
Classic McEliece Key Generation on RAM

constrained devices

Rainer Urian
rainer.urian@infineon.com

Raphael Schermann
raphael.schermann@student.tugraz.at

November 19, 2022

Abstract

Classic McEliece is a code based encryption scheme and candidate of
the NIST post quantum contest. Implementing Classic McEliece on smart
card chips is a challenge, because those chips have only a very limited
amount of RAM. Decryption is not an issue because the cryptogram size
is short and the decryption algorithm can be implemented using very few
RAM. However key generation is a concern, because a large binary matrix
must be inverted.

In this paper, we show how key generation can be done on smart card
chips with very little RAM resources. This is accomplished by modifying
the key generation algorithm and splitting it in a security critical part and
a non security critical part. The security critical part can be implemented
on the smart card controller. The non critical part contains the matrix
inversion and will be done on a connected host.

Keywords— Classic McEliece, post quantum cryptography, smart card chips, key
generation

1 Introduction

The Classic McEliece code based encryption scheme [1] is a candidate of the 4th round
in the NIST post quantum contest [4]. It is one of the most trusted post quantum key
agreement scheme today and it is also recommended by the German BSI [2]. Thus,
for highest security demands, it would be very desirable if Classic McEliece could be
used on standard security controllers, like the ones used in smart cards.

The Classic McEliece encryption scheme has very short cryptogram sizes between
128 and 240 bytes. This is smaller than RSA and even smaller than many other post
quantum KEM schemes. Furthermore, decryption is very performant. The private key
size is moderate and can easily be stored in Non-Volatile Memory (NVM) of a smart
card controller. Although the public key size is very big, this may not be a big issue for
many use cases. First, it will even completely fit on a smart card controller with big

1

NVM storage (i.e. 2 Mbyte). Second, there exist techniques to generate the public key
on demand form the private key and some moderately sized auxiliary matrix. Third,
in many use cases it is actually not necessary at all to store the public key on the chip.
In such cases, one gets the public key by a host computer connected to the security
chip or from a certification authority service.

The crucial issue is the generation of the public key on the security chip. For
the generation a big binary matrix must be inverted. For instance, the medium size
parameter set of submission [1] uses a matrix of size 1248 × 1248 = 194688 bytes.
For performance reasons, this matrix must be stored in a RAM with adequate speed.
However, RAM is expensive and standard smart card controller rarely have RAM
bigger than 64k Bytes.

1.1 Our contribution

In this work we show a method how the key generation for Classic McEliece can be
implemented on a security controller with less than 64k RAM. The basic idea is rather
trivial: the expensive matrix inversion algorithm is outsourced to the host system
connected to the security controller.

We assume the situation shown in Figure 1. This means, we have a small security
controller (”Chip”) with less than 64kb of RAM which is connected to a standard
computer (”Host”) with at least 512kb RAM. Such a system could be, for instance, a
smart card connected to a terminal or a Secure Enclave (SE) chip integrated on a single
die together with a more powerful host processor. The crucial security assumption is
that only the Chip is trusted. Neither the Host nor the communication link will be
assumed to be trusted.

Chip (trusted)
RAM ≤ 64kb

Host (untrusted)
RAM ≥ 512kb

untrusted

Figure 1: Trusted chip connected to an untrusted host

The method described in this paper is based on a patent application from the author
and filed by Infineon Technologies AG.

1.2 Related work

Our work is mainly based on the Classic McEliece NIST submission [1]. An optimised
version for the Arm Cortex M4 processor is given by Ming-Shing Chen and Tung Chou
[3].

Johannes Roth, Vangelis Karatsiolis and Juliane Krmer [5] show how NVM storage
space for Classic McEliece key generation can be optimised by using the LUP matrix
decomposition. This method is also used in [3]. However, we do not make any used of
it.

Also interesting is a somewhat older paper from 2010. Falko Strenzke [7] shows
a McEliece implementation on a 16 bit controller by Infineon Technologies AG with
504 kByte of NVM and 12 kByte of RAM. He uses the original McEliece method and
not the Niederreiter variant as used in the Classic McEliece submission. He describes
implementations for encryption and decryption but not for key generation. The code
size he uses is n− k = 550, which is no longer considered as appropriately secure.

2

1.3 Notation

For an integer m, we write F2m for the finite (Galois) field with 2m elements. As we
are doing explicit arithmetic, we assume that a fixed minimal polynomial f of degree
m is given. An element of F2m is represented by a polynomial of degree less than m.
We chose an vector space isomorphism ι : F2m ≃ Fm

2 to interpret the coefficients of this
polynomial as an m-dimensional vector over F2. This isomorphism can be extended
to vectors or matrices over F2m in a natural way. If it is clear from the context, we
always use this isomorphism implicitly without mentioning ι. We always use capital
size letters to denote matrices over F2 (or over F2m). We write In for the n×n identity
matrix over F2. A linear isomorphism Fn

2 $→ Fn
2 is written as GLk(F2).

If A is a matrix, then the following notation is used to refer to its elements:

A[i, j] denotes the element of A from row i and column j

A[i, ·] denotes the vector consisting of elements from row i of A

A[·, j] denotes the vector consisting of elements from column j of A

If a is a vector then we write a[i] or ai for the i-th component of a.
Index numeration for a vector or matrix always start at 1.

1.4 Outline of this paper

The next section gives a short recap of the Classic McEliece algorithm from an higher
abstraction level. Section 3 is the core contribution of this paper. It shows our
proposed McEliece key generation method. The last chapter provides the conclusion
and proposes a future work outlook.

2 Classic McEliece

First we present an overview of the Classic McEliece protocol and show its RAM usage
on an optimised Arm Cortex M4 implementation.

2.1 Classic McEliece algorithm

First we present the Classic McEliece protocol. The presentation is on an abstract
level and based on chapter 2 of [1].

System parameters

The system parameters of the Classic McEliece KEM consists of the following data:

m: Degree of finite field F2m

t: Degree of the Goppa polynomial g ∈ F2m [x]

k: Codesize

n: Calculated from the previous numbers as n− k = mt

3

Key generation

The key generation algorithm performs the following steps:

1. Generate private key Γ:

(a) Generate uniformly at random a monic irreducible polynomial g ∈ F2m [x]
of degree t. This is called the Goppa Polynomial.

(b) Select uniformly at random n distinct elements (α1, . . . ,αn) from F2m .

The private key is then Γ = {g, (α1, . . . ,αn)}.
2. Generate public key T :

(a) Generate a matrix H ∈ F(t×n)
2m by H[i, j] = αi−1

j /g(αj) for 1 ≤ i ≤ n −
k, 1 ≤ j ≤ n, and interpret this matrix via the isomorphism ι as an element
of F(n−k)×n

2 .

(b) Write H = (H0|H1), where

H0[·, j] = H[·, j] with 1 ≤ j ≤ n− k

H1[·, j] = H[·, j + (n− k)] with 1 ≤ j ≤ k

(c) Check if H0 is regular. If this is not the case, restart the algorithm at step
1.

(d) Compute S = H−1
0 .

(e) Calculate the public key T = SH1.

Encryption

To encrypt a plaintext message m, the following steps have to be performed

1. Encode the message msg as a vector e ∈ Fn
2 of Hamming-weight t.

2. Compute the cipher text c0 = Te.

Decryption

To decrypt the cipher text c0 ∈ Fn−k
2 , the following steps have to be performed

1. Extend c0 to v = (c0, 0, . . . , 0) ∈ Fn
2 by appending k zeros.

2. With a syndrome decoder find the unique codeword c in the Goppa code defined
by Γ that is at distance ≤ t from v. There are different choices for syndrome
decoders. The NIST Classic McEliece proposal uses the Berlekamp-Massey al-
gorithm.

3. Set e = v + c.

4. Check that e has Hamming-weight t and that c0 = He. (Note that we use the
non-systematic matrix H here).

5. Decode e to the message msg.

2.2 RAM footprint on Arm Cortex M4

The Github page1 for the code to the paper [3] shows the measured stack RAM
consumption of an optimised Arm Cortex M4 implementation. One can see that
decryption has a RAM usage which fits into security controllers with less than 48
kByte RAM. However, key generation uses too much RAM for such devices.

1https://github.com/pqcryptotw/mceliece-arm-m4

4

params key gen. enc. dec.
mceliece348864f 170880 1420 18500
mceliece460896f 400056 2004 34956
mceliece6688128f 581896 3996 35716
mceliece6960119f 510340 3948 35764
mceliece8192128f 588736 4116 36100

Table 1: Stack usage in bytes

3 Split key generation

Our solution to the public key generation on RAM constrained controllers is rather
simple. Instead of performing the matrix inversion on the Chip by outsourcing it to
the connected Host.

We do not make any security assumptions on the host. This means, the host
may be totally untrusted. Therefore it is very important that no information about
the private key matrix H = (H0|H1) is leaked to the Host. This is achieved by first
sending only a blinded version of the matrix H0 to the Host. The host then performs
matrix inversion on that blinded matrix and sends the blinded inverse matrix back to
the Chip. By unblinding, the Chip can finally reconstruct the matrix S and construct
the public key T = SH1 from it.

3.1 Basic split key generation

The detailed protocol of our basic split key algorithm is shown in Figure 2.

Chip Host

Generate private key Γ

R
$←− GLn−k(F2)

H0[i, j] ← αi−1
j /g(αj)

H̃ ← RH0
H̃−−−−−−−−−−→

check H̃ ∈ GLn−k(F2)

S̃ ← H̃−1

S̃←−−−−−−−−−−
S ← S̃R
check SH0 = In−k

H1[i, j] ← αi−1
j+n−k/g(αj+n−k)

T ← SH1
T−−−−−−−−−−→

Figure 2: Split key generation

1. The Chip

5

(a) generates the private key Γ as in the Classic McEliece protocol in section
2.1, step 1 and stores it in NVM.

(b) chooses uniformly at random an invertible matrix R ∈ GLn−k(F2) and
stores it in NVM.

(c) calculates the matrix H0 as H0[i, j] = αi−1
j /g(αj) for 1 ≤ i ≤ t, 1 ≤ j ≤

n − k and interprets this matrix via the isomorphism ι as an element of
F(n−k)×n
2 .

(d) blinds H0 by multiplication with R.

(e) sends the blinded matrix H̃ = RH0 to the host.

2. The Host

(a) calculates S̃ = H̃−1. If the inverse does not exist it aborts and restarts the
protocol at step 1.

(b) sends S̃ to the Chip.

3. The Chip

(a) unblinds the matrix inverse S̃ by calculating S = S̃R.

(b) checks that the Host has correctly performed the inversion by checking
that SH0 is the identity matrix. If the verification fails, the Chip aborts
the protocol and returns fail. Otherwise it marks the private key as valid.

(c) reconstructs the public key. It calculates H[i, j] = αi−1
j+n−k/g(αj+n−k) for

1 ≤ i ≤ n− k and 1 ≤ j ≤ k and then multiplies with S to get the public
key T = SH1.

Please note that steps 1(c) - 1(e) can be done interleaved column-by-column for H̃
which makes temporarily storing H̃ in NVM unnecessary. Similarly, steps 2(b) - 3(a)
can be performed interleaved row-by-row to construct S. The public key T in step
3(c) can be constructed row-by-row or column-by-column.

3.2 Correctness and security

For correctness we show that the split algorithm produces the same result as the key
generation algorithm from section 2.1. The following equalities show that the matrix
S = S̃R produced by the split protocol is the same as the matrix S = H−1

0 produced
by protocol 2.1:

S̃R = H̃−1R = (RH0)
−1R = H−1

0 R−1R = H−1
0

Therefore, both algorithms produce the same systematic form of the public key. For
security we must show the following two properties:

1. The blinded matrix H̃ does not reveal any exploitable information of the private
matrix H.

2. The Chip will detect an incorrectly calculated S̃.

To show the first property, we note that the attacker can only exploit H̃ if H0 is
invertible. Otherwise the Chip would abort the protocol and choose a differentH0. The
matrix H̃ is a random isomorphism of the invertible matrix H0. It follows that RH0

is indistinguishable from a random matrix of GLn−k(F2). This shows that revealing
of H̃ does not affect security.

6

To show the second property, the Chip verifies that S is the inverse of H̃0 in step
3b of the split key generation protocol. Either the inverse does not exist or it is unique
and therefore this check is sufficient.

3.3 RAM footprint for our key generation

As we do not have a real and optimized split key generation implementation at this
time, we provide a theoretical analysis. We analyze the RAM consumption of public
key generation first. The matrix R can be generated and directly stored into NVM. The
matrix H ′

0 can be generated on-the-fly. Therefore the matrix H̃ can be dynamically
created and send to the host column-by-column. The matrix S can be received row-by-
row from the host and directly stores into NVM. This shows that RAM consumption
of public key generation can be neglected.

Let’s now analyse private key generation. A private key consists of two parts:

• the random permutation of elements (α1, . . . ,αn) from the field F2m

• The Goppa polynomial g

As done in [5], we will use a Fischer Yates shuffle algorithm instead of a Beneš network
to perform the permutation. We assume that field elements are stored in 16 bit. Then
the RAM consumption of the Fischer Yates shuffle algorithm for the fields can be
calculated as 2 ∗ 2m bytes. For m = 13 this equates to 16384 bytes.

The implementation [3] uses a Gaussian elimination to construct the Goppa poly-
nomial as the minimum polynomial of a random element of the extension field F2mt/
F2m . This costs approximately 2t(t + 1) bytes of RAM. For t = 128 this equates to
33024 bytes. This is a good margin below 48k and therefore not an issue. But we can
even do better. Instead of Gaussian elimination, we can use the Berlekamp-Massey
algorithm to calculate the minimum polynomial as has been shown by Victor Shoup
[6]. A short analysis of this algorithm shows that it needs approximately 12 ∗ t bytes
of RAM, which equates to 1536 bytes for t = 128.

3.4 Optimised split key generation

The split key generation protocol requires the generation of a random invertible matrix
R ∈ GLn−k(F2). The obvious way is to generate a uniform random matrix R ∈
F(n−k)×(n−k)
2 and try again if R is not invertible (i.e. the host aborts the protocol).

But a random binary matrix will be invertible with a probability about 0.29 only. The
probability can be calculated by the following well known result:

Fact 1. Let A be a random matrix from Fs×t
2 (or Ft×s

2), where s ≥ t. Then the
probability that A has full column (or row) rank c is

t!

k=1

(1− 2−s+k−1)

The split key algorithm will fail if the matrix H̃ is not invertible. H̃ is the matrix
product of R and H0 and both matrices can be considered as independent random
variables. By Fact 1, the probability that H0 or R is invertible is about 0.29 for each.
Therefore the probability that H̃ is invertible is only 0.292 = 0.084. This means, on
average approximately 12 trials are necessary until a proper key is found. This is

7

R′
n− k

ξ
o

n− k n− k

H ′
0

µ

ν

Figure 3: Matrices and parameters for optimised split key generation

not acceptable. Therefore we now show methods to significantly reduce the failure
probability.

To begin with, we use an variant of the semi-systematic form of [1] for H0. In the
semi-systematic form, the matrix H0 will be extended by a few additional columns.
The resulting rectangular matrix will have full row rank n − k with high probability.
In a similar way, we extend the random matrix R by a few additional random rows
such that the resulting rectangular matrix will have full column rank n− k with high
probability. It follows that the multiplied matrix H̃ = RH0 will have full n − k
rank with high probability. The host selects from this extended matrix an invertible
sub-matrix H̃0 of dimension (n − k) × (n − k). It inverts that matrix and sends the
inverted matrix together with the sub-matrix extraction information to the chip. Now
the detailed protocol follows.

Chip Host

Generate private key Γ

R′ $←− F(n−k+o−ξ)×(n−k)
2

H ′
0[i, j] ← αi−1

j /g(αj)

H̃ ← R′H ′
0

H̃−−−−−−−−−−→
calculate σi,πj

H̃ ′[i, j] ← H̃[σi,πj]
(S̃,π,σ)←−−−−−−−−−− S̃ ← H̃ ′−1

αi ← απi

R[i, j] ← R′[σi, j]

S ← S̃R

H0[i, j] ← αi−1
j /g(αj)

check SH0 = In−k

T ← SH1
T−−−−−−−−−−→

Figure 4: Optimised split key generation

8

1. The Chip

(a) generates the private key Γ as in section 3, step 1.

(b) calculates a random matrix R′ ∈R F(n−k+o−ξ)×(n−k)
2 .

(c) calculates the matrix H ′
0 ∈ F(n−k)×(n−k+ν−µ)

2 as H ′
0[i, j] = αi−1

j /g(αj) for
1 ≤ i ≤ n− k and 1 ≤ j ≤ n− k + ν − µ.

(d) blinds H ′
0 by multiplication with R′, i.e. calculates H̃ = R′H ′

0.

(e) sends the matrix H̃ to the Host.

2. The Host

(a) chooses a column permutation π of the last ν columns of H̃, such that the
first n−k columns have full column rank. If that is not possible, it restarts
the protocol.

(b) choses o rows from the last ξ rows, such that the resulting n−k rows have
full rank n − k. The selection of the rows is protocolled by σ. If that is
not possible, it restarts the protocol.

(c) calculates the invertible sub matrix H̃ ′ consisting of the first n−k permuted
columns and the n− k selected rows of H̃.

(d) inverts S̃ = H̃ ′−1.

(e) sends S̃,σ,π to the Chip.

3. The Chip

(a) checks if π is a permutation of {n−k−µ, . . . , n−k+ν−µ}. If this is not the
case, it aborts the algorithm. Otherwise, it updates the permutation αi of
its private key by calculating αi ← απi , for n− k− µ ≤ i ≤ n− k+ ν − µ.

(b) checks if σ is a selection of ξ elements from {n− k− ξ, . . . , n− k+ o− ξ}.
If this is not the case, it aborts the algorithm.

(c) calculates the random matrix R[σi, j] = R′[i, j] for 1 ≤ i, j ≤ n− k.

(d) unblinds the matrix S̃ by calculating S = S̃R.

(e) calculates H0[i, j] = αi
j/g(αj) for 1 ≤ i, j ≤ n− k.

(f) checks if the Host has correctly performed the inversion by checking that
SH0 is the identity matrix In−k. If the verification fails, the Chip aborts
the protocol. Otherwise it marks the private key as valid.

(g) reconstructs the public key by calculating H1[i, j] = αi−1
j+n−k/g(αj+n−k)

for 1 ≤ i ≤ n− k and 1 ≤ j ≤ k and then the public key T = SH1.

Please note that steps 1(b) - 1(e) can be done interleaved column-by-column for H̃
which makes storing H̃ in NVM unnecessary. Similarly, steps 2(e) and 3(c) can be
performed interleaved row-by-row to construct S. The public key T in step 3(f) can
be constructed row-by-row or column-by-column.

By using Fact 1, we calculate the success probability of the protocol, i.e. the
probability that the matrix H̃ has rank n− k. If we assume that the matrices R′ and
H ′

0 are statistically independent, then the probability that the matrix H̃ = R′H ′
0 has

rank n− k can be calculated as the product of the four following probabilities:

• probability that a (n− k)× (n− k − µ) random matrix has rank n− k − µ

9

• probability that a µ× (ν − µ) random matrix has rank ν − µ

• probability that a (n− k − ξ)× (n− k) random matrix has rank n− k − ξ

• probability that a (o− ξ)× o random matrix has rank o− ξ

One can check that for all semi-systematic McEliece parameters from the NIST sub-
mission and with o = 64 and ξ = 32, the success probability is greater than 1− 10−9.

3.5 Correctness and security of the optimised algorithm

Any admissible column permutation π defines a new private key H, where the first
n− k sub-matrix H0 is invertible. Similarly, any admissible row selection σ defines a
new random matrix R which is invertible. It follows that we are again in the setting
of the protocol from Figure 2. This shows correctness of the protocol.

For security, we first show that any choice of σ and π leads to equivalent encryption
schemes. Any admissible selection function σ corresponds to an invertible random
matrix Rσ. All those matrices are constructed from independent random rows. Thus,
it doesn’t matter which rows are chosen and all those matrices are equivalent from a
security perspective.

Now we show that prescribing the additional permutation π gives the attacker no
advantage. Let a McEliece public key T be given. Any other admissible permutation
π must permute the columns of (In−k|T) such that the first n − k columns have full
rank. It follows that the permutation π induces a n× n permutation matrix P and a
(n−k)×(n−k) invertible matrix S, such that the resulting public key T ′ is determined
by (In−k|T ′) = S(In−k|T)P .

Any encryption equation c = Te for the unprimed system can be transferred to an
encryption equation in the primed system by using c′ = S−1c and e′ = Pe. This shows
that both systems are security equivalent and therefore the security is independent
from the attacker’s choice of π.

It remains to show that the attacker does not gain additional information by re-
ceiving the ν − µ additional rows of H̃. As H̃ has row rank n− k, we can chose n− k
linearly independent rows. The remaining ν−µ rows of H̃ will then be random linear
combinations of those n − k independent rows. Therefore, those additional rows will
not give the attacker any additional information.

3.6 Pseudo random matrix R

It will be preferable to use a pseudo random number generator to generate R and R′.
This avoids storing the whole matrix R′ in NVM. Only a short seed value has to be
stored from which R and R′ can be generated on-the-fly.

3.7 Semi trusted host

Although the host is never trusted to protect the private key, it may be trusted to
correctly produce and store the public key. This will be called a semi-trusted host. In
that situation the chip doesn’t have to construct and store the matrix S. Instead, the
chip constructs a non-systematic public key T̃ by using the random matrix R and the
π,σ reconstruction information from the host. The host must then bring the whole
public key in systematic form by using the matrix S. This protocol is shown below in
Figure 5.

10

Chip Host

Generate private key Γ

R′ $←− F(n−k+o−ξ)×(n−k)
2

H ′
0[i, j] ← αi−1

j /g(αj)

H̃ ← R′H ′
0

H̃−−−−−−−−−−→
calculate σi,πj

H̃ ′[i, j] ← H̃[σi,πj]
(S̃,π,σ)←−−−−−−−−−− S̃ ← H̃ ′−1

αi ← απi

R[i, j] ← R′[σi, j]

T̃ ← RH1
T̃−−−−−−−−−−→

T ← S̃T̃

Figure 5: Split key generation for semi trusted host

1. The Chip

(a) generates the private key Γ as in section 3, step 1.

(b) calculates a random matrix R′ ∈R F(n−k+o−ξ)×(n−k)
2 .

(c) calculates the matrix H ′
0 ∈ F(n−k)×(n−k+ν−µ)

2 as H ′
0[i, j] = αj

i/g(αi) for
1 ≤ i ≤ n− k and 1 ≤ j ≤ n− k + ν − µ.

(d) blinds H ′
0 by multiplication with R′, i.e. calculates H̃ = R′H ′

0.

(e) sends the matrix H̃ to the Host.

2. The Host

(a) chooses a column permutation π of the last ν columns of H̃, such that the
first n−k columns have full column rank. If that is not possible, it restarts
the protocol.

(b) choses o rows from the last ξ rows, such that the resulting n−k rows have
full rank n − k. The selection of the rows is protocolled by σ. If that is
not possible, it restarts the protocol.

(c) calculates the invertible submatrix H̃ ′ consisting of the first n−k permuted
columns and the n− k selected rows of H̃.

(d) inverts S̃ = H̃ ′−1.

(e) sends σ,π to the Chip.

3. The Chip

(a) calculates the random matrix R[σi, j] = R′[i, j] for 1 ≤ i, j ≤ n− k.

(b) reconstructs the public key by calculating H1[i, j] = αi−1
j+n−k/g(αj+n−k)

for 1 ≤ i ≤ n− k and 1 ≤ j ≤ k

(c) calculates the non-systematic public key T̃ = RH1 and sends T̃ to the
host.

11

4. The Host

(a) reconstructs the public key by calculating T = S̃T̃ .

Note that steps 3(a) - 3(c) can be done without using NVM and with very limited
RAM usage, because R and H1 can both be calculated on-the-fly.

4 Conclusion and future work

We have shown how keys for the Classic McEliece Post Quantum KEM can be gener-
ated on a security chip with very limited RAM resources. We have shown how to do
this by outsourcing the RAM-expensive matrix inversion to the attached host. The
presentation of this method was focussed on functionality and crypto-analytic secu-
rity. A useful future work would be to provide countermeasures against possible side
channel and fault attacks.

A proof-of-concept implementation based on the Classic McEliece NIST submission
is provided for a standard PC platform. The purpose of this implementation is to
show the functional separation of Chip and Host part only. It does not have a focus on
performance and security. A useful future work would be to provide an implementation
on a standard state of the art smart card controller.

References

[1] Classic McEliece: conservative code-based cryptography. Round 3 submission to
the NIST Post-Quantum Cryptography Standardization Project, 2020. https:

//classic.mceliece.org/.

[2] BSI. TR-02102-1. https://www.bsi.bund.de, 2021.

[3] Ming-Shing Chen and Tung Chou. Classic mceliece on the arm cortex-m4, 2021.
https://tungchou.github.io/papers/cm-m4.pdf.

[4] NIST. Post-Quantum Cryptography, Round 4 Submissions.
https://csrc.nist.gov/News/2022/pqc-candidates-to-be-standardized-and-round-4,
2022.

[5] Johannes Roth, Vangelis Karatsiolis, and Juliane Krämer. Classic mceliece imple-
mentation with low memory footprint. In 19th Smart Card Research and Advanced
Application Conference (CARDIS 2020), 2020.

[6] Victor Shoup. Fast construction of irreducible polynomials over finite fields. Jour-
nal of Symbolic Computation, 17(5):371–391, 1994.

[7] Falko Strenzke. A smart card implementation of the mceliece pkc. In Pierangela
Samarati, Michael Tunstall, Joachim Posegga, Konstantinos Markantonakis, and
Damien Sauveron, editors, Information Security Theory and Practices. Security
and Privacy of Pervasive Systems and Smart Devices, pages 47–59, Berlin, Heidel-
berg, 2010. Springer Berlin Heidelberg.

12

