
Srinivas Vivek, Shyam Murthy*, and Deepak Kumaraswamy

Integer Polynomial Recovery from
Outputs and its Application to
Cryptanalysis of a Protocol for Secure
Sorting†

Abstract: We investigate the problem of recovering integer inputs (up to an affine
scaling) when given only the integer monotonic polynomial outputs. Given 𝑛 integer
outputs of a degree-𝑑 integer monotonic polynomial whose coefficients and inputs are
integers within known bounds and 𝑛 ≫ 𝑑, we give an algorithm to recover the poly-
nomial and the integer inputs (up to an affine scaling). A heuristic expected time com-
plexity analysis of our method shows that it is exponential in the size of the degree of
the polynomial but polynomial in the size of the polynomial coefficients. We conduct
experiments with real-world data as well as randomly chosen parameters and demon-
strate the effectiveness of our algorithm over a wide range of parameters.
Using only the polynomial evaluations at specific integer points, the apparent hardness
of recovering the input data served as the basis of security of a recent protocol proposed
by Kesarwani et al. for secure 𝑘-nearest neighbour computation on encrypted data that
involved secure sorting. The protocol uses the outputs of randomly chosen monotonic
integer polynomial to hide its inputs except to only reveal the ordering of input data.
Using our integer polynomial recovery algorithm, we show that we can recover the
polynomial and the inputs within a few seconds, thereby demonstrating an attack on
the protocol of Kesarwani et al.

Keywords: Polynomial Reconstruction, Somewhat Homomorphic Encryption, Sort-
ing, Low-depth Circuit

† The final published version of this paper appears in the Journal of Mathematical Cryptology, Volume
16 Issue 1, with DOI : 10.1515/jmc-2021-0054.
An earlier version of this work was titled "Cryptanalysis of a Protocol for Efficient Sorting on SHE
Encrypted Data", and appeared in the Proceedings of 17th IMACC, 2019. The current work subsumes
the earlier work and provides new results.

Srinivas Vivek, Shyam Murthy, IIIT Bangalore, Electronics City, Hosur Road, Bangalore,
560100, Karnataka, India; Email: srinivas.vivek@iiitb.ac.in; Email: shyam.sm@iiitb.ac.in
Deepak Kumaraswamy, National Institute of Technology, Surathkal, Karnataka, India; Email:
deepakkumaraswamy99@gmail.com

2 Vivek, Murthy and Kumaraswamy

1 Introduction

The problem of polynomial reconstruction, posed in different flavours, has received
good attention in the past [21, 32]. Guruswami and Sudan [21] present a list decoding
algorithm for Reed-Solomon codes which is closely related to polynomial reconstruc-
tion over a field, Naor and Pinkas [32] give a new cryptographic primitive based on
intractibility assumptions related to noisy polynomial reconstruction problem. Given
𝑛 points (i.e., input/output pairs) on a 𝑑-degree polynomial and 𝑛 > 𝑑, a well-known
technique is the Lagrange interpolation that uses (𝑑+1) points to output a unique poly-
nomial of degree at most 𝑑 that fits the points. This problem also occurs in the context
of decoding other error-correcting codes in general, with many proposed techniques to
recover polynomials even when a sufficiently small fraction of the input-output pairs
are error prone [2, 19].

Section 2 discusses some of the work available on the problem of polynomial
reconstruction. We would like to emphasize that, to the best of our knowledge, in
all the previous works both the input to and the output of the polynomials are given.
In the present setting, we look at the study of recovery of monotonic polynomials
with non-negative integer coefficients (sampled from a certain interval) when only the
integer outputs are provided and we are not provided the inputs (except that we only
know they are integers within a given range and the degree of polynomial). The goal is
to recover the inputs. The motivation comes from the field of cryptanalysis in a setting
that is used to perform computation on encrypted data, where the computation involves
homomorphic evaluation of a monotonic integer polynomial at specific points such
that the ordering of these points are preserved to enable sorting. It is easy to see that
in the case of polynomials over the real or the complex numbers, there will typically
be infinitely many satisfying polynomials to the above mentioned polynomial recovery
problem. Hence, it seems quite intuitive to expect the same for integer polynomials and
this apparent hardness of recovering the original polynomial has found applications
in areas such as privacy-preserving machine learning to hide the input data [23].
Formally, the problem is stated as given below.
Let N be the set of natural numbers (including 0), Z be the set of integers, Z+ be the
set of positive integers and Q be the set of rational numbers.

Problem Statement 1. Polynomial reconstruction given only outputs:
Let 𝑝(𝑥) = 𝑎0 + 𝑎1 · 𝑥 + 𝑎2 · 𝑥2 + . . . + 𝑎𝑑 · 𝑥𝑑 ∈ N[𝑥] (deg(𝑝(𝑥)) = 𝑑 and 𝑝(𝑥) is
monotonic). The coefficients 𝑎𝑖, 0 ≤ 𝑖 ≤ 𝑑, are independent and uniformly random in
the range [1, 2𝛼 − 1], 𝛼 ∈ N.
Given only 𝑛 integer outputs 𝑦1 = 𝑝(𝑥1), 𝑦2 = 𝑝(𝑥2), . . . , 𝑦𝑛 = 𝑝(𝑥𝑛) evaluated at 𝑛

Integer Polynomial Recovery from Outputs and its Application . . . 3

distinct values with 𝑛 ≫ 𝑑, recover 𝑥𝑖, or its affine shifts, on which 𝑝(𝑥) is evaluated,
𝑥𝑖 ∈ N, 𝑥𝑖 ∈ [0, 2𝛽 − 1] and 𝛽 ∈ N. The values of 𝛼, 𝛽 and 𝑑 are known.

The paper is organized as follows. Section 2 discusses some of the works related to
polynomial reconstruction. Section 3 introduces the problem setting in detail with the
help of a motivating application followed by contributions of the paper. Section 4 de-
scribes our algorithm for polynomial recovery. Section 5 discusses the experiments and
results obtained. Section 6 gives a variation of the original protocol and a possible at-
tack, followed by a section on conclusion and future work.

2 Related Work on Polynomial
Reconstruction

Polynomial reconstruction has applications in coding theory in the context of decoding
received codewords. A block error-correcting code 𝒞 is a collection of strings called
codewords, all of which have the same length, over some finite alphabet Σ [21]. It is
defined such that any pair of codewords in the range of 𝒞 differ in at least 𝑑 locations
out of, block length, 𝑛. The decoding problem for such an error-correcting code is the
problem of finding a codeword in Σ𝑛 which is at a distance at most 𝑒 (the error bound)
from a received codeword 𝑅 ∈ Σ𝑛.
In the Reed-Solomon code, the alphabet Σ is a finite field F , the message specifies a
univariate polynomial of degree-𝑑. The codewords are evaluations of the polynomial at
𝑛 distinct points chosen from F [39].

Definition 1. Polynomial reconstruction [21, pp. 3]: Given integers 𝑘, 𝑡 and 𝑛 points
(𝑥𝑖, 𝑦𝑖), 1 ≤ 𝑖 ≤ 𝑛, where 𝑥𝑖, 𝑦𝑖 ∈ F, output all univariate polynomials 𝑝 of degree at
most 𝑘 such that 𝑦𝑖 = 𝑝(𝑥𝑖), for at least 𝑡 values of 𝑖 ∈ [1, 𝑛].

For Reed-Solomon family of codes, the decoding problem reduces to the polynomial
reconstruction problem [21]. List decoding formalizes the notion of error-correction.

Definition 2. List decoding problem for a code 𝒞 [39, pp. 3]: Given a received word
𝑟 ∈ Σ𝑛 and error bound 𝑒, output a list of all codewords 𝑐1, . . . , 𝑐𝑚 ∈ 𝒞 that differ
from 𝑟 in at most 𝑒 places.

Hence, the list decoding problem for (generalized) Reed-Solomon code is a variant of
the polynomial reconstruction problem over a field F.

4 Vivek, Murthy and Kumaraswamy

Definition 3. List decoding for Reed-Solomon Codes [39, pp. 13]: Given integers
𝑒, 𝑘, 𝑑 and 𝑛 pairs (𝑥1, 𝑟1), . . . , (𝑥𝑛, 𝑟𝑛), find all degree-(𝑘 − 1) polynomials 𝑝 such
that 𝑝(𝑥𝑖) = 𝑟𝑖 for at least 𝑛− 𝑒 values of i.

Sudan [39] gives an algorithm that works for 𝑡 ≥
√

2𝑑𝑛, whereas, the classical algo-
rithm of Berlekamp and Massey [2] solves for 𝑡 ≥ 𝑛+𝑑

2 . Guruswami and Sudan [21]
give a solution for 𝑡 ≥

√
𝑑𝑛 for the same problem.

Gopalan et al [20] study the problem of polynomial reconstruction for low-degree
multivariate polynomials over F[2], where, given a set of points 𝑥 ∈ {0, 1}𝑛 and their
evaluations 𝑓(𝑥) at each of those points, the goal is to find a degree 𝑑 polynomial that
has good agreement with 𝑓 at 1 − 𝜖 fraction of the points. They show that it is NP-hard
to find a polynomial that agrees with 𝑓 on more than 1−2−𝑑 +𝛿+ 𝜖 fractions of points
for any 𝜖, 𝛿 > 0.

Naor and Pinkas [32] describe the noisy polynomial reconstruction problem, the
description of which closely resembles that of the list decoding problem of Reed-
Solomon codes since the two problems are closely related.

Definition 4. Noisy polynomial reconstruction [32, pp. 8]: Given integers 𝑘 and 𝑡,
and 𝑛 points (𝑥𝑖, 𝑦𝑖), 1 ≤ 𝑖 ≤ 𝑛, where 𝑥𝑖, 𝑦𝑖 ∈ F, output any univariate polynomial 𝑝
of degree at most k such that 𝑝(𝑥𝑖) = 𝑦𝑖 for at least 𝑡 values 𝑖 ∈ [1, 𝑛].

Kiayias and Yung [24] give a short survey on cryptography based on polynomial recon-
struction and describe the cryptographic primitive “Oblivious Polynomial Evaluation
(OPE)” of Noar and Pinkas [32]. OPE is based on the intractability assumption of the
noisy polynomial reconstruction. In OPE, Bob has a polynomial 𝑃 and lets Alice com-
pute 𝑃 (𝑥) where 𝑥 is private to Alice in such a way that Bob does not learn anything
about 𝑥 and Alice does not gain any additional information about 𝑝. Bleichenbacher
and Nguyen [3] present new methods to solve noisy polynomial interpolation using
lattice-based methods.

Definition 5. Noisy polynomial interpolation [3, pp. 2]: Let 𝑝 be a 𝑘-degree polyno-
mial over ∈ F. Given 𝑛 > 𝑘+1 sets 𝑆1, . . . , 𝑆𝑛 and 𝑛 distinct elements 𝑥1, . . . , 𝑥𝑛 ∈ F
such that 𝑆𝑖 = {𝑦𝑖,𝑗}1≤𝑗≤𝑚 contains 𝑚 − 1 random elements and 𝑝(𝑥𝑖), recover the
polynomial 𝑝, provided that the solution is unique.

We note here in all the scenarios presented above, both the evaluation points (inputs)
as well as the corresponding outputs are available for polynomial reconstruction and so
seemingly do not apply to our problem.

Integer Polynomial Recovery from Outputs and its Application . . . 5

3 Motivating Application

In this section we describe the background leading to the problem setting, adversarial
model and contributions of the paper.

We look at the client-server setting wherein a client has large amount of data on
which some computation is to be performed and the server has computation power to
perform the needed operations. One such operation is to obtain 𝑘-Nearest Neighbours
described more in the following section. In order to protect privacy, a client may choose
to encrypt its data thus limiting the server’s ability to perform operations on the same.
Encrypting data using homomorphic schemes is one way to allow computation on en-
crypted data but at the cost of efficiency. A number of works have been proposed in the
literature which aim to improve efficiency while allowing computation on encrypted
data. We look at cryptanalysis of one such work and in the process look at the problem
of integer polynomial reconstruction from only outputs, details of which is the raison
d’être of this paper.

3.1 𝑘-Nearest Neighbour Protocol

𝑘-Nearest Neighbour (𝑘-NN) algorithm is a basic method used in data mining, machine
learning and pattern recognition used for classification [26, 33]. 𝑘-NN is used to search,
as per a given metric, 𝑘 neighbours closest to a given Δ-tuple query point in a database
containing 𝑛 many Δ-tuples. In the privacy preserving version of the 𝑘-NN algorithm,
the query point is an encrypted Δ-tuple and the database contains 𝑛 encrypted Δ-tuples.
Many efficient solutions have been proposed for determining 𝑘-NN on encrypted data
[12, 15, 23, 37], to name a few. Among these [23] is a solution in a non-colluding
federated two-cloud setting more described in Section 3.3.

3.2 Computation on Encrypted Data

Homomorphic Encryption schemes enable computation on encrypted data such that the
result of computation is available only after decryption. Current Fully/Somewhat Ho-
momorphic Encryption (F/SHE) [11, 16, 17] schemes come with a price in terms of the
large size of ciphertexts and are inefficient when high multiplicative depth circuits like
search and sort operations are involved, and hence are impractical when handling a few
hundred data elements [7–9]. One way to overcome this is a solution that employs two
servers, Server 𝐴 where encrypted data is stored and Server 𝐵 that has keys needed to
decrypt and perform efficient plaintext computations. Server 𝐴 does some basic oper-
ations on encrypted data followed by some transformation so as to “obscure” it before

6 Vivek, Murthy and Kumaraswamy

sharing it with Server 𝐵, Server 𝐵 then decrypts the received information, performs
operations on plaintext data efficiently, re-encrypts the results and shares it with Server
𝐴 to give the processed data back to the end-user client. In these models, it needs to
be ensured that Servers 𝐴 and 𝐵 do not collude with one another. Moreover, proto-
cols between them should ensure that Server 𝐴 obscures the data in such a way that
Server 𝐵 is provided only as much data as required for the required computation and
in a form from which Server 𝐵 cannot glean anything more. There are many examples
of non-colluding multi-server solutions in the literature deployed in disparate settings,
we give a couple of example scenarios. Aono et al. [1] consider a 2-cloud model to
compute logistic regression securely and a solution by Hardy et al. [22] uses a 3-cloud
federated setting to do learning on vertically partitioned data, which are examples in a
machine learning environment; while pRide [30] and PSRide [41] are two solutions in
a ride-hailing environment that use 2-cloud models.

3.3 𝑘-NN Protocol over Encrypted Data [23]

At EDBT 2018, Kesarwani et al. [23] present a new Secure 𝑘-Nearest Neighbour proto-
col in the two-party honest-but-curious federated cloud model for computing 𝑘-NN on
encrypted data. Their solution uses a semantically secure (Levelled) FHE (LFHE) [6] to
compute squared Euclidean distances directly on encrypted data. To compute the rank-
ing among the distances, the distances are suitably transformed to preserve the order.
A federated non-colluding public cloud having the secret key performs the comparison
using the transformed data. Since this cloud has access only to transformed results of
computations performed on plaintext data, the paper claims that public cloud does not
learn anything useful about the original database, the results or the query. The federated
cloud setting consisting of two Servers 𝐴 and 𝐵 is depicted in Figure 1.

The paper claims to provide an asymptotically faster solution than the current
state-of-the-art protocol. They implement their protocol and run experiments on two
real-world datasets from UCI Machine Learning Repository [14], one from healthcare
domain and another from financial domain having a relatively large number of dimen-
sions (32 and 23, respectively) and containing 858 and 30000 data points respectively;
both of which contain personally identifiable sensitive information like gender, age,
marital status etc. The paper states that the data was pre-processed to remove negative
integer values. They run their experiments for 𝑘 = 2, 8 and 16. While the datatype in
each dimension is not explicitly mentioned in the paper, by examining the datasets we
find that they are non-negative integers of size ≤ 16 bits.

The paper makes the following security guarantee regarding the leakage profile for
the Server 𝐵 as given in [23, Theorem 4.2], reproduced here for reference.
"Theorem 4.2. Secure 𝑘-NN Guarantee: Server 𝐵: Our secure 𝑘-nearest neighbour

Integer Polynomial Recovery from Outputs and its Application . . . 7

protocol leaks no information to Server 𝐵 except the number of nearest neighbours 𝑘
to be returned by the protocol and the number of equidistant points in the database with
respect to a given query point 𝑞".

It may be noted that though the protocol of [23] has been described specifically
in the context of securely evaluating 𝑘-NN, their technique of transforming through a
random monotonic polynomial has applications in many settings where sorting of SHE
or LFHE encrypted data is needed. We remark here that if sorting is the only func-
tionality required, then order-preserving or order-revealing encryption schemes would
suffice for the purpose [4, 5, 28].

Fig. 1: 𝑘-NN Setting from [23]

3.4 Problem Setting

We refer to Figure 1 where the data owner outsources his/her database in an encrypted
form using a semantically secure homomorphic encryption scheme for storage in Server
𝐴. Each data item in the database is of dimension Δ. Server 𝐴 does not have access
to any secret keys and operates only on encrypted data. Server 𝐴 provides storage

8 Vivek, Murthy and Kumaraswamy

for the database and provides services on the encrypted database homomorphically.
One of these services is the computation of the 𝑘-NN of a given query point 𝑞, of
dimension Δ, received from an end-user or client. Server𝐴 homomorphically computes
squared Euclidean Distances (ED) between the query point and each of the 𝑛 data
points in the database. Because a single 𝐸𝐷2 computation is of multiplicative depth 1,
it can be efficiently evaluated using an LFHE scheme. Since Server 𝐴 does not possess
the decryption key, it will not be able to efficiently uncover the underlying plaintext
information of either the query point or the data points.

Computing Euclidean Distance is of low multiplicative depth, but sorting is not.
Hence Server 𝐴 transforms the distances while preserving its order. It picks a mono-
tonic polynomial 𝑝(𝑥) of degree 𝑑 of the form 𝑎0+𝑎1 ·𝑥+𝑎2 ·𝑥2+. . .+𝑎𝑑 ·𝑥𝑑 for some
chosen 𝑑 ∈ N, where each of the integer coefficients 𝑎𝑖 are picked uniform randomly
and independently in the range [1, 2𝛼 − 1], for example, in the range [1, 232 − 1] as
done in [23, Section 3.4]. This polynomial is then evaluated homomorphically for each
of the Euclidean distances and the output ciphertexts are re-ordered using a permutation
𝜎 picked uniformly at random, before sending them to the Server 𝐵 for sorting.

Server 𝐵 possesses the decryption key using which it will decrypt the values re-
ceived from Server 𝐴 and sorts them. As the decrypted values are outputs of a random
polynomial, the original distances as computed by Server 𝐴 are “hidden” from Server
𝐵. Server 𝐵 then sends the indices of 𝑘-NNs to Server 𝐴 which then applies 𝜎−1 to
the received ordering of the indices and forwards the same to the client. We refer to the
security guarantee with respect to Server 𝐵 given in [23, Theorem 4.2] in Section 3.3
and ask the question whether Server 𝐵 can glean more information about the polyno-
mial chosen by Server 𝐴 and, eventually, the plaintext integer inputs used by Server 𝐴
for its homomorphic polynomial evaluation.

Remark: The plaintext data points and the query point are encoded as tuples of
integers, since in the context of F/SHE schemes, fixed-point values too are (exactly)
encoded using essentially the scaled-integer representation [13]. The only exception is
the CKKS FHE scheme [10] that natively supports floating-point arithmetic but was
not considered in [23]. However, it may be noted that a successful key recovery attack
on CKKS was published in EUROCRYPT 2021 [29]. We leave it for future work to
extend our attack to also include any implementation based on the CKKS scheme.

3.5 Adversarial Model

Servers 𝐴 and 𝐵 are assumed to be honest but curious. Each will perform the compu-
tations correctly but is keen to learn more about the distances between the query point
and the data set points. Server 𝐴 has access only to encrypted data. The semantic secu-

Integer Polynomial Recovery from Outputs and its Application . . . 9

rity of the underlying encryption scheme will guarantee the protocol is secure against
Server 𝐴.

Using the decryption key, Server 𝐵 decrypts the permuted results of computation
performed by Server 𝐴. After decryption, the Server 𝐵 would observe only the outputs
of the polynomial evaluation (and not the input squared distances). That is, it only sees
the values on the L.H.S. of the following set of equations:

𝑝(𝑥1) = 𝑎0 + 𝑎1 · 𝑥1 + 𝑎2 · 𝑥2
1 + . . .+ 𝑎𝑑 · 𝑥𝑑

1

𝑝(𝑥2) = 𝑎0 + 𝑎1 · 𝑥2 + 𝑎2 · 𝑥2
2 + . . .+ 𝑎𝑑 · 𝑥𝑑

2

... (1)

𝑝(𝑥𝑛) = 𝑎0 + 𝑎1 · 𝑥𝑛 + 𝑎2 · 𝑥2
𝑛 + . . .+ 𝑎𝑑 · 𝑥𝑑

𝑛

It is assumed that the Server 𝐵, seen here as the adversary, knows the degree 𝑑
which is usually small since the homomorphic evaluation of polynomials in encrypted
form are efficient only for small degrees. It also knows the range [1, 2𝛼 − 1] for the
unknown coefficients 𝑎𝑖, and the range [0, 2𝛽 − 1] for the unknown inputs 𝑥𝑖. For our
attack, we need not know the exact values for the above three parameters, just an upper
bound on them would suffice. Also, note that all the parameters above take non-negative
integer values.

As noted before, Server 𝐴 homomorphically evaluates the polynomial 𝑝(𝑥) at 𝑛
(squared Euclidean distance) integer values 𝑥1, . . . , 𝑥𝑛, and we can assume without
loss of generality that 0 ≤ 𝑥1 ≤ 𝑥2 ≤ . . . ≤ 𝑥𝑛. Since 𝑝(𝑥) is monotonic, the order-
ing of 𝑝(𝑥𝑖) is identical to the ordering of 𝑥𝑖. If 𝑎0 ≤ 𝑥1, then for any given tuple of
coefficients (𝑎0, 𝑎1, . . . , 𝑎𝑑), there will be a set of positive real roots (𝜒1, 𝜒2, . . . , 𝜒𝑑)
to (1). Hence, the authors of [23] seem to argue that if the range for 𝑎𝑖 is large enough,
then it will be infeasible to search for all possible polynomials satisfying (1). The au-
thors claim that the probability that Server 𝐵 successfully recovers the coefficients 𝑎𝑖,
followed by 𝑥𝑖, is approximately 1/2𝛼·(𝑑+1), which is negligible when 𝛼 is large. Re-
ferring to the example given in [23, Section 4.2], for 𝛼 = 16 and 𝑑 = 9, this probability
is approximately 2−160, which is negligible. Hence, the protocol leaks only a negligi-
ble amount of information, as claimed in [23], about either 𝑎𝑖 or 𝑥𝑖 to the Server 𝐵
and nothing else other than the ordering of the 𝑥𝑖’s. We note here that the 𝑥𝑖 values
may never be uniquely recovered in (1) with probability = 1 since 𝑝(𝑥 + 𝑐) is also an
equivalent polynomial satisfying the equation for 𝑐 ∈ Z and there may be many values
of 𝑐 such that 0 ≤ 𝑥𝑖 − 𝑐 < 2𝛽 . Hence the inputs and the polynomial may only be
recovered up to an affine scaling. Other non-linear transformations may also result in
an equivalent solution. For instance, 𝑝(

√
𝑥) can be a potential solution when all the

10 Vivek, Murthy and Kumaraswamy

𝑥𝑖 are perfect squares and 𝑝(𝑥) contains only even powers. But these possibilities will
likely be significantly small when 𝑛 ≫ 𝑑, and the coefficients 𝑎𝑖 and/or the inputs 𝑥𝑖

come from a random source with sufficiently high entropy, which indeed is the scenario
in [23]. Please refer to Section 4.10 where we describe the uniqueness of the obtained
solution.

3.6 Our Contribution

We give an algorithm (see Algorithm 1 on pp. 36) to the above defined polynomial
recovery problem where the goal is to recover the integer inputs (up to an affine scal-
ing) by observing only the outputs of the monotonic polynomial with positive inte-
ger coefficients, assuming the number of evaluation points is much greater in num-
ber compared to the degree of the polynomial. Sections 4.1 to 4.7 explain the core
idea of our proposed algorithm. Our algorithm has a heuristic expected time complex-
ity that is exponential in the size of the inputs (𝛽) and the degree (𝑑) of the chosen
polynomial, but polynomially dependent on the size of the coefficients (𝛼). As derived
in Equation 11 on pp. 11, the heuristic expected time complexity of our algorithm is
𝒪̃(𝑑2𝛽2𝛽(𝛼 + 𝑑𝛽) + 𝑛𝑑3(𝛼 + 𝑑𝛽)𝑑). We would like to note that in many real world
scenarios the inputs are/can be encoded as integers of 16- or 32-bits length and our
method runs efficiently for inputs of such size. Note also that in SHE applications 𝑑 is
required to be not large as well. Since there can be many solutions to the above poly-
nomial reconstruction problem, hence we will output one solution that satisfies all the
output points (there is also a possibility to enumerate all the solutions). But as discussed
above, when the number of output values is far bigger than the input degree, and the
coefficients and/or inputs are sufficiently random, then the number of equivalent solu-
tions will likely be small. Indeed, we show in Section 4.10 that when the polynomial
coefficients are chosen uniform randomly, the original polynomial along with the in-
puts are recovered by our algorithm with a high probability. Our algorithm extends to
recovering any integer polynomial (not necessarily a monotonic integer polynomial)
and any input range (not necessarily [0, 2𝛽 −1]), as long as the range of the coefficients
and inputs are known apriori.

The above results invalidate the security claim in [23, Theorem 4.2] regarding the
leakage profile for the Server 𝐵. In particular, the Server 𝐵 will be able to learn the
square of the Euclidean distances between the query point and the data set points. It may
not be able tell the exact distance to a given point due to random re-ordering but will
be able to know all such values. Such an information can potentially help the adversary
to narrow down further if it has access to extra information about the underlying data
set or query point. For the concrete parameters suggested in [23, Section 4.2], i.e.,
𝛽 = 16 and 𝑑 = 9, we can recover the inputs for 𝛼 = 16 in a few seconds (see

Integer Polynomial Recovery from Outputs and its Application . . . 11

Table 3 on pp. 29). We then extend it further up to 𝑑 = 96, 𝛼 = 128, 𝛽 = 48 and
show that we can recover the polynomial and the inputs efficiently (see Table 1 on pp.
28). Lastly, we investigate in Section 6 another variant of the protocol of [23] where
the (homomorphically) transformed polynomial outputs are perturbed by a noise yet
maintaining the monotonicity. In this case, our previously mentioned attack will not
work. But we show, in a straightforward way, that it is still possible to recover the ratios
of the inputs.

A preliminary version of our work has appeared as part of 17th IMA International
Conference of Cryptography and Coding (IMACC’17), 2019 [31]. We have made a
number of improvements to our algorithm (and the material in this paper has more
than 50% new material compared to the earlier version). We have also run our experi-
ments with much larger bounds. We list hereunder some of the important changes and
enhancements that are present as part of this submission:
1. The heuristic expected running time of our earlier polynomial recovery algorithm

(found in the conference proceedings) was 𝒪̃(𝑛2𝛽(𝛼 + 𝑑𝛽)𝑑), where 𝑛 is the
number of polynomial integer outputs, the parameters 𝑑 and 𝛼 denote the degree
and the size of coefficients of the original polynomial, and 𝛽 denotes the size of
the original inputs. This earlier algorithm used a brute force approach to iterate
over the input space to try and find a suitable polynomial in the second step.
In the current version, we have improved the algorithm significantly and the
heuristic expected running time of the polynomial recovery algorithm is now
𝒪̃(𝑑2𝛽2𝛽(𝛼+ 𝑑𝛽) + 𝑛𝑑3(𝛼+ 𝑑𝛽)𝑑). This is made possible by avoiding the brute
force search mentioned above.

2. In addition to running tests with parameters that were claimed secure in the pa-
per by Kesarwani et al. mentioned above, we show that our algorithm can recover
the polynomial and the inputs for larger bounds on the size of inputs, size of co-
efficients and the degree of the polynomial. In the earlier version, input values
were in the range [0, 224 − 1], polynomials up to degree 9 and coefficient space
was [0, 232 − 1]. In this version, the range of the parameters have been greatly in-
creased; range of input values is now [0, 264 − 1], polynomials up to degree 96 and
the polynomial coefficient space is now [0, 2128 − 1].

3. When the coefficients are chosen uniformly random, we analyse and show that the
recovered polynomial and the input values are, with a very high probability, the
same as what was chosen initially.

The earlier version of our polynomial recovery algorithm has also found applications
in the privacy-preserving Ride-Hailing Service (RHS) scenario [27] to recover driver
locations that are homomorphically transformed by a Service Provider as a means to
protect drivers’ privacy.

12 Vivek, Murthy and Kumaraswamy

4 Recovering integer inputs given only
integer polynomial outputs

We give here a high level overview of the steps we follow to recover all 𝑥𝑖. The key idea
is to dramatically reduce the search space of 𝑥𝑖 by using the fact that we are looking
for only the non-negative integer roots of the polynomial, not just non-negative real
numbers.
1. The 𝑛 number of 𝑦𝑖 integer polynomial outputs are input to the algorithm.
2. Obtain integer divisors of 𝑦𝑖 − 𝑦1 that are less than 2𝛽 with 1 < 𝑖 ≤ 𝑛. One of

these divisors will be 𝑥𝑖 − 𝑥1, which is to be determined.
3. Using the divisors, isolate the possible values of 𝛿𝑖 = 𝑥𝑖 − 𝑥1, which constitute

the guess for differences of the 𝑥 inputs.
4. Using 𝑥1 as the unknown parameter, construct a “candidate” degree-𝑑 Lagrange

polynomial 𝐿(𝑥) in 𝑥 using inputs (𝑥1, 𝑥2 = 𝑥1 + 𝛿1, . . . , 𝑥𝑑+1 = 𝑥1 + 𝛿𝑑+1)
and outputs (𝑦1, 𝑦2, . . . , 𝑦𝑑+1) respectively, as,

𝐿(𝑥) = 𝐿0(𝑥1) + 𝐿1(𝑥1) · 𝑥+ 𝐿2(𝑥1) · 𝑥2 + . . .+ 𝐿𝑑(𝑥1) · 𝑥𝑑 (2)

whose coefficients 𝐿𝑖(·) are in turn polynomials in the unknown 𝑥1.
5. It is known that the coefficients of 𝑝(𝑥) are non-negative integers less than 2𝛼, and

so are that of 𝐿(𝑥). Find one or more candidate 𝛾 for 𝑥1 such that 0 ≤ 𝐿𝑖(𝑥1 =
𝛾) ≤ 2𝛼 − 1 ∀ 𝑖 = 0, . . . , 𝑑.

6. When one such 𝛾 is obtained, use the differences 𝛿𝑖 to find all other inputs 𝑥𝑖. The
coefficients of 𝑝(𝑥) that correspond to 𝛾 are immediately obtained as 𝐿𝑖(𝑥1 = 𝛾).

7. Using 𝑝(𝑥) thus obtained, use the remaining (𝑛 − 𝑑 − 1) outputs to verify the
correctness by computing the roots of the polynomial and checking if they are in-
tegers that lie in the range [0, 2𝛽 −1]. If these verifications are successful, algorithm
outputs the satisfying polynomial.

Remarks:
1. The polynomial 𝑝(𝑥) output by the algorithm is just one possible solution set sat-

isfying the given 𝑦𝑖 values, since for example (𝑥𝑖 + 𝑐) with 𝑐 ∈ Z gives the same
𝑦𝑖 outputs for the polynomial 𝑝(𝑥− 𝑐).

2. In Section 4.10, we give an analysis on how many such values of 𝑐 can exist when
coefficients of 𝑝(𝑥) are chosen at random.

3. While our method works for arbitrary values of 𝛼, 𝛽 and 𝑑, we demonstrate the
practicality of our solution by running experiments with 𝛼 up to 128, 𝛽 up to 64, 𝑑
up to 96, as described in detail in Section 5.

4. While 𝑛 is typically bigger, 𝑛 = 2𝑑 was sufficient for polynomial recovery in our
experiments.

Integer Polynomial Recovery from Outputs and its Application . . . 13

The procedure is given as Algorithm 1 in Appendix A and each of the steps are de-
scribed in detail in the following sections.

4.1 Divisors from 𝑦-differences

Summary of this step: Given a non-decreasing order of 𝑛 outputs 𝑦𝑖 = 𝑝(𝑥𝑖) with 𝑦1
being the smallest, the compute 𝑦-differences 𝑦𝑖,𝑗 = 𝑦𝑖 − 𝑦𝑗 , where 𝑖 > 𝑗, followed
by finding divisors of 𝑦𝑖,𝑗 , of which one divisor is equal to 𝑥𝑖 − 𝑥𝑗 . Differences of 𝑦
values are stored in Matrix 𝑌 and the corresponding divisors are stored in Matrix 𝐷 at
the end of this step.

Refer to the procedure GuessTheDifference from Algorithm 1.

Lemma 1. Let 𝑝(𝑥) ∈ N[𝑥] be a degree-𝑑 polynomial, 𝑦𝑖 = 𝑝(𝑥𝑖), 𝑦𝑗 = 𝑝(𝑥𝑗),
𝑥𝑖 ̸= 𝑥𝑗 , then (𝑥𝑖 − 𝑥𝑗)|(𝑦𝑖 − 𝑦𝑗).

Proof. Let 𝑦𝑖 = 𝑎𝑑𝑥𝑖
𝑑 + · · · + 𝑎1𝑥𝑖 + 𝑎0 and 𝑦𝑗 = 𝑎𝑑𝑥𝑗

𝑑 + · · · + 𝑎1𝑥𝑗 + 𝑎0, where
𝑎𝑖, 0 ≤ 𝑖 ≤ 𝑑, are the coefficients of 𝑝(𝑥).
Then 𝑦𝑖 − 𝑦𝑗 = 𝑎𝑑(𝑥𝑖

𝑑 − 𝑥𝑗
𝑑) + · · · + 𝑎1(𝑥𝑖 − 𝑥𝑗) ⇒ (𝑥𝑖 − 𝑥𝑗)|(𝑦𝑖 − 𝑦𝑗).

Lemma 2. Let 𝑝(𝑥) ∈ N[𝑥] be a degree-𝑑 polynomial, 𝑦𝑖 = 𝑝(𝑥𝑖), 𝑦𝑗 = 𝑝(𝑥𝑗) and
𝑥𝑖 < 2𝛽 ∀𝑖, then 0 < (𝑥𝑖 − 𝑥𝑗) < 2𝛽 .

Proof. By our choice of ordering the polynomial outputs, 𝑦𝑖 > 𝑦𝑗 and 𝑝(𝑥) is mono-
tonic as all its coefficients are non-negative integers, ⇒ 𝑥𝑖 − 𝑥𝑗 > 0 and each 𝑥𝑖 is
upper bounded by 2𝛽 .

Let 𝑦𝑖,𝑗 = 𝑦𝑖 − 𝑦𝑗 . From Lemmas 1 and 2, (𝑥𝑖 − 𝑥𝑗) < 2𝛽 is a divisor of 𝑦𝑖,𝑗 and as
part of this step, we find all positive divisors of 𝑦𝑖,𝑗 < 2𝛽 . For 𝛽 ≤ 28, we use the sieve
method to obtain factors by dividing 𝑦𝑖,𝑗 by successive primes and forming positive
divisors < 2𝛽 . When 𝛽 > 28 and since we know that there will exist a small factor (as
in our case, since the range of 𝑥𝑖 are known and the factors are differences of 𝑥𝑖) we
use elliptic-curve factorization method (ECM) [35] to find the required factors.

Time Complexity for finding factors. In the expected case, ECM is a sub-
exponential algorithm with complexity 𝒪(𝑒

√
(log 𝑝 log log 𝑝)(1+𝒪(1))) to find a single

factor, where 𝑝 is the smallest factor. We first use the sieve method to obtain all small
factors ≤ 228 and then invoke SageMath ECM.find_factor() on 𝑄, where 𝑄 is
the quotient obtained by dividing 𝑦𝑖,𝑗 by all the small factors and their multiplicity,
to obtain the next possible factor 𝑓 . If 𝑓 < 2𝛽 we continue the process of invoking
ECM.find_factor() on 𝑄/𝑓 as long as we obtain a factor < 2𝛽 or we hit a

14 Vivek, Murthy and Kumaraswamy

timeout. The timeout value is empirically set such that the above function is able to
find “small” factors (< 2𝛽) well within the timeout.
Remark. There is a possibility of losing factors due to our timeout being insufficient.
Section 5 has results on loss of factors for different timeout values. But we would like
to stress that we must enumerate all the factors of the differences that are less than 2𝛽

if we want to eliminate any risk of missing any satisfying polynomial.
Let 𝐷𝑖,𝑗 be the set of all divisors of 𝑦𝑖,𝑗 . This set constitutes the guesses for the

differences of the (to be determined) values 𝑥𝑖. It turns out that for many values of 𝑦𝑖,𝑗

there may be too many divisors that are < 2𝛽 , so we need to sample larger number of
output values (i.e., larger 𝑛) and carefully pick 𝑑 number of 𝑦𝑖,𝑗’s such that the number
of elements in each of 𝐷𝑖,𝑗 is a small positive number (say, ≤ 𝜓), whereby the search
space for the guesses becomes feasible to enumerate. We also store the corresponding
𝑦𝑖,𝑗 values in Matrix 𝑌 that are to be used later in the Lagrange interpolation step .
Remark. In our experiments as well as in our analysis, we consider 𝜓 = 𝒪(𝛼 + 𝑑𝛽),
since the number of divisors of an integer 𝑁 is bounded by 𝑁𝒪(1

log log 𝑁) and on the
average case it is log𝑁 [40].

𝑌 =

⎛⎜⎜⎜⎜⎜⎜⎝
0 0 0 . . .

𝑦2,1 0 0 . . .

𝑦3,1 𝑦3,2 0 . . .
...

𝑦𝑑+1,1 𝑦𝑑+1,2 . . . 𝑦𝑑+1,𝑑

⎞⎟⎟⎟⎟⎟⎟⎠
The output of this step is Matrix 𝐷 of divisor sets :

𝐷 =

⎛⎜⎜⎜⎜⎜⎜⎝
0 0 0 . . .

𝐷2,1 0 0 . . .

𝐷3,1 𝐷3,2 0 . . .
...

𝐷𝑑+1,1 𝐷𝑑+1,2 . . . 𝐷𝑑+1,𝑑

⎞⎟⎟⎟⎟⎟⎟⎠
Time Complexity. The worst-case time complexity of this step (in terms of bit

operations) to find the factors less than 2𝛽 is

𝒪̃(𝑑2(𝛼+ 𝑑𝛽) · 𝛽 · 2𝛽) (3)

since the size of each 𝑌𝑖,𝑗 is 𝒪(𝛼+ 𝑑𝛽) and there are 𝒪(𝑑2) elements in 𝐷𝑖,𝑗 .

4.2 Consistency Check on the Guessed Differences

Summary of this step: The key idea in this step is to eliminate as many divisors as
possible before performing Lagrange Interpolation in the following step.

Integer Polynomial Recovery from Outputs and its Application . . . 15

Refer to the procedure CheckConsistencyInColumn from Algorithm 1 in
Appendix A.

Definition 6. Consistent Divisor: Given the matrix of divisors 𝐷 and 𝑓 ∈ 𝐷𝑖,𝑘, if
∃ 𝑔 ∈ 𝐷𝑗,𝑘 such that (𝑓 − 𝑔) ∈ 𝐷𝑖,𝑗 ∀ 𝑗, 1 < 𝑗 < 𝑖 and ∀ 𝑘, 1 < 𝑘 < 𝑖− 1, then 𝑓
and 𝑔 are termed as Consistent Divisors of their respective sets.

Remark. If 𝑥𝑖 − 𝑥𝑘 is a divisor of 𝑦𝑖 − 𝑦𝑘, and 𝑥𝑗 − 𝑥𝑘 is a divisor of 𝑦𝑗 − 𝑦𝑘, then
𝑥𝑖 − 𝑥𝑗 must be a divisor of 𝑦𝑖 − 𝑦𝑗 .

The output of the previous step is the matrix 𝐷. Element 𝐷𝑖,𝑗 ∈ 𝐷, is a list of
divisors of 𝑦𝑖,𝑗 , and we know that only one of them is (but as yet unknown) 𝑥𝑖 − 𝑥𝑗 .
We create sets of Consistent Divisors for each 𝐷𝑖,𝑗 (2 ≤ 𝑖 ≤ 𝑑 + 1) and (𝑗 < 𝑖). All
elements that are not part of the consistent set are set equal to 0.

For each non-zero element in 𝐷2,1, pick its corresponding “consistent” element
𝛿𝑖−1 from 𝐷𝑖,1, 2 < 𝑖 ≤ 𝑑+ 1 to form a tuple of 𝑑+ 1 elements (𝛿0 = 0, 𝛿1, . . . , 𝛿𝑑).
Store each tuple in an array of tuples 𝐶. The output of this step is Array 𝐶 and |𝐶|.
Remark. In the beginning of Section 4 we use the notation 𝛿𝑖 to mean the 𝑥𝑖 − 𝑥1
differences, but in this section we use the same notation to mean “consistent” elements.
This is because they represent the same element. In other words, a “consistent” element
is one that is a divisor of the 𝑦 output difference as well as (yet to be identified) 𝑥 input
difference.

Time Complexity. The worst-case time complexity of this step is

𝒪̃(𝑑3𝜓2𝛽) (4)

as 𝒪(𝑑2) elements each having 𝒪(𝜓) factors of size 𝒪(𝛽) bits are compared in 𝒪(𝑑)
columns.

4.3 Recursive Consistency Check

Summary of this step: In Section 4.2, we obtain the consistency set by examining
the divisors of differences of the polynomial outputs and using that we obtain a set of
tuples that constitute the sets of guessed differences of inputs. In this step, the differ-
ences are obtained in a different manner as described below. These two sets of guessed
differences are compared to enable us to converge faster on the set of 𝑥 differences.
Remark. In the worst-case we need to run this step for 𝜓𝑑 number of times, so we
enable this procedure only for experiments with small polynomial degree. In practice,
this step quickly reduces the number of inconsistent tuples in Array 𝐶, thus reducing
the overall running time of the algorithm.

16 Vivek, Murthy and Kumaraswamy

Refer to the procedure RecursiveConsistencyCheck from Algorithm 1 in
Appendix A.

This step takes the tuple Array 𝐶 as input. The 𝑑 elements of the each tuple of Ar-
ray C, for example 𝐶[𝑖][1] to 𝐶[𝑖][𝑑] of the 𝑖

th
tuple are factors of 𝑦𝑖 output differences,

as obtained the previous step. Using the 𝑑 elements of the first tuple, we can rewrite the
first column of Matrix 𝑌 as:

𝑦2,1 = 𝑦2 − 𝑦1 = (𝑥2 − 𝑥1)[·]2,1

𝑦3,1 = 𝑦3 − 𝑦1 = (𝑥3 − 𝑥1)[·]3,1

...

𝑦𝑑+1,1 = 𝑦𝑑+1 − 𝑦1 = (𝑥𝑑+1 − 𝑥1)[·]𝑑+1,1

We start with Column 𝑚 = 1 of the Matrix 𝑌 , and rename 𝑦𝑖 outputs as 𝑧𝑖,0 (for
ease of notation) for 1 ≤ 𝑖 ≤ 𝑑+ 1. In other words, 𝑦1 is renamed 𝑧1,0, 𝑦2 is renamed
𝑧2,0 and so on. In Step 1 of this procedure, we compute quotients [·]2,1 = 𝑧2,0−𝑧1,0

𝑥2−𝑥1
,

[·]3,1 = 𝑧3,0−𝑧1,0
𝑥3−𝑥1

, and so on. Generalizing this, in step 𝑚, we compute the quotients
[·]𝑖,𝑚, for (𝑚+ 1) ≤ 𝑖 ≤ (𝑑+ 1), as

𝑧𝑖,𝑚 =
𝑧𝑖,𝑚−1 − 𝑧𝑚,𝑚−1

𝑥𝑖 − 𝑥𝑚
.

Next, we find the differences 𝑧𝑖,𝑚 − 𝑧𝑚+1,𝑚 for (𝑚+ 1) < 𝑖 ≤ (𝑑+ 1). We then
find divisors (< 2𝛽) of each of these differences. We call this divisor set as 𝐷𝑁𝑖,𝑚+1.
In Matrix 𝐷, we set 𝐷𝑖,𝑚+1 = 𝐷𝑁𝑖,𝑚+1 ∩ 𝐷𝑖,𝑚+1. We then build the consistent set
for Column𝑚 similar to the way described in Section 4.2. Finally, we pick the non-zero
element in Column 𝑚 in every row to form a tuple 𝜏 of (𝑑 − 𝑚) number of elements,
which form the guessed difference divisors for the next recursive step. The recursion
terminates in 𝑑+ 1 steps as given in Lemma 3. In each step, the computed 𝜏 is used as
input to the subsequent call.

Lemma 3. Given 𝑝(𝑥) ∈ N[𝑥], a degree-𝑑 polynomial, the procedure Recursive Con-
sistency check terminates recursion for a single tuple of guessed differences in at most
𝑑 steps.

Proof. In step 1 of the procedure, the 𝑦𝑖 outputs are that of 𝑝(𝑥), a degree-𝑑 polynomial.
By taking the difference of the 𝑦𝑖 outputs, the coefficient 𝑎0 is eliminated. The input
tuple of guessed differences are factored out from the 𝑦𝑖 differences leaving integer
quotients. In step 2, by taking differences of quotients, the next coefficient, namely, 𝑎1
is eliminated and the process is repeated in each subsequent step. Thus in step 𝑖 the
coefficient 𝑎𝑖−1 is eliminated. Finally, in step 𝑑 :
1. the coefficient 𝑎𝑑−1 is eliminated

Integer Polynomial Recovery from Outputs and its Application . . . 17

2. the guessed differences at this step are factored out leaving the quotient [·]𝑑+1,𝑑 =
𝑎𝑑, the coefficient of 𝑥𝑑 of 𝑝(𝑥)

3. the algorithm terminates for the input tuple of guessed differences and returns 𝑎𝑑.

During any recursive step, if a non-integer quotient is obtained or if no non-zero element
remains in the consistent set, then the recursion is terminated returning 0.

As shown in Lemma 3, for a single tuple of guessed differences, this step terminates
in at most 𝑑 steps. If no 𝑎𝑑 is returned, then the tuple in Array 𝐶 is discarded and the
procedure is repeated using the next tuple in Array 𝐶.
When recursion completes successfully, we get

𝑧𝑑+1,𝑑 =
𝑧𝑑+1,𝑑−1 − 𝑧𝑑,𝑑−1

𝑥𝑑+1 − 𝑥𝑑
.

We obtain 𝑧𝑑+1,𝑑 = 𝑎𝑑 as given in Lemma 3. We note that a tuple in Array 𝐶 having
values with successive differences matching that of the original 𝑥𝑖 values will success-
fully go through all the 𝑑+ 1 steps until an integer 𝑎𝑑 is obtained.

Time Complexity. In this step, the factors are obtained for 𝒪(𝑑2) elements fol-
lowed by running consistency check on 𝑑 − 1 columns. For one tuple, the worst-case
time complexity of this step based on (3) and (4) is

𝒪̃(𝑑2(𝛼+ 𝑑𝛽) · 𝛽 · 2𝛽 + (𝑑3𝜓2𝛽)) (5)

4.4 Choosing Optimal Divisors Sets

Summary of this step: In Section 4.2, we enumerate over 𝜓𝑑 many tuples of divi-
sors/guesses. We provide here a way to choose the divisors sets such that the enumera-
tion complexity is as small as possible.

Definition 7. Output Difference Graph: A complete undirected graph 𝐺 = (𝑉,𝐸)
with |𝑉 | = 𝑛, 𝐸 ⊆ 𝑉 × 𝑉 , where the number of elements in 𝐷𝑖,𝑗 is the edge cost
between nodes 𝑉𝑖 and 𝑉𝑗 .

We refer to Equation (1) giving the polynomial outputs. As explained in Section 4.1,
we compute the differences of polynomial outputs and form the Matrix 𝐷 of divisors
sets (less than 2𝛽) of the output differences. We need to find a set of 𝑑 many 𝐷𝑖,𝑗 el-
ements of the Matrix 𝐷 such that

∏︀
𝐷𝑖,𝑗 is minimum. In other words, the product of

the number of guesses is minimum. Graph 𝐺 is the Output Difference Graph of Matrix
𝐷. Now finding the minimum

∏︀
𝐷𝑖,𝑗 is akin to finding the 𝑑-Minimum Spanning Tree

(i.e., a minimum weight tree with 𝑑 edges only) in 𝐺, where the weight of the tree is

18 Vivek, Murthy and Kumaraswamy

represented by the product of the weights. The requirement that the subgraph is a tree
comes from the linear independence requirement of the corresponding set of equations.
Essentially, we are transforming the problem of finding the small search space of di-
visors to the problem of finding a 𝑑-minimum spanning tree having the least cost (in
terms of divisor product) across all divisors sets of Matrix 𝐷 yet satisfying the linear
independence condition. It is shown in [34] that the 𝑑-MST problem is NP-hard for
points in the Euclidean plane. The same paper provides an approximation algorithm to
find 𝑑-MST [34, Theorem 1.2] and is reproduced here for reference.
“Theorem 1.2. There is a polynomial-time algorithm that, given an undirected graph𝐺
on 𝑛 nodes with non-negative weights on its edges, and a positive integer 𝑘 ≤ 𝑛, con-
structs a tree spanning at least 𝑘 nodes of weight at most 2

√
𝑘 times that of a minimum-

weight tree spanning any k nodes.”
Note that this approximation algorithm also works for multiplication of edge weights
(weights greater than 1) since by extraction of logarithms this can be trivially turned
into addition of edge weights. Using this algorithm, we can carefully select 𝑑 < 𝑛 nodes
having close to the minimum enumeration complexity in order to make our search space
feasible to guess the differences (𝑥𝑖 − 𝑥𝑗) with 𝑥𝑖 ≥ 𝑥𝑗 . From the 𝑑-MST so obtained,
we can now go on to find the set of divisors (𝑥𝑖 − 𝑥𝑗) such that they are consistent as
explained in Section 4.2 and continue with finding the polynomial coefficients using
Lagrange interpolation as described in Algorithm 1. However, we did not implement
this optimisation in our code as the concrete running time was already small enough.
But for larger instances this optimisation will be useful.

4.5 Lagrange interpolation to recover all coefficients

Summary of this step: Use Lagrange interpolation to construct a degree-𝑑 polynomial
using the guessed difference set.

Refer to the procedure ApplyLagrangeInterpolation from Algorithm 1
in Appendix A.

Each tuple (𝛿0 = 0, 𝛿1, . . . , 𝛿𝑑) in the Array𝐶 obtained as described in Section 4.2
presents possible candidates for the differences (𝑥𝑖−𝑥1), 1 ≤ 𝑖 ≤ 𝑑+1. Optionally, we
could use the method described in Section 4.3 to narrow down the possible candidates
to only those tuples for which an integer 𝑎𝑑 coefficient is obtained.

Since 𝛿𝑖 represents differences with respect to some unknown value 𝑥1, we
treat 𝑥1 as an unknown parameter and add it to each of the 𝑑 differences to get
(𝑥1, 𝑥2, . . . , 𝑥𝑑+1) = (𝑥1, 𝑥1 + 𝛿1, . . . , 𝑥1 + 𝛿𝑑). The Lagrange polynomial of
degree-𝑑 is obtained using these values for inputs 𝑥, expressed in terms of 𝑥1 and the
corresponding output values come from the 𝑦 set as given in Section 4.1. We now have

Integer Polynomial Recovery from Outputs and its Application . . . 19

a degree-𝑑 polynomial 𝐿 in 𝑥 with parameter 𝑥1 as shown in Equation (6).

𝐿(𝑥) =
𝑑+1∑︁
𝑘=1

𝑗=𝑑+1∏︀
𝑗=1,𝑗 ̸=𝑘

(𝑥− 𝑥𝑗)

𝑗=𝑑+1∏︀
𝑗=1,𝑗 ̸=𝑘

(𝑥𝑘 − 𝑥𝑗)
· 𝑦𝑘 (6)

Lemma 4. Given a degree-𝑑 polynomial L(x) with parameter 𝑥1 as shown in Equation
6, can be written as a polynomial in 𝑥 whose coefficients are polynomials in 𝑥1.

Proof. (1) The denominator of each of the summands in Equation 6 ∈ Z since it is a
product of only integers and does not contain the parameter 𝑥1.
(2) The numerator of each of the summands in Equation 6 is a product of 𝑑 degree-
1 integer binomials. We know that the product of 𝑑 degree-1 integer binomials of the
form (𝑥+ 𝑝1)(𝑥+ 𝑝2) . . . (𝑥+ 𝑝𝑑) = 𝑥𝑑 +𝑥𝑑−1 ∑︀

𝑝𝑖 +𝑥𝑑−2(
∑︀
𝑝𝑖𝑝𝑗) + . . .+

∏︀
𝑝𝑖.

Now since each of the 𝑝𝑖 = 𝑥1 + 𝛿𝑖, it follows that the coefficient of 𝑥𝑖 is a degree-
(𝑑− 𝑖) polynomial in 𝑥1 and

∏︀
𝑑

𝑝𝑖 is a degree-d polynomial in 𝑥1.

From statements (1) and (2) above, 𝐿(𝑥) = 𝐿0(𝑥1) + 𝐿1(𝑥1)𝑥 + 𝐿2(𝑥1)𝑥2 + · · · +
𝐿𝑑(𝑥1)𝑥𝑑 and each 𝐿𝑖(𝑥1) ∈ Q[𝑥1].

From Lemma 4, each 𝐿𝑖 is a degree-(𝑑− 𝑖) polynomial in 𝑥1, 0 ≤ 𝑖 ≤ 𝑑 and 𝐿𝑑(𝑥1) =
𝑎𝑑 is a constant polynomial. Thus, we have recovered 𝑎𝑑, the coefficient of 𝑥𝑑 in 𝑝(𝑥).

We know that the coefficients of 𝑝(𝑥) are positive integers less than 2𝛼, and 𝑝(𝑥) is
evaluated at integers in the range [0, 2𝛽 − 1]. Our next objective is to output an integer
𝑥1 ∈ [0, 2𝛽 − 1] such that ∀𝑖 = 1, 2, . . . , 𝑑, 1 ≤ 𝑥𝑖 = 𝑥1 + 𝑔𝑖 ≤ 2𝛽 − 1 and
∀𝑖 = 0, . . . , 𝑑 − 1, 𝐿𝑖(𝑥1) is an integer with 0 ≤ 𝐿𝑖(𝑥1) ≤ 2𝛼 − 1 as described in
Section 4.6.. If no such 𝑥1 exists, then we repeat this process using the next tuple in 𝐶.

Time Complexity. The worst-case time complexity of computing the Lagrange
interpolation polynomial for one tuple is

𝒪̃(𝑑2(𝛼+ 𝑑𝛽)2). (7)

4.6 Obtaining 𝑥1 by Finding Roots of Polynomials 𝐿𝑖(𝑥1)

Summary of this step: Given 𝛼, 𝛽 and polynomials 𝐿0, 𝐿1, . . . 𝐿𝑑−1 (each 𝐿𝑖 ∈
Q[𝑥1] and is of degree 𝑑𝑖, respectively, where 𝑑𝑖 = 𝑑 − 𝑖), find 𝑥 ∈ Z satisfying
the condition: 0 ≤ 𝑥 ≤ 2𝛽 − 1 and 0 ≤ 𝐿𝑖(𝑥) ≤ 2𝛼 − 1 ∀ 𝑖 = 0, . . . , 𝑑− 1.

Refer to the procedure RecoverPossibleXValuesAndPoly from Algo-
rithm 1 in Appendix A.

20 Vivek, Murthy and Kumaraswamy

It is easy to see that the following algorithm always outputs one such 𝑥 if it exists
(if no integer satisfies the required condition, then this algorithm returns failure).
1. For each 𝑖 = 0, . . . 𝑑 − 1, find the ordered set 𝑆𝑖 = {[𝑎𝑘, 𝑏𝑘] : 𝑎𝑘, 𝑏𝑘 ∈ Z, 0 ≤

𝑎𝑘 ≤ 𝑏𝑘 ≤ 2𝛽 − 1} of disjoint intervals on the real line such that every integer 𝑚
satisfying 0 ≤ 𝑚 ≤ 2𝛽 − 1 and 0 ≤ 𝐿𝑖(𝑚) ≤ 2𝛼 − 1 is present in some interval
[𝑎𝑘, 𝑏𝑘] ∈ 𝑆𝑖.

2. If there exists an integer 𝑥 in the range [0, 2𝛽 − 1] that is present in some interval
from each 𝑆𝑖 output it, else return failure.

Step 1. Finding the ordered set 𝑆𝑖 of intervals for each 𝐿𝑖:
Compute the set𝑅𝑖,0 of all the (approximations to the) real roots of 𝐿𝑖(𝑥) = 0 that

lie in the range [0, 2𝛽 −1]. Similarly let𝑅𝑖,𝛼 contain all the real roots of𝐿𝑖(𝑥) = 2𝛼−1
in the range [0, 2𝛽 − 1]. Let 𝑅𝑖 = 𝑅𝑖,0 ∪ 𝑅𝑖,𝛼 be an ordered set with its elements in
increasing order (as they appear on the real line).

Intuition. We first provide an intuition for our algorithm by looking at one par-
ticular case. Let 𝑎, 𝑏 (with 𝑎 ≤ 𝑏) be two consecutive elements of the ordered set
𝑅𝑖 = 𝑅𝑖,0 ∪ 𝑅𝑖,𝛼. For now, assume that 𝑎 ∈ 𝑅𝑖,0 and 𝑏 ∈ 𝑅𝑖,0. Then, the following
Lemma easily follows.

Lemma 5. There are only two possibilities for the values taken by 𝐿𝑖(𝑥) for 𝑥 ∈ (𝑎, 𝑏):
either 0 ≤ 𝐿𝑖(𝑥) ≤ 2𝛼 − 1 ∀ 𝑎 < 𝑥 < 𝑏, or 𝐿𝑖(𝑥) < 0 ∀ 𝑎 < 𝑥 < 𝑏.

Proof. Note that 𝐿𝑖 is continuous everywhere in its domain. Since 𝑎, 𝑏 are consecutive
elements in 𝑅𝑖, graphically, the curve 𝐿𝑖 does not intersect the lines 𝑦 = 0 and 𝑦 =
2𝛼 − 1 at any point 𝑥 between 𝑎 and 𝑏. Since 𝐿𝑖(𝑎) = 𝐿𝑖(𝑏) = 0, there are only two
possibilities: the curve either lies entirely between 𝑦 = 0 and 𝑦 = 2𝛼 − 1, or entirely
below 𝑦 = 0.

To determine which of the aforementioned possibilities occurs, it is enough to compute
𝐿𝑖(𝑐) at any 𝑐 between 𝑎 and 𝑏. If 0 < 𝐿𝑖(𝑐) < 2𝛼 − 1, the interval [⌈𝑎⌉, ⌊𝑏⌋] contains
all integers between 𝑎 and 𝑏 satisfying 0 < 𝐿𝑖(·) < 2𝛼 − 1. Add this interval to 𝑆𝑖. (In
our algorithm, we take the midpoint 𝑐 = 𝑎+𝑏

2).
Similarly, it is straightforward to analyze other cases – 𝑎 belongs to 𝑅𝑖,0 and 𝑏

belongs to 𝑅𝑖,𝛼, and so on. When we consider all such consecutive pairs 𝑎, 𝑏 in 𝑅𝑖, we
end up with a set of intervals 𝑆𝑖 such that every integer 𝑚 between 0 and 2𝛽 − 1 that
satisfies 0 < 𝐿𝑖(𝑚) < 2𝛼 − 1 is present in some interval of 𝑆𝑖.

Main Idea. Here, we extend the above arguments and describe the algorithm for
finding 𝑆𝑖. Let 𝑎 be the first element in 𝑅𝑖. If 0 /∈ 𝑅𝑖 then for all 0 < 𝑥 < 𝑎 there
are three possibilities: 𝐿𝑖(𝑥) is either entirely above 𝑦 = 2𝛼 − 1 (when 𝑎 ∈ 𝑅𝑖,𝛼), or

Integer Polynomial Recovery from Outputs and its Application . . . 21

entirely below 𝑦 = 0 (when 𝑎 ∈ 𝑅𝑖,0), or entirely between 𝑦 = 0 and 𝑦 = 2𝛼 − 1.
Therefore, add [0, ⌊𝑎⌋] to 𝑆𝑖 if 0 < 𝐿𝑖(𝑎

2) < 2𝛼 − 1 and 0 /∈ 𝑅𝑖.
Next for every pair of consecutive elements 𝑎, 𝑏 in the (sorted) enumeration of 𝑅𝑖

there are four cases based on whether they belong to 𝑅𝑖,0 or 𝑅𝑖,𝛼.
– 𝑎 ∈ 𝑅𝑖,0 and 𝑏 ∈ 𝑅𝑖,0: If 0 < 𝐿𝑖(𝑎+𝑏

2) < 2𝛼 − 1, then add [⌈𝑎⌉, ⌊𝑏⌋] to 𝑆𝑖. If
𝐿𝑖(𝑎+𝑏

2) < 0 and if 𝑎 (resp. 𝑏) is an integer, we still include them since 𝐿𝑖(𝑎) = 0
and 𝐿𝑖(𝑏) = 0. In this case, add [𝑎, 𝑎] (resp. [𝑏, 𝑏]) to 𝑆𝑖.

– 𝑎 ∈ 𝑅𝑖,0 and 𝑏 ∈ 𝑅𝑖,𝛼: Now the only possibility is that for all 𝑥, 𝑎 < 𝑥 < 𝑏 ⇒
0 < 𝐿𝑖(𝑥) < 2𝛼 − 1 (that is, 𝐿𝑖 is non-decreasing in this region). This is because
𝐿𝑖(𝑎) = 0, 𝐿𝑖(𝑏) = 2𝛼 − 1 and 𝐿𝑖(𝑐) cannot be 0 or 2𝛼 − 1 for any 𝑎 < 𝑐 < 𝑏.
So, add [⌈𝑎⌉, ⌊𝑏⌋] to 𝑆𝑖.

– 𝑎 ∈ 𝑅𝑖,𝛼 and 𝑏 ∈ 𝑅𝑖,0: Similar to the previous case, we once again have 𝑎 <

𝑥 < 𝑏 =⇒ 0 < 𝐿𝑖(𝑥) < 2𝛼 − 1 and 𝐿𝑖 is non-increasing in this region. Add
[⌈𝑎⌉, ⌊𝑏⌋] to 𝑆𝑖.

– 𝑎 ∈ 𝑅𝑖,𝛼 and 𝑏 ∈ 𝑅𝑖,𝛼: For each 𝑎 < 𝑥 < 𝑏, 𝐿𝑖(𝑥) does not intersect 𝑦 = 0 and
𝑦 = 2𝛼 − 1. Since 𝐿𝑖(𝑎) = 𝐿𝑖(𝑏) = 2𝛼 − 1, this means that 𝐿𝑖 is either entirely
above or below 𝑦 = 2𝛼 − 1. So, add [⌈𝑎⌉, ⌊𝑏⌋] to 𝑆𝑖 if 0 < 𝐿𝑖(𝑎+𝑏

2) < 2𝛼 − 1,
otherwise if 𝑎 (resp. 𝑏) is an integer, then add [𝑎, 𝑎] (resp. [𝑏, 𝑏]) to 𝑆𝑖.

Let 𝑏 be the last element in 𝑅𝑖. If 2𝛽 − 1 ̸∈ 𝑅𝑖, for all 𝑏 < 𝑥 < 2𝛽 − 1, there are three
possibilities: 𝐿𝑖(𝑥) is either entirely above 𝑦 = 2𝛼 − 1 (when 𝑏 ∈ 𝑅𝑖,𝛼), or entirely
below 𝑦 = 0 (when 𝑏 ∈ 𝑅𝑖,0), or between 𝑦 = 0 and 𝑦 = 2𝛼 − 1. Add [⌈𝑏⌉, 2𝛽 − 1] to
𝑆𝑖 if 0 < 𝐿𝑖(𝑏+2𝛽−1

2) < 2𝛼 − 1 and 2𝛽 − 1 ̸∈ 𝑅𝑖.
To ensure 𝑆𝑖 consists of disjoint intervals, combine consecutive elements

[𝑎, 𝑏], [𝑐, 𝑑] ∈ 𝑆𝑖 into a single interval [𝑎, 𝑑] if 𝑏 = 𝑐. Since intervals were added to 𝑆𝑖

in a sorted manner, after combining them, the disjoint intervals in 𝑆𝑖 are ordered as
they would appear in the real line. This property will be useful when the intersection
of intervals is computed in the next step.

Time Complexity. For every 𝐿𝑖, the equations 𝐿𝑖(𝑥) = 0 and 𝐿𝑖(𝑥) = 2𝛼 −1 can
each have at most 𝑑𝑖 solutions. All real roots for these equations can be computed in
time 𝒪̃(𝑑3

𝑖 𝜏) [25, 36], where 𝜏 is the minimum number of bits required to represent all
coefficients of 𝐿𝑖. In our case 𝜏 = 𝒪̃(𝛼+𝑑𝛽). The size of𝑅𝑖 is at most 2𝑑𝑖 and sorting
it takes time 𝒪̃(𝑑𝑖). Adding intervals to 𝑆𝑖 for every pair of consecutive elements in 𝑅𝑖

(and ensuring that they are disjoint) takes 𝒪̃(𝑑𝑖). We perform this for all polynomials
𝐿0, 𝐿1, . . . , 𝐿𝑑−1 leading to a time complexity of

𝒪̃(
𝑑−1∑︁
𝑖=0

(𝑑𝑖 + 𝑑3
𝑖 𝜏)) = 𝒪̃(𝑑3(𝛼+ 𝑑𝛽)). (8)

22 Vivek, Murthy and Kumaraswamy

Remark. When finding real roots of 𝐿𝑖(𝑥) = 0 and 𝐿𝑖(𝑥) = 2𝛼 −1, it is sufficient
to compute approximations of these roots up to certain decimal places. For the values
of 𝑑, 𝛼, 𝛽 that we consider for our experiments in Section 5.1 (refer Table 1), obtaining
roots accurately up to 30 decimal places is sufficient for our algorithm to correctly
output the required integer.

Step 2. Finding an 𝑥 Belonging to Some Interval in Each 𝑆𝑖:
When we refer to an interval 𝐼 = [𝑎, 𝑏] (with start point 𝑎 = 𝐼.𝑠𝑡𝑎𝑟𝑡 and end

point 𝑏 = 𝐼.𝑒𝑛𝑑) it is understood that 𝑎 ≤ 𝑏. A number 𝑥 ∈ 𝐼 if 𝑎 ≤ 𝑥 ≤ 𝑏. Two
intervals [𝑎, 𝑏], [𝑐, 𝑑] intersect if 𝑚𝑎𝑥(𝑎, 𝑐) ≤ 𝑚𝑖𝑛(𝑏, 𝑑) in which case the interval
denoting their intersection is [𝑚𝑎𝑥(𝑎, 𝑐),𝑚𝑖𝑛(𝑏, 𝑑)]. Simultaneous intersection of 𝑘
intervals 𝐼1, 𝐼2, . . . 𝐼𝑘 can be computed iteratively: let𝑋 store the required result, which
is initially set to 𝐼1. For 𝑖 = 2 . . . 𝑘, set 𝑋 as the intersection of intervals 𝑋 and 𝐼𝑖.

Let 𝑆𝑖,𝑗 be the 𝑗th element/interval in the (ordered) set 𝑆𝑖. Our objective is to
identify potential intervals in each 𝑆𝑖 that contain a common integer 𝑥 ∈ [0, 2𝛽 − 1].
In other words, find an integer 𝑥 ∈ [0, 2𝛽 − 1] and indices 𝑖0, 𝑖1, . . . 𝑖𝑑−1 such that
𝑥 ∈ 𝑆0,𝑖0 , 𝑥 ∈ 𝑆1,𝑖1 . . . 𝑥 ∈ 𝑆𝑑−1,𝑖𝑑−1 . A recursive approach can be used: out of
𝑆0, 𝑆1, . . . 𝑆𝑑−1, let 𝑆𝑘 be the set with the smallest end point in its first interval, in
other words, 𝑆𝑘,1.𝑒𝑛𝑑 = min

𝑖=0...𝑑−1
{𝑆𝑖,1.𝑒𝑛𝑑}. Let 𝐼 be the interval representing the

intersection of 𝑆0,1, 𝑆1,1 . . . 𝑆𝑑−1,1. We have two possibilities:
– 𝐼 is empty: this implies that 𝑆𝑘,1 will never contribute towards the required com-

mon element in future iterations of the recursion since it ends first among all inter-
vals from 𝑆0 ∪𝑆1 · · · ∪𝑆𝑑−1 on the real line. So remove 𝑆𝑘,1 from 𝑆𝑘 and recurse
on the new sets 𝑆0 . . . 𝑆𝑑−1.

– 𝐼 is non-empty: if 𝐼 contains an integer 𝑥 in the range [0, 2𝛽 − 1] output it since 𝑥
is common to all 𝑆0,1, 𝑆1,1, . . . 𝑆𝑑−1,1. Otherwise, remove 𝑆𝑘,1 from 𝑆𝑘 as before
and recurse.

The size of 𝑆0 ∪𝑆1 · · · ∪𝑆𝑑−1 decreases by one in each iteration. The recursion termi-
nates by default when any 𝑆𝑖 becomes empty, since the required integer must be present
in some interval in each 𝑆𝑖. Therefore, once any 𝑆𝑖 becomes empty no such 𝑥 exists
and the algorithm returns failure.

Time Complexity. The number of intervals in each 𝑆𝑖 is 𝒪(𝑑𝑖) since the size of
𝑅𝑖 is bounded by 2𝑑𝑖. In the worst case, when no integer satisfies the desired condition,
the recursion runs for |𝑆0 ∪𝑆1 ∪· · ·∪𝑆𝑑−1| = 𝒪(

∑︀𝑑−1
𝑖=0 𝑑𝑖) steps. Finding the iterative

intersection of 𝑆0,1, 𝑆1,1 . . . 𝑆𝑑−1,1 in each step can be done in time 𝒪(𝑑). The worst
case time complexity is

𝒪(𝑑
𝑑−1∑︁
𝑖=0

𝑑𝑖) = 𝒪̃(𝑑2). (9)

Integer Polynomial Recovery from Outputs and its Application . . . 23

4.7 Verification of the Polynomial Against the Remaining
Outputs

Once a candidate polynomial is obtained as described in Section 4.6, we use the re-
maining (𝑛 − 𝑑 − 1) outputs to verify the correctness by computing the roots of the
polynomial and check if they are integers that lie in the range [0, 2𝛽 − 1]. If these
verifications are successful, then we say that the algorithm has output a satisfying poly-
nomial.

Time Complexity. We need to compute 𝑑 roots of 𝒪(𝑛) polynomials where the
size of each coefficient is 𝒪(𝛼+ 𝑑𝛽). The worst-case time complexity of this step is

𝒪̃(𝑛𝑑3(𝛼+ 𝑑𝛽)) (10)

4.8 Correctness of Algorithm 1

Theorem 1. Given 𝑛 number of evaluations of a 𝑑-degree monotonic integer polyno-
mial 𝑝(𝑥), our algorithm will output a polynomial 𝑝′(𝑥) ∈ N[𝑥] that satisfies the bound
requirements on inputs and polynomial coefficients as stated in Problem Statement 1.

From Lemmas 1 and 2, (𝑥𝑖 − 𝑥𝑗) < 2𝛽 is a positive divisor of (𝑦𝑖 − 𝑦𝑗). As described
in Section 4.1, we obtain all divisors < 2𝛽 of 𝑦-differences of which one of them is
a respective 𝑥-difference yet to be determined. Next, by forming the consistency-set
as described in Section 4.2 we try to eliminate divisors that are "unlikely" to be 𝑥-
differences. Valid 𝑥-differences are guaranteed to be in the consistent set, since given
two guessed differences (𝑥𝑖 − 𝑥1) and (𝑥𝑗 − 𝑥1), (𝑥𝑖 − 𝑥1) − (𝑥𝑗 − 𝑥1) = (𝑥𝑖 − 𝑥𝑗)
is another guessed difference that should be present in the divisor set of (𝑦𝑖 − 𝑦𝑗).
Tuples of guessed differences are formed by picking one consistent element from each
row of Column 1 of Matrix 𝐷 as given in Section 4.1. One of these tuples will be the
correct set of 𝑥-differences. We then use each tuple to get a candidate polynomial using
Lagrange interpolation as described in Section 4.5 and then find 𝑥1 as described in
Section 4.6, followed by verification against all outputs. At the end of Algorithm 1, we
isolate the set of guessed differences with respect to 𝑥1 and output a polynomial 𝑝′(𝑥)
such that 𝑝′(𝑥𝑖) = 𝑦𝑖 for 1 ≤ 𝑖 ≤ 𝑛. Hence as long as we are successful in obtaining
all divisors of the 𝑦 differences, our algorithm will output a polynomial 𝑝′(𝑥) satisfying
all requirements.

24 Vivek, Murthy and Kumaraswamy

4.9 Consolidated Time Complexity of the Polynomial
Reconstruction Algorithm

Theorem 2. Our algorithm for reconstruction of a degree-𝑑 monotonic integer poly-
nomial when given only the outputs of the polynomial evaluated at a sufficient num-
ber of inputs, as stated in Problem Statement 1, has a worst-case time complexity of
𝒪̃(𝑑2(𝛼+ 𝑑𝛽) · 𝛽 · 2𝛽 + 𝑛𝑑3(𝛼+ 𝑑𝛽)𝑑).

For each of the steps of our polynomial reconstruction algorithm described above, we
either provided a worst-case or a (heuristic) expected-case analysis of the running time.
However, it looks difficult to do a tight/rigorous analysis of some steps as they deal
with, for instance, the distribution of the divisors of the polynomial outputs evaluated
at arbitrarily chosen inputs. Hence, we could only provide a heuristic bound on the
expected running time.

Using (3) and (4), and considering that (7), (8) (9) and (10) need to be executed 𝜓𝑑

times in the worst-case, we get the total heuristic expected running time of Algorithm
1 (in terms of bit operations) as

𝒪̃(𝑑2(𝛼+ 𝑑𝛽) · 𝛽 · 2𝛽 + 𝑛𝑑3(𝛼+ 𝑑𝛽)𝑑). (11)

Remark. We do not consider the time complexity of Section 4.3 while computing the
consolidated time analysis in (11) since it is not enabled for experiments involving
large parameters. (5) in Section 4.3 gives the time complexity for RecursiveConsis-
tencyCheck procedure for one tuple. When it is included as part of Algorithm 1, in the
worst-case it needs to be executed 𝜓𝑑 times making the total heuristic expected running
time of Algorithm 1 as

𝒪̃(𝑑2(𝛼+ 𝑑𝛽)𝑑 · 2𝛽). (12)

4.10 On the Uniqueness of the Satisfying Polynomial
when Coefficients are Uniform Randomly Sampled

We recall that after executing the Algorithm 1, we recover a satisfying polynomial and
the corresponding input values 𝑥𝑖 that satisfies the given output values 𝑦𝑖. As we have
remarked earlier, it may be possible to recover the 𝑥𝑖 values only up to a affine scaling.
This is because the outputs for 𝑝(𝑥) evaluated at 𝑥𝑖 are identical to 𝑝(𝑥+ 𝑐) (for 𝑐 ∈ Z)
evaluated at 𝑥𝑖 − 𝑐, respectively.

We consider here the case when the coefficients 𝑎𝑖 (0 ≤ 𝑖 ≤ 𝑑) of 𝑝(𝑥) = 𝑎0 +
𝑎1 · 𝑥+ 𝑎2 · 𝑥2 + . . .+ 𝑎𝑑 · 𝑥𝑑 are picked uniform randomly and independently from
the range [1, 2𝛼 − 1]. We show below, within certain constraints, that the value of 𝑥1
obtained as described in Section 4.6 along with the guessed differences that results in

Integer Polynomial Recovery from Outputs and its Application . . . 25

a polynomial satisfying all conditions are, with a high probability, the original integer
inputs that were used to compute the polynomial outputs. Let 𝑥𝑝 denote the value of 𝑥1
obtained after the execution of Step 2 of Section 4.6. We examine below the resulting
coefficients of the polynomial 𝑝(𝑥) evaluated at integer values less than and greater
than 𝑥𝑝, namely (𝑥𝑝 − 𝑐) for 0 < 𝑐 < 𝑥𝑝 and (𝑥𝑝 + 𝑐) for 0 < 𝑐 < 2𝛽 − 𝑥𝑝.

4.10.1 Evaluation at (𝑥𝑝 − 𝑐)

Theorem 3. Given 𝑝(𝑥) ∈ N[𝑥] with 𝑝(𝑥) = 𝑎0 + 𝑎1 · 𝑥+ 𝑎2 · 𝑥2 + . . .+ 𝑎𝑑 · 𝑥𝑑 and
𝑌 = {𝑝(𝑥𝑝), 𝑝(𝑥𝑝 + 𝛿1), 𝑝(𝑥𝑝 + 𝛿2), . . .}. The probability that at least one coefficient
of 𝑝(𝑥) goes beyond the coefficient range of [1, 2𝛼 −1], in order to obtain 𝑌 when 𝑝(𝑥)
is respectively evaluated at 𝑥𝑝 − 𝑐, 𝑥𝑝 + 𝛿1 − 𝑐, 𝑥𝑝 + 𝛿2 − 𝑐, . . ., where 𝑐 ∈ Z+, is at
least (1 − 1

𝑑·𝑐).

Proof. The polynomial 𝑝(𝑥) evaluated at (𝑥𝑝 − 𝑐) is

𝑝(𝑥𝑝 − 𝑐) = 𝑎𝑑 · (𝑥𝑝 − 𝑐)𝑑 + 𝑎𝑑−1 · (𝑥𝑝 − 𝑐)𝑑−1 + . . .+ 𝑎0

= 𝑎𝑑 · 𝑥𝑝
𝑑 + (−𝑑𝐶1 · 𝑐 · 𝑎𝑑 + 𝑎𝑑−1) · 𝑥𝑝

𝑑−1 + . . .+
𝑑∑︁

𝑖=0
(−1)𝑖𝑎𝑖 · 𝑐𝑖

Let 𝑇𝑑−1 be the coefficient of 𝑥𝑑−1 in 𝑝(𝑥𝑝 −𝑐). 𝑇𝑑−1 > 0 only when 𝑎𝑑−1 > 𝑑 ·𝑐 ·𝑎𝑑.
We look at the probability of 𝑎𝑑−1 going beyond the coefficient range [1, 2𝛼 − 1] when
𝑎𝑑−1 > 𝑑 · 𝑐 · 𝑎𝑑. 𝑃 (𝑎𝑑−1 ≥ 2𝛼) ≥ 𝑃 (𝑑 · 𝑐 · 𝑎𝑑 ≥ 2𝛼) = 𝑃 (𝑎𝑑 ≥ 2𝛼

𝑑·𝑐). Since the
coefficients are picked randomly from an uniform distribution and the coefficient range
is [1, 2𝛼 − 1], 𝑃 (𝑎𝑑−1 ≥ 2𝛼) ≥ 2𝛼−1−(2𝛼/𝑑·𝑐)

2𝛼−2 ≥ 1 − 1
𝑑·𝑐 .

From Theorem 3, we see that even for polynomials of small degree, say 𝑑 = 10, in
order for 𝑇𝑑−1 to be positive, 𝑎𝑑−1 ≥ 2𝛼 with a high probability which is a contradic-
tion to our assumption that all the coefficients of 𝑝(𝑥) are within the given range for
coefficients.

4.10.2 Evaluation at (𝑥𝑝 + 𝑐)

Theorem 4. Given 𝑝(𝑥) ∈ N[𝑥] with 𝑝(𝑥) = 𝑎0 + 𝑎1 · 𝑥+ 𝑎2 · 𝑥2 + . . .+ 𝑎𝑑 · 𝑥𝑑 and
𝑌 = {𝑝(𝑥𝑝), 𝑝(𝑥𝑝 + 𝛿1), 𝑝(𝑥𝑝 + 𝛿2), . . .}. The probability that at least one coefficient
of 𝑝(𝑥) goes beyond the coefficient range of [1, 2𝛼 −1], in order to obtain 𝑌 when 𝑝(𝑥)
is respectively evaluated at 𝑥𝑝 + 𝑐, 𝑥𝑝 + 𝛿1 + 𝑐, 𝑥𝑝 + 𝛿2 + 𝑐, . . ., where 𝑐 ∈ Z+, is at

26 Vivek, Murthy and Kumaraswamy

least (1 − 1
𝑑·𝑐).

Proof. The polynomial 𝑝(𝑥) evaluated at (𝑥𝑝 + 𝑐) is

𝑝(𝑥𝑝 + 𝑐) = 𝑎𝑑 · (𝑥𝑝 + 𝑐)𝑑 + 𝑎𝑑−1 · (𝑥𝑝 + 𝑐)𝑑−1 + . . .+ 𝑎0

= 𝑎𝑑 · 𝑥𝑝
𝑑 + (𝑑𝐶1 · 𝑐 · 𝑎𝑑 + 𝑎𝑑−1) · 𝑥𝑝

𝑑−1 + . . .+
𝑑∑︁
0
𝑎𝑖𝑐

𝑖

Let 𝑇𝑑−1 be the coefficient of 𝑥𝑑−1 in 𝑝(𝑥𝑝 + 𝑐).
𝑇𝑑−1 = 𝑑 · 𝑐 · 𝑎𝑑 + 𝑎𝑑−1 ⇒ 𝑇𝑑−1 ≥ 𝑑 · 𝑐 · 𝑎𝑑.
𝑃 (𝑇𝑑−1 ≥ 2𝛼) ≥ 𝑃 (𝑑 · 𝑐 · 𝑎𝑑 ≥ 2𝛼) = 𝑃 (𝑎𝑑 ≥ 2𝛼

𝑑·𝑐).
Since the coefficients are picked randomly from an uniform distribution and the coeffi-
cient range is [1, 2𝛼 − 1], 𝑃 (𝑇𝑑−1 ≥ 2𝛼) ≥ 2𝛼−1−(2𝛼/𝑑·𝑐)

2𝛼−2 ≥ 1 − 1
𝑑·𝑐 .

From Theorem 4, we find that 𝑃 (𝑇𝑑−1 ≥ 2𝛼) will be high even for small degree
polynomials, say 𝑑 = 10.

Remark. In our experiments we have been able to verify that the recovered poly-
nomial matched the one used to obtain the initial set of outputs.

5 Experiments and Results

SageMath 8.6 [38] was used to implement the procedures mentioned in Section 4. Our
source code is available at [18]. All our experiments were run on a Lenovo ThinkStation
P920 workstation having a 2.2 GHz Intel®Xeon® processor with 20 cores. However,
our implementation is not multi-threaded and hence did not explicitly exploit the par-
allelism available. We classify our experiments into two sets depending on how the
input 𝑥𝑖 values were sampled - either uniform randomly or come from a real dataset.
The coefficients 𝑎𝑖 were always uniform randomly chosen from the underlying set. The
goal is to recover the inputs and the polynomial. The second set consists of using data
available from the UCI Machine learning repository [14] which is a real-world hospital
data obtained from a hospital in Caracas, Venezuela. For this case, we have chosen the
degree of the polynomial 𝑑 = 9 as in [23].

5.1 Experiments with Random Values

In our experiments with random values, the polynomial coefficients 𝑎𝑖 were chosen
uniformly random in the range [1, 2𝛼 − 1], with 𝛼 = 128. We have run a number of

Integer Polynomial Recovery from Outputs and its Application . . . 27

experiments for different values of 𝛽 and polynomial degrees. For 𝛽 up to 28, where we
use the sieve method to obtain factors < 2𝛽 , we have run experiments for polynomials
of degrees 𝑑 = 12, 24, 48 and 96. For experiments with degrees 𝑑 = 12 and 24, we also
run the procedure RecursiveConsistencyCheck described in Section 4.3. For 𝛽 values of
32, 64, where we first use sieving to find factors ≤ 228 followed by the ECM factoring
method for larger factors < 2𝛽 , we have run experiments for polynomials of degrees
12 and 24. We randomly chose 𝑥𝑖 values from [0, 2𝛽 − 1] and computed 𝑛 = 2𝑑
polynomial outputs. Table 1 gives the time taken for our algorithm (Algorithm 1) to
run to completion. In each of the trials, our algorithm was successful in recovering the
input polynomial and input values. The time taken for recovery is given in seconds and
is averaged over 5 runs in each case. As described in Section 4.1, we use SageMath
function ECM.find_factor() to find factors. This likely returns the next smallest
factor (prime in most cases). We need to extract all factors < 2𝛽 , hence we call this
function iteratively. At each invocation of this function, we start a timer with a timeout,
obtained empirically, such that its value is likely sufficient to obtain the biggest prime
factor < 2𝛽 . The iteration ends when we hit the timeout. Table 2 gives timeout values
and the percentage of number of times where a suitable polynomial was not recovered,
in about 200 trials for different values of 𝛽. It is to be noted that there is a direct
correlation between failure of polynomial recovery and the timeout occurrence before
obtaining all factors < 2𝛽 using ECM.find_factor(). Based on this, we have set
a timeout value of 120 seconds in all our experiments for 𝛽 ≤ 64.

In the experiments, 𝑛 many polynomial output values were input to our algorithm.
The choice of 𝑛 = 2𝑑 was based on observations from the experiments. For the in-
stances where we used parameters mentioned in [23], we could bound the number of
divisors to less than 32 thereby making the search space less than 3210. We then used
the divisor set and (𝑑+ 1) polynomial outputs to compute a possible polynomial using
Lagrange interpolation, which we then used to verify successfully against the remain-
ing (𝑛−𝑑−1) output values. We note that our search space is significantly less than the
estimate of 2160 in [23]. For instances with larger parameters, we could bound the num-
ber of divisors to less than 200. In the Procedure CheckConsistencyInColumn
described in Section 4.2, as soon as any divisor turns out to not belong to the con-
sistent set, it is discarded by setting to 0, thereby reducing the number of divisors to
be checked. Also, it looks like many further optimisation could be done to reduce the
search space.

28 Vivek, Murthy and Kumaraswamy

𝛼 (bits) 𝛽 (bits) Degree Time to recover polynomial
and 𝑥1 (seconds)

128 24 12 10
128 24 24 42
128 24 48 293
128 24 96 2299
128 28 12 129
128 28 24 748
128 28 48 5084
128 28 96 38810

128 32 12 7382
128 32 24 35387
128 64 12 12190
128 64 24 48758

Table 1: Run times for polynomial reconstruction for different polynomial degrees and 𝛽

values

𝛽 (bits) Timeout (seconds) Percentage of tests where
a suitable polynomial

was not recovered
64 5 95%
64 10 85%
64 30 10%
64 60 0
64 120 0

80 60 25%
80 120 10%
80 180 8%

96 60 40%
96 120 37%
96 180 38%

Table 2: Percentage of tests where a suitable polynomial was not recovered in about 200
trials where ECM.find_factor() was used to obtain factors. Timeout indicates for how
long the ECM.find_factor() was allowed to run for each factor before aborting.

Integer Polynomial Recovery from Outputs and its Application . . . 29

5.2 Experiments with Real World Data

We used the cervical cancer (risk factors) data set, same as one of the datasets used
by [23], also available from the UCI Machine learning repository [14]. This data set
consists of information pertaining to 858 patients, each consisting of 32 attributes com-
prising of demographic information, habits and historic medical records. The dataset
had a few missing values due to privacy concerns and these were set to 0. Values with
fractional part were rounded off to the nearest integer. We repeated the experiment with
different random degree 𝑑 = 9 polynomials and were able to recover the original poly-
nomial successfully. We also tested with 16, 20, 24 and 32 bit values of 𝛼 and have
tabulated the time taken by SageMath to compute the polynomial in each of the cases.
𝛽 = 24 was sufficient to encode this data. Time for execution is given in seconds and is
averaged over 5 runs in each case.

𝛼 (bits) 𝛽 (bits) Time to recover polynomial
and 𝑥1 (seconds)

16 24 3.3
20 24 3.5
24 24 3.6
32 24 3.9

Table 3: Run times for polynomial reconstruction for a real world data with degree 9 polyno-
mial.

Our results invalidate the security claims in [23, Theorem 4.2] regarding the leak-
age profile for Server 𝐵. We use the parameters suggested in [23, Section 4.2], i.e.,
𝑑 = 9, 𝛼 =16 and the (squared plaintext) distances are in the range [0, 2𝛽 − 1], where,
𝛽 = 24. For the parameters mentioned there, with only 𝑛 = 20 output values, we could
recover the coefficients of the polynomial in a few seconds as given in Table 3.

Because of the random re-ordering of the distances, Server 𝐵 will not learn the
exact distance of the query point to a specified point (say the 𝑖th point in the original
order). Nevertheless, in many real world scenarios the data set is publicly available and
this, and perhaps other auxilliary information, may potentially be used in combination
with our results to leak information about the query point.

30 Vivek, Murthy and Kumaraswamy

6 Attack on the Secure 𝑘-NN protocol in the
Noisy Setting

In this section, we give another attack on the protocol of [23] if one tries to overcome
our attack from Section 4 by perturbing the polynomial outputs by adding noisy er-
ror terms. This modified protocol is not mentioned in [23] but we consider it here for
completeness.

In the original solution given in [23], in order to hide the Euclidean distance val-
ues, Server 𝐴 chooses a monotonic polynomial and homomorphically evaluates this
polynomial on its computed distances and permutes the order before sending them to
Server 𝐵. Now, instead of sending these (encrypted) polynomial outputs as it is, if they
are perturbed with some noise such that the ordering is still maintained, it will make
our attack in Section 4 unsuccessful in recovering the polynomial or the inputs, as the
attack relies on the exact difference of the polynomial outputs. It is easy to see that the
error value can only be as large as the sum of all the coefficients except the constant
term. Let 𝑝(𝑥) = 𝑎0 + 𝑎1 · 𝑥 + . . . + 𝑎𝑑 · 𝑥𝑑 be the chosen monotonic polynomial,
then, 𝑝(0) = 𝑎0, 𝑝(1) = 𝑎0 + 𝑎1 + . . . + 𝑎𝑑 and the maximum value of the added
noise needs to be less than (𝑝(1) − 𝑝(0)) so as to maintain the original ordering of
polynomial outputs, meaning the perturbation error may only be chosen from the set
[0, . . . , (𝑎1 + . . . + 𝑎𝑑)]. This safe choice of the error term is due to the fact that the
polynomial output values are encrypted and hence it is not possible for the Server 𝐴
to inspect the value and accordingly choose the error term. The range of perturbation
error terms still depends on the size of the coefficient space that can potentially be very
large (unlike the plaintext space as assumed).

Theorem 5. Given a set of noisy outputs of a degree-𝑑 monotonic integer polynomial
where the outputs are perturbed with some random noise from the range [0,

∑︀𝑑
𝑘=1 𝑎𝑘],

then the Server 𝐵 will be able to leak ratios of the inputs.

Proof. Let two of the values that the Server 𝐵 obtains after decryption be 𝐹 (𝑥𝑖) =
𝑝(𝑥𝑖) + 𝑒𝑖 and 𝐹 (𝑥𝑗) = 𝑝(𝑥𝑗) + 𝑒𝑗 , where 𝑒𝑖 and 𝑒𝑗 are the random error terms such
that 0 ≤ 𝑒𝑖, 𝑒𝑗 <

∑︀𝑑
𝑘=1 𝑎𝑘, 1 ≤ 𝑎𝑘 < 2𝛼, and 𝐹 (𝑥𝑖), 𝐹 (𝑥𝑗) > 0.

Consider the ratio 𝐹 (𝑥𝑖)/𝐹 (𝑥𝑗) with 0 ≤ 𝑥𝑗 ≤ 𝑥𝑖 < 2𝛽 :

𝐹 (𝑥𝑖)
𝐹 (𝑥𝑗) =

(
∑︀𝑑

𝑘=0 𝑎𝑘) + 𝑎1 · 𝑥𝑖 + . . .+ 𝑎𝑑 · 𝑥𝑑
𝑖

(
∑︀𝑑

𝑘=0 𝑎𝑘) + 𝑎1 · 𝑥𝑗 + . . .+ 𝑎𝑑 · 𝑥𝑑
𝑗

. (13)

When 𝑥𝑖 and 𝑥𝑗 are sufficiently large we obtain that the ratio in (13) is approximately
close to (𝑥𝑖/𝑥𝑗)𝑑.

Integer Polynomial Recovery from Outputs and its Application . . . 31

The attack presented in Section 4 will not work in this new setting, where the inputs
are perturbed using bounded random noise, because in the attack we rely on the exact
differences of the polynomial outputs. In the noisy setting, Theorem 6 shows that it
is still possible to leak ratios of the inputs to the Server 𝐵 by taking the 𝑑th root of
(𝑥𝑖/𝑥𝑗)𝑑, although recovering the exact values (even up to an affine scaling) may be
challenging. But still a lot more information about the inputs is leaked than just a single
bit. Note also that if the error terms 𝑒𝑘 were not significantly smaller than the leading
terms (which, fortunately, is not the case), then we would not be able to recover the
ratios.

7 Conclusion and Future Work

In this paper, we give an attack on the protocol of [23] for securely computing 𝑘-NN
on SHE encrypted data. This attack is based on our algorithm for integer polynomial
reconstruction given only the integer outputs. While, by just using the outputs, it is
not possible to accurately determine the coefficients or the inputs, we show that we
can feasibly recover the inputs (up to an affine scaling) when the number of outputs is
much bigger than the degree of the polynomial. Our experiments were conducted both
on uniformly randomly selected values as well as a real-world dataset. Since many
of the datasets are available in the public domain it may possible for an adversary to
derive more information about the exact values using our method together with some
other available metadata.

Our method for polynomial reconstruction runs in exponential time in plaintext
space 𝛽 and in degree 𝑑 of the chosen polynomial. In many real-world scenarios both
these parameters will be small. Future work can look at a lower bound analysis of the
time required for this polynomial reconstruction problem. It can also look at relaxing
the practical limits on 𝛼 and 𝛽. The requirement of having the integer polynomial to
be monotonic was needed by [23] since they needed the polynomial outputs to follow
the input ordering to be able to sort the inputs. Relaxing this requirement from the view
point of polynomial recovery can be investigated as part of a future work. Finally, an
FHE solution that can perform efficient sorting and searching on large datasets would
eliminate the need for service providers to be entrusted with decryption keys, thereby
providing a more secure cloud computation environment.

32 Vivek, Murthy and Kumaraswamy

Acknowledgements

This work was funded partly by Sonata Software Limited, Bengaluru, India, partly by
the INSPIRE Faculty Award (DST, Govt. of India) and the Infosys Foundation Career
Development Chair Professorship grant for Srinivas Vivek and partly by the Centre for
Internet of Ethical Things (IIIT Bangalore). We thank Debdeep Mukhopadhyay and
Sikhar Patranabis for helpful discussions. We also thank V. N. Muralidhara for pointing
out the literature on the 𝑑-MST problem. We thank the anonymous reviewer for the
invaluable comments and suggestions, which helped us improve the manuscript.

References

[1] Y. Aono, T. Hayashi, L. T. Phong, and L. Wang. Scalable and secure logistic regression
via homomorphic encryption. In E. Bertino, R. Sandhu, and A. Pretschner, editors,
Proceedings of the Sixth ACM on Conference on Data and Application Security and
Privacy, CODASPY 2016, New Orleans, LA, USA, March 9-11, 2016, pages 142–144.
ACM, 2016.

[2] E. Berlekamp. Algebraic Coding Theory. McGraw-Hill, New York, Volume 8, 1968.
[3] D. Bleichenbacher and P. Q. Nguyen. Noisy polynomial interpolation and noisy chinese

remaindering. In B. Preneel, editor, Advances in Cryptology — EUROCRYPT 2000,
pages 53–69, Berlin, Heidelberg, 2000. Springer Berlin Heidelberg.

[4] A. Boldyreva, N. Chenette, Y. Lee, and A. O’Neill. Order-preserving symmetric encryp-
tion. In A. Joux, editor, Advances in Cryptology - EUROCRYPT 2009, pages 224–241,
Berlin, Heidelberg, 2009. Springer Berlin Heidelberg.

[5] D. Boneh, K. Lewi, M. Raykova, A. Sahai, M. Zhandry, and J. Zimmerman. Seman-
tically Secure Order-Revealing Encryption: Multi-input Functional Encryption Without
Obfuscation. In E. Oswald and M. Fischlin, editors, Advances in Cryptology – EU-
ROCRYPT 2015, Part II, volume 9057 of Lecture Notes in Computer Science, pages
563–594, Sofia, Bulgaria, Apr. 26–30, 2015. Springer, Heidelberg, Germany.

[6] Z. Brakerski, C. Gentry, and V. Vaikuntanathan. (Leveled) fully homomorphic encryption
without bootstrapping. ACM Transactions on Computation Theory (TOCT), 6(3):1–36,
2014.

[7] G. S. Çetin, Y. Doröz, B. Sunar, and E. Savas. Depth Optimized Efficient Homomorphic
Sorting. In K. E. Lauter and F. Rodríguez-Henríquez, editors, Progress in Cryptology
- LATINCRYPT 2015: 4th International Conference on Cryptology and Information Se-
curity in Latin America, volume 9230 of Lecture Notes in Computer Science, pages
61–80, Guadalajara, Mexico, Aug. 23–26, 2015. Springer, Heidelberg, Germany.

[8] G. S. Çetin and B. Sunar. Homomorphic rank sort using surrogate polynomials. In
T. Lange and O. Dunkelman, editors, Progress in Cryptology – LATINCRYPT 2017,
pages 311–326, Cham, 2019. Springer International Publishing.

[9] A. Chatterjee and I. Sengupta. Searching and sorting of fully homomorphic encrypted
data on cloud. IACR Cryptol. ePrint Arch., 2015:981, 2015.

Integer Polynomial Recovery from Outputs and its Application . . . 33

[10] J. H. Cheon, A. Kim, M. Kim, and Y. S. Song. Homomorphic encryption for arithmetic
of approximate numbers. In T. Takagi and T. Peyrin, editors, Advances in Cryptology
- ASIACRYPT 2017 - 23rd International Conference on the Theory and Applications
of Cryptology and Information Security, Hong Kong, China, December 3-7, 2017, Pro-
ceedings, Part I, volume 10624 of Lecture Notes in Computer Science, pages 409–437.
Springer, 2017.

[11] I. Chillotti, N. Gama, M. Georgieva, and M. Izabachène. Tfhe: Fast fully homomorphic
encryption over the torus. J. Cryptol., 33(1):34–91, jan 2020.

[12] S. Choi, G. Ghinita, H.-S. Lim, and E. Bertino. Secure kNN Query Processing in Un-
trusted Cloud Environments. IEEE Transactions on Knowledge and Data Engineering,
26:2818–2831, 2014.

[13] A. Costache, N. P. Smart, S. Vivek, and A. Waller. Fixed-point arithmetic in SHE
schemes. In R. Avanzi and H. M. Heys, editors, SAC 2016: 23rd Annual International
Workshop on Selected Areas in Cryptography, volume 10532 of Lecture Notes in Com-
puter Science, pages 401–422, St. John’s, NL, Canada, Aug. 10–12, 2016. Springer,
Heidelberg, Germany.

[14] D. Dua and C. Graff. UCI Machine Learning Repository, 2017.
[15] Y. Elmehdwi, B. K. Samanthula, and W. Jiang. Secure k-Nearest Neighbor Query over

Encrypted Data in Outsourced Environments. In IEEE 30th International Conference
on Data Engineering, Chicago, ICDE 2014, IL, USA, March 31 - April 4, 2014, pages
664–675, 2014.

[16] C. Gentry. Fully homomorphic encryption using ideal lattices. In M. Mitzenmacher, edi-
tor, 41st Annual ACM Symposium on Theory of Computing, pages 169–178, Bethesda,
MD, USA, May 31 – June 2, 2009. ACM Press.

[17] C. Gentry, A. Sahai, and B. Waters. Homomorphic encryption from learning with errors:
Conceptually-simpler, asymptotically-faster, attribute-based. In R. Canetti and J. A.
Garay, editors, Advances in Cryptology – CRYPTO 2013, Part I, volume 8042 of Lecture
Notes in Computer Science, pages 75–92, Santa Barbara, CA, USA, Aug. 18–22, 2013.
Springer, Heidelberg, Germany.

[18] GitHub. SAGE code for polynomial recovery. https://github.com/shyamsmurthy/knn_
polynomial_recovery, 2019. Last accessed: March 21, 2021.

[19] O. Goldreich, R. Rubinfeld, and M. Sudan. Learning Polynomials with Queries: The
Highly Noisy Case. SIAM Journal on Discrete Mathematics, 13(4):535–570, 2000.

[20] P. Gopalan, S. Khot, and R. Saket. Hardness of reconstructing multivariate polynomials
over finite fields. In 48th Annual IEEE Symposium on Foundations of Computer Science
(FOCS’07), pages 349–359, 2007.

[21] V. Guruswami and M. Sudan. Improved Decoding of Reed-Solomon and Algebraic-
Geometry Codes. IEEE Transactions on Information Theory, 45(6):1757–1767, Sep.
1999.

[22] S. Hardy, W. Henecka, H. Ivey-Law, R. Nock, G. Patrini, G. Smith, and B. Thorne. Pri-
vate federated learning on vertically partitioned data via entity resolution and additively
homomorphic encryption. ArXiv, abs/1711.10677, 2017.

[23] M. Kesarwani, A. Kaul, P. Naldurg, S. Patranabis, G. Singh, S. Mehta, and
D. Mukhopadhyay. Efficient Secure k-Nearest Neighbours over Encrypted Data. In
Proceedings of the 21th International Conference on Extending Database Technology,
EDBT 2018, Vienna, Austria, March 26-29, 2018., pages 564–575, 2018.

https://github.com/shyamsmurthy/knn_polynomial_recovery
https://github.com/shyamsmurthy/knn_polynomial_recovery

34 Vivek, Murthy and Kumaraswamy

[24] A. Kiayias and M. Yung. Directions in polynomial reconstruction based cryptography.
IEICE Transactions on Fundamentals of Electronics, Communications and Computer
Sciences, 87:978–985, 2004.

[25] A. Kobel, F. Rouillier, and M. Sagraloff. Computing real roots of real polynomials ... and
now for real! In Proceedings of the ACM on International Symposium on Symbolic and
Algebraic Computation, ISSAC ’16, pages 303–310, New York, NY, USA, 2016.

[26] M. Kordos, M. Blachnik, and D. Strzempa. Do we need whatever more than k-nn?
In L. Rutkowski, R. Scherer, R. Tadeusiewicz, L. A. Zadeh, and J. M. Zurada, editors,
Artificial Intelligence and Soft Computing, pages 414–421, Berlin, Heidelberg, 2010.
Springer Berlin Heidelberg.

[27] D. Kumaraswamy, S. Murthy, and S. Vivek. Revisiting driver anonymity in oride. In Se-
lected Areas in Cryptography: 28th International Conference, Virtual Event, September
29 – October 1, 2021, Revised Selected Papers, page 25–46, Berlin, Heidelberg, 2021.
Springer-Verlag.

[28] K. Lewi and D. J. Wu. Order-revealing encryption: New constructions, applications,
and lower bounds. In E. R. Weippl, S. Katzenbeisser, C. Kruegel, A. C. Myers, and
S. Halevi, editors, ACM CCS 2016: 23rd Conference on Computer and Communica-
tions Security, pages 1167–1178, Vienna, Austria, Oct. 24–28, 2016. ACM Press.

[29] B. Li and D. Micciancio. On the security of homomorphic encryption on approximate
numbers. In A. Canteaut and F.-X. Standaert, editors, Advances in Cryptology – EURO-
CRYPT 2021, pages 648–677, Cham, 2021. Springer International Publishing.

[30] Y. Luo, X. Jia, S. Fu, and M. Xu. pRide: Privacy-Preserving Ride Matching Over Road
Networks for Online Ride-Hailing Service. IEEE Trans. Information Forensics and Secu-
rity, 14(7):1791–1802, 2019.

[31] S. Murthy and S. Vivek. Cryptanalysis of a protocol for efficient sorting on SHE en-
crypted data. In M. Albrecht, editor, Cryptography and Coding - 17th IMA International
Conference, IMACC 2019, Oxford, UK, December 16-18, 2019, Proceedings, volume
11929 of Lecture Notes in Computer Science, pages 278–294. Springer, 2019.

[32] M. Naor and B. Pinkas. Oblivious transfer and polynomial evaluation. In J. S. Vitter,
L. L. Larmore, and F. T. Leighton, editors, Proceedings of the Thirty-First Annual ACM
Symposium on Theory of Computing, May 1-4, 1999, Atlanta, Georgia, USA, pages
245–254. ACM, 1999.

[33] U. Pujianto, A. P. Wibawa, M. I. Akbar, et al. K-nearest neighbor (k-nn) based miss-
ing data imputation. In 2019 5th International Conference on Science in Information
Technology (ICSITech), pages 83–88. IEEE, 2019.

[34] R. Ravi, R. Sundaram, M. V. Marathe, D. J. Rosenkrantz, and S. S. Ravi. Spanning
Trees - Short or Small. SIAM J. Discrete Math., 9(2):178–200, 1996.

[35] Sage 9.1 Reference Manual. The elliptic curve factorization method. https://doc.
sagemath.org/html/en/reference/interfaces/sage/interfaces/ecm.html, 2019. Last accessed:
June 01, 2020.

[36] M. Sagraloff. When newton meets descartes: A simple and fast algorithm to isolate
the real roots of a polynomial. In Proceedings of the 37th International Symposium on
Symbolic and Algebraic Computation, ISSAC ’12, pages 297–304, New York, NY, USA,
2012.

[37] E. M. Songhori, S. U. Hussain, A.-R. Sadeghi, and F. Koushanfar. Compacting
Privacy-Preserving k-Nearest Neighbor Search using Logic Synthesis. 2015 52nd
ACM/EDAC/IEEE Design Automation Conference (DAC), pages 1–6, 2015.

https://doc.sagemath.org/html/en/reference/interfaces/sage/interfaces/ecm.html
https://doc.sagemath.org/html/en/reference/interfaces/sage/interfaces/ecm.html

Integer Polynomial Recovery from Outputs and its Application . . . 35

[38] W. Stein et al. Sage Mathematics Software (Version 8.6). The Sage Development
Team, 2019. http://www.sagemath.org.

[39] M. Sudan. List decoding: Algorithms and applications. SIGACT News, 31(1):16–27,
Mar. 2000.

[40] T. Tao. Blog: The divisor bound, 2008. Available at https://terrytao.wordpress.com/2008/09/
23/the-divisor-bound/. Last accessed: July 19, 2021.

[41] H. Yu, X. Jia, H. Zhang, X. Yu, and J. Shu. Psride: Privacy-preserving shared ride
matching for online ride hailing systems. IEEE Transactions on Dependable and Secure
Computing, 18(3):1425–1440, 2021.

http://www.sagemath.org
https://terrytao.wordpress.com/2008/09/23/the-divisor-bound/
https://terrytao.wordpress.com/2008/09/23/the-divisor-bound/

36 Vivek, Murthy and Kumaraswamy

A Polynomial Reconstruction Algorithm

Algorithm 1: Integer Polynomial Reconstruction From Only the Integer
Outputs

Procedure Main({𝑝(𝑥1), . . . , 𝑝(𝑥𝑛)}, 𝜓) :
/* Inputs : 𝑝(𝑥𝑖) are the polynomial outputs in the ascending order, 𝜓 is

the bound on the number of divisors */
/* Outputs : All recovered polynomial 𝑝(𝑥) and corresponding 𝑥1 */
𝐷 = GuessTheDifference({𝑝(𝑥1), . . . , 𝑝(𝑥𝑛)}, 𝜓)
𝐷 = CheckConsistencyInColumn(𝐷)
𝐶, 𝑡𝑢𝑝𝑙𝑒_𝑐𝑜𝑢𝑛𝑡 = FormConsistentTuple(1)
for 𝑖 = 1 to 𝑡𝑢𝑝𝑙𝑒_𝑐𝑜𝑢𝑛𝑡 do

/* NOTE: Optional loop and function RecursiveConsistencyCheck()
enabled when executed for small polynomial degree */
𝑑𝑖𝑠𝑐𝑎𝑟𝑑𝐹 𝑙𝑎𝑔 = RecursiveConsistencyCheck(1, 𝐶[𝑖])
if 𝑑𝑖𝑠𝑐𝑎𝑟𝑑𝐹 𝑙𝑎𝑔 is TRUE then

discard 𝐶[𝑖];
𝑡𝑢𝑝𝑙𝑒_𝑐𝑜𝑢𝑛𝑡 −= 1

end
end
𝜒[] := Column 1 of Matrix 𝑌
for 𝑖 = 1 to 𝑡𝑢𝑝𝑙𝑒_𝑐𝑜𝑢𝑛𝑡 do

𝐿 = ApplyLagrangeInterpolation(𝐶[𝑖], 𝜒)
𝑥1, 𝑝 = RecoverPossibleXValuesAndPoly(𝐿)
if 𝑥1 is not failure then

Compute roots of 𝑝(𝑥) = 𝑦𝑖, (𝑑+ 1) < 𝑖 ≤ 𝑛

/* For the other (𝑛− 𝑑− 1) outputs */
if No positive integer root < 2𝛽 then

Discard current tuple, move to next one
end
Output Polynomial 𝑝 and 𝑥1

end
end
return

Integer Polynomial Recovery from Outputs and its Application . . . 37

Procedure GuessTheDifference({𝑝(𝑥1), . . . , 𝑝(𝑥𝑛)}, 𝜓) :
𝑐𝑜𝑢𝑛𝑡 = 0
for 𝑖 = 2 to 𝑛 do

𝑦_𝑣𝑎𝑙 = 𝑝(𝑥𝑖)
for 𝑗 = 1 to (𝑖− 1) do

𝑦𝑖,𝑗 = (𝑦_𝑣𝑎𝑙 − 𝑝(𝑥𝑗)) /* 𝑝(𝑥𝑖) > 𝑝(𝑥𝑗) */
Use sieve method to obtain all the (positive) divisors of 𝑦𝑖,𝑗 < 2𝛽

𝐷𝑖,𝑗 := Set of all divisors of 𝑦𝑖,𝑗 < 2𝛽

if |𝐷𝑖,𝑗 | > 𝜓 then
/* Discard current (𝑦𝑖, 𝐷𝑖) and pick next output */
𝑖 += 1; 𝑗 = 1;
𝑦_𝑣𝑎𝑙 = 𝑝(𝑥𝑖)
continue /* Restart inner loop */

end
𝑐𝑜𝑢𝑛𝑡 += 1
if 𝑐𝑜𝑢𝑛𝑡 == 𝑑+ 1 then

return 𝐷
end

end
end
return 𝐷 /* Matrix of divisors set */

38 Vivek, Murthy and Kumaraswamy

Procedure CheckConsistencyInColumn(Matrix 𝐷) :
for 𝑐𝑜𝑙 = 1 to (𝑑− 1) do

𝑡𝑜𝑝_𝑟𝑜𝑤 = 𝑐𝑜𝑙 + 1
for 𝑖 = (𝑡𝑜𝑝_𝑟𝑜𝑤 + 1) to (𝑑+ 1) do

𝑐_𝑓𝑙𝑎𝑔 = 0
for 𝑗 = 𝑡𝑜𝑝_𝑟𝑜𝑤 to (𝑖− 1) do

Iterate over all 𝑓 ̸= 0 ∈ 𝐷𝑖,𝑐𝑜𝑙

Iterate over all 𝑔 ̸= 0 ∈ 𝐷𝑗,𝑐𝑜𝑙

if (𝑓 − 𝑔) ∈ 𝐷𝑖,𝑐𝑜𝑙+1 then 𝑐_𝑓𝑙𝑎𝑔 = 1
if 𝑐_𝑓𝑙𝑎𝑔 == 0 then Set 𝑓 = 0 in 𝐷𝑖,𝑐𝑜𝑙

end
end
/* Check consistency of topmost non-zero element in Column */
forall 𝑔 ̸= 0 ∈ 𝐷𝑡𝑜𝑝_𝑟𝑜𝑤,𝑐𝑜𝑙 do

for 𝑖 = (𝑡𝑜𝑝_𝑟𝑜𝑤 + 1) to (𝑑+ 1) do
𝑐_𝑓𝑙𝑎𝑔 = 0
Iterate over all 𝑓 ̸= 0 ∈ 𝐷𝑖,𝑐𝑜𝑙

if (𝑓 − 𝑔) ∈ 𝐷𝑖,𝑐𝑜𝑙+1 then 𝑐_𝑓𝑙𝑎𝑔 = 1
if 𝑐_𝑓𝑙𝑎𝑔 == 0 then Set 𝑔 = 0 in 𝐷𝑡𝑜𝑝_𝑟𝑜𝑤,𝑐𝑜𝑙

end
end
return 𝐷 /* Matrix of divisors with consistent elements in each

column */
end

Procedure FormConsistentTuple(𝑖 : Column id of 𝐷 Matrix) :
𝑡𝑢𝑝𝑙𝑒_𝑐𝑜𝑢𝑛𝑡 = 0
Initialize Array 𝐶[][] to zero
/* Examine elements in column 𝑖 of Matrix 𝐷 */
while iterate over each non-zero element 𝑒 in 𝐷𝑖+1,𝑖 do

𝑡𝑢𝑝𝑙𝑒_𝑐𝑜𝑢𝑛𝑡+ = 1
Append 𝑒 to 𝐶[𝑡𝑢𝑝𝑙𝑒_𝑐𝑜𝑢𝑛𝑡]
for 𝑗 = (𝑖+ 1) to (𝑑+ 1) do

Find the element 𝑓 consistent with 𝑒 in 𝐷𝑗,𝑖

Append 𝑓 to 𝐶[𝑡𝑢𝑝𝑙𝑒_𝑐𝑜𝑢𝑛𝑡]
end

end
return 𝐶, 𝑡𝑢𝑝𝑙𝑒_𝑐𝑜𝑢𝑛𝑡

Integer Polynomial Recovery from Outputs and its Application . . . 39

Procedure RecursiveConsistencyCheck(𝐶𝑜𝑙_𝑖𝑑, Divisor Tuple 𝜏) :
𝑟𝑒𝑡 = FALSE
if 𝐶𝑜𝑙_𝑖𝑑 < degree 𝑑 then

𝑦_𝑣𝑎𝑙 = 𝑌 [𝐶𝑜𝑙_𝑖𝑑+ 1][𝐶𝑜𝑙_𝑖𝑑]
for 𝑖 = (𝐶𝑜𝑙_𝑖𝑑 + 1) to 𝑑 do

𝑁𝑒𝑤_𝑦 = (𝑌 [𝑖][𝐶𝑜𝑙_𝑖𝑑] − 𝑦_𝑣𝑎𝑙) / 𝜏 [𝑖]
𝐷𝑖𝑣_𝑛𝑒𝑤 := Divisors of 𝑁𝑒𝑤_𝑦 < 2𝛽

𝐷𝑖𝑣_𝑖𝑛𝑡 := 𝐷𝑖𝑣_𝑛𝑒𝑤 ∩ 𝐷𝑖 𝐶𝑜𝑙_𝑖𝑑

𝐷𝑖 𝐶𝑜𝑙_𝑖𝑑 := 𝐷𝑖𝑣_𝑖𝑛𝑡
𝑌 [𝑖][𝐶𝑜𝑙_𝑖𝑑] = 𝑁𝑒𝑤_𝑦
𝜏 , 𝑡𝑢𝑝𝑙𝑒_𝑐𝑜𝑢𝑛𝑡 = FormConsistentTuple(𝑖)
if 𝑡𝑢𝑝𝑙𝑒_𝑐𝑜𝑢𝑛𝑡 == 0 then

/* Tuple 𝜏 leads to an inconsistent state, can be discarded */
return TRUE

end
end
𝐶𝑜𝑙_𝑖𝑑 += 1
𝑟𝑒𝑡 = RecursiveConsistencyCheck(𝐶𝑜𝑙_𝑖𝑑, 𝜏) return 𝑟𝑒𝑡

end
else

return 𝑟𝑒𝑡
end

Procedure ApplyLagrangeInterpolation(𝐶𝑇 : tuple of 𝑑+ 1
differences, 𝜒) :

Declare 𝑥1 as a variable
for 𝑖 = 0 to 𝑑 do

/* Express each difference in terms of 𝑥1 */
𝛿𝑖 = 𝑥1 + 𝐶𝑇 [𝑖+ 1] − 𝐶𝑇 [1]

end
𝛿 = [𝛿0, 𝛿1, . . . , 𝛿𝑑]
Apply Lagrange interpolation on (𝛿, 𝜒) to get a degree 𝑑 polynomial 𝐿 in
𝑥.

The coefficients 𝐿0, 𝐿1, . . . , 𝐿𝑑 of 𝐿 are polynomials in 𝑥1, such that the
coefficient of 𝑥 is a degree 𝑑 polynomial in 𝑥1 and that of 𝑥𝑑 is a
constant integer.

return 𝐿

40 Vivek, Murthy and Kumaraswamy

Procedure RecoverPossibleXValuesAndPoly(L)
/* Coefficients 𝐿0, . . . , 𝐿𝑑 of 𝐿 are polynomials */
for 𝑖 = 0 to (𝑑− 1) do

𝑅𝑖,0 := All real roots of 𝐿𝑖(𝑥) = 0 in [0, 2𝛽 − 1]
𝑅𝑖,𝛼 := All real roots of 𝐿𝑖(𝑥) = 2𝛼 − 1 in [0, 2𝛽 − 1]
Sort the elements of 𝑅𝑖 = 𝑅𝑖,0 ∪𝑅𝑖,𝛼

𝑆𝑖 = 𝜑; Let 𝑎 be first element of 𝑅𝑖

if 0 /∈ 𝑅𝑖 and 0 < 𝐿𝑖(𝑎/2) < 2𝛼 − 1 then
𝑆𝑖 = 𝑆𝑖 ∪ {[0, ⌊𝑎⌋]}

for every pair of consecutive elements 𝑎, 𝑏 in 𝑅𝑖 do
if 𝑎 is an integer then

𝑆𝑖 = 𝑆𝑖 ∪ {[𝑎, 𝑎]}
if 𝑎 ∈ 𝑅𝑖,0 and 𝑏 ∈ 𝑅𝑖,0 and 0 < 𝐿𝑖(𝑎+𝑏

2) < 2𝛼 − 1 then
𝑆𝑖 = 𝑆𝑖 ∪ {[⌈𝑎⌉, ⌊𝑏⌋]}

if 𝑎 ∈ 𝑅𝑖,0 and 𝑏 ∈ 𝑅𝑖,𝛼 then
𝑆𝑖 = 𝑆𝑖 ∪ {[⌈𝑎⌉, ⌊𝑏⌋]}

if 𝑎 ∈ 𝑅𝑖,𝛼 and 𝑏 ∈ 𝑅𝑖,0 then
𝑆𝑖 = 𝑆𝑖 ∪ {[⌈𝑎⌉, ⌊𝑏⌋]}

if 𝑎 ∈ 𝑅𝑖,𝛼 and 𝑏 ∈ 𝑅𝑖,𝛼 and 0 < 𝐿𝑖(𝑎+𝑏
2) < 2𝛼 − 1 then

𝑆𝑖 = 𝑆𝑖 ∪ {[⌈𝑎⌉, ⌊𝑏⌋]}
if 𝑏 is an integer then

𝑆𝑖 = 𝑆𝑖 ∪ {[𝑏, 𝑏]}
end
Let 𝑏 be the last element of 𝑅𝑖.
if 2𝛽 − 1 /∈ 𝑅𝑖 and 0 < 𝐿𝑖(𝑏+2𝛽−1

2) < 2𝛼 − 1 then
𝑆𝑖 = 𝑆𝑖 ∪ {[⌈𝑏⌉, 2𝛽 − 1]}

end
while every 𝑆𝑖 is non-empty do

Let 𝑆𝑖,𝑗 denote the 𝑗-th interval in 𝑆𝑖.
Find 𝑘 such that 𝑆𝑘 has the least end-point in its first interval.
Compute 𝐼 = 𝑆0,1 ∪ 𝑆1,1 ∪ · · · ∪ 𝑆𝑑−1,1
if 𝐼 is non-empty and 𝐼 contains an integer 𝑥 in [0, 2𝛽 − 1] then

/* Found 𝑥 */
Compute polynomial 𝑝 whose coefficients are 𝐿0(𝑥), . . . , 𝐿𝑑(𝑥)
return 𝑥, 𝑝

end
else

Remove 𝑆𝑘,1 from 𝑆𝑘.
end

end
return failure

	Integer Polynomial Recovery from Outputs and its Application to Cryptanalysis of a Protocol for Secure Sorting2]The final published version of this paper appears in the Journal of Mathematical Cryptology, Volume 16 Issue 1, with DOI : 10.1515/jmc-2021-0054. An earlier version of this work was titled "Cryptanalysis of a Protocol for Efficient Sorting on SHE Encrypted Data", and appeared in the Proceedings of 17th IMACC, 2019. The current work subsumes the earlier work and provides new results.
	1 Introduction
	2 Related Work on Polynomial Reconstruction
	3 Motivating Application
	3.1 k-Nearest Neighbour Protocol
	3.2 Computation on Encrypted Data
	3.3 k-NN Protocol over Encrypted Data KesarwaniKNPSMM18
	3.4 Problem Setting
	3.5 Adversarial Model
	3.6 Our Contribution

	4 Recovering integer inputs given only integer polynomial outputs
	4.1 Divisors from y-differences
	4.2 Consistency Check on the Guessed Differences
	4.3 Recursive Consistency Check
	4.4 Choosing Optimal Divisors Sets
	4.5 Lagrange interpolation to recover all coefficients
	4.6 Obtaining x1 by Finding Roots of Polynomials Li(x1)
	4.7 Verification of the Polynomial Against the Remaining Outputs
	4.8 Correctness of Algorithm 1
	4.9 Consolidated Time Complexity of the Polynomial Reconstruction Algorithm
	4.10 On the Uniqueness of the Satisfying Polynomial when Coefficients are Uniform Randomly Sampled
	4.10.1 Evaluation at (xp - c)
	4.10.2 Evaluation at (xp + c)

	5 Experiments and Results
	5.1 Experiments with Random Values
	5.2 Experiments with Real World Data

	6 Attack on the Secure k-NN protocol in the Noisy Setting
	7 Conclusion and Future Work
	A Polynomial Reconstruction Algorithm

