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Abstract. Symbolic computations with the usage of bipartite algebraic
graphs A(n, Fq) and A(n, Fq[x1, x2, . . . , xn]) were used for the develop-
ment of various cryptographic algorithms because the length of their
minimal cycle (the girth) tends to infinity when n is growing. It moti-
vates studies of graphs A(n,K) defined over arbitrary integrity ring K.
We show that the cycle indicator of A(n,K), i. e. maximal value of min-
imal cycles through the given vertex is ≥ 2n + 2. We justify that the
girth indicator of line [0, 0, . . . , 0] of A(n,K) is > 2n, the girth indicator
of point (0, 0, . . . , 0) of this graph is at least 2n. From this result instantly
follows that the girth of known edge transitive graphs D(n,K) defined
over integrity ring K is at least 2([n+ 5]/2). We consider some inequal-
ities defined in terms of a girth, a diameter and the girth indicator of
homogeneous algebraic graphs and formulate some conjectures.

1 Some corollaries and remarks on applications

Let K be commutative integrity ring containing at least two elements.
We consider nonempty subsets R and S of K[x1, x2, . . . , xn], n ≥ 1
Let R,SA(n,K[x1, x2, . . . , xn] be the induced subgraph of A(n,K) of all
points and lines with colours from R and S respectively. According to
famous result by D. Hilbert K[x1, x2, . . . , xn] is also an integrity ring.
So the girth of infinite graph A(n, K[x1, x2, . . . , xn]) is ≥ 2n and the
following statement holds.
PROPOSITION 2.1.
The girth of graph R,SA(n,K[x1, x2, . . . , xn]) is at least 2n.
COROLLARY 2.1.
Let K be a field 6= F2 and subsets R and S contain the field of constants
K then the girth indicator of graph Γ =R,S A(n,K[x1, x2, . . . , xn]) is at
least 2n+ 2.
This statement follows from the fact that Γ contains induced subgraph
A(n,K) with girth indicator > 2n. Similarly we get the following state-
ment.
COROLLARY 2.2.
Let K be a field of odd characteric p and subsets R and S contain prime
field Fp then the girth indicator of the graph Γ =R,S A(n,K[x1, x2, . . . , xn])
is > 2n
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These results about the girth indicators of induced subgraphs can be used
for further investigation of properties of cryptographic systems based on
symbolic computations with usage of graphs A(n, Fq[x1, x2, . . . , xn].

Low density parity check (LDPC) codes with the usage of graphs of large
girth ([22], [23], [24], [25]) are successfully used in satellite communica-
tions.

LDPC codes constructed via induced subgraphs of A(n, Fq) compare
well with LDPC codes based on graphs CD(n, q) or Cayley-Ramanujan
graphs X(p, q) (see [26], [27], [28], [29]). Cubical subgroups GA(n, F ) of
affine Cremona group CGn(F ) (see [30]) defined in t Symbolic com-
putations with the usage of bipartite algebraic graphs A(n, Fq) and
A(n, Fq[x1, x2, . . . , xn]) were used for the development of various cryp-
tographic algorithms because the length of their minimal cycle (the
girth) tends to infinity when n is growing. It motivates studies of graphs
A(n,K) defined over arbitrary integrity ring K. The cycle indicator of
A(n,K), i. e. maximal value of minimal cycles through the given vertex
is ≥ 2n+ 2. We prove that in the case when K is a field with more than
two elements the value 2n+ 2 is the maximal possible cycle indicator of
algebraic graph with n-dimensional variety of vertexes. We justify that
the girth indicator of line [0, 0, . . . , 0] is 2n + 2, the girth indicator of
point (0, 0, . . . , 0) is at least 2n. From this result instantly follows that
girth of known graph D(n, K) is at least 2([n + 5]/2) where K is an
integrity ring. We consider some inequalities defined in terms of a girth,
a diameter and the girth indicator of homogeneous algebraic graphs and
formulate some conjectures.

Keywords: Family of graphs with large girth indicator, commutative integrity
rings, homogeneous algebraic graphs, codimension, girth indicator, girth, diam-
eter.
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2 Introduction

Problems of evaluation of the girth and diameter of k-regular simple graph with
k ≥ 3 are well known. Additionally we consider the following optimization min-
imax problems for graphs.

(1) Investigate cycle indicator h(v) of the vertex of the k-regular graph G, i.
e. the minimal length of cycle through this vertex v.

(2) Find the cycle indicator h(G) of the graph which is the maximal value of
cycle indicators of vertexes of the graph.

As it instantly follows from the definitions h(G) ≥ g(G), where g(G) stands
for the girth of the graph which is minimal size of a cycle of G.

We say that family Gi, i = 1, 2, . . . of increasing order vi is a family with
thelarge girth indicator if cycle indicators h(i) of graph Gi are at least c ×
logk−1(vi) for some independent positive constant c.
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The problems (1) and (2) can be investigated not only in the case of finite
graphs. They can be considered for algebraic graphs defined over the field F , i.
e. graphs such that their vertexes and edges form finite dimensional algebraic
variety over F . We talk about homogeneous (or k-homogeneous) algebraic graphs
if neighbourhoods of each vertex have the same dimension k, k ≥ 1. One can use
integrity ring K instead of the field F .

We assume that field F contains at least two elements and each vertex of
algebraic graph has at least 3 elements.

We refer to a family Gi of k-homogeneous algebraic graphs with vertex sets
Vi = V (Gi) as an family with large cycle indicator if cycle indicators h(Gi) are
bounded from below by c× dim(Vi)/k for some positive constant c.

In this paper we investigate some properties of bipartite algebraic graphs
A(n,K) with partition sets isomorphic to Kn.

In Section 2 we prove that girth indicator of A(n,K) is at least 2n + 2. It
means that in the case when K coincides with Fq graphs A(n, Fq) are q-regular
and they form a family of graphs with large cycle indicator and appropriate
constant c can be written as 2logq(q − 1). If K is a field then these graphs form
algebraic family of graphs with large cycle indicator (c = 2).

We prove inequality h(A(n,K)) ≥ 2n + 2 via computation of h(v) for the
vertex v (point or line) given by the tuple (0, 0, . . . , 0). Computer simulation
indicates that if n > 6 then cycle indicators of 0-point and 0-line are different,
one of them is 2n+ 2 but other is 2n. It means that investigated graphs are not
vertex transitive, their girth differs from the cycle indicator.

In Section 3 we consider a problem of evaluation of the girth and the girth
indicator in the case of homogeneous algebraic graph defined over the field F .
The vertex set and edge set of algebraic graph have to be quasiprojective varieties
over F .

The codimension codim(G) of homogeneous algebraic graph G is the ration
of dimension of its vertex set and the dimension k of neighbourhood of some
vertex. We evaluate the minimal codimension of algebraic graph with prescribed
cycle indicator of algebraic graph over field F .

Previously known bound [(g(G) − 2)/2] ≤ codim(G) for the homogeneous
algebraic graph G of girth G is used for the definition of algebraic Moore graphs
which codimension is on this bound. Some examples of algebraic Moore graphs
are given. For each field F we introduce Fu(h) as minimal codimension of al-
gebraic graph G with girth indicator h defined over the field F . Symbol u(h)
stands for the minimal value of Fu for the totality of fields F with at least two
elements. We justify that for even h values of Fu(h) and u(h) coincides with
[(h− 2)/2].

In Section 4 we write lower bounds for the diameter of homogeneous algebraic
graph and bipartite algebraic homogeneous graph. We introduce Tits graphs
as bipartite algebraic Moore graphs of diameter d codimension d − 1. Some
conjectures are formulated.

In Section 5 references on applications of grapha A(n,K) to Algebraic Ge-
ometry, Coding Theory and Cryptography are given.
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3 On lower bound for the girth indicator of graphs
A(n,K) over integrity ring K

All graphs Γ in this paper are symmetric antireflexive binary relations on the
set of their vertices V , i.e Γ is a subset of Cartesian product V with itself, such
that (x, y) ∈ Γ implies (y, x) ∈ Γ , for each x ∈ V element (x, x) does not belong
to Γ (see [1]). Missing definitions of Graph Theory such as path in the graph,
cycle of length m, neighbour of the vertex, bipartite graph and etc. can be also
found in [1].

Definition of commutative ring, integrity ring K and ring of multivariate
polynomials K[x1, x2, . . . , xn] reader can find in [2].

Let K be a commutative ring. We define A(n,K) as a bipartite graph with
the point set P = Kn and line set L = Kn (two copies of a Cartesian power
of K are used). We will use brackets and parenthesis to distinguish tuples from
P and L. So (p) = (p1, p2, . . . , pn) ∈ Pn and [l] = [l1, l2, . . . , ln] ∈ Ln. The
incidence relation I = A(n,K) (or the corresponding bipartite graph I) is given
by condition (p) and [l] are incident if and only if the equations of the following
kind hold:

p2 − l2 = l1p1,
p3 − l3 = p1l2,
p4 − l4 = l1p3, (1)
p5 − l5 = p1l4,
. . . ,
pn − ln = p1ln−1 for odd n and
pn − ln = l1pn−1 for even n.
Graphs A(m,K) were obtained in [3] as quotients of graphs D(n,K)). This

incidence structure was defined in the following way.
Let K be an arbitrary commutative ring. We consider the totality P ′ of points

of kind
x = (x) = (x1,0, x1,1, x1,2, x2,2, . . . , xi,i, xi,i+1, . . . ) with coordinates from K
and the totality L′ of lines of kind
y = [y] = [y0,1, y1,1, y1,2, y2,2, . . . , yi,i, yi,i+1, . . . ]. We assume that tuples (x)

and [y] has finite support and a point (x) is incident with a line [y] , i. e. xI ′y
or (x)I ′[y], if the following conditions are satisfied:

xi,i − yii = yi−1,ix1,0,
xi,i+1 − yi,i+1 = y0,1xi,i (2)
where i = 1, 2, . . . .
We denote the graph of this incidence structure as A(K). We consider the

set Root of indexes of points and lines of A(K) as a subset of the totality of all
elements (i+1, i+1), (i, i+1), (i+1, i), i ≥ 0 of root system Ã1 of affine type. We
see that Root = {(1, 0), (0, 1), (11), (12), (22), (23), . . . }. So we introduce R1,0 =
Root − {0, 1} and R0,1 = Root − {1, 0}. It allows us to identify sets P ′ and L′

with affine subspaces {f : R1,0 → K} and {f : R0,1 → K} of functions with
finite supports.

For each positive integer k ≥ 2, we obtain an incidence structure (Pk, Lk, Ik)
as follows. Firstly, Pk and Lk are obtained from P and L, respectively, by simply
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projecting each vector onto its k initial coordinates. The incidence Ik is then
defined by imposing the first k− 1 incidence relations and ignoring all the other
ones. The incidence graph corresponding to the structure (Pk, Lk, Ik) is denoted
by A(k,K). The comparison of equations of A(k,K) and A(k,K) allows to
justify the isomorphism of these graphs. It is convenient for us to identify graphs
A(k,K) with incidence structures Ik defined via relations (2).

The procedure to delete last coordinates of points and lines of graph A(n,K)
defines the homomorphism n∆ of A(n,K) onto A(n − 1,K), n > 2. The fam-
ily of these homomorphisms defines natural projective limit of A(n,K) which
coincides with A(K). We introduce the colour function ρ on vertexes of graph
A(K) or A(n,K) as x10 for the point (x10, x11, x12, . . . ) and y01 for the line
[y01, y11, x12, . . . ]. We refer to ρ(v) for the vertex v as colour of vertex v.

As it follows directly from definitions for each vertex v and each colour a ∈ K
there is exactly one neighbour of v with the colour v. We refer to this fact as
linguistic property of graphs A(n,K) and A(K). In fact such property were used
for the definition of the class of linguistic graphs (see [3] and further references).

Let us consider a special automorphisms of graphs A(K) and A(n,K) defined
over arbitrary commutative ring K. We take the list L of coordinates of the
point of incidence structure A(K) consisting of (10), (11), (12), (22), . . . , (ii),
(i, i+ 1), . . . . Let < stands for the natural order on L presented in the written
above sequence. Assume that nL stands for the list of first n elements of L.

For each element α from L of kind (i, i) or (1, 0) we introduce automorphism
Tα,t, t ∈ K moving point (p) = (p1,0, p1,1, p1,2, . . . ) to (p′) = (p′1,0, p

′
1,1, p

′
1,2, . . . )

and line [l0,1, l1,1, l1,2, . . . ] to the line [l′0,1, l
′
1,1, l

′
1,2, . . . ] accordingly to the follow-

ing rules.

(1) If α = (k, k), k > 0 then Tα,t((p)) has coordinates {p′1,0 = p10, p′1,1 = p11,
. . . , p′k−1,k = pk−1,k, p′α = pα + t, p′i−1,i = pi−1,i − pi−k−1,i−k)t, p

′
ii = pii −

pi−k,i−kt for each i, i > k and Tα,t([l]) has coordinates l′01 = l01, l′11 = l11, . . . ,
l′i−1,i = li−1,i, l

′
α = lα + t, l′i−1,i = li−1,i− li−k−1,i−kt, l′ii = lii− li−k,i−kt, . . . for

each i, i > k.

(2) In the case of α = (1, 0) has coordinates Tα,t((p)) has coordinates p1,0+t,
p11, p12, . . . ) and Tα,t([l]) has l01, l11 − l0,1t, . . . , li−1i, li,i − li−1,it, . . . , i > 1.

Direct check of incidence conditions for (p′) ans [l′] allows us to formulate
the following statement.

PROPOSITION 1.1.

Transformations Tα,t for α = (1, 0) or α = (i, i), i ≥ 1 are automorphisms
of the graph A(K).

We consider transformations nTα,t, α ∈ nL which correspond to natural
action of Tα,t on the vertices of graph A(n,K). Similarly to previous statement
we justify the following statement.

PROPOSITION 1. 2.

The transformation nTα,t, α ∈n L of kind (1, 0) or (i, i) are automorphisms
of the graph A(K).

As we mentioned above graph A(n,K) satisfies to linguistic property. It
means that the following statement holds.
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LEMMA 1.1.

The path (0), v1, v2, . . . , vn−1 in the graph A(n,K) are determined by colours
zi of elements vi, i = 1, 2, . . . , n− 1.

LEMMA 1. 2 (two numbers lemma).

Let v0, v1, v2, . . . , vn−1 be the path of A(n,K) starting in zero point v0 =
(0, 0, . . . , 0) given by the tuple of colours z1, z2, . . . , zn−1. Then last two coor-
dinates of vn−1 are z1z2(z1 − z3)(z2 − z4) . . . (zn−3 − zn−1) and zn−1z1z2(z1 −
z3)(z2− z4) . . . (zn−3− zn−1). The last two coordinates of v1, v2, . . . , vn−3 equal
to 0.

The proof of this statement can be obtained via straight usage of mathemat-
ical induction. This statement was used in [3] for the prove of the fact that girth
D(n,K) is at least 2[(n+ 5)/2] in the case of integrity ring K.

COROLLARY 1. 1.

Let v0, v1, v2, . . . , vn−1 be the path in the graph A(n − 1,K) with v0 =
(0, 0, . . . , 0) and ρ(vi) = zi. Then the last coordinate of the destination point
vn−1 is z1z2(z1 − z3)(z2 − z4) . . . (zn−3 − zn−1). The last coordinate of vn−2 is
zero.

Noteworthy that for the path as above the conditions zi−zi+2 6= 0 and z2 6= 0
hold.

COROLLARY 1.2.

Assume that conditions of previous statement hold, z1 is not a zero and K
is an integrity ring. Then the last coordinate of the tuple vn−1 is not a zero but
the last coordinate of vn−3 is zero.

As we mentioned above the procedure to cut the last coordinate of each
vertex of graph A(n,K) defines colour preserving homomorphism n∆ from the
graph A(n,K) to A(n− 1,K). So if graph A(n− 1,K) has no cycles of length s
then graph A(n, k) does not have C2s as well.

Let Γ be a graph. The cycle indicator of a vertex v ∈ Γ is minimal length of
the cycle through this vertex if such cycle exists or infinity in opposite case. The
cycle indicator of Γ is maximal value of cycle indicator of vertexes of the graph.
So the cycle indicator of the tree is infinity. If degree of each vertex of the finite
graph is at least two then its cycle indicator is finite.

THEOREM 1.1.

Let K be an integrity ring with more than two elements. Then the girth of
point (0, 0, . . . , 0) of the graph A(n,K) is at least 2n. The girth indicator of line
[0, 0, . . . , 0] is at least 2n+ 2.

Proof.

Each vertex of the graph A(n,K) has at least two neighbours. So girth indi-
cator of A(n,K) is finite.

As it follows from the definitions of graphs A(2,K) and A(3,K) they are
isomorphic to well investigated graphs D(2,K) and D(3,K) (see [3]). These
graphs are edge transitive, their girth indicator equals to girth which is ≥ 6 and
≥ 8 respectively. It means that graphs A(n,K), n ≥ 4 do not contain cycles C4

and C6. So the the value of girth indicator of (0, 0, 0, 0) from A(4,K) is at least
8. Let us consider graph A(5,K) and assume that it has cycle C of length 8
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starting in (0, 0, 0, 0, 0). Let (p) be some point from this cycle. It is easy to see
that C is formed by two paths of kind (0), [v1], (v2), [v3], (v4), [v5] of colours z1,
z2, z3, z4, z5 and (0), [u1], (u2), [u3] of colours y1, y2, z5 such that [u3] = [v5].
Noteworthy that y1 6= z1. Without loss of generality we can assume that z1 6= 0.
Then according to Corollary 1.2 the last coordinate of [v5] is different from zero
but the last coordinate of [u3] equals 0. Thus we get a contradiction. So the
graph A(5,K) has no cycles C4, C6 and C8 through the vertex (0, 0, 0, 0, 0). It
means that girth indicator of this vertex is ≥ 10 and vertex (0, 0, . . . , 0) of graphs
A(n,K), n ≥ 5 is ≥ 10.

Assume that 0 point of the graph A(6,K) has a cycle C of length 10 starting
in this point. We can assume that Cis formed by two paths of kind (0), [v1],
(v2), [v3], (v4), [v5], (v6) of colours zi, i = 1, 2, . . . , 6 with z1 6= 0 and (0), [u1],
(u2), [u3], (u4) of colours y1, y2, y3, z6 such that [u4] = [v6]. According to the
Corollary 1.2 last coordinate of v6 is not zero but last coordinate of u4 is 0. So
we get a contradiction. Thus girth indicator of (0) point of A(n,K), n ≥ 6 is
≥ 12. Continuation of this process for n = 7, 8, . . . justifies the statement.

Let us consider line [0] = [0, 0, . . . , 0] of A(n,K) and cycle C through this
vertex of even length s < 2n + 2. Let u and w be neighbouring points of [0].
Existence of homomorphisms of kind T(1,0),t allows us to assume without loss
of generality that ρ(u) = 0 but ρ(w) 6= 0. It means that u = (0, 0, . . . , 0). Let
us assume that there is a cycle of length 2n through the edge (0), [0]. We can
assume that it formed by two paths of kind (0), [0], v2, v3, . . . , vn and (0), u1,
u2, . . . , un with ρ(u1) 6= 0 and vn = un. Accordingly Lemma 1.2 last coordinate
of v1 is 0 but last coordinate of u2 differs from zero. So we have a contradiction
and cycles of length 2n trough [0, 0, . . . , 0] do not exist. Similarly we justify that
A(s,K), s < n does not contains cycle of lrngth 2s through zero line. It means
that A(n,K) also does not contain cycles of length 2s through [0]. Thus we
proved that cycle indicator of [0] is at least 2n+ 2.

In the case of K = Fq the theorem is proven in short note [4] where conjec-
tuted that cycle indicator of A(n, Fq) is 2n+ 2.

The edge transitive group of automorphisms of graphs D(n,K) where K
is arbitrary commutative ring is presnted in [3]. From edge transitivity and
Theorem 1.1 we obtained the following statement.

THEOREM 1. 2 (see [3])

Let K be an integrity ring and k, k ≥ 3 is odd number. Then the girth of
graph D(k,K) is at least k + 5.

The family of graphsD(n,K), n = 2, 3, . . . whereK is arbitrary commutative
ring defines the projective limit D(K) with points (p) = (p10,p11, p12, p21, p22,
p22, . . . , pii, pii+1, pi+1,i, pi+1,i+1, . . . ), and lines [l] = [l01, l11, l12, l21, l22,
l′22,. . . ,l’ii, lii+1, li+1,i, li+1,i+1, . . . ].

which can be thought as infinite sequences of elements in K such that only
finitely many components are nonzero.

A point (p) of this incidence structure I is incident with a line [l], i. e. (p)I[l],
if their coordinates obey the following relations:

pi,i − li,i = l1,0pi−1,i,
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p′i,i − l′i,i = li,i−1p0,1,
pi,i+1 − li,i+1 = pi,il0,1, (3)
pi+1,i − li+1,i = p1,0l

′
i,i.

(These four relations are well defined for i > 1, p1,1 = p′1,1, l1,1 = l1,1.)
Let D be the list of indexes of the point of the graph D(K) writtem in their

natural order, i. e. sequence (1, 0), (1, 1), (1, 2), (2, 1) , (2, 2),(2, 2)’,. . . .LetkD be
the list of k first elements of D. The procedure of deleting coordinates of points
and lines of D(k,K) indexed by elements of D−kD defines the homomorphism
of D(K) onto graph D(k,K) with the partition sets isomorphic to the variety
Kn and defined by the first k−1 equations from the list (3). We can see that the
procedure of deleting of coordinates indexed by elements D− (Root−{((0, 1)})
defines the homomorphism of graph D(K) onto A(K)

Let us consider the set kA =k D −k D ∩ Root. The procedure of deleting
coordinates of vertexes of D(k,K) indexed by elements of kA defines the homo-
morphism ηk of D(k,K) onto A(m, k) where m is the cardinality of kD ∩Root.

Proof
Let k = 4s − 3. We partite the list the coordinates of point of the graph in

different order and get list L1 formed by (1, 0), (1, 1), (1, 2), (2, 2), (2, 3), (3, 3),
. . . , (s− 1, s− 1) , (s− 1, s) of length 2s− 1 and list L2 formed by (2, 1), (2, 2)′,
(2, 3), (3, 3′, . . . , (s− 1, s− 1)′. The image of homomorphism ηk is A(2s− 1,K).
Assume that D(4s− 3,K) has cycle of length 4s

Assume that graphD(4s−3,K) has cycle C of the length 4s. Edge transitivity
of the graph allow us to assume that C contains (0) point together with [0]
line. Then ηk(C) has to be a closed walk through [0] of length 2(2s1) + 2. the
neightbours of [0] have distict colurs of kind 0 and b, b 6= 0. Thus cycle indicator
of [0, 0, . . . , 0] has to be < 2(2s− 1) + 2, but it contradics to Theorem 1.1.

In the case k = 4s− 1 we add index (s, s) to list L1 and (s, s− 1) to the list
L2 and repear written above arguments.

Let H(n,K) be a group generated by transformations Tα,t of the vertex set
of graph A(n,K) introduced in the Proposition 1.2.

REMARK 1.1.
In fact Theorem 1. 2 is proven in [3] but the equivalent to this statement

theorem is formulated in terms of linguistic dynamical systems.
REMARK 1.2.
Let Orb(0) and Orb[0] are orbits of graphs A(n,K) containing zero point or

zero line. These orbits are isomorphic to varieties Km+1 and Km with m = [n/2]
for n ≥ 4 respectively with m = [n/2] . Representatives of Orb(0) and Orb[0] have
the same cycle indicators with (0) and [0].

4 On minimal codimensions of vertex sets of
homogeneous algebraic graphs with the prescribed
girth or girth indicator

Let us introduce the concept of homogeneous algebraic graph. Let F be a field.
Recall that a projective space over F is a set of elements constructed from a
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vector space over F such that a distinct element of the projective space consists
of all non-zero vectors which are equal up to a multiplication by a non-zero
scalar. Its subset is called a quasiprojective variety, if it is the set of all so-
lutions of some system of homogeneous polynomial equations and inequalities.
An algebraic graph Φ over F consists of two things: the vertex set Q being a
quasiprojective variety over F of non-zero dimension and the edge set being a
quasiprojective variety Φ in Q×Q such that (x, x) is not element of Φ for each
x from Q, and xΦy implies yΦx (xΦy means (x, y) is an element of Φ).

The graph Φ is homogeneous (or N -homogeneous) if for each vertex w from
Q the set {x|wΦx} is isomorphic to some quasiprojective variety M(w) over
F of a non-zero dimension N . We further assume that each M(w) contains
at least 3 elements and field F contains more than two elements. We refer to
codim() = dim(Q)/N as codimension of an algebraic graph Φ. Recall that the
girth of the graph is the length of its minimal cycle.

THEOREM (see [5]).

Let G be quasi homogeneous algebraic graph over a field F of girth g such
that dimension of variety V = V (G) the dimension of neighbourhood for each
vertex is N , N ≥ 1. Then [(g − 1)/2] ≤ dim(V )/N .

We define codimension codim(G) of homogeneoud graph G over a field F
with vertex set Q such that the dimension of a neighbourhood for each vertex is
N , N ≥ 1 as papameter dim(Q)/N .

We introduce v(g) as minimal value of codim(G) for homogeneous algebraic
graph G of girth g. We refer to v(g) as algebraic rank of girth g.

COROLLARY.

v(g) ≥ [(g − 1)/2]

We refer to graph G of girth g and codim(G) = v(g) as an algebraic cage.
In the case of graph G of girth g and codim(G) = [(g − 1)/2] we say that G is
algebraic Moore graph.

In [6] the computer computations of girth of graphs A(n, F4) for parame-
ters n = 2, 3, 4, 5, 6, 7, 8 are described. It was established that g(A(2, F4)) = 6,
g(A(3, F4)) = 8, g(A(4, F4)) = 10, g(A(5, F4)) = 12 So graphs A(n, F4), n =
2, 3, 4, 5 are algebraic Moore graphs and the following statement holds.

PROPOSITION 2.1.

v(6) = 2, v(8) = 3, v(10) = 4 and v(12) = 5.

We introduce F v(g) as minimal codimension of homogeneous algebraic graph
over field F , F 6= F2 of girth g. As it follows from the written above Theorem
F v(g) ≥ [(g − 1)/2].

Geometries of simple Chevalley groups A2(F ), B2(F ), G2(F ) (see [7]) are
bipartite homogeneous algebraic graphs over field F of codimension 1 of girth
6, 8 and 12. So they are algebraic Moore graphs and the following statement
holds.

PROPOSITION 2.2.

For each field F with more than two elements F v(6) = 2, F v(8) = 3, F v(12) =
5.
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I suggest to refer to homogeneous algebraic graph of girth 10 with codimen-
sion 4 as Chojecki graph, hope that following conjecture can attract attention
of researchers.

CONJECTURE 2.1.
The totality of Chojecki graphs is a finite set.
Recall that the girth indicator Cind(x) of a vertex x of the graph G as the

minimal length of the cycle through x and introduce a cycle indicator Cind(G)
of the graph as the maximal value of Cind(x) for its vertexes. The inequality
Cind(G) ≥ g(G) follows directly from the definition.

5 On diameter, girth and girth indicator of homogeneous
algebraic graphs.

Investigations of girth and diameter of finite graphs is an important core direction
of Extremal Graph theory (see [8], [9]. [10], [11]. [12], [13], [14], [15]).

Studies of algebraic graphs over selected field with prescribed girth and di-
ameter form classical direction of Geometry.

For example classical projective plane is a graph of girth 6 and diameter 3. Its
vertex set is a disjoint union of one dimensional and two dimensional subspaces
of vector space F 3 (see [16])

J. Tits defined generalised m-gons as a finite biregular bipartite graphs of
girth 2m and diameter m (see [17], [18], [19]) . Noteworthy that geometries of
Chevalley groups A2(Fq), B2(Fq) and G2(Fq) are (q+ 1) regular generalised m-
gons for m = 3, 4 and 6. Edge transitive generalised m-gons are ”constructions
bricks” for creation of Tits geometries over diagrams and buildings ([20], [21]).

LEMMA 3.1.
Let G be the homogeneous algebraic graph over a field F , F 6= F2 of the

diameter d such that the dimension of a neighbourhood for each vertex is N ,
N ≥ 1. Then d ≥ codim(G) = dim(V (G))/N .

Proof.
Let v be a vertex of G. Each other vertex u has to be connected with v via

some path of kind v , u1, u2, . . . , us = u where s ≤ d. Let M be the variety of
vertexes u at maximal distance from v. The dimension of variety P of pathes of
kind v , u1, u2, . . . , ud = u has to satisfy condition Nd ≥ dim(P ) ≥ dim(M).
Each vertex from V = V (G) is located at the distance at most d from v. So
dim(M) = dim(V ) and d is at least dim(V )/N .

For the case of bipartite graphs or graphs without even cycles the following
stronger lower bound on the diameter holds.

d ≥ dim(V )/N + 1 (3.1)
It can be justified via breadth-first search tree starting from the midpoint of

a single edge.
We refer to bipartite homogeneous algebraic graph G as algebraic Tuttes

graph if its diameter d(G) coincides with codim(G) + 1.
In the case of algebraic Tuttes graphs which are also algebraic Moore graphs

we use term Tits graphs. It is clear that the diameter of Tits graph is a half of
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the girth. Obvious examples of Tits graphs are geometries of Chevalley groups
A2(F ), B2(F ) and G2(F ) over arbitrary field F . They have codimensions 2, 3
and 5 and girth 6, 8, 12 respectively.

CONJECTURE 3.1.

Tits graphs exist only in cases of codimensions 2, 3 and 5. (in a spirit of
Feit-Higman Theorem).

CONJECTURE 3.2.

Algebraic Moore graphs exist only in cases of codimensions 2, 3, 4 and 5.

We introduce some integer function in terms of algebraic geometry which are
extremely hard for computation in a following way. Parameter g(d) is maximal
girth of algebraic homogeneous graph of diameter d, d ≥ 3. d(g) is minimal
diameter of algebraic homogeneous graphs of girth g, g ≥ 4.

It is easy to see that d(6) = 3, d(8) = 4, d(12) = 6 and g(3) = 6, g(4) = 8,
g(6) = 12.

From the result about girth and diameter of A(4, 4) we get that d(10) ≤ 8 and
g(8) ≥ 10. Recall that we introduce v(n) as the minimal codimension of existing
algebraic homogeneous graph of girth n. So v(n) ≥ [(n− 1)/2]. We define w(d)
as the maximal codimension of existing bipartite homogeneous algebraic graph
of diameter d. So w(d) ≤ d− 1.

6 Some corollaries and remarks on applications

Let K be commutative integrity ring containing at least two elements. We con-
sider nonempty subsetsR and S ofK[x1, x2, . . . , xn], n ≥ 1. Let R,SA(n,K[x1, x2, . . . , xn]
be the induced subgraph of A(n,K) of all points and lines with colours from R
and S respectively. According to famous result by D. Hilbert K[x1, x2, . . . , xn] is
also an integrity ring. So the girth indicator of infinite graphA(n,K[x1, x2, . . . , xn])
is g > 2n and the following statement holds.

PROPOSITION 4.1.

The girth indicator of graph R,SA(n,K[x1, x2, . . . , xn]) is > 2n.

COROLLARY 4.1.

Let K be a field 6= F2 and subsets R and S contain the field of constants
K then the girth indicator of graph Γ =R,S A(n,K[x1, x2, . . . , xn]) is at least
2n+ 2.

This statement follows from the fact that Γ contains induced subgraph
A(n,K) with girth indicator > 2n. Similarly we get the following statement.

COROLLARY 4.2.

Let K be a field of odd characteric p and subsets R and S contain prime field
Fp then the girth indicator of the graph Γ =R,S A(n,K[x1, x2, . . . , xn]) is > 2n

These results about the girth indicators of induced subgraphs can be used for
further investigation of properties of cryptographic systems based on symbolic
computations with the usage of graphs A(n, Fq[x1, x2, . . . , xn]).

Low density parity check (LDPC) codes with the usage of graphs of large
girth ([22], [23], [24], [25]) are successfully used in satellite communications.
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LDPC codes constructed via induced subgraphs of A(n, Fq) compare well
with LDPC codes based on graphs CD(n, q) or Cayley-Ramanujan graphsX(p, q)
(see [26], [27], [28], [29]). Cubical subgroups GA(n, F ) of affine Cremona group
CGn(F ) (see [30]) defined in terms of pair (A(n, F ) , A(n, F [x1, x2, . . . , xn])) are
interesting objects of Algebraic Geometry (see [31]). The usage of these groups in
Non Commutative cryptography [32], Multivariate cryptography [33], Algebraic
Cryptography [34] and Post-Quantum Cryptography [35] is described in [36].

Properties of graphs A(n,K) and groups GA(n,K) over finite commutative
ringK have various applications to Symmetric and Postquantum Cryptographies
(see [37], [38] and further references).
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