𝜆 .

• Verify′′ [𝐾{(𝐶∗, 𝑗)}, 𝑖∗, 𝑗,𝐶∗, 𝑧∗] outputs 0 if 𝑧∗ is not in the image of PRG (in which case PRG(𝜋) ≠ 𝑧∗).

• Verify′ [𝐾, 𝑖∗, 𝑗 + 1,𝐶∗] (𝐶∗, 𝑗 + 1,𝑤, 𝜋) always outputs 0.

From the above analysis, we see that as long as 𝑧∗ is not in the image of PRG, Prove′ and Prove′′ as well as Verify′ and
Verify′′ in the two experiments have identical input/output behavior. Since this event happens with overwhelming

probability, the claim now follows by 𝑖O security. □

Combining Claims 3.6 to 3.8, we have that for all 𝑗 ∈ {𝑖∗, . . . , 𝑡 − 1}, hybrids Hyb𝑗 and Hyb𝑗+1 are computationally

indistinguishable and Lemma 3.5 follows. □

Combining Lemmas 3.4 and 3.5, we have that hybrids Hyb
0
and Hyb𝑡 are computationally indistinguishable. It is

easy to show that for all adversaries A in Hyb𝑡 , Pr[Hyb𝑡 (A) = 1] = 0. This follows by construction: namely, in

Hyb𝑡 , ObfVerify is an obfuscation of the verification program Verify′ [𝐾, 𝑖∗, 𝑡,𝐶∗] which outputs 0 on all inputs of the

form (𝐶∗, 𝑡, 𝜋) for any 𝜋 ∈ {0, 1}𝜆 . Correspondingly, for all efficient adversaries A, Pr[Hyb
0
(A) = 1] = negl(𝜆) and

non-adaptive soundness holds. □
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Remark 3.10 (Non-Uniform Hardness). The proof of non-adaptive soundness (Theorem 3.3) leverages non-uniform
security reductions where the reduction algorithms are also given the particular index 𝑖∗ of the false instance as
non-uniform advice (i.e., the instance 𝑖∗ where 𝐶∗ (𝑖∗,𝑤) = 0 for all 𝑤 ∈ {0, 1}∗). We rely on non-uniform advice

since in general, computing 𝑖∗ from the adversary’s chosen circuit 𝐶∗ may not be efficient (note that such an index is

guaranteed to exist given an adversary that breaks non-adaptive soundness with non-negligible probability). Because

our security reductions are non-uniform, we correspondingly rely on non-uniform hardness of each of the underlying

primitives. Note that we could alternatively rely on sub-exponential hardness (and compute 𝑖∗ from𝐶∗ in a brute-force

way) to obtain a uniform security reduction, but this would jeopardize the full succinctness of our construction. We

also note that for settings where the index 𝑖∗
𝜆
can be efficiently computed from 𝐶∗

𝜆
by a uniform family of circuits,

then our security reductions would also be uniform (and correspondingly, we can base security on hardness of the

underlying primitives against uniform adversaries).

Theorem 3.11 (Succinctness). Construction 3.1 is fully succinct.

Proof. We show that Construction 3.1 satisfies the two succinctness requirements from Definition 2.9:

• Succinct proof size: The size of the proof is the output of PRF which has length 𝜆. Thus, the proof is fully

succinct.

• Succinct verification time: Verification consists of evaluating the ObfVerify program on input (𝐶, 𝑡, 𝜋). By
construction, ObfVerify is an obfuscation of the verification algorithm Verify[𝐾]. Again by construction, the

running time of Verify[𝐾] is poly(𝜆, 𝑠). Since the obfuscator is efficient, the running time of ObfVerify is also

poly(𝜆, 𝑠), as required. □

Theorem 3.12 (Zero Knowledge). Construction 3.1 satisfies perfect zero knowledge.

Proof. To show zero knowledge, we construct an efficient simulator S as follows. On input the security parameter

𝜆, the bound 𝑠 on the circuit size, a Boolean circuit 𝐶 : {0, 1}ℓ × {0, 1}𝑚 → {0, 1} of size at most 𝑠 , and the instance

number 𝑡 , the simulator algorithm proceeds as follows:

1. Compute crs← Gen(1𝜆, 1𝑠 ). Let𝐾 be the PRF key sampled in the construction of crs and compute the simulated

proof 𝜋 ← PRF.Eval(𝐾, (𝐶, 𝑡)).

2. Output (crs, 𝜋).

By construction, the simulator samples crs exactly as in the real scheme. It suffices to consider the proofs. By

construction and correctness of 𝑖O, a proof on (𝐶, (1, . . . , 𝑡)) is always 𝜋 = PRF.Eval(𝐾, (𝐶, 𝑡)). This is the simulated

proof. □

4 Non-Adaptive BARGs for NP from BARGs for Index Languages
In this section, we describe an adaptation of the compiler of Choudhuri et al. [CJJ21b] for upgrading a batch argument

for an index language to a batch argument for NP. The transformation of Choudhuri et al. relied on somewhere

extractable commitments, which can be based on standard lattice assumptions [HW15, CJJ21b] or pairing-based

assumptions [WW22]. Here, we show that the same transformation is possible using the positional accumulators

introduced by Koppula et al. [KLW15]. The advantage of basing the transformation on positional accumulators is that

we can construct positional accumulators directly from indistinguishability obfuscation and one-way functions, so

we can apply the transformation to Construction 3.1 from Section 3 to obtain a fully succinct batch argument for NP
from the same set of assumptions. A drawback of using positional accumulators in place of somewhere extractable

commitments is that our transformation can only provide non-adaptive soundness, whereas the Choudhuri et al.
transformation satisfies the stronger notion of semi-adaptive somewhere extractability.
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Positional accumulators. Like a somewhere statistically binding (SSB) hash function [HW15], a positional

accumulator allows a user to compute a short “digest” or “hash” 𝑦 of a long input (𝑥1, . . . , 𝑥𝑡 ). The scheme supports

local openings where the user can open 𝑦 to the value 𝑥𝑖 at any index 𝑖 with a short opening 𝜋𝑖 . The security property

is that the hash value 𝑦 is statistically binding at a certain (hidden) index 𝑖∗. An important difference between

positional accumulators and somewhere statistically binding hash functions is that positional accumulators are

statistically binding for the hash 𝑦 of a specific tuple of inputs (𝑥1, . . . , 𝑥𝑡 ) while SSB hash functions are binding for

all hash values. We give the definition below. Our definition is a simplification of the corresponding definition of

Koppula et al. [KLW15, §4] and we summarize the main differences in Remark 4.3.

Definition 4.1 (Positional Accumulators [KLW15, adapted]). Let ℓ ∈ N be an input length. A positional accumulator

scheme for inputs of length ℓ is a tuple of PPT algorithms ΠPA = (Setup, SetupEnforce,Hash,Open,Verify) with the

following properties:

• Setup(1𝜆, 1ℓ ) → pp: On input the security parameter 𝜆 and the input length ℓ , the setup algorithm outputs a

set of public parameters pp.

• SetupEnforce(1𝜆, 1ℓ , (𝑥1, . . . , 𝑥𝑡 ), 𝑖∗) → pp: On input the security parameter 𝜆, an input length ℓ , a tuple of

inputs 𝑥1, . . . , 𝑥𝑡 ∈ {0, 1}ℓ , and an index 𝑖∗ ∈ [𝑡], the enforcing setup algorithm outputs a set of public parameters

pp.

• Hash(pp, (𝑥1, . . . , 𝑥𝑡 )) → 𝑦: On input the public parameters pp and a tuple of inputs 𝑥1, . . . , 𝑥𝑡 ∈ {0, 1}ℓ , the
hash algorithm outputs a value 𝑦. This algorithm is deterministic.

• Open(pp, (𝑥1, . . . , 𝑥𝑡 ), 𝑖) → 𝜋 : On input the public parameters pp, a tuple of inputs 𝑥1, . . . , 𝑥𝑡 ∈ {0, 1}ℓ and an

index 𝑖 ∈ [𝑡], the opening algorithm outputs an opening 𝜋 .

• Verify(pp, 𝑦, 𝑥, 𝑖, 𝜋) → {0, 1}: On input the public parameters pp, a hash value 𝑦, an input 𝑥 ∈ {0, 1}ℓ , an index

𝑖 ∈ {0, 1}𝜆 , and an opening 𝜋 , the verification algorithm outputs a bit 𝑏 ∈ {0, 1}.

Moreover, the positional accumulator ΠPA should satisfy the following properties:

• Correctness: For all security parameters 𝜆 ∈ N and input lengths ℓ ∈ N, all polynomials 𝑡 = 𝑡 (𝜆), indices
𝑖 ∈ [𝑡], and inputs 𝑥1, . . . , 𝑥𝑡 ∈ {0, 1}ℓ , it holds that

Pr

Verify(pp, 𝑦, 𝑥𝑖 , 𝑖, 𝜋) = 1 :

pp← Setup(1𝜆, 1ℓ ),
𝑦 ← Hash(pp, (𝑥1, . . . , 𝑥𝑡 )),
𝜋 ← Open(pp, (𝑥1, . . . , 𝑥𝑡 ), 𝑖)

 = 1.

• Succinctness: There exists a polynomial poly(·, ·) such that the length of the hash value 𝑦 output by Hash
and the length of the proof 𝜋 output by Open in the correctness experiment satisfy |𝑦 | = poly(𝜆, ℓ) and
|𝜋 | = poly(𝜆, ℓ).

• Setup indistinguishability: For a security parameter 𝜆, a bit 𝑏 ∈ {0, 1}, and an adversary A, we define the

setup-indistinguishability experiment as follows:

– Algorithm A starts by choosing inputs 𝑥1, . . . , 𝑥𝑡 ∈ {0, 1}ℓ and an index 𝑖 ∈ [𝑡].
– If 𝑏 = 0, the challenger samples pp ← Setup(1𝜆, 1ℓ ). Otherwise, if 𝑏 = 1, the challenger samples

pp← SetupEnforce(1𝜆, 1ℓ , (𝑥1, . . . , 𝑥𝑡 ), 𝑖). It gives pp to A.

– Algorithm A outputs a bit 𝑏′ ∈ {0, 1}, which is the output of the experiment.

We say that ΠPA satisfies (𝜏, 𝜀)-setup-indistinguishability if for all adversaries running in time 𝜏 = 𝜏 (𝜆), there
exists 𝜆A ∈ N such that for all 𝜆 > 𝜆A

| Pr[𝑏′ = 1 | 𝑏 = 0] − Pr[𝑏′ = 1 | 𝑏 = 1] | ≤ 𝜀 (𝜆).

in the setup-indistinguishability experiment.
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• Enforcing: Fix a security parameter 𝜆 ∈ N, block size ℓ ∈ N, a polynomial 𝑡 = 𝑡 (𝜆), an index 𝑖∗ ∈ [𝑡], and a

set of inputs 𝑥1, . . . , 𝑥𝑡 . We say that a set of public parameters pp are “enforcing” for a tuple (𝑥1, . . . , 𝑥𝑡 , 𝑖∗) if
there does not exist a pair (𝑥, 𝜋) where 𝑥 ≠ 𝑥𝑖∗ , Verify(pp, 𝑦, 𝑥, 𝑖∗, 𝜋) = 1, and 𝑦 ← Hash(pp, (𝑥1, . . . , 𝑥𝑡 )). We

say that the positional accumulator is enforcing if for every polynomial ℓ = ℓ (𝜆), 𝑡 = 𝑡 (𝜆), index 𝑖∗ ∈ [𝑡] and
collection of inputs 𝑥1, . . . , 𝑥𝑡 ∈ {0, 1}ℓ , there exists a negligible function negl(·) such that for all 𝜆 ∈ N,

Pr[pp is “enforcing” for (𝑥1, . . . , 𝑥𝑇 , 𝑖∗) : pp← SetupEnforce(1𝜆, 1ℓ , (𝑥1, . . . , 𝑥𝑡 ), 𝑖∗)] ≥ 1 − negl(𝜆),

where the probability is taken over the random coins of SetupEnforce.

Theorem 4.2 (Positional Accumulators [KLW15]). Assuming the existence of an indistinguishability obfuscation
scheme and one-way functions, there exists a positional accumulator for arbitrary polynomial input lengths ℓ = ℓ (𝜆).

Remark 4.3 (Comparison with [KLW15]). Definition 4.1 describes a simplified variant of the positional accumulator

from Koppula et al. [KLW15, §4]. Specifically, we instantiate their construction with an (implicit) bound of 𝑇 = 2
𝜆

for the number of values that can be accumulated. The positional accumulators from Koppula et al. also supports

insertions (i.e., “writes”) to the accumulator structure, whereas in our setting, all of the inputs are provided upfront

(as an input to Hash).

Construction 4.4 (Batch Argument for NP Languages). Let 𝜆 be a security parameter and 𝑠 = 𝑠 (𝜆) be a bound on

the size of the Boolean circuit. We construct a BARG scheme that supports arbitrary NP languages with up to 𝑇 = 2
𝜆

instances (which suffices to support an arbitrary polynomial number of instances) and Boolean circuits of size at

most 𝑠 . For ease of notation, we use the set [2𝜆] and the set {0, 1}𝜆 interchangably in the following description. Our

construction relies on the following primitives:

• Let ΠPA = (PA.Setup, PA.SetupEnforce, PA.Hash, PA.Open, PA.Verify) be a positional accumulator for inputs

of length ℓ .

• LetΠIndexBARG = (IndexBARG.Gen, IndexBARG.P, IndexBARG.V) be a BARG for index languages (that supports

up to 𝑇 = 2
𝜆
instances).

9

We define our batch argument ΠBARG = (Gen, P,V) for batch circuit satisfiability languages as follows:

• Gen(1𝜆, 1ℓ , 1𝑠 ): On input the security parameter 𝜆, the statement length ℓ , and a bound on the circuit size 𝑠 ,

sample pp← PA.Setup(1𝜆, 1ℓ ). Let 𝑠′ be a bound on the size of the following circuit:

Constants: Public parameters pp for ΠPA, a hash value ℎ for ΠPA, Boolean circuit 𝐶 of size at most 𝑠

Inputs: Index 𝑖 ∈ {0, 1}𝜆 , a tuple (𝑥, 𝜎,𝑤) where 𝑥 ∈ {0, 1}ℓ

1. If 𝐶 (𝑥,𝑤) = 0, output 0.

2. If PA.Verify(pp, ℎ, 𝑥, 𝑖, 𝜎) = 0, output 0.

3. Otherwise, output 1.

Figure 7: The Boolean circuit 𝐶′ [pp, ℎ,𝐶] for an index relation

Then, sample IndexBARG.crs← IndexBARG.Gen(1𝜆, 1𝑠′ ). Output crs = (pp, IndexBARG.crs).

• P(crs,𝐶, (𝑥1, . . . , 𝑥𝑡 ), (𝑤1, . . . ,𝑤𝑡 )): On input the common reference string crs = (pp, IndexBARG.crs), a Boolean
circuit 𝐶 : {0, 1}ℓ × {0, 1}𝑚 → {0, 1}, statements 𝑥1, . . . , 𝑥𝑡 ∈ {0, 1}ℓ , and witnesses 𝑤1, . . . ,𝑤𝑡 ∈ {0, 1}𝑚 ,
compute ℎ ← PA.Hash(pp, (𝑥1, . . . , 𝑥𝑡 )). Then, for each 𝑖 ∈ [𝑡], let 𝜎𝑖 ← PA.Open(pp, (𝑥1, . . . , 𝑥𝑡 ), 𝑖) and let

𝑤 ′𝑖 = (𝑥𝑖 , 𝜎𝑖 ,𝑤𝑖 ). Output 𝜋 ← IndexBARG.P(IndexBARG.crs,𝐶′ [pp, ℎ,𝐶], 𝑡, (𝑤 ′
1
, . . . ,𝑤 ′𝑡 )), where 𝐶′ [pp, ℎ,𝐶]

is the circuit for the index relation from Fig. 7.

9
Our transformation also applies in the setting where the number of instances is bounded and the transformed scheme inherits the same bound.

For simplicity of exposition, we just describe the transformation for the unbounded case.
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• V(crs,𝐶, (𝑥1, . . . , 𝑥𝑡 ), 𝜋): On input the common reference string crs = (pp, IndexBARG.crs), the Boolean cir-

cuit 𝐶 : {0, 1}ℓ × {0, 1}𝑚 → {0, 1}, instances 𝑥1, . . . , 𝑥𝑡 ∈ {0, 1}ℓ , and a proof 𝜋 , the verification algorithm

computes ℎ ← PA.Hash(pp, (𝑥1, . . . , 𝑥𝑡 )) and outputs IndexBARG.V(IndexBARG.crs,𝐶′ [pp, ℎ,𝐶], 𝑡, 𝜋), where
𝐶′ [pp, ℎ,𝐶] is the circuit for the index relation from Fig. 7.

Theorem 4.5 (Completeness). If ΠIndexBARG is complete and ΠPA is correct, then Construction 4.4 is complete.

Proof. Take any security parameter 𝜆 ∈ N, circuit size bound 𝑠 ∈ N, input length ℓ ∈ N, any Boolean circuit

𝐶 : {0, 1}ℓ × {0, 1}𝑚 → {0, 1} of size at most 𝑠 , and any instance number 𝑡 ∈ [2𝜆]. Let 𝑥1, . . . , 𝑥𝑡 ∈ {0, 1}ℓ be a

collection of statements and 𝑤1, . . . ,𝑤𝑡 be a collection of corresponding witnesses such that 𝐶 (𝑥𝑖 ,𝑤𝑖 ) = 1 for all

𝑖 ∈ [𝑡]. Suppose crs = (pp, IndexBARG.crs) ← Gen(1𝜆, 1ℓ , 1𝑠 ) and 𝜋 ← Prove(crs,𝐶, (𝑥1, . . . , 𝑥𝑡 ), (𝑤1, . . . ,𝑤𝑡 )). Let
𝜎𝑖 ← PA.Open(pp, (𝑥1, . . . , 𝑥𝑡 ), 𝑖) be the openings computed by the prove algorithm. ConsiderV(crs,𝐶, (𝑥1, . . . , 𝑥𝑡 ), 𝜋).
Since ΠPA is correct, for every 𝑖 ∈ [𝑡], PA.Verify(pp, ℎ, 𝑥𝑖 , 𝑖, 𝜎𝑖 ) = 1. Thus, for every 𝑖 ∈ [𝑡], 𝐶′ (𝑖, (𝑥𝑖 , 𝜎𝑖 ,𝑤𝑖 )) = 1,

where 𝐶′ = 𝐶′ [pp, ℎ,𝐶] is the circuit from Fig. 7. Completeness now follows from completeness of the underlying

BARG for index languages. □

Theorem 4.6 (Soundness). Suppose ΠIndexBARG satisfies non-adaptive soundness, ΠPA satisfies setup-indistinguishability
and is enforcing. Then, Construction 4.4 satisfies non-adaptive soundness.

Proof. We start by defining a sequence of hybrid experiments:

• Hyb
0
: This is the non-adaptive soundness experiment:

– AdversaryA starts by outputting the maximum circuit size 1
𝑠 (𝜆)

, a Boolean circuit𝐶∗
𝜆
of size at most 𝑠 (𝜆),

and statements 𝑥∗
1
, . . . , 𝑥∗𝑡𝜆 where 𝑡𝜆 ≤ 2

𝜆
. The challenger checks that there exists an index 𝑖∗

𝜆
∈ [𝑡𝜆] such

that𝐶∗
𝜆

(
𝑥∗
𝑖∗
𝜆

,𝑤
)
= 0 for all𝑤 ∈ {0, 1}∗. If such an 𝑖∗ does not exist, the challenger aborts with output 0. For

ease of notation, we simply write 𝐶∗ = 𝐶∗
𝜆
, 𝑡 = 𝑡𝜆 , and 𝑖

∗ = 𝑖∗
𝜆
in the following description.

– The challenger samples crs← Gen(1𝜆, 1ℓ , 1𝑠 ) and gives it to A. Here, crs = (pp, IndexBARG.crs) where
pp← PA.Setup(1𝜆, 1ℓ ) and IndexBARG.crs← IndexBARG.Gen(1𝜆, 1𝑠′ ).

– Adversary A outputs a proof 𝜋 .

– The output of the experiment is 1 if V(crs,𝐶∗, (𝑥∗
1
, . . . , 𝑥∗𝑡 ), 𝜋) and 0 otherwise.

• Hyb
1
: Same as the previous experiment, but the challenger samples the public parameters pp using SetupEnforce:

pp← PA.SetupEnforce(1𝜆, 1ℓ , (𝑥∗
1
, . . . , 𝑥∗𝑡 ), 𝑖∗).

For an adversary A, we write Hyb𝑖 (A) to denote the output distribution of Hyb𝑖 (A) with adversary A. We now

show that each pair of adjacent distributions defined above are indistinguishable. As in the proof of Theorem 3.3, we

model the adversary A as a deterministic non-uniform algorithm that takes as input the security parameter 1
𝜆
(and

advice string 𝜌𝜆) and outputs the maximum circuit size 1
𝑠 (𝜆)

, a Boolean circuit𝐶∗
𝜆
of size at most 𝑠 (𝜆), and statements

𝑥∗
1
, 𝑥∗

2
, . . . , 𝑥∗𝑡𝜆 where 𝑡𝜆 ≤ 2

𝜆
. If the advantage of A is non-zero in the non-adaptive soundness game, it must be

the case that there exists an index 𝑖∗
𝜆
∈ [𝑡𝜆] such that 𝐶∗

𝜆

(
𝑥∗
𝑖∗
𝜆

,𝑤
)
= 0 for all 𝑤 ∈ {0, 1}∗. If there are multiple such

indices, we define 𝑖∗
𝜆
to be the first such index. In the following, we will consider deterministic non-uniform reduction

algorithms that are provided (𝜌𝜆, 𝑖∗𝜆) as advice (similar to the proof of Theorem 3.3, we rely on non-uniformity because

the index 𝑖∗ = 𝑖∗
𝜆
may not be efficiently-computable; see also Remark 3.10). We now show that each pair of adjacent

distributions defined above are indistinguishable.

Lemma 4.7. Suppose ΠPA satisfies setup indistinguishability. Then for every non-uniform polynomial time adversaryA,
there exists a negligible function negl(·) such that for all 𝜆 ∈ N, | Pr[Hyb

1
(A) = 1] − Pr[Hyb

0
(A) = 1] | = negl(𝜆).

Proof. Let A be a (deterministic) non-uniform polynomial time adversary where

| Pr[Hyb
1
(A) = 1] − Pr[Hyb

0
(A) = 1] | ≥ 𝜀

for some non-negligible 𝜀. We construct a non-uniform adversary B with advice string (𝜌, 𝑖∗) = (𝜌𝜆, 𝑖∗𝜆) that breaks
setup indistinguishability of the positional accumulator.
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1. Algorithm B runs adversary A on input 1
𝜆
and advice string 𝜌 . Algorithm A outputs the maximum circuit

size 1
𝑠
, a Boolean circuit 𝐶∗ of size at most 𝑠 , and statements 𝑥1, . . . , 𝑥𝑡 where 𝑡 ≤ 2

𝜆
.

2. Algorithm B gives (𝑥∗
1
, . . . , 𝑥∗𝑡 ) along with the index 𝑖∗ to the challenger.

3. Algorithm B receives a set of public parameters pp from the challenger. If 𝑏 = 0, these are sampled as

pp← Setup(1𝜆, 1ℓ ) and if 𝑏 = 1, they are sampled as pp← SetupEnforce(1𝜆, 1ℓ , (𝑥∗
1
, . . . , 𝑥∗𝑡 ), 𝑖∗).

4. Algorithm B computes IndexBARG.crs ← IndexBARG.Gen(1𝜆, 1𝑠′ ) and gives crs = (pp, IndexBARG.crs) to
A. Algorithm A then outputs a proof 𝜋 .

5. Algorithm B outputs V(crs,𝐶∗, (𝑥∗
1
, . . . , 𝑥∗𝑡 ), 𝜋).

Observe that if 𝑏 = 0, algorithm B perfectly simulates distribution Hyb
0
and if 𝑏 = 1, algorithm B perfectly simulates

distribution Hyb
1
. Thus, B’s advantage in breaking setup indistinguishability is 𝜀, which is non-negligible. □

Lemma 4.8. Suppose ΠIndexBARG satisfies non-adaptive soundness and ΠPA is enforcing. Then for every non-uniform
polynomial time adversary A, there exists a negligible function negl(·) such that for all 𝜆 ∈ N, Pr[Hyb

1
(A) = 1] =

negl(𝜆).

Proof. Suppose there exists a (deterministic) non-uniform polynomial time adversaryA where Pr[Hyb
1
(A) = 1] ≥ 𝜀

and 𝜀 is non-negligible. We construct a non-uniform adversary B with advice string (𝜌, 𝑖∗) = (𝜌𝜆, 𝑖∗𝜆) that breaks
non-adaptive soundness of ΠIndexBARG:

1. Algorithm B runs adversary A on input 1
𝜆
and advice 𝜌 . Algorithm A outputs the maximum circuit size 1

𝑠
, a

Boolean circuit 𝐶∗ of size at most 𝑠 , and statements 𝑥∗
1
, . . . , 𝑥∗𝑡 where 𝑡 ≤ 2

𝜆
.

2. Algorithm B computes pp← PA.SetupEnforce(1𝜆, 1ℓ , 𝑥∗
1
, . . . , 𝑥∗𝑡 , 𝑖

∗) and ℎ∗ ← PA.Hash(pp, 𝑥∗
1
, . . . , 𝑥∗𝑡 ). It also

computes the circuit 𝐶′ [pp, ℎ∗,𝐶∗] (·) according to Fig. 7.

3. Algorithm B outputs the maximum circuit size 1
𝑠′
, where 𝑠′ is the bound on the size of the circuit from Fig. 7,

the Boolean circuit 𝐶′ of size at most 𝑠′, and the number of instances 1
𝑡
where 𝑡 ≤ 2

𝜆
.

4. Algorithm B receives a common reference string IndexBARG.crs ← Gen(1𝜆, 1𝑠′ ). Using IndexBARG.crs,
algorithm B sets crs← (pp, IndexBARG.crs) and gives crs to A.

5. Algorithm A outputs a proof 𝜋 , which algorithm B also outputs.

By construction, algorithm B perfectly simulates an execution of Hyb
1
for A. Thus, with probability at least 𝜀,

algorithm A outputs a proof 𝜋 such that V(crs,𝐶∗, (𝑥∗
1
, . . . , 𝑥∗𝑡 ), 𝜋) = 1. This means that

IndexBARG.V(IndexBARG.crs,𝐶′, 𝑡, 𝜋) = 1, (4.1)

where 𝐶′ [pp, ℎ∗,𝐶∗] (·) is the circuit for the index relation according to Fig. 7 and ℎ∗ ← PA.Hash(pp, 𝑥∗
1
, . . . , 𝑥∗𝑡 ). We

now argue that 𝐶′ (𝑖∗,𝑤 ′
𝑖∗ ) = 0 for all𝑤 ′

𝑖∗ . First write𝑤
′
𝑖∗ = (𝑥 ′, 𝜎 ′,𝑤 ′). We consider two possibilities:

• Suppose 𝑥 ′ = 𝑥∗
𝑖∗ . By definition of 𝑖∗, 𝑥∗

𝑖∗ is a false instance so 𝐶
∗ (𝑥∗

𝑖∗ ,𝑤
′) = 0 irrespective of the value of 𝑤 ′.

Thus, 𝐶′ (𝑖∗,𝑤 ′
𝑖∗ ) = 0.

• Suppose 𝑥 ′ ≠ 𝑥∗
𝑖∗ . Since the parameters (pp, ℎ) are sampled in enforcing mode to bind on statement 𝑥∗

𝑖∗ at

index 𝑖∗, with all but negligible probability over the choice of pp, the only value of 𝑥 ′ for which there exists 𝜎 ′

such that PA.Verify(pp, ℎ, 𝑥 ′, 𝑖∗, 𝜎 ′) = 1 is 𝑥 ′ = 𝑥∗
𝑖∗ . Thus, with overwhelming probability over the choice of pp,

PA.Verify(pp, ℎ, 𝑥 ′, 𝑖∗, 𝜎 ′) = 0 in this case. This again means 𝐶′ (𝑖∗,𝑤 ′
𝑖∗ ) = 0.

In both cases, we see that 𝐶′ (𝑖∗,𝑤 ′
𝑖∗ ) = 0. This holds for all 𝑤 ′

𝑖∗ ∈ {0, 1}∗, so (𝐶′, 𝑡) ∉ LBatchCSATindex,𝑡 , and yet

Eq. (4.1) holds. Thus, algorithm B breaks non-adaptive soundness of the underlying index BARG with advantage

≥ 𝜀 − negl(𝜆). □
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Combining Lemmas 4.7 and 4.8, we conclude that for all polynomial-time (non-uniform) adversaries A, there exists a

negligible function such that Pr[Hyb
0
(A) = 1] = negl(𝜆). □

Theorem 4.9 (Succinctness). If ΠIndexBARG is succinct (resp., fully succinct) and ΠPA is efficient, then Construction 4.4 is
succinct (resp., fully succinct).

Proof. We show the two necessary succinctness properties.

• Succinct proof size: The proof 𝜋 on 𝑡 instances output by P in Construction 4.4 consists of a proof forΠIndexBARG
on the circuit𝐶′ = 𝐶′ [pp, ℎ,𝐶] and the same number of instances 𝑡 . By construction, pp← PA.Setup(1𝜆, 1ℓ ) and
ℎ ← PA.Hash(pp, (𝑥1, . . . , 𝑥𝑡 )). The efficiency and succinctness requirements ofΠPA imply that |pp| = poly(𝜆, ℓ)
and |ℎ | = poly(𝜆, ℓ). Correspondingly, this means that |𝐶′ | = poly(𝜆, ℓ, 𝑠) = poly(𝜆, 𝑠) since 𝑠 ≥ ℓ . Succinctness
(resp., full succinctness) now follows from succicntness (resp., full succinctness) of ΠIndexBARG.

• Succinct verification time: By construction, the verification algorithm needs to compute PA.Hash followed

by IndexBARG.Verify. Since PA.Hash runs in polynomial time, computing ℎ ← PA.Hash(pp, (𝑥1, . . . , 𝑥𝑡 )) takes
poly(𝜆, 𝑡, ℓ) time. By the same analysis as above, constructing the circuit 𝐶′ [pp, ℎ,𝐶] can takes poly(𝜆, 𝑠) time.

Finally, succinctness of ΠIndexBARG requires poly(𝜆, |𝐶′ |, |𝜋 |) time, so the overall verification time is bounded by

poly(𝜆, 𝑡, ℓ) + poly(𝜆, 𝑠) time, as required. □

Theorem 4.10 (Zero Knowledge). If ΠIndexBARG is perfect zero-knowledge, then Construction 4.4 is perfect zero-
knowledge.

Proof. Let IndexBARG.S be the simulator for ΠIndexBARG. We construct a simulator for ΠBARG as follows. On

input the security parameter 𝜆, a bound ℓ on the instance size, a bound 𝑠 on the circuit size, a Boolean circuit

𝐶 : {0, 1}ℓ × {0, 1}𝑚 → {0, 1}, and instances 𝑥1, . . . , 𝑥𝑡 ∈ {0, 1}ℓ , the simulator proceeds as follows:

1. Sample pp← PA.Setup(1𝜆, 1ℓ ) and compute ℎ ← PA.Hash(pp, (𝑥1, . . . , 𝑥𝑡 )).

2. Let𝐶′ = 𝐶′ [pp, ℎ, 𝑠] be the circuit from Fig. 7 and let 𝑠′ be a bound on the size of𝐶′, and compute the simulated

CRS and proof (IndexBARG.crs, 𝜋) ← IndexBARG.S(1𝜆, 1𝑠′ ,𝐶′, 𝑡).

3. Output the simulated CRS crs = (pp, IndexBARG.crs) and the simulated proof 𝜋 .

By construction, the positional accumulator parameters pp and the circuit 𝐶′ = 𝐶′ [pp, ℎ, 𝑠] are constructed exactly as

in the real scheme. Perfect zero-knowledge now follows from perfect zero-knowledge of ΠIndexBARG. □

Remark 4.11 (Weaker Notions of Zero Knowledge). If ΠIndexBARG satisfies computational (resp., statistical) zero-

knowledge, then Construction 4.4 satisfies computational (resp., statistical) zero-knowledge. In other words, Con-

struction 4.4 preserves the zero-knowledge property on the underlying index BARG.

5 Updatable Batch Argument for NP
We say that a BARG scheme is updatable if it supports an a priori unbounded number of statements (see Definition 2.7)

and the prover algorithm is updatable. Formally, we replace the prover algorithm P in the BARG with an UpdateP
algorithm. The UpdateP algorithm takes in a hash ℎ𝑡 (representing a short representation for some statements

(𝑥1, . . . , 𝑥𝑡 )), a proof 𝜋𝑡 on these 𝑡 statements, a new statement 𝑥𝑡+1, along with an associated witness 𝑤𝑡+1, and
outputs an “updated” proof 𝜋𝑡+1 on the new set of statements (𝑥1, . . . , 𝑥𝑡+1). The updated proof should continue to

satisfy the same succinctness requirements as before. We give the formal definition below:

Definition 5.1 (Updatable BARG). An updatable batch argument (BARG) for the language of Boolean circuit

satisfiability consists of a tuple of efficient algorithms ΠBARG = (Gen,Hash,UpdateP,V) with the following properties:

• Gen(1𝜆, 1ℓ , 1𝑠 ) → crs: On input the security parameter 𝜆 ∈ N, a bound on the instance size ℓ ∈ N, and a bound

on the maximum circuit size 𝑠 ∈ N, the generator algorithm outputs a common reference string crs.
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• Hash(crs, (𝑥1, . . . , 𝑥𝑡 )) → ℎ𝑡 : On input the common reference string crs, a sequence of statements 𝑥1, . . . , 𝑥𝑡 ∈
{0, 1}ℓ , the hash algorithm outputs a hash ℎ𝑡 .

• UpdateP(crs,𝐶, ℎ𝑡 , 𝜋𝑡 , 𝑥𝑡+1,𝑤𝑡+1) → (ℎ𝑡+1, 𝜋𝑡+1): On input the common reference string crs, a Boolean circuit

𝐶 : {0, 1}ℓ × {0, 1}𝑚 → {0, 1}, a hash ℎ𝑡 , a proof 𝜋𝑡 , a new statement 𝑥𝑡+1 ∈ {0, 1}ℓ , and a witness𝑤𝑡+1 ∈ {0, 1}𝑚 ,

the update proof algorithm outputs an updated hash ℎ𝑡+1 and an updated proof 𝜋𝑡+1. Note that ℎ𝑡 , 𝜋𝑡 are allowed
to be empty. We write ⊥ to denote an empty hash (representing an empty list of statements) and an empty

proof.

• V(crs,𝐶, (𝑥1, . . . , 𝑥𝑡 ), 𝜋) → 𝑏: On input the common reference string crs, a Boolean circuit𝐶 : {0, 1}ℓ×{0, 1}𝑚 →
{0, 1}, a list of statements 𝑥1, . . . , 𝑥𝑡 ∈ {0, 1}ℓ , and a proof 𝜋 , the verification algorithm outputs a bit 𝑏 ∈ {0, 1}.

An updatable BARG scheme should satisfy the following properties:

• Completeness: For every security parameter 𝜆 ∈ N, any 𝑡 ≤ 2
𝜆
, bounds ℓ ∈ N and 𝑠 ∈ N, Boolean circuits

𝐶 : {0, 1}ℓ × {0, 1}𝑚 → {0, 1} of size at most 𝑠 , any collection of statements 𝑥1, . . . , 𝑥𝑡 ∈ {0, 1}ℓ and associated

witnesses𝑤1, . . . ,𝑤𝑡 ∈ {0, 1}𝑚 where ∀𝑖 ∈ [𝑡],𝐶 (𝑥𝑖 ,𝑤𝑖 ) = 1, we have that,

Pr

∀𝑖 ∈ [𝑡],V(crs,𝐶, (𝑥1, . . . , 𝑥𝑖 ), 𝜋𝑖 ) = 1 :

crs← Gen(1𝜆, 1ℓ , 1𝑠 )
ℎ0 ← ⊥, 𝜋0 ← ⊥,

∀𝑖 ∈ [𝑡], (ℎ𝑖 , 𝜋𝑖 ) ← UpdateP(crs,𝐶, ℎ𝑖−1, 𝜋𝑖−1, 𝑥𝑖 ,𝑤𝑖 )

 = 1.

• Succinctness: Similar to Definition 2.6, we require two succinctness properties:

– Succinct proof size: There exists a universal polynomial poly(·, ·) such that for every 𝜆 ∈ N, 𝑡 ≤ 2
𝜆
,

𝑖 ∈ [𝑡], 𝑠 ∈ N, we have, |𝜋𝑖 | = poly(𝜆, 𝑠) in the completeness experiment above. Moreover, we say the

proof is fully succinct if |𝜋 | = poly(𝜆, log 𝑠).
– Succinct verification time: There exists a universal polynomial poly(·, ·, ·) such that for 𝜆 ∈ N, 𝑡 ≤ 2

𝜆
,

𝑖 ∈ [𝑡], 𝑠 ∈ N, ℓ ∈ N, the verification algorithm V(crs,𝐶, (𝑥1, . . . , 𝑥𝑖 ), 𝜋𝑖 ) runs in time poly(𝜆, 𝑖, ℓ) +
poly(𝜆, log 𝑖, 𝑠) in the completeness experiment above.

• Soundness: The soundness definition is defined exactly as in Definition 2.6 except the adversary outputs the

bound on the number of instances 𝑇 in binary (since we implicitly set 𝑇 = 2
𝜆
).

• Perfect zero knowledge: The scheme satisfies perfect zero knowledge if there exists an efficient simulator

S such that for all 𝜆 ∈ N, all bounds ℓ ∈ N, 𝑠 ∈ N, all 𝑡 ≤ 2
𝜆
, all tuples (𝐶, 𝑥1, . . . , 𝑥𝑡 ) ∈ LBatchCSAT,𝑡 , and all

witnesses (𝑤1, . . . ,𝑤𝑡 ) where 𝐶 (𝑥𝑖 ,𝑤𝑖 ) = 1 for all 𝑖 ∈ [𝑡], the following distributions are identically distributed:

– Real distribution: Set ℎ0, 𝜋0 = ⊥. Sample crs ← Gen(1𝜆, 1ℓ , 1𝑠 ) and for 𝑖 = 1 to 𝑡 , (ℎ𝑖 , 𝜋𝑖 ) ←
P(crs,𝐶, ℎ𝑖−1, 𝜋𝑖−1, 𝑥𝑖 ,𝑤𝑖 ). Output (crs, 𝜋𝑡 ).

– Simulated distribution: Output (crs∗, 𝜋∗𝑡 ) ← S(1𝜆, 1ℓ , 1𝑠 ,𝐶, (𝑥1, . . . , 𝑥𝑡 )).

Strong completeness. For updatable batch arguments, we can define an even stronger notion of completeness

which says that any valid proof (i.e., not just one output by the honest UpdateP algorithm) on statements (𝑥1, . . . , 𝑥𝑡 )
can be extended to a proof on (𝑥1, . . . , 𝑥𝑡+1). To ensure non-triviality, we require that the empty proof (denoted ⊥) be
a valid proof for the empty tuple of statements (also denoted ⊥). We state the formal definition below. It is easy to see

that strong completeness implies the vanilla version of completeness.

Definition 5.2 (Strong Completeness). We say that an updatable BARG ΠBARG = (Gen,Hash,UpdateP,V) satisfies
strong completeness if for every security parameter 𝜆 ∈ N, any 𝑡 ≤ 2

𝜆
, bounds ℓ ∈ N and 𝑠 ∈ N, Boolean circuits

𝐶 : {0, 1}ℓ × {0, 1}𝑚 → {0, 1} of size at most 𝑠 , the following conditions hold:

• Pr[V(crs,𝐶,⊥,⊥) = 1 : crs← Gen(1𝜆, 1ℓ , 1𝑠 )] = 1.
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• For all statements 𝑥1, . . . , 𝑥𝑡 ∈ {0, 1}ℓ , any proof 𝜋𝑡−1, any witness𝑤𝑡 ∈ {0, 1}𝑚 , and any crs in the support of

Gen(1𝜆, 1ℓ , 1𝑠 ) where V(crs,𝐶, (𝑥1, . . . , 𝑥𝑡−1), 𝜋𝑡−1) = 1 and 𝐶 (𝑥𝑡 ,𝑤𝑡 ) = 1, we have,

Pr

[
V(crs,𝐶, (𝑥1, . . . , 𝑥𝑡 ), 𝜋𝑡 ) = 1 :

ℎ𝑡−1 ← Hash(crs, (𝑥1, . . . , 𝑥𝑡−1)),
𝜋𝑡 ← UpdateP(crs,𝐶, ℎ𝑡−1, 𝜋𝑡−1, 𝑥𝑡 ,𝑤𝑡 )

]
= 1.

5.1 Updatable BARGs for NP from Indistinguishability Obfuscation
We now give a direct construction of an updatable batch argument for NP languages from indistinguishability

obfuscation together with somewhere statistically binding (SSB) hash functions [HW15].

Two-to-one somewhere statistically binding hash functions. Our construction relies on a two-to-one some-

where statistically binding (SSB) hash function [OPWW15]. Informally, a two-to-one SSB hash function hashes two

input blocks to an output whose size is comparable to the size of a single block. We recall the definition below:

Definition 5.3 (Two-to-One Somewhere Statistically Binding Hash Function [OPWW15]). Let 𝜆 be a security

parameter. A two-to-one somewhere statistically binding (SSB) hash function with block size ℓblk = ℓblk (𝜆) and
output size ℓout = ℓout (𝜆, ℓblk) is a tuple of efficient algorithms ΠSSB = (Gen,GenTD, LocalHash) with the following

properties:

• Gen(1𝜆, 1ℓblk ) → hk: On input the security parameter 𝜆 and the block size ℓblk, the generator algorithm outputs

a hash key hk.

• GenTD(1𝜆, 1ℓblk , 𝑖∗) → hk: On input a security parameter 𝜆, a block size ℓblk, and an index 𝑖∗ ∈ {0, 1}, the
trapdoor generator algorithm outputs a hash key hk.

• LocalHash(hk, 𝑥0, 𝑥1) → 𝑦: On input a hash key hk and two inputs 𝑥0, 𝑥1 ∈ {0, 1}ℓblk , the hash algorithm outputs

a hash 𝑦 ∈ {0, 1}ℓout .

Moreover, ΠSSB should satisfy the following requirements:

• Succinctness: The output length ℓout satisfies ℓout (𝜆, ℓblk) = ℓblk · (1 + 1/Ω(𝜆)) + poly(𝜆).

• Index hiding: For a security parameter 𝜆, a bit 𝑏 ∈ {0, 1}, and an adversary A, we define the index-hiding

experiment as follows:

– Algorithm A starts by choosing a block size 1
ℓblk

, and an index 𝑖 ∈ {0, 1}.
– If 𝑏 = 0, the challenger samples hk0 ← Gen(1𝜆, 1ℓblk ). Otherwise, if 𝑏 = 1, the challenger samples

hk1 ← GenTD(1𝜆, 1ℓblk , 𝑖). It gives hk𝑏 to A.

– Algorithm A outputs a bit 𝑏′ ∈ {0, 1}, which is the output of the experiment.

We say that ΠSSB satisfies (𝜏, 𝜀)-index-hiding, if for all adversaries running in time 𝜏 = 𝜏 (𝜆), there exists 𝜆A ∈ N
such that for all 𝜆 > 𝜆A , | Pr[𝑏′ = 1 | 𝑏 = 0] − Pr[𝑏′ = 1 | 𝑏 = 1] | ≤ 𝜀 (𝜆) in the index-hiding experiment.

• Somewhere statistically binding: Let 𝜆 ∈ N be a security parameter and ℓ ∈ N be an input length. We

say a hash key hk is "statistically binding" at index 𝑖 ∈ {0, 1}, if there does not exist two inputs (𝑥0, 𝑥1) and
(𝑥∗

0
, 𝑥∗

1
) such that 𝑥∗𝑖 ≠ 𝑥𝑖 and Hash(hk, (𝑥0, 𝑥1)) = Hash(hk, (𝑥∗

0
, 𝑥∗

1
)). We then say that the hash function is

somewhere statistically binding if for all polynomials ℓblk = ℓblk (𝜆), there exists a negligible function negl(·)
such that for all indices 𝑖∗ ∈ {0, 1} and all 𝜆 ∈ N,

Pr[hk is statistically binding at index 𝑖 : hk← GenTD(1𝜆, 1ℓblk , 𝑖)] ≥ 1 − negl(𝜆).

Theorem 5.4 (Somewhere Statistically Binding Hash Functions [OPWW15]). Under standard number-theoretic
assumptions (e.g., DDH, DCR, LWE, or 𝜙-Hiding), there exists a two-to-one somewhere statistically binding hash function
for arbitrary polynomial block size ℓblk = ℓblk (𝜆).
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Notation. Our updatable BARG construction uses a tree-based construction. Before describing the construction,

we introduce some notation. First, for an integer 𝑡 < 2
𝑑
, we write bin𝑑 (𝑡) ∈ {0, 1}𝑑 to denote the 𝑑-bit binary

representation of 𝑡 . We say ind ≤ ind′ if the string ind precedes the string ind′ lexicographically (if the strings have

uneven length, the shorter one is first padded with 0s on the right to the length of the longer string before comparing

them lexicographically). For strings 𝑠1, 𝑠2 ∈ {0, 1}∗, we write 𝑠1∥𝑠2 to denote their concatenation. We say that a string

𝑥 ∈ {0, 1}∗ is a prefix of a string 𝑦 ∈ {0, 1}∗ if there exists a string 𝑧 ∈ {0, 1}∗ such that 𝑦 = 𝑥 ∥𝑧. For a length parameter

ℓ , we write {0, 1}≤ℓ to denote the set of bit-strings with length at most ℓ .

Binary trees. A binary tree Γ of height 𝑑 consists of nodes where each node is indexed by a binary string of length

at most 𝑑 . We now define a recursive labeling scheme for the nodes of the tree; subsequently, we will refer to nodes

by their labels.

• Root node: The root node is labeled with the empty string 𝜀.

• Child nodes: The left child of node ind has label ind∥0 and the right child has label ind∥1. We also say that

node ind∥0 is the “left sibling” of the node ind∥1.

We define the level of a node ind by level(ind) = 𝑑 − |ind|. In particular, the root node is at level 𝑑 while the leaf nodes

are at level 0. We write {0, 1}≤𝑑 to denote the set of node labels associated in the binary tree (i.e., the set of all binary

strings of length at most 𝑑). Finally, we can also associate each node in the binary tree with a value; formally, for

a binary tree Γ we write val(ind) to denote the value associated with the node ind. When we write (Γ, val(·)), we
imply our binary tree has been initialized with the corresponding value function. Finally, we define the notion of a

“path” and a “frontier” of a node in a binary tree Γ:

• Path of a node: We define the path associated with a node ind ∈ {0, 1}≤𝑑 as

path(ind) =
{
ind′ | ind′ ∈ {0, 1}≤𝑑 and ind′ is a prefix of ind

}
.

Namely, path(ind) consists of the nodes along the path from the root to ind.

• Frontier of a node: For any ind ∈ {0, 1}≤𝑑 , we define

frontier(ind) = {ind} ∪
{
ind′ ∈ {0, 1}≤𝑑 | ind′ is a left sibling of a node in path(ind)

}
.

Claim 5.5 (Size of Frontier). Let Γ be a binary tree of height 𝑑 . Then, for any leaf node ind ∈ {0, 1}𝑑 , |frontier(ind) | ≤
𝑑 + 1 (i.e., the frontier of a leaf nodes ind contains at most 𝑑 + 1 nodes).

Proof. The path from the root to ind ∈ {0, 1}𝑑 contains 𝑑 + 1 nodes. The frontier of ind includes ind itself along with

the left sibling of each node along the path (if one exists). Since the root node has no sibling node, the maximum

number of nodes in frontier(ind) is at most 𝑑 + 1. □

Construction 5.6 (Non-Adaptive Updatable Batch Argument for NP). Let 𝜆 be a security parameter, ℓ = ℓ (𝜆) be
the statement size, and 𝑠 = 𝑠 (𝜆) be a bound on the size of the Boolean circuit. We construct an updatable BARG

scheme that supports NP languages with up to𝑇 = 2
𝜆
instances of length ℓ and circuit size at most 𝑠 . Note that setting

𝑇 = 2
𝜆
means the construction support an arbitrary polynomial number of instances. Our construction relies on the

following primitives:

• Let ΠSSB = (SSB.Gen, SSB.GenTD, SSB.LocalHash) be a two-to-one somewhere statistically binding hash

function with output length ℓout = ℓout (𝜆, ℓblk), where ℓblk denotes the block length. Our construction will

consider a binary tree of depth 𝑑 = 𝜆, and we define a sequence of block lengths ℓ0, . . . , ℓ𝑑 where ℓ0 = ℓ and for

𝑗 ∈ [𝑑], let ℓ𝑗 = ℓout (𝜆, ℓ𝑗−1).10 Let ℓmax = max(ℓ0, . . . , ℓ𝑗 ).
10
Formally, our hash function will take inputs in {0, 1}ℓ𝑗−1 ∪ {⊥}. For ease of exposition, we drop the special input symbol ⊥ in our block length

description.
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• Let ΠPRF = (PRF.KeyGen, PRF.Puncture, PRF.Eval) be a puncturable PRF with key space {0, 1}𝜆 , domain

{0, 1}≤𝑠 × {0, 1}≤ℓmax × {0, 1}𝑑 and range {0, 1}𝜆 .

• Let 𝑖O be an indistinguishability obfuscator for general circuits.

• Let PRG be a pseudorandom generator with domain {0, 1}𝜆 and range {0, 1}2𝜆 .

We define our updatable batch argument ΠBARG = (Gen,Hash,UpdateP,Verify) for NP languages as follows:

• Gen(1𝜆, 1ℓ , 1𝑠 ): On input the security parameter 𝜆, the statement size ℓ , and a bound on the circuit size 𝑠 , the setup

algorithm starts by sampling a PRF key 𝐾 ← PRF.KeyGen(1𝜆). For 𝑗 ∈ [𝑑], sample hk𝑗 ← SSB.Gen(1𝜆, 1ℓ𝑗−1 ),
Let hk← (hk1, . . . , hk𝑑 ) and define the proving program Prove[𝐾, hk] and the verification program Verify[𝐾]
as follows:

Constants: PRF key 𝐾 , hash key hk = (hk1, . . . , hk𝑑 )
Input: Boolean circuit 𝐶 : {0, 1}ℓ × {0, 1}𝑚 → {0, 1} of size at most 𝑠 , node values ℎ0, ℎ1 ∈ {0, 1}≤ℓmax

, index

ind ∈ {0, 1}≤𝑑 , and proofs 𝜋0, 𝜋1 ∈ {0, 1}≤max(𝑚,𝜆)

1. If ind ∈ {0, 1}𝑑 (i.e., a leaf in the binary tree),

(a) Parse ℎ0 as a statement 𝑥1 ∈ {0, 1}ℓ and 𝜋0 as a witness𝑤1 ∈ {0, 1}𝑚 .

(b) If 𝐶 (𝑥1,𝑤1) ≠ 1, output ⊥. Otherwise, output PRF.Eval(𝐾, (𝐶, 𝑥1, ind)).
2. Otherwise, if ind ∈ {0, 1}<𝑑 (i.e., an internal node in the binary tree),

(a) Let 𝑑′ = level(ind) and compute the hash ℎ ← SSB.LocalHash(hk𝑑 ′ , ℎ0, ℎ1).
(b) Check the following conditions:

– PRG(𝜋0) = PRG(PRF.Eval(𝐾, (𝐶,ℎ0, ind∥0)));
– PRG(𝜋1) = PRG(PRF.Eval(𝐾, (𝐶,ℎ1, ind∥1))).

If either check fails, output ⊥. Otherwise, output PRF.Eval(𝐾, (𝐶,ℎ, ind)).

Figure 8: Program Prove[𝐾, hk]

Constants: PRF key 𝐾
Input: Boolean circuit 𝐶 of size at most 𝑠 , node value ℎ ∈ {0, 1}≤ℓmax

, index ind ∈ {0, 1}≤𝑑 , a proof 𝜋 ∈ {0, 1}𝜆

1. Output 1 if PRG(𝜋) = PRG(PRF.Eval(𝐾, (𝐶,ℎ, ind))) and 0 otherwise.

Figure 9: Program Verify[𝐾]

The setup algorithm obfuscates the above programs to obtainObfProve← 𝑖O(1𝜆, Prove[𝐾, hk]) andObfVerify←
𝑖O(1𝜆,Verify[𝐾]). Note that both the proving circuit Prove[𝐾, hk] and Verify[𝐾] are padded to the maximum

size of any circuit that appears in the proof of Theorem 5.8. Finally, it outputs the common reference string

crs = (ObfProve,ObfVerify, hk).

• Hash(crs, (𝑥1, . . . , 𝑥𝑡 )): On input a common reference string crs = (ObfProve,ObfVerify, hk = (hk1, . . . , hk𝑑 ))
and sequence of statements 𝑥1, . . . , 𝑥𝑡 ∈ {0, 1}ℓ , the hash algorithm proceeds as follows:

1. If 𝑡 = 0 (i.e., the sequence of statements is empty), then the hash algorithm outputs (0,∅).
2. Otherwise, if 𝑡 ≠ 0, the algorithm constructs a binary tree (Γhash, valhash) ← HashProg[hk] (𝑥1, . . . , 𝑥𝑡 ) of

depth 𝑑 whose values correspond to the statements (𝑥1, . . . , 𝑥𝑡 ) and their hashes. Specifically, we define

the HashProg[hk] function as follows:
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Constants: Hash key hk = (hk1, . . . , hk𝑑 )
Input: Statements 𝑥1, . . . , 𝑥𝑡 ∈ {0, 1}ℓ

On input a collection of statements (𝑥1, . . . , 𝑥𝑡 ), the hash algorithm constructs a binary tree Γhash of depth 𝑑

with a value function valhash defined recursively as follows:

– Leaf nodes: For a leaf node ind ∈ {0, 1}𝑑 , let 𝑖 ∈ [1, 2𝑑 ] be its associated value (when viewed as an

integer). For instance, we associate the string 0
𝑑
with the integer 1, and more generally, if ind = 𝑏1, . . . , 𝑏𝑑 ,

then we associated ind with the integer 1 +∑𝑗∈[𝑑 ] 2
𝑑− 𝑗𝑏 𝑗 ). Then, we associate a value valhash (ind) as

follows:

valhash (ind) =
{
𝑥𝑖 𝑖 ≤ 𝑡
⊥ otherwise.

– Internal nodes: For an internal node ind ∈ {0, 1}<𝑑 , we define its value as follows:

∗ For all indices where ind > bin𝑑 (𝑡 − 1), define valhash (ind) ← ⊥. Recall that ind > bin𝑑 (𝑡 − 1) if
the binary string ind follows the binary string bin𝑑 (𝑡 − 1) lexicographically.

∗ If ind ≤ bin𝑑 (𝑡 − 1), define valhash (ind) to be the hash of its children ind∥0 and ind∥1 computed

using hk𝑑 ′ , where 𝑑
′ = level(ind). Namely,

valhash (ind) ← SSB.LocalHash
(
hk𝑑 ′ , valhash (ind∥0), valhash (ind∥1)

)
.

Output (Γhash, valhash). By construction, the value of valhash (ind) is ⊥ whenever ind > bin𝑑 (𝑡 − 1). The number

of such indices is at most 2𝑡 , so the value function valhash (ind) is defined (i.e., not ⊥) on at most 2𝑡 indices.

Figure 10: The function HashProg[hk] (𝑥1, . . . , 𝑥𝑡 )

Essentially, HashProg[hk] computes a Merkle tree on the statements (𝑥1, . . . , 𝑥𝑡 ).

3. Finally, output the hash ℎ𝑡 =

(
𝑡, {(ind, valhash (ind))}ind∈frontier(ind(𝑡 ) )

)
.

• UpdateP(crs,𝐶, ℎ𝑡 , 𝜋𝑡 , 𝑥𝑡+1,𝑤𝑡+1): On input a common reference string crs = (ObfProve,ObfVerify, hk), where
hk = (hk1, . . . , hk𝑑 ), a Boolean circuit 𝐶 : {0, 1}ℓ × {0, 1}𝑚 → {0, 1}, a hash of 𝑡 statements denoted by

ℎ𝑡 = (𝑡, {(ind, ℎind)}ind∈I1 ), a proof 𝜋𝑡 = {(ind, 𝜋ind)}ind∈I2 on the first 𝑡 statements where 𝑡 ≤ 2
𝜆
and I1,I2 ⊆

{0, 1}≤𝑑 , and a witness𝑤𝑡+1 ∈ {0, 1}𝑚 , the update algorithm proceeds as follows:
11

1. If 𝑡 = 0, let ind(1) = bin𝑑 (0) = 0
𝑑
. Let 𝜋 ← ObfProve(𝐶, 𝑥1,⊥, ind(1) ,𝑤1,⊥) and output {(ind(1) , 𝜋)}.

2. If I1 ≠ I2, output ⊥. Otherwise let I = I1 = I2. Then, the update algorithm computes ind(𝑡 ) = bin𝑑 (𝑡 − 1)
and checks that frontier(ind(𝑡 ) ) = I. If the check fails, then the update algorithm outputs ⊥.

3. The hash algorithm then defines a binary tree Γhash of depth 𝑑 with the following value function valhash:

– For each index ind ∈ I, let valhash (ind) = ℎind.
– Let ind(𝑡+1) = bin𝑑 (𝑡). Let valhash (ind(𝑡+1) ) = 𝑥𝑡+1.
– For all other nodes ind ∉ I or ind ≠ ind(𝑡+1) , let valhash (ind) = ⊥.

The invariant will be that the nodes ind associated with the frontier of leaf node 𝑡 (with index bin𝑑 (𝑡 − 1))
are associated with a hash ℎind.

4. The update algorithm then defines a binary tree Γproof of depth 𝑑 with the following value function valproof :

– For each index ind ∈ I, let valproof (ind) = 𝜋ind.
– Let ind(𝑡+1) = bin𝑑 (𝑡). Let valproof (ind(𝑡+1) ) = ObfProve(𝐶, 𝑥𝑡+1,⊥, ind(𝑡+1) ,𝑤𝑡+1,⊥).
– For all other nodes ind ∉ I, let valproof (ind) = ⊥.

The invariant will be that the nodes ind associated with the frontier of leaf node 𝑡 (with index bin𝑑 (𝑡 − 1))
are associated with a proof 𝜋ind.

11
Note that if 𝜋𝑡 = ⊥, then we interpret I2 as I2 = ∅.
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5. Let ind′ be the longest common prefix to ind(𝑡 ) and ind(𝑡+1) . Write ind(𝑡 ) = 𝑏1 · · ·𝑏𝑑 and ind′ = 𝑏1 · · ·𝑏𝜌 ,
where 𝜌 = |ind′ | denotes the length of the common prefix. If 𝜌 < 𝑑 − 1, then we apply the following

procedure for 𝑘 = 𝑑 − 1, . . . , 𝜌 + 1 to merge proofs:

– Let ind = 𝑏1 · · ·𝑏𝑘 and compute

valhash (ind) ← SSB.LocalHash (hk𝑑−𝑘 , valhash (ind∥0), valhash (ind∥1)) ,
valproof (ind) ← ObfProve

(
𝐶,ℎ0, ℎ1, ind, valproof (ind∥0), valproof (ind∥1)

)
,

where ℎ0 ← valhash (ind∥0) and ℎ1 ← valhash (ind∥1).

6. Output the updated hash ℎ𝑡+1 =

(
𝑡 + 1, {(ind, valhash (ind))}ind∈frontier(ind(𝑡+1) )

)
and the updated proof

𝜋𝑡+1 =
{
(ind, valproof (ind))

}
ind∈frontier(ind(𝑡+1) ) .

• V(crs,𝐶, (𝑥1, . . . , 𝑥𝑡 ), 𝜋): On input a common reference string crs = (ObfProve,ObfVerify, hk), a Boolean circuit
𝐶 : {0, 1}ℓ × {0, 1}𝑚 → {0, 1}, statements 𝑥1, . . . , 𝑥𝑡 ∈ {0, 1}ℓ , and a proof 𝜋 = {(ind, 𝜋ind)}ind∈I , the verification
algorithm proceeds as follows:

1. If 𝑡 = 0 and 𝜋 = ⊥, then the verification algorithm outputs 1. If 𝑡 = 0 and 𝜋 ≠ ⊥, then the verification

algorithm outputs 0.

2. Otherwise, let ind(𝑡 ) = bin𝑑 (𝑡 − 1). If I ≠ frontier(ind(𝑡 ) ), output ⊥.

3. The algorithm runs ℎ𝑡 ← Hash(crs, (𝑥1, . . . , 𝑥𝑡 )). Parse ℎ𝑡 =
(
𝑡, {(ind, valhash (ind))}ind∈frontier(ind(𝑡 ) )

)
.

4. The verification algorithm checks thatObfVerify(𝐶, valhash (ind), ind, 𝜋ind) = 1 for all ind ∈ frontier(ind(𝑡 ) ).
If any checks fail, output 0. Otherwise output 1.

Theorem 5.7 (Strong Completeness). If 𝑖O is correct, then Construction 5.6 satisfies strong completeness.

Proof. Take any security parameter 𝜆 ∈ N, any 𝑡 ≤ 2
𝜆
, any bounds ℓ, 𝑠 ∈ N, and any Boolean circuit 𝐶 : {0, 1}ℓ ×

{0, 1}𝑚 → {0, 1} of size at most 𝑠 . Let crs← Gen(1𝜆, 1ℓ , 1𝑠 ). First, V(crs,𝐶,⊥,⊥) always outputs 1 by construction.

For the main requirement, take any sequence of statements 𝑥1, . . . , 𝑥𝑡 ∈ {0, 1}ℓ , any proof 𝜋𝑡−1, and any witness

𝑤𝑡 ∈ {0, 1}𝑚 where V(crs,𝐶, (𝑥1, . . . , 𝑥𝑡−1), 𝜋𝑡−1) = 1 and 𝐶 (𝑥𝑡 ,𝑤𝑡 ) = 1. For each 𝑗 ∈ [𝑡], let ind( 𝑗 ) = bin𝑑 ( 𝑗 − 1). We

consider two cases depending on the value of 𝑡 .

Case 1. Suppose 𝑡 = 1. Let ℎ0 ← Hash(crs,⊥). By construction, ℎ0 = (0,∅). Since V(crs,𝐶,⊥, 𝜋0) = 1, it must be

the case that 𝜋0 = ⊥. Consider the proof 𝜋1 output by UpdateP(crs,𝐶, ℎ0, 𝜋0, 𝑥1,𝑤1). Since 𝑡 = 0, UpdateP algorithm

computes a proof 𝜋 by evaluating 𝜋 ← ObfProve(𝐶, 𝑥1,⊥, ind(1) ,𝑤1,⊥). By correctness of 𝑖O, and the fact that

𝐶 (𝑥1,𝑤1) = 1,

𝜋 = PRF.Eval
(
𝐾,

(
𝐶, 𝑥1, ind(1)

) )
.

By construction, UpdateP outputs the proof

𝜋1 =

{(
ind(1) , PRF.Eval(𝐾, (𝐶, 𝑥1, ind(1) ))

)}
.

Now consider the output of V(crs,𝐶, (𝑥1), 𝜋1). The verification algorithm first computes ind(1) = bin𝑑 (0). Since ind(1)
is the leftmost node, we have frontier(ind(1) ) = ind(1) , and the first check succeeds. Next, the verification algorithm

computes ℎ1 ← Hash(crs, (𝑥1)). By construction, this means

ℎ1 =

(
1,

{(
ind(1) , valhash (ind(1) )

)})
.

By construction of Hash, we have that valhash (ind(1) ) = 𝑥1. Then, the verification algorithm runs ObfVerify on the

input

(
𝐶, 𝑥1, ind(1) , PRF.Eval(𝐾, (𝐶, 𝑥1, ind(1) ))

)
. By correctness of 𝑖O, the program check succeeds. Since all the

checks pass, the verification algorithm outputs 1.
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Case 2. Suppose 𝑡 > 1. First, write 𝜋𝑡−1 = {(ind, 𝜋ind)}ind∈I . Similarly, let ℎ𝑡−1 ← Hash(crs, (𝑥1, . . . , 𝑥𝑡−1)). By
construction of Hash, we can write

ℎ𝑡−1 =
(
𝑡 − 1, {(ind, valhash (ind))}ind∈frontier(ind(𝑡−1) )

)
. (5.1)

Let ind(𝑡−1) = bin𝑑 (𝑡 − 2). Since 𝜋𝑡−1 is a valid proof on (𝑥1, . . . , 𝑥𝑡 ), the following properties hold by definition of V:

• The set of indices I associated with 𝜋𝑡−1 satisfies I = frontier(ind(𝑡−1) ).

• Since verification succeeds, for all ind ∈ frontier(ind(𝑡−1) ), ObfVerify(𝐶, valhash (ind), ind, 𝜋ind) = 1. By correct-

ness of 𝑖O, this means that,

PRG(𝜋ind) = PRG(PRF.Eval(𝐾, (𝐶, valhash (ind), ind))). (5.2)

Consider the proof 𝜋𝑡 computed by UpdateP(crs,𝐶, ℎ𝑡−1, 𝜋𝑡−1, 𝑥𝑡 ,𝑤𝑡 ) where ℎ𝑡−1 and 𝜋𝑡−1 are defined above.

• Since 𝑡 − 1 > 0, and from the checks above, ℎ𝑡−1 and 𝜋𝑡−1 are both computed on the set I = frontier(ind(𝑡−1) ).

• The update algorithm defines a binary tree Γhash and defines valhash on I = frontier(ind(𝑡−1) ) using the values

taken from ℎ𝑡−1 (i.e., this defines valhash on all ind ∈ I). In addition, it sets valhash (ind(𝑡 ) ) = 𝑥𝑡 . For all other
nodes ind ∉ I ∪

{
ind(𝑡 )

}
, it sets valhash (ind) = ⊥.

• Similarly, the update algorithm defines a binary tree Γproof and sets valproof on I = frontier(ind(𝑡−1) ) using
the values taken from 𝜋𝑡−1. It sets valproof (ind(𝑡 ) ) = ObfProve(crs,𝐶, 𝑥𝑡 ,⊥, ind(𝑡 ) ,𝑤𝑡 ,⊥). For all other nodes
ind ∉ I ∪

{
ind(𝑡 )

}
, it sets valhash (ind) = ⊥.

• Since 𝐶 (𝑥𝑡 ,𝑤𝑡 ) = 1, by correctness of 𝑖O, we have that,

𝜋ind(𝑡 ) = valproof (ind(𝑡 ) ) = PRF.Eval(𝐾, (𝐶, 𝑥𝑡 , ind(𝑡 ) )). (5.3)

Let ind′ be the longest common prefix to ind(𝑡−1) and ind(𝑡 ) and let 𝜌 = |ind′ |. Let ind(𝑡−1) = 𝑏1 · · ·𝑏𝑑 and ind′ =
𝑏1 · · ·𝑏𝜌 . Let I∗ =

{
ind(𝑡 )

}
∪ frontier(ind(𝑡−1) ). Observe first that ind(𝑡−1) ≠ ind(𝑡 ) , so the length of their longest

prefix is less than 𝑑 (i.e., 0 ≤ 𝜌 < 𝑑). We now consider two possibilities:

• Case (i) : Suppose 𝜌 = 𝑑 − 1. Then ind(𝑡−1) = ind′∥0 and ind(𝑡 ) = ind′∥1. This corresponds to the case where

ind(𝑡−1) and ind(𝑡 ) are siblings in the binary tree. Thus, in this case,

frontier(ind(𝑡 ) ) = frontier(ind(𝑡−1) ) ∪
{
ind(𝑡 )

}
= I∗ .

In this case, the hash value ℎ𝑡 and the proof 𝜋𝑡 include the same set of components as in ℎ𝑡−1 and 𝜋𝑡−1 along
with additional values corresponding to the hash value and the proof associated with node ind(𝑡 ) . We now

show that V(crs,𝐶, (𝑥1, . . . , 𝑥𝑡 ), 𝜋𝑡 ) outputs 1.

– The verification algorithm starts by computing ℎ𝑡 ← Hash(crs, (𝑥1, . . . , 𝑥𝑡 )). By definition, this means

that

ℎ𝑡 =

(
𝑡, {(ind, valhash (ind))}ind∈frontier(ind(𝑡−1) ) ∪

{
(ind(𝑡 ) , 𝑥𝑡 )

})
,

where {(ind, valhash (ind))}ind∈frontier(ind(𝑡−1) ) are the same values as in ℎ𝑡−1.

– Consider now the verification relation. As argued above, validity of 𝜋𝑡−1 for statements (𝑥1, . . . , 𝑥𝑡−1)
means that that for all ind ∈ frontier(𝑡−1) ,

PRG(𝜋ind) = PRG(PRF.Eval(𝐾, (𝐶, valhash (ind), ind))).

Moreover, by Eq. (5.3), the verification relation also holds for ind = ind(𝑡 ) , and the verification algorithm

outputs 1.
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• Case (ii) : Suppose 𝜌 < 𝑑−1. Then the update algorithm constructs the proof iteratively. Let𝑘 be the loop counter

(i.e., 𝑘 ranges from𝑑−1 to 𝜌+1). Since ind(𝑡−1) and ind(𝑡 ) are adjacent leaves in the binary tree, we canwrite them
as ind(𝑡−1) = 𝑏1 · · ·𝑏𝜌01 · · · 1 and ind(𝑡 ) = 𝑏1 · · ·𝑏𝜌10 · · · 0. Let (Γ′hash, val

′
hash) ← HashProg[hk] (𝑥1, . . . , 𝑥𝑡 )

(using the algorithm from Fig. 10). Let I∗
𝑑
=
{
ind(𝑡 )

}
∪ frontier(ind(𝑡−1) ), and for each 𝑘 ∈ {𝜌 + 1, . . . , 𝑑 − 1},

define I∗
𝑘
= I∗

𝑘+1 ∪ {ind𝑘 }, where ind𝑘 = 𝑏1𝑏2 · · ·𝑏𝑘 is the index that the update algorithm processes in iteration

𝑘 . We now show that the following invariant holds for all 𝑘 ∈ {𝜌 + 1, . . . , 𝑑}:

for all indices ind ∈ I∗
𝑘
, it holds that

PRG(valproof (ind)) = PRG(PRF.Eval(𝐾, (𝐶, valhash (ind), ind))); (5.4)

valhash (ind) = val′hash (ind). (5.5)

First, we use the fact that V(crs,𝐶, (𝑥1, . . . , 𝑥𝑡−1), 𝜋) = 1 to argue that the invariant holds at the beginning of

the update process (for the initial I∗
𝑑
):

– Consider an index ind ∈ frontier(ind(𝑡−1) ). Then the above analysis (see Eq. (5.2)) shows that the

first property (Eq. (5.4)) holds. It suffices to show that the second property (Eq. (5.5)) also holds for

such indices. For all ind ∈ frontier(ind(𝑡−1) ), since ind(𝑡−1) < ind(𝑡 ) , ind cannot be a prefix of ind(𝑡 )

(recall that ind is a left sibling of a node on the path to ind(𝑡−1) ). By construction of HashProg, the
value of any node only depends on the values of its descendants. Correspondingly, this means that

val′hash (ind) only depends on the values of valhash (ind(1) ) = 𝑥1, . . . , valhash (ind(𝑡−1) ) = 𝑥𝑡−1, or in other

words, the first 𝑡 − 1 nodes of the tree. This precisely coincides with the values obtained by computing

HashProg[hk] (𝑥1, . . . , 𝑥𝑡−1). Recall that ind(𝑡−1) = 𝑏1𝑏2 · · ·𝑏𝑑 . By Eq. (5.1), we conclude that for all

ind ∈ frontier(ind(𝑡−1) ), val′hash (ind) = valhash (ind).
– For ind = ind(𝑡 ) , the update algorithm sets valproof (ind) = PRF.Eval(𝐾, (𝐶, 𝑥𝑡 , ind(𝑡 ) )) (see Eq. (5.3)) so the

first requirement holds. Moreover, by construction of HashProg, val′hash (ind
(𝑡 ) ) = 𝑥𝑡 = valhash (ind(𝑡 ) ), so

Eq. (5.5) of the invariant also holds.

We now show that the invariant continues to hold at the end of each iteration:

– Base case: When 𝑘 = 𝑑 − 1, the update algorithm sets ind = ind𝑑−1 = 𝑏1 · · ·𝑏𝑑−1 (i.e., the first 𝑑 − 1 bits
of ind(𝑡−1) ).

∗ Since ind∥1 = ind(𝑡−1) , this means that ind∥0 is a left sibling of ind(𝑡−1) . By definition, both ind∥0
and ind∥1 are contained in the set frontier(ind(𝑡−1) ) ⊆ I∗.

∗ Algorithm UpdateP runs valhash (ind) ← SSB.LocalHash(hk𝑑−𝑘 , valhash (ind∥0), valhash (ind∥1)). Ad-
ditionally, it runs valproof (ind) ← ObfProve

(
𝐶,ℎ0, ℎ1, ind, valproof (ind∥0), valproof (ind∥1)

)
, where

ℎ0 ← valhash (ind∥0) and ℎ1 ← valhash (ind∥1). By correctness of 𝑖O, this means that

valproof (ind) = Prove[𝐾, hk]
(
𝐶,ℎ0, ℎ1, ind, valproof (ind∥0), valproof (ind∥1)

)
.

∗ By construction, the Prove program checks that Eq. (5.4) holds on ind∥0, ind∥1. Since ind∥0 and

ind∥1 are both in frontier(ind(𝑡−1) ), the checks pass by the above analysis (see Eq. (5.2)). In this case,

the Prove program outputs PRF.Eval(𝐾, (𝐶, valhash (ind), ind)), which is the value of valproof (ind).
Clearly, Eq. (5.4) holds for index ind.

∗ By construction, ind is a prefix of ind(𝑡−1) but not a prefix of ind(𝑡 ) . Since ind(𝑡−1) < ind(𝑡 ) , this means

that the descendants of ind cannot include ind(𝑡 ) . By the same argument as above, we can appeal to

the construction of HashProg to conclude that val′hash (ind) is a function only of (𝑥1, . . . , 𝑥𝑡−1) and so

valhash (ind) = val′hash (ind). Thus, ind satisfies Eq. (5.5).

At the end of this step, we see that the invariant holds for index ind = ind𝑑−1. Since the invariant holds
for I∗

𝑑
, it now holds for I∗

𝑑
∪ {ind𝑑−1} = I∗𝑑−1, as required.
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– Iterative case: When 𝜌 + 1 ≤ 𝑘 < 𝑑 − 1, the update algorithm sets ind𝑘 = ind = 𝑏1 · · ·𝑏𝑘 . Since

ind(𝑡−1) = 𝑏1 · · ·𝑏𝜌01 · · · 1 and ind(𝑡 ) = 𝑏1 · · ·𝑏𝜌10 · · · 0, it must be the case that 𝑏𝑘+1 = 1. First, we observe

that ind∥0, ind∥1 ∈ I∗𝑡+1:
∗ Since ind∥0 is a left sibling of ind∥1 and ind∥1 is a prefix of ind(𝑡−1) , we conclude that ind∥0 ∈
frontier(ind(𝑡−1) ) ⊆ I∗

𝑘+1.

∗ Since 𝑏𝑘+1 = 1, ind∥1 = 𝑏1 · · ·𝑏𝑘+1 = ind𝑘+1 ∈ I∗𝑘+1.
Since the invariant holds for I∗

𝑘+1, Eq. (5.4) holds for both ind∥0 and ind∥1. Now, by the same analysis as

in the base case, we conclude that both Eq. (5.4) and Eq. (5.5) holds for index ind.

To complete the proof, we consider the behavior of the verification algorithm. Since ind(𝑡 ) = 𝑏1 · · ·𝑏𝜌10 · · · 0,
every ind ∈ frontier(ind(𝑡 ) ) satisfies one of the following three conditions:

– ind = ind(𝑡 ) and thus, ind ∈ I∗
𝑑
⊂ I∗𝜌+1;

– ind is a left sibling of a prefix of ind′ = 𝑏1 · · ·𝑏𝜌 , and thus, ind ∈ frontier(ind(𝑡−1) ) ⊂ I∗
𝑑
⊂ I∗𝜌+1; or

– ind = 𝑏1 · · ·𝑏𝜌0 = ind𝜌+1 ∈ I∗𝜌+1.

Thus, we conclude that frontier(ind(𝑡 ) ) ⊆ I∗𝜌+1. We now show that V(crs,𝐶, (𝑥1, . . . , 𝑥𝑡 ), 𝜋𝑡 ) outputs 1.

– The verification algorithm computes the hash ℎ𝑡 using Hash

ℎ𝑡 =

(
𝑡,
{
(ind, val′hash (ind))

}
ind∈frontier(ind(𝑡 ) )

)
,

where (Γ′hash, val
′
hash) ← HashProg[hk] (𝑥1, . . . , 𝑥𝑡 ). By the invariant, val′hash (ind) = valhash (ind) for all

ind ∈ frontier(ind(𝑡 ) ). Namely, the hash tree computed by the verification algorithm is the same as that

computed by the update algorithm.

– The verification algorithm checks thatObfVerify(𝐶, valhash (ind), ind, 𝜋ind) = 1 for all ind ∈ frontier(ind(𝑡 ) ).
By correctness of 𝑖O, this corresponds to checking that Eq. (5.4) holds for all ind ∈ frontier(ind(𝑡 ) ), which
is precisely our invariant condition. Since frontier(ind(𝑡 ) ) ⊆ I∗𝜌+1, the claim holds.

We conclude that strong completeness holds in this case. □

Theorem 5.8 (Soundness). If ΠPRF is correct and satisfies punctured pseudorandomness, PRG is a secure PRG, ΠSSB is a
two-to-one somewhere statistically binding hash function, and 𝑖O is secure, then Construction 5.6 satisfies non-adaptive
soundness.

Proof. We begin by defining a sequence of hybrid experiments:

• Hyb
0
: This is the non-adaptive soundness experiment:

– Adversary A, on input 1
𝜆
, outputs the maximum circuit size 1

𝑠 (𝜆)
, a Boolean circuit 𝐶∗

𝜆
of size at most

𝑠 (𝜆), and statements 𝑥∗
1
, . . . , 𝑥∗𝑡𝜆 where 𝑡𝜆 ≤ 2

𝜆
. The challenger checks that there exists 𝑖∗

𝜆
∈ [𝑡𝜆] such

that 𝐶∗
𝜆

(
𝑥∗
𝑖∗
𝜆

,𝑤
)
= 0 for all 𝑤 ∈ {0, 1}∗. If such an index 𝑖∗ does not exist, the experiment aborts and the

challenger outputs 0. For ease of notation, we simply write 𝐶∗ = 𝐶∗
𝜆
, 𝑡 = 𝑡𝜆 , and 𝑖

∗ = 𝑖∗
𝜆
in the following

description.

– The challenger samples crs ← Gen(1𝜆, 1ℓ , 1𝑠 ) and gives crs = (ObfProve,ObfVerify, hk) to A. By

construction, hk = (hk1, . . . , hk𝑑 ).
– Adversary A outputs a proof 𝜋 .

– The output of the experiment is Verify(crs,𝐶∗, (𝑥∗
1
, . . . , 𝑥∗𝑡 ), 𝜋).

• Hyb
1
: Same as Hyb

0
, except the challenger samples the hash keys hk1, . . . , hk𝑑 to bind on the bits of 𝑖∗.

Specifically, let ind(𝑖
∗ ) = bin𝑑 (𝑖∗ − 1) = 𝑏1 · · ·𝑏𝑑 ∈ {0, 1}𝑑 . For each 𝑗 ∈ [𝑑], the challenger samples hk𝑗 ←

SSB.GenTD(1𝜆, 1ℓ𝑗−1 , 𝑏𝑑+1− 𝑗 ).
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• Hyb
2
: Same asHyb

1
, except when constructing the CRS, the challenger changes how it constructs the obfuscated

programs in the CRS:

1. First, the challenger samples the hash keys hk = (hk1, . . . , hk𝑑 ) exactly as in Hyb
1
.

2. Next, the challenger constructs a binary tree (Γhash, valhash) ← HashProg[hk] (𝑥∗
1
, . . . , 𝑥∗𝑡 ) using the

algorithm from Fig. 10.

3. Let ind(𝑖
∗ ) = bin𝑑 (𝑖∗ − 1) = 𝑏1 · · ·𝑏𝑑 . For all 𝑖 ∈ [0, 𝑗], let prefix(𝑖 )𝑖∗ = 𝑏1 · · ·𝑏𝑑−𝑖 be the prefix of ind(𝑖

∗ )
of

length 𝑑 − 𝑖 . Let X = {(prefix(𝑖 )
𝑖∗ , valhash (prefix

(𝑖 )
𝑖∗ ))}𝑖∈{0,...,𝑑 } .

4. The challenger now defines the modified prover program Prove′ [𝐾, hk,𝐶∗,X, 0, ind(𝑖∗ ) ] and verifier pro-

gram Verify′ [𝐾,𝐶∗,X, 0, ind(𝑖∗ ) ] as follows:

Constants: PRF key 𝐾 , hash key hk = (hk1, . . . , hk𝑑 ), Boolean circuit 𝐶∗, set X, level 𝑑thresh, index ind(𝑖
∗ )

Input: Boolean circuit 𝐶 : {0, 1}ℓ × {0, 1}𝑚 → {0, 1} of size at most 𝑠 , node values ℎ0, ℎ1 ∈ {0, 1}≤ℓmax
, index

ind ∈ {0, 1}≤𝑑 , proofs 𝜋0, 𝜋1 ∈ {0, 1}max(𝑚,𝜆)

(a) If ind ∈ {0, 1}𝑑 (i.e., a leaf in the binary tree),

i. If 𝐶 = 𝐶∗, ind is a prefix of ind(𝑖
∗ )
, and (ind, ℎ0) ∈ X, then output ⊥.

ii. Parse ℎ0 as a statement 𝑥1 ∈ {0, 1}ℓ and 𝜋0 as a witness𝑤1 ∈ {0, 1}𝑚 .

iii. If 𝐶 (𝑥1,𝑤1) ≠ 1, output ⊥. Otherwise, output PRF.Eval(𝐾, (𝐶, 𝑥1, ind)).
(b) Otherwise, if ind ∈ {0, 1}<𝑑 (i.e., an internal node in the binary tree),

i. Let 𝑑′ = level(ind) and compute the hash ℎ ← SSB.LocalHash(hk𝑑 ′ , ℎ0, ℎ1).
ii. If 𝑑′ ≤ 𝑑thresh, 𝐶 = 𝐶∗, ind is a prefix of ind(𝑖

∗ )
, and (ind, ℎ) ∈ X, then output ⊥.

iii. Check the following conditions:

– PRG(𝜋0) = PRG(PRF.Eval(𝐾, (𝐶,ℎ0, ind∥0)));
– PRG(𝜋1) = PRG(PRF.Eval(𝐾, (𝐶,ℎ1, ind∥1))).

If either check fails, output ⊥. Otherwise, output PRF.Eval(𝐾, (𝐶,ℎ, ind)).

Figure 11: Program Prove′ [𝐾, hk,𝐶∗,X, 𝑑thresh, ind(𝑖
∗ ) ]

Constants: PRF key 𝐾 , circuit 𝐶∗, set X, level 𝑑thresh, index ind(𝑖
∗ )

Input: Boolean circuit 𝐶 of size at most 𝑠 , node value ℎ ∈ {0, 1}≤ℓmax
, index ind ∈ {0, 1}≤𝑑 , proof 𝜋 ∈ {0, 1}𝜆

(a) Let 𝑑′ = level(ind). If 𝑑′ < 𝑑thresh, 𝐶 = 𝐶∗, ind is a prefix of ind(𝑖
∗ )
, and (ind, ℎ) ∈ X, then output 0.

(b) Output 1 if PRG(𝜋) = PRG(PRF.Eval(𝐾, (𝐶,ℎ, ind))) and 0 otherwise.

Figure 12: Program Verify′ [𝐾,𝐶∗,X, 𝑑thresh, ind(𝑖
∗ ) ]

5. When constructing the CRS, the challenger computes ObfProve← 𝑖O(1𝜆, Prove′ [𝐾, hk,𝐶∗,X, 0, ind(𝑖∗ ) ])
and ObfVerify ← 𝑖O(1𝜆,Verify′ [𝐾,𝐶∗,X, 𝑑thresh, ind(𝑖

∗ ) ]). The challenger pads the size of the prov-

ing circuit Prove′ [𝐾, hk,𝐶∗,X, 0, ind(𝑖∗ ) ] and verification circuit Verify′ [𝐾,𝐶∗,X, 𝑑thresh, ind(𝑖
∗ ) ] to the

maximum size of any circuit that appear in the proof of Theorem 5.8. The challenger gives crs =

(ObfProve,ObfVerify, hk) to A.

6. The remainder of the experiment proceeds identically to Hyb
1
.

• Hyb𝑗+2 for 𝑗 ∈ [𝑑]: Same as Hyb𝑗+1, except when constructing the CRS, the challenger computes ObfProve←
𝑖O(1𝜆, Prove′ [𝐾, hk,𝐶∗,X, 𝑗, ind(𝑖∗ ) ]) and ObfVerify ← 𝑖O(1𝜆,Verify′ [𝐾,𝐶∗,X, 𝑗, ind(𝑖∗ ) ]), where Prove′ and
Verify′ are the programs in Fig. 11 and Fig. 12.

For an adversary A, we write Hyb𝑖 (A) to denote the output distribution of Hyb𝑖 (A) with adversary A. As in the

proof of Theorem 3.3, we model the adversary A as a deterministic non-uniform algorithm that takes as input the
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security parameter 1
𝜆
(and advice string 𝜌𝜆), and outputs the maximum circuit size 1

𝑠 (𝜆)
, a Boolean circuit 𝐶∗

𝜆
of size

at most 𝑠 (𝜆), and statements 𝑥∗
1
, 𝑥∗

2
, . . . , 𝑥∗𝑡𝜆 where 𝑡𝜆 ≤ 2

𝜆
. If the advantage of A is non-zero in the non-adaptive

soundness game, it must be the case that there exists an index 𝑖∗
𝜆
∈ [𝑡𝜆] such that 𝐶∗

𝜆

(
𝑥∗
𝑖∗
𝜆

,𝑤
)
= 0 for all𝑤 ∈ {0, 1}∗. If

there are multiple such indices, we define 𝑖∗
𝜆
to be the first such index. In the following, we will consider deterministic

non-uniform reduction algorithms that are provided (𝜌𝜆, 𝑖∗𝜆) as advice. We now show that each pair of adjacent

distributions defined above are indistinguishable.

Lemma 5.9. Suppose ΠSSB satisfies index hiding. Then for every non-uniform polynomial time adversaryA, there exists
a negligible function negl(·) such that for all 𝜆 ∈ N, | Pr[Hyb

0
(A) = 1] − Pr[Hyb

1
(A) = 1] | = negl(𝜆).

Proof. We begin by introducing a sequence of intermediate hybrids. First, we set Hyb(0)
0
≡ Hyb

0
. Then for 𝑗 ∈ [𝑑],

we define experiment Hyb( 𝑗 )
0

as follows:

• Hyb( 𝑗 )
0

: Same as Hyb( 𝑗−1)
0

except when constructing the CRS, the challenger uses 𝑖∗ to sample hk𝑗 . Specifically,
let ind(𝑖

∗ ) = bin𝑑 (𝑖∗ − 1) = 𝑏1 · · ·𝑏𝑑 . The challenger samples hk𝑗 ← SSB.GenTD(1𝜆, 1ℓ𝑗−1 , 𝑏𝑑+1− 𝑗 ).

We now analyze each adjacent pair of intermediate hybrid experiments:

Claim 5.10. Suppose ΠSSB satisfies index hiding. Then for all 𝑗 ∈ [𝑑] and every non-uniform polynomial time adversary
A, there exists a negligible function negl(·), such that for all 𝜆 ∈ N, | Pr[Hyb( 𝑗−1)

0
(A) = 1] − Pr[Hyb( 𝑗 )

0
(A) = 1] | =

negl(𝜆).

Proof. Let A be an efficient non-uniform adversary (with advice string 𝜌𝜆) where

| Pr[Hyb( 𝑗−1)
0
(A) = 1] − Pr[Hyb( 𝑗 )

0
(A) = 1] | ≥ 𝜀,

and 𝜀 is non-negligible. We use A to construct a non-uniform adversary B with advice string (𝜌, 𝑖∗) = (𝜌𝜆, 𝑖∗𝜆) that
breaks index hiding:

1. Algorithm B runs algorithm A on input 1
𝜆
and advice 𝜌 . Algorithm A outputs the maximum circuit size 1

𝑠
, a

Boolean circuit 𝐶∗ of size at most 𝑠 , and statements 𝑥1, . . . , 𝑥𝑡 where 𝑡 ≤ 2
𝜆
.

2. Next, algorithm B sets ind(𝑖
∗ ) = bin𝑑 (𝑖∗ − 1) = 𝑏1 · · ·𝑏𝑑 ∈ {0, 1}𝑑 and sends index 𝑏𝑑+1− 𝑗 ∈ {0, 1} to the

challenger.

3. Algorithm B receives hk𝑗 from the challenger. If 𝑏 = 0, the challenger sampled hk𝑗 ← SSB.Gen(1𝜆, 1ℓ𝑗−1 ) and
if 𝑏 = 1, the challenger sampled hk𝑗 ← SSB.GenTD(1𝜆, 1ℓ𝑗−1 , 𝑏𝑑+1− 𝑗 ).

4. Then, for each 𝑘 ∈ [𝑑], algorithm B computes the hk𝑘 as follows:

• If 𝑘 < 𝑗 , set hk𝑘 ← SSB.GenTD(1𝜆, 1ℓ𝑘−1 , 𝑏𝑑+1−𝑘 ).
• If 𝑘 > 𝑗 , set hk𝑘 ← SSB.Gen(1𝜆, 1ℓ𝑘−1 ).

5. AlgorithmB constructsObfProve,ObfVerify according toHyb
0
and sets crs = (ObfProve,ObfVerify, hk) where

hk = (ℎ𝑘1, . . . , hk𝑑 ). Algorithm B gives crs to A.

6. After A outputs the proof 𝜋 , algorithm B outputs Verify(crs,𝐶∗, (𝑥∗
1
, . . . , 𝑥∗𝑡 ), 𝜋).

By construction, if 𝑏 = 0, algorithm B perfectly simulates distribution Hyb( 𝑗−1)
0

and if 𝑏 = 1, algorithm B perfectly

simulates distribution Hyb( 𝑗 )
0

. Thus, algorithm B breaks index hiding with advantage at least 𝜀, and the claim

holds. □

By construction, for all adversariesA, Hyb(𝑑 )
0
(A) ≡ Hyb

1
(A). Appealing to Claim 5.10 and the fact that 𝑑 = poly(𝜆),

the lemma follows by a hybrid argument. □
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Lemma 5.11. Suppose 𝑖O is secure. Then, for all non-uniform polynomial time adversaries A, there exists a negligible
function negl(·) such that for all 𝜆 ∈ N, | Pr[Hyb

1
(A) = 1] − Pr[Hyb

2
(A) = 1] | = negl(𝜆).

Proof. We show that the programs Prove[𝐾, hk] and Prove′ [𝐾, hk,𝐶∗,X, 𝑑thresh, ind(𝑖
∗ ) ] have identical behavior and

similarly for programs Verify[𝐾] and Verify′ [𝐾,𝐶∗,X, 𝑑thresh, ind(𝑖
∗ ) ]:

• Consider the programs Prove[𝐾, hk] and Prove′ [𝐾, hk,𝐶∗,X, 𝑑thresh, ind(𝑖
∗ ) ]. Consider an input of the form

(𝐶,ℎ0, ℎ1, ind, 𝜋0, 𝜋1):

– Suppose ind ∈ {0, 1}𝑑 is a leaf node. By construction, the only inputs on which Prove and Prove′ can
differ in this case are those where ind = ind(𝑖

∗ )
. By definition of HashProg[hk] (see Fig. 10), we have that

ℎind = valhash (ind(𝑖
∗ ) ) = 𝑥∗

𝑖∗ . Then, this means Prove and Prove′ agree on all inputs unless 𝐶 = 𝐶∗ and
ℎ0 = 𝑥

∗
𝑖∗ . On these inputs, Prove′ always outputs ⊥. Consider the output of Prove. By assumption, there

does not exist any input 𝜋0 ∈ {0, 1}∗ where 𝐶∗ (𝑥∗𝑖∗ , 𝜋0) = 0, so Prove on these inputs also outputs ⊥.
– Suppose ind ∈ {0, 1}<𝑑 is an internal node. In this case, level(ind) = 𝑑 − |ind| > 0. Since 𝑑thresh = 0 in

Hyb
2
, the condition level(ind) < 𝑑 is never satisfied, so the extra check introduced in Hyb

2
never triggers.

We conclude that Prove[𝐾, hk] and Prove′ [𝐾, hk,𝐶∗,X, 𝑑thresh, ind(𝑖
∗ ) ] have identical input/output behavior.

• The programs Verify[𝐾] and Verify′ [𝐾,𝐶∗,X, 𝑑thresh, ind(𝑖
∗ ) ] have identical functionality. The only difference

between these two programs is the extra check that Verify′ performs. By definition level(ind) ≥ 0 = 𝑑∗, so the

additional condition level(ind) < 𝑑∗ in Verify′ never triggers. Consequently, Verify and Verify′ has identical
input/output behavior.

Since Prove[𝐾, hk] and Prove′ [𝐾, hk,𝐶∗,X, 𝑑thresh, ind(𝑖
∗ ) ] compute identical functions and likewise for Verify[𝐾] and

Verify′ [𝐾,𝐶∗,X, 𝑑thresh, ind(𝑖
∗ ) ], indistinguishability now follows by 𝑖O security and a standard hybrid argument. □

Lemma 5.12. Suppose ΠPRF is functionality-preserving and satisfies punctured pseudorandomness, PRG is a secure PRG,
ΠSSB is somewhere statistically binding, and 𝑖O is secure. Then, for all 𝑗 ∈ [𝑑] and all non-uniform polynomial time
adversaries A, there exists a negligible function negl(·) such that for all 𝜆 ∈ N,

| Pr[Hyb𝑗+1 (A) = 1] − Pr[Hyb𝑗+2 (A) = 1] | = negl(𝜆).

Proof. We begin by introducing a sequence of intermediate hybrids:

• Hyb(1)
𝑗+1: Same as Hyb𝑗+1 except the challenger changes the distribution of the CRS. Specifically, it starts by

defining the programs Prove′′ [𝐾𝑝 , hk,𝐶∗,X, 𝑑thresh, ind(𝑖
∗ ) , 𝑧] and Verify′′ [𝐾𝑝 ,𝐶

∗,X, 𝑑thresh, ind(𝑖
∗ ) , 𝑧] as follows:
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Constants: Punctured PRF key 𝐾𝑝 , hash key hk = (hk1, . . . , hk𝑑 ), Boolean circuit𝐶∗, setX, level 𝑑thresh, index ind(𝑖
∗ )
,

hard-coded value 𝑧

Input: Boolean circuit 𝐶 : {0, 1}ℓ × {0, 1}𝑚 → {0, 1} of size at most 𝑠 , node values ℎ0, ℎ1 ∈ {0, 1}≤ℓmax
, index

ind ∈ {0, 1}≤𝑑 , proofs 𝜋0, 𝜋1 ∈ {0, 1}max(𝑚,𝜆)

1. If ind ∈ {0, 1}𝑑 (i.e., a leaf in the binary tree),

(a) If 𝐶 = 𝐶∗, ind is a prefix of ind(𝑖
∗ )
, and (ind, ℎ0) ∈ X, then output ⊥.

(b) Parse ℎ0 as a statement 𝑥1 ∈ {0, 1}ℓ . Parse 𝜋0 as witness𝑤1 ∈ {0, 1}𝑚 .

(c) If 𝐶 (𝑥1,𝑤1) ≠ 1, output ⊥. Otherwise, output PRF.Eval(𝐾𝑝 , (𝐶, 𝑥1, ind)).

2. Otherwise, if ind ∈ {0, 1}<𝑑 (i.e., an internal node in the binary tree),

(a) Let 𝑑′ = level(ind) and compute the hash ℎ ← SSB.LocalHash(hk𝑑 ′ , ℎ0, ℎ1).
(b) If 𝑑′ ≤ 𝑑thresh, 𝐶 = 𝐶∗, ind is a prefix of ind(𝑖

∗ )
, and (ind, ℎ) ∈ X, then output ⊥.

(c) Check the following conditions:

– If 𝑑′ = 𝑑thresh + 1, 𝐶 = 𝐶∗, ind∥0 is a prefix of ind(𝑖
∗ )

and (ind∥0, ℎ0) ∈ X, check if PRG(𝜋0) = 𝑧.
Otherwise, check if PRG(𝜋0) = PRG(PRF.Eval(𝐾𝑝 , (𝐶,ℎ0, ind∥0))).

– If 𝑑′ = 𝑑thresh + 1, 𝐶 = 𝐶∗, ind∥1 is a prefix of ind(𝑖
∗ )

and (ind∥1, ℎ1) ∈ X, check if PRG(𝜋1) = 𝑧.
Otherwise, check if PRG(𝜋1) = PRG(PRF.Eval(𝐾𝑝 , (𝐶,ℎ1, ind∥1))).

If any check fails, output ⊥. Otherwise, output PRF.Eval(𝐾𝑝 , (𝐶,ℎ, ind)).

Figure 13: Program Prove′′ [𝐾𝑝 , hk,𝐶∗,X, 𝑑thresh, ind(𝑖
∗ ) , 𝑧]

Constants: Punctured PRF key 𝐾𝑝 , circuit 𝐶
∗
, set X, level 𝑑thresh, index ind(𝑖

∗ )
, hard-coded value 𝑧

Input: Boolean circuit 𝐶 of size at most 𝑠 , node value ℎ ∈ {0, 1}≤ℓmax
, index ind ∈ {0, 1}≤𝑑 , proof 𝜋 ∈ {0, 1}𝜆

1. Let 𝑑′ = level(ind). If 𝑑′ < 𝑑thresh, 𝐶 = 𝐶∗, ind is a prefix of ind(𝑖
∗ )
, and (ind, ℎ) ∈ X, then output 0.

2. If 𝑑′ = 𝑑thresh, 𝐶 = 𝐶∗, ind is a prefix of ind(𝑖
∗ )

and (ind, ℎ) ∈ X, then output 1 if PRG(𝜋) = 𝑧 and 0 otherwise.

3. Otherwise, output 1 if PRG(𝜋) = PRG(PRF.Eval(𝐾𝑝 , (𝐶,ℎ, ind))) and 0 otherwise.

Figure 14: Program Verify′′ [𝐾𝑝 ,𝐶
∗,X, 𝑑thresh, ind(𝑖

∗ ) , 𝑧]

The challenger constructs the CRS as follows:

– First, the challenger samples the hash keys hk = (hk1, . . . , hk𝑑 ) exactly as in Hyb𝑗+1 (same as in Hyb
1
and

Hyb
2
). It also samples the PRF key 𝐾 ← PRF.KeyGen(1𝜆).

– Next, the challenger computes a binary tree (Γhash, valhash) ← HashProg[hk] (𝑥∗
1
, . . . , 𝑥∗𝑡 ) using the algo-

rithm from Fig. 10.

– Let ind(𝑖
∗ ) = bin𝑑 (𝑖∗ − 1) = 𝑏1 · · ·𝑏𝑑 . For all 𝑖 ∈ [0, 𝑗], let prefix(𝑖 )𝑖∗ = 𝑏1 · · ·𝑏𝑑−𝑖 be the prefix of ind(𝑖

∗ )
of

length 𝑑 − 𝑖 . Let X = {(prefix(𝑖 )
𝑖∗ , valhash (prefix

(𝑖 )
𝑖∗ ))}𝑖∈{0,...,𝑑 } .

– Next, the challenger computes 𝐾𝑝 ← PRF.Puncture(𝐾, {(𝐶∗, valhash (prefix( 𝑗−1)𝑖∗ ), prefix( 𝑗−1)
𝑖∗ )}) and the

evaluation 𝑧∗ ← PRG(PRF.Eval(𝐾, (𝐶∗, valhash (prefix( 𝑗−1)𝑖∗ ), prefix( 𝑗−1)
𝑖∗ ))).

– It then constructs the obfuscated programs ObfProve ← 𝑖O(1𝜆, Prove′′ [𝐾𝑝 , hk,𝐶∗,X, 𝑗 − 1, ind(𝑖
∗ ) , 𝑧∗])

and ObfVerify ← 𝑖O(1𝜆,Verify′′ [𝐾𝑝 ,𝐶
∗,X, 𝑗 − 1, ind(𝑖

∗ ) , 𝑧∗]). As in the real scheme, the challenger

pads the size of the proving circuit Prove′′ [𝐾𝑝 , hk,𝐶∗,X, 𝑗 − 1, ind(𝑖
∗ ) , 𝑧∗]) and the verification circuit

Verify′′ [𝐾𝑝 ,𝐶
∗,X, 𝑗 − 1, ind(𝑖∗ ) , 𝑧∗]) to the maximum size of any circuit that appear in the proof of Theo-

rem 5.8.

– The challenger gives crs = (ObfProve,ObfVerify, hk) to A.

The remainder of the experiment proceeds as in Hyb𝑗+1.
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• Hyb(2)
𝑗+1: Same as Hyb(1)

𝑗+1 but when constructing the CRS, the challenger sets 𝑧∗ ← PRG(𝑦∗) where 𝑦∗ r← {0, 1}𝜆 .

• Hyb(3)
𝑗+1: Same as Hyb(2)

𝑗+1 but when constructing the CRS, the challenger samples 𝑧∗ r← {0, 1}2𝜆 .

We now argue that each pair of adjacent hybrid experiments are indistinguishable for all 𝑗 ∈ [𝑑].

Claim 5.13. Suppose ΠPRF is functionality-preserving and 𝑖O is secure. Then, for all 𝑗 ∈ [𝑑] and all non-uniform
polynomial time adversaries A, there exists a negligible function negl(·) such that for all 𝜆 ∈ N,

| Pr[Hyb(1)
𝑗+1 (A) = 1] − Pr[Hyb𝑗+1 (A) = 1] | = negl(𝜆).

Proof. Similar to the proof of Lemma 5.11, it suffices to show that the prover and verifier programs in Hyb𝑗+1 and

Hyb(1)
𝑗+1 have identical input/output behavior. The main difference in Hyb(1)

𝑗+1 is that we substitute a PRF key 𝐾𝑝

punctured at the point 𝑝 = (𝐶∗, valhash (prefix( 𝑗−1)𝑖∗ ), prefix( 𝑗−1)
𝑖∗ ) for the real PRF key 𝐾 . Since the punctured PRF is

functionality-preserving, on all inputs (𝐶,ℎ, ind) ≠ 𝑝 ,

PRF.Eval(𝐾, (𝐶,ℎ, ind)) = PRF.Eval(𝐾𝑝 , (𝐶,ℎ, ind)) .

In addition, in Hyb(1)
𝑗+1, the challenger sets 𝑧

∗ = PRG(PRF.Eval(𝐾, 𝑝)). We first argue that the proving programs

Prove′ [𝐾, hk,𝐶∗,X, 𝑗 − 1, ind(𝑖
∗ ) ] and Prove′′ [𝐾𝑝 , hk,𝐶∗,X, 𝑗 − 1, ind(𝑖

∗ ) , 𝑧∗] have identical input/output behavior,

where X = {(prefix(𝑖 )
𝑖∗ , valhash (prefix

(𝑖 )
𝑖∗ ))}𝑖∈{0,...,𝑑 } is the set defined in Hyb𝑗+1 and Hyb(1)

𝑗+1. Consider any input

(𝐶,ℎ0, ℎ1, ind, 𝜋0, 𝜋1) to the two programs. Let 𝑑 ′ = level(ind).

• Suppose 𝑑 ′ = 0 (i.e., ind is a leaf in the binary tree),

– If 𝐶 = 𝐶∗, (ind, ℎ0) ∈ X, then both programs output ⊥.
– Suppose that either 𝐶 ≠ 𝐶∗ or ℎ0 ≠ prefix(0)

𝑖∗ . Then PRF is never evaluated at point 𝑝 . Both Prove′ and
Prove′′ perform identical checks using keys 𝐾 and 𝐾𝑝 , respectively. The two programs’ behavior are

identical by the functionality-preserving property of ΠPRF.

• We analyze the cases when 𝑑 ′ > 0, (ind is an internal node in the binary tree).

– First, if 𝑑 ′ ≠ 𝑗 or 𝐶 ≠ 𝐶∗, then neither program needs to evaluate the PRF at the point

𝑝 = (𝐶∗, valhash (prefix( 𝑗−1)𝑖∗ ), prefix( 𝑗−1)
𝑖∗ ).

– Suppose 𝑑 ′ = 𝑗 , 𝐶 = 𝐶∗, ind∥0 is a prefix of ind(𝑖∗ ) , and (ind∥0, ℎ0) ∈ X. Since ind∥0 is a prefix of ind(𝑖
∗ )

and 𝑑 ′ = 𝑗 , we have ind∥0 = prefix( 𝑗−1)
𝑖∗ and (ind∥0, valhash (prefix( 𝑗−1)𝑖∗ )) is the corresponding value stored

inX. In this case, Prove′ checks the condition PRG(𝜋0) = PRG(PRF.Eval(𝐾, (𝐶,ℎ0, ind∥0))) while Prove′′
checks the condition PRG(𝜋0) = 𝑧∗, where as noted above,

𝑧∗ = PRG(PRF.Eval(𝐾, 𝑝)) = PRG(PRF.Eval(𝐾, (𝐶∗, valhash (prefix( 𝑗−1)𝑖∗ ), prefix( 𝑗−1)
𝑖∗ ))).

Thus, the two programs perform identical checks in this case.

– Suppose 𝑑 ′ = 𝑗 , 𝐶 = 𝐶∗, ind∥1 is a prefix of ind(𝑖∗ ) , and (ind∥1, ℎ1) ∈ X. Since ind∥1 is a prefix of ind(𝑖
∗ )

and 𝑑 ′ = 𝑗 , we have ind∥1 = prefix( 𝑗−1)
𝑖∗ and (ind∥1, valhash (prefix( 𝑗−1)𝑖∗ )) is the corresponding value stored

inX. In this case, Prove′ checks the condition PRG(𝜋1) = PRG(PRF.Eval(𝐾, (𝐶,ℎ1, ind∥1))) while Prove′′
checks the condition PRG(𝜋1) = 𝑧∗. By the analogous logic as in the previous case, the behavior of these

two checks is identical.

– Suppose none of the above conditions hold. Then, we have the following:

∗ Suppose 𝑑 ′ = 𝑗 , 𝐶 = 𝐶∗, and ind∥0 is not a prefix of ind(𝑖
∗ )
. Then ind∥0 ≠ prefix( 𝑗−1)

𝑖∗ and PRF is

never evaluated at point 𝑝 .
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∗ Suppose 𝑑 ′ = 𝑗 , 𝐶 = 𝐶∗, and ind∥1 is not a prefix of ind(𝑖
∗ )
. Then ind∥1 ≠ prefix( 𝑗−1)

𝑖∗ and PRF is

again never evaluated at point 𝑝 .

∗ Suppose 𝑑 ′ = 𝑗 , 𝐶 = 𝐶∗, ind∥0 is prefix of ind(𝑖∗ ) , and (ind∥0, ℎ0) ∉ X. Then ind∥0 = prefix( 𝑗−1)
𝑖∗ and

ℎ0 ≠ valhash (prefix( 𝑗−1)𝑖∗ ). In this case, PRF is not evaluated at point 𝑝 .

∗ Suppose 𝑑 ′ = 𝑗 , 𝐶 = 𝐶∗, ind∥1 is prefix of ind(𝑖∗ ) , and (ind∥1, ℎ1) ∉ X. Then ind∥1 = prefix( 𝑗−1)
𝑖∗ and

ℎ1 ≠ valhash (prefix( 𝑗−1)𝑖∗ ). As in the previous case, PRF is not evaluated at point 𝑝 .

Since PRF is never evaluated at point 𝑝 , both Prove′ and Prove′′ perform identical checks using PRF keys

𝐾 and 𝐾𝑝 , respectively. Thus, the two programs’ behavior are identical by the functionality-preserving

property of ΠPRF.

Next consider the verification programs Verify′ [𝐾,𝐶∗,X, 𝑗 − 1, ind(𝑖∗ ) ] and Verify′′ [𝐾𝑝 ,𝐶
∗,X, 𝑗 − 1, ind(𝑖∗ ) , 𝑧∗]. Once

again, the challenger sets 𝑧∗ = PRG(PRF.Eval(𝐾, 𝑝)).

• Suppose that 𝑑 ′ ≠ 𝑗 − 1 or 𝐶 ≠ 𝐶∗. Then, PRF is never evaluated at point 𝑝 and Verify′ and Verify′′ have
identical behavior (since ΠPRF is functionality-preserving).

• Suppose 𝑑 ′ = 𝑗 − 1,𝐶 = 𝐶∗, and ind is not a prefix of ind(𝑖
∗ )
. Then ind ≠ prefix( 𝑗−1)

𝑖∗ and PRF is never evaluated

at point 𝑝 .

• Suppose 𝑑 ′ = 𝑗 − 1, 𝐶 = 𝐶∗, ind is prefix of ind(𝑖
∗ )
, and (ind, ℎ) ∉ X. By construction of X, this means that

ind = prefix( 𝑗−1)
𝑖∗ and ℎ ≠ valhash (prefix( 𝑗−1)𝑖∗ ). Once again, PRF is never evaluated at point 𝑝 in this case.

• Suppose 𝑑 ′ = 𝑗 − 1,𝐶 = 𝐶∗, ind is a prefix to ind(𝑖
∗ )
, and (ind, ℎ) ∈ X. Since 𝑑 ′ = level(ind) = 𝑗 − 1 and ind is a

prefix to ind(𝑖
∗ )
, this means that ind = prefix( 𝑗−1)

𝑖∗ . By construction ofX, this means thatℎ = valhash (prefix( 𝑗−1)𝑖∗ ).
In this case, Verify′′ checks the condition PRG(𝜋) = 𝑧∗ = PRG(PRF.Eval(𝐾, 𝑝)), which is exactly the same

check as in Verify′.

The claim now follows from 𝑖O security and a standard hybrid argument. □

Claim 5.14. If ΠPRF satisfies punctured pseudorandomness, then for all 𝑗 ∈ [𝑑] and all non-uniform polynomial time
adversaries A, there exists a negligible function negl(𝜆) such that for all 𝜆 ∈ N,

| Pr[Hyb(2)
𝑗+1 (A) = 1] − Pr[Hyb(1)

𝑗+1 (A) = 1] | = negl(𝜆).

Proof. Suppose there exists a non-uniform polynomial time adversary A (with advice string 𝜌𝜆) where

| Pr[Hyb(2)
𝑗+1 (A) = 1] − Pr[Hyb(1)

𝑗+1 (A) = 1] | ≥ 𝜀,

for some non-negligible 𝜀. We use A to construct a non-uniform adversary B with advice string (𝜌, 𝑖∗) = (𝜌𝜆, 𝑖∗𝜆)
that breaks punctured pseudorandomness of ΠPRF:

1. Algorithm B runs adversary A on input 1
𝜆
and with advice string 𝜌 . Algorithm A outputs the maximum

circuit size 1
𝑠
, a Boolean circuit 𝐶∗ of size at most 𝑠 , and statements 𝑥1, . . . , 𝑥𝑡 where 𝑡 ≤ 2

𝜆
.

2. Algorithm B sets ind(𝑖
∗ ) = bin𝑑 (𝑖∗ − 1) = 𝑏1 · · ·𝑏𝑑 ∈ {0, 1}𝑑 . For all 𝑖 ∈ [0, 𝑗], let prefix(𝑖 )𝑖∗ = 𝑏1 · · ·𝑏𝑑−𝑖 . For

each 𝑗 ∈ [𝑑], algorithm B samples hk𝑗 ← SSB.GenTD(1𝜆, 1ℓ𝑗−1 , 𝑏𝑑+1− 𝑗 ). Then, it computes a binary tree

(Γhash, valhash) ← HashProg[hk] (𝑥∗
1
, . . . , 𝑥∗𝑡 ) using the algorithm from Fig. 10.

3. Then, for all 𝑖 ∈ [0, 𝑗], let prefix(𝑖 )
𝑖∗ = 𝑏1 · · ·𝑏𝑑−𝑖 be the prefix of ind(𝑖

∗ )
of length 𝑑 − 𝑖 . Algorithm B defines the

set X = {(prefix(𝑖 )
𝑖∗ , valhash (prefix

(𝑖 )
𝑖∗ ))}𝑖∈{0,...,𝑑 } .

4. Algorithm B chooses 𝑝 = (𝐶∗, valhash (prefix( 𝑗−1)𝑖∗ ), prefix( 𝑗−1)
𝑖∗ ) as its challenge point. It receives from the

challenger a punctured key 𝐾𝑝 and a challenge 𝑦 ∈ {0, 1}𝜆 .
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5. AlgorithmB computes 𝑧∗ ← PRG(𝑦),ObfProve← 𝑖O(1𝜆, Prove′′ [𝐾𝑝 , hk,𝐶∗,X, 𝑗−1, ind(𝑖
∗ ) , 𝑧∗]), andObfVerify←

𝑖O(1𝜆,Verify′′ [𝐾𝑝 ,𝐶
∗,X, 𝑗 − 1, ind(𝑖∗ ) , 𝑧∗]). Finally, it sets the crs = (ObfProve,ObfVerify, hk) and gives crs to

A.

6. At the end of the game, algorithm A outputs a proof 𝜋 and algorithm B outputs Verify(crs,𝐶∗, (𝑥∗
1
, . . . , 𝑥∗𝑡 ), 𝜋).

By construction, the challenger samples 𝐾 ← PRF.KeyGen(1𝜆) and constructs the punctured key as 𝐾𝑝 ←
PRF.Puncture(𝐾, (𝐶∗, valhash (prefix( 𝑗−1)𝑖∗ ), prefix( 𝑗−1)

𝑖∗ )). This coincides with the specification in Hyb(1)
𝑗+1 and Hyb(2)

𝑗+1.
Consider now the distribution of the challenge 𝑦:

• Suppose 𝑦 = PRF.Eval(𝐾, (𝐶∗, valhash (prefix( 𝑗−1)𝑖∗ ), prefix( 𝑗−1)
𝑖∗ )). Then algorithm A perfectly simulates distri-

bution Hyb(1)
𝑗+1.

• Suppose 𝑦
r← {0, 1}𝜆 . Then algorithm A perfectly simulates distribution Hyb(2)

𝑗+1.

Algorithm B breaks punctured pseudorandomness with the same advantage 𝜀 and the claim follows. □

Claim 5.15. If PRG is secure, then for all 𝑗 ∈ [𝑑] and all non-uniform polynomial time adversaries A, there exists a
negligible function negl(𝜆) such that for all 𝜆 ∈ N, | Pr[Hyb(3)

𝑗+1 (A) = 1] − Pr[Hyb(2)
𝑗+1 (A) = 1] | = negl(𝜆).

Proof. Suppose there exists a non-uniform polynomial time adversary A (with advice string 𝜌𝜆) where

| Pr[Hyb(3)
𝑗+1 (A) = 1] − Pr[Hyb(2)

𝑗+1 (A) = 1] | = 𝜀 (𝜆),

for some non-negligible 𝜀. We use A to construct a non-uniform adversary B with advice string (𝜌, 𝑖∗) = (𝜌𝜆, 𝑖∗𝜆)
that breaks PRG security:

1. Algorithm B runs adversary A on input 1
𝜆
and advice string 𝜌 . Algorithm A outputs the maximum circuit

size 1
𝑠
, a Boolean circuit 𝐶∗ of size at most 𝑠 , and statements 𝑥1, . . . , 𝑥𝑡 where 𝑡 ≤ 2

𝜆
.

2. Algorithm B sets ind(𝑖
∗ ) = bin𝑑 (𝑖∗ − 1) = 𝑏1 · · ·𝑏𝑑 ∈ {0, 1}𝑑 . For all 𝑖 ∈ [0, 𝑗], let prefix(𝑖 )𝑖∗ = 𝑏1 · · ·𝑏𝑑−𝑖 . For

each 𝑗 ∈ [𝑑], algorithm B samples hk𝑗 ← SSB.GenTD(1𝜆, 1ℓ𝑗−1 , 𝑏𝑑+1− 𝑗 ). Then, it computes a binary tree

(Γhash, valhash) ← HashProg[hk] (𝑥∗
1
, . . . , 𝑥∗𝑡 ) using the algorithm from Fig. 10.

3. Then, for all 𝑖 ∈ [0, 𝑗], let prefix(𝑖 )
𝑖∗ = 𝑏1 · · ·𝑏𝑑−𝑖 be the prefix of ind(𝑖

∗ )
of length 𝑑 − 𝑖 . Algorithm B defines the

set X = {(prefix(𝑖 )
𝑖∗ , valhash (prefix

(𝑖 )
𝑖∗ ))}𝑖∈{0,...,𝑑 } .

4. Algorithm B receives a challenge 𝑧∗ ∈ {0, 1}2𝜆 from the PRG challenger.

5. Algorithm B samples 𝐾 ← PRF.KeyGen(1𝜆) and constructs the punctured key 𝐾𝑝 ← PRF.Puncture(𝐾, 𝑝),
where 𝑝 = (𝐶∗, valhash (prefix( 𝑗−1)𝑖∗ ), prefix( 𝑗−1)

𝑖∗ ).

6. Next, it computes the obfuscated programs ObfProve ← 𝑖O(1𝜆, Prove′′ [𝐾𝑝 , hk,𝐶∗,X, 𝑗 − 1, ind(𝑖
∗ ) , 𝑧∗]) and

ObfVerify← 𝑖O(1𝜆,Verify′′ [𝐾𝑝 ,𝐶
∗,X, 𝑗 − 1, ind(𝑖∗ ) , 𝑧∗]). Algorithm B gives crs = (ObfProve,ObfVerify, hk)

to A.

7. Algorithm A outputs a proof 𝜋 and algorithm B outputs Verify(crs,𝐶∗, (𝑥∗
1
, . . . , 𝑥∗𝑡 ), 𝜋).

If 𝑧∗ ← PRG(𝑦∗) where 𝑦∗ r← {0, 1}𝜆 , then algorithm B perfectly simulates Hyb(2)
𝑗+1 for A. Alternatively, if 𝑧∗ r←

{0, 1}2𝜆 , then algorithm B perfectly simulates Hyb(3)
𝑗+1 for A. The claim follows. □

Claim 5.16. If ΠPRF is functionality-preserving, ΠSSB is somewhere statistically binding, and 𝑖O is secure, then for all
𝑗 ∈ [𝑑] and all non-uniform polynomial time adversaries A, there exists a negligible function negl(·) such that for all
𝜆 ∈ N, | Pr[Hyb𝑗+2 (A) = 1] − Pr[Hyb(3)

𝑗+1 (A) = 1] | = negl(𝜆).
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Proof. We first show that with overwhelming probability over the choice of hk𝑗 ← SSB.GenTD(1𝜆, 1ℓ𝑗−1 , 𝑏𝑑+1− 𝑗 ) and
𝑧∗ r← {0, 1}2𝜆 , the programs Prove′′ [𝐾𝑝 , hk,𝐶∗,X, 𝑗 − 1, ind(𝑖

∗ ) , 𝑧∗] and Verify′′ [𝐾𝑝 ,𝐶
∗,X, 𝑗 − 1, ind(𝑖∗ ) , 𝑧∗] in Hyb(3)

𝑗+1
have the same input/output behavior as the programs Prove′ [𝐾, hk,𝐶∗,X, 𝑗, ind(𝑖∗ ) ] and Verify′ [𝐾,𝐶∗,X, 𝑗, ind(𝑖∗ ) ]
in Hyb𝑗+2, where the set X is defined according to the specification of Hyb(3)

𝑗+1 and Hyb𝑗+2. To see this, we start by

analyzing the main quantities used to construct these programs:

• First, 𝑧∗ r← {0, 1}2𝜆 . Thus, Pr[∃𝑦 ∈ {0, 1}𝜆 : PRG(𝑦) = 𝑧∗] = 2
−𝜆
, so with overwhelming probability, the value

𝑧∗ in Hyb(3)
𝑗+1 is not in the range of PRG.

• Next, we note that hk𝑗 is sampled in trapdoor mode to be binding on index 𝑏𝑑+1− 𝑗 . We consider two possibilities:

– Suppose 𝑏𝑑+1− 𝑗 = 0. By construction of Γhash (see Fig. 10),

valhash (prefix( 𝑗 )𝑖∗ ) = SSB.LocalHash(hk𝑗 , valhash (prefix( 𝑗 )𝑖∗ ∥0), valhash (prefix
( 𝑗 )
𝑖∗ ∥1)) .

For any ℎ0, ℎ1 if valhash (prefix( 𝑗 )𝑖∗ ) = SSB.LocalHash(hk𝑗 , ℎ0, ℎ1), since hk𝑗 ← SSB.GenTD(1𝜆, 1ℓ𝑗−1 , 0) and
ΠSSB is somewhere statistically binding; with overwhelming probability over the choice of hk𝑗 , we have
that ℎ0 must be equal to valhash (prefix( 𝑗 )𝑖∗ ∥0). Since, 𝑏𝑑+1− 𝑗 = 0, we have, prefix( 𝑗 )

𝑖∗ ∥0 = prefix( 𝑗−1)
𝑖∗ . Thus,

ℎ0 must be equal to valhash (prefix( 𝑗−1)𝑖∗ ).
– Suppose 𝑏𝑑+1− 𝑗 = 1. By construction of Γhash (see Fig. 10),

valhash (prefix( 𝑗 )𝑖∗ ) = SSB.LocalHash(hk𝑗 , valhash (prefix( 𝑗 )𝑖∗ ∥0), valhash (prefix
( 𝑗 )
𝑖∗ ∥1)) .

For any ℎ0, ℎ1 if valhash (prefix( 𝑗 )𝑖∗ ) = SSB.LocalHash(hk𝑗 , ℎ0, ℎ1), since hk𝑗 ← SSB.GenTD(1𝜆, 1ℓ𝑗−1 , 1) and
ΠSSB is somewhere statistically binding; with overwhelming probability over the choice of hk𝑗 , we have
that ℎ1 must be equal to valhash (prefix( 𝑗 )𝑖∗ ∥1). Since, 𝑏𝑑+1− 𝑗 = 1, we have, prefix( 𝑗 )

𝑖∗ ∥1 = prefix( 𝑗−1)
𝑖∗ . Thus,

ℎ1 must be equal to valhash (prefix( 𝑗−1)𝑖∗ ).

• Finally, since ΠPRF is functionality-preserving, we have that PRF.Eval(𝐾, (𝐶,ℎ, ind)) = PRF.Eval(𝐾𝑝 , (𝐶,ℎ, ind))
whenever (𝐶,ℎ, ind) ≠ (𝐶∗, valhash (prefix( 𝑗−1)𝑖∗ ), prefix( 𝑗−1)

𝑖∗ ).

Now, consider the programs Prove′′ [𝐾𝑝 , hk,𝐶∗,X, 𝑗 − 1, ind(𝑖
∗ ) , 𝑧∗] and Prove′ [𝐾, hk,𝐶∗,X, 𝑗, ind(𝑖∗ ) ]:

• Suppose 𝑏𝑑+1− 𝑗 = 0. In this case, the behavior of the two programs only differs on inputs (𝐶,ℎ0, ℎ1, ind, 𝜋0, 𝜋1)
where 𝑑 ′ = level(ind) = 𝑗 > 0 (non-leaf node), 𝐶 = 𝐶∗, ind = prefix( 𝑗 )

𝑖∗ , and ℎ = valhash (prefix( 𝑗 )𝑖∗ ), where the
hash ℎ is computed as ℎ ← SSB.LocalHash(hk𝑗 , ℎ0, ℎ1, prefix( 𝑗 )𝑖∗ ).

– On such an input, Prove′ [𝐾, hk,𝐶∗,X, 𝑗, ind( 𝑗 ) ] always outputs ⊥.
– Consider the output of Prove′′ [𝐾, hk,𝐶∗,X, 𝑗 − 1, ind(𝑖

∗ ) , 𝑧∗]. Since 𝑏𝑑+1− 𝑗 = 0, by the above analy-

sis, with overwhelming probability over the choice of hk𝑗 , if SSB.LocalHash(hk𝑗 , ℎ0, ℎ1, prefix( 𝑗 )𝑖∗ ) =

valhash (prefix( 𝑗 )𝑖∗ ), then ℎ0 = valhash (prefix( 𝑗−1)𝑖∗ ). In this case, Prove′′ checks whether PRG(𝜋0) = 𝑧∗ and
outputs ⊥ if not. As argued above, with overwhelming probability over the choice of 𝑧∗, there does not
exist any 𝜋0 such that PRG(𝜋0) = 𝑧∗. Thus, with overwhelming probability over the choice of hk𝑗 and 𝑧∗,
the output of Prove′′ on all such inputs is ⊥.

On all other inputs, the programs’ behavior is identical as long as the PRF is functionality-preserving (since the

punctured key in Prove′′ is never used to evaluate on the punctured point).

• Suppose 𝑏𝑑+1− 𝑗 = 1. In this case, the behavior of the two programs only differs on inputs (𝐶,ℎ0, ℎ1, ind, 𝜋0, 𝜋1)
where 𝑑 ′ = level(ind) = 𝑗 > 0 (non-leaf node), 𝐶 = 𝐶∗, ind = prefix( 𝑗 )

𝑖∗ , and ℎ = valhash (prefix( 𝑗 )𝑖∗ ), where the
hash ℎ is computed as ℎ ← SSB.LocalHash(hk𝑗 , ℎ0, ℎ1, prefix( 𝑗 )𝑖∗ ).
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– On such an input, Prove′ [𝐾, hk,𝐶∗,X, 𝑗, ind( 𝑗 ) ] always outputs ⊥.
– Consider the output of Prove′′ [𝐾, hk,𝐶∗,X, 𝑗 − 1, ind(𝑖

∗ ) , 𝑧∗]. Since 𝑏𝑑+1− 𝑗 = 1, by the above analy-

sis, with overwhelming probability over the choice of hk𝑗 , if SSB.LocalHash(hk𝑗 , ℎ0, ℎ1, prefix( 𝑗 )𝑖∗ ) =

valhash (prefix( 𝑗 )𝑖∗ ), then ℎ1 = valhash (prefix( 𝑗−1)𝑖∗ ). In this case, Prove′′ checks whether PRG(𝜋1) = 𝑧∗ and
outputs ⊥ if not. As argued above, with overwhelming probability over the choice of 𝑧∗, there does not
exist any 𝜋1 such that PRG(𝜋1) = 𝑧∗. Thus, with overwhelming probability over the choice of hk𝑗 and 𝑧∗,
the output of Prove′′ on all such inputs is ⊥.

On all other inputs, the programs’ behavior is identical as long as the PRF is functionality-preserving (since the

punctured key in Prove′′ is never used to evaluate on the punctured point).

Consider now the verification programs Verify′ [𝐾,𝐶∗,X, 𝑗, ind(𝑖∗ ) ] and Verify′′ [𝐾𝑝 ,𝐶
∗,X, 𝑗 − 1, ind(𝑖∗ ) , 𝑧∗]. By design,

the only inputs on which the programs can differ are those of the form (𝐶,ℎ, ind, 𝜋) where 𝐶 = 𝐶∗, ind = prefix( 𝑗−1)
𝑖∗ ,

and ℎ = valhash (prefix( 𝑗−1)𝑖∗ ) = valhash (ind).

• On such an input, Verify′ [𝐾, hk,𝐶∗,X, 𝑑thresh, ind(𝑖
∗ ) ] always outputs 0 since 𝑑 ′ = level(ind) = 𝑗 − 1 < 𝑗 .

• Consider the output of Verify′′ [𝐾𝑝 ,𝐶
∗,X, 𝑑thresh, ind(𝑖

∗ ) , 𝑧∗]. By construction, the output is 1 if PRG(𝜋) = 𝑧∗
and 0 otherwise. As argued above, with overwhelming probability over the choice of 𝑧∗, there does not exist 𝜋
such that PRG(𝜋) = 𝑧∗, and so the output of Verify′′ on all such inputs is 0 with overwhelming probability.

By the above analysis, we see that with overwhelming probability over the choice of hk𝑗 and 𝑧∗, the programs Prove′

in Hyb𝑗+2 and Prove′′ in Hyb(3)
𝑗+1 as well as the programs Verify′ in Hyb𝑗+2 and Verify′′ in Hyb(3)

𝑗+1 have identical

input/output behavior. The claim now follows by 𝑖O security. □

Combining Claims 5.13 to 5.16, we have that for all 𝑗 ∈ [𝑑], hybrids Hyb𝑗+1 and Hyb𝑗+2 are computationally

indistinguishable and the lemma follows. □

To complete the proof of Theorem 5.8, we show that for all adversaries A, Pr[Hyb𝑑+2 (A) = 1] = 0.

Lemma 5.17. For all non-uniform polynomial time adversaries A and all 𝜆 ∈ N, Pr[Hyb𝑑+2 (A) = 1] = 0.

Proof. Take any adversaryA. Let crs be the common reference string sampled according to the specification ofHyb𝑑+2
and let 𝜋 be the proof that A outputs for the statement (𝐶∗, (𝑥∗

1
, . . . , 𝑥∗𝑡 )

)
in Hyb𝑑+2. We consider the probability that

the output of Hyb𝑑+2 (A) = 1. By definition, the output in Hyb𝑑+2 is 1 only if the adversary outputs a circuit 𝐶∗ and
instances 𝑥∗

1
, . . . , 𝑥∗𝑡 where 𝑥

∗
𝑖∗ is a false instance. Consider V(crs,𝐶∗, (𝑥∗1 , . . . , 𝑥∗𝑡 ), 𝜋):

• First, the verification algorithm constructs a binary tree (Γhash, valhash) ← HashProg[hk] (𝑥∗
1
, . . . , 𝑥∗𝑡 ) using the

algorithm from Fig. 10 (when running Hash).

• The verification algorithm parses the proof 𝜋 as 𝜋 = {(ind, 𝜋ind)}ind∈frontier(ind(𝑡 ) ) , and outputs 0 if the proof

does not have this format. Then, for each ind ∈ frontier(ind(𝑡 ) ), the verification algorithm checks that

ObfVerify(𝐶∗, valhash (ind), ind, 𝜋ind) = 1 and rejects with output 0 if any check fails.

Let ind′ be the longest common prefix of ind(𝑖
∗ )
and ind(𝑡 ) . We now define an index ind′′ ∈ frontier(ind(𝑡 ) ) where

ind′′ is a prefix of ind(𝑖
∗ )
as follows:

• Suppose ind′ = ind(𝑖
∗ ) = ind(𝑡 ) . Then, define ind′′ = ind′. By definition, ind′′ ∈ frontier(ind(𝑡 ) ) and is a prefix

of ind(𝑖
∗ )
.

• Suppose ind′ ≠ ind(𝑖
∗ )
. Let |ind′ | = 𝑗 where 0 ≤ 𝑗 ≤ 𝑑 − 1. Note that 𝑗 ≠ 𝑑 since ind(𝑖

∗ ) ≠ ind(𝑡 ) . Since ind′ is
defined to be the the longest common prefix, the ( 𝑗 +1)th bit of ind(𝑖∗ ) and ind(𝑡 ) must be different. Additionally,

ind(𝑡 ) > ind(𝑖
∗ )
and moreover, the ( 𝑗 + 1)th is the first differing bit between ind(𝑡 ) and ind(𝑖

∗ )
. This means that

the 𝑗 + 1th bit of ind(𝑖∗ ) must be 0 and the ( 𝑗 + 1)𝑡ℎ bit of ind(𝑡 ) must be 1. In this case then, let ind′′ = ind′∥0.
By construction, ind′′ is a prefix of ind(𝑖

∗ )
, and moreover is a left sibling of a node on the path to ind(𝑡 ) . This

means that ind′′ ∈ frontier(ind(𝑡 ) ), as required.
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Consider now the output of ObfVerify(𝐶∗, valhash (ind′′), ind′′, 𝜋ind′′ ). By correctness of 𝑖O, this corresponds to the

output of program Verify′ [𝐾,𝐶∗,X, 𝑑, ind(𝑖∗ ) ] (𝐶∗, valhash (ind′′), ind′′, 𝜋ind′′ ):

• By construction, ind′′ is not the root node so level(ind′′) < 𝑑 .

• Again by construction, ind′′ is a prefix of ind(𝑖
∗ )
, and moreover, (ind′′, valhash (ind′′)) ∈ X. Next, the hash tree

Γhash is computed in an identical fashion in both the verification algorithm V and in the construction of the

obfuscated program ObfVerify. The output of Verify′′ on the input (𝐶∗, valhash (ind′′), ind′′, 𝜋ind′′ ) is always 0,
irrespective of the value of 𝜋ind′′ .

We conclude there always exists an index ind′′ ∈ frontier(ind(𝑡 ) ) such that ObfVerify(𝐶∗, valhash (ind), ind, 𝜋ind) = 0.

Thus, the output of the verification algorithm is always 0 in Hyb𝑑+2 and the claim holds. □

Non-adaptive soundness of Construction 5.6 now follows by Lemmas 5.9, 5.11, 5.12 and 5.17. □

Theorem 5.18 (Succinctness). If ΠSSB is succinct, then Construction 5.6 is fully succinct.

Proof. Recall that ℓ is the length of the statement. We start by showing that ℓmax = poly(𝜆, ℓ). Since ΠSSB is

succinct, there exists some polynomial 𝑞 = 𝑞(𝜆) such that the output length ℓout of the hash function satisfies

ℓout (𝜆, ℓblk) = ℓblk · (1 + 1/Ω(𝜆)) + 𝑞(𝜆). Next, by definition, ℓ0 = ℓ and for 𝑗 ∈ [𝑑], we define ℓ𝑗 = ℓout (𝜆, ℓ𝑗−1). Thus,
ℓ1 = ℓ · (1 + 1/Ω(𝜆)) + 𝑞(𝜆), and more generally, we have that

ℓ𝑑 = ℓ · (1 + 1/Ω(𝜆))𝑑 + 𝑞(𝜆) ·
∑︁
𝑗∈[𝑑 ]
(1 + 1/Ω(𝜆)) 𝑗−1.

Since 𝑑 = 𝜆 and (1 + 1/Ω(𝜆))𝜆 = 𝑂 (1), we have that ℓ𝑑 = 𝑂 (ℓ) + 𝑞(𝜆) ·𝑂 (𝜆). Thus, ℓmax = poly(𝜆, ℓ).

• Succinct proof size: The value stored at a node in the tree Γproof is the output of the PRF, whose codomain

consists of bitstrings of length 𝜆. From Claim 5.5, for any polynomial 𝑡 , frontier(ind(𝑡 ) ) consists of at most 𝑑 + 1
nodes so the total proof size is at most (𝑑 + 1) · (𝑑 + 𝜆). Since 𝑑 = 𝜆, the size of the proof is 𝑂 (𝜆2). Thus, the
BARG is fully succinct.

12

• Succinct verification time: For all 𝜆 ∈ N, instance numbers 𝑡 ≤ 2
𝜆
, indices 𝑖 ∈ [𝑡], size parameters 𝑠 ∈ N, and

statement lengths ℓ ∈ N, the verification algorithm on input (crs,𝐶, (𝑥1, . . . , 𝑥𝑖 ), 𝜋𝑖 ) starts by computing the

hash tree Γhash (using the algorithm from Fig. 10). This requires times poly(𝜆, 𝑖, ℓ) time. Next, the verification

algorithm parses the proof 𝜋𝑖 as 𝜋𝑖 = {(ind, 𝜋ind)}ind∈frontier(ind(𝑖 ) ) . Since 𝑖O is efficient, it takes poly(𝜆, 𝑠) time

to run the program ObfVerify on each proof 𝜋ind. From Claim 5.5, |frontier(ind(𝑖 ) ) | ≤ 𝑑 + 1 = 𝜆 + 1. Thus, the
overall verification cost is poly(𝜆, 𝑖, ℓ) + poly(𝜆, 𝑠), which is succinct, as required. □

Theorem 5.19 (Zero Knowledge). Construction 5.6 satisfies perfect zero-knowledge.

Proof. To show zero knowledge, we construct an efficient simulator S as follows. On input the security parameter 𝜆,

the bound 𝑠 on the circuit size, a Boolean circuit 𝐶 : {0, 1}ℓ × {0, 1}𝑚 → {0, 1} of size at most 𝑠 , the set of statements

𝑥1, . . . , 𝑥𝑡 such that (𝐶, (𝑥1, . . . , 𝑥𝑡 )) ∈ LBatchCSAT,𝑡 , the simulator algorithm proceeds as follows:

1. Compute crs← Gen(1𝜆, 1ℓ , 1𝑠 ). Let hk be the hash key and 𝐾 be the PRF key sampled in the construction of

CRS.

2. Compute the binary tree (Γhash, valhash) ← HashProg[hk] (𝑥1, . . . , 𝑥𝑡 ) using the algorithm from Fig. 10.

3. Let ind(𝑡 ) = bin𝑑 (𝑡 − 1). Then, construct the proof

𝜋𝑡 = {(ind, PRF.Eval (𝐾, (𝐶, valhash (ind), ind)))}ind∈frontier(ind(𝑡 ) ) .
12
Note that we can apply a tighter analysis to show that the proof size on 𝑡 instances is𝑂 (𝜆 log 𝑡 ) . The analysis described here implicitly is for an

arbitrary 𝑡 ≤ 2
𝜆
.
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4. Output (crs, 𝜋𝑡 ).

By construction, the simulator samples crs exactly as in the real scheme. If suffices to show that the simulated proofs

are distributed exactly as in the real distribution. Let 𝑥1, . . . , 𝑥𝑡 be a sequence of statements and 𝑤1, . . . ,𝑤𝑡 be a

corresponding set of witnesses (for all 𝑖 ∈ [𝑡], 𝐶 (𝑥𝑖 ,𝑤𝑖 ) = 1). Let 𝜋0 = ⊥, ℎ0 = (0,∅), and for every 𝑖 ∈ [𝑡], ℎ𝑖 ←
Hash(crs, (𝑥1, . . . , 𝑥𝑖 )). We compute the proofs iteratively (i.e., for 𝑖 ∈ [𝑡], 𝜋𝑖 ← UpdateP(crs,𝐶, ℎ𝑖−1, 𝜋𝑖−1, 𝑥𝑖 ,𝑤𝑖 )).
Let ind(𝑖 ) = bin𝑑 (𝑖 − 1), ℎ𝑖 =

(
𝑖, {(ind, valhash (ind))}ind∈frontier(ind(𝑖 ) )

)
and 𝜋𝑖 = {(ind, 𝜋ind)}ind∈frontier(ind(𝑖 ) ) . We show

that the following invariant in our proof computation: for all indices ind ∈ frontier(ind(𝑖 ) ),

𝜋ind = PRF.Eval(𝐾, (𝐶, valhash (ind), ind)). (5.6)

We now show that this invariant holds:

• In the base case (𝑖 = 1), UpdateP computes 𝜋 ← ObfProve(𝐶, 𝑥1,⊥, ind(1) ,𝑤1,⊥). By correctness of 𝑖O and the

fact that 𝐶 (𝑥1,𝑤1) = 1, we have 𝜋 = PRF.Eval
(
𝐾, (𝐶, 𝑥1, ind(1) )

)
and the invariant holds.

• By the exact same analysis as in the proof of Theorem 5.7, we can show that Eq. (5.6) holds.

We conclude that the proofs output by the simulator are distributed identically to the proofs output in the real scheme,

so the scheme satisfies perfect zero knowledge. □

Combining Theorems 5.7, 5.8, 5.18 and 5.19, we obtain the following corollary:

Corollary 5.20 (Non-Adaptive Updatable BARGs). Assuming the existence of a secure indistinguishability obfuscation
scheme (for Boolean circuits) and somewhere statistically binding hash functions, there exists an updatable batch argument
for NP satisfying non-adaptive soundness.

Remark 5.21 (Non-Adaptive Updatable BARGs from 𝑖O and One-Way Functions). For our non-adaptive construction,
we can replace the two-to-one somewhere statistically binding hash functions with positional accumulators to obtain

an updatable BARG scheme based only on 𝑖O and one-way functions.
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A Adaptive BARGs for Index Languages
In this section, we show how to construct adaptively-sound batch arguments for index languages that support an

unbounded number of statements. The construction closely follow our non-adaptively-sound BARG from Section 3,

but now relies on complexity leveraging [BB04] to argue adaptive soundness. In particular, the reduction algorithm

will guess the challenge circuit upfront; this incurs a loss of 2
−𝑠

in the reduction’s success probability, where 𝑠 is a

bound on the circuit size (i.e., the description length of the Boolean circuit). Moreover, the reduction will also need to

decide the underlying circuit-SAT relation to identify the index of the false instance across the 𝑡 = 𝑡 (𝜆) instances,
Thus, we need to additionally rely on hardness against super-polynomial time adversaries. We provide the formal

details below.

Construction A.1 (Adaptively-Sound BARG for Index Languages). Let 𝜆 be a security parameter. We construct a

BARG scheme that supports index languages with up to 𝑇 = 2
𝜆
instances (i.e., which suffices to support an arbitrary

a priori unbounded polynomial number of instances) and circuits of size at most 𝑠 . The instance indices will be

taken from the set [2𝜆]. For ease of notation, we use the set [2𝜆] and the set {0, 1}𝜆 interchangeably in the following

description. Our construction relies on the following primitives, which will be instantiated with different security

parameters 𝜆1 = 𝜆1 (𝜆, 𝑠), 𝜆2 = 𝜆2 (𝜆, 𝑠), and 𝜆3 = 𝜆3 (𝜆, 𝑠). We set these parameters to satisfy the requirements of

Theorem A.3.
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• Let PRF be a puncturable PRF with key space {0, 1}𝜆1 , domain {0, 1}𝑠 × {0, 1}𝜆 and range {0, 1}𝜆2 .

• Let 𝑖O be an indistinguishability obfuscator.

• Let PRG be a pseudorandom generator with domain {0, 1}𝜆2 and range {0, 1}2𝜆2 .
We define our batch argument ΠBARG = (Gen, P,V) for index languages as follows:

• Gen(1𝜆, 1𝑠 ): This is essentially the same as in Construction 5.6, except instantiated with different security

parameters 𝜆1 = 𝜆1 (𝜆, 𝑠), 𝜆2 = 𝜆2 (𝜆, 𝑠), and 𝜆3 = 𝜆3 (𝜆, 𝑠). Specifically, on input the security parameter 𝜆, and a

bound on the circuit size 𝑠 , the setup algorithm proceeds as follows:

1. First, it samples a PRF key 𝐾 ← PRF.KeyGen(1𝜆1 ).
2. Next, the setup algorithm defines the proving program Prove[𝐾] and the verification programVerify[𝐾] ex-

actly as in Construction 3.1 (see Figs. 1 and 2). The setup algorithm constructsObfProve← 𝑖O(1𝜆3 , Prove[𝐾])
and ObfVerify ← 𝑖O(1𝜆3 ,Verify[𝐾]). Note that both the proving circuit Prove[𝐾] and Verify[𝐾] are
padded to the maximum size of any circuit that appears in the proof of Theorem A.3.

Finally, it outputs the common reference string crs = (ObfProve,ObfVerify).

• P(crs,𝐶, (𝑤1, . . . ,𝑤𝑡 )): Same as in Construction 3.1.

• V(crs,𝐶, 𝑡, 𝜋): Same as in Construction 3.1.

Theorem A.2 (Completeness). If 𝑖O is correct, then Construction A.1 is complete.

Proof. This proof is exactly the same as the proof for the non-adaptive case (Theorem 3.2). □

Theorem A.3 (Soundness). Suppose there exists positive constants 𝛼, 𝛽,𝛾 ∈ (0, 1) such that

• The puncturable PRF ΠPRF is functionality-preserving and satisfies (2𝜆
𝛼

, 2−𝜆
𝛼 )-punctured pseudorandomness;

• The pseudorandom generator PRG is (2𝜆𝛽 , 2−𝜆𝛽 )-secure; and

• The indistinguishability obfuscator 𝑖O is (2𝜆𝛾 , 2−𝜆𝛾 )-secure.
Suppose moreover that we instantiate Construction A.1 with 𝜆1 = (𝑠 + log 𝑠 + 𝜔 (log 𝜆))1/𝛼 , 𝜆2 = (𝑠 + log 𝑠 + 𝜔 (log 𝜆))1/𝛽 ,
and 𝜆3 = (𝑠 + log 𝑠 + 𝜔 (log 𝜆))1/𝛾 , for a fixed polynomial poly(·). Note that 𝜆1, 𝜆2, 𝜆3 = poly(𝜆, 𝑠). Then, Construction A.1
is adaptively sound.

Proof. We start by defining a sequence of hybrid experiments. In the following analysis, we say that 𝐶 is a Boolean

circuit of size 𝑠 if it can be described by a binary string of length exactly 𝑠 . Moreover, we will associate the set of all

Boolean circuits with size at most 𝑠 with a binary string of length 𝑠 + 1 (i.e., an element of the set {0, 1}𝑠+1).
• Hyb

0
: This is the adaptive soundness experiment:

– At the beginning of the experiment, the adversaryA outputs the maximum circuit size 1
𝑠
. The number of

instances is implicitly taken to be 𝑇 = 2
𝜆
.

– The challenger samples crs← Gen(1𝜆, 1𝑠 ) and gives crs = (ObfProve,ObfVerify) to adversary A.

– The adversary A outputs (𝐶∗, 𝑡, 𝜋) where the size of 𝐶∗ is at most 𝑠 .

– The output of the experiment is 1 if V(crs,𝐶∗, 𝑡, 𝜋) = 1 (i.e., if ObfVerify(𝐶∗, 𝑡, 𝜋) = 1) and there exists an

index 𝑖 ∈ [𝑡] such that for all𝑤 ∈ {0, 1}∗, 𝐶∗ (𝑖,𝑤) = 0. Otherwise, the experiment outputs 0.

• Hyb′
0
: Same as Hyb

0
, except at the beginning of the security game, after the adversary outputs the bound 1

𝑠
on

the maximum circuit size, the challenger guesses a circuit𝐶′ r← {0, 1}𝑠+1. After the adversary outputs (𝐶∗, 𝑡, 𝜋),
the challenger outputs 0 if 𝐶′ ≠ 𝐶∗. Otherwise, the output is computed exactly as in Hyb

0
.

Additionally, the challenger exhaustively searches for a bad instance 𝑖∗ ∈ {0, 1}𝜆 . Namely, for each instance

index 𝑖 ∈ {0, 1}𝜆 , it checks to see if for all 𝑤 ∈ {0, 1}𝑚 , it holds that 𝐶′ (𝑖,𝑤) = 0. If so, it sets 𝑖∗ = 𝑖 . If there
are multiple such indices 𝑖 ∈ {0, 1}𝜆 , it sets 𝑖∗ to be the smallest index (when interpreting 𝑖 as the binary

representation of a 𝜆-bit integer).
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• Hyb𝑗 for 𝑗 ∈ {𝑖∗, . . . , 𝑡}: Same as Hyb′
0
except the challenger changes the distribution of the CRS. Specifi-

cally, it defines the modified programs Prove′ [𝐾, 𝑖∗, 𝑖thresh,𝐶′] and Verify′ [𝐾, 𝑖∗, 𝑖thresh,𝐶′] exactly as in the

proof of Theorem 3.3 (see Figs. 3 and 4). To construct the CRS, the challenger computes ObfProve ←
𝑖O(1𝜆, Prove′ [𝐾, 𝑖∗, 𝑗,𝐶′]) and ObfVerify← 𝑖O(1𝜆,Verify′ [𝐾, 𝑖∗, 𝑗,𝐶′]) As in the real scheme, the challenger

pads the size of Prove′ and Verify′ to the maximum size of the circuits that appear in the proof of Theorem A.3.

For an adversary A, we write Hyb𝑖 (A) to denote the output distribution of Hyb𝑖 (A) with adversary A. We now

show that each pair of adjacent distributions defined above are indistinguishable. Unlike the proof of Theorem 3.3,

our analysis here relies on complexity leveraging and the reduction algorithm will compute for itself the index 𝑖∗ of
the false instance. As a result, we no longer need to rely on non-uniform advice, and thus, the following reductions

are all uniform.

Lemma A.4. For all adversaries A and all security parameters 𝜆 ∈ N, Pr[Hyb
0
(A) = 1] = 2

𝑠+1 · Pr[Hyb′
0
(A) = 1].

Proof. If Hyb
0
(A) outputs 1, then it must be the case that A outputs a circuit 𝐶∗ of size at most 𝑠 , which means

𝐶∗ ∈ {0, 1}𝑠+1. Since the challenger samples 𝐶′ r← {0, 1}𝑠+1 and moreover, 𝐶′ is independent of the adversary’s view,
Pr[𝐶′ = 𝐶∗] = 1/2𝑠+1. Thus, Pr[Hyb′

0
(A) = 1] = 1/2𝑠+1 · Pr[Hyb

0
(A) = 1]. □

Lemma A.5. Suppose 𝑖O is (2𝜆𝛾 , 2−𝜆𝛾 )-secure. Then for every efficient adversary A, there exists a negligible function
𝜀 (𝜆) = negl(𝜆) such that for all 𝜆 ∈ N, | Pr[Hyb𝑖∗ (A) = 1] − Pr[Hyb′

0
(A)] | ≤ 𝜀/2𝑠 .

Proof. By the same argument as in the proof of Lemma 3.4, the programs Prove[𝐾] and Prove′ [𝐾, 𝑖∗, 𝑖∗,𝐶′] as well as
the programs Verify[𝐾] and Verify′ [𝐾, 𝑖∗, 𝑖∗,𝐶′] have identical input/output behavior. The claim now follows by 𝑖O
security. Since we need to rely on complexity leveraging in the security reduction, we provide more details here.

First, let Hyb′′
0
be an intermediate experiment where we change the ObfProve program from ObfProve ←

𝑖O(1𝜆3 , Prove[𝐾]) (as in Hyb′
0
) to ObfProve← 𝑖O(1𝜆3 , Prove′ [𝐾, 𝑖∗, 𝑖∗,𝐶′]) as in Hyb𝑖∗ ). In Hyb′′

0
, the verification

program is still computed as ObfVerify← 𝑖O(1𝜆3 ,Verify[𝐾]) as in Hyb′
0
.

We now show that if there exists a poly(𝜆)-time algorithm A where for for some non-negligible 𝜀 = 𝜀 (𝜆), there
exists an infinite set ΛA ⊆ N, such that for all 𝜆 ∈ ΛA , | Pr[Hyb′′0 (A) = 1] − Pr[Hyb′

0
(A) = 1] | ≥ 𝜀/2𝑠 . Then

there exists a 2
𝜆3

𝛾

-time algorithm B that breaks 𝑖O security. We note that while the adversary A runs on security

parameter 𝜆, the reduction will run on security parameter 𝜆3 = 𝜆3 (𝜆, 𝑠). The formal details are mentioned below.

Let 𝑠𝜆 be the deterministic value of the circuit output by A when run on security parameter 𝜆 ∈ N. Let

ΛB =

{
⌈(𝑠𝜆 + log(𝑠𝜆) + 𝜔 (log 𝜆))1/𝛾 ⌉ : 𝜆 ∈ ΛA

}
. Since ΛA is an infinite set, and the function 𝜔 (log 𝜆) is monotone

for sufficiently-large lambda, and 𝑠 is non-negative, ΛB is also infinite.

We now use A to construct an efficient adversary B for the 𝑖O security game. For each value 𝜆3 ∈ ΛB , algorithm
B is also provided the smallest value of 𝜆 ∈ ΛA where 𝜆3 = ⌈(𝑠𝜆 + log(𝑠𝜆) + 𝜔 (log 𝜆))1/𝛾 ⌉ as non-uniform advice.

1. On input the security parameter 1
𝜆3

and the associated advice string 1
𝜆
, algorithm B starts running algorithm

A on 1
𝜆
(which outputs 1

𝑠𝜆
). In the following, let 𝑠 = 𝑠𝜆 .

2. Algorithm B randomly samples a Boolean circuit 𝐶′ r← {0, 1}𝑠+1 of size at most 𝑠 . Algorithm B interprets

𝐶′ : {0, 1}𝜆 × {0, 1}𝑚 → {0, 1} as a circuit for an index relation. If 𝐶′ cannot be interpreted as a Boolean circuit

in this way, then algorithm B aborts with output 0.

3. Algorithm B exhaustively searches for a bad instance 𝑖∗ ∈ {0, 1}𝜆 . Namely, for each instance index 𝑖 ∈ {0, 1}𝜆 ,
algorithm B checks to see if for all𝑤 ∈ {0, 1}𝑚 , it holds that 𝐶′ (𝑖,𝑤) = 0. If so, algorithm B sets 𝑖∗ = 𝑖 . If there
are multiple such indices 𝑖 ∈ {0, 1}𝜆 , algorithm B sets 𝑖∗ to be the smallest index (when interpreting 𝑖 as the

binary representation of a 𝜆-bit integer).

4. Algorithm B samples a PRF key 𝐾 ← PRF.KeyGen(1𝜆1 ) and outputs Prove[𝐾] and Prove′ [𝐾, 𝑖∗, 𝑖∗,𝐶′] as its
challenge programs. Let ObfProve be the obfuscated program it receives from the challenger.

5. Algorithm B computes ObfVerify← 𝑖O(1𝜆3 ,Verify[𝐾]) and gives crs = (ObfProve,ObfVerify) to A.
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6. Finally, algorithmA outputs a tuple (𝐶∗, 𝑡, 𝜋). If𝐶′ ≠ 𝐶∗ or 𝑖∗ > 𝑡 , algorithm B outputs 0. Otherwise, algorithm

B outputs 1 if V(crs,𝐶∗, 𝑡, 𝜋) = 1 (i.e., if ObfVerify(𝐶∗, 𝑡, 𝜋) = 1) and 0 otherwise.

First, consider the running time of B. Since 𝐶′ is a circuit of size 𝑠 , evaluating 𝐶′ requires time 𝑠 . Thus, computing

the index of the bad instance 𝑖∗ takes time at most 2
𝜆+𝑚 · 𝑠 ≤ 2

𝑠+log 𝑠
since 𝑠 ≥ 𝜆 +𝑚 (i.e., the size of the circuit

is at least as large as the input length to the circuit). Thus, the total running time of algorithm B is bounded by

2
𝑠 · poly(𝜆) ≤ 2

𝑠+log 𝑠+𝜔 (log𝜆) ≤ 2
𝜆3

𝛾

(for sufficiently large 𝜆3 ∈ ΛB). Next, we consider the advantage of B.

• Suppose the challenger obfuscates Prove[𝐾]. Then algorithm B perfectly simulates the distribution of Hyb′
0

and algorithm B outputs 1 with probability Pr[Hyb′
0
(A) = 1].

• Suppose the challenger obfuscates Prove′ [𝐾, 𝑖∗, 𝑖∗,𝐶′]. Then B perfectly simulates Hyb′′
0
and outputs 1 with

probability Pr[Hyb′′
0
(A) = 1].

The distinguishing advantage of B is | Pr[Hyb′′
0
(A) = 1] − Pr[Hyb′

0
(A) = 1] | ≥ 𝜀/2𝑠 . Since 𝜀 is non-negligible, we

have that, 𝜀/2𝑠 ≥ 2
−𝜆3𝛾

(for sufficiently large 𝜆3 ∈ ΛB). Thus we have a contradiction and we have broken 𝑖O security

for sufficiently large values 𝜆 ∈ ΛB . Finally, we can conclude that 𝜀 ≤ 2
−𝜔 (log𝜆) = negl(𝜆), as required.

By an analogous argument, we can show that for all efficient adversaries A, there exists a negligible function

𝜀′ (𝜆) = negl(𝜆) such that for all 𝜆 ∈ N, | Pr[Hyb′′
0
(A) = 1] − Pr[Hyb𝑖∗ (A) = 1] | = 𝜀′/2𝑠 . The claim now follows by

a hybrid argument. □

Lemma A.6. Suppose 𝑖O is (2𝜆𝛾 , 2−𝜆𝛾 ) secure, ΠPRF is functionality-preserving and satisfies (2𝜆𝛼 , 2−𝜆𝛼 )-punctured
pseudorandomness, and PRG is (2𝜆𝛽 , 2−𝜆𝛽 )-secure. Then, for all 𝑗 ∈ {𝑖∗, . . . , 𝑡 − 1}, and every efficient adversaryA, there
exists a negligible function 𝜀 (𝜆) = negl(𝜆) such that for all 𝜆 ∈ N

| Pr[Hyb𝑗+1 (A) = 1] − Pr[Hyb𝑗 (A) = 1] | ≤ 𝜀/2𝑠 .

Proof. We begin by introducing a sequence of intermediate hybrids:

• Hyb(1)
𝑗
: Same as Hyb𝑗 except the challenger changes the distribution of the CRS. Specifically, it defines the

modified programs Prove′′ [𝐾{(𝐶′, 𝑖thresh)}, 𝑖∗, 𝑖thresh,𝐶′, 𝑧] and Verify′′ [𝐾{(𝐶′, 𝑖thresh)}, 𝑖∗, 𝑖thresh,𝐶′, 𝑧] exactly
as in the proof of Lemma 3.5 (see Figs. 5 and 6). The challenger then computes the punctured key 𝐾{(𝐶′, 𝑗)} ←
PRF.Puncture(𝐾, (𝐶′, 𝑗)) and the evaluation 𝑧∗ ← PRG(PRF.Eval(𝐾, (𝐶′, 𝑗))). It then constructs ObfProve←
𝑖O(1𝜆, Prove′′ [𝐾{(𝐶′, 𝑗)}, 𝑖∗, 𝑗,𝐶′, 𝑧∗]) and ObfVerify← 𝑖O(1𝜆,Verify′′ [𝐾{(𝐶′, 𝑗)}, 𝑖∗, 𝑗,𝐶′, 𝑧∗]). As in the real

scheme, the challenger pads the size of Prove′′ and Verify′′ to the maximum size of the circuits that appear in

the proof of Theorem A.3. The CRS is still crs = (ObfProve,ObfVerify).

• Hyb(2)
𝑗

: Same as Hyb(1)
𝑗

but when constructing the CRS, the challenger sets 𝑧∗ ← PRG(𝑦∗) where 𝑦∗ r← {0, 1}𝜆 .

• Hyb(3)
𝑗

: Same as Hyb(2)
𝑗

but when constructing the CRS, the challenger samples 𝑧∗ r← {0, 1}2𝜆 .

We now argue that each pair of adjacent hybrid experiments are indistinguishable for all 𝑗 ∈ {𝑖∗, . . . , 𝑡}.

Claim A.7. Suppose ΠPRF is functionality preserving and suppose 𝑖O is (2𝜆𝛾 , 2−𝜆𝛾 )-secure. Then for all 𝑗 ∈ {𝑖∗, . . . , 𝑡}
and every efficient adversary A, there exists a negligible function 𝜀 (𝜆) = negl(𝜆) such that for all 𝜆 ∈ N,

| Pr[Hyb(1)
𝑗
(A) = 1] − Pr[Hyb(0)

𝑗
(A) = 1] | ≤ 𝜀/2𝑠 .

Proof. We appeal to the proof of Claim 3.6 to show that Prove′ [𝐾, 𝑖∗, 𝑗,𝐶′] and Prove′′ [𝐾{(𝐶′, 𝑗)}, 𝑖∗, 𝑗,𝐶′, 𝑧] have the
same functionality, as do Verify′ [𝐾, 𝑖∗, 𝑗,𝐶′] and Verify′′ [𝐾{(𝐶′, 𝑗)}, 𝑖∗, 𝑗,𝐶′, 𝑧∗]. From here, we can apply the same

reduction as in the proof of Lemma A.5 to show the claim. □

Claim A.8. Suppose ΠPRF satisfies (2𝜆
𝛼

, 2−𝜆
𝛼 )-pseudorandomness. Then for all 𝑗 ∈ {𝑖∗, . . . , 𝑡}, every efficient adversary

A, there exists a negligible function 𝜀 (𝜆) = negl(𝜆) such that for all 𝜆 ∈ N,

| Pr[Hyb(2)
𝑗
(A) = 1] − Pr[Hyb(1)

𝑗
(A) = 1] | ≤ 𝜀/2𝑠 .
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Proof. We now show that if there exists a poly(𝜆)-time algorithm A where for for some non-negligible 𝜀 = 𝜀 (𝜆),
there exists an infinite set ΛA ⊆ N, such that for all 𝜆 ∈ ΛA , | Pr[Hyb(2)𝑗

(A) = 1] − Pr[Hyb(1)
𝑗
(A) = 1] | ≤ 𝜀/2𝑠 .

Then there exists a 2
𝜆3

𝛼

-time algorithm B that breaks punctured pseudorandomness security. We note that while the

adversary A runs on security parameter 𝜆, the reduction will run on security parameter 𝜆1 = 𝜆1 (𝜆, 𝑠). The formal

details are mentioned below.

Let 𝑠𝜆 be the deterministic value of the circuit output by A when run on security parameter 𝜆 ∈ N. Let

ΛB =

{
⌈(𝑠𝜆 + log(𝑠𝜆) + 𝜔 (log 𝜆))1/𝛼 ⌉ : 𝜆 ∈ ΛA

}
. Since ΛA is an infinite set, and the function 𝜔 (log 𝜆) is monotone

for sufficiently-large lambda, and 𝑠 is non-negative, ΛB is also infinite. We now use A to construct an efficient

adversary B for the puncturable PRF security game. For each value 𝜆1 ∈ ΛB , algorithm B is also provided the smallest

value of 𝜆 ∈ ΛA where 𝜆1 = ⌈(𝑠𝜆 + log(𝑠𝜆) + 𝜔 (log 𝜆))1/𝛼 ⌉ as non-uniform advice.

1. On input the security parameter 1
𝜆1

and the associated advice string 1
𝜆
, algorithm B starts running algorithm

A on 1
𝜆
(which outputs 1

𝑠𝜆
). In the following, we write 𝑠 = 𝑠𝜆 .

2. Algorithm B randomly samples a Boolean circuit 𝐶′ r← {0, 1}𝑠+1 of size at most 𝑠 . Algorithm B interprets

𝐶′ : {0, 1}𝜆 × {0, 1}𝑚 → {0, 1} as a circuit for an index relation. If 𝐶′ cannot be interpreted as a Boolean circuit

in this way, then algorithm B aborts with output 0.

3. Algorithm B exhaustively searches for a bad instance 𝑖∗ ∈ {0, 1}𝜆 . Namely, for each instance index 𝑖 ∈ {0, 1}𝜆 ,
algorithm B checks to see if for all𝑤 ∈ {0, 1}𝑚 , it holds that 𝐶′ (𝑖,𝑤) = 0. If so, algorithm B sets 𝑖∗ = 𝑖 . If there
are multiple such indices 𝑖 ∈ {0, 1}𝜆 , algorithm B sets 𝑖∗ to be the smallest index (when interpreting 𝑖 as the

binary representation of a 𝜆-bit integer).

4. Algorithm B outputs (𝐶′, 𝑗) as its challenge point. The challenger replies with a punctured key 𝐾{(𝐶′, 𝑗)} and
a challenge value 𝑦 where either 𝑦 ← PRF.Eval(𝐾, (𝐶′, 𝑗)) or 𝑦 r← {0, 1}𝜆2 .

5. Algorithm B computes 𝑧∗ ← PRG(𝑦) and computes ObfProve← 𝑖O(1𝜆3 , Prove′′ [𝐾{(𝐶′, 𝑗)}, 𝑖∗, 𝑗,𝐶′, 𝑧∗]) and
ObfVerify← 𝑖O(1𝜆3 ,Verify′′ [𝐾{(𝐶′, 𝑗)}, 𝑖∗, 𝑗,𝐶′, 𝑧∗]). It gives crs = (ObfProve,ObfVerify) to A.

6. Adversary A outputs (𝐶∗, 𝑡, 𝜋). If 𝐶′ ≠ 𝐶∗ or 𝑖∗ > 𝑡 , algorithm B outputs 0.

7. Otherwise, algorithm B outputs 1 if ObfVerify(𝐶∗, 𝑡, 𝜋) = 1.

If B received PRF.Eval(𝐾, (𝐶′, 𝑗)), then it perfectly simulates an execution of hybrid Hyb(1)
𝑗

and outputs 1 with

probability Pr[Hyb(1)
𝑗
(A) = 1]. Alternatively, if it receives a random challenge, then it perfectly simulates Hyb(2)

𝑗

and outputs 1 with probability Pr[Hyb(2)
𝑗
(A) = 1]. Thus, the advantage of B is exactly

| Pr[Hyb(2)
𝑗
(A) = 1] − Pr[Hyb(1)

𝑗
(A) = 1] | ≤ 𝜀/2𝑠 .

Since algorithm B performs an exhaustive search to find the index 𝑖∗, the running time of B is 2
𝑠 · 𝑠 · poly(𝜆) ≤ 2

𝜆1
𝛼

(for sufficiently large 𝜆1 ∈ ΛB). The claim now follows by (2𝜆𝛼 , 2−𝜆𝛼 ) security: namely, we require that 𝜀/2𝑠 ≤ 2
−𝜆1𝛼 =

2
−𝑠−𝜔 (log𝜆)

(for sufficiently large 𝜆1 ∈ ΛB). □

Claim A.9. Suppose PRG is (2𝜆𝛽 , 2−𝜆𝛽 ) secure. Then for all 𝑗 ∈ {𝑖∗, . . . , 𝑡} and every efficient adversary A, there exists
a negligible function 𝜀 (𝜆) = negl(𝜆) such that for all 𝜆 ∈ N,

| Pr[Hyb(3)
𝑗
(A) = 1] − Pr[Hyb(2)

𝑗
(A) = 1] | ≤ 𝜀/2𝑠 .

Proof. We now show that if there exists a poly(𝜆)-time algorithmA where for for some non-negligible 𝜀 = 𝜀 (𝜆), there
exists an infinite set ΛA ⊆ N, such that for all 𝜆 ∈ ΛA , | Pr[Hyb(3)𝑗

(A) = 1] − Pr[Hyb(2)
𝑗
(A) = 1] | ≤ 𝜀/2𝑠 . Then

there exists a 2
𝜆2

𝛽

-time algorithm B that breaks PRG security. We note that while the adversary A runs on security

parameter 𝜆, the reduction will run on security parameter 𝜆2 = 𝜆2 (𝜆, 𝑠). The formal details are mentioned below.
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Let 𝑠𝜆 be the deterministic value of the circuit output by A when run on security parameter 𝜆 ∈ N. Let

ΛB =

{
⌈(𝑠𝜆 + log(𝑠𝜆) + 𝜔 (log 𝜆))1/𝛽⌉ : 𝜆 ∈ ΛA

}
. Since ΛA is an infinite set, and the function 𝜔 (log 𝜆) is monotone

for sufficiently-large lambda, and 𝑠 is non-negative, ΛB is also infinite. We now use A to construct an efficient

adversary B for the pseudorandom generator security game. For each value 𝜆2 ∈ ΛB , algorithm B is also provided

the smallest value of 𝜆 ∈ ΛA where 𝜆2 = ⌈(𝑠𝜆 + log(𝑠𝜆) + 𝜔 (log 𝜆))1/𝛽⌉ as non-uniform advice.

1. On input the security parameter 1
𝜆2

and associated advice string 1
𝜆
, algorithm B starts running algorithm A

on 1
𝜆
(which outputs 1

𝑠𝜆
). In the following, we write 𝑠 = 𝑠𝜆 .

2. Algorithm B randomly samples a Boolean circuit 𝐶′ r← {0, 1}𝑠+1 of size at most 𝑠 . Algorithm B interprets

𝐶′ : {0, 1}𝜆 × {0, 1}𝑚 → {0, 1} as a circuit for an index relation. If 𝐶′ cannot be interpreted as a Boolean circuit

in this way, then algorithm B aborts with output 0.

3. Algorithm B exhaustively searches for a bad instance 𝑖∗ ∈ {0, 1}𝜆 . Namely, for each instance index 𝑖 ∈ {0, 1}𝜆 ,
algorithm B checks to see if for all𝑤 ∈ {0, 1}𝑚 , it holds that 𝐶′ (𝑖,𝑤) = 0. If so, algorithm B sets 𝑖∗ = 𝑖 . If there
are multiple such indices 𝑖 ∈ {0, 1}𝜆 , algorithm B sets 𝑖∗ to be the smallest index (when interpreting 𝑖 as the

binary representation of a 𝜆-bit integer).

4. Algorithm B samples a PRF key 𝐾 ← PRF.KeyGen(1𝜆1 ) and computes the punctured key 𝐾{(𝐶′, 𝑗)} ←
PRF.Puncture(𝐾, (𝐶′, 𝑗)).

5. Algorithm B receives a challenge 𝑧∗ from the challenger where either 𝑧∗ ← PRG(𝑦) for 𝑦 ← {0, 1}𝜆2 or
𝑧∗ ← {0, 1}2𝜆2 .

6. Algorithm B computes the programs ObfProve ← 𝑖O(1𝜆3 , Prove′′ [𝐾{(𝐶′, 𝑗)}, 𝑖∗, 𝑗,𝐶′, 𝑧∗]) and ObfVerify ←
𝑖O(1𝜆3 ,Verify′′ [𝐾{(𝐶′, 𝑗)}, 𝑖∗, 𝑗,𝐶′, 𝑧∗]). It gives crs = (ObfProve,ObfVerify) to A.

7. Adversary A outputs (𝐶∗, 𝑡, 𝜋). If 𝐶′ ≠ 𝐶∗ or 𝑖∗ > 𝑡 , algorithm B outputs 0.

8. Algorithm B outputs 1 if ObfVerify(𝐶∗, 𝑡, 𝜋) = 1.

If 𝑧∗ ← PRG(𝑦), then algorithm B perfectly simulates an execution of hybridHyb(2)
𝑗

and if 𝑧∗ ← {0, 1}2𝜆2 , it perfectly
simulates an execution of hybrid Hyb(3)

𝑗
. Thus, the advantage of B is exactly

| Pr[Hyb(3)
𝑗
(A) = 1] − Pr[Hyb(2)

𝑗
(A) = 1] | ≤ 𝜀/2𝑠 .

Since algorithm B performs an exhaustive search to find the index 𝑖∗, the running time of B is 2
𝑠 · 𝑠 · poly(𝜆) ≤ 2

𝜆2
𝛽

(for sufficiently large 𝜆2 ∈ ΛB). The claim now follows by (2𝜆𝛽 , 2−𝜆𝛽 ) security: namely, we require that 𝜀/2𝑠 ≤ 2
−𝜆2𝛽 =

2
−𝑠−𝜔 (log𝜆)

(for sufficiently large 𝜆2 ∈ ΛB). □

Claim A.10. Suppose 𝑖O is (2𝜆𝛾 , 2−𝜆𝛾 )-secure. Then, for all 𝑗 ∈ {𝑖∗, . . . , 𝑡}, and all efficient adversaries A, there exists a
negligible function 𝜀 (𝜆) = negl(𝜆) such that for all 𝜆 ∈ N,

| Pr[Hyb𝑗+1 (A) = 1] − Pr[Hyb𝑗 (3) (A) = 1] | ≤ 𝜀/2𝑠 .

Proof. Using the same analysis as in Claim 3.9, with overwhelming probability Prove′′ [𝐾{(𝐶′, 𝑗)}, 𝑖∗, 𝑗,𝐶′, 𝑧∗] and
Prove′ [𝐾, 𝑖∗, 𝑗 + 1,𝐶′] have the same functionality, as do Verify′′ [𝐾{(𝐶′, 𝑗)}, 𝑖∗, 𝑗,𝐶′, 𝑧∗] and Verify′ [𝐾, 𝑖∗, 𝑗 + 1,𝐶′] in
Hyb𝑗+1. From here, we can apply the same reduction as in the proof of Lemma A.5 to show the claim. □

Combining Claims A.7 to A.10, we have that for all 𝑗 ∈ {𝑖∗, . . . , 𝑡 − 1}, there exists a negligible function 𝜀 (𝜆) = negl(𝜆)
such that for all 𝜆 ∈ N, we have that | Pr[Hyb𝑗+1 (A) = 1] − Pr[Hyb𝑗 (A) = 1] | ≤ 𝜀/2𝑠 and Lemma A.6 follows. □
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By construction, in Hyb𝑡 , the program ObfVerify is an obfuscation of the verification program Verify′ [𝐾, 𝑖∗, 𝑡,𝐶′]
which outputs 0 on all inputs of the form (𝐶′, 𝑡, 𝜋) for any 𝜋 ∈ {0, 1}𝜆2 . Correspondingly, for all efficient adversaries

A, it follows that Pr[Hyb𝑡 (A) = 1] = 0. Then combining Lemmas A.5 and A.6, we have that there exists a negligible

function 𝜀 (𝜆) = negl(𝜆) such that Pr[Hyb′
0
(A) = 1] ≤ 𝜀 (𝜆)/2𝑠 . By Lemma A.4, this means that

Pr[Hyb
0
(A) = 1] ≤ 2

𝑠+1 · 𝜀 (𝜆)/2𝑠 = 2 · 𝜀 (𝜆) = negl(𝜆),

and adaptive soundness holds. □

Theorem A.11 (Succinctness). Construction A.1 is succinct (but not fully succinct).

Proof. We consider each property separately:

• Succinct proof size: The size of the proof is the output of PRF, which is a bit-string of length 𝜆2. For soundness

(Theorem A.3), we require that 𝜆2 = (𝑠 + log 𝑠 + 𝜔 (log 𝜆))1/𝛽 , for some constant 𝛽 ∈ (0, 1). Thus, the proof size
is poly(𝜆, 𝑠), which is independent of the number of instances. Thus, Construction A.1 is succinct (but not fully

succinct since the proof size scales with the circuit size 𝑠).

• Succinct verification time: The verification algorithm consists of evaluating ObfVerify on a triple (𝐶, 𝑡, 𝜋).
By construction, ObfVerify is an obfuscation of the verification algorithm Verify[𝐾]. construction, the running
time of Verify[𝐾] is poly(𝜆, 𝑠). Since 𝑖O is efficiency-preserving, the running time of the obfuscated program

ObfVerify is also poly(𝜆, 𝑠), as required. □

Theorem A.12 (Zero Knowledge). Construction A.1 satisfies perfect zero-knowledge.

Proof. Our proof here is identical to the proof of Theorem 4.10 where the simulator invokes the underlying algorithms

under their respective security parameters. □

B BARGs for NP from BARGs for Index Languages
In this section, we show how to upgrade an adaptively-secure index BARG (e.g., Construction A.1) to construct batch

arguments for arbitrary NP languages. Our construction is the direct analog of Construction 4.4 except we need to

rely on somewhere statistically-binding (SSB) hash functions [HW15] in place of the positional accumulators in order

to argue adaptive security. Similar to Construction A.1, our construction critically relies on sub-exponential hardness

of the underlying primitives. We start by recalling the formal definition of an SSB hash function (this is essentially a

generalization of the two-to-one SSB hash functions from Section 5.1):

Definition B.1 (Somewhere Statistically Binding Hash Function [HW15, OPWW15, adapted]). A somewhere statisti-

cally binding (SSB) hash function consists of a tuple of efficient algorithms ΠSSB = (Gen,GenTD,Hash,Open,Verify)
with the following properties:

• Gen(1𝜆, 1ℓ ) → hk: On input the security parameter 𝜆 and the block size ℓ , the hash-key-generator algorithm

outputs a hash key hk.

• GenTD(1𝜆, 1ℓ , 𝑖∗) → hk: On input the security parameter 𝜆, the block size ℓ , and a target index 𝑖∗ ≤ 2
𝜆
, the

trapdoor-generator algorithm outputs a hash key hk.

• Hash(hk, (𝑥1, . . . , 𝑥𝑡 )) → 𝑦: On input a hash key hk and an ordered list of inputs 𝑥1, . . . , 𝑥𝑡 ∈ {0, 1}ℓ , the hash
algorithm outputs a hash value 𝑦.

• Open(hk, (𝑥1, . . . , 𝑥𝑡 ), 𝑖) → 𝜋 : On input a hash key hk, an ordered list of inputs 𝑥1, . . . , 𝑥𝑡 ∈ {0, 1}ℓ , and an

index 𝑖 ∈ [𝑡], the open algorithm outputs an opening 𝜋 .

• Verify(hk, 𝑦, 𝑥, 𝑖, 𝜋) → 𝑏: On input a hash key hk, a hash value 𝑦, an input 𝑥 ∈ {0, 1}ℓ , an index 𝑖 ∈ {0, 1}𝜆 , and
an opening 𝜋 , the verification algorithm outputs a bit 𝑏 ∈ {0, 1}.
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Moreover, ΠSSB should satisfy the following requirements:

• Correctness: For all security parameters 𝜆 ∈ N, block sizes ℓ ∈ N, all 𝑡 ≤ 2
𝜆
, all indices 𝑖 ∈ [𝑡], and all tuples

of inputs 𝑥1, . . . , 𝑥𝑡 ∈ {0, 1}ℓ ,

Pr

Verify(hk, 𝑦, 𝑥𝑖 , 𝑖, 𝜋) = 1 :

hk← Gen(1𝜆, 1ℓ ),
𝑦 ← Hash(hk, (𝑥1, . . . , 𝑥𝑡 )),
𝜋 ← Open(hk, (𝑥1, . . . , 𝑥𝑡 ), 𝑖)

 = 1.

• Succinctness: There exists a universal polynomial poly(·, ·) such that the lengths of the hash values 𝑦 output

by Hash and the lengths of the proofs 𝜋 output byOpen in the completeness experiment satisfy |𝑦 | = poly(𝜆, ℓ),
|𝜋 | = poly(𝜆, ℓ).

• Index hiding: For a security parameter 𝜆, a bit 𝑏 ∈ {0, 1}, and an adversary A, we define the index-hiding

experiment as follows:

– Algorithm A starts by choosing an input length ℓ and an index 𝑖 ≤ 2
𝜆
.

– If 𝑏 = 0, the challenger samples hk0 ← Gen(1𝜆, 1ℓ ). Otherwise, if 𝑏 = 1, the challenger samples

hk1 ← GenTD(1𝜆, 1ℓ , 𝑖). It gives hk𝑏 to A.

– Algorithm A outputs a bit 𝑏′ ∈ {0, 1}, which is the output of the experiment.

We say that ΠSSB satisfies (𝜏, 𝜀)-index hiding, if for all adversaries running in time 𝜏 = 𝜏 (𝜆), there exists 𝜆A ∈ N
such that for all 𝜆 > 𝜆A

| Pr[𝑏′ = 1 | 𝑏 = 0] − Pr[𝑏′ = 1 | 𝑏 = 1] | ≤ 𝜀 (𝜆).

in the index-hiding experiment.

• Somewhere statistically binding: We say that a hash key hk is statistically binding at index 𝑖 if for all 𝑦, 𝜋, 𝜋∗,
there does not exist inputs 𝑥, 𝑥∗ ∈ {0, 1}ℓ where 𝑥 ≠ 𝑥∗ and Verify(hk, 𝑦, 𝑥, 𝑖, 𝜋) = 1 = Verify(hk, 𝑦, 𝑥∗, 𝑖, 𝜋∗).
We say that the hash function is statistically binding if for all block sizes ℓ = poly(𝜆) , there exists a negligible
function negl(·) such that for all 𝜆 ∈ N

Pr[hk is statistically binding at index 𝑖 : hk← GenTD(1𝜆, 1ℓ , 𝑖)] ≥ 1 − negl(𝜆).

TheoremB.2 (Somewhere Statistically BindingHash Functions [HW15, OPWW15]). Under standard number-theoretic
assumptions (e.g., DDH, DCR, LWE, or 𝜙-Hiding), there exists an SSB hash function for arbitrary polynomial input lengths
ℓ = ℓ (𝜆).

Remark B.3 (Hashing Variable Number of Inputs). In [HW15, OPWW15], the generator algorithms Gen,GenTD for

the SSB hash function also take as input the number of inputs 𝑇 (in binary); correspondingly, the hashing algorithm

always takes𝑇 inputs 𝑥1, . . . , 𝑥𝑇 as input. In our setting, we allow the hash function to support an arbitrary number of

inputs 𝑡 ≤ 2
𝜆
.
13

We can construct an SSB hash function that supports a variable number of inputs (with a maximum

of 2
𝜆
inputs) with poly(𝜆) overhead using a standard “powers-of-two” construction:

• First, we define the hash key to be a tuple of 𝜆 hash keys hk = (hk1, . . . , hk𝜆), where the 𝑖th hash key hk𝜆 is for

an SSB scheme on exactly 2
𝑖
inputs.

• To hash an input (𝑥1, . . . , 𝑥𝑡 ) where 𝑡 ≤ 2
𝜆
, the hashing algorithm first pads (𝑥1, . . . , 𝑥𝑡 ,⊥, . . . ,⊥) to a tuple of

length 2
𝑖
where 𝑖 is the smallest integer where 𝑡 ≤ 2

𝑖
. It then hashes the padded input with hk𝑖 to obtain the

hash value 𝑦′. The overall hash value is the pair 𝑦 = (𝑡, 𝑦′).

Observe that this construction still supports efficient hashing (padding to the next power of two only incurs constant

overhead). Including the input length as part of the hash output preserves the somewhere statistical binding property.

13
Note that padding the input to𝑇 = 2

𝜆
would render the hashing algorithm inefficient (when invoked on poly(𝜆)-length inputs).
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Construction B.4 (Adaptively-Sound Batch Argument forNP Languages). Let 𝜆 be a security parameter and 𝑠 = 𝑠 (𝜆)
be a bound on the size of the Boolean circuit. We construct a BARG scheme that supports arbitrary NP languages

with up to 𝑇 = 2
𝜆
instances (i.e., which suffices to support an arbitrary polynomial number of instances) and Boolean

circuits of size at most 𝑠 . For ease of notation, we use the set [2𝜆] and the set {0, 1}𝜆 interchangably in the following

description. Our construction relies on the following primitives:

• Let ΠSSB = (SSB.Gen, SSB.GenTD, SSB.Hash, SSB.Open, SSB.Verify) be an somewhere statistically binding

hashing function.

• Let ΠIndexBARG = (IndexBARG.Gen, IndexBARG.P, IndexBARG.V) be a BARG for Index languages that supports

unbounded statements.
14

We define our batch argument ΠBARG = (Gen, P,V) for batch circuit satisfiability as follows:

• Gen(1𝜆, 1ℓ , 1𝑠 ): On input the security parameter 𝜆, the statement length ℓ , and a bound on the circuit size 𝑠 ,

sample hk← SSB.Gen(1𝜆′ , 1ℓ ) where 𝜆′ is set according to TheoremB.6. Let 𝑠′ be the size of the following circuit:

Constants: Hash key hk for ΠSSB, hash value ℎ for ΠSSB, Boolean circuit 𝐶 of size at most 𝑠

Inputs: Index 𝑖 ∈ {0, 1}𝜆 , a tuple (𝑥, 𝜎,𝑤) where 𝑥 ∈ {0, 1}ℓ

1. If 𝐶 (𝑥,𝑤) = 0, output 0.

2. If SSB.Verify(hk, ℎ, 𝑥, 𝑖, 𝜎) = 0, output 0.

3. Otherwise, output 1.

Figure 15: The Boolean circuit 𝐶′ [hk, ℎ,𝐶] for an index relation

Then, sample IndexBARG.crs← IndexBARG.Gen(1𝜆, 1𝑠′ ). Output crs = (hk, IndexBARG.crs).

• P(crs,𝐶, (𝑥1, . . . , 𝑥𝑡 ), (𝑤1, . . . ,𝑤𝑡 )): On input crs = (hk, IndexBARG.crs), a Boolean circuit𝐶 : {0, 1}ℓ×{0, 1}𝑚 →
{0, 1}, statements 𝑥1, . . . , 𝑥𝑡 ∈ {0, 1}ℓ , and witnesses 𝑤1, . . . ,𝑤𝑡 ∈ {0, 1}𝑚 , the prove algorithm starts by

computing a hash ℎ ← SSB.Hash(hk, (𝑥1, . . . , 𝑥𝑡 )). Then, for each all 𝑖 ∈ [𝑡], let 𝑤 ′𝑖 = (𝑥𝑖 , 𝜎𝑖 ,𝑤𝑖 ) where
𝜎𝑖 ← SSB.Open(hk, (𝑥1, . . . , 𝑥𝑡 ), 𝑖). Output the proof 𝜋 ← IndexBARG.P(IndexBARG.crs,𝐶′, 𝑡, (𝑤 ′

1
, . . . ,𝑤 ′𝑡 ))

where 𝐶′ [hk, ℎ,𝐶] is the circuit for the index relation from Fig. 15.

• V(crs,𝐶, (𝑥1, . . . , 𝑥𝑡 ), 𝜋): On input crs = (hk, IndexBARG.crs), a Boolean circuit 𝐶 : {0, 1}ℓ × {0, 1}𝑚 → {0, 1},
statements 𝑥1, . . . , 𝑥𝑡 ∈ {0, 1}ℓ , and a proof 𝜋 , the verification algorithm starts by computing the hash ℎ ←
SSB.Hash(hk, (𝑥1, . . . , 𝑥𝑡 )). It then outputs IndexBARG.V(IndexBARG.crs,𝐶′, 𝑡, 𝜋) where 𝐶′ [hk, ℎ,𝐶] is the
circuit for the index relation from Fig. 15.

Theorem B.5 (Completeness). If ΠIndexBARG scheme is complete and ΠSSB scheme is correct, then Construction B.4 is
complete.

Proof. Take any security parameter 𝜆 ∈ N, circuit size bound 𝑠 ∈ N, input length ℓ ∈ N, Boolean circuit 𝐶 : {0, 1}ℓ ×
{0, 1}𝑚 → {0, 1} with size at most 𝑠 , and any instance number 𝑡 ≤ 2

𝜆
. Let 𝑥1, . . . , 𝑥𝑡 ∈ {0, 1}ℓ be a collection

of statements and 𝑤1, . . . ,𝑤𝑡 be a collection of corresponding witnesses such that 𝐶 (𝑥𝑖 ,𝑤𝑖 ) = 1 for all 𝑖 ∈ [𝑡].
Suppose crs = (hk, IndexBARG.crs) ← Gen(1𝜆, 1ℓ , 1𝑠 ) and 𝜋 ← Prove(crs,𝐶, (𝑥1, . . . , 𝑥𝑡 ), (𝑤1, . . . ,𝑤𝑡 )). Let 𝜎𝑖 ←
SSB.Open(hk, (𝑥1, . . . , 𝑥𝑡 ), 𝑖) be the openings computed by the prove algorithm. Since SSB is correct, for every

𝑖 ∈ [𝑡], SSB.Verify(hk, ℎ, 𝑥, 𝑖, 𝜎𝑖 ) = 1, and correspondingly, for every 𝑖 ∈ [𝑡], 𝐶′ (𝑖, (𝑥𝑖 , 𝜎𝑖 ,𝑤𝑖 )) = 1, where 𝐶′ (·) =
𝐶′ [hk, ℎ,𝐶] (·) is the circuit from Fig. 15. Completeness now follows from completeness of the underlying BARG for

index languages. □

Theorem B.6. Suppose ΠIndexBARG satisfies adaptive soundness. Moreover, suppose there exists a constant 𝛿 ∈ (0, 1) and
a negligible function negl(·) such that ΠSSB satisfies (2𝜆𝛿 , negl(𝜆))-index hiding. Let 𝜆′ = (𝑠 +𝜔 (log 𝜆))1/𝛿 , where 𝑠 is a
bound on the circuit size. Then Construction B.4 satisfies adaptive soundness.
14
Our transformation also applies in the setting where the number of instances is bounded. In this case, the transformed scheme inherits the same

bound. For simplicity of exposition, we just describe the transformation for the unbounded case.
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Proof. We start by defining a series of hybrid experiments. Let 𝑞 = 𝑞(𝜆) be a polynomial that upper bounds the

number of instances an adversary outputs (or equivalently, the running time of the adversary).

• Hyb
0
: This is the adaptive soundness experiment.

– Adversary A starts by outputting the maximum circuit size 1
𝑠 (𝜆)

, and a statement length 1
ℓ (𝜆)

.

– The challenger responds with crs← Gen(1𝜆, 1ℓ , 1𝑠 ).
– AdversaryA outputs (𝐶∗, (𝑥∗

1
, . . . , 𝑥∗𝑡 ), 𝜋∗) where𝐶∗ is a Boolean circuit of size atmost 𝑠 (𝜆) and𝑥∗𝑖 ∈ {0, 1}ℓ

for all 𝑖 ∈ [𝑡].
– The output of the experiment is 1 if V(crs,𝐶∗, (𝑥∗

1
, . . . , 𝑥∗𝑡 ), 𝜋∗) = 1 and there exists 𝑖 ≤ 𝑡 where for all

𝑤 ∈ {0, 1}∗, 𝐶∗ (𝑥∗𝑖 ,𝑤) = 0. Otherwise, the challenger outputs 0.

• Hyb
1
: Same as Hyb

0
, except at the beginning of the security experiment, the challenger samples a random

index 𝑖∗ ∈ [𝑞]. After the adversary outputs (𝐶∗, (𝑥∗
1
, . . . , 𝑥∗𝑡 ), 𝜋∗), the challenger outputs 0 if either 𝑖∗ > 𝑡 or

there exists a witness𝑤 ∈ {0, 1}∗ such that 𝐶∗ (𝑥∗
𝑖∗ ,𝑤) = 1.

• Hyb
2
: Same as Hyb

1
except the challenger samples hk← SSB.GenTD(1𝜆, 1ℓ , 𝑖∗).

For an adversaryA, we write Hyb𝑖 (A) to denote the output distribution of an execution of Hyb𝑖 (A) with adversary

A. We now show that each pair of adjacent distributions are indistinguishable.

Lemma B.7. For every adversary A and for all 𝜆 ∈ N, Pr[Hyb
0
(A) = 1] ≤ 𝑞 · Pr[Hyb

1
(A) = 1].

Proof. If Hyb
0
outputs 1, then there is at least one index 𝑖 ≤ 𝑡 such that for all witnesses𝑤 ∈ {0, 1}∗, 𝐶∗ (𝑥𝑖 ,𝑤) = 0.

Since 𝑖∗ is uniform and independent of the view of the adversary (and thus, of the index 𝑖) and 𝑞 ≥ 𝑡 , with probability

at least 1/𝑞, it will be the case that 𝑖 = 𝑖∗. In this case, the output in Hyb
1
is identical to the output in Hyb

0
. Thus

Pr[Hyb
1
(A) = 1] ≥ 1/𝑞 · Pr[Hyb

0
(A) = 1] and the claim holds. □

Lemma B.8. Suppose there exist a constant 𝛿 ∈ (0, 1) and a negligible function 𝜀 (𝜆) = negl(𝜆) such that ΠSSB satisfies
(2𝜆𝛿 , 𝜀 (𝜆))-index hiding. Suppose also that 𝜆′ = (𝑠 + log 𝑠 + 𝜔 (log 𝜆))1/𝛿 , where 𝑠 is a bound on the size of the Boolean
circuit for the NP relation. Then for every efficient adversaryA, there exists a negligible function negl(·) such that for all
𝜆 ∈ N,

| Pr[Hyb
2
(A) = 1] − Pr[Hyb

1
(A) = 1] | ≤ negl(𝜆).

Proof. By construction, Hyb
1
only outputs 1 if for all witnesses𝑤 ∈ {0, 1}∗, 𝐶∗ (𝑥∗

𝑖∗ ,𝑤) = 0 and the adversary outputs

𝜋∗ such that V(crs,𝐶∗, (𝑥∗
1
, . . . , 𝑥∗𝑡 ), 𝜋∗) = 1. This is also the case in Hyb

2
, except the hash key is now sampled to be

binding on index 𝑖∗. Suppose if there exists a poly(𝜆)-time algorithm A where for for some non-negligible 𝜀′ = 𝜀′ (𝜆),
there exists an infinite set ΛA ⊆ N, such that for all 𝜆 ∈ ΛA , | Pr[Hyb2 (A) = 1] − Pr[Hyb

1
(A) = 1] | = 𝜀′. Then

there exists a 2
𝜆′𝛿

-time algorithm B that breaks index hiding. We note that while the adversary A runs on security

parameter 𝜆, the reduction will run on security parameter 𝜆′ = 𝜆′ (𝜆, 𝑠). The formal details are mentioned below.

Let 𝑠𝜆 be the deterministic value of the circuit output by A when run on security parameter 𝜆 ∈ N. Let

ΛB =

{
⌈(𝑠𝜆 + log(𝑠𝜆) + 𝜔 (log 𝜆))1/𝛿 ⌉ : 𝜆 ∈ ΛA

}
. Since ΛA is an infinite set, and the function 𝜔 (log 𝜆) is monotone

for sufficiently-large lambda, and 𝑠 is non-negative, ΛB is also infinite. For each value 𝜆′ ∈ ΛB , algorithm B is also

provided the smallest value of 𝜆 ∈ ΛA where 𝜆′ = ⌈(𝑠𝜆 + log(𝑠𝜆) + 𝜔 (log 𝜆))1/𝛿 ⌉ as non-uniform advice.

1. On input the security parameter 1
𝜆′
and the associated advice string 1

𝜆
, algorithm B starts running algorithm

A on 1
𝜆
(which outputs the bound on the circuit size 1

𝑠𝜆
and the bound on the statement size 1

ℓ𝜆
). In the

following, we write 𝑠 = 𝑠𝜆 and ℓ = ℓ𝜆 .

2. Algorithm B samples a random index 𝑖∗ r← [𝑞] and gives 1
ℓ
and 𝑖∗ to the index hiding challenger.

3. Algorithm B receives a hash key hk where either hk← Gen(1𝜆′ , 1ℓ ) or hk← GenTD(1𝜆′ , 1ℓ , 𝑖∗).

4. Algorithm B samples IndexBARG.crs← IndexBARG.Gen(1𝜆, 1𝑠′ ) and gives crs = (hk, IndexBARG.crs) to A.
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5. Adversary A outputs (𝐶∗, (𝑥∗
1
, . . . , 𝑥∗𝑡 ), 𝜋∗) where 𝐶∗ is of size at most 𝑠 (𝜆) and for every 𝑖 ∈ [𝑡], 𝑥∗𝑖 ∈ {0, 1}ℓ .

6. Algorithm B outputs 1 if V(crs,𝐶∗, (𝑥∗
1
, . . . , 𝑥∗𝑡 ), 𝜋∗) = 1 and for all 𝑤 ∈ {0, 1}∗, 𝐶∗ (𝑥∗

𝑖∗ ,𝑤) = 0. Otherwise, it

outputs 0.

If A runs in poly(𝜆) time, then B runs in time at most 2
𝑠 · 𝑠 · poly(𝜆) ≤ 2

𝑠+log 𝑠+𝜔 (log𝜆) = 2
(𝜆′ )𝛿

(for sufficiently large

𝜆′ ∈ ΛB) since B needs to exhaustively check whether there exists a witness𝑤 where𝐶∗ (𝑥∗
𝑖∗ ,𝑤) = 1, and there can be

at most 2
𝑠
candidate values for𝑤 (checking each candidate requires time at most 𝑠). Next, if hk← Gen(1𝜆′ , 1ℓ ), then

B perfectly simulates Hyb
1
. If hk← GenTD(1𝜆′ , 1ℓ , 𝑖∗), then B perfectly simulates Hyb

2
. Thus, the distinguishing

advantage of B is

| Pr[Hyb
2
(A) = 1] − Pr[Hyb

1
(A) = 1] | = 𝜀′ .

Since algorithm B runs in time 2
(𝜆′ )𝛿

and ΠSSB satisfies (2𝜆𝛿 , 𝜀 (𝜆))-index hiding, it must be the case that 𝜀′ (𝜆) ≤
𝜀 (𝜆′) = negl(𝜆′) = negl(𝜆) (for sufficiently large 𝜆′ ∈ ΛB), and the claim holds. □

Lemma B.9. Suppose ΠIndexBARG is adaptively sound and ΠSSB is statistically binding. Then for all efficient adversaries
A, there exists a negligible function negl(·) such that for all 𝜆 ∈ N, Pr[Hyb

2
(A) = 1] = negl(𝜆).

Proof. Suppose there exists an efficient adversary A such that Pr[Hyb
2
(A) = 1] = 𝜀 for some non-negligible 𝜀. We

use A to construct an adversary B to break adaptive soundness of ΠIndexBARG.

1. Algorithm B starts running adversary A. Algorithm A starts by outputting the maximum circuit size 1
𝑠
and

the statement lengths 1
ℓ
.

2. Algorithm B outputs the maximum circuit size 1
𝑠′
where 𝑠′ is an upper bound on the circuit size for𝐶′ [hk, ℎ,𝐶],

where 𝐶′ is the circuit for the index relation from Fig. 15 and the circuit 𝐶 has size at most 𝑠 .

3. Algorithm B receives a common reference string IndexBARG.crs from the challenger. It randomly samples an

index 𝑖∗ r← [𝑞], computes hk← SSB.GenTD(1𝜆′ , 1ℓ , 𝑖∗), and gives crs = (hk, IndexBARG.crs) to A.

4. Adversary A outputs (𝐶∗, (𝑥∗
1
, . . . , 𝑥∗𝑡 ), 𝜋∗). Algorithm B computes ℎ∗ ← SSB.Hash(hk, (𝑥∗

1
, . . . , 𝑥∗𝑡 )) and

outputs the circuit 𝐶′ [hk, ℎ∗,𝐶∗] as its challenge circuit and 𝜋∗ as the proof.

By construction, algorithm B perfectly simulates an execution of Hyb
2
for A. Thus, with probability at least 𝜀, the

output of Hyb
2
is 1. This means the following conditions hold with probability at least 𝜀:

• The index 𝑖∗ satisfies 𝑖∗ ≤ 𝑡 .

• For all witnesses𝑤 ∈ {0, 1}∗, it holds that 𝐶∗ (𝑥∗
𝑖∗ ,𝑤) = 0.

• The proof 𝜋∗ is a valid proof for the index relation 𝐶′ [hk, ℎ∗,𝐶∗]. Specifically,

IndexBARG.V(IndexBARG.crs,𝐶′ [hk, ℎ∗,𝐶∗], 𝑡, 𝜋∗) = 1.

We now argue that 𝐶′ [hk, ℎ∗,𝐶∗] (𝑖∗,𝑤 ′
𝑖∗ ) = 0 for all inputs 𝑤 ′

𝑖∗ . First write 𝑤
′
𝑖∗ = (𝑥 ′, 𝜎 ′,𝑤 ′). We consider two

possibilities:

• Suppose 𝑥 ′ = 𝑥∗
𝑖∗ . Since 𝐶

∗ (𝑥∗
𝑖∗ ,𝑤

′) = 0 for every choice of𝑤 ′, we conclude that 𝐶′ [hk, ℎ∗,𝐶∗] (𝑖∗,𝑤 ′
𝑖∗ ) = 0.

• Suppose 𝑥 ′ ≠ 𝑥∗
𝑖∗ . Since the hash key hk is sampled to bind on index 𝑖∗, with all but negligible probability

over the choice of hk, the only value of 𝑥 ′ for which there exists 𝜎 ′ such that SSB.Verify(hk, ℎ∗, 𝑥 ′, 𝑖, 𝜎 ′) = 1 is

𝑥 ′ = 𝑥∗
𝑖∗ . Thus, with overwhelming probability over the choice of hk, SSB.Verify(hk, ℎ∗, 𝑥 ′, 𝑖∗, 𝜎 ′) = 0 in this

case. Once again, 𝐶′ [hk, ℎ∗,𝐶∗] (𝑖∗,𝑤 ′
𝑖∗ ) = 0.

Thus, we conclude that with overwhelming probability over the choice of hk, 𝐶 [hk, ℎ∗,𝐶∗]′ (𝑖∗,𝑤 ′
𝑖∗ ) = 0 for all

𝑤 ′
𝑖∗ ∈ {0, 1}∗. Since 𝑖∗ ≤ 𝑡 , if 𝜋∗ is a valid proof on (𝐶′ [hk, ℎ∗,𝐶∗], 𝑡), then algorithm B breaks adaptive soundness of

ΠIndexBARG with probability 𝜀 − negl(𝜆). □
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Combining Lemmas B.7 to B.9, we have that for all efficient adversaries A, there exists a negligible function

𝜀 (𝜆) = negl(𝜆) such that Pr[Hyb
0
(A) = 1] ≤ 𝑞(𝜆) · 𝜀 (𝜆). Since A is efficient, 𝑞(𝜆) = poly(𝜆), and the claim

holds. □

Theorem B.10 (Succinctness). If ΠIndexBARG scheme is succinct and ΠSSB is succinct, then Construction B.4 has succinct
proofs (but not succinct verification).

Proof. Let ℓ be the statement length and 𝑠 be the size of the Boolean circuit for the underlying NP relation. The

proof 𝜋 in Construction B.4 is a proof for ΠIndexBARG on the new circuit 𝐶′ [hk, ℎ,𝐶]. First, the size of the hash key hk
satisfies |hk| = poly(𝜆′, ℓ) and 𝜆′ = poly(𝜆, 𝑠). We can always bound the input length by the circuit size so overall, we

can write |hk| = poly(𝜆, 𝑠). Next, succinctness of ΠSSB requires that the length of a hash output ℎ and of an opening 𝜎

to satisfy |ℎ |, |𝜎 | = poly(𝜆′, ℓ) = poly(𝜆, 𝑠). As such, the size of the circuit 𝐶′ [hk, ℎ,𝐶] is at most poly(𝜆, 𝑠). The claim
now follows by succinctness of ΠIndexBARG. □

Remark B.11 (Non-Succinct Verification). We note that due to complexity leveraging, Construction B.4 does not

have succinct verification time. Namely, verifying 𝑡 instances of a Boolean circuit of size 𝑠 requires time poly(𝜆, 𝑠, 𝑡).
The reason is that the size of the hash key |hk| = poly(𝜆′, ℓ) = poly(𝜆, 𝑠), where ℓ is the length of the statement and

𝜆′ = poly(𝜆, 𝑠). As such, computing ℎ ← SSB.Hash(hk, (𝑥1, . . . , 𝑥𝑡 )) requires time poly(𝜆, 𝑠, 𝑡).
Note that if we have an a priori bound𝑚 on the length of the witness in the underlying NP relation, we could

use a slightly tighter analysis in the proofs of Theorem B.6 and Lemma B.8 by considering reductions that run in

time 2
𝑚+log 𝑠+𝜔 (log𝜆)

. Specifically, the reduction algorithm in the proof of Lemma B.8 only needs to exhaustively

search over all candidate witnesses, which requires time 2
𝑚 · 𝑠 . In this case, we can set 𝜆′ = 𝑚 + log 𝑠 + 𝜔 (log 𝜆)

in Construction B.4. This would yield a BARG for NP where the verification time is poly(𝜆,𝑚, 𝑡, log 𝑠). This yields
a modest saving over the naïve verification procedure in settings where the witness size is much smaller than the

circuit size.

Theorem B.12 (Zero Knowledge). If ΠIndexBARG satisfies perfect zero-knowledge, then Construction B.4 satisfies perfect
zero-knowledge.

Proof. Let IndexBARG.S be a simulator for ΠIndexBARG. We construct a simulator for ΠBARG as follows. On input the

security parameter 𝜆, a bound 𝑠 on the circuit size, a Boolean circuit 𝐶 : {0, 1}ℓ × {0, 1}𝑚 → {0, 1}, and instances

𝑥1, . . . , 𝑥𝑡 ∈ {0, 1}ℓ , the simulator proceeds as follows:

• Sample hk← SSB.Gen(1𝜆′ , 1ℓ ), and compute ℎ ← SSB.Hash(hk, (𝑥1, . . . , 𝑥𝑡 )).

• Let 𝐶′ = 𝐶′ [hk, ℎ,𝐶] be the circuit from Fig. 15 and let 𝑠′ be a bound on the size of 𝐶′. Compute the simulated

CRS and proof (IndexBARG.crs, 𝜋) ← IndexBARG.S(1𝜆, 1𝑠′ ,𝐶′, 𝑡).

• Output the simulated CRS crs = (hk, IndexBARG.crs) and the simulated proof 𝜋 .

By construction, the hash function parameters hk and the circuit 𝐶′ = 𝐶′ [hk, ℎ, 𝑠] are constructed exactly as in the

real scheme. Perfect zero knowledge now follows from perfect zero knowledge of ΠIndexBARG. □

Remark B.13 (Weaker Notions of Zero Knowledge). We note that Remark 4.11 also applies to Construction B.4.

Namely, if ΠIndexBARG satisfies computational (resp., statistical) zero-knowledge, then Construction B.4 also satisfies

computational (resp., statistical) zero-knowledge.
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