
The Parallel Reversible Pebbling Game: Analyzing the
Post-Quantum Security of iMHFs

Jeremiah Blocki, Blake Holman, and Seunghoon Lee

Purdue University, West Lafayette, IN, 47906, USA
{jblocki,holman14,lee2856}@purdue.edu

Abstract. The classical (parallel) black pebbling game is a useful abstraction which allows us to
analyze the resources (space, space-time, cumulative space) necessary to evaluate a function f with a
static data-dependency graphG. Of particular interest in the field of cryptography are data-independent
memory-hard functions fG,H which are defined by a directed acyclic graph (DAG) G and a crypto-
graphic hash function H. The pebbling complexity of the graph G characterizes the amortized cost of
evaluating fG,H multiple times as well as the total cost to run a brute-force preimage attack over a fixed
domain X , i.e., given y ∈ {0, 1}∗ find x ∈ X such that fG,H(x) = y. While a classical attacker will need
to evaluate the function fG,H at least m = |X | times a quantum attacker running Grover’s algorithm
only requires O (

√
m) blackbox calls to a quantum circuit CG,H evaluating the function fG,H . Thus, to

analyze the cost of a quantum attack it is crucial to understand the space-time cost (equivalently width
times depth) of the quantum circuit CG,H . We first observe that a legal black pebbling strategy for the
graph G does not necessarily imply the existence of a quantum circuit with comparable complexity — in
contrast to the classical setting where any efficient pebbling strategy for G corresponds to an algorithm
with comparable complexity for evaluating fG,H . Motivated by this observation we introduce a new
parallel reversible pebbling game which captures additional restrictions imposed by the No-Deletion
Theorem in Quantum Computing. We apply our new reversible pebbling game to analyze the reversible
space-time complexity of several important graphs: Line Graphs, Argon2i-A, Argon2i-B, and DRSam-
ple. Specifically, (1) we show that a line graph of size N has reversible space-time complexity at most

O
(
N

1+ 2√
log N

)
. (2) We show that any (e, d)-reducible DAG has reversible space-time complexity at

most O
(
Ne+ dN2d

)
. In particular, this implies that the reversible space-time complexity of Argon2i-A

and Argon2i-B are at most O
(
N2 log logN/

√
logN

)
and O

(
N2/ 3

√
logN

)
, respectively. (3) We show

that the reversible space-time complexity of DRSample is at most O
(
N2 log logN/ logN

)
. We also

study the cumulative pebbling cost of reversible pebblings extending a (non-reversible) pebbling attack
of Alwen and Blocki on depth-reducible graphs.

Keywords: Parallel Reversible Pebbling · Argon2i · DRSample · Data-Independent Memory-Hard
Function

1 Introduction

The (parallel) black pebbling game [PH70, Coo73] is a powerful abstraction which can be used to
analyze the resources (space, space-time, amortized space-time) necessary to evaluate any function
fG with a static data-dependency graph G. In the black pebbling game we are given a directed
acyclic graph (DAG) G = (V,E) where nodes intuitively represent intermediate data values and
edges represent dependencies between these values, e.g., if z = x × y then we would add directed
edges from nodes x and y to node z to indicate that x and y are required to compute z. However,
while the parallel black pebbling game is a useful abstraction for classical computation it is not a
suitable model for reversible computation as in quantum computation. In this paper, we introduce
a parallel reversible pebbling game as an abstraction which can be used to analyze the resources
required to build a reversible quantum circuit evaluating our function fG. We use the parallel

reversible pebbling game to analyze the space-time cost of several important graphs (the line
graph, Argon2i-A, Argon2i-B, DRSample) associated with prominent data-independent memory-
hard functions (iMHFs) — used in cryptography to design egalitarian proof of work puzzles and to
protect low-entropy secrets (e.g., passwords) against brute-force attacks.

Review: Parallel Black Pebbling. The classical parallel black pebbling game begins with no pebbles
on the graph (P0 = {}), and during each round of the pebbling game, we may only place a new
pebble on a node v if all of v’s parents were pebbled in the previous round. Intuitively, if the data
valueXv corresponding to node v is computed asXv := H(Xu, Xv−1) then G would include directed
edges (u, v) and (v − 1, v) indicating that we cannot compute value Xv (resp. place a pebble on
node v) unless Xu and Xv−1 are already available in memory (resp. we already have pebbles on
nodes u and v − 1). More formally, if Pi ⊆ V denotes the set of pebbled nodes during round i,
then we require that parents(Pi+1 \ Pi, G) ⊆ Pi where parents(S,G) =

⋃
v∈S{u : (u, v) ∈ E}. In the

black pebbling game we are given a subset T ⊆ V of target nodes (corresponding to output data
values) and the goal of the black pebbling game is to eventually place a pebble on each node in T .
A pebbling P = (P0, P1, . . . , Pt) is legal if P0 = {} and parents(Pi+1 \ Pi, G) ⊆ Pi for each i < t.
Intuitively, the requirement that parents(Pi+1 \ Pi, G) ⊆ Pi enforces the natural constraint that
we cannot compute a new data value before all dependent data values are available in memory.
In the sequential pebbling game, we additionally require that |Pi+1 \ Pi| ≤ 1 so that only one
new pebble can be placed on the graph in each round while the parallel pebbling game has no
such restriction. Thus, a legal parallel (resp. sequential) pebbling of a data-dependency graph G
naturally corresponds to a parallel (resp. sequential) algorithm to compute fG and the number
of pebbles |Pi| on the graph in each round i corresponds to memory usage during each round of
computation.

The sequential black pebbling game has been used to analyze space complexity [HPV77, PTC76]
and to examine space-time tradeoffs [Cob66, Coo73, Pau75, PV76, Tom81]. In the field of cryptog-
raphy, the parallel black pebbling game has been used to analyze the security of data-independent
memory-hard functions (iMHFs). An iMHF fG,H is defined using a cryptographic hash function
H and a data-dependency graph G [AS15, AB16, ABP17, BZ17]. The output of fG,H(x) is de-
fined to be the label XN of the final sink node N in G where the label X1 = H(X) of the first
(source) node is obtained by hashing the input and the label of each internal node v is obtained
by hashing the labels of all of v’s parents, e.g., if parents(v,G) = {u, v − 1} then we would set
Xv = H(Xu, xv−1). In many cryptographic applications (e.g., password hashing), we want to en-
sure that it is moderately expensive to evaluate fG,H to ensure that a brute-force pre-image attack
(given y find some x such that fG,H(x) = y) is prohibitively expensive even when the domain X
of inputs is smaller (e.g., low entropy passwords). When modeling the cryptographic hash function
H as a random oracle, one can prove that the cost to evaluate fG,H in the parallel random oracle
model is exactly captured by the pebbling cost of G [AS15, AT17, ABP18]. Thus, we would like
to pick a graph G with high pebbling costs and/or understand the pebbling costs associated with
candidate iMHFs. Prior work demonstrated that the amortized space-time complexity of prominent
iMHF candidates, including Password Hashing Competition winner Argon2i, was lower than previ-
ously hoped [AB16, ABP17, AB17, BZ17]. On the positive side, recent work has shown how to use
depth-robust graphs [EGS75] to construct iMHFs with (essentially) optimum amortized space-time
complexity [ABP17, ABH17, BHK+19]. However, it is important to note that the classical black
pebbling game does not include any rules constraining our ability to remove pebbles. We are al-
lowed to remove pebbles from the graph at any point in time which corresponds to freeing memory

2

and can be done to reduce the space usage. While the classical pebbling game allows us to discard
pebbles at any point in time to free memory, this action is often not possible in a quantum circuit
due to the No-Deletion Theorem [KPB00]. In this sense, the black pebbling game cannot be used
to model reversible computation as in a quantum circuit and an efficient parallel black pebbling
for a graph G does not necessarily imply the existence of a quantum circuit CG,H with comparable
cost.

Review: Measuring Pebbling Costs. There are several natural ways to measure the cost of a pebbling.
The space cost of a pebbling P = (P0, . . . , Pt) measures the maximum number of pebbles on the
graph during any round, i.e., maxi |Pi| and the space complexity of a graph measures the minimum
space cost over all legal pebblings of G. Similarly, the space-time cost of a pebbling P = (P0, . . . , Pt)
measures the product t ×maxi |Pi| and the cumulative pebbling cost is

∑
i |Pi|. Intuitively, space

complexity measures the amount of memory (e.g., RAM) required for a computation and space-
time cost measures the full cost of the computation by telling how long the memory will be locked
up during computation. Cumulative pebbling cost gives the amortized space-time complexity of
pebbling multiple copies of the graph G, i.e., when we are evaluating our function fG on multiple
different inputs in parallel [AS15].

(Quantum) Pre-Image Attacks. Understanding the amortized space-time complexity of a graph G
is important to estimate the cost of a classical brute-force pre-image attack over a domain X of size
m. In particular, suppose we are given a target output y (e.g., y = fG,H(x′) for a secret input x ∈ X)
and we wish to find some input x′ ∈ X such that y = fG,H(x′). Classically, the space-time cost of a
black-box pre-image attack would require us to evaluate the function fG,H on Ω(m) inputs. If the
cumulative pebbling cost of G is given by

∑
i |Pi| then the total space-time cost of the pre-image

attack would scale proportionally to m
∑

i |Pi|, i.e., m times the amortized space-time complexity.
Thus, a more efficient black pebbling strategy for G yields a lower-cost pre-image attack.

In the context of quantum computing, Grover’s algorithm [Gro96] substantially reduces the
cost of a brute-force pre-image attack over a domain X of size m. In particular, Grover’s algorithm
only requires O (

√
m) black-box queries to the function fG,H evaluating the function fG,H and

this is optimal — any quantum algorithm using fG,H as a black box must make at least Ω(
√
m)

queries [BBBV97]. If we instantiate fG,H with a quantum circuit of width w and depth d then
full Grover circuit would have width W = O (w) and depth D = d × O (

√
m). In particular, the

total space-time (equivalently width-depth) cost of the attack would be wd × O (
√
m). Thus, to

analyze the cost of a quantum pre-image attack it is crucial to understand the space-time (or
width-depth) cost of a quantum circuit CG,H computing fG,H . Our goal will be to treat H as
a black box and use graph pebbling to characterize the space-time cost. A natural first attempt
would be to use the classical black pebbling game to analyze the parallel pebbling cost of G as
above. If this approach worked we could simply leverage prior (parallel) black pebbling analysis of
prominent iMHF candidates [AB16, ABP17, AB17, BZ17] to analyze the cost of a quantum pre-
image attack. Unfortunately, this approach breaks down because a legal black pebbling strategy
does not necessarily correspond to a valid quantum circuit CG,H with comparable cost. Thus, we
will require a different pebbling game to analyze the width-depth cost of the quantum circuit CG,H .

Notation. We use the notation [N] (resp. [a, b]) to denote the set {1, . . . , N} (resp. {a, a+1, . . . , b})
for a positive integer N (resp. a ≤ b). The notation $← denotes a uniformly random sampling, e.g.,
we say x $← [N] when x is a uniformly sampled integer from 1 to N . For simplicity, we let log(·) be
a log base 2, i.e., log x := log2 x.

3

Let G = (V,E) be a directed acyclic graph (DAG) where we denote N to be the num-
ber of nodes in V = [N]. Given a node v ∈ V , we define parents(v,G) to be the immediate
parents of node v in G, and we extend this definition to a subset of nodes as well; for a set
W ⊆ V , we define parents(W,G) :=

⋃
w∈W {u : (u,w) ∈ E}. We let ancestors(v,G) be the

set of all ancestors of v in G, i.e., ancestors(v,G) :=
⋃

i≥1 parents
i(v,G), where parents1(v,G) =

parents(v,G) and parentsi(v,G) = parents(parentsi−1(v,G), G). Similarly, for a set W ⊆ V , we de-
fine ancestors(W,G) :=

⋃
i≥1 parents

i(W,G), where parents1(W,G) = parents(W,G) and recursively

define parentsi(W,G) = parents(parentsi−1(W,G), G).

We denote the set of all sink nodes of G with sinks(G) := {v ∈ V : ∄(v, u) ∈ E} – note that
ancestors(sinks(G), G) = V . We define depth(v,G) to refer to the number of the longest directed
path in G ending at node v and we define depth(G) = maxv∈V depth(v,G) to refer to the number of
nodes in the longest directed path in G. Given a node v ∈ V , we define indeg(v) := |parents(v,G)|
to denote the number of incoming edges into v, and we also define indeg(G) := maxv∈V indeg(v).
Given a set S ⊆ V of nodes, we use G − S to refer to the subgraph of G obtained by deleting all
the nodes in S and all edges that are incident to S. We also use the notation S≤k := S ∩ [k] denotes
the subset of S that only intersects with [k]. We say that a DAG G = (V,E) is (e, d)-depth robust
if for any subset S ⊆ V such that |S| ≤ e we have depth(G − S) ≥ d. Otherwise, we say that G
is (e, d)-reducible and call the subset S a depth-reducing set (which is of size at most e and yields
depth(G− S) < d).

We denote with PG,T and P∥G,T the set of all legal sequential and parallel classical pebblings

of G with target set T , respectively. In the case where T = sinks(G), we simply write PG and P∥G,
respectively.

1.1 Our Results

We introduce the parallel reversible pebbling game as a tool to analyze the (amortized) space-time
cost of a quantum circuit evaluating a function f with a static data-dependency graph G. Prior
work [Ben89, Krá01, MSR+19] introduced a sequential reversible pebbling game. As we discuss,
there are several key subtleties that arise when extending the sequential reversible pebbling game
to the parallel setting. We argue that any parallel reversible pebbling P = (P0, . . . , Pt) of the graph
G corresponds to a quantum circuit CP evaluating f with comparable costs, e.g., the depth of the
quantum circuit CP corresponds to the number of pebbling rounds t and the width of the circuit
corresponds to the space complexity of the pebbling, i.e., maxi |Pi|. Thus, any reversible pebbling
attack will yield a more efficient quantum pre-image attack1.

As an application, we use the parallel reversible pebbling game to analyze the space-time cost
of several important password hashing functions fG,H including PBKDF2, BCRYPT, Argon2i, and
DRSample.

Reversible Pebbling Attacks on Line Graphs. We first focus on analyzing the reversible pebbling
cost of a line graph LN with N nodes {1, . . . , N} and edges (i, i+1) for each 1 ≤ i < N . Classically,

1 While one could use the parallel reversible pebbling game as a heuristic to lower bound the cost of a quantum
pre-image attack we stress that, at this time, there is no pebbling reduction which provably lower bounds the
cost of a quantum pre-image attack on fG,H using reversible pebbling cost of the underlying DAG G. We do have
pebbling reductions for classical (non-reversible) pebblings in the parallel random oracle model [AS15], but there
are several technical barriers which make it difficult to extend this reduction to the quantum random oracle model.

4

there is a trivial black pebbling strategy for the line graph with simply walks a single pebble
from node 1 to node N over N pebbling rounds, i.e., in each round i we place a new pebble on
node i and then delete the pebble on node i − 1. This pebbling strategy is clearly optimal as the
maximum space usage is just 1 and the space-time cost is just N × 1 = N . However, this simple
pebbling strategy is no longer legal in the reversible pebbling game and it is a bit tricky just to
find a reversible pebbling strategy whose space-time cost is significantly lower than O

(
N2
)
— the

space-time cost of the näıve pebbling strategy which avoids removing pebbles. In Theorem 1 we

show that the (sequential) reversible space-time complexity of a line graph is O
(
N

1+ 2√
logN

)
. A

similar argument seems to be implicitly assumed by Bennett [Ben89] though the argument was
never explicitly formalized as a reversible pebbling strategy. The result improves upon a result of
Li and Vitányi [LV96] who showed that the space-time complexity is at most O

(
N log 3 logN

)
2.

Because the space-time complexity of the line graph G = LN is so low, it is a poor choice for an
iMHF fG,H or for password hashing [BHZ18]. However, the line graph LN naturally corresponds to
widely deployed password hashing algorithms like BCRYPT [PM99] and PBKDF2 [Kal00] which
use hash iteration to increase costs where the parameter N controls the number of hash iterations.
Thus, to understand the cost of a (quantum) brute-force password cracking attack it is useful to
analyze the (reversible) pebbling cost of LN .

Reversible Pebbling Attack for Depth-Reducible DAGs. In Theorem 2 we give a generic parallel
reversible pebbling attack on any (e, d)-reducible DAG G with space-time cost O

(
Ne+ dN2d

)
which corresponds to a meaningful attack whenever e = o(N) and d2d = o(N). A DAG G is said to
be (e, d)-reducible if there is a subset S ⊆ V of at most e nodes such that any length d path P in
G contains at least one node in S. As we show this leads to meaningful reversible pebbling attacks
on Argon2i, the winner of the Password Hashing Competition. Specifically, we demonstrate how
to construct depth-reducing sets for Argon2i-A (an older version of Argon2i) and Argon2i-B (the
current version of Argon2i) with e = o(N) and d2d = o(N). This leads to reversible pebbling attacks
with space-time complexity O

(
N2 log logN/

√
logN

)
and O

(
N2/ 3
√
logN

)
against Argon2i-A and

Argon2i-B, respectively — see Corollary 1.

In the classical pebbling setting, Alwen and Blocki [AB16] previously gave a generic pebbling
attack on (e, d)-reducible DAGs with amortized space-time cost O

(
Ne+N2d/e

)
. However, this

pebbling attack is not legal in the reversible setting, and without amortization, the space-time cost
is still N2 — the average number of pebbles on the graph per round is just e + Nd/e but at the
peak, the pebbling strategy still requires Ω(N) pebbles. In our pebbling strategy, the maximum
space usage is O

(
e+ d2d

)
.

Reversible Pebbling Attack against DRSample. Finally, we use the parallel reversible pebbling game
to analyze DRSample [ABH17] — a proposal to update the edge distribution in Argon2i with
a depth-robust graph. With high probability, a randomly sampled DRSample DAG G will not
be (e, d)-reducible for parameters e, d as large as e = Ω(N/ logN) and d = Ω(N). Thus, the
generic reversible pebbling attack on (e, d)-reducible graphs does not seem to apply. We give an
alternate pebbling strategy by partitioning the nodes of G into ⌈N/b⌉ consecutive blocks of size b
and converting a parallel reversible pebbling of the line graph L⌈N/b⌉ into a legal reversible pebbling
of G. The reversible pebbling strategy will be cost-effective as long as we have an efficient pebbling

2 The pebbling of Li and Vitányi [LV96] runs in time O
(
N log 3

)
while using at most O (logN) pebbles. Our pebbling

strategy uses more pebbles to reduce the overall space-time cost by improving the pebbling time.

5

strategy for L⌈N/b⌉ and the graph G does not contain too many “long” edges (u, v) with |v−u| ≥ b—

we show that DRSample does not contain too many long edges when b = N/ log2N . Combined with
our parallel reversible pebbling strategies for the line graph, this leads to an attack on DRSample
with space-time cost at most O

(
N2 log logN/ logN

)
— see Corollary 2.

More generally, in Theorem 3 we give an efficient reversible pebbling algorithm which transforms
a legal reversible pebbling P ′ = (P ′1, . . . , P

′
t′) of the line graph L⌈N/b⌉ into a legal reversible pebbling

P = (P1, . . . , Pt) of a DAG G = (V,E). The reversible pebbling requires t = O (bt′) rounds and
space bs′ + (#skip) where #skip is upper bounded by the number of long edges (u, v) ∈ E with
|v − u| ≥ b and s′ = maxi |P ′i | upper bounds the space usage of the pebbling P ′. Thus, the
total space-time complexity will be O

(
b2s′t′ +N#skip

)
and we will be able to obtain an efficient

reversible pebbling attack as long as b = o(N) and (#skip) = o(N) — we show that this is the
case for DRSample.

Cumulative Pebbling Cost and Parallel Reversible Pebbling. Alwen and Blocki [AB16] gave a general
parallel black pebbling attack on any (e, d)-reducible graph. This general pebbling attack was
used to upper bound the cumulative cost of many prominent iMHFs including Argon2i-A [AB16]
and Argon2i-B [AB17]. More generally the attack shows that any constant indegree DAG G has
cumulative pebbling cost at most O

(
N2 log logN/ logN

)
. We show how the pebbling attack of

Alwen and Blocki [AB16] can be extended to the parallel reversible pebbling game3. In particular,
we can show that the cumulative reversible pebbling costs of an (e, d)-reducible DAG with maximum

indegree δ is upper bounded by O
(
eN + gδN + N2d

g

)
for any parameter g ≥ d matching the

non-reversible pebbling attacks of Alwen and Blocki [AB16] — see Theorem 4. More specifically,
since any DAG G with constant indegree δ = O(1) is (e, d)-reducible with d = N/ log2N and
e = O (N log logN/ logN) [AB16] we can plug in g = e to obtain a reversible pebbling strategy with
cumulative cost at most O

(
N2 log logN/ logN

)
— see Corollary 4. We can also upper bound the

cumulative reversible pebbling costs of Argon2i-A and Argon2i-B as O
(
N1.75 logN

)
and O

(
N1.8

)
respectively — see Corollary 3.

1.2 Technical Overview

Defining the Parallel Reversible Pebbling Game. We begin by defining and motivating the parallel
reversible pebbling game. We want to ensure that any legal (parallel) reversible pebbling strategy
for G corresponds to a quantum circuit CG,H evaluating fG,H that could be used as part of a
pre-image attack using Grover’s algorithm.

We first consider the parallel quantum random oracle model [BDF+11] where the random oracle
is a function H : {0, 1}≤2λ → {0, 1}λ. In the parallel quantum random oracle model we are given
access to a quantum oracle maps basis states of the form |x1, y1, . . . , xk, yk, z⟩ to the new state
|x1, y1 ⊕ H(x1), . . . , xk, yk ⊕ H(xk), z⟩. Here, x1, . . . , xk denote the queries, y1, . . . , yk denote the
output registers and z denotes any auxiliary data. Notice that if yi = 0λ then the ith output register
will just be H(xi) after the query is submitted.

3 Alwen, Blocki and Pietrzak [ABP17] later provided a recursive version of the pebbling attacks of Alwen and Blocki
[AB16] which can further reduces the cumulative pebbling cost of a DAG which is (ei, di)-reducible at a sequence
of points (ei, di) with di < di−1 and ei ≥ di−1. The recursive pebbling attack yields tighter asymptotic upper
bounds for some iMHF candidates [BZ17, ABP17]. We conjecture that these recursive pebbling attacks can also
be generalized to the reversible pebbling setting though we leave this as an open problem.

6

Now consider the function f(x) = HN (x) where H1(x) = H(x) and H i+1(x) = H(H i(x)).
The data-dependency graph for f is simply the line graph G = LN . In our reversible pebbling
game, we want to ensure that each pebbling transition corresponds to a legal state transition
in the quantum random oracle model. If N = 5, then the pebbling configuration Pi = {2, 3, 4}
intuitively corresponds to a quantum state containing the labels X2 = H2(x), X3 = H3(x) and
X4 = H4(x). From this state, we could use X4 and an input register and submit the query |X4, 0

λ⟩
to the random oracle to obtain X5 = H(X4) from the resulting state |X4, H(X4)⟩. Similarly, while
we cannot simply delete X3 we could uncompute this value by using X3 as an output register and
submitting the random oracle query |X2, X3⟩ to obtain the new state |X2, H(X2)⊕X3⟩ = |X2, 0

λ⟩ in
which the label X3 has been removed. However, without the label X1 there is no way to uncompute
X2 without first recomputing X1.

The above example suggests that we extend the parallel pebbling game by adding the rule
that parents(Pi \ Pi+1, G) ⊆ Pi, i.e., a pebble can only be deleted if all of its parents were pebbled
at the end of the previous pebbling round. While this rule is necessary, it is not yet sufficient to
prevent impossible quantum state transitions. In particular, the rule would not rule out the pebbling
transition from Pi = {1, 2, . . . , i} to the new configuration Pi+1 = {} where all labels have been
removed from memory. This pebbling transition would correspond to a quantum transition from
a state in which labels X1, . . . , Xi are stored in memory to a new state where all of these labels
have been uncomputed after just one (parallel) query to the random oracle. Because quantum
computation is reversible this would also imply that we could directly transition from the original
state (no labels computed) to a state in which all of the labels X1, . . . , Xi are available after just one
(parallel) query to the quantum random oracle. However, it is known that computing Xi = H i(x)
requires at least i rounds of computation even in the parallel quantum random oracle model [BLZ21].
Thus, the pebbling transition from Pi = {1, 2, . . . , i} to Pi+1 = {} must be disallowed by our
reversible pebbling rules as the corresponding quantum state transition is impossible.

We address this last issue by adding another pebbling rule: if v ∈ parents(Pi \ Pi−1, G) ∪
parents(Pi−1 \ Pi, G), then v ∈ Pi. Intuitively, the rule ensures that if the label Xv appeared in an
input register to either compute or uncompute some other data label then we cannot also uncompute
Xv in this round, i.e., we must keep a pebble at node v.

We make several observations about the reversible pebbling game. First, any legal reversible
pebbling of a DAG G is also a legal (classical) parallel black pebbling of G since we only added

additional pebbling restrictions. More formally, if P∥G (resp. PG) denotes the set of all legal parallel
(resp. sequential) black pebblings of G and P →← ,∥

G (resp. P →←G) denotes the set of all legal parallel

(resp. sequential) reversible pebblings of G then we have P →← ,∥
G ⊆ P∥G and P →←G ⊆ PG. Thus,

any lower bounds on the classical parallel pebbling cost of G will immediately carry over to the
reversible setting. However, upper bounds will not necessarily carry over since classical pebbling
attacks may not be legal in the reversible pebbling game. Second, we observe that the following
sequential reversible pebbling strategy works for any DAG G = (V = [N], E). In the first N rounds,
pebble all nodes in topological order without deleting any pebbles. In the next N−1 rounds remove
pebbles from all nodes (excluding sinks(G)) in reverse topological order. More formally, assuming
that 1, . . . , N is a topological order and that node N is the only sink node we have Pi = [i] for each
i ≤ N and PN+j = [N] \ [N − j,N − 1] for each j ≤ N − 1. The pebbling requires N pebbles and
finishes in t = 2N − 1 rounds so the space-time cost is 2N2 −N . We refer to the above sequential
strategy as the näıve reversible pebbling for a graph G.

7

Reversible Pebbling Attack on Line Graphs. We give a reversible pebbling attack on a line graph

LN of size N with the space-time cost O
(
N

1+ 2√
logN

)
. This can be achieved by generalizing Li

and Vitányi’s work [LV96]. Li and Vitányi [LV96] gave a reversible pebbling strategy on a line
graph of size N with space-time cost O

(
N log 3 logN

)
by translating ideas of Bennett [Ben89] into

a reversible pebbling argument. Intuitively, if we define N(k) using the recurrence relationship
N(k) = k +

∑k−1
j=0 N(j), solving to N(k) = 2k − 1, then they show that the line graph with N(k)

nodes can be pebbled using space S(k) = S(k−1)+1 = k and time T (k) = 3T (k−1)+1 = O
(
3k
)

for a total space-time cost of O
(
k3k
)
= O

(
(N(k))log 3 logN(k)

)
. Their pebbling strategy works as

follows: (1) recursively apply the pebbling strategy to place a pebble on node N(k−1) using space at
most S(k−1) and time at most T (k−1), (2) place a pebble on node v1 = N(k−1)+1, (3) recursively
apply the strategy (in reverse) to clear any leftover pebbles from nodes 1 to N(k−1) in time T (k−1)
and (additional) space at most S(k−1). We are left with (k−1)+

∑k−2
j=1 N(j) = N(k−1) remaining

nodes which will be handled recursively using time T (k − 1) and (additional) space S(k − 1).

We observe that by increasing the space usage slightly we can decrease the pebbling time to
obtain a superior space-time cost. We note that Bennett [Ben89] mentions a similar idea in his paper,
but that this idea was not formalized as a reversible pebbling strategy either by Bennett [Ben89] or
by Li and Vitányi [LV96]. The key modification is as follows: we redefine N(k) = ck+

∑k−1
j=0 cN(j)

solving to N(k) = Θ
(
(c+ 1)k

)
. We can now recursively pebble a line graph with N(k) nodes in

sequential time T (k) = (2c+ 2)T (k − 1) + c = O
(
(2c+ 2)k

)
and space S(k) = c+ S(k − 1) = ck.

Intuitively, the recursive pebbling strategy will begin by dropping pebbles on each of the nodes
N(k−1)+1, 2N(k−1)+2, ..., cN(k−1)+c using space at most S(k−1)+c and time 2c·T (k−1). We are
left with c(k−1)+

∑k−2
j=0 cN(j) = N(k−1) remaining nodes which can then be handled recursively.

Setting c = 2k, we have k = Θ(
√

logN(k)) yielding an upper bound of O
(
N(k)

1+(2+o(1)) 1√
logN(k)

)
on the sequential space-time cost.

We can obtain a minor improvement by exploiting parallelism to save time while increasing
space usage slightly. In particular, our parallel strategy uses space O

(
c2k
)
and time O

(
(c+ 2)k

)
with total space-time cost O

(
c(2c+ 4)k

)
. Setting c+1 = 2k we have a slightly better upper bound

O
(
N(k)

1+ 2√
logN(k)

)
on the space-time cost. Further details can be found in Appendix A.

Generic Reversible Pebbling Attack on Depth-Reducible Graphs. We give a generic reversible peb-
bling attack on any (e, d)-reducible DAG G = (V = [N], E) with maximum indegree 2. The
space-time cost of our reversible pebbling attack is at most O

(
Ne+Nd2d

)
. Thus, the attack will

be superior to the näıve reversible pebbling strategy as long as e = o(N) and d2d = o(N). We begin
with a depth-reducing set S ⊆ V of size |S| ≤ e. Our reversible pebbling strategy will never remove
pebbles from the set S until all of the sink nodes in G are pebbled and we are ready to remove
pebbles from the remaining nodes. On each round i ≤ N we will place a new pebble on node {i}.
To ensure that this step is legal, we consider the subgraph formed by all of node i’s ancestors in
G − S. Since G − S does not contain a directed path of length d and each node has at most 2
parents there are at most 2d ancestors of node i in G−S. Once again applying the observation that
the depth of G− S is at most d we can start to repebble i’s ancestors in round i− d− 1 to ensure
that i’s immediate parents are pebbled by round i − 1. After we place a pebble on node i we can
remove pebbles from i’s ancestors in G− S over the next d rounds. Since we only keep pebbles on

8

the set S and the ancestors of up to 2d nodes in G−S, the maximum space usage of this reversible
pebbling strategy will be O

(
e+ d2d

)
.

We apply the generic attack to Argon2i-A and Argon2i-B. In particular, we apply ideas from
the previous work [AB17, BZ17] to show that Argon2i-A (resp. Argon2i-B) graphs are (e, d)-
reducible with e = O

(
N log logN/

√
logN

)
and d = logN/ log logN (resp. e = O

(
N/ 3
√
logN

)
and d = (logN)/2). This leads to reversible pebbling attacks with cost O

(
N2 log logN/

√
logN

)
and O

(
N2/ 3
√
logN

)
) for Argon2i-A and Argon2i-B, respectively. An intriguing open question is

whether or not these are the best reversible pebbling attacks for Argon2i-A and Argon2i-B?

Reversible Pebbling Attack on DRSample. We provide a general reversible pebbling attack on any
DAG G with the property that G contains few skip nodes (defined below). Intuitively, given a DAG
G = (V,E) with |V | = N and a parameter b ≥ 1, we can imagine partitioning the nodes of V into
consecutive blocks B1 = {v1, . . . , vb}, B2 = {vb+1, . . . , v2b}, . . . , B⌈N/b⌉ = {v(⌈N/b⌉−1)b+1, . . . , vN}
such that we have ⌈N/b⌉ blocks in total and each block contains exactly b nodes (with the possible
exception of the last block if N/b is not an integer). We call a node u in block Bi a skip node if G
contains a directed edge (u, v) from u to some node v ∈ Bj with j > i + 1 and we call the edge
(u, v) a skip edge, i.e., the edge (u, v) skips over the block Bi+1 entirely.

We first observe that if the graph G contained no skip edges then it would be trivial to transform

a (parallel) reversible pebbling P ′ of the line graph L⌈N/b⌉ = (V ′, E′) with space-time costΠ
→← ,∥
st (P ′)

into a (parallel) reversible pebbling P of G with space-time cost O
(
b2Π

→← ,∥
st (P ′)

)
(see Definition 2

for the definition of Π
→← ,∥
st (·)). In particular, placing a pebbling on node v′ ∈ V ′ of the line graph

corresponds to b rounds in which we pebble all nodes in block Bv′ . Thus, the pebbling time increases
by a factor of O (b), and the total space usage also increases by a factor b. Unfortunately, this
strategy may result in an illegal reversible pebbling when G contains skip edges. However, we can
modify the above strategy to avoid removing pebbles on skip nodes which intuitively increases
our space usage by s — the total number of skip nodes in the graph G. The procedure P =
Trans(G,P ′, b) is formally described in Algorithm 2 in Appendix D, and an example for the reversible
pebbling strategy can be found in in Figure 4 in Appendix B. As long as s is sufficiently small, we
obtain an efficient parallel reversible pebbling attack on G. In particular, given a reversible pebbling

P ′ of the line graph L⌈N/b⌉ = (V ′, E′) with space-time cost Π
→← ,∥
st (P ′) we can find a reversible

pebbling P of G with space-time cost O
(
sN + b2Π

→← ,∥
st (P ′)

)
. Combining this observation with our

efficient reversible pebbling attacks on the line graph we can see that the space-time costs will be at

most O
(
sN + b2(N/b)

1+ 2√
log(N/b)

)
. For graphs like DRSample [ABH17], we can show that (whp)

the number of skip nodes is at most s = O
(
N log logN

logN

)
when we set the block size b = O

(
N

log2 N

)
leading to a reversible pebbling attack with space-time cost O

(
N2 log logN

logN

)
.

Cumulative Cost for Reversible Pebblings: Depth-Reducing Reversible Pebbling Attacks. Alwen and
Blocki [AB16] gave a non-reversible pebbling attack with reduced cumulative pebbling cost for
any (e, d)-reducible DAG G. While their pebbling attack is non-reversible, we observe that almost
all pebbling rounds respect the constraints of reversible pebbling. We then identify the few non-
reversible rounds and how these steps can be patched to respect the additional constraints of
reversible pebbling. See details in Section 4.

9

1.3 Related Work

Related Pebbling Games. Prior work [Ben89, Krá01, MSR+19] introduced a reversible pebbling
game to capture restrictions imposed by the Quantum No-Deletion Theorem and analyze space-
time tradeoffs in quantum computing. However, the pebbling game considered in these works is
sequential and only allows for the addition/removal of one pebble in each round. Thus, the sequential
reversible pebbling game is not suitable for analyzing the space-time cost of a quantum circuit
evaluating fG,H since the circuit can evaluate H multiple times in parallel. We note that there
are several important subtleties that must be considered when extending the game to the parallel
setting.

More recently, Kornerup et al. [KSS21] introduced a new (sequential) pebbling game called
the spooky pebble game to model measurement-based deletion in quantum computation. Intuitively,
measurement-based deletion allows for the conversion of some qubits into (cheaper) classical bits
which can later be used to restore the quantum state. The spooky pebble game only allows for
sequential computation and the cost model ignores classical storage. One disadvantage of instan-
tiating a spooky pebbling attack as part of a quantum pre-image attack is that the final attack
requires many intermediate measurements which introduces additional technical challenges, i.e., we
need to ensure that each and every intermediate measurement does not disturb the state of the
nearby qubits or the rest of the quantum computer [Div00]. By contrast, a pebbling attack in our
parallel reversible pebbling game naturally corresponds to a quantum circuit which does not require
any intermediate measurements and our cost model accounts for the total storage cost (classical +
quantum). While Kornerup et al. [KSS21] introduced a spooky pebbling attack on the line graph,
we note this spooky pebbling strategy does not yield an efficient reversible pebbling attack in our
model as their pebbling attack inherently relies on frequent intermediate measurements to reduce
the number of qubits.

Remark 1. One could always try to eliminate the intermediate measurements by applying the
“principle of deferred measurement” [NC02]. However, “deferred measurement” increases the space
and/or depth of a quantum circuit. For example, if the quantum circuit C acts on s qubits and
performs m intermediate measurements then we can obtain an equivalent quantum circuit C ′ with
no intermediate measurements with the caveat that C ′ operates on s′ = s + poly(m) qubits. The
space blowup is especially high if C makes many intermediate measurements, e.g., s = O (logm).
Fefferman and Remscrim [FR21] gave a space-efficient version of the transform, but their transform
yields a large penalty in running time cost, i.e., the transform incurs a multiplicative poly(t2s)
overhead in the total running time t.

If we apply spooky pebbling in the context of Grover’s search then the total number of interme-
diate measurements m would be exponential, i.e., even if we have a quantum circuit Cf evaluating
a function f : {0, 1}k → {0, 1}k with just a single intermediate measurement, performing the full
Grover’s search to find a pre-image of f would involve m = O

(
2k/2

)
intermediate measurements

and applying “deferred measurement” to the full Grover circuit would incur a massive time (or
space) penalty. Thus, finding a quantum circuit Cf which has reduced space-time cost and does not
require any intermediate measurements would yield a more compelling quantum pre-image attack.

2 Parallel Reversible Pebbling Games

The biggest difference between the classical and reversible pebbling games occurs when removing
pebbles from a pebbling configuration. In a classical setting, we can always delete any pebbles in

10

any point in time when they are no longer needed. On the other hand, in a reversible setting,
this is not feasible by quantum no-cloning theorem. Since we can only free a pebble by querying a
random oracle at the same input, we can observe that a pebble can be deleted only if we know all
of its parents, i.e., all of its parents were previously pebbled. The following definition captures this
property:

Definition 1 (Parallel/Sequential Reversible Graph Pebbling). Let G = (V,E) be a DAG
and let T ⊆ V be a target set of nodes to be pebbled. A pebbling configuration (of G) at round i
is a subset Pi ⊆ V . Let P = (P0, . . . , Pt) be a sequence of pebbling configurations. Below are the
following properties which define various aspects of reversible pebblings.

(1) The pebbling should start with no pebbles (P0 = ∅) and end with pebbles on all of the target
nodes i.e., T ⊆ Pt.

(2) A pebble can be added only if all of its parents were pebbled at the end of the previous pebbling
round, i.e., ∀i ∈ [t] : x ∈ (Pi \ Pi−1)⇒ parents(x,G) ⊆ Pi−1.

(3) (Quantum No-Deletion Property) A pebble can be deleted only if all of its parents were pebbled
at the end of the previous pebbling round, i.e., ∀i ∈ [t] : x ∈ (Pi−1 \ Pi)⇒ parents(x,G) ⊆ Pi−1.

(4) (Quantum Reversibility) If a pebble was required to generate new pebbles (or remove pebbles),
then we must keep the corresponding pebble around, i.e., ∀i ∈ [t] : x ∈ parents(Pi \ Pi−1, G) ∪
parents(Pi−1 \ Pi, G)⇒ x ∈ Pi.

(5) (Remove Excess Pebbles) We also consider an optional constraint that Pt = T . If a pebbling
does not satisfy this optional constraint we call it a relaxed pebbling.

(6) (Sequential pebbling only) At most one pebble is added or removed in each round, i.e., ∀i ∈ [t] :
|(Pi ∪ Pi−1) \ (Pi ∩ Pi−1)| ≤ 1.

Now we give pebbling definitions with respect to the above properties.

– A legal parallel reversible pebbling of T is a sequence P = (P0, . . . , Pt) of pebbling configurations
of G where P0 = ∅ and which satisfies conditions (1), (2), (3), (4) and (5) above. If our pebbling
additionally satisfies condition (6) then we say that it is a sequential pebbling. Similarly, if our
pebbling does not satisfy condition (5) then we call our pebbling strategy a relaxed pebbling.

– A legal reversible pebbling sequence is a sequence of pebbling configurations (P0, . . . , Pt) which
satisfies properties (2) and (3) and (4) without requiring P0 = {}.

– A legal (non-reversible) pebbling sequence is a sequence of pebbling configurations (P0, . . . , Pt)
satisfying condition (2).

We denote with P →←G,T and P →← ,∥
G,T the set of all legal sequential and parallel reversible pebblings

of G with a target set T , respectively. We denote with P̃ →←G,T and P̃ →← ,∥
G,T the set of all legal relaxed

sequential and parallel reversible pebblings of G with target set T , respectively. Note that we have

P →←G,T ⊆ P
→← ,∥
G,T and P̃ →←G,T ⊆ P̃

→← ,∥
G,T . We will mostly be interested in the case where T = sinks(G) in

which case we simply write P →←G and P →← ,∥
G or P̃ →←G and P̃ →← ,∥

G , respectively.

Remark 2. We first note that from any parallel relaxed reversible pebbling of G we can obtain a
quantum circuit CG,H which computes fG,H . If our pebbling is not relaxed then the circuit CG,H

will map the basis state |x, y, z⟩ to the new state |x, y⊕fG,H(x), z⟩ with no ancilla bits although this
property is not necessary for Grover’s search. Including the requirement that a reversible pebbling
eliminates excess pebbles makes it easier to apply the pebbling attack as a recursive subroutine.

11

Thus, in this paper, we will focus on finding non-relaxed reversible pebbling attacks. We also note
that the space-time cost of a relaxed/non-relaxed reversible pebbling is not fundamentally different.
In particular, if (P1, . . . , Pt) is a relaxed pebbling where Pt = T contains the final sink node N , then
(P1, . . . , Pt, Pt−1 ∪ T, . . . , P1 ∪ T, T) is a legal and complete (non-relaxed) reversible pebbling of G.
The running time increases by a multiplicative factor of 2 and the space increases by an additive
factor of |T | ≤ |Pt| where T is the target set. In particular, the overall space-time costs increase by
a multiplicative factor of 4 at most. In the remainder of the paper, when we write “legal reversible
pebbling” we assume that the pebbling is parallel and non-relaxed by default.

Definition 2 (Reversible Pebbling Complexity). Given a DAG G = (V,E), we essentially
use the same definitions for the reversible pebbling complexity as defined in the previous literature
[AS15, ABP17, ABP18]. That is, the standard notion of time, space, space-time and cumulative

pebbling complexity (CC) of a reversible pebbling P = {P0, . . . , Pt} ∈ P
→← ,∥
G are also defined to be:

– (time complexity) Π
→← ,∥
t (P) = t,

– (space complexity) Π
→← ,∥
s (P) = maxi∈[t] |Pi|,

– (space-time complexity) Π
→← ,∥
st (P) = Π

→← ,∥
t (P) ·Π →← ,∥

s (P), and

– (cumulative pebbling complexity) Π
→← ,∥
cc (P) =

∑
i∈[t] |Pi|.

For α ∈ {s, t, st, cc} and a target set T ⊆ V , the parallel reversible pebbling complexities of G are
defined as

Π
→← ,∥
α (G,T) = min

P∈P →← ,∥
G,T

Π
→← ,∥
α (P).

When T = sinks(G) we simplify notation and write Π
→← ,∥
α (G).

We define the time, space, space-time and cumulative pebbling complexity of a sequential
reversible pebbling P = {P0, . . . , Pt} ∈ P →←G in a similar manner: Π →←

t (P) = t, Π →←
s (P) =

maxi∈[t] |Pi|, Π →←
st (P) = Π →←

t (P)·Π →←
s (P), and Π →←

cc (P) =
∑

i∈[t] |Pi|. Similarly, for α ∈ {s, t, st, cc}
and a target set T ⊆ V , the sequential reversible pebbling complexities of G are defined as Π →←

α (G,T) =
minP∈P →←G,T

Π →←
α (P). When T = sinks(G) we simplify notation as well and write Π →←

α (G).

When compared to the definition of a classical pebbling, we can observe that a reversible
pebbling has more restrictions, i.e., it only allows us to have pebbles exactly on the target nodes at
the end of the pebbling steps, and it further requires quantum no-deletion property and quantum
reversibility. This implies that any legal reversible pebblings are also legal classical pebblings, i.e.,

P∥G,T ⊆ P
→← ,∥
G,T (resp. PG,T ⊆ P →←G,T). This implies that for any graph G, target set T and cost metric

α ∈ {s, t, st, cc}, we have Π
∥
α(G,T) ≤ Π

→← ,∥
α (G,T) (resp. Πα(G,T) ≤ Π →←

α (G,T)) for a DAG

G = (V,E) and a target set T ⊆ V , where Π
∥
α(G,T) (resp. Πα(G,T)) denotes the parallel (resp.

sequential) classical pebbling complexities which are defined essentially the same as in Definition 2

with a classical pebbling P = {P0, . . . , Pt} ∈ P∥G (resp. PG). This means that any lower bound on
the classical pebbling complexity of a graph G immediately carries over to the reversible setting
and an upper bound (attack) on the reversible pebbling cost immediately carries over to the setting
classical pebbling.

In the context of quantum pre-image attacks, parallel space-time costs are arguably the most
relevant metric. In particular, the depth of the full Grover circuit scales with the number of queries
to our quantum circuit CG,H for fG,H multiplied by the number of pebbling rounds for G. Similarly,

12

the width of the full Grover circuit will essentially be given by the space usage of our pebbling. Thus,

the space-time of Grover’s algorithm will scale directly with Π
→← ,∥
s (P). The cumulative pebbling

complexity would still be relevant in settings where we are running multiple instances of Grover’s
algorithm in parallel and can amortize space usage over multiple inputs. In this paper, we primarily
focus on analyzing reversible space-time costs, as this would likely be the most relevant metric in
practice. However, cumulative pebbling complexity still can be worthwhile to study and we provide
some initial results in this direction.

3 Reversible Pebbling Attacks and Applications on iMHFs

3.1 Warmup: Parallel Reversible Pebbling Attack on a Line Graph

We first consider two widely deployed hash functions, PBKDF2 [Kal00] and BCRYPT [PM99], as
motivating examples for analyzing a line graph. Basically, they are constructed by hash iterations
so they can be modeled as a line graph when simplified. Hence, the pebbling analysis of a line graph
tells us about the costs of PBKDF2 and BCRYPT. Although there has been some effort to replace
such password-hash functions with memory-hard functions such as Argon2 or SCRYPT [BHZ18],
PBKDF2 and BCRYPT are still commonly used by a number of organizations. Thus, it is still im-
portant to understand the costs of an offline brute-force attack on passwords protected by functions
like PBKDF2 and BCRYPT. In fact, NIST recommends using memory-hard functions for password
hashing [GNP+17] but they still allow PBKDF2 and BCRYPT when used with long enough hash
iterations. Hence, there is still value to analyze the quantum resistance of these functions. Our
reversible pebbling attack on DRSample relies on efficient pebbling strategies for line graphs as a
subroutine providing further motivation to understand the reversible pebbling costs of a line graph.

As we illustrated in Section 1.2, we give a (sequential/parallel) reversible pebbling strategy for
a line graph LN using recursion. It can be done by recursively define the sequence of consecutive
locations I(k) as I(k) = I(k − 1)′ ◦ I(k − 2)′ ◦ . . . ◦ I(0)′ for k > 0 and I(0) = {}, where for
0 ≤ j < k, I(j)′ is defined to be a concatenation of c copies of I(j) and ij (which is an incident

node to I(j)), i.e., I(j)′ := I(j)(1) ◦ i(1)j ◦ I(j)(2) ◦ i
(2)
j ◦ . . . ◦ I(j)(c) ◦ i

(c)
j , where A(ℓ) denotes the ℓth

copy of A. Intuitively, we can sequentially pebble I(k) by pebbling I(k − 1)′, I(k − 2)′, . . . , I(0)′.

Here, pebbling I(j)′ means that we pebble I(j)(ℓ), i
(ℓ)
j , and unpebble I(j)(ℓ), and we move on to

the next copy to pebble I(j)(ℓ+1). We can parallelize this strategy by removing and adding pebbles
on the consecutive copies at the same time, which requires more space usage but saves time. Here,
we only state the space-time cost of our reversible pebbling strategy on a line graph in Theorem 1.
Details of our pebbling strategy can be found in Appendix A.

Theorem 1. Let LN be a line graph of size N . Then we have Π →←
st (LN) = O

(
N

1+(2+o(1)) 1√
logN

)
and Π

→← ,∥
st (LN) = O

(
N

1+ 2√
logN

)
.

Proof. The proof directly comes from Lemma 8 in Appendix A. ⊓⊔

3.2 Reversible Pebbling Attacks on (e, d)-reducible DAGs

In this section, we introduce another type of reversible pebbling attack on (e, d)-reducible DAGs
with depth-reducing sets with d very small. Recall that a DAG G = (V,E) is (e, d)-reducible if

13

there exists a subset S ⊆ V with |S| ≤ e such that the subgraph G− S does not contain a path of
length d. Here, we call such subset S a depth-reducing set. In this paper, we only consider DAGs
with constant indegree, and especially the current state-of-the-art constructions of iMHFs have
indegree 2. Therefore, we will assume that indeg(G) = 2 for the DAGs that we consider.

Since the graph has indegree 2, if we find a depth-reducing set S such that G− S has depth d,
then we observe that |ancestors(v,G−S)| ≤ 2d for any node v in G−S. If d is small, i.e., d≪ logN ,
then 2d ≪ N and we can expect that the space-time cost for pebbling such (e, d)-reducible DAG
becomes o(N2). More precisely, we start with giving a regular pebbling strategy (without quantum
restrictions) for such DAGs.

Classical Black Pebbling Strategy. We begin by giving a classical pebbling strategy with small space-
time complexity. Note that prior pebbling strategies focused exclusively on minimizing cumulative
pebbling cost, but the pebbling attacks of Alwen and Blocki [AB16]4 for (e, d)-reducible graphs still
have the space-time cost Ω(N2).

We first introduce the following helpful notation. For nodes x and y in a DAG G = (V,E), let
LongestPathG(x, y) denote the number of nodes in the longest path from x to y in G. Then for a
node w ∈ V , a depth-reducing set S ⊆ V , and a positive integer i ∈ Z>0, we first define a set Aw,S,i

which consists of the nodes v where the longest directed path from v to w in G−S≤w−1 has length
i, i.e., it contains exactly i nodes.

Aw,S,i :=
{
v : LongestPathG−S≤w−1

(v, w) = i
}
.

It is trivial by definition that for any v ∈ V , Av,S,1 = {v}.
Let G = (V = [N], E) be an (e, d)-reducible DAG. We observe that depth(G≤k−S≤k) ≤ d is still

true for any k ≤ N . At round k, we have always ensured that we have pebbles on the set S≤k and
on {k} itself. Further, at round k, we can look d steps into the future so that at round k+d we can
pebble node k+d without delay. Hence, we start to repebble ancestors(k+d,G−S) in this round and
because depth(G≤k−S≤k) ≤ d we are guaranteed to finish within d rounds — just in time to pebble
node k + d. Taken together, in round k, we have pebbles on {k}, S≤k, and ancestors(k + i, G− S)

for all i ≤ d. More precisely, for v ∈ V , let Pv = S≤v ∪
(⋃d

j=1

⋃d
i=j Av−1+j,S,i

)
. Since each ancestor

graph has size at most 2d and there are at most d of them, we observe that the total number of
pebbles in each round is at most 1 + |S≤k| +

∑d
i=1 |ancestors(k + i, G − S)| ≤ 1 + e + d2d. Hence,

we have that Π
∥
st(G) ≤ N(1 + e+ d2d).

Reversible Pebbling Strategy. While the above strategy works in the classical setting it will need
to be tweaked to obtain a legal reversible pebbling. In particular, after node k + d is pebbled we
cannot immediately remove pebbles from all nodes in ancestors(k + d,G − S) because this would
violate our quantum reversibility property. Instead, we can reverse the process and unpebble nodes
in ancestors(k + d,G − S) over the next G − S rounds — with the possible exception of nodes
v ∈ ancestors(k + d,G− S) which are part of ancestors(k + d+ j,G− S) and are still required for
some future node k + d + j. Thus, if a DAG G is (e, d)-reducible we can establish the following
result.

4 If G is (e, d)-reducible then Alwen and Blocki [AB16] showed that Π∥cc(G) ≤ min
g≥d

(
eN + gN · indeg(G) +

N2d

g

)
= o(N2).

14

Theorem 2. Let G = (V = [N], E) be an (e, d)-reducible DAG. Then Π
→← ,∥
st (G) = O

(
Ne+Nd2d

)
.

We will give the proof of Theorem 2 later in the subsection. To prove Theorem 2, we first would
need to give a legal reversible pebbling for an (e, d)-reducible DAG G. Lemma 1 provides the desired
reversible pebbling for G.

Lemma 1. Let G = (V = [N], E) be an (e, d)-reducible DAG and let S ⊆ V be a depth-reducing
set. Define

Bv :=
d+1⋃
j=1

d+1⋃
i=j

(Av+1−j,S,i ∪Av−1+j,S,i) ,

for v ∈ V . Then P = (P0, P1, . . . , P2N), where each pebbling configuration is defined by

– P0 = ∅,
– for v ∈ [N], Pv := S≤v ∪Bv, and
– for N < v ≤ 2N , Pv := P2N−v ∪ {N},

is a legal parallel reversible pebbling for G.

Before proving Lemma 1, we observe the following key claim. The proof of Claim 1 can be found
in Appendix C.

Claim 1. For v ∈ [N], parents(Pv \ Pv−1, G) ∪ parents(Pv−1 \ Pv, G) ⊆ Pv−1 ∩ Pv.

Proof of Lemma 1: We want to show that it satisfies conditions in Definition 1.

Conditions (1) and (5): P2N = {N}.

– It is clear that P2N = P0 ∪ {N} = {N} which is the only target node of the pebbling game.

Condition (2): ∀v ∈ [2N] : x ∈ (Pv \ Pv−1)⇒ parents(x,G) ⊆ Pv−1.

– If v ∈ [N], by Claim 1, we have parents(Pv \ Pv−1) ⊆ Pv−1 ∩ Pv ⊆ Pv−1.
– If N < v ≤ 2N , we have Pv \ Pv−1 = (P2N−v ∪ {N}) \ (P2N−v+1 ∪ {N}) = P2N−v \ P2N−v+1.

Let w = 2N − v + 1, then we have that w ∈ [N] and Pv \ Pv−1 = Pw−1 \ Pw. Now we want to
show that parents(Pw−1 \ Pw, G) ⊆ Pv−1 = Pw ∪ {N}, which also holds by Claim 1.

Condition (3): ∀v ∈ [2N] : x ∈ (Pv−1 \ Pv)⇒ parents(x,G) ⊆ Pv−1.

– If v ∈ [N], by Claim 1, we have parents(Pv−1 \ Pv) ⊆ Pv−1 ∩ Pv ⊆ Pv−1.
– If N < v ≤ 2N , we have Pv−1 \ Pv = (P2N−v+1 ∪ {N}) \ (P2N−v ∪ {N}) = P2N−v+1 \ P2N−v.

Then similarly, letting w = 2N − v+1, we have that w ∈ [N] and Pv−1 \Pv = Pw \Pw−1. Now
we want to show that parents(Pw \ Pw−1, G) ⊆ Pv−1 = Pw ∪ {N}, which also holds by Claim 1.

Condition (4): ∀v ∈ [2N] : x ∈ parents(Pv \ Pv−1, G) ∪ parents(Pv−1 \ Pv, G)⇒ x ∈ Pv.

– If v ∈ [N], this is clear from Claim 1 since parents(Pv \ Pv−1, G) ∪ parents(Pv−1 \ Pv, G) ⊆
Pv−1 ∩ Pv ⊆ Pv.

– If N < v ≤ 2N , by similar argument from above, by letting w = 2N−v+1, we have that w ∈ [N]
and parents(Pv\Pv−1, G)∪parents(Pv−1\Pv, G) = parents(Pw−1\Pw, G)∪parents(Pw\Pw−1, G) ⊆
Pw−1 ∩ Pw ⊆ Pw−1 ⊆ Pw−1 ∪ {N} = Pv.

15

Taken together, we can conclude that for any v ∈ [2N], Pv is a legal reversible pebbling configuration
for G. ⊓⊔

Now we are ready to prove Theorem 2.

Proof of Theorem 2: Let P = {P0, P1, . . . , P2N} as defined in Lemma 1, in which we showed

that it is a legal quantum pebbling. Clearly, Π
→← ,∥
t (P) = 2N . Further, we observe that Π

→← ,∥
s (P) ≤

maxv∈V {|S≤v|+ |Bv|+ 1}. Since we assume that indeg(G) = 2, we have

|Bv| =

∣∣∣∣∣∣
d+1⋃
j=1

d+1⋃
i=j

(Av+1−j,S,i ∪Av−1+j,S,i)

∣∣∣∣∣∣
≤

d+1∑
j=1

d+1∑
i=j

|Av+1−j,S,i|+ |Av−1+j,S,i|

≤
d+1∑
j=1

d+1∑
i=j

2i+1 = 8d2d + 2.

Taken together, Π
→← ,∥
st (P) = Π

→← ,∥
t (P)Π

→← ,∥
s (P) ≤ 2N(e+8d2d +3) = O

(
Ne+Nd2d

)
. Hence, we

can conclude that Π
→← ,∥
st (G) = min

P∈P →← ,∥
G,{N}

Π
→← ,∥
st (P) = O

(
Ne+Nd2d

)
. ⊓⊔

Analysis of Argon2i. There are a number of variants for the Argon2i graphs. We will focus on
Argon2i-A [BDK15, BCS16] and Argon2i-B5 [BDKJ16] here. Recall that Argon2i-A is a graph
G = (V = [N], E), where E = {(i, i+ 1) : i ∈ [N − 1]} ∪ {(r(i), i)}, where r(i) is a random value
that is picked uniformly at random from [i−2]. Argon2i-B has the same structure, except that r(i)
is not picked uniformly at random but has a distribution as follows:

Pr [r(i) = j] = Pr
x∈[N]

[
i

(
1− x2

N2

)
∈ (j − 1, j]

]
.

Lemma 2. Let GArg-A = (VA = [N], EA) and GArg-B = (VB = [N], EB) be randomly sampled
graphs according to the Argon2i-A and Argon2i-B edge distributions, respectively. Then with high
probability, the following holds:

(1) GArg-A is (e1, d1)-reducible for e1 =
N
d′ +

N lnλ
λ and d1 = d′λ, for any 0 < λ < N and 0 < d′ < N

λ .
(2) GArg-B is (e2, d2)-reducible for e2 =

N
d′ +

2N√
λ
and d2 = d′λ, for any 0 < λ < N and 0 < d′ < N

λ .

Alwen and Blocki [AB16, AB17] established similar bounds to Lemma 2, but focused on pa-
rameter settings where the depth d is large. By contrast, we will need to pick a depth-reducing set
with a smaller depth parameter d ≪ logN to minimize the d2d cost term in our pebbling attack.
The full proof of Lemma 2 can be found in Appendix C. Here, we only give a brief intuition of the
proof. To reduce the depth of a graph, we follow the approach of Alwen and Blocki [AB16, AB17]
and divide N nodes into λ layers of size N/λ and then reduce the depth of each layer to d′ so that
the final depth becomes d = d′λ. To do so, we delete all nodes with parents in the same layer, and

5 We will follow the naming convention of Alwen and Blocki [AB17] throughout the paper and use Argon2i-A to
refer to Argon2i-A v1.1 and Argon2i-B to refer to v1.2+.

16

then delete one out of d′ nodes in each layer. And then we count the number of nodes to be deleted
in both steps for each graph.

Applying the result from Lemma 2 to Theorem 2, we have the following space-time cost of
reversible pebbling for Argon2i-A and Argon2i-B. Intuitively, we obtain Corollary 1 by setting
λ =

√
logN and d′ = λ/ lnλ ≈ 2

√
logN/ log logN (resp. λ = 3

√
log2N and d′ = 3

√
logN/2) in

Lemma 2 for Argon2i-A (resp. Argon2i-B). The full proof of Corollary 1 can be found in Appendix C.

Corollary 1. Let GArg-A = (VA = [N], EA) and GArg-B = (VB = [N], EB) be randomly sampled
graphs according to the Argon2i-A and Argon2i-B edge distributions, respectively. Then with high

probability, Π
→← ,∥
st (GArg-A) = O

(
N2 log logN√

logN

)
, and Π

→← ,∥
st (GArg-B) = O

(
N2

3√logN

)
.

Remark 3. Our reversible pebbling attacks on Argon2i-A and Argon2i-B have space-time cost

Π
→← ,∥
st (GArg-A) = O

(
N2 log logN√

logN

)
, and Π

→← ,∥
st (GArg-B) = O

(
N2

3√logN

)
respectively. In the classical

setting it was known that Π
∥
cc(GArg-A) = Õ(N1.708) and Π

∥
cc(GArg-B) = Õ(N1.768) [ABP17, BZ17].

While these pebbling attacks achieve more impressive reductions in cost, we stress that the at-
tacks are (1) non-quantum (i.e., non-reversible) and (2) the space-time complexity of these classical
pebbling attacks is still Ω(N2) since there will be a few pebbling rounds with Ω(N) pebbles
on the graph. We remark that since any reversible pebbling is a legal classical pebbling that

it immediately follows that Π
∥
st(GArg-A) = O

(
N2 log logN√

logN

)
, and Π

∥
st(GArg-B) = O

(
N2

3√logN

)
. The

best known classical lower bounds for Argon2i-A and Argon2i-B are Π
∥
cc(GArg-A) = Ω(N1.66)

and Π
∥
cc(GArg-B) = Ω̃(N1.75) which immediately implies that Π

→← ,∥
st (GArg-A) = Ω(N1.66), and

Π
→← ,∥
st (GArg-B) = Ω̃(N1.75). Thus, there remains a gap between the best upper/lower bounds for

Π
→← ,∥
st (GArg-A) and Π

→← ,∥
st (GArg-B). Closing or tightening this gap is an interesting open research

challenge. Similarly, it would be interesting to figure out if we can find better reversible pebbling
strategies to reduce the cumulative cost of Argon2i-A and Argon2i-B, e.g., can one adapt the
classical pebbling strategy of the previous work [AB16, ABP17, BZ17] to the reversible setting.

3.3 Reversible Pebbling Attacks using an Induced Line Graph

In this section, we give another general strategy to pebble DAGs by “reducing” the DAG G to a
line graph, as shown in Figure 1. Intuitively, given a DAG G = (V,E) with |V | = N and an integer
parameter b ≥ 1, we can partition V into consecutive blocks B1, . . . , B⌈N/b⌉ such that each block
contains exactly b nodes, while for the last block we can have less than b nodes if N/b is not an
integer.

Notation. Now we consider a reversible pebbling P ′ of the line graph L⌈N/b⌉ = (V ′ = [⌈N/b⌉], E′).
Intuitively, each node in L⌈N/b⌉ corresponds to each block in G. To transform P ′ into a pebbling
P of G, it will be useful to introduce some notation. Given a node v′ ∈ V ′ and the pebbling P ′ of
L⌈N/b⌉, we define LastDelete(P

′, v′) := max {i : v′ ∈ P ′i} to denote the unique index i such that node
v′ ∈ P ′i , but v

′ ̸∈ P ′j for all rounds j > i, i.e., the pebble on node v′ was removed for the final time

in round i+ 1. Similarly, it will be convenient to define LastAdd(P ′) := max
{
i : ⌈N/b⌉ ̸∈ P ′i−1

}
to

be the unique round where a pebble was placed on the last node v = ⌈N/b⌉ for the final time (Note:
it is possible that a legal pebbling P ′ places/removes a pebble on node v = ⌈N/b⌉ several times).
We make a couple of basic observations. First, we note that if u′ < v′ then LastDelete(P ′, u′) >

17

G · · · · · ·

Bi−1 Bi Bi+1

L⌈N/b⌉ · · · v′i−1 v′i v′i+1 · · ·

Fig. 1: A line graph L⌈N/b⌉ induced from a DAG G. Note that each block in an original graph
corresponds to a node in the corresponding line graph, e.g., a block Bi in G that consists of five
nodes correspond to the node v′i in L⌈N/b⌉.

LastDelete(P ′, v′) since we need node v′−1 on the graph to remove a pebble from node v′. Similarly,
we note that for any node v′ < ⌈N/b⌉ that LastDelete(P ′, v′) > LastAdd(P ′) since we need node
⌈N/b⌉−1 to be pebbled before we can place a pebble on the final node. Given our graph G = (V,E),
a parameter b, and a partition B1, . . . , B⌈N/b⌉ of V into consecutive blocks of size b, we define
Skip(Bi, G), for each i, to be the set of all skip nodes in block Bi, i.e., the set of nodes with an
outgoing edge that skips over block Bi+1:

Skip(Bi, G) := {v ∈ Bi : ∃j > i+ 1 such that v ∈ parents(Bj , G)}. (1)

We further define NumSkip(G, b) as the total number of skip nodes in G = (V,E) after partitioning

the set of nodes V into consecutive blocks of size b, i.e., NumSkip(G, b) :=
∑⌈N/b⌉

i=1 |Skip(Bi, G)|,
where Bi’s are defined as before.

Pebbling Attempt 1. Our first approach to convert P ′ ∈ P →← ,∥
L⌈N/b⌉

to a legal reversible pebbling P of

G is as follows. Since each node in L⌈N/b⌉ corresponds to a block (of size at most b) in G, we can
transform placing a pebble on a node in L⌈N/b⌉ to pebbling all nodes in the corresponding block in
G in at most b steps. Similarly, we can convert removing a pebble on a node in L⌈N/b⌉ to removing

pebbles from all nodes in the corresponding block in G in at most b steps. It gives us Π
→← ,∥
s (P) ≤

bΠ
→← ,∥
s (P ′) since each node is transformed to a block of size at most b, and Π

→← ,∥
t (P) ≤ bΠ

→← ,∥
t (P ′)

since one pebbling/removing step in L⌈N/b⌉ is transformed to at most b pebbling/removing steps
in G.

However, this transformation does not yield a legal reversible pebbling of G due to the skip
nodes. In particular, given a reversible pebbling configuration P ′k = {v′} of L⌈N/b⌉, it is legal to
proceed as P ′k+1 = {v′, v′+1}. However, when converting it to a reversible pebbling of G, one would
need to place pebbles on block Bv′+1 while only having pebbles on block Bv′ . This could be illegal
if there is a node v ∈ V such that v ∈ Bi for i < v′ and v ∈ parents(Bv′+1, G), i.e., v is a skip node
in Bi, because v must be previously pebbled to place pebbles on block Bv′+1.

Reversible Pebbling Strategy. To overcome this barrier, when we convert P ′ ∈ P →← ,∥
L⌈N/b⌉

to a legal

reversible pebbling P of G, we define a transformation P = Trans(G,P ′, b) which convert plac-
ing/removing a pebble on/from a node v′ in L⌈N/b⌉ to placing/removing pebbles on/from all nodes
in the corresponding block Bv′ in G in at most b steps as our first attempt, but when we remove
pebbles from Bv′ in G, we keep skip nodes for the block in the transformation until we delete

18

pebbles from the block for the last time, i.e., after round LastDelete(P ′, v′), since these skip nodes
will no longer needed to pebble nodes in other blocks in the future.

Furthermore, for the last block (in G), when a pebble is placed on the last node (in L⌈N/b⌉) for
the final time, i.e., in round LastAdd(P ′), we indeed want to only pebble the last node (sink node)
in the block but not the entire block. Hence, we need additional (at most b − 1) steps to remove
pebbles from all nodes except for the last node in the block.

We can argue the legality of the converted pebbling of G because pebbling steps in each block
is legal and keeping skip nodes during the transformation does not affect the legality of pebbling.
Intuitively, whenever we pebble a new node v in L⌈N/b⌉ the node v − 1 must have been pebbled in
the previous round. Thus, in G we will have pebbles on all nodes in the block Bv−1. Now for every
node w ∈ Bv and every edge of the form (u,w) we either have (1) u ∈ Bv−1, (2) u ∈ Bv or (3)
u ∈ Bj with j < v − 1. In the third case, u is a skip node and will already be pebbled allowing us
to legally place a pebble on node w. Similarly, in the first case, we are guaranteed that u is already
pebbled before we begin pebbling nodes in block Bv since every node in Bv−1 is pebbled, and in
the second case, u will be (re)pebbled before node w. A similar argument shows that all deletions
are legal as well. The full proof of Lemma 3 can be found in Appendix C.

Lemma 3. Let G = (V = [N], E) and b ∈ [N] be a parameter. If P ′ ∈ P →← ,∥
L⌈N/b⌉

, then P =

Trans(G,P ′, b) ∈ P →← ,∥
G .

The entire procedure Trans(G,P ′, b) is formally described in Algorithm 2 in Appendix D, and
an example for the reversible pebbling strategy can be found in Figure 4 in Appendix B. Now we
observe the following theorem describing the space-time cost of the converted pebbling in terms of
the cost of the reduced pebbling of the line graph.

Theorem 3. Given a DAG G = (V,E) with |V | = N nodes, a reduced line graph L⌈N/b⌉ = (V ′, E′)

with |V ′| = ⌈N/b⌉ nodes (where b is a positive integer), and a legal reversible pebbling P ′ ∈ P →← ,∥
L⌈N/b⌉

,

there exists a legal reversible pebbling P = Trans(G,P ′, b) ∈ P →← ,∥
G such that

Π
→← ,∥
st (P) ≤ 2b2Π

→← ,∥
st (P ′) + 2bΠ

→← ,∥
t (P ′) · NumSkip(G, b).

Proof. Consider the algorithm P = Trans(G,P ′, b) as shown in Algorithm 2 in Appendix D. We
argue that the reversible pebbling P is legal in Appendix C and focus here on analyzing the cost
of the pebbling P . First, we consider the time cost of P . Notice that in each round P ′j in P ′

(of the line graph L⌈N/b⌉), we have two cases: if j ̸= LastAdd(P ′, ⌈N/b⌉), we need b rounds to
place/remove pebbles in the corresponding blocks in G; otherwise, i.e., j = LastAdd(P ′, ⌈N/b⌉), we
need b + N − (⌈N/b⌉ − 1) b − 1 ≤ 2b rounds to place/remove pebbles in the corresponding blocks
in G. Hence, we have

Π
→← ,∥
t (P) ≤ b

(
Π
→← ,∥
t (P ′)− 1

)
+ 2b = b

(
Π
→← ,∥
t (P ′) + 1

)
.

When it comes to the space cost of the pebbling P , we need space for the pebbling P ′ multiplied
by the block size since each node in P ′ has a 1-1 correspondence between each block of size b in
G. Furthermore, we additionally need space for the skip nodes as they should not be removed to
make the pebbling P = Trans(G,P ′, b) legal. That is, we have

Π
→← ,∥
s (P) ≤ b ·Π →← ,∥

s (P ′) + NumSkip(G, b).

19

Combining these inequalities together, we can conclude that

Π
→← ,∥
st (P) = Π

→← ,∥
s (P) ·Π →← ,∥

t (P)

≤
(
b ·Π →← ,∥

s (P ′) + NumSkip(G, b)
)
· b
(
Π
→← ,∥
t (P ′) + 1

)
= 2b2Π

→← ,∥
st (P ′) + 2bΠ

→← ,∥
t (P ′) · NumSkip(G, b). 2

Analysis on DRSample. DRSample [ABH17] is the first practical construction of an iMHF which
modified the edge distribution of Argon2i. Consider a DAG G = (V = [N], E). Intuitively, similar to
Argon2i, each node v ∈ V \ {1} has at most two parents, i.e., there is a directed edge (v− 1, v) ∈ E
and a directed edge from a random predecessor r(v). While Argon2i-A picks r(v) uniformly at
random from [v − 2], DRSample picks r(v) according to the following random process: (1) We
randomly select a bucket index i ≤ log v, (2) We randomly sample r(v) from the bucket Bi(v) =
{u : 2i−1 < v − u ≤ 2i}. We observe the following lemma which (whp) upper bounds the number
of skip nodes when we sample G according to this distribution.

Lemma 4. Let GDRS = (VDRS = [N], EDRS) be a randomly sampled graph according to the DRSam-

ple edge distribution. Then with high probability, we have NumSkip
(
GDRS,

⌈
N

log2 N

⌉)
= O

(
N log logN

logN

)
.

The full proof of Lemma 4 can be found in Appendix C. Here, we only give a brief intuition.
To count the number of skip nodes, we need to find edges with length longer than b so that the
edge skips over a block. There are at most log v − log b (out of log v) buckets which potentially
could result in a skip node i.e., any edge (r(v), v) with length v − r(v) ≤ b cannot produce a
new skip node. The probability that the edge (r(v), v) is longer than b is at most 1− log b/ log v ≤
1−log b/ logN = log(N/b)/ logN . Thus, the expected number of skip nodes in DRSample is at most
N log(N/b)/ logN and standard concentration bounds imply that the number of skip nodes will
be upper bounded by O(N log(N/b)/ logN) with high probability. Setting b = ⌈N/ log2N⌉ we can
conclude that the expected number of skip nodes in DRSample is at most O(N log logN/ logN)
with high probability. Applying the result from Lemma 4 to Theorem 3, we have the following
space-time cost of reversible pebbling for DRSample.

Corollary 2. Let GDRS = (VDRS = [N], EDRS) be a randomly sampled graph according to the

DRSample edge distribution. Then with high probability, Π
→← ,∥
st (GDRS) = O

(
N2 log logN

logN

)
.

Proof. Given GDRS, we can consider a reduced line graph L⌈log2 N⌉ = (V ′, E′) with |V ′| = ⌈log2N⌉.
Then by Theorem 3, we have

Π
→← ,∥
st (GDRS) ≤ 2

(
N

log2N

)2

Π
→← ,∥
st (L⌈log2 N⌉)+

2N

log2N
·Π →← ,∥

t (L⌈log2 N⌉)·NumSkip

(
GDRS,

⌈
N

log2N

⌉)
.

20

By Theorem 1, we have Π
→← ,∥
st (L⌈log2 N⌉) = O

(
(logN)

2

(
1+ 2√

log log2 N

))
and Π

→← ,∥
t (L⌈log2 N⌉) =

O
(
log2N

)
. By Lemma 4, we have

Π
→← ,∥
st (GDRS) ≤ 2

(
N

log2N

)2

O

(
(logN)

2

(
1+ 2√

log log2 N

))
+

2N

log2N
· O
(
log2N

)
· O
(
N log logN

logN

)

= O

(
N2

log2(1−
√

2/ log logN)N
+

N2 log logN

logN

)
= O

(
N2 log logN

logN

)
. 2

4 Reversible Pebbling Attacks for Minimizing Cumulative Complexity

In this section, we adapt the depth-reducing pebbling attack GenPeb from Alwen and Blocki [AB16]
to a reversible pebbling attack with the same asymptotic CC. The pebbling attack of Alwen and
Blocki [AB16] applies to any (e, d)-reducible DAG G with e = o(N) and d = o(N). We first provide
an overview of their pebbling strategy before describing how we extend the attack to obtain a
reversible pebbling.

Intuitive Overview of [AB16] Attack. Suppose that we are given a DAG G = (V = [N], E) with
constant indegree δ along with a depth-reducing set S of size |S| ≤ e. Intuitively, the pebbling attack
of Alwen and Blocki [AB16] can be divided into a series of alternating “light phases” and “balloon
phases.” It is also helpful to imagine partitioning the nodes [N] into intervals Ii = [(i− 1)g+ 1, ig]
of g consecutive nodes.

– Light Phases: During the ith light phase our goal will be to pebble all of the nodes in Ii over the
next g consecutive pebbling rounds. The pre-condition for the ith light phase is that we start
off with pebbles on all of the nodes (parents(Ii) ∪ S) ∩ [(i − 1)g] where parents(Ii) = {u : ∃v ∈
Ii s.t. (u, v) ∈ E} denotes the set of parents of nodes in Ii. Similarly, the post-condition for the
ith light phase is that we have pebbles on all of the nodes (parents(Ii) ∪ S) ∩ [(i − 1)g] ∪ Ii. If
Pj = (parents(Ii) ∪ S)∩[(i−1)g] denotes the initial pebbling configuration at the start of the light
phase then we can set Pj+x = Pj∪ [(i−1)g, (i−1)g+x] so that Pj+g gives us our post-condition.
During each light phase we keep at most |(parents(Ii) ∪ S) ∩ [(i− 1)g] ∪ Ii| ≤ e+δg+g pebbles
on the graph. Thus, the total cost incurred during each light phase is at most (e+ δg+ g)g and
the total cost incurred over all N

g light phases is at most N(e+ δg + g).

– Balloon Phases: The ith balloon phase takes place immediately after the ith light phase with the
goal of quickly recovering previously discarded pebbles to satisfy the pre-condition for the next
((i + 1)st) light phase. In particular, the post-condition for the ith balloon phase should match
the pre-condition for the (i+1)st light phase. The pre-condition for the ith balloon phase is that
our starting configuration contains pebbles on all of the nodes S ∩ [ig]. During a balloon phase,
we are not worried about space so we can recover pebbles on the entire set [ig] within d rounds
by exploiting the fact that G−S contains no directed path of length d. Once we have recovered
pebbles on the entire set [ig] we can then discard all of the pebbles that are not needed for the
next light phase. Thus, the total cost incurred by each individual balloon phase is at most dN
and the total cost incurred over all N

g balloon phases is at most N2d
g .

21

Formal Description of [AB16] Pebbling Attack. Let G = ([N], E) be an (e, d)-reducible graph
and S be a depth-reducing set of size e. The pebbling P = (P1, . . . , PN) from GenPeb lasts N
rounds, pebbling each i on round i. The algorithm operates in disjoint and consecutive intervals
of Ic = [(c − 1)g + 1, cg] where g ∈ [d,N]. At the start of Ic, we perform a “light phase” with the
following start and end conditions:

(1) StartLightc := P(c−1)g+1 = {(c− 1)g + 1} ∪ S≤(c−1)g+1 ∪ parents(Ic)≤(c−1)g+1, and

(2) EndLightc := Pcg ⊆ S≤cg ∪ {cg}.

Intuitively, before we start the light phase, we need to have pebbles on the depth-reducing set, and
the parents of the nodes we are about to pebble. By the end of the light phase, all we require for
the light phase is that the depth-reducing set and cg is pebbled. As the name suggests, we can
define a low-CC pebbling to implement the light phase. For j ∈ [g] and k = cg + j we define the
required pebbles for the jth pebble of the cth light phase as

LightReqcj = [(c− 1)g + j : k] ∪ S≤k ∪ parents(Ic)≤k.

To pebble the nodes in Ic, we will let P(c−1)g+j = LightReqcj . This allows the light phase to only
add a pebble to i ∈ Ic at step i, keeping the overall number of pebbles low. However, this leaves us
unprepared for the next light phase (we need to satisfy StartLightc+1 by step cg + 1). To fix this,
we wait until near the end of the light phase and start a “balloon phase”, pebbling as many nodes
as possible to quickly pebble a superset of the nodes needed for the next light phase. Since the
depth-reducing set S≤k is pebbled on step k, we can always pebble G([k]) by step k + d, and then
we can simply remove all the pebbles that are unneeded for StartLightc+1. Specifically, the start
and end conditions of the balloon phase are

(1) StartBalloonc := S≤cg−d+1 ⊆ Pcg−d+1, and

(2) EndBalloonc := Pcg = [cg].

This way at round cg − d + 1 we start the balloon phase which pebbles all available nodes for d
steps as to eventually satisfy StartLightc+1. Let R(Pk) = {v | parents(v) ⊆ Pk} denote the set of
nodes that can be pebbled in the next step. Then we can define the balloon requirements per step
as BalloonReqc1 = LightReqcg−d ∪R(LightReqcg−d) and for 1 < j ≤ d,

BalloonReqcj = BalloonReqcj−1 ∪R(BalloonReqcj−1).

Now we can define the low-CC pebbling P such that

Pcg+j =

{
LightReqcj if j ≤ g − d, and

LightReqcj ∪ BalloonReqcg−j otherwise.

It follows that P is a legal pebbling for G [AB16]. We have that
∣∣LightReqcj∣∣ ≤ e + g(δ + 1),

since each LightReqcj contains at most S, the parents of Ic, and Ic itself. Next we have that each∣∣BalloonReqcj∣∣ ≤ N , so Π
∥
cc(P) ≤ N

(
Nd
g + e+ (δ + 1)g

)
. We essentially take the depth-reducing

pebbling attack GenPeb from Alwen and Blocki [AB16], and adapt it to be reversible without
changing the upper bound asymptotically.

22

4.1 A Reversible Pebbling Attack

In this section, we define a reversible pebbling extension of GenPeb. We begin with an intuitive
overview. We first observe that most pebbling rounds in GenPeb are monotonic, i.e., Pi+1 ⊃ Pi.
Since monotonic transitions do not involve removing pebbles, these transitions remain legal in the
reversible pebbling. However, the GenPeb pebbling strategy does include occasionally include a
non-monotonic transition at the end of each balloon phase where unnecessary pebbles are simply
discarded before the next light phase. Suppose that Pi denotes the pebbling state at the end of the
balloon phase and Pi+1 denotes the pebbling configuration after discarding all of the unnecessary
pebbles for the next light phase. The non-monotonic transition from Pi to Pi+1 will (almost cer-
tainly) not be a legal reversible pebbling transition. Our main challenge is to define a legal reversible
pebbling sequence which takes us from the pebbling state at the end of each balloon phase to the
pebbling state and the beginning of the next light phase. However, while Pi ̸⊆ Pi+1 we do have
Pi+1 ⊆ Pi since Pi+1 was obtained by discarding pebbles. Our key idea is to argue that there is a
short (i.e., ≤ d rounds) monotonic pebbling sequences which takes us Pi+1 to Pi, i.e., we exploit
the fact that any node in Pi+1 has depth at most d in G− Pi and run a balloon phase. Since this
short pebbling sequence is monotonic, it is also reversible. Thus, there is a legal reversible sequence
from pebbling state Pi to Pi+1 in at most d steps.

In the pebbling corresponding to GenPeb, we must remove all unnecessary pebbles after the
balloon phase to match the precondition for the following light phase. This is inherently irreversible
since they are all removed at once (instead of unpebbling them). For ease of analysis, we start each
balloon phase after the corresponding light phase and adjust our notation accordingly. We denote
the jth step of the cth light phase as LightReqcj and the balloon phase as BalloonReqcj . The light
phases themselves remain the same. The first half of each balloon phase remains the same, but
BalloonReqcg−d+j for j ∈ [d] as defined above. However, we need to “clean up” after each balloon
phase in order to meet the precondition for the following light phase, taking care to ensure these
pebbling sequences are reversible. In this new balloon phase, we must satisfy the following while
maintaining reversibility:

(1) StartBalloonc := S≤cg−d+1 ⊆ BalloonReqcg−d+1,
(2) MidBalloonc := BalloonReqcg = [cg], and

(3) EndBalloonc = BalloonReqcg+1 = LightReqc+1
1 .

For a sequence of pebbling configurations P = (P1, . . . , Pt) let rev(P) = (Pt, . . . , P1). We will
use “monotonic” pebbling sequences to generate the reversible pebbling defined above.

Definition 3. A sequence of pebbling moves ⟨P1, . . . , Pt⟩ is monotonic if P1 ⊆ P2 ⊆ · · · ⊆ Pt.

Immediately, we get that each light phase and balloon phase is monotone. The following result
shows that monotonic pebbling sequences are reversible, and the formal proof is left to Appendix C.
Intuitively, the additional rules added to the reversible pebbling game only restrict which pebbles
we can remove. If a sequence is monotonic then these additional restrictions do not apply.

Lemma 5. If a legal (non-reversible) pebbling sequence P = ⟨P1, . . . , Pt⟩ is monotonic, then P is
a legal reversible pebbling sequence.

Now we can use the reverse of the greedy pebbling sequence from LightReqcg+1 to [cg].

Claim 2 (Satisfying StartLightc and EndLightc). The sequence (LightReqc1, . . . , LightReq
c
g) as de-

fined above is a monotonic pebbling sequence.

23

Proof. By construction each LightReqci ⊆ LightReqci+1. ⊓⊔

Likewise, the first half of our balloon phase (which is the same as the classical version) is also
monotonic, because it simply pebbles all possible nodes each round.

Claim 3 (Satisfying StartBalloonc and MidBalloonc). The pebbling sequence (BalloonReqc1, . . . ,
BalloonReqcd) is a legal monotonic pebbling sequence.

Next, we need to complete the balloon phase. For j ∈ [d] we let

BalloonReqcd+j = BalloonReqcd−j+1 ∪ LightReqc+1
1 .

Claim 4 (Satisfying MidBalloonc and EndBalloonc). The pebbling sequence (BalloonReqc2d, . . . ,
BalloonReqcd+1) is a legal monotonic pebbling sequence.

Proof. This follows from the fact that (BalloonReqc1, . . . ,BalloonReq
c
d) is monotonic. ⊓⊔

Now we can define the first half of our low CC pebbling. Let LightReqc = (LightReqc1, . . . , LightReq
c
g),

BalloonReqc = (BalloonReqc1, . . . ,BalloonReq
c
2d), and

P 1
rev = LightReq1 + BalloonReq1 + · · ·+ LightReq⌈N/g⌉ + BalloonReq⌈N/g⌉,

where + denotes sequence concatenation. The sequence P 1
rev is a legal reversible pebbling sequence

by the construction of the LightReqcj and BalloonReqcj and by Lemma 6. The proof of Lemma 6 can
be found in Appendix C.

Lemma 6. Let ⟨P1, . . . , Pt⟩ and ⟨P ′1, . . . , P ′t′⟩ be two legal reversible pebblings for some graph G
such that Pt = P ′t′. Then for any T ⊆ Pt,

⟨P1, . . . , Pt, P
′
t′−1 ∪ T, P ′t′−2 ∪ T, . . . , P ′1 ∪ T ⟩

is also a legal reversible pebbling sequence for G.

Now we can construct the last part of the pebbling, which simply cleans up by reversing all the
prior steps while keeping N pebbled. For a pebbling sequence Q = (Q1, . . . , Qt) and a set K we let
Q(K) = (Q1 ∪K, . . . , Qt ∪K). Let

P 2
rev
′
= rev(BalloonReq⌈N/g⌉) + rev(LightReq⌈N/g⌉−1), . . . , rev(BalloonReq1) + rev(LightReq1) + (∅)

and
P 2
rev = P 2

rev
′
({N}).

The final pebbling for G is Prev = P 1
rev + P 2

rev.
For an arbitrary (e, d)-depth reducible DAG G with depth-reducing set S of size at most e and

any g ∈ [d,N], we let RGenPeb(G, e, d, S, g) denote the pebbling for G constructed exactly as Prev.
The following lemma shows that Prev is a legal reversible pebbling for G. The proof follows from
Lemma 6.

Lemma 7. For any (e, d)-depth reducible graph G with depth-reducing set S of size at most e.
Then for any g ∈ [d,N], Prev = RGenPeb(G, e, d, S, g) is a legal reversible pebbling for G.

24

Next we analyze the CC of Prev. This follows similarly to GenPeb, except we need to account
for the cost of the extra length of the balloon phases and the cost of having to reverse the pebbling.

Theorem 4. For any (e, d)-depth reducible graph G on N nodes and any g ∈ [d,N],

Π
→← ,∥
cc (G) ≤ 2N

(
2Nd

g
+ e+ (δ + 1)g

)
+N +

2Nd

g
.

Proof. We already know that∑
c∈[⌈N/g⌉]

∑
i∈[g]

∣∣LightReqc−1i

∣∣ ≤ N/g(e+ (δ + 1)g).

Next BalloonReqc contains at most 2d pebbling steps, so∑
c∈⌈N/g⌉−1

∑
i∈[d]

∣∣BalloonReqc−1i

∣∣ ≤ ∑
c∈⌈N/g⌉−1

2Nd

≤ N
2Nd

g
.

Then Π
→← ,∥
cc (P 1

rev) ≤ N
(
2Nd
g + e+ (δ + 1)g

)
. Next, it’s immediate that

Π
→← ,∥
cc (P 2

rev) ≤ Π
→← ,∥
cc (P 1

rev) +
∣∣P 1

rev

∣∣ ≤ N

(
2Nd

g
+ e(δ + 1)g

)
+N +

2Nd

g
,

so

Π
→← ,∥
cc (Prev) ≤ 2N

(
2Nd

g
+ e+ (δ + 1)g

)
+N +

2Nd

g
. 2

For any iMHF corresponding to a DAG G the reversible cumulative pebbling complexity obtained
from our attack is identical to the attack from Alwen and Blocki [AB16]. In particular, for Argon2i-A
and Argon2i-B we obtain Corollary 3:

Corollary 3. Let GArg-A = (VA = [N], EA) and GArg-B = (VB = [N], EB) be randomly sampled
graphs according to the Argon2i-A and Argon2i-B edge distributions, respectively. Then with high

probability, we have Π
→← ,∥
cc (GArg-A) = O

(
N1.75 logN

)
and Π

→← ,∥
cc (GArg-B) = O

(
N1.8

)
.

Proof. Alwen and Blocki [AB16] argued that (whp) a random Argon2i-A DAG GArg-A = (VA =
[N], EA) is (e, d)-reducible with d =

√
N and e = O

(
N0.75 logN

)
. The result for Argon2i-A now

follows directly from Theorem 4 by setting g = e. Alwen and Blocki [AB17] also argued that
(whp) a random Argon2i-B DAG GArg-B = (VB = [N], EB) is (e, d)-reducible with d = N0.6 and
e = O

(
N0.8

)
. The result for Argon2i-B now follows directly from Theorem 4 by setting g = e. ⊓⊔

Similar to Alwen and Blocki [AB16] we can also obtain a general upper bound for any DAG G
with constant indegree.

Corollary 4. For any DAG G = (V = [N], E) with constant indegree δ = O (1) the reversible

cumulative pebbling cost at most Π
→← ,∥
cc (G) = O

(
N2 log logN

logN

)
.

Proof. Any DAG G = (V = [N], E) with constant indegree δ = O (1) is (e, d)-reducible with

d = N
log2 N

and e = O
(
N log logN

logN

)
. The result now follows immediately from Theorem 4 by setting

g = e. ⊓⊔

25

5 Conclusion and Open Questions

We introduced the parallel reversible pebbling game and applied it to analyze the reversible space-
time complexity of a line graph, Argon2i-A, Argon2i-B, and DRSample. Our motivation is to under-
stand the post-quantum resistance of these MHFs to brute-force pre-image attacks. In particular,

we showed that the reversible space-time cost of pebbling a line graph of size N is O
(
N

1+ 2√
logN

)
by extending Bennett’s reversible pebbling strategy [Ben89]. We also showed that there is a re-
versible pebbling strategy for an (e, d)-reducible indegree-2 DAG G of size N with the space-time
cost O

(
Ne+Nd2d

)
, which becomes meaningful whenever e = o(N) and d2d = o(N). We ap-

plied this attack to Argon2i-A and Argon2i-B to yield reversible pebbling attacks with space-time
cost O

(
N2 log logN/

√
logN

)
and O

(
N2/ 3
√
logN

)
for Argon2i-A and Argon2i-B, respectively. Fi-

nally, we introduced a general reversible pebbling attack on a DAG G of size N by reducing
the graph to a line graph L⌈N/b⌉, and given a legal quantum pebbling P ′ of the line graph with

space-time cost Π
→← ,∥
st (P ′), we provided a legal quantum pebbling P of G with space-time cost

O
(
sN + b2Π

→← ,∥
st (P ′)

)
, where s denotes the number of skip nodes in G. Tuning the parameter

b = O
(
N/ log2N

)
the skip number for DRSample is O

(
N log logN

logN

)
leading to a reversible pebbling

attack with space-time cost O
(
N2 log logN/ logN

)
. We also studied the cumulative pebbling cost

of reversible pebblings by extending the depth-reducing attack from Alwen and Blocki [AB16] on
depth-reducible graphs.

One open question is to determine if there is a DAG with constant indegree having (parallel)
reversible space-time cost Ω(N2). Alternatively, is there a generic reversible pebbling attack which
rules out this possibility. Blocki et al. [BHK+19] proposed a new iMHF candidate called DRS+BRG
(DRSample plus Bit-Reversal Graph) by overlaying a bit-reversal graph [LT82, FLW14] on top of
DRSample, which provides the best resistance to known classical pebbling attacks. This graph
could plausibly have parallel reversible space-time cost Ω(N2). In particular, none of the reversible
pebbling attacks we proposed perform well against DRS+BRG — there is no small depth-reducing
set for DRS+BRG and the extra bit-reversal edges ensure that the number of skip nodes will be
large as well.

Another research challenge is to either develop asymptotically stronger reversible pebbling at-
tacks for iMHFs such as Argon2i or establish lower bounds on the parallel reversible space-time com-
plexity. Finally, Alwen et al. [ABP17] defined a recursive (non-reversible) pebbling attack for DAGs
that are (ei, di)-depth-reducible for a range of parameters (ei, di) with ei > ei+1 and di+1 < di.
The recursive pebbling attack often leads to improved pebbling attacks with asymptotically lower
cumulative pebbling cost (CC). Thus, extending the recursive pebbling attack to the reversible
pebbling setting is a natural challenge.

Acknowledgements

Jeremiah Blocki was supported in part by the National Science Foundation under NSF CAREER
Award CNS-2047272 and NSF Award CCF-1910659. Seunghoon Lee was supported in part by the
Center for Science of Information (NSF CCF-0939370). Blake Holman was supported in part by
a Ross Fellowship at Purdue University and by a Ford Foundation Fellowship. We would like to
thank anonymous reviewers for helpful feedback which improved this paper.

26

References

AB16. Joël Alwen and Jeremiah Blocki. Efficiently computing data-independent memory-hard functions. In
Matthew Robshaw and Jonathan Katz, editors, CRYPTO 2016, Part II, volume 9815 of LNCS, pages
241–271. Springer, Heidelberg, August 2016. 2, 3, 5, 6, 9, 14, 16, 17, 21, 22, 25, 26

AB17. Joël Alwen and Jeremiah Blocki. Towards practical attacks on argon2i and balloon hashing. In Security
and Privacy (EuroS&P), 2017 IEEE European Symposium on, pages 142–157. IEEE, 2017. 2, 3, 6, 9, 16,
25

ABH17. Joël Alwen, Jeremiah Blocki, and Ben Harsha. Practical graphs for optimal side-channel resistant memory-
hard functions. In Bhavani M. Thuraisingham, David Evans, Tal Malkin, and Dongyan Xu, editors, ACM
CCS 2017, pages 1001–1017. ACM Press, October / November 2017. 2, 5, 9, 20

ABP17. Joël Alwen, Jeremiah Blocki, and Krzysztof Pietrzak. Depth-robust graphs and their cumulative memory
complexity. In Jean-Sébastien Coron and Jesper Buus Nielsen, editors, EUROCRYPT 2017, Part III,
volume 10212 of LNCS, pages 3–32. Springer, Heidelberg, April / May 2017. 2, 3, 6, 12, 17, 26

ABP18. Joël Alwen, Jeremiah Blocki, and Krzysztof Pietrzak. Sustained space complexity. In Jesper Buus Nielsen
and Vincent Rijmen, editors, EUROCRYPT 2018, Part II, volume 10821 of LNCS, pages 99–130. Springer,
Heidelberg, April / May 2018. 2, 12

AS15. Joël Alwen and Vladimir Serbinenko. High parallel complexity graphs and memory-hard functions. In
Rocco A. Servedio and Ronitt Rubinfeld, editors, 47th ACM STOC, pages 595–603. ACM Press, June
2015. 2, 3, 4, 12

AT17. Joël Alwen and Björn Tackmann. Moderately hard functions: Definition, instantiations, and applications.
In Yael Kalai and Leonid Reyzin, editors, TCC 2017, Part I, volume 10677 of LNCS, pages 493–526.
Springer, Heidelberg, November 2017. 2

BBBV97. Charles H. Bennett, Ethan Bernstein, Gilles Brassard, and Umesh V. Vazirani. Strengths and weaknesses
of quantum computing. SIAM J. Comput., 26(5):1510–1523, 1997. 3

BCS16. Dan Boneh, Henry Corrigan-Gibbs, and Stuart E. Schechter. Balloon hashing: A memory-hard function
providing provable protection against sequential attacks. In Jung Hee Cheon and Tsuyoshi Takagi, editors,
ASIACRYPT 2016, Part I, volume 10031 of LNCS, pages 220–248. Springer, Heidelberg, December 2016.
16

BDF+11. Dan Boneh, Özgür Dagdelen, Marc Fischlin, Anja Lehmann, Christian Schaffner, and Mark Zhandry.
Random oracles in a quantum world. In Dong Hoon Lee and Xiaoyun Wang, editors, ASIACRYPT 2011,
volume 7073 of LNCS, pages 41–69. Springer, Heidelberg, December 2011. 6

BDK15. Alex Biryukov, Daniel Dinu, and Dmitry Khovratovich. Fast and tradeoff-resilient memory-hard functions
for cryptocurrencies and password hashing. Cryptology ePrint Archive, Paper 2015/430, 2015. https:

//eprint.iacr.org/2015/430. 16
BDKJ16. Alex Biryukov, Daniel Dinu, Dmitry Khovratovich, and Simon Josefsson. The memory-hard argon2 pass-

word hash and proof-of-work function. In Internet-Draft draft-irtf-cfrg-argon2-00, Internet Engineering
Task Force, 2016. 16

Ben89. Charles H. Bennett. Time/space trade-offs for reversible computation. SIAM J. Comput., 18(4):766–776,
aug 1989. 4, 5, 8, 10, 26, 29

BHK+19. Jeremiah Blocki, Benjamin Harsha, Siteng Kang, Seunghoon Lee, Lu Xing, and Samson Zhou. Data-
independent memory hard functions: New attacks and stronger constructions. In Alexandra Boldyreva
and Daniele Micciancio, editors, CRYPTO 2019, Part II, volume 11693 of LNCS, pages 573–607. Springer,
Heidelberg, August 2019. 2, 26

BHZ18. Jeremiah Blocki, Benjamin Harsha, and Samson Zhou. On the economics of offline password cracking.
In 2018 IEEE Symposium on Security and Privacy, pages 853–871. IEEE Computer Society Press, May
2018. 5, 13

BLZ21. Jeremiah Blocki, Seunghoon Lee, and Samson Zhou. On the Security of Proofs of Sequential Work in a
Post-Quantum World. In Stefano Tessaro, editor, 2nd Conference on Information-Theoretic Cryptography
(ITC 2021), volume 199 of Leibniz International Proceedings in Informatics (LIPIcs), pages 22:1–22:27,
Dagstuhl, Germany, 2021. Schloss Dagstuhl – Leibniz-Zentrum für Informatik. 7

BZ17. Jeremiah Blocki and Samson Zhou. On the depth-robustness and cumulative pebbling cost of Argon2i.
In Yael Kalai and Leonid Reyzin, editors, TCC 2017, Part I, volume 10677 of LNCS, pages 445–465.
Springer, Heidelberg, November 2017. 2, 3, 6, 9, 17

Cob66. Alan Cobham. The recognition problem for the set of perfect squares. In 7th Annual Symposium on
Switching and Automata Theory (swat 1966), pages 78–87, 1966. 2

27

https://eprint.iacr.org/2015/430
https://eprint.iacr.org/2015/430

Coo73. Stephen A. Cook. An observation on time-storage trade off. In Proceedings of the Fifth Annual ACM
Symposium on Theory of Computing, STOC ’73, page 29–33, New York, NY, USA, 1973. Association for
Computing Machinery. 1, 2

Div00. David P. Divincenzo. The physical implementation of quantum computation. Fortschr. Phys, 48:2000,
2000. 10

EGS75. P. Erdös, R.L. Graham, and E. Szemerédi. On sparse graphs with dense long paths. Computers &
Mathematics with Applications, 1(3):365 – 369, 1975. 2

FLW14. Christian Forler, Stefan Lucks, and Jakob Wenzel. Memory-demanding password scrambling. In Palash
Sarkar and Tetsu Iwata, editors, ASIACRYPT 2014, Part II, volume 8874 of LNCS, pages 289–305.
Springer, Heidelberg, December 2014. 26

FR21. Bill Fefferman and Zachary Remscrim. Eliminating intermediate measurements in space-bounded quantum
computation. In Proceedings of the 53rd Annual ACM SIGACT Symposium on Theory of Computing,
STOC 2021, page 1343–1356, New York, NY, USA, 2021. Association for Computing Machinery. 10

GNP+17. Paul Grassi, Elaine Newton, Ray Perlner, Andrew Regenscheid, William Burr, Justin Richer, Naomi
Lefkovitz, Jamie Danker, Yee-Yin Choong, Kristen Greene, and Mary Theofanos. Digital identity guide-
lines: Authentication and lifecycle management, 2017-06-22 2017. 13

Gro96. Lov K. Grover. A fast quantum mechanical algorithm for database search. In 28th ACM STOC, pages
212–219. ACM Press, May 1996. 3

HPV77. John Hopcroft, Wolfgang Paul, and Leslie Valiant. On time versus space. J. ACM, 24(2):332–337, April
1977. 2

Kal00. Burt Kaliski. PKCS #5: Password-Based Cryptography Specification Version 2.0. RFC 2898, RSA Labo-
ratories, September 2000. 5, 13

KPB00. A. Kumar Pati and S. Braunstein. Impossibility of deleting an unknown quantum state. Nature, 404:164–
165, 2000. 3

Krá01. Richard Král’ovič. Time and space complexity of reversible pebbling. In Leszek Pacholski and Peter
Ružička, editors, SOFSEM 2001: Theory and Practice of Informatics, pages 292–303, Berlin, Heidelberg,
2001. Springer Berlin Heidelberg. 4, 10

KSS21. Niels Kornerup, Jonathan Sadun, and David Soloveichik. The spooky pebble game, 2021. 10
LT82. Thomas Lengauer and Robert E. Tarjan. Asymptotically tight bounds on time-space trade-offs in a pebble

game. J. ACM, 29(4):1087–1130, October 1982. 26
LV96. Ming Li and Paul Vitányi. Reversibility and adiabatic computation: Trading time and space for energy.

Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences,
452(1947):769–789, Apr 1996. 5, 8, 29

MSR+19. Giulia Meuli, Mathias Soeken, Martin Roetteler, Nikolaj Bjorner, and Giovanni De Micheli. Reversible
pebbling game for quantum memory management. In 2019 Design, Automation Test in Europe Conference
Exhibition (DATE), pages 288–291, 2019. 4, 10

NC02. Michael A Nielsen and Isaac Chuang. Quantum computation and quantum information, 2002. 10
Pau75. Wolfgang J. Paul. A 2.5 n-lower bound on the combinational complexity of boolean functions. In Proceed-

ings of the Seventh Annual ACM Symposium on Theory of Computing, STOC ’75, page 27–36, New York,
NY, USA, 1975. Association for Computing Machinery. 2

PH70. Michael S. Paterson and Carl E. Hewitt. Comparative Schematology, page 119–127. Association for
Computing Machinery, New York, NY, USA, 1970. 1

PM99. Niels Provos and David Mazières. A future-adaptive password scheme. In Proceedings of the Annual Con-
ference on USENIX Annual Technical Conference, ATEC ’99, page 32, USA, 1999. USENIX Association.
5, 13

PTC76. Wolfgang J. Paul, Robert Endre Tarjan, and James R. Celoni. Space bounds for a game on graphs. In
Proceedings of the Eighth Annual ACM Symposium on Theory of Computing, STOC ’76, page 149–160,
New York, NY, USA, 1976. Association for Computing Machinery. 2

PV76. Nicholas Pippenger and Leslie G. Valiant. Shifting graphs and their applications. J. ACM, 23(3):423–432,
July 1976. 2

Tom81. Martin Tompa. Corrigendum: Time-space tradeoffs for computing functions, using connectivity properties
of their circuits. J. Comput. Syst. Sci., 23(1):106, 1981. 2

28

A Reversible Pebbling Strategies on a Line Graph

In this section, we review the (sequential) reversible pebbling strategy for a line graph LN from
Li and Vitányi [LV96] which translated Bennett’s reversible simulation [Ben89] into a (sequential)
reversible pebbling game, and we give a reversible pebbling strategy with a better space-time cost.
We remark that a similar argument seems to be implicitly assumed in Bennett [Ben89], though
no explicit description of the reversible pebbling is provided. Hence, we include this result for
completeness.

The strategy from Li and Vitányi [LV96] is as follows: let I(k) = I(k−1)◦ ik−1 ◦I(k−2)◦ ik−2 ◦
. . . ◦ I1 ◦ i1 ◦ I0 ◦ i0, where for j = 0, 1, . . . , k, I(j) denotes the sequence of consecutive locations
in LN , I(0) = {}, and ij denotes the node incident to I(j). Let N(k) be the size of I(k). Then

we have N(k) =
∑k−1

i=1 (N(i) + 1) with N(0) = 0, which implies N(k) = 2k − 1. The reversible
pebbling works as we pebble the block I(j), pebble ij , and unpebble I(j). If P denotes such
reversible pebbling, then Li and Vitányi [LV96] showed that P ∈ P →←I(k) and Π →←

s (P) = O (logN(k))

and Π →←
t (P) = O

(
N(k)log 3

)
, since if we denote S(k) (resp. T (k)) the space (resp. time) cost to

reversibly pebble I(k) then it satisfies the recurrence relation S(k) = maxi{i+S(k−i)} = S(k−1)+1
(resp. T (k) = 2T (k − 1) + 1 + 2T (k − 2) + 1 + . . . + 2T (1) + 1 = 3T (k − 1) + 1). Taken together,
the reversible space-time cost for this pebbling strategy is Π →←

st (P) = O
(
N(k)log 3 logN(k)

)
, which

implies that Π →←
st (LN) = O

(
N log 3 logN

)
.

A Reversible Pebbling Strategy with a Better ST Cost. We extend this approach and first
recursively define the sequence of consecutive locations I(k) (of nodes in a line graph) as

I(k) =

{
I(k − 1)′ ◦ I(k − 2)′ ◦ . . . ◦ I(0)′, if k > 0

{}, if k = 0,

where ◦ denotes concatenation and for 0 ≤ j < k, I(j)′ is defined as

I(j)′ := I(j)(1) ◦ i(1)j ◦ I(j)
(2) ◦ i(2)j ◦ . . . ◦ I(j)

(c) ◦ i(c)j ,

where A(ℓ) denotes the ℓth copy of A. Let N(k) be the size of I(k). Since I(j)′ consists of c copies
of I(j) and a single node ij , we observe that N(k) satisfies the following recursive relation:

N(k) = c(N(k − 1) + 1) + c(N(k − 2) + 1) + · · ·+ c(N(0) + 1)

= c(N(k − 1) + 1) +N(k − 1)

= (c+ 1)N(k − 1) + c,

which implies that N(k) = Θ((c+ 1)k). We have the following pebbling strategy RevPeb(I(k)) for
I(k) as shown in Algorithm 1. Here, RevPeb−1(I(k)) denotes the procedure which runs RevPeb(I(k))
in reverse order, i.e., it starts with the final configuration of RevPeb(I(k)) and ends with the starting
configuration of RevPeb(I(k)). Intuitively, it sequentially pebbles I(k − 1)′, . . . , I(0)′ in this order.

When we pebble I(j)′ = I(j)(1) ◦ i(1)j ◦ I(j)(2) ◦ i
(2)
j ◦ . . . ◦ I(j)(c) ◦ i

(c)
j , we run RevPeb(I(j)(1)) to

pebble the first block, and we pebble the incident node i
(1)
j . After that, for ℓ = 2, . . . , c, we run

RevPeb−1(I(j)(ℓ−1)) to remove pebbles from the previous block and we move forward to pebble the
next block by running RevPeb(I(j)(ℓ)).

Now we have the following lemma.

29

Algorithm 1: The Procedure RevPeb(I(k)).

Input:
Output:

1 for j = k − 1, . . . , 0 do

2 Run RevPeb(I(j)(1))

3 Pebble node i
(1)
j

4 for ℓ = 2, . . . , c do

5 Run RevPeb−1(I(j)(ℓ−1))

6 Run RevPeb(I(j)(ℓ))

7 Pebble node i
(ℓ)
j

8 return

Lemma 8. For a line graph LN , there exists a reversible pebbling P ∈ P →←LN
such that Π →←

st (P) =

O
(
N

1+(2+o(1)) 1√
logN

)
, and a parallel reversible pebbling P ′ ∈ P →← ,∥

LN
with Π

→← ,∥
st (P ′) = O

(
N

1+ 2√
logN

)
.

Proof. Let P = RevPeb(I(k)). Then we can easily see that P ∈ P →←I(k).
We first consider the space cost of P = RevPeb(I(k)). Intuitively, we first observe that when

we pebble I(k), the space cost of pebbling I(k − 1)′ dominates the space cost of pebbling I(k −
2)′, . . . , I(0)′ since they are recursively defined. Now when pebbling I(k − 1)′, we would need to
remove pebbles from I(k− 1)(ℓ) and add pebbles on I(k− 1)(ℓ+1) for each ℓ, and further, we would

need pebbling c intermediate nodes i
(1)
k−1, . . . , i

(c)
k−1. Hence, the space complexity of RevPeb(I(k))

satisfies the recurrence relation Π →←
s (RevPeb(I(k))) ≤ Π →←

s (RevPeb(I(k − 1))) + c. Solving the
recurrence relation gives us Π →←

s (P) = O (ck).
When it comes to the time cost of P , we would need to be careful and we define Tf (j) to be the

amount of time to place a pebble on the last node of I(j), without removing pebbles from earlier
nodes in I(j), and we define Tr(j) to be the amount of time to remove such nodes afterwards. Since
the pebbling is reversible, we can easily observe that Tf (j) = Tr(j) for each j. In Algorithm 1, when
we pebble I(k), we pebble I(k−1)′ first which contains the procedure that (1) we pebble I(k−1)(1)

and i
(1)
k−1, (2) we remove pebble from I(k− 1)(1) and pebble I(k− 1)(2), and (3) keep repeating this

until the last copy I(k−1)(c) and i
(c)
k−1 is pebbled. Taken together, we have the following recurrence

relation for Tf (k):

Tf (k) = 2c(Tf (k − 1) + 1) + Tr(k − 1) + 2c(Tf (k − 2) + 1) + Tr(k − 2) + · · ·︸ ︷︷ ︸
=Tf (k−1)

= (2c+ 1)Tf (k − 1) + Tr(k − 1) + c = (2c+ 2)Tf (k − 1) + c,

which tells us that Tf (k) = O
(
(2c+ 2)k

)
. Hence, Π →←

t (P) = Tf (k)+Tr(k) = O
(
(2c+ 2)k

)
and we

have Π →←
st (P) = Π →←

s (P)Π →←
t (P) = O

(
ck(2c+ 2)k

)
.

To express Π →←
st (P) in terms of N(k) = Θ((c+ 1)k), by setting c = 2k we observe that

Π →←
st (P)

N(k)
= O

(
ck2k

)
= O

(
k4k
)
.

30

We observe that k4k = (2k
2
)
2k+log k

k2 = N(k)
2k+log k

k2 . SinceN(k) = Ω(2k
2
) implies k = O

(√
logN(k)

)
,

we have

Π
→←
st (P) = O

(
N(k) · k4k

)
= O

(
N(k)1+

2k+log k

k2

)
= O

(
N(k)

1+ 2√
logN(k)

+
log logN(k)
2 logN(k)

)
= O

(
N(k)

1+(2+o(1)) 1√
logN(k)

)
.

We can parallelize this strategy by removing pebbles from I(k − 1)(ℓ) and adding pebbles on
I(k−1)(ℓ+1) in parallel. If we denote this pebbling strategy P ′ = PRevPeb(I(k)), then the recurrence

relation for the space cost becomes Π
→← ,∥
s (PRevPeb(I(k))) ≤ 2Π

→← ,∥
s (PRevPeb(I(k−1)))+ c, which

yields Π
→← ,∥
s (P ′) = O

(
c2k
)
. On the other hand, parallelizing it could save time in each recursion by

half, which implies that the recurrence relation for the time cost becomes Tf (k) = (c+2)Tf (k−1)+c,

which gives us the time cost Π
→← ,∥
t (P ′) = O

(
(c+ 2)k

)
. In this case, Π

→← ,∥
st (P ′) = O

(
c(2c+ 4)k

)
.

To express Π →←
st (P) in terms of N(k) = Θ((c+ 1)k), by setting c+ 1 = 2k we observe that

Π
→← ,∥
st (P ′)

N(k)
= O

(
c(2c+ 4)k

(c+ 1)k

)
= O

(
c2k
(
1 +

1

c+ 1

)k
)

= O
(
2k · 2k · 1

)
= O

(
4k
)
,

since
(
1 + 1

c+1

)k
=
(
1 + 1

2k

)k
= Θ(1)6. Since O

(
4k
)
= O

(
(2k

2
)2/k

)
= O

(
N(k)2/k

)
and N(k) =

Θ(2k
2
) implies k = Θ(

√
logN(k)), we have

Π
→← ,∥
st (P ′) = O

(
N(k) · 4k

)
= O

(
N(k)1+

2
k

)
= O

(
N(k)

1+ 2√
logN(k)

)
. 2

B Reversible Pebbling Strategy Examples

B.1 Example on an (e, d)-Reducible Graph

In this example, we give a DAG G = (V = [N], E) with N = 16, and E = {(i, i + 1) : i ∈ [15]} ∪
{((i−1)4+1, (i−1)4+3), ((i−1)4+1, (i−1)4+4), ((i−1)4+1, (i−1)4+5), ((i−1)4+1, (i−1)4+6) :
i ∈ [3]} ∪ {(13, 15), (13, 16)}, as shown in Figure 2. We observe that G is (4, 3)-reducible.

Recall that P = (P0, P1, . . . , P2N) such that P0 = ∅, for v ∈ [N], Pv := S≤v ∪ Bv, and for N <
v ≤ 2N , Pv := P2N−v∪{N} is a legal reversible pebbling for G, as shown in Lemma 1, where Bv :=⋃d+1

j=1

⋃d+1
i=j (Av+1−j,S,i ∪Av−1+j,S,i), with the definitionAw,S,i :=

{
v : LongestPathG−S≤w−1

(v, w) = i
}
.

For example, when we compute P8 for the graph above, it is described as

P8 = S≤8 ∪B8

= {1, 5} ∪
4⋃

j=1

4⋃
i=j

(A9−j,S,i ∪A7+j,S,i)

6 for k > 0 we have (1 + 1
2k

)k < (1 + 1
2k

)2
k

< e.

31

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Fig. 2: An (e, d)-reducible DAG G of N = 4N ′ nodes, with e = N ′ and d = 3 (we set N ′ = 4 in
the figure above). Note that with depth-reducing set S = {1, 5, 9, 13}, we have an original DAG G
(top) and the induced subgraph G− S (bottom).

= {1, 5} ∪ (A8,S,1 ∪A8,S,2 ∪A8,S,3 ∪A8,S,4) ∪ (A7,S,2 ∪A7,S,3 ∪A7,S,4 ∪A9,S,2 ∪A9,S,3 ∪A9,S,4)

∪ (A6,S,3 ∪A6,S,4 ∪A10,S,3 ∪A10,S,4) ∪ (A5,S,4 ∪A11,S,4)

= {1, 5} ∪ {6, 7} ∪ {6, 7, 8} ∪ {} ∪ {2}
= {1, 2, 5, 6, 7, 8}.

Then entire pebbling process is illustrated in Figure 3. Note that for our example, Π
→← ,∥
t (P) =

32 = 2N and Π
→← ,∥
s (P) = 9, which leads to Π

→← ,∥
st (P) = 32 · 9 = 288. While this is not a significant

improvement on the näıve pebbling strategy for small N = 16, the space-time costs scale with
O (N) for the graphs defined above.

32

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

P1

P2

P3

P4

P5

P6

P7

P8

P9

P10

P11

P12

P13

P14

P15

P16

P17

P18

P19

P20

P21

P22

P23

P24

P25

P26

P27

P28

P29

P30

P31

P32

Fig. 3: A parallel reversible pebbling strategy for an (e, d)-reducible graph with N = 16, e = N/4 =
4, and d = 3. A filled square denotes a pebble on the node and an unfilled square denotes an
unpebbled node.

B.2 Example of a Reversible Pebbling Using an Induced Line Graph

In this example, we give a DAG G = (V = [18], E) with the edge distribution as illustrated in
Figure 4. As we discussed in Section 3.3, we reduce our DAG G to a line graph L6 by choosing
the block size b = 3. Given an efficient reversible pebbling P ′ of L6 as shown in Figure 5, we apply
Trans(G,P ′, b = 3) to produce a legal reversible pebbling of G. Note that we have LastAdd(P ′, 6) =
6, hence, in reversible pebbling rounds of G that corresponds to P ′6, we pebble all nodes in B6

and delete pebbles from the block in reverse topological order except for the last node as shown in

33

Algorithm 2 in Appendix D, which takes b + N − (⌈N/b⌉ − 1)b − 1 = 3 + 18 − (6 − 1)3 − 1 = 5
steps to complete. We also note that pebbles colored in red are skip nodes, which will be kept until
the corresponding block is deleted for the last time, i.e., we keep a skip node v ∈ Bi until we reach
rounds that correspond to P ′j (of L6) with j = LastDelete(P ′, i).

G 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

P ′1

P1

P2

P3

P ′2

P4

P5

P6

P ′3

P7

P8

P9

P ′4

P10

P11

P12

P ′5

P13

P14

P15

P ′6

P16

P17

P18

P19

P20

D A

P ′7

P21

P22

P23

D

P ′8

P24

P25

P26

D

P ′9

P27

P28

P29

D

P ′10

P30

P31

P32

D

P ′11

P33

P34

P35

Fig. 4: A parallel reversible pebbling P = {P1, . . . , P35} of a DAG G using an induced line graph
L6. The (underlying) reversible pebbling for L6, which is P ′ = {P ′1, . . . , P ′11}, is shown in Figure 5.
Pebbles colored in red are skip pebbles that cannot be removed until we remove the block of pebbles
for the last time, i.e., for each block Bi, we keep pebbles on the skip nodes until we reach P ′j with
j = LastDelete(P ′, i).

34

L6 1 2 3 4 5 6

D A

D

D

D

D

P ′1
P ′2
P ′3
P ′4
P ′5
P ′6
P ′7
P ′8
P ′9
P ′10
P ′11

Fig. 5: A reversible pebbling for a line graph with 6 nodes. Note that we mark a pebble on node i
in round j with “D” if j = LastDelete(P ′, i), and with “A” if j = LastAdd(P ′, i).

C Missing Proofs

Reminder of Claim 1. For v ∈ [N], parents(Pv \ Pv−1, G) ∪ parents(Pv−1 \ Pv, G) ⊆ Pv−1 ∩ Pv.

Proof of Claim 1: We observe that for v ∈ [N], Pv \ Pv−1 ⊆
⋃d

i=0Av+i,S,i+1, and Pv−1 \ Pv ⊆
Av,S,2 ∪

(⋃d+1
i=1 Av−i,S,i

)
. Then by Claim 5 below, we have

parents(Pv \ Pv−1, G) \ S ⊆
d⋃

i=0

parents(Av+i,S,i+1, G)

⊆
d⋃

i=0

Av+i,S,i+2

=

(
d−1⋃
i=0

Av+i,S,i+2

)
∪Av−1+d,S,d+2

=

d−1⋃
i=0

Av+i,S,i+2 ⊆ Pv−1 ∩ Pv,

and

parents(Pv−1 \ Pv, G) \ S ⊆ parents(Av,S,2, G) ∪

(
d+1⋃
i=1

parents(Av−i,S,i, G)

)

⊆ Av,S,3 ∪

(
d+1⋃
i=1

Av−i,S,i+1

)

= Av,S,3 ∪

(
d⋃

i=1

Av−i,S,i+1

)
∪Av−d,S,d+2

35

= Av,S,3 ∪

(
d⋃

i=1

Av−i,S,i+1

)
⊆ Pv−1 ∩ Pv,

where we have Av−1+d,S,d+2 = Aw−d,S,d+2 = ∅ by the (e, d)-reducibility. Taken together, we have
parents(Pv \ Pv−1, G) ∪ parents(Pv−1 \ Pv, G) ⊆ S≤v−1 ∪ (Pv−1 ∩ Pv) = Pv−1 ∩ Pv. ⊓⊔

Claim 5. parents(Aw,S,i, G) \ S ⊆ Aw,S,i+1.

Proof. If x ∈ Aw,S,i then by definition we have LongestPathG−S≤w−1
(x,w) = i. For any x′ ∈

parents(x,G) \ S, we observe that LongestPathG−S≤w−1
(x′, w) = 1 + LongestPathG−S≤w−1

(x,w) =
i+ 1, which completes the proof. ⊓⊔

Reminder of Lemma 2. Let GArg-A = (VA = [N], EA) and GArg-B = (VB = [N], EB) be randomly
sampled graphs according to the Argon2i-A and Argon2i-B edge distributions, respectively. Then with
high probability, the following holds:

(1) GArg-A is (e1, d1)-reducible for e1 =
N
d′ +

N lnλ
λ and d1 = d′λ, for any 0 < λ < N and 0 < d′ < N

λ .
(2) GArg-B is (e2, d2)-reducible for e2 =

N
d′ +

2N√
λ
and d2 = d′λ, for any 0 < λ < N and 0 < d′ < N

λ .

Proof of Lemma 2: We divide N nodes into λ layers of size N/λ and reduce the depth of each
layer to d′ so that the final depth becomes d1 = d2 = d′λ for both Argon2i-A and Argon2i-B. To do
so, we (a) delete all nodes with parents in the same layer, and (b) delete one out of d′ nodes in each
layer. Let Deletei be the event that a node v in ith layer is deleted in step (a), i.e., r(v) remains in
the same layer.

(1) For GArg-A, since all the layers have the same number of nodes and r(v) is picked uniformly at
random from [v − 2], we observe that Pr[Deletei] ≤ 1

i . It is clear that we delete N/d′ nodes in
step (b). Hence,

e1 =
N

d′
+ (# nodes deleted in step (a))

=
N

d′
+

λ∑
i=1

Pr[Deletei] ·
N

λ
≃ N

d′
+

N lnλ

λ
.

(2) For GArg-B, since we have i
(
1− x2

N2

)
∈ (j − 1, j] if and only if N

√
1− j

i ≤ x < N
√
1− j−1

i ,

we have that Pr[r(i) = j] =
√

1− j−1
i −

√
1− j

i . Similarly, we have Pr[a < r(i) < b] =

Prx∈[N]

[
i
(
1− x2

N2

)
∈ (a, b− 1]

]
=
√
1− a

i −
√
1− b−1

i . Thus,

Pr[Deletei] = Pr

[
(i− 1)N

λ
< r(v) < v

]
=

√
1− (i− 1)N/λ

v
−
√
1− v − 1

v

=

√
1− (i− 1)N

λv
−
√

1

v

36

≤
√
1− i− 1

i
−
√

λ

iN
=

√
1

i
−
√

λ

iN
,

where the last inequality holds since

√
1− (i−1)N

λv −
√

1
v is an increasing function of v and the

largest possible v is iN/λ since it should lie in the ith layer. Hence,

e2 =
N

d′
+

λ∑
i=1

Pr[Deletei] ·
N

λ

≤ N

d′
+

(
N

λ
−
√

N

λ

)
λ∑

i=1

√
1

i

≤ N

d′
+

(
N

λ
−
√

N

λ

)(∫ λ

1

dx√
x
+ 1

)

=
N

d′
+

(
N

λ
−
√

N

λ

)
(2
√
λ− 1) ≤ N

d′
+

2N√
λ
.

⊓⊔

Reminder of Corollary 1. Let GArg-A = (VA = [N], EA) and GArg-B = (VB = [N], EB) be
randomly sampled graphs according to the Argon2i-A and Argon2i-B edge distributions, respectively.

Then with high probability, Π
→← ,∥
st (GArg-A) = O

(
N2 log logN√

logN

)
, and Π

→← ,∥
st (GArg-B) = O

(
N2

3√logN

)
.

Proof of Corollary 1: From Theorem 2 and Lemma 2, we have

Π
→← ,∥
st (GArg-A) ≤ O

(
N +Ne+Nd2d

)
≃ O

(
N +

N2

d′
+

N2 lnλ

λ
+ λd′2λd

′
N

)
.

To make the upper bound optimal, we want to make the upper bound as small as possible. Hence,
we want to find d′ and λ such that N2

d′ ≈
N2 lnλ

λ ≈ λd′2λd
′
N as much as possible. Hence, d′ = λ

lnλ

and λ should satisfy λ3

(lnλ)2
2λ

2/ lnλ ≈ N . Setting λ =
√
logN , we have d′ = λ

lnλ = 2
√
logN

ln logN and

d = d′λ = 2 logN
ln logN . Thus,

Π
→← ,∥
st (GArg-A) ≤ O

(
N +

2N2 ln logN

2
√
logN

+
2N logN

ln logN
22 logN/ ln logN

)
= O

(
N +

2N2 ln logN

2
√
logN

+
2N

1+ 2
ln logN logN

ln logN

)

= O
(
N2 log logN√

logN

)
,

since lnx = (ln 2)(log x) for any x > 0.

For Argon2i-B, we have

Π
→← ,∥
st (GArg-B) ≤ O

(
N +Ne+Nd2d

)
≃ O

(
N +

N2

d′
+

2N2

√
λ

+ λd′2λd
′
N

)
.

37

Similarly, to make the upper bound optimal, we want to make N2

d′ ≈
2N2
√
λ
≈ λd′2λd

′
N as much as

possible. Hence, we have d′ ≈
√
λ/2 and plugging in λ = 3

√
log2N and d′ = 3

√
logN/2, we have

Π
→← ,∥
st (GArg-B) ≤ O

(
N +

4N2

3
√
logN

+
N
√
N logN

2

)

= O
(

N2

3
√
logN

)
.

⊓⊔

Reminder of Lemma 3. Let G = (V = [N], E) and b ∈ [N] be a parameter. If P ′ ∈ P →← ,∥
L⌈N/b⌉

,

then P = Trans(G,P ′, b) ∈ P →← ,∥
G .

Proof of Lemma 3: We want to show that it satisfies conditions in Definition 1.

Conditions (1) and (5): Ptb+N−(⌈N/b⌉−1)b−1 = {N}.

– It is clear by construction because we remove all nodes except for the target node N .

Condition (2): ∀j ∈ [tb+N − (⌈N/b⌉ − 1)b− 1] : v ∈ (Pj \ Pj−1)⇒ parents(v,G) ⊆ Pj−1.

– We first observe that whenever we pebble a new node w in L⌈N/b⌉, the node w − 1 must have
been pebbled in the previous round.

– Suppose that v ∈ Bw for some w ∈ [⌈N/b⌉]. For every edge of the form (u, v), we have the
following possibilities:
(a) If u ∈ Bw, u must be (re)pebbled before node v since both u and v corresponds to placing

the node w in L⌈N/b⌉. Hence, u ∈ Pj−1.
(b) If u ∈ Bw−1, we are guaranteed that u is already pebbled before we begin pebbling nodes

in block Bw since every node in Bw−1 is pebbled. Hence, u ∈ Pj−1.
(c) If u ∈ Bj with j < w − 1, then u is a skip node and will already be pebbled before placing

a pebble on v. Hence, u ∈ Pj−1.
– Taken together, we have parents(v,G) ⊆ Pj−1.

Condition (3): ∀j ∈ [tb+N − (⌈N/b⌉ − 1)b− 1] : v ∈ (Pj−1 \ Pj)⇒ parents(v,G) ⊆ Pj−1.

– We first observe that whenever we remove a pebble from w in L⌈N/b⌉, the node w−1 must have
been pebbled in the previous round.

– Suppose that v ∈ Bw for some w[∈ ⌈N/b⌉]. For every edge of the form (u, v), we have the
following possibilities:
(a) If u ∈ Bw, a pebble on u is not yet removed in the previous round because we remove

pebbles in Bw in a reverse topological order. Hence, u ∈ Pj−1.
(b) If u ∈ Bw−1, we are guaranteed that u is already pebbled before we begin removing nodes

in block Bw since every node in Bw−1 is pebbled. Hence, u ∈ Pj−1.
(c) If u ∈ Bj with j < w− 1, then u is a skip node and will already be pebbled before removing

a pebble from v. Hence, u ∈ Pj−1.
– Taken together, we have parents(v,G) ⊆ Pj−1.

Condition (4): ∀j ∈ [tb+N − (⌈N/b⌉ − 1)b− 1] : v ∈ parents(Pj \ Pj−1, G) ∪ parents(Pj−1 \ Pj , G),
then v ∈ Pj .

38

– If v ∈ parents(Pj \ Pj−1, G), then there exists some v′ ∈ Pj \ Pj−1 and some w ∈ [⌈N/b⌉] such
that (v, v′) ∈ E and v′ ∈ Bw. Now we have the following possibilities:
(a) If v ∈ Bw, then v must be (re)pebbled before node v′ and keep pebbled since both u and v

corresponds to placing the node w in L⌈N/b⌉. Hence, v ∈ Pj .
(b) If v ∈ Bw−1, we are guaranteed that v is already pebbled when we begin pebbling nodes in

block Bw since every node in Bw−1 is pebbled. Hence, v ∈ Pj .
(c) If v ∈ Bj with j < w−1, then v is a skip node and will already be pebbled and keep pebbled

when placing a pebble on v′. Hence, v ∈ Pj .
– If v ∈ parents(Pj−1 \ Pj , G), then there exists some v′′ ∈ Pj−1 \ Pj and some w′ ∈ [⌈N/b⌉] such

that (v, v′′) ∈ E and v′′ ∈ Bw′ . Now we have the following possibilities:
(a) If v ∈ Bw′ , a pebble on v is not yet removed in Pj because we remove pebbles in Bw′ in a

reverse topological order. Hence, v ∈ Pj .
(b) If v ∈ Bw′−1, we are guaranteed that v is already pebbled when we begin removing nodes

in block Bw′ since every node in Bw′−1 is pebbled. Hence, v ∈ Pj .
(c) If v ∈ Bj with j < w′ − 1, then v is a skip node and will already be pebbled and keep

pebbled when removing a pebble from v′′. Hence, v ∈ Pj .

Taken together, we can conclude that if P ′ ∈ P →← ,∥
L⌈N/b⌉

, then P = Trans(G,P ′, b) ∈ P →← ,∥
G . ⊓⊔

Reminder of Lemma 4. Let GDRS = (VDRS = [N], EDRS) be a randomly sampled graph according

to the DRSample edge distribution. Then with high probability, we have NumSkip
(
GDRS,

⌈
N

log2 N

⌉)
=

O
(
N log logN

logN

)
.

Proof of Lemma 4: For each v ∈ VDRS, let Yv be an indicator random variable for the event
that v−r(v) > b. Then we observe that NumSkip(GDRS, b) ≤

∑
v∈VDRS

Yv, since NumSkip(GDRS, b) is
upper bounded by the number of edges that skip over a block. Since there are at most log v buckets
for r(v) and log b buckets with v−r(v) ≤ b, we have Pr[v−r(v) > b] ≤ 1− log b

log v ≤ 1− log b
logN = log(N/b)

logN .
Hence, by linearity of expectation it follows that

E[NumSkip(GDRS, b)] ≤
∑

v∈VDRS

E[Yv] =
∑

v∈VDRS

Pr[v − r(v) > b] ≤
∑

v∈VDRS

log(N/b)

logN
=

N log(N/b)

logN
.

As the expected value is the sum of independent random variables, we can use Chernoff bounds
with µ = N log(N/b)

logN ≥
∑

v∈VDRS
E[Yv] to show that for any constant δ > 0, we have

Pr[NumSkip(GDRS, b) > (1 + δ)µ] < exp

(
−δ2N log(N/b)

3 logN

)
.

Hence, with high probability, we have NumSkip(GDRS, b) = O
(
N log(N/b)

logN

)
. Setting b = N

log2 N
, we

get the desired result. ⊓⊔

Reminder of Lemma 6. Let ⟨P1, . . . , Pt⟩ and ⟨P ′1, . . . , P ′t′⟩ be two legal reversible pebblings for
some graph G such that Pt = P ′t′. Then for any T ⊆ Pt,

⟨P1, . . . , Pt, P
′
t′−1 ∪ T, P ′t′−2 ∪ T, . . . , P ′1 ∪ T ⟩

is also a legal reversible pebbling sequence for G.

39

Proof. First we’ll show that ⟨P ′1 ∪T, . . . , P ′t′−1 ∪T, P ′t′⟩ is a legal reversible pebbling. See that since
P ′ satisfies requirements (2), (3), and (4), so does ⟨P ′1 ∪ T, . . . , P ′t′−1 ∪ T, P ′t′⟩ since no pebbles are
removed. Since P ′t = P ′t′ we have that ⟨P1, . . . , Pt, P

′
t′−1∪T, P ′t′−2∪T, . . . , P ′1∪T ⟩ is a legal reversible

pebbling sequence. ⊓⊔

Reminder of Lemma 5. If a legal (non-reversible) pebbling sequence P = ⟨P1, . . . , Pt⟩ is mono-
tonic, then P is a legal reversible pebbling sequence.

Proof. Since P is a legal (standard parallel) pebbling and no nodes are deleted, then it suffices to
show reversibility. Suppose x ∈ parents(Pi \ Pi−1) ∪ parents(Pi−1 \ Pi). Since

parents(Pi \ Pi−1) ∪ parents(Pi−1 \ Pi) = parents(Pi \ Pi−1),

x ∈ Pi as it was pebbled in some prior pebbling step and P never removes any pebbles. ⊓⊔

Reminder of Lemma 7. For any (e, d)-depth reducible graph G with depth-reducing set S of
size at most e. Then for any g ∈ [d,N], Prev = RGenPeb(G, e, d, S, g) is a legal reversible pebbling
for G.

Proof. In the discussion above we’ve shown that each Pc and Qc are reversible pebblings, so for the
first half, it suffices to show that ⟨Pcg, Q

c,1
1 ⟩ and ⟨Q

c,2
1 , Pcg+1⟩ are legal reversible pebblings. Since

Qc,1
1 = Pcg∪R(Pcg), it is a legal monotonic (and thus reversible) sequence. Since Qc,2

0 = Pcg+1 (recall

we defined Qc
d but didn’t include it in Qc), ⟨Qc,2

1 , Pcg+1⟩ is also monotonic and thus reversible. Since
P 1
rev is a reversible pebbling so is Prev by Lemma 6. ⊓⊔

40

D Reversible Pebbling Strategy using an Induced Line Graph

Algorithm 2: The Procedure Trans(G,P ′, b).

Input: A constant-indegree DAG G = (V = [N], E), a parameter b (size of the block), and

a legal reversible pebbling P ′ = {P ′0, P ′1, . . . , P ′t} ∈ P
→← ,∥
L⌈N/b⌉

for an induced line

graph L⌈N/b⌉

Output: A legal reversible pebbling P ∈ P →← ,∥
G of G

1 Partition V = [N] into B1, . . . , B⌈N/b⌉ where Bi = {(i− 1)b+ 1, (i− 1)b+ 2, . . . , ib} for
i ∈ [⌈N/b⌉ − 1] and B⌈N/b⌉ = {(⌈N/b⌉ − 1)b+ 1, (⌈N/b⌉ − 1)b+ 2, . . . , N}.

2 Initialize P
(i)
0,b = ∅ and P

(i)
j,k = ∅ for each i ∈ [⌈N/b⌉], j ∈ [t], and k ∈ [f(j)], where

f(j) = b+N −
(
⌈Nb ⌉ − 1

)
b− 1 if j = LastAdd(P ′, ⌈N/b⌉), and f(j) = b elsewhere.

3 for i = 1, . . . , ⌈N/b⌉ − 1 do // for each block B1, . . . , B⌈N/b⌉−1 except for the last one

4 Compute Si := Skip(Bi, G) using Equation (1).
5 for j = 1, . . . , t do // for each round in P ′

6 if j ̸= LastAdd(P ′, ⌈N/b⌉) then
7 {P (i)

j,1 , . . . , P
(i)
j,b } ← BlockPebble(Bi, b, Si, P

′, P
(i)
j−1,f(j), i, j).

8 else // i.e., j = LastAdd(P ′, ⌈N/b⌉)

9 {P (i)
j,1 , . . . , P

(i)
j,b } ← BlockPebble(Bi, b, Si, P

′, P
(i)
j−1,f(j), i, j).

10 Maintain pebbles for the extra N −
(
⌈Nb ⌉ − 1

)
b− 1 ≤ b− 1 steps, i.e.,

P
(i)
j,b = P

(i)
j,b+1 = · · · = P

(i)

j,b+N−(⌈Nb ⌉−1)b−1
.

11 for j = 1, . . . , t do // for the last block B⌈N/b⌉ and for each round in P ′

12 if j ̸= LastAdd(P ′, ⌈N/b⌉) then
13 {P (⌈N

b
⌉)

j,1 , . . . , P
(⌈N

b
⌉)

j,b } ← LastBlockPebble(N, b, P ′, P
(⌈N

b
⌉)

j−1,f(j), j).

14 else // i.e., j = LastAdd(P ′, ⌈N/b⌉)

15 {P (⌈N
b
⌉)

j,1 , . . . , P
(⌈N

b
⌉)

j,b } ← LastBlockPebble(N, b, P ′, P
(⌈N

b
⌉)

j−1,f(j), j).

16 Delete pebbles from the block in a reverse topological order, except for the sink

node, with N − (⌈N/b⌉ − 1)b− 1 steps, i.e., P
(⌈N

b
⌉)

b+k = P
(⌈N

b
⌉)

b+k−1 \ {N − k} for
k = 1, . . . , N − (⌈N/b⌉ − 1)b− 1.

17 for j = 1, . . . , t do
18 for k = 1, . . . , f(j) do

19 Pj,k =
⋃⌈N/b⌉

i=1 P
(i)
j,k .

20 if j ≤ LastAdd(P ′, ⌈N/b⌉) then // Ordering the pebbling configurations

21 P(j−1)b+k ← Pj,k

22 else
23 PN−(⌈N/b⌉−1)b−1+(j−1)b+k ← Pj,k

24 return P = {P1, . . . , Ptb+N−(⌈N/b⌉−1)b−1}.

41

Algorithm 3: The Subfunction BlockPebble(B, b, S, P ′, P0, i, j).

Input: A set of nodes B, a parameter b (size of the set), a set of skip pebbles S, a legal
reversible pebbling P ′ = {P ′0, P ′1, . . . , P ′t}, a pebbling configuration P0 on B, and
parameters i and j

Output: A legal relaxed reversible pebbling P = {P1, . . . , Pb} of the set B

1 Assert |B| = b.
2 if i ∈ P ′j \ P ′j−1 then

3 Place pebbles in the block B with b steps, i.e., P1 = P0 ∪ {(i− 1)b+ 1}, and
Pk = Pk−1 ∪ {(i− 1)b+ k} for k = 2, . . . , b.

4 else if i ∈ P ′j−1 \ P ′j then

5 if j − 1 = LastDelete(P ′, i) then
6 Delete pebbles from the block B in a reverse topological order with b steps, i.e.,

P1 = P0 \ {ib}, and Pk = Pk−1 \ {ib− (k − 1)} for k = 2, . . . , b.
7 else
8 Delete pebbles from the block B except for the skip nodes, i.e., P1 = P0 \ ({ib} \ S),

and Pk = Pk−1 \ ({ib− (k − 1)} \ S) for k = 2, . . . , b.
9 else

10 Maintain pebbles in the block B for b steps, i.e., P0 = P1 = · · · = Pb.
11 return P = {P1, . . . , Pb}

Algorithm 4: The Subfunction LastBlockPebble(N, b, P ′, P0, j).

Input: A parameter N , b, a legal reversible pebbling P ′ = {P ′0, P ′1, . . . , P ′t}, a pebbling
configuration P0 of the last block, and a parameter j

Output: A legal relaxed reversible pebbling P = {P1, . . . , Pb} of the last block

1 if ⌈N/b⌉ ∈ P ′j \ P ′j−1 then

2 Place pebbles in the block with N − (⌈N/b⌉ − 1)b steps, and maintain the status for the
next b−N + (⌈N/b⌉ − 1)b steps, i.e., P1 = P0 ∪ {(⌈N/b⌉ − 1)b+ 1},
Pk = Pk−1 ∪ {(⌈N/b⌉ − 1)b+ k} for k = 2, . . . , N − (⌈N/b⌉ − 1)b, and
PN−(⌈N/b⌉−1)b = PN−(⌈N/b⌉−1)b+1 = · · · = Pb.

3 else if ⌈N/b⌉ ∈ P ′j−1 \ P ′j then

4 Delete pebbles from the block in a reverse topological order with N − (⌈N/b⌉ − 1)b
steps, and maintain the status for the next b−N + (⌈N/b⌉ − 1)b steps, i.e.,
P1 = P0 \ {N}, Pk = Pk−1 \ {N − (k − 1)} for k = 2, . . . , N − (⌈N/b⌉ − 1)b, and
PN−(⌈N/b⌉−1)b = PN−(⌈N/b⌉−1)b+1 = · · · = Pb.

5 else
6 Maintain pebbles in the block for b steps, i.e., P0 = P1 = · · · = Pb.
7 return P = {P1, . . . , Pb}

42

	The Parallel Reversible Pebbling Game: Analyzing the Post-Quantum Security of iMHFs

