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Abstract—EDHOC is a lightweight authenticated key ex-
change protocol for IoT communication, currently being
standardized by the IETF. Its design is a trimmed-down
version of similar protocols like TLS 1.3, building on the
SIGn-then-MAc (SIGMA) rationale. In its trimming, how-
ever, EDHOC notably deviates from the SIGMA design by
sending only short, non-unique credential identifiers, and
letting recipients perform trial verification to determine the
correct communication partner. Done naively, this can lead
to identity misbinding attacks when an attacker can control
some of the user keys, invalidating the original SIGMA
security analysis and contesting the security of EDHOC.

In this work, we formalize a multi-stage key exchange
security model capturing the potential attack vectors intro-
duced by non-unique credential identifiers. We show that
EDHOC, in its draft version 17, indeed achieves session
key security and user authentication even in a strong model
where the adversary can register malicious keys with col-
liding identifiers, given that the employed signature scheme
provides so-called exclusive ownership. Through our security
result, we confirm cryptographic improvements integrated
by the IETF working group in recent draft versions of
EDHOC based on recommendations from our and others’
analysis.

1. Introduction

Low-powered devices such as smart appliances, col-
loquially referred to as “Internet of Things” (IoT), are
becoming increasingly ubiquitous in many public spaces
and private homes [1]. Besides their computational lim-
itations, IoT devices often operate in environments with
stringent network constraints such as LoRaWAN [45].

The proliferation of IoT enables numerous fascinating
applications and a certain level of convenience, but also
brings its share of challenges. Security considerations are
often out of the picture due to said restrictions of IoT
applications, leading to the famous saying “the ’S’ in IoT
stands for security”. Examples include applications trans-
ferring sensitive data over an insecure channel or firmware
updates over insecure channels allowing for injection of
arbitrary code. To illustrate a few, [37] demonstrates how
a network attacker can defeat smart locks to gain unautho-
rized access to households, [3] exploits a vulnerability in
baby monitoring cameras that gives an attacker access into
the privacy of children, [2] demonstrates how a network
attacker can exploit insecure smart fridges to get access

to their owners’ Google accounts, and [18] shows how a
malicious entity may interfere with highly intimate details
of lovers. If compromised, the ubiquity of IoT devices
gives attackers access to sensitive networks, compounding
the initial low-cost compromise of the devices.

Designing a secure communication protocol for con-
strained environments comes with two main challenges:
First, low-powered devices support only a limited set
of cryptographic primitives. Second, IoT security pro-
tocols must incur only minimal bandwidth, round-trip
time, and power consumption overhead to fit the network
constraints. The Internet Engineering Task Force (IETF)
set out to standardize protocols and efficient communi-
cation data formats for constrained devices. Of particular
relevance are: the Concise Binary Object Representation
(CBOR) data format (RFC 8949 [12]) for extremely small
message formats; the CBOR Object Signing and Encryp-
tion (COSE) protocol (RFC 9052 [53]) defining basic
security services like signing, MACing, and encryption
for CBOR-serialized data; and the Object Security for
Constrained RESTful Environments (OSCORE) protocol
(RFC 8613 [54]) for end-to-end application data encryp-
tion based on CBOR and COSE. To protect application
data, OSCORE requires that protocol participants have
established a so-called “security context”, effectively a
cryptographic session key. An essential missing piece
in this technological chain is hence a lightweight and
secure key exchange protocol establishing these session
keys. To close this gap, the IETF Lightweight Authenti-
cated Key Exchange (LAKE) working group was char-
tered to standardize such a key exchange protocol. It
leads the development of this standard under the name
EDHOC (“Ephemeral Diffie–Hellman Over COSE”) [55].
The working group has invited (and received) formal and
computational security analysis of EDHOC [56]; at the
time of this submission, the EDHOC draft standard is in
“Working Group Last Call” for final comments.

WHY NOT TLS 1.3? One might ask why a dedicated
key exchange protocol is needed for the LAKE setting.
After all, the IETF has already standardized several well-
established key exchange protocols. One of the most
prominent examples is the Transport Layer Security (TLS)
protocol; its latest version TLS 1.3 [51] has seen sub-
stantial security analysis before and after standardiza-
tion (e.g., [9], [10], [25], [28], [30], [31]). Additionally,
TLS 1.3 is efficient, widely adopted, and supported by
several highly optimized and interoperable implementa-



tions [44]. EDHOC and the TLS 1.3 key exchange (“hand-
shake”) even share a common design, inspired by the
“SIGn-and-MAc” (SIGMA) protocol family proposed by
Krawczyk [19], [42], also underlying the Internet Key
Exchange (IKE) protocol [39]. Lastly, both protocols draw
from an overlapping range of cryptographic primitives for
Diffie–Hellman (X25519), signatures (Ed25519, ECDSA),
key derivation (HMAC, HKDF), and authenticated en-
cryption (AES-GCM, AES-CCM, Chacha20/Poly1305).

Naturally, one may wonder: why re-invent a new
key exchange protocol and not simply use TLS 1.3 in
EDHOC? The answer lies again in the constraint envi-
ronment: comparing the bandwidth overhead of TLS and
Datagram TLS (DTLS) with EDHOC, Mattsson et al. [46]
show that EDHOC, with a minimum total bandwidth
usage as low as 101 bytes [55, Section 1.2], outperforms
both TLS 1.3 and DTLS 1.3 by a factor up to 6. Notably,
EDHOC specifies four different modes (SIG-SIG, SIG-
STAT, STAT-SIG, STAT-STAT) with differing bandwidth
characteristics; these modes result from the initiator and
responder individually choosing whether they want to
authenticate using signature keys (SIG) or static Diffie–
Hellman keys (STAT). In this work, we focus on the SIG-
SIG mode, which most closely follows the SIGMA design.

EDHOC achieves its low bandwidth usage through
aggressive savings. Beyond message format optimizations,
these in particular include the following two cryptograph-
ically interesting changes:

• MAC-THEN-SIGN. In the classical SIGn-then-
MAc approach [42] employed by TLS 1.3, parties
send a signature and then a MAC to authenti-
cate. EDHOC instead uses a bandwidth-optimized
“MAc-then-SIGn” variant (discussed in [42] and
also used in IKE [39]), where the MAC is com-
puted first and not sent explicitly (thereby saving
bandwidth), but instead put under the signature.

• ABBREVIATED IDENTIFIERS. Usually, parties
identify themselves by sending a certificate (e.g.,
X.509 certificates in TLS) or similar as a means
for the communicating peer to unambiguously de-
termine who they are supposedly talking to and
should authenticate. By contrast, EDHOC assumes
parties may already hold those certificates locally
and sends only short so-called credential iden-
tifiers instead of the full credentials. Crucially,
these credential identifiers need not be unique:
recipients might associate multiple identities with
one identifier and need to check—e.g., by trial
signature verification—which is the right one.

It turns out that the combination of these two savings
changes, if one is not being especially careful, has the
potential to introduce new attack vectors.

ALL GOOD WITH MAC-THEN-SIGN? To understand
what could go wrong with the tweaks EDHOC introduces,
let us recap the SIGMA design and its MAc-then-SIGn
variant in a bit more detail. SIGMA, and EDHOC in SIG-
SIG mode, build upon a classic, unauthenticated Diffie–
Hellman (DH) protocol and then have peers authenticate
through signatures under their long-term signing keys and
MACs derived from the shared DH key. In the MAc-then-
SIGn variant, the authenticating party P computes the

MAC tag τ to cover P , then computes the signature σ
over the exchanged DH shares and τ , and finally sends σ
but not τ . The latter is to save bandwidth, leveraging
that τ can be recomputed locally by the receiving party.
Within the original SIGMA analysis paper by Canetti and
Krawczyk [19], this variant of SIGMA was analyzed as
secure in a computational key exchange model building
on the classical Bellare–Rogaway model [6].

EDHOC, however, deviates in one noticeable aspect
from SIGMA: while user identities are assumed to be
unique in the analysis of the latter, EDHOC sends only
non-unique credential identifiers. This means that a re-
ceiver of the signature σ above needs to trial-verify σ
under possibly multiple public keys matching the sent cre-
dential identifier. Such trial verification can be problematic
when adversarially-controlled public keys are among the
potential matching ones. Indeed, this is precisely the attack
recipe for so-called “duplicate-signature key selection”
(DSKS) or “exclusive ownership” attacks [11], [41], [47],
[50], where an adversary creates a public key under which
an (honestly generated) message-signature pair verifies. In
the EDHOC setting, such an attack may translate to the
adversary fooling the recipient of a signature to assume
it originated from a different signer that happens to have
a colliding credential identifier, which would violate the
correct authentication of entities by the protocol.

To properly capture such attacks, we hence ought to
study EDHOC in a model that allows the adversary to (1)
register its own (potentially maliciously generated) signa-
ture keys—an approach similar to the ASICS model [13]
incorporating real-world certification— and (2) control the
potentially colliding credential identifiers to capture their
ambiguity. Worryingly, such a stronger model invalidates
the original MAc-then-SIGn analysis in [19]—indeed,
there is a trivial identity misbinding attack: the attacker
can register a degenerate key that makes one side of
the communication accept with the wrong peer identifier,
but the same session key, violating security. The question
hence is: what does this mean for EDHOC?

1.1. Contributions

In this work, we perform a computational cryp-
tographic analysis of EDHOC’s SIG-SIG mode with
signature-based authentication. We confirm that, with a
couple of recently introduced cryptographic improvements
prompted by our and others’ analysis, the protocol in
draft version 17 [55] achieves security even in a strong
model where the adversary can register malicious keys
with colliding identifiers. In more detail, our contributions
are as follows.

CRYPTOGRAPHIC CORE OF EDHOC SIG-SIG. With
no prior computational analysis, our first step is to extract
the core cryptographic operations of the EDHOC SIG-SIG
mode (in draft 17 [55]), which we describe in Section 3.
Focusing on the SIG-SIG mode and a defined set of algo-
rithms, we abstract away mode and algorithm negotiation,
but consider detailed computation and key derivation steps
and carefully capture EDHOC’s non-unique credential
identifiers and the “trial verification” they require in the
protocol execution.
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STRONG KEY EXCHANGE SECURITY MODEL. For our
computational analysis, we base the security definition on
the well-established Bellare–Rogaway model [6], captur-
ing strong person-in-the-middle attacks where adversaries
are allowed to compromise parties and established session
keys. We incorporate a generalization of this model to
capture multi-stage key exchange (MSKE) security [32],
[33], enabling a fine-grained analysis of the several keys
derived in EDHOC (the final session key as well as
intermediate keys for earlier data encryption). To capture
the effects of EDHOC’s shortened and non-unique creden-
tial identifiers discussed above, we ultimately extend the
security model to allow adversaries to register malicious
signing keys (akin to [13]) and specify the (potentially
colliding) credential identifiers to be used in EDHOC. The
result is a strong security model, given in Section 4, which
asks for secure keys and entity authentication even in the
presence of maliciously controlled keys whose identifiers
may collide with keys of honest users. To avoid ambiguity,
we fully specify our model in pseudocode.

COMPUTATIONAL SECURITY ANALYSIS OF EDHOC
SIG-SIG. Following the reductionist proof methodol-
ogy, in Section 5 we then analyze EDHOC’s SIG-SIG
mode in our extended MSKE security model. We show
that, in its draft version 17, EDHOC SIG-SIG mode estab-
lishes keys that are (forward) secure, with peers explicitly
authenticated upon signature verification. Our security
proof formally reduces the success probability of an ad-
versary violating the key exchange security guarantees to
the security of EDHOC’s building blocks (Diffie–Hellman
key exchange, signatures, and key derivation). Of partic-
ular interest is clearly the handling of EDHOC’s non-
unique credential identifiers and their effect on explicit
authentication: we show that through the way EDHOC
includes (full, unique) identities under the signature and—
following our suggestion—in the key derivation, secure
authentication is indeed guaranteed based on the signa-
ture scheme’s (strong) unforgeability and an “exclusive
ownership” property (cf. Section 2), which are shown for
the Ed25519 signature scheme [14].

In Appendix C, we discuss the technical details why
the original MAc-then-SIGn variant [42] would not be
secure in our security model, formally underlining the
need for a dedicated analysis of EDHOC.

IMPROVING THE DRAFT STANDARD. Our security result
makes use of a couple of improvements introduced in re-
cent draft versions of EDHOC, based on recommendations
we and authors of other security analyses (cf. Section 1.2
below) communicated to the IETF LAKE working group.
Most notably, we recommended (1) establishing a dedi-
cated session key for key separation and composability;
(2) changes to the transcript hash computation to bind
identities to keys; (3) reducing the dependency on encryp-
tion security; and (4) fixing key-reuse issues in the key
derivation. All of these changes were incorporated into
EDHOC (in draft 14 resp. 17) after fruitful interaction
with the LAKE working group. We conclude with a more
detailed account of our contributions to the draft standard,
as well as a discussion of limitations and open questions
in Section 6.

1.2. Related Work

Krawczyk introduced the SIGMA [42] family of au-
thenticated key exchange protocols. Among many others,
SIGMA informed the design of the Internet Key Exchange
protocol [39], the TLS 1.3 handshake protocol [51], and
the EDHOC SIG-SIG protocol [55]. A detailed secu-
rity analysis of SIGMA and the MAc-then-SIGn variant
on which EDHOC is built was given by Canetti and
Krawczyk [19]. TLS 1.3 was analyzed in the computa-
tional setting by Dowling et al. [30], [31] in a multi-stage
security model [32]; our model follows their approach,
adapting the code-based version of Davis et al. [26].

Following the successful example of TLS 1.3’s stan-
dardization process [49], the editors of the EDHOC draft
standards co-authored a call for formal and computa-
tional security analysis by the research community [56],
to which this work is not the first to answer. Bruni
et al. [16] performed a formal verification of EDHOC
(draft 08) using ProVerif. Norman et al. [48] extended
that work to cover newly included mixed authentication
modes. Cheval et al. [20] used their formal analysis tool
chain, SAPIC+, for an initial analysis of EDHOC in
draft 07. More recently, Jacomme et al. [35] substantially
broadened this analysis, applying SAPIC+ to analyze all
four authentication methods in EDHOC draft 12 (and
giving preliminary results on draft 14). Their work ex-
tensively covers all modes and various security properties
in the symbolic model with enhanced idealizations of
cryptographic primitives, whereas our work takes a lower-
level, computational cryptography perspective and aims at
the subtle effects that arise when modeling non-unique
credential identifiers. Concurrent to our computational
analysis, Cottier and Pointcheval [23] have worked on a
tight computational analysis for the EDHOC STAT-STAT
mode basing authentication on long-term, static Diffie–
Hellman keys. The latter work is closest to ours as it is
also computational; it aims at proof tightness in the STAT-
STAT mode, whereas our focus is on the SIG-SIG mode
and understanding the security ramifications of EDHOC’s
non-unique credential identifiers.

2. Preliminaries

2.1. Notation

GROUPS AND DIFFIE–HELLMAN. Let (G,+) be a
cyclic group of prime order q generated by G, i.e.,
G = 〈G〉 = {xG : x ∈ Zq}. For x ∈ Zq and Y ∈ G,
DH(x, Y ) denotes the Diffie–Hellman function that com-
putes the shared secret S = xY .

GAMES, ADVERSARIES, AND ADVANTAGES. We carry
out our analysis of EDHOC in the code-based game-
playing framework for provable security [7]. The security
of a cryptographic scheme or protocol Π is captured by
a game G(Π) played by an adversary A that interacts
with the game through several named oracles. Each game
provides (sometimes implicitly) two oracles OInitialize
(setting up the game) and OFinalize (through which the
adversary’s success is evaluated); a winning condition is
defined and the oracleOFinalize outputs 1 if that condition
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is satisfied and 0 otherwise. We at times consider classes
At,q of efficient adversaries that run in time at most t and
make at most q queries to their oracles. For any adversary
A ∈ At,q, the advantage of A in winning the game G(Π),
denoted by AdvGΠ (A), captures the performance of A
which is the probability that OFinalize outputs 1, i.e.:

AdvGΠ (A) = Pr[G(Π)→ 1].

When the context is unambiguous, we simply write
AdvG(A) instead of AdvGΠ (A).

2.2. Cryptographic Primitives

The main cryptographic primitives in EDHOC are
a cryptographic hash function denoted H, key deriva-
tion functions Extract and Expand following the extract-
then-expand paradigm of HKDF [43], a digital signa-
ture scheme Sig, and an authenticated encryption scheme
AEAD. In the following, we recap some of the less estab-
lished security properties of these schemes we will rely
on for our security analysis. For further formal definitions
and standard security notions (like collision resistance,
signature unforgeability, etc.), see Appendix A.

2.2.1. Key Derivation. EDHOC uses a key derivation
function to derive session keys, but also MAC tags or IV
values. The key derivation in EDHOC closely follows the
design of HKDF [43], which is realized via two modules:

1) Extract(s, ikm) extracts a pseudo-random key prk
from some (high-entropy, but not necessarily uni-
form) input material ikm using a salt s.

2) Expand(prk, info, len) generates from a pseudo-
random key prk a pseudo-random output string of
length len bits, taking as further input a context
string info.

We refer to [43] for the detailed rationale behind HKDF.
As we will see in more detail in Section 3, EDHOC
uses Extract to derive from a Diffie–Hellman secret a
uniformly random intermediate key and Expand to from
that intermediate key derive the actual session keys and
more. Analogous to prior computational analysis of real-
world protocols like TLS 1.3 [31], we will employ the
PRF-ODH assumption [15], [36] on Extract and assume
Expand to be a pseudorandom function (with variable
output length). See Appendices A.3 and A.4 for more
details.

2.2.2. Exclusive ownership of signatures. Classi-
cal unforgeability of signature schemes—existential
(EUF-CMA) or strong (SUF-CMA)—ask for signatures
to be unforgeable for any message of an adversary’s
choice, wrt. some fixed and honestly generated public
key pk. In general, unforgeability does not imply that it
is difficult to find a different, adversarially-chosen pub-
lic key pk′ under which some honest message-signature
pair (m,σ) also verifies. Indeed, such attacks are some-
times easy and in the literature referred to as “duplicate-
signature key selection” (DSKS) or “exclusive ownership”
attacks [11], [41], [47], [50]. Such an attack vector would
be problematic for EDHOC, as it interferes with its ap-
proach to deduce the peer’s identity through “trial verifica-
tion” against multiple, non-uniquely identified credentials.

In our analysis, we therefore rely on the following addi-
tional security property of signature schemes introduced
as strong universal exclusive ownership by [14] when
establishing this property for Ed25519.

Definition 2.1 (Strong Universal Exclusive Ownership).
A signature scheme S is said to provide strong universal
exclusive ownership (S-UEO) against an adversary A if
the following advantage of A in the game GS-UEO defined
in Figure 1 is small:

AdvS-UEO
S (A) = Pr

[
GS-UEO(S)→ 1

]
.

OInitialize()
1 : (sk, pk)← S.KGen

2 :M← ∅
3 : return pk

OFinalize(m,m′, σ, pk′)

1 : return

(m,σ) ∈ M
∧ pk 6= pk′

∧ S.Vf(pk′,m′, σ) = 1



OSign(m)

1 : σ $←− S.Sign(sk,m)

2 :M←M∪ {(m,σ)}
3 : return σ

Figure 1. The strong universal exclusive ownership (S-UEO) game
GS-UEO for a signature scheme S.

The S-UEO notion implies two related and weaker
notions; namely, strong conservative exclusive owner-
ship (S-CEO) and strong destructive exclusive ownership
(S-DEO). The former corresponds to the case where the
adversary must have queried the signing oracle to obtain
a signature for m′. This scenario captures, for instance,
duplicate signature key selection attacks (DSKS) [11],
[47]. The latter encodes that m′ must not have been
queried to the signing oracle. Conversely, S-CEO and
S-DEO jointly imply S-UEO. We refer to [24] for further
details.

3. EDHOC and Its SIG-SIG Mode

The EDHOC protocol is a lightweight authenticated
key exchange that enables constrained devices to estab-
lish a shared session key that is secret and mutually
authenticated. Its lightweight operations and very compact
messages target, for instance, Internet of Things (IoT)
devices operating in low-bandwidth environments such
as LoRaWAN [45]. The primary goal of EDHOC is to
establish a security context for the OSCORE protocol [54],
i.e., key material for constrained application-layer end-to-
end encryption, but also allows deriving keys for other
applications.

EDHOC specifies four authentication modes, depend-
ing on whether the initiator resp. responder authenticates
itself through signatures (SIG) or static Diffie–Hellman
keys (STAT). In this work, we focus on the SIG-SIG
mode of EDHOC which is inspired by the SIGMA
(“SIGn-and-MAc”) family of key exchange protocols of
Krawczyk [42]. The SIGMA design involves an unauthen-
ticated, ephemeral Diffie–Hellman key exchange that is
authenticated through signatures and MACs sent by both
peers. It is the basis of widely deployed protocols like the
Internet Key Exchange (IKE) protocol [34], [39] and the
Transport Layer Security (TLS) protocol [51].

To save on bandwidth, EDHOC’s SIG-SIG mode fol-
lows the “MAc-then-SIGn” version of SIGMA [42, Sec-
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tion 5.4].1 Here, instead of sending first a signature and
then the MAC (covering the signature), the MAC tag is
put “under” the signature and recomputed locally by the
receiver, thereby avoiding the need to send the MAC.
In addition, EDHOC assumes that devices usually store
the credentials of peers (e.g., X.509 certificates) locally.
Further bandwidth savings (compared to, e.g., TLS 1.3)
can then be achieved by sending only a short credential
identifier kid rather than the credential itself. Notably,
these credential identifiers need not be unique:

applications MUST NOT assume that ’kid’
values are unique and several keys
associated with a ’kid’ may need to
be checked [by the recipient] before the
correct one is found. [55, Section 3.5.3]

EDHOC is a self-negotiating protocol, meaning par-
ticipants agree on the authentication mode and the further
cryptographic components (the so-called “cipher suite”)
within the first two protocol messages. We do not capture
negotiation here, but focus on the SIG-SIG mode of
authentication and assume participants agree on a cipher
suite (defining the to-be-used algorithms for authenticated
encryption, hashing, DH key exchange, signatures, etc.),
omitting the corresponding values from the protocol de-
scription.

3.1. Protocol Details

The EDHOC protocol consists of three mandatory
messages2 (msg1, msg2, msg3) exchanged between the
initiator I and the responder R. The EDHOC SIG-SIG
protocol flow is illustrated in Figure 2 and goes like this:

EDHOC message 1. The initiator begins by sampling an
ephemeral Diffie–Hellman secret x and forms its DH share
Gx = xG. It sends Gx together with a connection identi-
fier CI and optional external authorization data ead1.3

EDHOC message 2. Upon receiving msg1, the respon-
der also generates an ephemeral Diffie–Hellman secret y.
It computes its DH share Gy = yG and the shared DH
secret Gxy = yGx. From the shared DH secret, it derives
EDHOC’s core secret value PRK2e = Extract("", Gxy)
from which all further keys will be derived, using the
HKDF Extract function [43].

To authenticate itself, the responder first computes a
MAC tag τ2 via HKDF Expand, keyed width PRK2e,
covering in particular its credential identifier kidR, the
hashed transcript so far th2, and its credential credR. It
then signs the same values together with τ2, obtaining
a signature σ2. The signature together with kidR and
further optional external authorization data ead2 form a
plaintext ptxt2, which is XOR-encrypted into ctxt2 with a
keystream K2 derived from PRK2e as Expand(PRK2e, (0,

1. This is similar to the IKE design [34], [39], but differs from the
more common “SIGn-then-MAc” approach used, e.g., in TLS 1.3 [51].

2. The responder sends a fourth message for key confirmation if
EDHOC is used for authentication only and no application data is
exchanged. We focus on the three-message case.

3. Applications may send external authorization data (EAD) to “re-
duce round trips and the number of messages” [55, Section 3.8] by
transporting “authorization related data.” EAD is opaque to EDHOC
(and we treat it as such), but can benefit from the security of keys it is
encrypted under—see ead2 and ead3 in message 2 and 3 below.

Initiator I Responder R

x $←− Zq , Gx ← xG

G X: Gx; C I: CI ; EAD 1: ead1
msg1 = (G X, C I, EAD 1)

y $←− Zq , Gy ← yG

G Y: Gy ; C R: CR
Gxy ← yGx

PRK2e ← Extract("", Gxy)

th2 ← H(Gy,CR,H(Gx,CI , ead1))

τ2 ← Expand(PRK2e, (2, kidR, th2, credR, ead2, tl), tl)

σ2 ← Sig.Sign(skR, (lsig, kidR, th2, credR, ead2, τ2))

ptxt2 ← (kidR, σ2, ead2)

accept K2 ← Expand(PRK2e, (0, th2, |ptxt2|), |ptxt2|) stage 1
ctxt2 ← ptxt2 ⊕ K2

CIPHERTEXT 2: ctxt2
msg2 = (G Y, CIPHERTEXT 2, C R)

(Gy, ctxt2,CR)← msg2

Gxy ← xGy

PRK2e ← Extract("", Gxy)

ptxt2 := (kidR, σ2, ead2)← ctxt2 ⊕ K2

foreach (U, pkU , credU ) with kidU = kidR:

τ2 ← Expand(PRK2e, (2, kidU , th2, credU , ead2, tl), tl)

if Sig.Vf(pkU , (lsig, kidU , th2, credU , ead2, τ2), σ2) = 1:

pid← U ; endforeach

abort if pid = ⊥
th3 ← H(th2, ptxt2, credR)

τ3 ← Expand(PRK2e, (6, kidI , th3, credI , ead3, tl), tl)

σ3 ← Sig.Sign(skI , (lsig, kidI , th3, credI , ead3, τ3))

ptxt3 ← (kidI , σ3, ead3)

accept K3/IV3 ← Expand(PRK2e, (3/4, th3, kl/il), kl/il) stage 2
ad3 ← (laead, "", th3)

ctxt3 ← AEAD.Enc(K3, IV3, ad3, ptxt3)

CIPHERTEXT 3: ctxt3
msg3 = (CIPHERTEXT 3)

ctxt3 ← msg3

ad3 ← (laead, "", th3)

ptxt3 := (kidI , σ3, ead3)← AEAD.Dec(K3, IV3, ad3, ctxt3)

foreach (U, pkU , credU ) with kidU = kidI :

τ3 ← Expand(PRK2e, (6, kidU , th3, credU , ead3, tl), tl)

if Sig.Vf(pkU , (lsig, kidU , th3, credU , ead3, τ3), σ2) = 1:

pid← U ; endforeach

abort if pid = ⊥
th4 ← H(th3, ptxt3, credI)

accept K4/IV4 ← Expand(PRK2e, (8/9, th4, kl/il), kl/il) stage 3
accept PRKout ← Expand(PRK2e, (7, th4, kl), kl) stage 4

Figure 2. The EDHOC SIG-SIG protocol with three messages. MSG
terms highlight message components in the terminology of the EDHOC
specification [55] for better reference.
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th2, |ptxt2|), |ptxt2|). Finally, the responder sends as sec-
ond message its DH share Gy, connection identifier CR,
and the ciphertext ctxt2.

EDHOC message 3. Upon receiving msg2, the initiator
computes Gxy = xGy, then derives PRK2e and K2 to
decrypt ctxt2. It now needs to determine the responder’s
identity/credential credR from the not necessarily unique
credential identifier kidR. The EDHOC draft [55] is cur-
rently underspecified in how ambiguous identifiers should
be handled; we assume a “trial verification” loop is per-
formed: For every identity U with matching kidU = kidR,
the initiator computes a trial MAC τ2 and assumes kidR
identifies U if the received signature σ2 verifies for the
corresponding credential credU and τ2. Note that there
might potentially be multiple identities U for which the
signature verifies and hence the protocol participants may
assume a wrong peer; in our security analysis in Section 5
we will implicitly give the adversary control over the order
of trials to capture this.

If the signature does not verify against any match-
ing user, the initiator aborts. Otherwise, the initiator
authenticates by producing a MAC tag τ3 and signa-
ture σ3 similarly to the responder’s in msg2, but for its
own credentials and the extended transcript hash th3 =
H(th2, ptxt2, credR). It sends the plaintext ptxt3 =
(kidI , σ3, ead3), AEAD-encrypted into ctxt3 using a
key K3 = Expand(PRK2e, (3, th3, kl), kl) and correspond-
ing initialization vector/nonce IV3 derived from PRK2e.
(Here, ead3 is again optional external authorization data,
to be protected under K3.)

Upon receiving msg3, the receiver derives K3/IV3

and decrypts ctxt3. Like the initiator, it performs a trial
verification loop to determine the initiator’s identity from
the possibly ambiguous credential identifier kidI . After
successfully sending/processing msg3, both parties com-
pute two final keys from PRK2e: key and IV K4/IV4

for optionally sending a fourth EDHOC message for key
confirmation in authentication-only mode (which we omit
in our analysis), and key PRKout as the final “session key”
that is used to derive application-level keys.

Key exporter, the OSCORE context, and key updates.
From the established session key PRKout, initiator and
responder can derive different application keys as needed.
To this end, EDHOC derives an exporter key PRKexp from
PRKout with Expand. Any application-specific key is then
derived from PRKexp using distinct labels. In particular,
for the OSCORE security context, the exporter mechanism
is used to derive a master key and master salt.

EDHOC further allows to update PRKout to extend
the lifetime of an EDHOC connection while providing
forward security. For this, a new session key PRKout is
derived by invoking Expand on the old PRKout and a
designated key-update label.

The full key schedule of EDHOC in SIG-SIG mode
including keys, IVs, the key export and (optional) key
update mechanisms are shown in Figure 3.

3.2. Cryptographic Algorithms in EDHOC

Our analysis of EDHOC treats its cryptographic build-
ing blocks generically; see Section 2 and Appendix A
for their syntax and security definitions. Nevertheless,
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p
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p

E
x
p

E
x
p

PRKexp E
x
p
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""
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Legend

Ext = Extract(salt, key)

E
x
p = Expand(key, label, context, len)

Gxy Shared Diffie-Hellman Secret

PRK2e Extracted Pseudo-Random Key

Ki/IVi/τi Stage Key/IV resp. MAC tag

Key update

Key exporter

salt

key

key

label

context

Figure 3. The EDHOC SIG-SIG key schedule, including the key update
and exporter mechanism. The transcript hashes (th2, th3, th4), context
values (context2, context3) and Expand output lengths (len) are given
in Figure 2.

in the following we briefly summarize the cryptographic
algorithms specified for EDHOC in its cipher suites [55,
Section 3.6];

• The hash function H is instantiated with one of
SHA2, Shake128, or Shake256. Shake128 and
Shake256 are sponge-based extendable output
functions (XOF [40]). In our analysis, we require
H to be collision resistant.

• The KDF extraction function Extract is instan-
tiated with HKDF.Extract = HMAC [4] when
the hash function is SHA2. For hash algo-
rithm Shake128 or Shake256, it is instanti-
ated with KMAC [40] as Extract(s, ikm) =
KMAC(s, ikm, len,"") with the desired output
length len . In our analysis, we employ the PRF-
ODH assumption [15], [36] on Extract.

• The KDF expansion function Expand is instan-
tiated with HKDF.Expand, an iterated applica-
tion of HMAC [4]. For hash algorithm Shake128
or Shake256, it is instantiated with KMAC as
KMAC(prk, info, len,""). In our analysis, we as-
sume Expand to be a pseudorandom function (with
variable output length).

• The signature scheme Sig is instantiated with
either Ed25519 [8] or ECDSA [38]. In our
analysis, we require strong unforgeability
(SUF-CMA) and strong universal exclusive
ownership (S-UEO) [14] from the signature.
We note here that Ed25519 was studied by Bren-
del et al. [14] and was shown to be SUF-CMA
and S-UEO secure, making our results directly
applicable to it. In contrast, plain ECDSA is only
EUF-CMA secure and fails to meet SUF-CMA
security4 as well as S-DEO (and hence S-UEO)
security [50]. The former can be fixed by making

4. For an ECDSA signature σ = (r, s) ∈ F2
q , on m, (r,−s) is also

a valid signature on m.
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signatures unique, the latter can be mitigated by
including the verification key under the signa-
ture [50], as done in EDHOC. Formally estab-
lishing these properties for ECDSA as used in
EDHOC is however beyond the scope of this work.

• The AEAD scheme AEAD is instantiated
with one of AES-GCM, AES-CCM, or
ChaCha20/Poly1305. For the goals of our
analysis, we do not need to make any assumptions
on the AEAD scheme beyond correctness.

4. Security Model

We analyze EDHOC in a computational security
model in the style of the classical Bellare–Rogaway key
exchange model [6], adapted to the multi-stage (MSKE)
setting [32], [33], and with our own extensions to capture
the specifics of EDHOC. Through the Bellare–Rogaway
basis of our model, it captures strong adversaries with
full control over the network, able to passively observe
and actively modify messages arbitrarily: The adver-
sary can create protocol participants via a NEWUSER
oracle and orchestrate protocol sessions (i.e., the ex-
ecution of the protocol by one party) between these
participants via a SEND oracle. The adversary is fur-
ther allowed to reveal established session keys (through
a REVSESSIONKEY oracle) and compromise long-term
signing keys (REVLONGTERMKEY).

On a high level, the targeted security guarantees are:

1) Key indistinguishability. An adversary cannot
distinguish an established session key from ran-
dom (via a TEST oracle), as long as it is not
trivially compromised (“fresh”).

2) Forward security. Keys are indistinguishable
from random even if the long-term secrets of
involved parties are later compromised.

3) Explicit authentication. When a session accepts
with an authenticated peer, there is indeed a
corresponding session of that peer.

These guarantees apply to all keys established in the
protocol and must hold even if other keys in the same
sessions are compromised. For example, in EDHOC, an
attacker might leverage leakage of the intermediate key K2

to attack the indistinguishability or authentication of K3.
This is the multi-stage aspect of our model, a state-of-
the-art concept that has been applied to other modern
real-world protocols like TLS 1.3 [31] or Signal [21]. To
minimize ambiguity, we give both a high-level description
as well as a fully code-based description of our model in
the following; the latter is based on the model for TLS 1.3
by Davis et al. [26].

4.1. Capturing EDHOC’s Specifics

Recall that, in EDHOC, participant’s credentials are
identified through short credential identifier values kid (cf.
Figure 2). As per the underlying COSE standard [53],
“applications MUST NOT assume that ‘kid’ values are
unique.” In contrast, key exchange models generally as-
sume parties (and their key material) are uniquely identi-
fiable by protocol participants.

To properly capture the non-uniqueness of credential
identifiers in EDHOC, in our extension of the MSKE
model we grant the adversary additional power when it
comes to creating participants in the model: it can register
users with long-term keys of its choice (as an option in
the NEWUSER oracle, drawing inspiration from Boyd et
al. [13]) and, most importantly, specify their (potentially
colliding) credential identifiers. Protocol sessions can then
address the true (unique) identities and public keys of
other participants through lists peerpkkid indexed by (non-
unique) credential identifiers kid. This mimics EDHOC’s
process of potentially having to check several candidate
credentials matching some identifier kid and allows us to
capture the security requirements emerging from it.

4.2. Model Syntax

In our model, a key exchange protocol KE is abstracted
as a triple of algorithms (KGen,Activate,Run).

• KGen() generates long-term signing and verifica-
tion key pairs for a protocol participant.

• Activate(U, i, skU , {pid}U , peerpk , role)
$−→(πiU,m)

starts a new session πiU owned by the user U , with
a list {pid}U of peers that the user U is willing
to engage with in the key exchange protocol. If
role = initiator, Activate returns the first proto-
col message m and ⊥ otherwise.

• Run(πiU , skU , peerpk ,m) $−→ (πiU ,m
′) delivers the

protocol message m to the session πiU . The mes-
sage m is processed according to the protocol
specification, and πiU is updated accordingly. Fi-
nally, Run outputs a response message m′ or the
symbol ⊥ in case of an error.

4.2.1. Protocol properties. The key exchange proto-
col KE is augmented with the following variables which
will determine its aimed-at security properties:

• KE.S: the number of stages in the protocol (i.e.,
first-order keys to be derived).

• KE.use[s]: whether the s-th stage key is used
within the protocol (internal) or not.

• KE.eauth[r, s]: the stage upon whose acceptance
a session in role r considers the peer explicitly
authenticated in stage s.5

• KE.fs[s]: whether stage s is forward secure.

4.2.2. Session variables. The i-th session owned by
user U is denoted by πiU . Each session holds, among
others, the following variables:

• πiU .pid: the identity of the intended peer.
• πiU .role: the role of the session owner.
• πiU .stage: the current execution stage.
• πiU .status[s]: the state of execution of stage s.
• πiU .key[s]: the session key of stage s.
• πiU .revealed[s], πiU .accepted[s], πiU .tested[s]: the

time at which the s-th stage key was revealed,
accepted, resp. tested in the game.

5. This in particular captures “retroactive” authentication [31]: E.g.,
eauth[resp, 1] = 3 encodes that the stage-1 key accepted by a
responder will be explicitly authenticated once stage 3 is reached.
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GMSKE
A (KE)

INITIALIZE

1 : time ← 0

2 : b $←− {0, 1}
3 : peerpk ← ∅

NEWUSER(sk, pk, kid)

1 : time ← time + 1

2 : users ← users + 1

3 :U ← users

4 : (pkU , skU ) $←− KGen()

5 : revltkU ←∞
6 : if pk 6= ⊥ and (sk, pk) is valid key pair :

7 : // only valid verification keys are allowed

8 : (skU , pkU )← (sk, pk)

9 : revltkU ← time

10 : // adversarially-registered keys are considered compromised

11 : // Add (U, pkU ) to peerpkkid

12 : peerpkkid ← peerpkkid ∪ {(U, pkU )}
13 : return pkU

NEWSESSION(U, i, skU , {pid}U , peerpk , role)
1 : time ← time + 1

2 : if π
i
U 6= ⊥ : return ⊥

3 : (π
i
U ,m) $←− Activate(U, i, skU , {pid}U , peerpk , role)

4 : π
i
U .id← U

5 : π
i
U .role← role

6 : return m

SEND(U, i,m)

1 : time ← time + 1

2 : if π
i
U = ⊥ : return ⊥

3 : (π
i
U ,m

′
) $←− Run(π

i
U , skU , peerpk ,m)

4 : s← π
i
U .stage

5 : if π
i
U .status[s] = accepted :

6 : π
i
u.accepted[s]← time

7 : if b = 0 and KE.use[s] = internal : // Random world: if key is used internally...

8 : ∃πjV : (π
i
U , π

j
V ) ∈ Ps and π

j
V .tested = true : // and partnered session was tested

9 : π
i
U .key[s]← π

j
V .key[s] // copy the key from the partner for consistency

10 : return (π
i
U .status[s],m

′
)

REVSESSIONKEY(U, i, s)

1 : time ← time + 1

2 : if π
i
U = ⊥ or π

i
U .status[s] 6= accepted :

3 : return ⊥

4 : π
i
U .revealed[s]← true

5 :Rs ← Rs ∪ {πiU}

6 : return π
i
U .key[s]

REVLONGTERMKEY(U)

1 : time ← time + 1

2 : revltkU ← time

3 : return skU

TEST(U, i, s)

1 : time ← time + 1

2 : if π
i
U = ⊥ or

3 : π
i
U .status[s] 6= accepted or

4 : π
i
U .tested[s] = true :

5 : return ⊥
6 : if ∃πjV : (π

i
U , π

j
V ) ∈ Ps and // πj

V
is partnered to πiU and...

7 : KE.use[s] = internal and // the key is used internally and...

8 : π
j
V .status[s+ 1] 6= ⊥ : // the partnered already proceeded to the next stage

9 : return ⊥ // reject the request (since the stage-s key may have been used already)

10 : π
i
U .tested[s]← true

11 : Ts ← Ts ∪ {πiU}
12 : k0

$←− Ki
13 : k1 ← π

i
U .key[s]

14 : if b = 0 and KE.use[s] = internal : // Random world: if key is used internally

15 : π
i
U .key[s]← kb // copy the key in the session for consistency

16 : return kb

FINALIZE(b′)

1 : // The adversary wins by...

2 : if ¬Sound : return 1 // breaking soundeness or...

3 : if ¬ExplicitAuth : return 1 // explicit authentication or..

4 : if ¬Fresh : b
′ ← 0 // (if it respected freshness)...

5 : return b = b
′ // ...by guessing the challenge bit

Figure 4. The multi-stage key exchange security game for a key exchange protocol KE. The predictates Sound, ExplicitAuth and Fresh are given
in Figure 5.

4.2.3. Game variables. In addition to the protocol prop-
erties and session variables, the security game tracks the
following game-specific variables:

• Ts: the set of all sessions that A tested in stage s.
• Rs: the set of all sessions for which A revealed

the s-th stage key.
• Ps: the set of sessions partnered in stage s, eval-

uated dynamically as

Ps =
{

(πiU , π
j
V ) : πiU .sid[s] = πjV .sid[s]

}
.

• users: the current number of users in the game.
• time: a discrete value used to order queries/events

in the game.
• revltkU : the time at which the long-term secret of

U was compromised; set to ∞ by default.
• peerpkkid: the set of all credentials identified by

some credential identifier kid.

4.2.4. Session and contributive identifiers. We use ses-
sion identifiers [5] to define when two sessions are con-

sidered partnered, namely if they hold the same session
identifier at a given stage. Partnering in turn is used
to exclude trivial winning conditions in our model, for
instance, an adversary testing and revealing two partnered
sessions. A session records its session identifier for stage s
in πiU .sid[s].

Furthermore, we use contributive identifiers [30] to
specify the values a session must have honestly received
before allowing the adversary to test a stage without
authenticated peer. Contributive identifers hence let the
key exchange model capture the (passive) security of
unauthenticated keys. The session variable πiU .cid[r, s]
holds the contributive identifier for the role r session in the
protocol run, for stage s. Let r denote the role opposite to
r, then πiU .cid[r, s] contains the values that the session πiU
in role r should have honestly received to allow testing it
if stage s is not authenticated.
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Fresh

1 : // The same session was tested and revealed in stage s

2 : if ∃s : Ts ∩Rs 6= ∅ then

3 : return false

4 : // Partnered sessions...

5 : if ∃s : Ps ∩Rs × Ts then

6 : // one tested, one revealed in stage s

7 : return false

8 : // Forward-secure stages are allowed to be tested unless...

9 : if ∃s, πiU ∈ Ts : KE.fs[s] = fs

10 : // they accepted after peer compromise and...

11 : ∧ (revltk
πi
U
.pid

< π
i
U .accepted[s])

12 : // they do not have a contributive partner

13 : ∧ ∀πjV : π
i
U .cid

[
πiU .role, s

]
6= π

j
V .cid

[
πiU .role, s

]
14 : return false

15 : // Unauthenticated stages are allowed to be tested unless...

16 : if ∃s, πiU ∈ Ts : eauth
[
πiU .role, s

]
= ⊥

17 : // they do not have a contributive partner

18 : ∧ ∀πjV : π
i
U .cid

[
πiU .role, s

]
6= π

j
V .cid

[
πiU .role, s

]
19 : return false

20 : return true

ExplicitAuth

1 : // Explicit authentication requires that, for all sessions and stages s...

2 : ∀πiU , s : π
i
U .accepted[s]∧

3 : eauth[πiU .role, s] = s
′
<∞ // that should achieve expl. auth. at stage s′ ...

4 : ∧ πiU .accepted[s
′
] < revltk

πi
U
.pid

// and accepted stage s′ before peer compromise, ...

5 : =⇒ ∃πjV : // there exists a session...

6 : π
i
U .pid = V // owned by V , the peer that πiU considers communicating with, and...

7 : ∧ πiU .sid[s
′
] = π

j
V .sid[s

′
] // partnered with πiU in stage s′ , and...

8 : // if πj
V

accepts stage s before U is comprised, partnered with πiU also in stage s.

9 : ∧ πjV .accepted[s] < revltk
πi
U
.id

=⇒ π
i
U .sid[s] = π

j
V .sid[s]

Sound

1 : // More than two sessions are partnered in statge s

2 : if ∃s, πiU , π
j
V , π

k
W : (π

i
U , π

j
V ) ∈ Ps∧

3 : (π
i
U , π

k
W ) ∈ Ps ∧ (π

j
V , π

k
W ) ∈ Ps then

4 : return false

5 : // Partnered sessions...

6 : if ∃s, (πiU , π
j
V ) ∈ Ps :

7 : ∧ (π
i
U .accepted[s] ∧ πjV .accepted[s])

8 : ∧ (π
i
U .key[s] 6= π

j
V .key[s]) then

9 : // have different keys

10 : return false

11 : // Partnered sessions...

12 : if ∃s, (πiU , π
j
V ) ∈ Ps :

13 : (π
i
U .role = π

j
V .role) then

14 : // in the same role

15 : return false

16 : // Partnered sessions...

17 : if ∃s, (πiU , π
j
V ) ∈ Ps, r ∈ {init, resp} :

18 : π
i
U .cid[r, s] 6= π

j
V .cid[r, s] then

19 : // do not agree on contributive identifiers

20 : return false

21 : // Partnered sessions...

22 : if ∃s, (πiU , π
j
V ) ∈ Ps :

23 : π
i
U .pid 6= ⊥ 6= π

j
V .pid ∧ // upon authentication/setting pid...

24 : (π
i
U .pid 6= V ∨ πjV .pid 6= V ) then

25 : // set the wrong peer identity

26 : return false

27 : // Session identifiers...

28 : if ∃s 6= t, π
i
U , π

j
V :

29 : (π
i
U .sid[s] = π

j
V .sid[t]) then

30 : // collide across different stages

31 : return false

32 : return true

Figure 5. The predicates Fresh, ExplicitAuth, and Sound used in the MSKE game (Figure 4).

4.3. Adversary Model and Goal

The adversary A interacts with the protocol KE
through a security game GMSKE(KE) with the following
oracles. We summarize the oracles’ main functionality
here and give their detailed, code-based definition in Fig-
ure 4.

• NEWUSER(sk, pk, kid). Register a new user U
(with honestly generated keys if pk = ⊥, else
adversarially-controlled keys) and credential iden-
tifier kid; add {(U, pkU )} to peerpkkid.

• NEWSESSION(U, i, skU , {pid}U , peerpk , role).
Create and activate a new session πiU .

• SEND(U, i,m). Let πiU process message m and
return the response to A.

• REVSESSIONKEY(U, i, s). Reveal the session
key πiU .key[s] to A and mark it as revealed.

• REVLONGTERMKEY(U). Reveal the long-term
signing key skU of U to A and mark U as
compromised.

• TEST(U, i, s). Depending on the game’s challenge
bit b, return either the real session key πiU .key[s]
or a randomly sampled key. (The oracle ensures

consistency across multiple TEST queries and of
internal-use keys.)

4.4. Security

The adversary’s goal in the security game GMSKE is
to violate the protocol’s

1) soundness, negating a predicate Sound which
checks that the protocol-specified session identi-
fiers correctly capture partnering (e.g., that part-
nered session derive the same keys, that at most
two sessions are partnered, etc.),
or

2) explicit authentication, negating a predicate
ExplicitAuth which, in essence, checks that any
session that accepts a stage s and is promised
explicit authentication as per eauth indeed has
an honest partner in stage s (unless the involved
parties were compromised prior to accepting),
or

3) key indistinguishability, by correctly guessing the
challenge bit b after testing only fresh sessions;
freshness is encoded via a predicate Fresh which
checks that tested sessions are not trivially re-
vealed, their forward-security conditions are met,
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and when unauthenticated, they have an honest
contributive-identifier partner.

See Figure 5 for the full, code-based definition of the
predicates Sound, ExplicitAuth, and Fresh.

Definition 4.1 (Multi-stage key exchange security). Let
KE be a key exchange protocol. Let GMSKE(KE) be the
MSKE game defined above and formalized in Figure 4. We
define the advantage of an MSKE adversary A against KE
as:

AdvMSKE
A (KE) = 2 · Pr

[
GMSKE(KE)→ 1

]
− 1.

5. Security Analysis

We are now ready to analyze the EDHOC SIG-SIG
protocol in the security model of Section 4.

5.1. Protocol Properties

For our analysis, we first need to specify the protocol’s
targeted properties: its stages, how keys are used, when
explicit authentication is expected, and whether stages are
forward secure.

Stages. EDHOC consists of S = 4 stages. These corre-
spond to establishing the keys (and potentially associated
IVs) K2, K3/IV3, K4/IV4, resp. PRKout.

Key usage. The first three stage keys (and IVs) K2,
K3/IV3, and K4/IV4 are used internally within the pro-
tocol to encrypt EDHOC messages. In contrast, we will
show that PRKout is fit for external use, e.g., to protect
application data, as intended. I.e., use = [internal,
internal, internal, external].

Explicit authentication. For initiator sessions, stages 2,
3, and 4 are explicitly authenticated upon acceptance
of stage 2; stage 1 then receives explicit authentication
retroactively. For responder sessions, the peer is explicitly
authenticated upon acceptance of stage 3; hence, stages 3
and 4 are explicitly authenticated upon acceptance of
stage 1, while stages 1 and 2 receive explicit authenti-
cation retroactively.

Formally, for a given role r and stage s, we define
eauth[r, s] as:

∀s ∈ [1, 4] : eauth[init , s] = 2,

eauth[resp, s] = 3.

Forward security. Through the ephemeral Diffie–
Hellman shares freshly sampled by both participants in
each run of the protocol run and keys derived from them,
all four stages are forward secure: fs = [fs, fs, fs, fs].

Session identifiers. The session identifier for stage s is
a tuple (“s”, txs,auths), where “s” serves as unique
label, txs is the plaintext message transcript containing
elements that enter the key schedule, and auths is the
(potentially empty) list of identities of the peers that are
explicitly authenticated at stage s. Within auths, I is a
placeholder for the identity of the initiator session, and R
for the responder’s identity.

Concretely, the session identifiers sid for s ∈ [1, 4] are
defined as follows:

sid[1] = (“1”, Gx,CI , ead1, Gy,CR),

sid[2] = (“2”, Gx,CI , ead1, Gy,CR, kidR, σ2, ead2, R),

sid[3] = (“3”, Gx,CI , ead1, Gy,CR, kidR, σ2, ead2,

kidI , σ3, ead3, R, I),

sid[4] = (“4”, Gx,CI , ead1, Gy,CR, kidR, σ2, ead2,

kidI , σ3, ead3, R, I).

Contributive identifiers. The contributive identifier for
a stage s corresponds to the values that a session π must
have honestly received (i.e., untampered) from a peer
session to allow testing π in the unauthenticated stage s.
Such testing is then allowed, even when other message
parts are not or only partially delivered to either party
involved in that protocol run. To allow the adversary to
test as many sessions as possible, we shall choose the
entries in the contributive identifiers to be minimal.

For a session π in the role role ∈ {init , resp}, let
role denote the opposite role. The contributive identifier
π.cid[role, s] captures the messages that π must have
received honestly from its peer as a prerequisite to allow
testing π in stage s, if s is unauthenticated.

For EDHOC, we have the initiator (resp. responder)
set cid[init , 1] to (“1”, Gx) upon sending (resp. receiving)
message 1, which captures that an initiator must have con-
tributed a DH share Gx as a prerequisite to allow testing
of the responder session in stage 1. At a later point, the ini-
tiator (resp. responder) sets cid[resp, 1] to (“1”, Gx, Gy)
upon receiving (resp. sending) message 2. This captures
that the responder must have contributed its Gy share
before a legitimate test query against an initiator session
is allowed (without authentication). For all other stages
s ∈ {2, 3, 4}, cid[init , s] = cid[resp, s] = (“s”, Gx, Gy).

In summary:

cid[init , 1] = (“1”, Gx),

cid[resp, 1] = (“1”, Gx, Gy),

cid[init , s] = cid[resp, s] = (“s”, Gx, Gy) ∀s∈{2, 3, 4}.

5.2. Security Result

For EDHOC SIG-SIG, we establish the following se-
curity theorem, which bases the protocol’s MSKE security
on the used hash function’s collision resistance (CR), the
signature’s unforgeability (SUF-CMA) and strong univer-
sal exclusive ownership (S-UEO), the PRF-ODH [15]
security of Extract, and the PRF security of Expand. We
give an overview of the proof here, focusing on the techni-
cally challenging bits when establishing explicit authen-
tication despite EDHOC’s use of non-unique credential
identifiers; the full proof can be found in Appendix B.

Theorem 5.1 (MSKE security of EDHOC SIG-SIG). Let
EDHOC-Sig-Sig be the EDHOC SIG-SIG protocol as
defined in Section 3, using a cyclic group G of order q.
Let A be an MSKE adversary against EDHOC-Sig-Sig,
interacting with at most nU users and nS sessions. Then
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we can construct adversaries B4, BI.2, BI.4, BII.A2,
BII.B2, BII.B3 such that

AdvMSKE
EDHOC-Sig-Sig(A) ≤ nS

2

q
+ AdvCR

H (B4)

+ 4nS ·
(
nU · AdvSUF-CMA

Sig (BI.2) + AdvS-UEO
Sig (BI.4)

)
+ 4nS ·

nU · AdvEUF-CMA
Sig (BII.A2)

+ nS ·

(
AdvsnPRF-ODH

Extract (BII.B2)

+ AdvPRF
Expand(BII.B3)

) .

Proof overview. The proof proceeds via a series of games
starting with the MSKE game as defined in Section 4
and ending with games where the adversary cannot win
anymore. Each game hop introduces a slight variation;
bounding the advantage difference introduced by those
variations yields the stated theorem bound. The high-
level strategy is to first ensure that soundness holds
(Sound = true), then to split into two disjoint cases:
Branch I treats the case that the adversary breaks explicit
authentication (ExplicitAuth), Branch II shows that the
adversary cannot guess the challenge bit when satisfying
the Fresh condition. In the explicit authentication branch
of the proof, we carefully analyze the effect of non-unique
credential identifiers, which is the most critical part of
the proof. We show that the specific usage of signatures
in EDHOC provides S-UEO security, thereby preventing
attacks on explicit authentication that would exploit the
ambiguity of credential identifiers.

GAME G0. The unmodified MSKE game.

GAMES G1/G2. We introduce a “bad event”, aborting
the game whenever two honest sessions sample the same
DH key shares. By the birthday bound, this bad event
happens with probability at most nS 2/q. We argue that if
G2 does not abort (i.e., if no DH shares collide), then the
adversary A cannot cause the Sound predicate to become
false by definition of the session identifers.

GAMES G3/G4. We log all hash function computations
done by honest sessions and abort the game if a hash col-
lision occurs. The probability of this happening translates
into a reduction B4 breaking H’s collision resistance.

At this point, we split the proof into two disjoint
branches, I and II, each starting from Game G4. In
Branch I, the adversary attempts to break explicit authenti-
cation for at least one session. In Branch II, the adversary
attempts to violate key indistinguishability by guessing
the challenge bit, assuming explicit authentication is not
violated. The adversary’s advantage in G4 is then bounded
by the sum of its advantage in the two branches.

Branch I. Ensuring explicit authentication. We first
treat explicit authentication.

GAME GI . Continuing from G4, we first guess at ran-
dom a session πiU ∈ [1..nS ] and stage s ∈ [1..4] for which
A breaks explicit authentication. In the following, we refer
to πiU as the target session.

GAMES GI.1/GI.2. We abort the game if the target
session πiU receives a message-signature pair which is
valid under the public key of a non-corrupted user but
was not produced by an honest session of that user. This

would constitute a SUF-CMA forgery6 and hence can be
bound by nU ·AdvSUF-CMA

Sig (BI.2) via a reduction BI.2 that
first guesses the peer user of πiU and outputs the forgery
when it occurs.

In the following games, we carefully analyze the con-
sequences on authentication due to non-unique credential
identifiers. More precisely, we show that an honest session
will not set a wrong peer identifier.

GAME GI.3. In this game, we set a flag sigambigous
if a session accepts a message-signature pair (m′, σ)
verifying under a public key pkU ′ such that: (1) there
exists an uncompromised user U and both pkU and pkU ′
are identified by the same credential identifier kid, and
(2) an honest session πiU of U produced the signature
σ on some message m. Note that pkU ′ is a key that is
potentially chosen and registered maliciously by A.

GAME GI.4. We now abort the game whenever
sigambigous is set. We first observe that each session
signs a message that includes the user’s credentials credU ,
which uniquely identifies the user identity U . Therefore,
it must be that m′ 6= m, as the accepted message m′

must have included U ′, but the honest session πiU would
only sign a message including U . Additionally, we can
restrict our analysis to pkU 6= pkU ′ : if pkU = pkU ′
uncompromised, m would have been a forgery caught in
the prior games.

By definition of sigambigous, we can now directly
relate Pr[sigambigous ← true] to the advantage of an
S-UEO adversary BI.4. More precisely, BI.4 associates
pkU with the challenge public key pk∗ received in the
S-UEO game, i.e., set pkU = pk∗. The reduction uses
the S-UEO signing oracle whenever it needs to sign a
message on behalf of U ; for all other users it, picks the
key itself and answers oracles in the usual manner. If
sigambigous is set for a public key pkU ′ and message-
signature pair (m′, σ), BI.4 outputs (pkU ′ ,m

′) to win the
S-UEO game.

Conclusion of Branch I. At this point, we argue that
if GI.4 does not abort, then the adversary cannot win by
causing the predicate ExplicitAuth to evaluate to false.
Let us recall what it means for explicit authentication to be
violated for a session πiU and stage s which should be ex-
plicitly authentication once stage s′ = eauth[πiU .role, s]
is reached. For this, πiU must have accepted stage s, and
accepted stage s′ while its peer V = πiU .pid was not
compromised, and one of the following must hold:

(I.a) No (honest) session πjV is partnered with πiU in
stage s′.
(I.e., πi

U has no stage-s′ partner, despite s′ giving the
explicit authentication.)

(I.b) There exists πjV partnered with πiU in stage s′;
however, the two sessions are not partnered in
stage s although πiU accepts stage s while U is
uncompromised.
(I.e., πi

U reaches stage s uncompromised (note that

6. Observe that the signatures being part of the session identifiers,
modifying a signature for the same message leads to non-partnered
sessions. We hence want to also rule out forgeries through modifications
of the signature, relying on strong instead of existential unforgeability.

11



possibly s ≥ s′), but does not have a stage-s partner
as promised by explicit authentication.)

Recall from Section 5.1 that session identifiers, de-
termining partnering, include the exchange message tran-
script as well as the so-far authenticated peers. Non-
partnered sessions must hence disagree on one or the
other.

The case (I.a) corresponds to one of two attacks:
Either, there is no session πjV agreeing on the message
transcript part of the session identifier; that means the
adversary must have forged the signature πiU received, but
this is excluded through Game GI.2. Or, πjV agrees on
the transcript, but not on the authenticated identities, i.e.,
πiU accepts with an “erroneous” peer identity. However,
this corresponds to the ambiguous signatures ruled out in
Game GI.4. Hence, case (I.a) cannot occur anymore at
this point.

For case (I.b), we first note that if s ≤ s′, agreement on
sid[s′] implies agreement on sid[s] as the latter contains
a subset of elements of the former. For the later stages
s ∈ {3, 4}, the disagreement in the session identifier can
be traced to either a forged or an ambiguous signature,
which are ruled out in Game GI.2 resp. GI.4. So also
case (I.b) cannot occur anymore at this point, and hence
the explicit authentication properties are guaranteed.

Branch II. Ensuring key indistinguishability. We now
turn to the proof branch handling challenge bit guesses of
the adversary on fresh, tested sessions.

GAME GII . Continuing from Game G4, we begin by
restricting the adversary A to a single TEST query only.
In the following, πiU refers to the tested session. Following
Dowling et al. [31], the advantage loss can be bounded
by a factor at most nS ·S (the maximum number of TEST
queries possible), via a hybrid argument. Here, nS is the
number of sessions and S = 4 is the number of stages.
Therefore, we get the following bound:

AdvG4(A) ≤ 4nS · AdvGII(A).

We proceed with our analysis of Branch II by consid-
ering two disjoint cases, predicated on whether the tested
session has a contributive partner in the first stage or
not. We start by analyzing the case with no contributive
partner.

GAME GII.A1/GII.A2. We abort the game whenever
the tested session πiU accepts a signature that verifies
under an honest user’s public key for some message
that was never signed by a session of that user. Simi-
larly to Games GI.1/GI.2 in Branch I, this reduces to
the existential7 unforgeability of the signature scheme,
times a factor for guessing the involved peer, i.e., nU ·
AdvEUF-CMA

Sig (BII.A2).
With forgeries rules out, a tested session only accepts

authenticated stages s ≥ 2 (as initiator) resp. s ≥ 3
(as responder) if it received a valid signature from an
honest session; since this honest session however then
agrees on the contributive identifier, the test session has
a contributive partner, contradicting the assumption. For

7. Here only care about the messages (containing the contributive
identifier) being signed, not the signatures themselves; hence existential
unforgeability suffices in this case.

unauthenticated stage 1 (and stage 2 for responders), a
session without contributive identifier cannot be tested (as
otherwise freshness is violated). Hence, at this point, the
adversary cannot issue a valid TEST query, leaving it with
guessing the challenge bit and AdvGII.A2(A) = 0.

We now turn to πiU having a contributive partner.

GAME GII.B1. We start by guessing the contributively
partnered session πjV , introducing a guessing factor of nS .
From this point on, we know both the tested session and
its contributive partner at the outset of the game.

GAME GII.B2. We now replace PRK2e computed by
the tested session with a uniform random value P̃RK2e.
Likewise, we replace PRK2e with P̃RK2e at the contribu-
tive partner πjV if the πjV holds the same two DH shares as
the tested session. We rely on the snPRF-ODH security
of Extract to justify this step, where the challenge DH
shares are embedded as the shares of the tested session
and its contributive partner, PRK2e is the challenge PRF
value, and we use the DH oracle to compute a deviat-
ing PRK2e value in case a contributive-partner initiator
session receives an adversarially-modified DH share.

GAME GII.B3. Finally, we replace the function Expand

keyed with P̃RK2e with a (variable output length) random
function F at the tested session (as well as the contributive
partner if it shares P̃RK2e). We justify this step by the PRF
security of Expand. The result of this step is that all keys
derived in the tested session are replaced with uniformly
random values (and likewise for the partnered session).

At this point, the tested session key is random and
independent of the challenge bit. It remains to argue that
REVSESSIONKEY queries on non-partnered sessions do
not help the adversary. Interestingly, this is not straightfor-
ward in EDHOC, again due to the ambiguity of credential
identifiers: sessions might agree on the entire message
transcript (only including the non-unique credential identi-
fiers), but disagree on the obtained identities. Fortunately,
(since draft version 16) EDHOC in addition to the tran-
script also hashes the identities into th3 and th4, which
in turn enter the key derivation and, by Game G4 do
not collide. Hence, non-partnered sessions derive different
keys, making REVSESSIONKEY useless and leaving the
adversary with no chance to win.

Through the initial games and Branches I and II,
we now guaranteed Sound, ExplicitAuth and key indis-
tinguishability. This completes the proof; collecting the
bounds gives the result in Theorem 5.1.

6. Conclusion and Discussion

In this work, we analyzed EDHOC in SIG-SIG mode
for authentication and proved its security in a strong,
multi-stage model for authenticated key exchange. We
gave a security proof EDHOC SIG-SIG, carefully an-
alyzing its authentication guarantees when an attacker
is allowed to leverage EDHOC’s non-unique credential
identifiers. Our analysis also reveals that the “MAc-the-
SIGn” variant of the SIGMA protocol [42] can be a bit
brittle in terms of security when giving the adversary more
control over how signatures are verified.
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6.1. Contributions to EDHOC

During our analysis, we provided several recommen-
dations to the IETF LAKE working group that led to
constructive and fruitful discussions and have by now
been integrated into draft version 17. We provide some
further detail on the most notable proposed cryptographic
improvements:

• DEDICATED SESSION KEY. We recommended
establishing a dedicated session key instead of re-
using the last key-exchange–internal key (K4) for
clear key separation and composable security [17],
[33]. Such key was added (PRKout) in draft 14,
in agreement with a similar proposal by Jacomme
et al. [35].8 Our analysis confirms that PRKout is
a secure “external” key, i.e., can be used securely
and independently of the other keys established.

• TRANSCRIPT HASHES. To strengthen EDHOC
against potential attacks taking advantage of non-
unique credential identifiers, we suggested that
the transcript hashes (th3, th4) should include
the full/unique credentials of the party just au-
thenticated (responder, resp. initiator). This was
incorporated in draft 17:9

By including the authentication
credentials in the transcript hash,
EDHOC protects against Duplicate
Signature Key Selection (DSKS)-like
identity misbinding attack that the
MAC-then-Sign variant of SIGMA-I is
otherwise vulnerable to. [55, Section 8.1]

We further suggested to build transcript hashes
based on the plaintext, not the ciphertext, version
of messages (similar to TLS 1.3); a change in-
tegrated in draft 14.10 Our analysis confirms that
this avoids depending on integrity properties of the
message encryption for key exchange security.

• KEY SEPARATION IN KEY DERIVATION. We
suggested to not reuse keys across HKDF calls of
Extract and Expand for key separation; a change
executed in draft 14.11

6.2. Limitations and Open Research Questions

Our analysis of the EDHOC protocol is limited to the
SIG-SIG mode for authentication, although some of our
comments to the working group also affect other authenti-
cation methods. In particular, the concern that non-unique
credential identifiers can lead to ambiguous signatures is
also valid for the STAT-SIG and SIG-STAT modes and
should be analyzed in those contexts as well. We focus
on the generic security properties of EDHOC’s building
blocks when proving our results, but not on tightness
of our bounds. Indeed, due to various guessing steps in
our proof (cf. Section 5), our security bound is rather
loose. Tighter bounds are desirable as they meaningfully
inform the choice of concrete parameters to instantiate

8. https://github.com/lake-wg/edhoc/pull/276
9. https://github.com/lake-wg/edhoc/pull/318
10. https://github.com/lake-wg/edhoc/pull/277
11. https://github.com/lake-wg/edhoc/pull/286

the protocol both securely and efficiently, We anticipate
that recent advances in proving tight security for real-
world protocols like TLS 1.3 [22], [26], [27], [29] can
be applied to EDHOC as well and that to this end the
tight analysis of EDHOC’s STAT-STAT mode by Cottier
and Pointcheval [23] could potentially be combined with
our SIG-SIG analysis.

We restricted our analysis to the cryptographic core
of EDHOC, striving for an appropriate balance between
abstraction and completeness. Hence, we do not capture
all aspects of this complex protocol like negotiation of
authentication mechanisms and cipher suites, neither do
we consider other attack surfaces in low-powered de-
vices (e.g., due to insecure implementations) that may
undermine the security guarantee of EDHOC. Tool-based
analyses like those of EDHOC by Norrman et al. [48]
or Jacomme et al. [35] can paint a more complete pic-
ture of protocol interactions across different modes, at
a complexity level that is potentially out-of-reach for
classical pen-and-paper computational analyses. We view
those approaches as complementary, with computational
analyses providing insights into the security of lower-level
wiring cryptographic building blocks into protocols.

To the best of our knowledge, the OSCORE protocol
has not yet received a formal security analysis. Tran-
scribing compositional results by Brzuska et al. [17] for
Bellare–Rogaway key exchange and follow-up ones for
MSKE [32], our analysis suggests that the final session
key PRKout in EDHOC can be securely composed with
symmetric-key primitives. This enables a modular security
analysis limited to the OSCORE protocol itself which, to-
gether with our results, then would give further confidence
in the overall protocol to be deployed.
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[24] Cas Cremers, Samed Düzlü, Rune Fiedler, Marc Fischlin, and
Christian Janson. BUFFing signature schemes beyond unforge-
ability and the case of post-quantum signatures. In 2021 IEEE
Symposium on Security and Privacy, pages 1696–1714. IEEE
Computer Society Press, May 2021.

[25] Cas Cremers, Marko Horvat, Jonathan Hoyland, Sam Scott, and
Thyla van der Merwe. A comprehensive symbolic analysis of TLS
1.3. In Bhavani M. Thuraisingham, David Evans, Tal Malkin, and
Dongyan Xu, editors, ACM CCS 2017, pages 1773–1788. ACM
Press, October / November 2017.

[26] Hannah Davis, Denis Diemert, Felix Günther, and Tibor Jager. On
the concrete security of TLS 1.3 PSK mode. In Orr Dunkelman and
Stefan Dziembowski, editors, EUROCRYPT 2022, Part II, volume
13276 of LNCS, pages 876–906. Springer, Heidelberg, May / June
2022.

[27] Hannah Davis and Felix Günther. Tighter proofs for the SIGMA
and TLS 1.3 key exchange protocols. In Kazue Sako and Nils Ole
Tippenhauer, editors, ACNS 21, Part II, volume 12727 of LNCS,
pages 448–479. Springer, Heidelberg, June 2021.

[28] Antoine Delignat-Lavaud, Cédric Fournet, Markulf Kohlweiss,
Jonathan Protzenko, Aseem Rastogi, Nikhil Swamy, Santiago
Zanella-Béguelin, Karthikeyan Bhargavan, Jianyang Pan, and
Jean Karim Zinzindohoue. Implementing and proving the TLS 1.3
record layer. In 2017 IEEE Symposium on Security and Privacy,
pages 463–482. IEEE Computer Society Press, May 2017.

[29] Denis Diemert and Tibor Jager. On the tight security of TLS
1.3: Theoretically sound cryptographic parameters for real-world
deployments. Journal of Cryptology, 34(3):30, July 2021.

[30] Benjamin Dowling, Marc Fischlin, Felix Günther, and Douglas
Stebila. A cryptographic analysis of the TLS 1.3 handshake
protocol candidates. In Indrajit Ray, Ninghui Li, and Christopher
Kruegel, editors, ACM CCS 2015, pages 1197–1210. ACM Press,
October 2015.

[31] Benjamin Dowling, Marc Fischlin, Felix Günther, and Douglas
Stebila. A cryptographic analysis of the TLS 1.3 handshake
protocol. Journal of Cryptology, 34(4):37, October 2021.

[32] Marc Fischlin and Felix Günther. Multi-stage key exchange and
the case of Google’s QUIC protocol. In Gail-Joon Ahn, Moti Yung,
and Ninghui Li, editors, ACM CCS 2014, pages 1193–1204. ACM
Press, November 2014.

[33] Felix Günther. Modeling Advanced Security Aspects of Key Ex-
change and Secure Channel Protocols. Ph.D. Thesis, Technische
Universität Darmstadt, 2018.

[34] Dan Harkins and Dave Carrel. The Internet Key Exchange (IKE).
IETF RFC 2409 (Proposed Standard), 1998.

[35] Charlie Jacomme, Elise Klein, Steve Kremer, and Maı̈wenn Racou-
chot. A comprehensive, formal and automated analysis of the
EDHOC protocol. In 32nd USENIX Security Symposium, USENIX
Security 2023, Anaheim, CA, United States, August 2023.

[36] Tibor Jager, Florian Kohlar, Sven Schäge, and Jörg Schwenk. On
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A. Cryptographic Primitives

A.1. Hash Functions

A hash function deterministically computes a short
fingerprint for inputs of arbitrary length. In the context
of EDHOC, the hash function’s primary usage is to hash
the communication transcript, which is used to assert the
authenticity of the key exchange and the peer.

Definition A.1. (Collision-resistant hash function) A hash
function H : {0, 1}∗ → {0, 1}λ, λ ∈ N is a deterministic
mapping H(m) = hm ∈ {0, 1}λ,∀m ∈ {0, 1}∗. The rele-
vant security notion is collision resistance (CR), namely
the (in)feasibility of producing values m 6= m′ such that
H(m) = H(m′) for a given adversary A. More precisely,
collision resistance is captured by a game GCR

A (H). The
advantage of A is defined as:

AdvCR
H (A) = Pr

[
(m,m′) $←− A :

H(m) = H(m′)

∧ m 6= m′

]
.

A.2. Pseudo-Random Functions

EDHOC generates multiple keys, IVs, and MAC tags
from an already established session key using pseudo-
random functions.

OInitialize()
1 : b $←− {0, 1}
2 : f $←− Funcs[X ,Y]

3 : k $←− K

Oprf (x)

1 : y0 = F (k, x)

2 : y1 = f(x)

3 : return yb

OFinalize(b′)
1 : return b

′
= b

Figure 6. The PRF security game GPRF(F ) for a function F .

Definition A.2. (Pseudo-random function) A pseudo-
random function F : K × X → Y is a deterministic
function that takes as input a key k and a value x and
outputs a value y. Intuitively, F is a PRF if for a randomly
chosen key k, it is computationally indistinguishable from
a function f : X → Y chosen uniformly at random from
Funcs[X ,Y], the set of all functions from X to Y .

Security of PRFs. We use the term “PRF” to refer
to a function defined in this section and the associated
security notion that we formalize next. Let A be any
efficient distinguisher for F in the sense of the game
GPRF (Figure 6). We define A’s advantage against the
PRF security of F as follows:

AdvPRF
F (A) = 2 · Pr

[
GPRF(F )→ 1

]
− 1.

Key expansion as a PRF in EDHOC. The Expand
module in EDHOC defined as Expand(k, (label , context ,
len), len) (cf. Section 2.2.1 and [55, Section 4.1.2]) is
a variable output length PRF that outputs bit strings of
length len when queried on the key k and input label .

A.3. Key Derivation Functions

To derive the final key and other keys used dur-
ing the key exchange, EDHOC uses a key derivation
function. The key derivation in EDHOC closely follows
the design of HKDF [43], it is realized via two mod-
ules. The first Extract(s, ikm) that extracts a pseudo-
random key from ikm. The second module is the function
Expand(prk, info, len) that generates from the pseudo-
random key prk another length-len pseudo-random key.

A.3.1. The Extract module. The output of the anony-
mous Diffie–Hellman key exchange protocol is a group
element, and its bitstring representation is usually not a
uniform random variable. Hence, one needs a so-called
extractor to extract a uniform random key. We note that
Krawczyk described assumptions required for the func-
tion HKDF.Extract in [43]. In our analysis of EDHOC,
we will rely on the PRF-ODH assumption described in
Appendix A.4.

A.3.2. The Expand module. Once a pseudo-
random key prk is obtained from the extractor,
one wishes to use it to generate other keys. The
Expand(prk, (label , context , len), len) module is used for
this purpose. We assume that Expand is a PRF as defined
in Appendix A.2.

A.4. Pseudo-Random Function Diffie–Hellman
Oracle Assumption

The PRF-ODH [15], [36] assumption has been in-
troduced and used to analyze real-world Diffie–Hellman

15

https://lora-alliance.org/about-lorawan/
https://tools.ietf.org/html/draft-ietf-lake-edhoc-17


OInitialize()
1 : b $←− {0, 1}

2 : (u, v) $←− Z2
q

3 : blocked← false

OChall(x∗)
1 : y

∗
0 ← F (u(vG), x

∗
)

2 : y
∗
1

$←− Y
3 : return y

∗
b

OFinalize(b′)
1 : return b = b

′

Ov(T, x)

1 : return ⊥

Ou(T, x)

1 : if blocked :

2 : return ⊥
3 : if T /∈ G :

4 : return ⊥
5 : if (T, x) = (vG, x

∗
) :

6 : return ⊥
7 : y ← F (uT, x)

8 : blocked← true

9 : return y

Figure 7. The snPRF-ODH game GsnPRF-ODH(F ). The OChall

returns either output of F or a random value. The oracle Ov is shown
to return ⊥ because no queries are allowed.

based key exchange protocols (including TLS 1.2,
TLS 1.3, Signal, Wireguard). In DH-based protocols, par-
ticipants exchange DH shares xG, yG and compute the
shared secret ss = DH(x, yG), which is further processed
into a session key k with a key derivation function and
other auxiliary inputs. The assumption arises naturally
in such protocols in the presence of an active adver-
sary who may, for instance, obtain one or more values
ss′ = DH(v, xG) for an adversarially chosen v. Therefore,
by the PRF-ODH assumption, we can consider the final
session key k to be an independent pseudo-random value
even though ss and ss′ are related in a nontrivial manner.
In EDHOC, we will rely on the snPRF-ODH security of
the Extract function.

Definition A.3 (The snPRF-ODH assumption). Let G =
〈G〉 be a cyclic group of order q, let F : G × X → Y
be a PRF (see Appendix A.2) that takes a key k ∈ G,
an input x ∈ X and outputs a value y = F (k, x) ∈
Y . The snPRF-ODH assumption essentially states that
F (k, ·) is a PRF keyed with k = u(vG) for (u, v) $←− Z2

q .
Similiarly to the usual PRF security notion, an adversary
is given access to an oracle OChall that returns either
the output of F or a uniform random value. However, for
PRF-ODH, the adversary is additionally given uG, vG
and access (with restriction) to oracles Ov and Ou defined
by Ou,v(T, x) = F (Tu,v, x). The former allows a single
query whereas Ov allows no query. The security notion is
made more formal in the game GsnPRF-ODH (Figure 7).
The advantage of an adversary A is defined as:

AdvsnPRF-ODH
F (A) = 2 · Pr

[
GsnPRF-ODH(F )→ 1

]
− 1.

The PRF-ODH assumption was studied in [15], and
the authors showed that in the random oracle model,
the strongest PRF-ODH variant is achievable under the
strong Diffie–Hellman assumption.

PRF-ODH security of Extract. Brendel et al. [15]
showed that HMAC is snPRF-ODH-secure, i.e., it is a
PRF F (k, x) = HMAC(x, k). The authors remark that the
results will likely apply if a sponge-based construction re-
places the underlying hash function. However, in EDHOC,
sponge-based hashes are not used within the HMAC con-
struction. Instead, EDHOC directly uses KMAC for MAC-
ing and Shake128 or Shake256 for hashing and as XOFs.
Therefore, it seems to be an open question whether we can
also assume the use of KMAC in Extract snPRF-ODH-
secure. In our analysis, we assume that this is the case.

GEUF-CMA

OInitialize()
1 : (sk, pk)← S.KGen

2 :M← ∅
3 : return pk

OFinalize(m,σ)

1 : return

(
S.Vf(pk,m, σ) = 1
∧ m /∈ M

)

OSign(m)

1 :M←M∪ {m}
2 : return S.Sign(sk,m)

GSUF-CMA

OInitialize(m)

1 : (sk, pk)← S.KGen

2 :M← ∅
3 : return pk

OFinalize(m,σ)

1 : return

(
S.Vf(pk,m, σ) = 1
∧ (m,σ) /∈ M

)

OSign(m)

1 : σ $←− S.Sign(sk,m)

2 :M←M∪ {(m,σ)}
3 : return σ

Figure 8. The EUF-CMA game (top) and SUF-CMA game (bottom)
for a signature scheme S.

A.5. Digital Signatures

A digital signature scheme allows a message sender
(and only them) to produce publicly verifiable proof that
the message is authentic. In EDHOC, signatures are used
to authenticate the peers.

Definition A.4 (Digital signature scheme). A digital sig-
nature scheme S is a triple of efficiently computable
algorithms (KGen,Sign,Vf) where:

• KGen is a probabilistic algorithm that generates
a signature key pair (sk, pk) ∈ Ksk ×Kpk.

• Sign : Ksk × M → Σ is a (possibly proba-
bilistic) algorithm that on input a signature key
sk and a message m computes a signature σ $←−
Sign(sk,m).

• Vf : Kpk ×M × Σ → {0, 1} is a deterministic
algorithm that takes as input a public key pk, and
a message m, and a signature σ and outputs a
bit b = Vf(pk,m, σ). The output is 1 when the
signature is valid and 0 otherwise.

Correctness. ∀(sk, pk) $←− KGen,m ∈ M :
Pr[Vf(pk,m, Sign(sk,m))] = 1.

A.5.1. Security of Digital Signatures Schemes.

Definition A.5 (Existential unforgeability under cho-
sen-message attacks). For a signature scheme S and
an efficient adversary A, existential unforgeability under
chosen-message attacks (EUF-CMA) is a security notion
capturing A’s success in forging signatures for new mes-
sages given access to a signing oracle (See Figure 8). The
advantage of A is defined by:

AdvEUF-CMA
S (A) = Pr

[
GEUF-CMA(S)→ 1

]
.

Definition A.6 (Strong unforgeability under chosen-mes-
sage attacks). For a signature scheme S and an efficient
adversary A, strong unforgeability under chosen-message
attacks (SUF-CMA) is a security notion that captures A’
success in forging a new message-signature pair given

16



access to a signing oracle (see Figure 8). We define A’s
advantage as follows:

AdvSUF-CMA
S (A) = Pr

[
GSUF-CMA(S)→ 1

]
.

A.6. Authenticated Encryption

An authenticated encryption scheme with associated
data (AEAD) is an encryption scheme in which, given a
message m and additional data ad, the scheme ensures
confidentiality for m and integrity for both m and ad. In
EDHOC, AEAD is used to encrypt part of the handshake.
We use the nonce-based syntax for AEAD [52].

Definition A.7 (Nonce-based authenticated encryption
with associated data). A nonce-based authenticated en-
cryption scheme with additional data E is a triple of effi-
ciently computable algorithms (KGen,Enc,Dec) where:

• KGen is a probabilistic algorithm that generates
a random key k ∈ K.

• Enc : K ×M × AD × N → C = {0, 1}∗ is a
deterministic algorithm that takes a key k ∈ K, a
message m ∈ M, an additional data ad ∈ AD,
a nonce n ∈ N and returns a ciphertext c =
E.Enc(k,m, ad, n) ∈ C.

• Dec : K × C × AD × N → M ∪ {⊥} is a
deterministic algorithm that takes a key k ∈ K,
a ciphertext c ∈ C, an additional data ad ∈ AD,
a nonce n ∈ N and returns a message m ∈ M
or a distinguished error symbol ⊥.

Correctness. We demand that for all k ∈ K, m ∈ M,
ad ∈ AD, n ∈ N :

Dec(k,Enc(k,m, ad, n), ad, n) = m.

B. Full Proof of Theorem 5.1

We provide here a full proof for Theorem 5.1.

Proof. Let A be an MSKE-adversary against
EDHOC-Sig-Sig, we bound A’s advantage, denoted
by AdvMSKE

EDHOC-Sig-Sig(A), with the following sequence of
games.

B.1. Phase 1: Ensuring Soundness

GAME G0. We start with the normal MSKE game de-
fined in Figure 4 and played by A. By definition,

AdvG0(A) = AdvMSKE
EDHOC-Sig-Sig(A).

GAME G1. In this game, we log all Diffie-Hellman
shares chosen by honest sessions in a table Tdh. Addition-
ally, we set the flag dhcoll to true whenever a collision
occurs in Tdh, i.e., when two honest sessions sample the
same DH key shares. These changes are not noticeable to
the adversary, therefore:

AdvG1(A) = AdvG0(A).

GAME G2. This game aborts whenever dhcoll is set.
Before dhcoll is set, G2 is equivalent to G1. By the

identical-until-bad lemma of [7], the advantage difference
of A can be bounded as follows:

|AdvG2(A)− AdvG1(A)| ≤ Pr[dhcoll ← true].

We use the birthday paradox to bound Pr[dhcoll ← true].
Let q = |G| be the order of the prime-order group
used in EDHOC-Sig-Sig and assuming that DH shares are
chosen uniformly at random, we directly obtain the bound
Pr[dhcoll ← true] ≤ nS

2

q , where nS is the total number
of sessions. As a consequence:

|AdvG2(A)− AdvG1(A)| ≤ nS
2

q
.

Conclusion of Phase 1. At this point, we argue that if
G2 does not abort, then the adversary A cannot cause the
Sound predicate to become false. Recalling the definition
of the predicate Sound in our MSKE model (see Figure 5),
there are six events, at least one of which must occur for
Sound to be false. In the following, we argue that if G2

did not abort, then none of the six events occurred.

Proposition B.1. At any given stage, no more than two
sessions share the same session identifier.

Proof . We show that there is no “triple-partnering”.
Assume that ∃s, x, y, z : (x, y) ∈ Ps, (x, z) ∈ Ps, (y, z) ∈
Ps, that is, sessions x, y, z are pair-wise partnered in
stage s. We have three pairs of partnered sessions, but
at most two DH shares12. We recall that in G2, the
challenger aborts the game if such a situation occurs,
which contradicts the assumption of triple partnering.
Therefore, from now on, we assume that at most two
sessions are partnered.

Proposition B.2. Matching session identifiers for a given
stage implies matching stage session keys.

Proof . We show that matching session identifiers implies
that partnered sessions derive the same shared DH secret
and transcript hashes, which is sufficient to compute the
stage keys deterministically. We recall that the key sched-
ule of EDHOC-Sig-Sig (Figure 3) starts by computing the
key PRK2e = Extract("", Gxy), where Gxy is the shared
Diffie-Hellman secret. Hence, the equality of the session
identifiers implies the equality of the derived PRK2e. The
key schedule proceeds to derive further stage keys (and po-
tentially associated IVs) using the Expand function keyed
with PRK2e. For each key/IV, Expand is evaluated on
an input composed of the (partial) transcript hash and a
stage-specific label. By the definition of transcript hashes,
the equality of session identifiers implies the equality of
the transcript hash. Therefore, two partnered sessions at
any stage s will always derive the same stage key and IV
if the latter is required.

Proposition B.3. Matching stage session identifiers im-
plies opposite roles.

Proof . Assume that not more than two sessions have the
same session identifier for a given stage (Proposition B.1)
i.e., ∀s ∈ S : ¬∃x, y, z : (x, y) ∈ Ps ∧ (x, z) ∈ Ps ∧
(y, z) ∈ Ps. Each session includes its DH share kG in the
session identifier at a fixed position. Having Two sessions

12. Every session identifier includes two DH shares.
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with the same session identifier and the same role at a
given stage implies that the sessions sampled the same
DH key shares, which contradicts the uniqueness of the
DH key shares guaranteed at this point since G2 did not
abort.

Proposition B.4. Matching session identifiers for a given
stage implies agreed-upon contributive identifiers.

Proof . For any stage s ∈ [1, 4], the session identifier for
that stage includes the DH shares of both parties. We
recall that the contributive identifiers for EDHOC-Sig-Sig
are defined as follows: cid[init , 1] = (“1”, Gx) and for all
roles r and stages s, cid[r, s] = (“s”, Gx, Gy). Therefore,
matching session identifiers means agreement on the DH
shares, which in turn means agreement on the contributive
identifiers.

Proposition B.5. Matching session identifiers in authen-
ticated stages implies that the partner session is intended.

Proof . Assuming that agreement on the session identifier
(sid[s]) for an authenticated stage s implies different roles
(see Proposition B.3), honest initiators and responders
write their identity in the I/R placeholder in the session
identifier. If these values are both honestly set, agreement
on the session identifier implies agreement on the peer’s
identity and respective roles.

Proposition B.6. Session identifiers are different across
stages.

Proof . For any stage s ∈ [1, 4], the session identifier
sid[s] = (“s”, . . .) is a sequence whose first element is
“s′′. For any t 6= s, sid[t] = (“t′′, . . .) 6= (“s′′, . . .).
Therefore, session identifiers are distinct across stages

B.2. Phase 2: Ensuring Explicit Authentication
and Key Indistinguishability

We proceed with the second phase of our proof, as-
suming that soundness is unconditionally guaranteed from
now on. In this phase, we show that the adversary cannot
win by breaking explicit authentication or distinguishing
the challenge bit.

Preparing for our analysis of Phase 2, we introduce
the following two games to exclude collisions in the
partial transcript hashes. Moreover, from now on, we drop
EDHOC-Sig-Sig from advantage expressions for the sake
of readability.

GAME G3. In this game, we log the hash values com-
puted by honest sessions in a table Thash that provides
efficient lookups. Given an arbitrary value m, Thash maps
H(m) to m, that is, Tdh[h]← m. Additionally, we set the
flag hashcoll if an honest session computes a hash h on
a value m such that h ∈ Thash and Thash[h] 6= m. These
changes are unobservable to the adversary, therefore

AdvG3(A) = AdvG2(A).

GAME G4. The G4 aborts whenever hashcoll is set.
Using the identical-until-bad lemma, we have that

|AdvG4(A)− AdvG3(A)| ≤ Pr[hashcoll ← true].

We bound Pr[hashcoll ← true] using a reduction B4 to
the collision resistance of H. B4 honestly, simulates G4

towards A; whenever hashcoll is set, B4 wins the collision
resistance game by outputting the strings m 6= m′ that
caused the collisions. Therefore, Pr[hashcoll ← true] ≤
AdvCR

H (B4) and as consequence:

|AdvG4(A)− AdvG3(A)| ≤ AdvCR
H (A).

At this point, we split the proof into two branches I
and II, each starting from G4 and proceeding with the
games GI and, GII respectively. In the first branch, the
adversary attempts to break explicit authentication for at
least one session; in the second branch, explicit authen-
tication is unconditionally guaranteed, and the adversary
attempts to guess the challenge bit. Since the two cases
are disjoint, we have the following bound:

AdvG4

A ≤ max(AdvGI

A ,AdvGII

A ) ≤ AdvGI

A + AdvGII(A).

We start with branch Branch I.

B.2.1. Branch I: The adversary Cannot Break Explicit
Authentication. In this branch, we use a hybrid argument
to analyze explicit authentication. Namely, we will zoom
in on a single session for which A attempts to break
explicit authentication. We will use the term targeted
session to refer to the session for which the adversary
attempts to break explicit authentication.

GAME GI . Continuing from G4, in this game, we guess
a session-stage pair

(
πiU , s

)
such that ExplicitAuth eval-

uates to false since the adversary broke explicit authentica-
tion of πiU in stage s. This restriction to a single targeted
session and stage reduces the advantage by a factor of
nS × S, where nS is the total number of sessions, and S
is the number of stages. We therefore get the following:

AdvG4(A) ≤ 4nS · AdvGI(A).

From now on, πiU refers to the targeted session.

GAME GI.1. In this game, we log all messages signed
by honest users in a table Tsig with efficient lookups,
along with the corresponding public key and the signature
produced. More precisely, for a (honest) user U that owns
the long-term key pair (skU , pkU ), let σ = Sign(skU ,m)
be the signature computed on a message m, then Tsig
is a list of tuples (m,σ, pkU , U). In concrete terms,
an initiator session with identity I will sign a mes-
sage of the form m3 = (lsig, kidI , th3, credI , ead3, τ3).
Whereas, the responder R will sign a message of the
form m2 = (lsig, kidR, th2, credR, ead2, τ2). Due to cre-
dential identifiers potentially referencing multiple creden-
tials, protocol participants may have to verify the received
signatures against multiple public keys. Upon receiving
the protocol message msg2 that includes the credential
identifier kidU , initiator sessions will attempt to validate
the received signature σ2 against each public key pkU
referenced by kidU , adapting the a priori signed message
to the messages mU = (lsig, kidU , th2, credU , ead2, τ2).
These validation attempts are performed until for one
public key Vf(pkU , σ2,mU ) = 1; otherwise, the protocol
is aborted. Similarly, responder sessions verify the signa-
ture σ3 received within msg3 and all possible messages
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mU = (lsig, kidU , th3, credU , ead3, τ3) against each public
key pkU .

In addition to logging messages, we set the flag
sigforged if the targeted session receives and validates a
message signature pair (m,σ) under the public key pkV of
an honest13 user V such that (m,σ, pkV , V ) /∈ Tsig. These
changes are only administrative and are not observable by
the adversary. Therefore:

AdvGI.1

A = AdvGI(A).

GAME GI.2. In this game, we abort whenever sigforged
is set. We bound Pr[sigforged ← true] by a reduction
BI.2 to the SUF-CMA security of Sig. Namely, BI.2
first guesses the identity (V ) of the peer session which
reduces the advantage by a factor nU and associates pkV
with the public key pk∗ from the SUF-CMA challenge
i.e. pk∗ = pkV . The reduction answers all game queries
and calls its signing oracle whenever a query needs V
to produce a signature. Upon sigforged being set, BI.2
outputs the message signature pair (m,σ) that caused
sigforged to be set and aborts GI.2.

Simulation soundness. Besides REVLONGTERMKEY
queries, BI.2 can consistently answer all queries. Next,
we argue that REVLONGTERMKEY queries are of no
concern. Indeed, after sigforged is set, we do not need
to answer this query. Before the flag is set, such a query
does not help the adversary either. The ExplicitAuth
predicate requires the value of revltkV designates a time
after acceptance of the stage s′, where the stage s receives
explicit authentication, perhaps retroactively. Since the tar-
geted session must have accepted stage s′, which requires
receiving and accepting a message-signature pair under
pkV ; therefore, a REVLONGTERMKEY(V ) query before
sigforged is unhelpful for the adversary in its quest to
break explicit authentication. Hence, the reduction need
not answer REVLONGTERMKEY queries.

Validity of the Forgery. By definition of Tsig, the flag
sigforged is set only when the targeted session receives
and accepts a message signature pair (m,σ) under a
pkV such that (m,σ, pkV , V ) /∈ Tsig. This implies that
(m,σ) is a new message-signature pair that V did not
previously produce. Therefore, BI.2 produces a legitimate
SUF-CMA forgery, and we have the following:

Pr[sigforged ← true] = AdvSUF-CMA
Sig (A).

And as a consequence:

|AdvGI.2(A)− AdvGI.1(A)| ≤ nU · AdvSUF-CMA
Sig (A).

GAME GI.3. In this game, we set the flag sigambigous if
there exists an honest session π that receives and accepts a
message-signature pair (m′, σ) under a public key pkU ′ ,
where a session of some user U produced σ on some
other message m, and there exists a value kid such that
(pkU , U) ∈ peerpkkid and (pkU ′ , U

′) ∈ peerpkkid. In other
words, kid identifies both pkU and pkU ′ ; and for some m
it holds that (m,σ, pkU , U) ∈ Tsig. We view pkU ′ as a
key chosen by the adversary A and registered using the
query NEWUSER(skU ′ , pkU ′ , kid). From the standpoint
of π , there is an ambiguity about the identity of the

13. More precisely, we only expect that V is honest at the time the
message-signature pair is received.

peer that (presumably) authenticated themselves via the
received message signature pair (m′, σ). These changes
are unobservable to the adversary, therefore:

AdvGI.3

A = AdvGI.4(A).

GAME GI.4. The game aborts whenever sigambigous is
set. We first observe that for m and m′ as described in the
previous game, it is always the case that m′ 6= m. This
is because each session signs a message that includes the
user’s credentials, i.e., each user U ′ signs a message of
the form (lsig, kidU ′ , th, credU ′ , ead, τ). Furthermore, the
credentials are unique to each identity, and the CBOR
encoding is unambiguous. Consequently, we can restrict
our analysis to pkU 6= pkU ′ . If pkU = pkU ′ , the attacker
knows the secret key, or they have to devise a forgery since
m is never signed by U . By definition of sigambigous,
we can relate Pr[sigambigous ← true] to the advantage of
an S-UEO adversary BI.4 against Sig. More precisely,
BI.4 associates pkU with the public key from the pk∗

received from the challenger S-UEO, i.e. pkU = pk∗.
The reduction uses the signing oracle of its challenger
whenever a query needs U to sign a message; else, it
responds to the other oracle queries in the usual manner.
It aborts the game when sigambigous is set.

Simulation soundness: We only need to consider the
REVLONGTERMKEY(U) queries, as the reduction can
answer all other queries consistently. On the one hand, we
do not need to consider what happens after sigambigous
is set. The simulation aborts and need not answer
REVLONGTERMKEY(U) queries. On the other hand, the
predicate ExplicitAuth requires pkU is not compromised
before the session π accepts stage s. Therefore, for our
reduction, the REVLONGTERMKEY(U) queries are not a
concern, and the simulation is sound.

Validity of the attack. If the flag sigambigous is set, π
accepted and verified a message signature pair (m′, σ) un-
der a public key pkU ′ and ∃t ∈ Tsig : t = (m,σ, pkU , U).
As observed above, m 6= m′; therefore, no honest ses-
sion sought to sign m. As a consequence, the tuple
(m,m′, σ, pk, pk′) is a valid S-UEO forgery. Therefore,
we get that

Pr[sigambigous ← true] ≤ AdvS-UEO
Sig (A).

Finally, we get:

|AdvGI.4(A)− AdvGI.3(A)| ≤ nS · AdvS-UEO
Sig (A).

Note. The signature schemes in EDHOC are Ed25519
and ECDSA. The former is known to be S-UEO-
secure [14]. Moreover, in EDHOC, the signing algorithm
unambiguously places the public key of the message
together with the actual message via the credential. There-
fore, we could view the signature scheme (Sig) in EDHOC
as another scheme Ŝig that takes a message and signs the
message along with the corresponding verification key.
That is, for a key pair (sk, pk), the signing algorithm
is modified and behaves as follows: Ŝig.Sign(sk,m) =
Sig.sign(sk, (m, pk)). Pornin and Stern [50] showed that
unambiguous inclusion of the verification key is enough
to thwart S-UEO attacks, provided there are no weak
keys. This property holds for ECDSA, assuming that
the concrete implementation of ECDSA performs all the
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necessary checks to prevent ”weak keys.” Finally, we note
that Destructive Ownership would be sufficient.

Establishing ExplicitAuth = true. At this point, we
argue that if GI.4 does not abort, then the adversary
cannot win by causing the predicate ExplicitAuth to
evaluate to false.

The predicate ExplicitAuth and its negation are
shown in Figure 9 for illustration. When explicit au-
thentication is violated (¬ExplicitAuth in Figure 9), the
following holds:

1) πiU accepted stage s (resp. s′) at time t (resp. t′).
The session accepts with a peer identity πiU .pid =
V (one must be set).14

2) V ’s long-term secret was not compromised at
time t′.

3) (I.a) Either, no (honest) session πjV is partnered
with πiU in stage s′.

4) (I.b) Or, There exists an honest session πjV that is
partnered with πiU in stage s′; however, the two
sessions are not partnered in stage s.

For an initiator session, stages 2, 3, and 4 are explicitly
authenticated once stage 2 is accepted; stage 1 receives au-
thentication retroactively. For a responder session, stages 3
and 4 are explicitly authenticated once stage 3 is accepted;
previous stages receive authentication retroactively. Re-
gardless of the role, each session must have received a
valid signature σ on a MAC tag before accepting the
relevant s’th stage. Concretely, an initiator session with
identity I , must have received from its responder peer
with identity R a valid signature σ2 within the message
msg2; where σ2 is computed over a message of the form
m2 = (lsig, kidR, th2, credR, ead2, τ2). The responder ses-
sion must have received a signature σ3 over the message
m3 = (lsig, kidI , th3, credI , ead3, τ3) within the message
msg3. The attacker breaks explicit authentication if either
case (I.a) or (I.b) occurs. We address the possibility that
either event occurs.

Case (I.a). The targeted session, πiU , accepted a message
signature pair (m,σ) under the public key of V , i.e.,
Vf(pkV ,m, σ) = 1, but no session πjV is partnered with
πiU in stage 2 (resp. stage 3) if πiU is the initiator (resp.
responder). We consider two cases that we call (i) and
(ii), based on whether the message and signature received
by πiU verifies the following: (m,σ, pkV , V ) /∈ Tsig. By
the definition of case (i), no honest session produced
the pair of message signatures (m,σ). Therefore, the
adversary must have forged a signature. At this point,
if GI.2 did not abort, then the adversary could not have
forged a signature. If case (ii) occurs, an honest session πjV
produced the message signature pair received and accepted
by πiU . In particular, if πiU is in the initiator role, the
message (lsig, kidR, th2, credR, ead2, τ2) was signed (resp.
verified) by πjV (resp. πiU ). Hence, πiU and πjV agree on
the values of σ2, kidR, ead2 in sid[2]. Additionally, they
also agree on the values of th2 = H(Gy,CR,H(msg1)).
Thanks to G4, partial collisions in transcript hashes are
excluded. Therefore, πiU must also agree on the values

14. Note that we can focus on potential partner sessions owned
by πi

U .pid = V , as sessions πk
V ′ for V ′ 6= V trivially satisfy the

πi
U .pid 6= V of the ∀ clause of ¬ExplicitAuth.

of Gy, CR, and and therefore agree on their respective
stage-2 session identifiers and are partnered in stage 2,
contradicting the assumption that πiU does not have a
partner session in stage 2. Analogously, if πiU is a respon-
der session (πjV is an initiator), the message signed is of
the form m3 = (lsig, kidI , th3, credI , ead3, τ3). Therefore,
there is agreement on the values of σ3, kidI and ead3.
Furthermore, agreement on th3 = H(th2, ptxt2, credR)
implies agreement on the remaining values of the stage 3
session identifiers, thanks to G4.

Finally, suppose that the targeted session πiU is in
the responder role. The attacker can cause case (ii) to
occur by mounting an attack against the intended initiator
session πjV such that πjV would accept with a malicious
peer identity U ′ while not modifying the conversation
transcript. The subtlety of this attack is that although πjV
has been “tricked” into accepting with an unintended peer,
the adversary does not, in fact, break explicit authentica-
tion for πjV ; the adversary broke explicit authentication
for the responder session πiU . At the end of the protocol
run, πiU ends up without a partner in stage 2 and above;
hence πiU is indeed the targeted session. We expand a bit
more on the details of this attack that exploit ambiguity
about the identity of the responder πiU . Upon receiving
msg2 from πiU , A registers a new key pair by calling
NEWUSER(skU ′ , pkU ′ , kidU ). The malicious key pair is
selected such that πjV would accept σ2 under pkU ′ when
delivered via the relevant SEND query. Careful observation
of the protocol specification reveals that such an attack
would not disturb the protocol run. However, the result is
an identity misbinding attack.

Thanks to GI.4, ambiguity about the responder of
the initiator is excluded. Furthermore, if the initiator ses-
sion πjV accepts another peer identity U ′, the value of
th3 computed by πiU (resp. πjV ) are H(th2, ptxt2, credU )
(resp. H(th2, ptxt2, credU ′)). These are different values,
and since honest sessions only sign transcript hashes
corresponding to their session identifiers, the adversary
must come up with a new forgery for πiU to later accept
msg3.

We have shown that case (I.a) does not occur. Next,
we analyze the case (I.b).

Case (I.b). Let s′ be the stage in which πiU receives
explicit authentication. Recall that s′ = 2 if πiU is in the
initiator role and s′ = 3 if πiU is in the responder role. For
a given stage s ∈ [1, 4], we use sid[s] to denote the sub-
sequence of sid[s] that does not contain the stage label.
We proceed with this analysis stage by stage, assuming
that πiU .sid[s′] = πjV .sid[s′].
• Stage 1. This stage receives retroactively explicit

authentication upon acceptance of stage 2 for ini-
tiator sessions and upon acceptance of stage 3 for
responder sessions. Assuming that πiU .sid[s′] =
πjV .sid[s′], we also know that sid[1] ≺ sid[s] for
s ∈ {2, 3}. Therefore, case (I.b) cannot occur for
s = 1.

• Stage 2. For initiation sessions, case (I.b) is triv-
ially impossible since s = s′ = 2. For responder
session, sid[2] ≺ sid[3] and thus case (I.b) cannot
occur.

• Stage 3. In case πiU is in the responder role, then
case (I.b) is trivially excluded since s = s′ = 3.
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ExplicitAuth := ∀(πiU , s) :




πiU .accepted[s] ∧
eauth[πiU .role, s] = s′ <∞ ∧
πiU .accepted[s′] < revltkπiU .pid

 =⇒

∃πjV :


πiU .pid = V ∧
πiU .sid[s′] = πjV .sid[s′] ∧
πjV .accepted[s] < revltkπiU .id =⇒ πiU .sid[s] = πjV .sid[s]




.

¬ExplicitAuth := ∃(πiU , s) :




πiU .accepted[s] ∧
eauth[πiU .role, s] = s′ <∞ ∧
πiU .accepted[s′] < revltkπiU .pid


∧

∀πjV :


πiU .pid 6= V ∨
πiU .sid[s′] 6= πjV .sid[s′] ∨
πjV .accepted[s] < revltkπiU .id ∧ πiU .sid[s] 6= πjV .sid[s]




.

Figure 9. The top predicate corresponds to explicit authentication (predicate ExplicitAuth) being satisfied, the bottom predicate is its negation and
corresponds to explicit authentication being violated; used when establishing ExplicitAuth = true in the proof in Game GI.4.

For an initiator session, the only possible diver-
gences in πiU .sid[3] and πjV .sid[3] are (i) different
values in the field corresponding to msg3 or (ii)
different values in the initiator placeholder po-
sition (I). Case (i) comprises modifications that
would require the adversary to forge a signa-
ture; since honest sessions only sign messages
in transcript hashes that correspond to their ses-
sion identifiers, and the predicate ExplicitAuth
requires that πiU ’s long-term secret, skU , is not
comprised before πjV accepts stage 3. Therefore,
case (i) is prevented thanks to GI.2 where forg-
eries are excluded. Case (ii) requires that the at-
tacker can create ambiguity about the initiator’s
identity. Namely, the attacker would have to mount
an attack such that πjV accepts the peer identity U ′
after receiving msg3. Thanks to GI.4, this cannot
occur.

• Stage 4. We observe that sid[4] = sid[3]. There-
fore, the analysis of stag 4 is identical to the
analysis of stage 3.

Since adversaries A cannot break explicit authentica-
tion, they can no longer win in this branch of the proof.
Thus,

AdvGI.4(A) ≤ 0.

Conclusion of Branch I. We have shown that the adver-
sary cannot break explicit authentication. We now analyze
the key secrecy properties of stage keys in EDHOC,
assuming that the predicate ExplicitAuth is always true.
We do so by showing that the challenge bit is random and
independent of the adversary’s guess.

B.2.2. Branch II: Ensuring that the challenge bit is
random and independent of the adversary’s guess.
GAME GII . Continuing from G4, in this game, we
restrict the adversary A by allowing a single TEST query.

From this point on, we assume that the tested session is
known in the subsequent games, and we will talk of the
tested session, πiU . We follow the approach of Dowling
et al. [31] who presented a careful hybrid argument for
their analysis of TLS 1.3 and argued that this restriction
reduces the advantage of A by a factor at most nS · S.
Here, nS is the number of sessions, and S = 4 is the
number of stages. Therefore, we get the following bound:

AdvG4

A ≤ 4nS · AdvGII(A).

We proceed with our analysis of Branch II by consid-
ering two disjoint cases. Namely,

• Case A: the tested session does not have a (honest)
contributive partner in the first stage, i.e.,

∀π 6= πiU : πiU .cid

[
πiU .role, 1

]
6= π.cid

[
πiU .role, 1

]
.

• Case B: The tested session has a (honest) con-
tributive partner in the first stage, that is,

∃π 6= πiU : πiU .cid

[
πiU .role, 1

]
= π.cid

[
πiU .role, 1

]
.

Since the two cases above are disjoint, we can bound
A’s advantage as follows:

AdvGII(A) ≤ AdvGII case A(A) + AdvGII case B(A).

Case A: The tested session has no contributive partner.
As a first observation, the adversary cannot test for unau-
thenticated stages; such a test query is considered non-
fresh in the model (see Figure 5). In particular, A may not
test stage 1 nor stage 2 in the case of a responder session.
TEST queries are only allowed from stage 2 onward for an
initiator session and from stage 3 onwards for a responder.
Having established the appropriate restrictions on TEST
queries, we now analyze the conditions under which a
session accepts a stage that can be legally tested. For
an initiator session, acceptance of stage 2 is predicated
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on the reception of a valid tuple (σ2, kidR, ead2) con-
taining a signature and a key identifier. Analogously, a
responder session accepts stage 3 only if it received a
valid triple (σ3, kidI , ead3). Finally, we also observe that
a TEST query is allowed only before the long-term key of
πiU ’s peer is compromised, that is, TEST must be issued
before REVLONGTERMKEY(πiU .pid). Based on the three
observations previously made, one sees that a prerequisite
for A to have a chance of winning the game is to be
able to send valid messages and signatures to the tested
session on behalf of honest users. In the next game hops,
we analyze A’s likelihood of causing such an event.

GAME GII.A1. In this game, we set a flag sigforged
whenever the tested session πiU in the role of initiator
(resp. responder) receives a tuple (kidR, σ2, ead2) (resp.
(kidI , σ3, ead3)) such that the signature verifies under an
honest public key pkV ∈ peerpkkidR (resp. peerpkkidI ).
These changes are only administrative and unobservable
to A, therefore:

AdvGII.A1

A = AdvG4(A).

GAME GII.A2. The Game GII.A2 aborts whenever
sigforged is set. By the identical-until-bad lemma, we have
that

|AdvGII.A2(A)− AdvGII.A1(A)| ≤ Pr[sigforged ← true].

We bound Pr[sigforged ← true] by a reduction BII.A2, to
the EUF-CMA security of the signature scheme. BII.A2,
an EUF-CMA adversary, emulates GII.A2 towards A. To
this end, BII.A2 first guesses the identity V of πiU ’s peer,
and associates the challenge public key pk∗ to V ’s long-
term verification key, i.e. pkV = pk∗. Consequently, A’ s
advantage is reduced by a factor nU where nU is the total
number of users. For each SEND query that requires V to
produce a signature, BII.A2 queries its signing oracle with
the message to be signed. Otherwise, BII.A2 answers the
remaining queries from GII.A2 as appropriate. Finally,
if sigforged is set, BII.A2 outputs the relevant message-
signature pair (m,σ) as its forgery towards its EUF-CMA
challenger. Here, σ is the signature value received by the
tested session, and m is the message for which the tested
session verified the signature.

Simulation soundness. We argue that BII.A2’s sim-
ulation of GII.A2 is sound. First, we observe that
BII.A2 can perfectly answer all queries in GII.A2 but
REVLONGTERMKEY(V ) given that the secret key cor-
responding to pkV = pk∗ is unknown. However, BII.A2

does not need to be able to answer such queries. Namely,
if such a query is issued before acceptance of the tested
stage, the test query is now non-fresh, and the attacker
loses the game. On the other hand, BII.A2 cannot be
bothered by REVLONGTERMKEY(V ) queries issued after
sigforged is set. By then, BII.A2 has a valid forgery for
the EUF-CMA game and can abort the game. This shows
that until sigforged is set, the GII.A2 and GII.A1 are
equivalent, and the simulation is sound.

Validity of the forgery. Having shown simulation
soundness, it remains to show that (m,σ) is a valid
forgery, that is, when BII.A2 outputs (m,σ), the
EUF-CMA challenger also outputs 1. In EDHOC, signa-
tures are computed on (amongst other things) the MAC tag

(τ ) and the transcript hashes (th). More precisely, the mes-
sages to be signed is m = (lsig, kidU , th, credU , ead, τ).
credU is the credential of U that contains pkU and U ’s
unique identity. Recall that for signature verification, when
an initiator (resp. responder) session receives message 2
(resp. message 3), the session may verify the signature
against multiple public keys if the received kidU refers
to multiple credentials. In this case, for each credX
associated with kidU , the message(s) to be verified is
mX = (lsig , kidU , th, credX , ead, τ) until one verification
is successful. Due to the game G4, collisions in the
transcript hashes are excluded if G4 did not abort. This
implies that without a contributive partner, no honest
session signed the message that the tested session received
and accepted after successfully validating the signature.
As a result, given the challenge (EUF-CMA) public key
pk∗, BII.A2 can verify that the pair (m,σ) is a valid
forgery; allowing BII.A2 to abort the game and present
(m,σ) to the challenge EUF-CMA. Therefore, we have:

Pr[sigforged ← true] ≤ nU · AdvEUF-CMA
Sig (A).

It follows that:

|AdvGII.A2(A)−AdvGII.A1(A)| ≤ nU ·AdvEUF-CMA
Sig (A).

At this point, we remark that if sigforged is never set,
then the tested session without a contributive partner never
accepts either stage 2 or stage 3. Consequently, an attacker
cannot make a valid TEST query, and their guess bit b′ is
truly independent of the challenge bit b.

Case B: The tested session has a contributive partner.

GAME GII.B1. In this game, we guess the session πjV
that is contributive partner of the tested session πiU . This
step reduces the advantage of A by a factor nS and we
get:

AdvG4(A) ≤ nS · AdvGII.B1(A).

From this point on, we consider the games to have a
specified tested session and its partner at the outset.

GAME GII.B2. In this game, we replace PRK2e com-
puted by the tested session with a uniform random value
P̃RK2e

$←− KPRK2e
. where KPRK2e

is the key space of
PRK2e. We note here that the cid partner is not guaranteed
to have received the honest DH shares from the tested
session; namely, if the cid partner is in the initiator role,
the adversary A could have delivered a malicious share,
for which A could even know the corresponding secret
scalar. Therefore, we also replace PRK2e at the contribu-
tive partner with the same P̃RK2e only if the contributive
partner holds the same DH shares as the tested session. To
justify this step, we exhibit a reduction to an snPRF-ODH
adversary BII.B2 which, at a high level, receives Diffie-
Hellman shares from its challenger and encodes them in
the shares Gx and Gy used by the partnered sessions.

Simulation soundness. BII.B2 simulates GII.B2 to-
wards A and must answer all queries consistently. The
queries of interest here are SEND queries that induce the
computation of the PRK2e at the tested session πiU and
eventually at its partnered session πjV . BII.B2 consistently
answers all other queries. We observe that if the tested
session is in the initiator role, then πiU and πjV have the
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same P̃RK2e. If, however, πiU is a responder session, πjV
may have received a modified G′y for which the attacker
knows the private scalar z such that G′y = zG. BII.B2

must be able to compute xzG, which is achievable given
access to the ”left” PRF-ODH oracle Ox(S, v). Finally,
we observe that in EDHOC, A is only allowed to deliver a
potentially modified G′y once to πjV ; this implies that the
reduction only needs access to a single Ox(S, v) query.

Details of the reduction. BII.B2 receives DH shares
uG and vG from its snPRF-ODH challenger and simu-
lates GII.B2 towards A answering all queries unrelated
to PRK2e as needed. BII.B2 encodes the received DH
shares (uG, vG) into the Diffie-Hellman shares (Gx, Gy)
of the tested session and its partner, respectively. To derive
PRK2e, BII.B2 makes a PRF query on input the empty
string "" (recall that PRK2e = Extract("", xyG)) and
copies the result into the state of the tested session. BII.B2

copies PRK2e into the state of the contributive partner if it
received the DH share Gy. If the partner session receives
a modified G′y, BII.B2 calls the left oracle Ox(S, v) on
the inputs S = G′y and v = "".

As a consequence, the advantage difference between
GII.B1 and GII.B2 can be bounded by the advantage of
the snPRF-ODH adversary BII.B2, and we get:

|AdvGII.B2(A)− AdvGII.B1(A)| ≤ AdvsnPRF-ODH
Extract (A).

GAME GII.B3. In this game, we replace the function
Expand keyed with P̃RK2e with a random function F at
the tested session. The contributive partner also replaces
Expand with F only if it received honest DH shares. We
justify this step by relating and bounding the advantage
difference of A to the advantage of an PRF adversary
BII.B3. BII.B3 simulates GII.B3 towards A, answering
all queries that do not trigger a call to Expand. To answer
queries that require deriving any key, IV, or MAC tag
derived from PRK2e, BII.B3 queries its PRF oracle with
the appropriate input. By the Game GII.B2, we have
replaced PRK2e by a random value, and each key, IV,
or MAC tag is computed with a unique and distinct
label. Therefore, the simulation is sound, and we get the
following:

|AdvGII.B3(A)− AdvGII.B3(A)| ≤ AdvPRF
Expand(A).

Having replaced Expand with a random function F ,
we can readily replace all values derived by the tested
session using a call to Expand with uniform random
values. Again, we replace these values in the partner
session only if it received an honest DH share. Con-
cretely, we replace in the tested session (and possibly in
the contributing partner) the keys (K2,K3,K4,PRKout),
the initialization vectors (IV3, IV4), and the mac tags
(τ2, τ3) with values drawn at random from the corre-
sponding domains. We call the newly sampled values
K̃2, K̃3, K̃4, P̃RKout, ĨV3, ĨV4, τ̃2, τ̃3. Since all values are
derived in EDHOC by evaluating the random function
F on a unique input per value, F produces independent
random values. Here, one may object that the key spaces
Kk, k ∈ {K2,K3, . . . , τ3} may be different; therefore,
it is not clear that F can produce random values from
each key space. We note that Kk = {0, 1}klen , where

klen is the length of k. Furthermore, we assume that F
is a variable-length random function with output space
{0, 1}∗. Therefore, all keys can be computed accordingly.

Remark. At this stage, all keys are random values
independent of the challenge bit b, and it remains to argue
that REVSESSIONKEY queries do not help the adversary.
Interestingly, keys may not necessarily be independent
when sessions are not partnered. The following problem
may arise in EDHOC: With credential identifiers (kid)
that can refer to multiple identities and associated public
keys, a session may believe they are talking to a session
with a different identity than the one involved in the
protocol. By the definition of the session identifiers, the
two sessions will no longer be partnered. However, the two
sessions will derive the same stage keys. Therefore, the
adversary may use REVSESSIONKEY queries to guess the
challenge bit with high probability. Fortunately, EDHOC
includes the identities in the transcript hashes. Therefore,
disagreement on the peer’s identity leads to divergent keys.

Conclusion of Branch II. Given that the adversary does
not break explicit authentication in this branch of the
proof, we conclude that the challenge bit is random and
independent of the adversary’s guess. Therefore:

AdvGII.B3(A) ≤ 0.

To summarize the proof:

1) Sound. As discussed in the conclusion of
Phase 1, the predicate Sound remains true.

2) ExplicitAuth. As discussed in the conclusion of
Phase 2, Branch I, the predicate ExplicitAuth
remains true.

3) Key secrecy. As discussed in the conclusion of
Phase 2, Branch II, the adversary A cannot guess
the challenge bit with non-negligible probability,
which proves that the stage keys are indistin-
guishable from uniform random values.

Therefore, we have shown that all the security properties
defined in our MSKE model for EDHOC-Sig-Sig hold,
which concludes the proof of Theorem 5.1.

C. Identity Misbinding in MAc-then-SIGn
Under Strong Adversaries

In the following, we discuss an identity misbinding
attack in our model on the MAc-then-SIGn protocol [42],
hereafter denoted by SIGMAσ

τ
for “MAC under the sig-

nature”.15 We stress that this attack does not contradict
the original security analysis of SIGMA’s MAc-then-SIGn
variant by Canetti and Krawczyk [19]; it arises through
giving an adversary the ability to register its own ma-
licious keys in the key exchange model, as our model
does to capture the potential ambiguous interpretation of
credential identifiers in EDHOC (cf. Section 4).

The core issue is caused by a lack of explicit ver-
ification of the MAC tag; instead, the tag is implicitly
verified through the verification of the signature. The
original analysis [19] requires that a secure instantiation
must use an unforgeable signature scheme. We show that
for the security of SIGMAσ

τ
against adversaries that can

15. For simplicity, we exclude identity protection from our treatment.
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register malicious keys, it is not enough for the signa-
ture scheme to be EUF-CMA secure; it must indeed be
unforgeable for all keys. In particular, there cannot be
any weak key, for instance, one that accepts any message-
signature pair. We note that this observation is in line with
a remark by Pornin and Stern [50] that weak keys can
lead to DSKS/exclusive ownership attacks. (An alternative
approach, which is beyond the scope of this work, would
be to establish security for SIGMAσ

τ
under an exclusive

ownership property of the signature scheme, akin to our
EDHOC analysis.)

THE SETUP. Recall that in SIGMAσ
τ

, the initiator sends
the first message (Gx). The responder picks its own
DH share Gy and computes a shared session key K
and a MAC key Km from Gxy using a key derivation
function. It responds with the second protocol message
(R,Gy, σR = Sign(skI , Gx, Gy,MAC(Km, R))).16 The
initiator completes the key exchange by sending the third
message, (I, σI = Sign(skI , Gy, Gx,MAC(Km, I))).

Assume now that the attacker intercepts the second
message and modifies the responder’s identity to some R′;
i.e., sends to the initiator the message (R′, Gy, σ). For
the identity R′, the adversary has registered a weak
verification key pk such that for all messages m and
signatures σ, Vf(pk,m, σ) = 1. As a consequence, the
attacker need not know the MAC key, yet the initiator will
accept the signature with peer identity R′. Furthermore,
the attack modifies the second message only; in particular,
it does not modify the keys computed by the initiator and
the responder. Hence, the responder successfully accepts
the initiator’s final message—which the adversary relays
unmodified. The result is an identity misbinding attack:
initiator I and responder R share the same session key,
but the initiator (incorrectly) thinks it is talking to R′,
while the responder correctly deems I as its peer.

THE ISSUE. At a high level, in MAc-then-SIGn, peers
do not explicitly prove knowledge of the key via the
MAC. Instead, the MAC is only implicitly verified once
the signature is accepted. The insufficiency of the standard
EUF-CMA unforgeability notion is that it only captures
“average-case” unforgeability, i.e., for an honestly, ran-
domly generated key. In contrast, the attack described
here requires unforgeability essentially for all keys, as the
adversary is able to register them with the key exchange
game.

Formally, EUF-CMA security is insufficient by the
following separating example. Let Sig be a EUF-CMA
secure signature scheme. Define Ŝig such that the key
space of Ŝig is the key space of Sig augmented with the
special key pair (sk∗, pk∗). Signing in Ŝig is as before
unless the signing key is sk∗, in which case a random
signature value is returned. The verification algorithm is
also the same, except that when the verification key is
pk∗, verification always returns 1. Observe that Ŝig is still
EUF-CMA as the advantage of any EUF-CMA adversary
is only increased by the probability that the challenge key
pair happens to be (sk∗, pk∗), which for practical key
spaces of Sig is small. However, the SIGMAσ

τ
protocol

is clearly vulnerable to the attack described above if
instantiated with Ŝig.

16. We omit further distinguishing label inputs for clarity.

24


	Introduction
	Contributions
	Related Work

	Preliminaries
	Notation
	Cryptographic Primitives
	Key Derivation
	Exclusive ownership of signatures


	EDHOC and Its SIG-SIG Mode
	Protocol Details
	Cryptographic Algorithms in EDHOC

	Security Model
	Capturing EDHOC's Specifics
	Model Syntax
	Protocol properties
	Session variables
	Game variables
	Session and contributive identifiers

	Adversary Model and Goal
	Security

	Security Analysis
	Protocol Properties
	Security Result

	Conclusion and Discussion
	Contributions to EDHOC
	Limitations and Open Research Questions

	References
	 A: Cryptographic Primitives
	Hash Functions
	Pseudo-Random Functions
	Key Derivation Functions
	The Extract module
	The Expand module

	Pseudo-Random Function Diffie–Hellman Oracle Assumption
	Digital Signatures
	Security of Digital Signatures Schemes

	Authenticated Encryption

	 B: Full Proof of Theorem 5.1
	Phase 1: Ensuring Soundness
	Phase 2: Ensuring Explicit Authentication and Key Indistinguishability
	Branch I: The adversary Cannot Break Explicit Authentication
	Branch II: Ensuring that the challenge bit is random and independent of the adversary's guess


	 C: Identity Misbinding in MAc-then-SIGn Under Strong Adversaries

