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Abstract. Fault injection attacks have caused implementations to be-
have unexpectedly, resulting in a spectacular bypass of security features
and even the extraction of cryptographic keys. Clearly, developers want
to ensure the robustness of the software against faults and eliminate
production weaknesses that could lead to exploitation. Several fault sim-
ulators have been released that promise cost-effective evaluations against
fault attacks. In this paper, we set out to discover how suitable such tools
are, for a developer who wishes to create robust software against fault at-
tacks. We found four open-source fault simulators that employ different
techniques to navigate faults, which we objectively compare and discuss
their benefits and drawbacks. Unfortunately, none of the four open-source
fault simulators employ artificial intelligence (AI) techniques. However,
AT was successfully applied to improve the fault simulation of crypto-
graphic algorithms, though none of these tools is open source. We sug-
gest improvements to open-source fault simulators inspired by the Al
techniques used by cryptographic fault simulators.
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1 Introduction

An adversary with physical access to a device can induce unforeseen effects in
a software program by subjecting the device to extreme operating conditions.
Faults can be introduced in several ways [22], for example, through clock glitches,
where short glitches are inserted into the clock signal, which may cause timing
violations or voltage glitches, where the device is supplied with power outside
the range of values specified in the datasheet. Fault injection is the deliberate
action of modifying or skipping the intended flow of operations that could result
in the software acting unexpectedly. A successful fault injection attack may
allow unauthorized individuals to access off-limits memory locations or bypass
necessary authorization conditions that could crash the system or cause it to
behave unexpectedly, leading to dire consequences.

Fault injection attacks in vehicle immobilizer systems [37], or key recovery
of Playstation Vita AES-256 [20] provide enough incentive to prevent further
attacks by injection of faults. Unauthorized access to a Linux operating system
[34] or exploring embedded systems [35/36] by exploiting faults further proves
the disastrous effects of fault injection attacks.
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Assisted fault simulation automates detecting and testing vulnerabilities in
a given program’s control flow or due to data modification. A fault simulator
is a software tool that simulates the effects of faults or errors in digital circuits
or software programs. When targeting software, a fault simulator will replicate
(either by simulating or emulatingﬂ) the underlying architecture on which the
program will run. A user-specified fault model specifies the parameters for the
fault simulator to look for exploitable locations. The target of the fault simula-
tor can be any part of the implementation, hardware, or software. To determine
whether the target is vulnerable to faults, a test case modifies the target ac-
cording to one instance of the fault model and executes the target. If the target
behaves as expected, the tested location is not vulnerable. Alternatively, the
target is vulnerable, and the user can determine what caused the fault.

One of the benefits of using a fault simulator is the possibility of performing a
root cause analysis. When performing fault injection on targets, it is impossible
to determine what caused the fault. A fault simulator allows users to deter-
mine the cause of a successful fault and harden the implementation without
needing a physical target and expensive tools. Additionally, using fault sim-
ulators may be less complex and expensive than testing for faults using real
fault injection tooling on an actual target. Given the appeal of fault simu-
lators, we sought to investigate state-of-the-art open-source fault simulators.
The target audience for this paper is developers of general-purpose software and
not specifically cryptographic implementations. Although many fault simulators
[BI8IBT2926/TIT7I33242827UT6T4U5] can verify the implementations of cryp-
tographic algorithms, we exclude them in this work because there is already an
overview of such tools [4]. We found four fault simulators in the public domain
suitable for such a developer, namely FiSim [25], ZOFI [23], ARMORY [13] and
ARCHIE [12].

In this paper, we discuss what features existing tools offer, which use cases
they cover, and how easy it is to adapt them to different examples. Al was
successfully applied to improve the fault simulation of cryptographic algorithms
[4]. Hence, we explore the use cases where Al was successfully applied and discuss
the opportunities to apply the techniques employed by the latter to optimize the
former. A fault simulator must satisfy the following conditions to provide a
significant advantage over performing fault injection on an actual target:

1. Tt must be fast enough to cover as many test cases as possible in a reasonable
amount of time.

2. It needs to be scalable, as it should handle smaller code snippets and full-
fledged implementations of real-world applications.

3. It should offer interpretability so that a developer can use the results to
harden the implementation.

Not all vulnerable locations are exploitable as attacking a vulnerable location
may or may not result in an exploitable fault. For example, the fifth-round byte
fault in AES is not exploitable, whereas the eighth- or ninth-round byte fault

! The terms, simulation, and emulation, have been used interchangeably.
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in AES is exploitable [3I]. Therefore, there might be innumerable vulnerable
locations, but not all of them will be exploitable. The goal of a fault simulator
is to find exploitable locations.

Contribution. In this paper, we offer the following contributions:

1. We propose a grammar to express fault models that can be used to compare
the capabilities of each tool at a glance in Section

2. We define a set of parameters to compare the tools to help a prospective
user quickly decide which tools best suit his use case in Section [4]

3. We objectively compare existing open-source fault simulators designed for
general-purpose software while discussing their operation and features in
Section

4. We present challenges of existing fault simulators in Section [6}

5. We suggest optimizations to improve existing fault simulators with AI tech-
niques in Section [7}

Paper organization. The remainder of the paper is organized as follows. Sec-
tion [2] presents the development of fault simulator over the years. Section [3]
outlines our proposed grammar to express fault models. Section [4] describes the
criteria we chose to evaluate the four fault simulators. Section[5]details the exper-
imental setup along with the fault simulators and their functioning and features.
Section [6] identifies the challenges of using the existing fault simulators, followed
by suggestions for improvements using Al techniques in Section [7] Finally, we
conclude in Section [8

2 Background

There are surprisingly many tools available to perform fault simulations. We first
divide existing tools according to the type of implementations, hardware circuits
vs. software programs. The intended application for the verified target can be
divided into cryptographic implementations vs. general-purpose software. Lastly,
we consider whether the tools are open source. When discussing related work,
we mention fault simulators that we could not execute. Due to the large num-
ber of tools available [T5I3IS2I32ITO2523TTTIIT22T], we make a representative
selection of simulators available for general-purpose software.

Fault simulation on hardware circuits. The first general-purpose tool pub-
lished to test circuit fault resistance is MEFISTO (Multilevel Error/Fault Injec-
tion Simulation TOol) [15], a proprietary tool. Using VHDL as the simulation
language, MEFISTO validates the dependability of fault-tolerant systems by ap-
plying fault injection to different levels of abstraction, which in turn is used to
create an abstraction hierarchy of fault models. It also estimates the possible
coverage with the given fault-tolerance mechanisms. LIFTING (LIRMM Fault
Simulator) [3] is an open source, object-oriented tool designed in Verilog on an
event-driven logic simulation engine that focuses on both logic and fault simu-
lations for stuck-at faults and single-event upsets (SEU). The simulator checks
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if the design meets the expectations of the functional specifications and intro-
duces fault injections for stuck-at and SEU fault models. [32] has proposed an
automated integration of fault injection into the ASIC design flow.

Fault simulation on software programs. All fault simulators in this cat-
egory use QEMU as the underlying emulator. QEFT [§] focused on the ARM
architecture, executes a system-wide and kernel-based fault simulation to check
its susceptibility to faults. The next framework is XEMU [2], a language and
compiler-independent tool that performs efficient mutation-based testing of soft-
ware binaries by injecting mutations at run-time using dynamic code translation.
It uses QEMU in user mode, which emulates a single program on a Linux OS.
Without access to the source code, the control flow graph (CFG) analysis of the
disassembled code (before the execution of the software binary) is used to create
a mutation table to facilitate injection. XEMU approaches 100% accuracy for
test quality metrics compared to source code instrumentation. The CFG offers
a speed-up of up to 100 - 1000 times with a GDB/ARMulator. EQEFI [I0] is
automatic and non-intrusive, minimizing the effect of fault simulation on emu-
lator performance by simulating the presence of permanent, intermittent, and
transient faults in the CPU registers of both RISC and CISC architectures.
Al-based fault simulators. Cryptographic fault simulators turned to Al to
help cover as many test cases as possible. Techniques vary from data mining to
machine learning and deep learning. The first of its kind, ExpFault [31], used data
mining to detect exploitable locations (for differential fault analysis) in block-
cipher implementations. ExpFault mines distinguishers from fault simulation
data using association rule mining to group frequent items. For the recovery of
the key after the implementation of the cipher, DL-FALAT [27] uses the deep
learning-based leakage detection test based on the principle of non-interference
[9] as an improvement to the t-test used in ALAFA [29]. To construct a dataset
for the machine learning algorithm, [28] uses a SAT solver to retrieve the key from
a few instances of the cipher implementation. The dataset is used to train the
machine learning algorithm to predict if there exist any other fault instances in
the same cipher implementation. Different algorithms will use different datasets
and models. Carpi et al. [7] were the first to use genetic algorithms to improve
parameter selection for fault injection. Their solution to narrow down the space
of exploitable locations from the vulnerable locations could be beneficial. Krcek
et al. [T9] utilizes genetic algorithms and machine learning to develop a solution
that allows them to find more exploitable faults compared to using either of the
approaches.

3 A Taxonomy of Fault Models

Due to the lack of a taxonomy regarding fault models, different fault simulators
use different terminologies to refer to the supported fault models. For example,
ZOFT supports a single-event upset fault model in which it attempts to perform
a bit-flip in a register whereas ARMORY supports 24 fault models. ARCHIE
supports four fault models. The set 0 and set 1 fault models replace the bits
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Table 1. Fault Models with Abbreviations

How [Who [Resolution [Action
Clear(C)
Permanent(P) |Instruction(I)| Bit(b) Fill(F)
Transient(T) Data(D) Byte(B) Set(S)
Until-overwrite(U)| Address(A) |Register(R) Flip/Toggle(G)
Skip/NOP (instruction)(N)

to 0 and 1, respectively, while the toggle fault model switches the bits repre-
sented by the fault mask. The overwrite fault model ensures that instructions
can be skipped. However, the description of the fault model lacks clarity and it
remains unspecified whether the fault is to affect an instruction (I), data (D)
or address (A). Having a taxonomy helps the fault simulators present the sup-
ported fault models in a concise manner. As seen from the Table [I} set 0, set 1,
toggle and overwrite fault models correspond to the actions, clear (C), set (S),
flip/toggle (G) and skip/NOP (instruction) (N) respectively. However, different
fault simulators using different terminologies to refer to the same fault model
adds ambiguity. Moreover, the duration of the fault manifestation and its effects
remain undefined.

We found no unified view to describe fault models when comparing existing
tools, so we proposed a solution that allows us to describe the fault models for
the tools we compared.

Table [ shows our solution to describe the characteristics of a fault. The
first parameter, how, describes the duration during which the faults manifest.
Unlike transient faults, which affect only the current run of the target program,
permanent faults affect the current and all future executions. Until-overwrite
refers to the faulting of a register or any other memory location, the effects of
which become nullified once its value is overwritten. The parameters who and
resolution describe which implementation fragment is affected. Finally, each fault
model is described by an action with the help of which the fault is injected.

For example, FiSim[25] supports two fault models: transient instruction skip-
ping ([T][I])[N]) and transient instruction bit flips([[T][I][b][G]]). While the former
fault model skips the subsequent instruction, the latter flips the value of a bit
corresponding to an instruction for a particular execution of the program. The
combination in fault models does not imply that the tools support all possible
combinations of fault models.

4 Criteria for evaluating the fault simulators

This section discusses our criteria for evaluating the four open-source fault simu-
lators. From a developer’s perspective, these criteria aim to provide quick insight
into the working of each tool to help decide which tool to use. Figure[T]illustrates
the various parameters that we use to evaluate the fault simulators.
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Fig. 1. Illustration of our criteria for evaluating fault simulators

Figure [1] portrays the inputs needed to run the target program on the fault
simulators. Foremost is the implementation itself, which can be cross-compiled,
as suggested by the OS and the architecture. Depending on the fault simulator,
the developer can specify the range of the implementation to be considered when
the fault simulator attempts to induce faults into it. The “program” is supposed
to run on the “architecture”. Hence architecture can also be looked at as an
input. Depending on the inherent design of the fault simulator, certain fault
models will be executed either deterministically or randomly. The “platform”
helps users decide on the host system to run the fault simulator.

Table 2| is a concise overview of the parameters we selected for comparison.
Platform informs us about the underlying simulation or emulation engines. The
OS informs us about the operating system for which the fault simulator will run
and compatible cross-compilers. Architecture describes the supported hardware
device on which the execution of the software can be replicated. Range specifies
whether a tool is ezhaustive(E) and will consider the entire implementation or
is user-defined(U), and the user can specify the range of instructions. At first
glance, tools that support an exhaustive search for vulnerable locations might
seem tempting, but could hinder handling an implementation that consumes
substantial resources. On the contrary, the tools supporting user-defined range
help us fine-tune as per requirements and might prove beneficial.

Coverage determines whether the injected faults are deterministic (D), where
multiple runs of the fault simulation experiments will always produce the same
results, or random(R), where multiple runs of the fault simulation experiments
will produce different results. Deterministic faults do not capture the essence
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Table 2. Evaluation Criteria: E=Exhaustive, U=User-defined, D=Deterministic,
R=Random, Refer to Table[I] for fault model’s grammar

Tool Platform |OS Architecture| Range|Coverage|Fault Models Memory.
Consumption
Windows
FiSim Unicorn | PePUI)| s oy E |D [T)[1][b][G,N] |~ 50%
Linux
& Mac
ZOFI Native |5 [x86.64 E |R [T)[A][b,R][G] |~ 50%
hardware
ARMv6M,
ARMORY | M-ulator |Linux ARMvTM, |U D Kkl > 50%
ARMv7EM
. Depends N
ARCHIE | QEMU |Linux on QEMU U D [P, T][I,D][b,R] |~ 100%
[C,S,G,F]

of fault injections. Still, they are readily reproducible, whereas random faults
function exactly as fault injections in an actual setup. However, the results may
not be so easily reproducible. One of the most important features of a fault
simulator is the supported fault models (Section .

The parameter memory consumption tells us how much memory the simula-
tor occupies while working. Using significant memory resources could cause the
system to terminate the simulation forcibly.

5 Experimental Setup

We installed ZOFI (version 0.9.7)F] [23], ARMORY[| [13] and ARCHIH [12] on
a VirtualBox running Ubuntu 22.04.1 LTS with one core, one thread, and 10.44
GB of RAM. The VirtualBox was running on a PC with Ubuntu 20.04.4 LTS,
with Intel(R) Xeon(R) CPU ES-2620 v4 @ 2.10GHz, 1 physical processor, 8
cores, and 16 threads with 50.43 GB of RAM. We installed the ARM GNU
toolchain and the Meson build system as prerequisites to run ARMORY. We
ran FiSinf’| [25] on Windows 11 Pro, AMD Ryzen 5 PRO 5650U @ 2.30GHz,
and 16 GB of RAM to facilitate the use of its GUI.

To compare, we first run each tool with the default example. Initially, our
goal was to run the same code on all tools, but this was impossible due to
differences in the platforms. So, we ran each tool with a different example. In
the next section, we describe each tool in detail.

2 lhttps://github.com /vporpo/zofi

3 |https://github.com/emsec/arm-fault-simulator
4 |https://github.com /Fraunhofer- AISEC/archie
% https://github.com/Riscure/FiSim /releases
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5.1 FiSim

Description. FiSim [25], based on the Unicorn emulator and Capstone disas-
sembler, is a prototype of a deterministic fault attack simulator. It supports
cross-platform simulation of ARM32/ARM64 architectures. Its GUI is pre-built
for Windows but supports Linux and Mac OSX systems. FiSim implements two
fault models, as shown in Table

Operation. FiSim comes preloaded with a secure bootloader implementation.
The first boot stage takes as input the implementation of the bootloader. The
tool provides console output for debugging and visualizing the execution trace.
In the second boot stage, the execution trace is used as input to provide the good
and bad signatures, giving two different execution traces. Once the traces start to
differ, the logic of the boot stage decides whether authentication succeeded. Then
the execution trace is placed in the fault simulator. The number of test cases
depends on the size of the code. For every instruction and the two supported fault
models, FiSim will modify the target program according to the fault model, run
the program, and compare the result of the execution with the expected output.
If and when the code is vulnerable, the authentication will succeed, and the
next boot stage will be executed, which signifies that the glitch bypassed the
authentication. The target source code of the secure bootloader is compiled, and
the resulting binary code is used for simulation. When the implementation is
run, FiSim shows a list of assembly instructions.

Features. FiSim provides ways to harden the bootloader by pointing out its
weaknesses and testing the effectiveness of its countermeasures. FiSim aims to
find the balance between accuracy and speed. However, loading other than the
default programs for simulation is not straightforward.

5.2 Zero Overhead Fault Injector

Description. ZOFT [23] is a timing-based fault simulator based on the Capstone
library. Unlike the other tools, it uses native hardware (x86_64 Linux systems),
to run the target program. ZOFI implements a register single-bit flip fault model.
Operation. ZOFI does not have a default example, but takes as input any
x86_64 Linux binary. During the golden run, ZOFT executes the unmodified
binary at native speed to measure its execution time and collect its original
output. The execution time of the golden run serves as an upper bound for
the fault simulation time. It helps to approximate whether the binary needs to
be terminated. The results of the golden run help ZOFI compare the results
of the subsequent test cases to categorize instructions as corrupted, maskedﬂ
detected, stuck in an infinite loop, or throwing an exception. For each test case,
ZOFT forks and launches a new process to run the binary, pausing the binary
for a random period (between zero and the execution time of the golden run)
to simulate faults, after which the execution of the binary is resumed. For the

5 by masked instructions, the authors mean instructions that are not vulnerable to
fault effects
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fault simulation, the execution of the binary is interrupted by a signal emitted
by ZOFI. Then ZOFTI modifies the state of the binary by injecting a register bit-
flip. Depending on whether the registers are read or written by an instruction,
ZOFI behaves differently. In the case of the registers written to, ZOFT steps into
the next instruction to modify the register bit so that it doesn’t get overwritten.
Either the execution leads to completion or is interrupted by a signal. In case of
infinite loops, ZOFI sets up an alarm to receive a signal if the binary gets stuck.
Features. ZOFI offers a variety of optional arguments to fine-tune a fault sim-
ulation experiment. Its main feature is the speed with which it can analyze a
given workload. The user can specify a fault model by choosing the specific
registers and the particular bits affected by a fault. It provides users with dif-
ferent arguments, making the tool customizable, handles binaries protected by
error detection techniques, and can run multiple concurrent test runs depending
upon the number of CPU threads. It has a built-in tracking system for workload
executions, output checking, and statistics collection. ZOFI provides ample op-
tional arguments for users to fine-tune their search for exploitable faults. ZOFI
allows the user to determine the number of test cases and faults injected per
test run. Depending upon the user’s choice, outputs can be obtained in CSV
file and Moufoplot format apart from having it on the console. The user can
also decide the maximum number of fault simulation attempts and the degree
of parallelization.

5.3 ARMORY

Description. ARMORY [13] is an efficient, instruction-accurate emulator for
ARM-M binaries. It uses M-ulator which can work with ARMv6-M, ARMv7-M,
and ARMvT7-EM instruction set architectures and can handle faulty assembly
instructions. ARMORY considers a total of 24 fault models (Table [2), both
instruction-level (permanent, transient) and register-level (permanent, transient,
active until overwrite). It determines all exploitable arbitrary (and customizable)
fault combinations while automatically utilizing all available CPU cores.

Operation. ARMORY uses an optimized fault simulation strategy by executing
a dry run first. For the next run, once ARMORY encounters exploitable loca-
tions, it adds it to a list of exploitable locations and instead of starting afresh,
starts from the unmodified version of the implementation which was stored as
a state in M-ulator, thus saving emulation time. M-ulator runs a fault-free sim-
ulation at first until the execution of the binary is completed or the supplied
timeout is reached, thus providing the sequence of executed instructions and
used registers. This sequence gives all injection points in order. After doing so,
the M-ulator continues until the next injection point, and the current state is
stored as a backup. This approach saves emulation time by eliminating the need
to start from the beginning for each fault. Then the fault model is applied. On
reaching one of the halting points, ARMORY checks the exploitability model
to determine whether the fault encountered is to be added to the list of ex-
ploitable faults. If no such halting point is reached or an invalid instruction is
met, then the M-ulator’s state is restored. However, this might not be enough
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when dealing with multivariate fault simulation. So, in the case of higher-order
fault simulation, even if the current fault combination isn’t exploitable, the tool
recursively runs the current state with the next fault model. Hence, the following
fault model starts with M-ulator where a specific fault combination has already
been applied. Also, for multivariate faults, the order of faults holds significance.
Features. As advantages, we can enumerate that it offers fault simulation for
multivariate faults and is highly customizable. ARMORY provides outputs both
on the console and as a log file which helps in future referencing. ARMORY
attempts to optimize using M-ulator backups and efficient multicore support. It
automatically utilizes all the available CPU cores. M-ulator, explicitly designed
for fault simulation, outperforms the Unicorn emulator and harbors the ability
to handle incorrect assembly code, unlike other emulators. It focuses on lower
abstraction levels for fault simulation binaries of ARM-M since applying isolated
fault models on higher abstraction levels overlooks exploitable faults.

5.4 ARCHitecture-Independent Evaluation

Description. ARCHIE [12] is a fault simulator for analyzing any binary files
which can run on a QEMU-supported architecture. ARCHIE can be used for
different white-, gray-, and black-box architecture testing. The tool supports
specialized microcontrollers. ARCHIE executes a user-defined fault campaign.
It natively supports four fault models. ARCHIE needs the developer to input
the parameters of each test case. The tool does not perform fault exploration,
but tests if a fault is exploitable. Instead of requiring the developer to specify
the exploitable locations, it would be helpful if ARCHIE could independently
predict the possible fault locations.

Operation. The ARCHIE controller script takes inputs, compiled binary, QEMU
configuration, and fault configuration to launch several parallel processes. Each
of these parallel processes handles one QEMU instance and one of the fault
models from the fault configuration to run their experiment independently. Once
these processes have completed their task, they collect and store all the results
in an HDF5 file. The user can set the number of parallel processes. Each worker
launches their QEMU instance along with their unique fault configuration. In
effect, ARCHIE does not exhaustively or randomly simulate the entire space. It
checks whether our hypothesis regarding the faults turns out to be correct or
not. It uses terminal and log files to record its findings. It uses up the entire
memory and uses various percentages of the CPU. Since it takes up the whole
RAM, it causes the kernel to kill or terminate the execution of the tool. For a
few executions of these mentioned binaries, the process was killed by the kernel.
Features. ARCHIE is equipped with debugging functionality.

5.5 Experimental Results

To compare the tools available, we recorded their execution times with differ-
ent implementations. For FiSim, we considered the implementation of a pass-
word authenticator. Similarly, as with the secure bootloader implementation, the
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Table 3. Experimental results. The default examples are depicted in italic font.

Tool Implementation Binary Size|Execution Time #Successful
Faults
FiSim Secure bootloader 5KB 1:49.17 min 364
Password Checker 1KB 40.85 sec 139
74
ZOFI System file 48KB 55.015 sec (for 100 runs)
82
Counter 16KB 26.566 sec (for 100 runs)
Fault insertion 711B 0.979 sec 24
AES 6.1KB 24:38.730 min 823192
ARMORY Secure bootloader 3.5KB 24:46:39.962 hrs|1124
Counter 227B 1.746 sec 2
Blinking LED on . .
STM32F0DISCOVERY 500B 6:16.714 min 4
ARCHIE |AES 7.1KB 2:06:58.019 hrs |4
Blinking LED on . .
STM32VLDISCOVERY 148KB 1:1.414 min 1

password authentication procedure would compare the input password with the
stored password. For ZOFI and ARMORY, we chose a simple implementation
of a counter-loop. We executed ARCHIE on an implementation that led to the
blinking of LEDs on a STM32VLDISCOVERY board.

Table shows the results of the experiments for each too][] that highlight the
implementation size, the time required, and the number of successful faults. We
noticed that memory requirement heavily influences performance. Therefore, we
monitor it (in Table [2]) to guide us toward selecting a host machine.

6 Limitations of Existing Fault Simulators

The Fault Exploration Problem. The fault simulators we explored employ
exhaustive search to find exploitable faults. From a security perspective, exhaus-
tive exploration might seem tempting. The more test cases a fault simulator
executes, the more successful the tool becomes in ruling out possible fault at-
tacks and the more trust we have in a negative outcome. However, when dealing
with real-world implementations, exhaustive search falls short of expectations
because the required resources depend on the implementation size, the fault
models supported (see Table , and the time it takes to run each test case. The
results reported in Table [3]only consider the single fault model, while attacks in-
volving multiple faults are known. When multiple fault instances are considered,
the space for exhaustive search will increase further. Therefore, the exhaustive
search might not be the goal to aim for, but having a smart selection of test
cases might be a better alternative.

7 24:46:39.962 hrs implies 24 hours, 46 minutes and 39.962 seconds
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FiSim and ARMORY exhaustively simulate all possible faults. The examples
we run in our tests are fairly small (a few KB), and testing took up to 24 hours
for some examples. When adding more complex fault models, the simulation
time will increase further.

Cryptographic fault simulators such as [28/T4/5/T4] have an advantage in
this respect, since cryptographic implementations follow a structure that can be
analyzed using cryptanalysis. The structured nature of a cryptographic imple-
mentation helps narrow the search space, as not all parts of the implementation
are equally susceptible to faults. Therefore, approaches that use SAT solvers
[28], or SMT solvers [14], or data flow graphs (DFGs) (DATAC [5], TADA [I4])
are suitable for this purpose. DFGs tend to grow exponentially with the size of
implementation, so targeting the entire implementation space when expressed as
a DFG is not feasible. When considering general-purpose software implementa-
tions, we are left with the option of exhaustively searching for faults throughout
the implementation. This quickly becomes infeasible with the increased imple-
mentation size, supported fault models, and time required to run each test case.

The need for speed. Although the fault simulators might perform satisfactorily
for relatively small implementations, as seen in Table[3] how these tools will scale
for real-world applications is unclear. Several optimizations have been proposed
in the literature to reduce testing time. Table |3[ does not serve as a benchmark
for comparing the speed of the fault simulators. The same binary can not be
executed on all the fault simulators due to platform differences. The binary size,
execution time, and the number of successful faults, as depicted in Table (3| are
inconclusive. The reason is the differences in platforms and fault simulators. For
example, implementing a simple counter-loop for ZOFI and ARMORY differs.
The loop in the case of ZOFI has to be made large enough so that its runtime
was more than 0.05 seconds. However, ARMORY can execute smaller loops. The
implementation of the secure bootloader for FiSim and ARMORY is different as
the example codes came embedded with the fault simulators. ARMORY requires
the developer to define the starting and halting points, and ARCHIE requires the
developer to define the fault locations. The AES implementations for ARMORY
and ARCHIE differ, too, since the former performs a one-byte fault attack after
the MixColumns operation of round 7 and before the final SubBytes operation to
reduce the key-search space while the latter performs a tenth round skip attack
and a diagonal fault attack on AES.

Based on the platform used by the fault simulators, we can expect the fault
simulators to behave as described henceforth. ZOFI might be the fastest tool.
As it runs on the native architecture, its execution does not depend on any
emulator. ZOFI pauses the binary for a random duration (with the maximum
duration recorded from the golden run) to induce a fault that randomizes the
fault simulation. We expect its performance to be closely followed by FiSim,
which uses Unicorn, a lightweight and stripped-down variant of QEMU that
offers smaller size and memory consumption as it emulates just the CPU. Since
M-ulator, which underlies ARMORY, emulates only ARMv6-M, ARMv7-M, and
ARMvT7-EM architectures while leaving out some features, its speed is faster than
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QEMU. Furthermore, the M-ulator stores an intermediate unmodified state of a
binary so that ARMORY can resume testing the saved state after encountering
an exploitable location instead of having to execute the binary from the very
beginning. This reduces emulation time considerably. Depending on the fault
specifications, ARCHIE might take the most time to complete its executions.
QEMU, the platform ARCHIE uses, emulates the full system, taking up more
time and memory. The time consumed by ARCHIE also depends on the fault
specifications provided by the developer. The fewer the test cases, the less time
is required for the simulation.

ZOFI, ARMORY and ARCHIE employ parallelization to engage in optimum
usage of the system’s resources and reduce the time required to run the fault
simulations. ZOFT lets the developer decide or, depending on the number of
available cores, decides the number of parallel threads to deploy on the fault
simulations. ARMORY automatically utilizes all the available CPU cores, while
ARCHIE launches independent worker threads, each of which pertains to a single
QEMU instance. Finally, all the worker threads report to the main controller
script, consolidating the results in a user-readable format.

Interpretability. Learning the exact instruction or data register responsible
for the fault and the exact fault model is an important feature of a fault simu-
lator. Knowing the cause will help a developer harden the implementation. For
a security evaluation, the availability of debugging functionality that describes
the operations of the simulator could also prove helpful. While reporting the
number of successful faults is common, information on the most successful fault
models is not readily available in the tools we tested. However, the lack of clar-
ity of the results provided by simulators such as ZOFI poses a problem to the
developer since it fails to provide any details of the exploitable locations. ZOFI
refrains from pointing to faulted instructions and provides just the number of
faults. ARMORY provides the faulted instructions along with the fault model
that caused it. ARCHIE provides a debugging functionality that takes us step-
by-step through its working. The lack of information on the number of test cases
is another drawback of the aforementioned fault simulators. All but ARMORY
are not transparent with their success percentage, i.e., number of injected faults
vs. successful faults. The number of injected vs. successful faults informs us of
the success percentage of the fault simulator. Due to the timing-based design,
ZOFT fails to function correctly if the workload runs for a variable or a short
time, as it attempts to inject faults after the binary has completed its execution,
thus affecting its accuracy.

Realistic fault models. FiSim supports two fault models that it exhaustively
applies over all possible fault locations (instructions). However, all potential
faults are not equally realistic or probable in the real world. Although AR-
MORY supports 24 fault models, it is unclear which ones are the most probable.
Although many fault models are known in the literature, no study indicates
which are more likely. We would like to note that this is not a failure of existing
simulators, but a gap of knowledge in the state of the art.
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7 Opportunities of using AI Techniques

Artificial intelligence (AI) techniques and overlapping disciplines like data min-
ing provide us with ideas to optimize the operations of fault simulators. Al
models learn from a training dataset to develop and hone their search space
rather than exhaustively trying all combinations. Tools such as XFC [18], SA-
FARI [26], FEDS [17], SOLOMON [33] and ALAFA [29] use the concept of
non-interference to their advantage, while tools such as DL-FALAT [27], or Exp-
Fault [31], or the ones presented in [30] and [28] employ deep learning and data
mining, respectively, to counter the limitations outlined in Section [6] ALAFA
[29] and DL-FALAT [27] attempts to detect leakage in protected block cipher
implementations using the principle of non-interference to improve upon the t-
test methodology without the knowledge of the cipher or the countermeasure
implementation. Both of them function by observing the distributions of the
faulty ciphertexts. However, unlike ALAFA [29], DL-FALAT [27] employs deep
learning to enhance the leakage assessment t-test used by the former with respect
to data complexity. Saha et al. [27] show that the leakage detection test needed
five times less ciphertexts when employing the deep learning aproach. Unlike
the t-test based leakage assessment, the deep learning based leakage detection
ensures the coverage of all the necessary points in the trace for leakage detection
without having the user define the order of the statistical test as well as covers
the fault space reasonably better as compared to conventional approaches. This
could help fault simulators in their operations. Of course, creating a representa-
tive training dataset comes with its set of challenges.

Informed Fault Exploration. Inspired by [27] we could integrate Al into the
design of fault simulators by simulating simpler but structurally similar imple-
mentations. In this way, the fault simulator could exhaustively search vulnerable
locations to identify exploitable locations. Executing fault simulations on numer-
ous simplified implementations could train the model to predict faulty locations
in the original target implementation. Since the original target implementation
is much larger, this could be a significant improvement.

FiSim and ARMORY could apply this method to prevent solving each fault
instance exhaustively and deterministically. Fault simulators attract developers
because manual identification of exploitable locations is cumbersome and error-
prone. However, ARCHIE requires the developer to specify the fault configura-
tions explicitly. Hence, it could benefit from an AI model which could predict
the test case for target implementations instead of the developer. This would
enhance their scalability and help them closely replicate real-world scenarios by
preventing deterministic exploration of faults.

Prioritizing fault models. FiSim and ARMORY simulate all the fault models
described individually to arrive at a result. ARCHIE depends on the developer
to specify the fault model along with the locations. So, in essence, the simulators
consider all models indiscriminately or the developer is left to decide. AT models
could be used to inform the choice of the parameters for the test cases as done
by [7] and [I9] which showed that a certain combination of parameters leads to
an increase in the number of exploitable faults. A successful AI model would be
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able to eliminate (to an extent) less probable fault models from the ones which
occur more frequently.

Cryptographic fault simulators use SAT solvers to solve a few instances.
These solutions are fed to the machine learning algorithm during its training
phase. However, fault simulators pertaining to any programs could not employ
similar techniques. Our suggestion would be to use exhaustive search on a few
instances comprising smaller implementations of similar structure. The result-
ing exploitable locations could be used to build the dataset for the training
phase of the AT model. The AI model could be trained to differentiate between
exploitable and non-exploitable locations. It is expected that the model would
predict exploitable locations for target implementations.

8 Conclusion

To evaluate fault simulators, we compared FiSim, ZOFI, ARMORY and ARCHIE
objectively. They employ different techniques to navigate faults and present vary-
ing difficulty levels to a developer not used to performing fault injection attacks.

FiSim is the most intuitive to use if only its engine were written in a way to
incorporate different kinds of implementations. ZOFT is the simplest tool to set
up because it just takes as input the binary file and the number of test runs.
Though there are several arguments to fine-tune the search for faults, defining
them is optional. As long as the golden run takes more than 0.05 seconds to
execute, ZOFI will return valid results. Unfortunately, it provides little informa-
tion to its user. The output records the number of faulted instructions sans any
details. So, the tool doesn’t provide any address pointing to the fault. It could be
tedious to make an implementation fault attack resistant since one would need to
run it through ZOFI numerous times. Furthermore, the lack of addresses where
faults are injected could make it relatively hard to rectify the faulty locations.

If the developer is interested in an ARMv6-M, ARMv7-M, or ARM7-EM
implementation, then ARMORY would be the fault simulator to pick. However,
unlike other tools based upon an existing emulator, ARMORY comes with an
emulator of its own, the M-ulator. Naturally, there are pros and cons to both
sides. Built upon a current emulator gives the tool’s user more confidence, accep-
tance, and access to all the architectures that the platform can emulate. Building
one’s platform could be advantageous in designing per target, making it more
compatible with the fault simulator.

Unlike the other fault simulators, which actively search for faulty locations,
ARCHIE only confirms if the user’s test case is exploitable. The tool offers sup-
port for all the architectures that QEMU emulates. Though if that architecture
is not ARM, the user needs to build it before executing ARCHIE. Also, it uses
an older version of QEMU, and it is unclear if the tool is forward-compatible
with newer QEMU versions.

The choice of fault simulator depends on one’s purpose. If the implementation
follows the program structure of a bootloader, and one cares about first-order
faults, FiSim works best. If it is an x86_64 Linux binary and the user doesn’t
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require the fault locations, then ZOFI might be a better choice. If it is an ARM-
M binary, ARMORY is the tool of choice. If the user is experienced enough to
estimate fault configurations and has ample memory resources, then going for
ARCHIE is preferable since it provides detailed working for debugging purposes.

To conclude, applying the optimizations with the help of AI techniques could
enhance the fault simulators’ speed and efficiency. While the deterministic na-
ture of fault simulations might seem appealing as the results could be readily
reproduced, it fails to capture the essence of fault injections. Al techniques could
help in introducing a non-deterministic or probabilistic approach, which would
be closer to real-life use cases. It can also help rule out fault models which
aren’t as equally probable as other fault models, thus, further fine-tuning the
probabilistic approach of inducing faults. Conserving memory could be another
incentive for employing Al in the design and development of fault simulators.
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