
The DAG KNIGHT Protocol: A Parameterless Generalization of
Nakamoto Consensus

February 23, 2023

Michael Sutton

msutton@cs.huji.ac.il

Independent Researcher

Yonatan Sompolinsky

ysompolinsky@fas.harvard.edu

Harvard University

ABSTRACT
In 2008 Satoshi wrote the first permissionless consensus protocol,

known as Nakamoto Consensus (NC), and implemented in Bitcoin.

A large body of research was dedicated since to modify and extend

NC, in various aspects: speed, throughput, energy consumption,

computation model, and more [4]. One line of work focused on

alleviating the security-speed tradeoff which NC suffers from by

generalizing Satoshi’s blockchain into a directed acyclic graph of

blocks, a block DAG. Indeed, the block creation rate in Bitcoin must

be suppressed in order to ensure that the block interval is much

longer than the worst case latency in the network. In contrast, the

block DAG paradigm allows for arbitrarily high block creation rate

and block sizes, as long as the capacity of nodes and of the net-

work backbone are not exceeded. Still, these protocols, as well as

other permissionless protocols, assume an a priori bound on the

worst case latency, and hardcode a corresponding parameter in

the protocol. Confirmation times then depend on this worst case

bound, even when the network is healthy and messages propagate

very fast. In this work we set out to alleviate this constraint, and

create the first permissionless protocol which contains no a pri-
ori in-protocol bound over latency. KNIGHT is thus responsive to

network conditions, while tolerating a corruption of up to 50% of

the computational power (hashrate) in the network. To circumvent

an impossibility result by Pass and Shi [16], we require that the

client specifies locally an upper bound over the maximum adver-
sarial recent latency in the network. KNIGHT is an evolution of

the PHANTOM paradigm [20], which in turn is a parameterized

generalization of NC.

1 INTRODUCTION
The first permissionless consensus protocol, Nakamoto Consensus

(NC), was created in 2008 by Bitcoin’s originator Satoshi Nakamoto

[13]. Permissionless is defined as an environment where the set of

participants is not a priori known and fixed. Since its introduction,

the research community offered many variants that improve upon

NC in terms of speed, throughput, energy consumption, computa-

tion model, and more [4].

One line of work focused on alleviating the speed-security trade-

off, by generalizing Satoshi’s blockchain into a directed acyclic

graph of blocks – a block DAG [11, 19, 20]. Whereas in NC each

block references a single predecessor, and a single chain within

the resulting tree is extended, in DAG-based constructions blocks

reference multiple predecessors. Blocks are thus created much more

frequently than Bitcoin’s 10 minutes interval, typically multiple

blocks per one unit of network delay. This asynchronous operation

mode opens up the possibility of conflicts across blocks created in

parallel. The heart of the consensus protocol is its conflict resolution

rule, which is written in the form of a DAG ordering algorithm—

each node runs locally a procedure that takes as input the block

DAG visible to it and returns a linear ordering over its blocks, and

by implication over its transactions. This ordering ensures and

recovers consistency: The first of any set of conflicting transactions

is accepted, and the rest are ignored and skipped over. As any

consensus protocol, this procedure must satisfy the property that

all nodes eventually agree on the ordering.

KNIGHT is a parameterless DAG-based consensus—the protocol

assumes no upper bound on the network’s latency. In other words,

the ordering procedure of KNIGHT does not take as input parame-

ters representing the network’s assumed latency. To the best of our

knowledge, KNIGHT is the first permissionless parameterless con-

sensus protocol that is secure against any attacker with less than

50% of the computational power in the network. These properties

put KNIGHT at an inherently stronger spot than its counterparts:

It is both faster and more secure, since it makes fewer assumptions

and operates properly despite varying network conditions.

1.1 KNIGHT optimization framework
Conceptually, KNIGHT is an evolution of the PHANTOM opti-

mization framework [20], which in turn is an evolution of NC. In

NC, the longest chain of blocks within the tree is selected and ex-

tended. PHANTOM generalizes the longest chain rule: Rather than

selecting the longest chain, it selects the largest sufficiently con-

nected subset of blocks. The following definition from [20] captures

“well-connectedness”:

Definition 1. Given a DAG 𝐺 = (C, 𝐸), a subset 𝑆 ⊆ C is called a
𝑘-cluster, if ∀𝐵 ∈ 𝑆 : |𝑎𝑛𝑡𝑖𝑐𝑜𝑛𝑒 (𝐵) ∩ 𝑆 | ≤ 𝑘 .

Here, the anticone of a block is the set of blocks whose order

with respect to it is not dictated by the DAG topology; see Figure 2.

Formally, PHANTOM solves the following optimization problem:

PHANTOM Optimization: Maximum 𝑘-cluster sub-
DAG (𝑀𝐶𝑆𝑘)
Input: DAG 𝐺 = (C, 𝐸), 𝑘
Output:A subset 𝑆★ ⊂ C of maximum size, s.t. 𝑎𝑛𝑡𝑖𝑐𝑜𝑛𝑒 (𝐵)∩
𝑆★ ≤ 𝑘 for all 𝐵 ∈ 𝑆★.
Similarly to other parameterized consensus protocols, the param-

eter k of PHANTOM represents an upper bound on the network’s

latency (technically, on the number of blocks per one unit of delay,

with high probability). Observe that for𝑘 = 0, PHANTOM coincides

with NC, as the longest chain is the largest 0-cluster. Indeed, when

the block interval is large (e.g., Bitcoin’s 10 minutes per block), the

latency parameter 𝑘 can be set to 0. In contrast, a system enjoying a

1

Michael Sutton and Yonatan Sompolinsky

(a) 𝛼 = 0.05, 𝑘 = 2 (b) 𝛼 = 0.25, 𝑘 = 4 (c) 𝛼 = 0.45, 𝑘 = 7

Figure 1: KNIGHT optimization illustrated. The figures show a fixed honest DAG on the left, alongside an attacker on the right.
The attacker’s byzantine fraction grows from 𝛼 = 0.05 in 1a to 𝛼 = 0.45 in 1c. The algorithm finds a 𝑘-cluster of minimumwidth
(𝑘 + 1) sufficient to cover at least 50% of the DAG, thereby outweighing the minority attacker.

high block creation rate would require setting 𝑘 to be much larger.

For instance, in Kaspa, a cryptocurrency based on PHANTOM, the

block interval was set to 1 second, and 𝑘 was hardcoded with a

value of 18, reflecting an assumption of 𝐷 ≤ 10 seconds; see [2] for

a live visualization of the live DAG of Kaspa.

In contrast, KNIGHT offers an alternative optimization frame-

work, which does not pre-assume a latency bound:

KNIGHT Optimization: Minimal 𝑘 Majority Cluster
sub-DAG (𝑀𝑘𝑀𝐶)
Input: DAG 𝐺 = (C, 𝐸)
Output: A subset 𝑆★ = 𝑀𝐶𝑆𝑘 (𝐺), s.t. 𝑘 is minimal and

|𝑆★ | ≥ |𝐶 |
2
.

B

g

B

g g

B

Figure 2: The topology of a block-DAG induces a partial or-
dering over blocks. The figure on the left marks blocks prov-
ably created after block 𝐵, which are called its future set.
Similarly, the figure on the middle marks blocks provably
created before 𝐵, its past set. The right-most figure marks
blocks whose ordering with respect to 𝐵 is ambiguous and
must be dictated and agreed by the consensus protocol.

That is, rather than selecting the largest 𝑘-cluster for one prede-

termined value of 𝑘 , we select the largest 𝑘-cluster for each value

of 𝑘 , and pick the minimal 𝑘 whose maximizing cluster covers 50%

of the DAG. We thus utilize the honest majority assumption to

recognize a subset of blocks that are sufficient to counter an attack.

In this way, we avoid the need to know 𝑘 in advance, and allow the

protocol to self-adjust to the real time latency. The actual KNIGHT

protocol contains more components than the optimization problem

𝑀𝑘𝑀𝐶 , not merely for efficiency but also for security consider-

ations – primarily, natural or malicious changes in the latency
1

– as will be described formally in Section 2. See Figure 1 for an

illustration of KNIGHT’s optimization dynamics.

1.2 Parameterlessness
KNIGHT differs from previous work on proof-of-work-based con-

sensus protocols which typically operate in the synchronous setup

and assume an a priori upper bound over 𝐷 , either explicitly or

implicitly. For instance, Bitcoin’s difficulty adjustment algorithm

is targeting a block creation rate of 𝜆 = 1/600 blocks per second,
which reflects an underlying assumption that 𝐷 ≪ 600 seconds.

Similarly, when instantiating the PHANTOM protocol, one must

pre-configure the protocol’s 𝑘 parameter which represents the ex-

pected number of blocks created in one unit of delay, reflecting an

assumption that 𝐷 ≪ 𝑘+1
𝜆

.

Parameterlessness has two implications. First, confirmation times

in parameterized protocols are typically limited by their parameter—

they are a function of the hardcoded parameter, regardless of the

network’s actual latency. Thus, even when the actual latency of

blocks in Bitcoin is 1 or 2 seconds (as is the situation for most of

the time, see [1]), the protocol’s convergence times is in the order

of tens of minutes. Similarly, Kaspa’s convergence time remains in

the order of tens of seconds even when its latency is way below 10

seconds.

As a parameterless protocol, KNIGHT avoids this shortcoming

and allows the network to converge according to its actual condi-

tions. Thus, when the network’s adversarial latency is very low, the
ordering of KNIGHT will converge immediately, allowing clients

to confirm transactions within a few Internet RTTs (Round Trip

Times); and when the network is slow and clogged, the ordering

will take longer to converge and transactions longer to confirm.

Crucially, we emphasize that this responsiveness is with respect to

the worst-case adversarial latency; in Subsection 1.4 we distill this

nuance.

Figures 3 and 4 demonstrate this effect. In the former, a DAG of

various “widths” is presented, corresponding to different network

latencies. When the network is speedy, miners are aware of almost

1
When the delay is roughly constant, KNIGHT coincides with PHANTOM, and in

particular when the delay is negligible, it coincides with NC.

2

The DAG KNIGHT Protocol: A Parameterless Generalization of Nakamoto Consensus

(a) 𝐷 = 2, 𝑘 = 4, conf. time = 12

0

12

(b) 𝐷 = 1, 𝑘 = 1, conf. time = 6

0

6

(c) 𝐷 = 0.1, 𝑘 = 0, conf. time = 1.2

0

1.2

tim
e (seconds)

Figure 3: Confirmation times of KNIGHT under various network conditions. As the latency decreases from 2 seconds per block
message in (3a) to 0.1 seconds in (3c), 𝑘 decreases from 4 to 0, and confirmation times improve from 12 to 1.2 seconds. Observe
that the algorithm correctly recognizes a cluster of minimal width (=𝑘 + 1) which still covers at least 50% of the corresponding
DAGs (𝑘 = 4, 1, 0 in 3a, 3b, 3c, respectively) as required by KNIGHT’s optimization framework. The depicted DAGs are a result
of a simulation of a network mining 𝜆 = 3.75 blocks per second and an (invisible, secret) attacker with 𝛼 = 0.2; the required
confidence parameter was set to 𝜖 = 0.05.

all blocks created by their peers, blocks enjoy small anticones (or

“gaps”) of size 1 at most, and transactions can be confirmed quickly.

On the other extreme, many blocks are created in parallel, blocks

suffer from larger anticones, and transactions take longer to con-

firm. This scenario represents either a slow down in the network,

or a system intentionally parameterized with a high block rate,

e.g., 𝜆 = 10 blocks per second. Figure 4 further compares the effect

of varying network conditions on parameterized protocols (e.g.,

NC, PHANTOM) and parameterless ones (e.g., KNIGHT). The con-

firmation times in the former protocols are constant, accounting

to the hardcoded latency-dependent parameter; worse yet, when

the network suffers an anomaly, and message delays violate the

bound, transactions cannot be confirmed altogether. In contrast,

the confirmation times of parameterless protocols correspond to

the (bound of the client over the maximum) current latency in the

0
Network latency (sec)

0

4

8

12

Co
nf

irm
at

io
n

tim
e

(s
ec

) Responsive
Not responsive

Figure 4: A qualitative comparison of the confirmation time
behaviour of parameterized protocols and parameterless
ones. Confirmation times in the latter case are fast when
the network is smooth and speedy, whereas in the former
confirmation time is still limited by the constant hardcoded
worst-case bound. Additionally, when the bound of a pa-
rameterized protocol is violated, transactions may not be
confirmed safely, whereas parameterless protocols adapt to
the anomaly and allow confirming transactionsmore slowly
than usual, yet safely.

network, and, in particular, the network remains fully operational,

yet slow, during periods of network anomaly.

A second implication of parameterlessness is added security:

KNIGHT enjoys a stronger security than existing permissionless

protocols, as network hiccups do not interrupt consensus, because

they do not violate assumptions necessary for its proper operation.

1.3 Partial Synchrony
Traditionally, a consensus protocol is said to be partially synchro-
nous if an upper bound on the network latency exists but is un-

known to the protocol [6]. However, proof-of-work consensus in-

troduces some ambiguity into this classification, as it decouples

the transaction ordering protocol from the finality protocol: The
core of consensus is the transaction ordering rule (e.g., Bitcoin’s

longest chain rule, KNIGHT’s DAG ordering). This is the canonical

algorithm which defines the system, and which all participants run

in the same way, including adversarial nodes—individual interpre-

tations of the ledger which differ from the canonical procedure are

pointless. In contrast, transaction finality (e.g., the confirmation

count in Bitcoin) is a non-binding procedure which each client or

user configures and calculates locally according to their own beliefs

and needs, and bears the consequence. E.g., a Bitcoin user who be-

lieves that malicious miners possess currently less than 33% of the

hashrate will confirm transactions faster than one who believes the

bound to be 49%, and a 34% attacker will harm the former but not

the latter. Another example is SPECTRE, wherein the user needs to

additionally specify her belief on the latency bound via a parameter

which is configured individually, and which is inconsequential –

and, in fact, not-communicated – to the rest of the network.

For these considerations, we believe that a consensus system

whose transaction-ordering rule is agnostic to latency should be

referred to as partially synchronous and parameterless, interchange-

ably, even if transaction-finality depends on a latency bound (con-

figured by the user locally). We leave the question on terminology

for the Distributed Systems academic community to decide on, and

in this paper use the term “parameterless” to describe KNIGHT’s

operation mode.

3

Michael Sutton and Yonatan Sompolinsky

1.4 Responsiveness
In the lack of an a priori latency assumption, confirmation times in

a parameterless consensus system correspond to the real network

latency. However, “real latency” has two profoundly different inter-

pretations: the observable latency in the network, and the worst

case latency that an attacker may cause. Indeed, a capable attacker

may allow – or even assist – the network to operate smoothly, se-

lectively, and disrupt it during a later stage of the attack. A protocol

that has the strong property of confirming transactions according

to the observable latency is called responsive [16].
Despite being parameterless, KNIGHT is not responsive in this

sense of performing tightly with the current observable latency,

rather is responsive in the weaker sense of performing tightly with

the current maximum latency causable by an adversary. Indeed, in

KNIGHT, it is not enough for the client to set a local bound on the

observable latency, rather the bound should reflect the maximum

latency that may be caused by the attacker. That is, even if messages

currently propagate fully within 1 or 2 seconds, if an attacker may

disrupt the network and cause messages to take up to 30 seconds

to go through, 𝐷 should be set by the client to 30 seconds.

This limitation of KNIGHT is unavoidable, since no parame-

terless protocol with 50% byzantine tolerance threshold can be

responsive [16]:

Theorem 14 (Responsive protocols cannot tolerate 1/3 corruption)
[Pass and Shi]. No secure permissionless consensus protocol that is
also responsive can tolerate 1/3 or more corruption.

1.5 Consensus protocols, principal categories
Consensus protocols are generally classified and compared accord-

ing to the following aspects:

• What are the assumptions made by the protocol on the un-

derlying network and behaviour of nodes. The stronger the

assumptions the weaker the protocol.

• When its assumptions are preserved, how does it perform,

specifically, how fast is consensus reached.

• When its assumptions are violated, does the protocol recover,

and how fast it recovers. A protocol guaranteed to recover

from past failures is called self-stabilizing [5].

• If the underlying system is used to settle a live queue of trans-

actions, we also ask: Howmany transactions can the protocol

serve, i.e., what constraint on the transaction throughput

the protocol imposes or its assumptions require.

Through these categories we now survey, with some brevity,

KNIGHT ’s main properties:

1.5.1 Model assumptions. KNIGHT ’s fault model is the byzantine

setup, which allows the attacker to deviate arbitrarily from the pro-

tocol’s rules. We follow the proof-of-work model which assumes a

computationally bounded attacker which possesses less than 50%

of the computational power in the network. This assumption is con-

sidered to be weaker (hence more secure) compared to traditional

permissioned setups which require a priori knowledge of participat-
ing nodes, and compared to proof-of-stake which typically requires

a fixed and identifiable set of nodes at the beginning of each epoch.

The attacker is not assumed to suffer any communication delays

in its incoming or outgoing links, and may further disrupt honest

nodes’ communication by delaying messages between them for up

to 𝐷 seconds; however, the 𝐷 is not known to the protocol. Con-

versely, the attacker is also capable of speeding up communication

between honest nodes down to no-latency; such manipulations are

specifically relevant to and challenging in the context of KNIGHT.

1.5.2 Confirmation times (asymptotic). The parameterlessess of

the protocol is tightly related to its speed of confirmation: Transac-

tion confirmation times are a function of the actual latency in the

network (Subsection 1.3 contains an important reservation of this

statement in our context).

Confirmation times are commonly discussed in two modes –

optimistic performance and pessimistic performance. The former

accounts to the scenario where all participating nodes behave prop-

erly, and there is no visible attack. In this optimistic scenario,

KNIGHT confirms transactions in O
((

ln(1/𝜖)
𝜆
+ 𝐷

)
/(1 − 2𝛼) +

𝐷2𝜆
)
seconds, where 𝜆 is the block creation rate in units of blocks/sec

(adjusted via a “difficulty adjustment” algorithm adapted from Bit-

coin [13]), 𝐷 is an upper bound on the recent delay in the network,

0 ≤ 𝛼 < 1/2 is the attacker’s size, and 0 ≤ 𝜖 < 1 is the required

confidence. As in any proof-of-work protocol, the parameters 𝛼 and

𝜖 are set by the client. Uniquely to KNIGHT (and to SPECTRE [19]),

the parameter 𝐷 too is set by the client—an underestimation by

the client will lead to her premature acceptance of transactions,

whereas an overestimation will cause her to wait more time than

necessary before confirming.

In the pessimistic scenario, a visible manipulation of the DAG

is ongoing, and confirmation times are significantly slowed down.

Analyzing the convergence time in this case in a tight manner is

intractable, and we are thus left with an exponential bound on con-

firmation times: O
(
1

𝜆
(exp(𝑐 · 𝐷𝜆/(1 − 2𝛼)) + ln(1/𝜖)/(1 − 2𝛼))

)
seconds. We emphasize, however, that this bound is far from tight,

assumes an unrealistically strong attacker, and furthermore pay-

ments of honest users can still be confirmed in quadratic time as

in the optimistic case. Indeed, as long as the user did not publish a

visible conflict (aka double spend), her transaction is commutative

with other recent transactions in the DAG, hence the receiving

client may confirm it despite the ordering still converging.

1.5.3 Self stabilization. Similarly to NC and other proof-of-work

consensus protocols, KNIGHT is self-stabilizing: If the 50% thresh-

old was violated at some point in the past, KNIGHT recovers and

transactions may be confirmed safely once the conditions are met;

the recovery time is linear in the length of the violation phase. Sim-

ilarly, the latency parameter 𝐷 which is set by each client locally

should correspond to the recent delay in the network, and need not

account for the worst case historical latency. Contrast these prop-

erties to proof-of-stake protocols, which rely heavily on finality,
and which fail therefore to recover from historical catastrophes.

1.5.4 Throughput. In contrast to NC, and similar to other DAG-

based consensus protocols, KNIGHT remains secure under arbitrar-

ily high throughput configurations—the block rate, and the block

size, should be constrained only according to the capacity of nodes’

hardware and that of the network’s backbone.

All in all, in this work we propose a novel proof-of-work based

parameterless consensus protocol. As far as we are aware, KNIGHT

4

The DAG KNIGHT Protocol: A Parameterless Generalization of Nakamoto Consensus

is the first proof-of-work protocol to solve consensus under the

parameterless model; the only other protocol to operate under

this model is SPECTRE, which solves a weaker version of the con-

sensus problem (“weak liveness”), and which supports therefore

only the use case of payments where transactions of honest users

are commutative [19]. KNIGHT is a parameterless evolution of

PHANTOM—save some nuances, the two coincide when the de-

lay is constant; when the delay is negligible relative to the block

creation rate, the two protocols further coincide with NC.

1.6 Structure of this paper
The remainder of this paper is organized as follows. Section 2

contains the full description of the KNIGHT protocol. Section 3

formalizes the model and the statement of KNIGHT’s properties.

Section 4 discusses confirmation procedure for clients, and confir-

mation times. In Section 5 we present implementation details. We

conclude with surveying related work in Section 6.

2 THE DAG KNIGHT PROTOCOL
2.1 Preliminaries
The following terminology is used extensively throughout this

paper. We follow terminology established by previous works con-

cerning DAG protocols [19, 20].

In a block DAG𝐺 = (C, 𝐸), C represents blocks and 𝐸 represents

hash references to previous blocks—edges thus point backwards in

time. 𝑝𝑎𝑠𝑡 (𝐵,𝐺) denotes the set of blocks reachable from 𝐵, and

𝑓 𝑢𝑡𝑢𝑟𝑒 (𝐵,𝐺) the set of blocks from which 𝐵 is reachable; these

blocks were provably created before and after 𝐵, correspondingly.

𝑎𝑛𝑡𝑖𝑐𝑜𝑛𝑒 (𝐵,𝐺) denotes the set of blocks outside 𝑝𝑎𝑠𝑡 (𝐵,𝐺) and
𝑓 𝑢𝑡𝑢𝑟𝑒 (𝐵,𝐺); the time-relation between 𝐵 and blocks in its an-

ticone cannot be derived explicitly from the DAG topology. See

Figure 2. When context is clear, we write 𝑎𝑛𝑡𝑖𝑐𝑜𝑛𝑒 (𝐵) instead of

𝑎𝑛𝑡𝑖𝑐𝑜𝑛𝑒 (𝐵,𝐺). We denote by 𝑡𝑖𝑝𝑠 (𝐺) the set of blocks with in-

degree 0, that is, which are not referenced by any other block in the

DAG. The system is initialized with some known block 𝑔𝑒𝑛𝑒𝑠𝑖𝑠 ; if a

sub-DAG 𝐺 ′ ⊆ 𝐺 has only one block with out-degree 0, we denote

it by 𝑔𝑒𝑛𝑒𝑠𝑖𝑠 (𝐺 ′).
For convenience, we additionally regard the virtual block of the

DAG, 𝑣𝑖𝑟𝑡𝑢𝑎𝑙 (𝐺), which is a hypothetical (un-mined) block which

points to the DAG’s tips as its parents. Thus, 𝑝𝑎𝑠𝑡 (𝑣𝑖𝑟𝑡𝑢𝑎𝑙 (𝐺)) = 𝐺 .
Essentially, 𝑣𝑖𝑟𝑡𝑢𝑎𝑙 (𝐺) represent the block template for the next

block to be created by the miner, if it is honest.

2.2 PHANTOM optimization paradigm
The PHANTOM protocol [20] proposed an optimization problem

as a generalization of NC (see box in Section 1). The optimization

targets the largest 𝑘-cluster, for a predetermined fixed parameter

𝑘 which is a function of the worst case latency in the network. In

a 𝑘-cluster, each block is connected via the DAG topology to all

but at most 𝑘 blocks. Since honest nodes possess a majority of the

hashrate, and since blocks created by honest nodes reference one

another, the largest 𝑘-cluster contains recent honest blocks with

high probability, which suffices to secure the ordering.

B

virtual AttackerHonest

(a)

B

virtual AttackerHonest

(b)

Figure 5: 5a shows a successful freeloading scheme against
PHANTOM with 𝑘 = 5. The largest 5-cluster contains (also)
attacker blocks which were withheld till now, and excludes
honest blocks which were mined correctly above 𝐵 and
published immediately. 5b demonstrates the failure of this
scheme against KNIGHT. The protocol recognizes that the
largest 𝑘-cluster, for 𝑘 = 0, suffices to cover a majority of the
DAG, selects this 0-cluster, and excludes the attack blocks.

2.3 KNIGHT optimization paradigm
KNIGHT adds another layer to the optimization problem (as pre-

sented in Section 1). Rather than assuming 𝑘 as an input to the

problem, KNIGHT searches for the minimal 𝑘 such that the largest

𝑘-cluster covers at least 50% of the DAG.

This dual minmax optimization (min 𝑘 , max 𝑘-cluster) allows

us to tolerate just enough latency and disconnectivity among the

selected set of blocks: Intuitively, selecting the cluster of a smaller 𝑘

would compromise safety, exposing the ordering to manipulations

by a minority attacker whose blocks do not cover 50% of the graph;

selecting the cluster of a larger 𝑘 would compromise liveness, as it
would allow adversary blocks to inject themselves into the order

even after honest blocks have settled.

Building on this parameterless optimization paradigm, we are

able to devise a secure consensus DAG ordering rule that is re-

sponsive to the network’s actual adversarial latency and is not

constrained to a priori hardcoded bounds on the adversarial latency

which require large safety margins and perform suboptimally. We

reiterate, however, that KNIGHT is not responsive in the strong

sense of performing according to the network’s observable latency,
rather according to the maximum latency that an adversary may

cause in the current network; still, under normal Internet condi-

tions, and with sufficient redundancy between peers, this should

be in the order of a few seconds at most. In fact, no protocol that

is secure against corruption of up to 50% of the nodes can achieve

responsiveness in this strong sense, as was proven by Pass and

Shi [16].

5

Michael Sutton and Yonatan Sompolinsky

Figure 5 provides a visual insight into the different behaviour

of PHANTOM vs KNIGHT’s optimization paradigms. It illustrates

a ∼ 35% attacker attempting a “freeloading” manipulation on the

respective protocols. Consider the case where PHANTOM was pa-

rameterized with 𝑘 = 5, say, and where the honest network enjoys

a period of extreme connectivity in the network such that its blocks

form a chain (a 0-cluster, in PHANTOM terminology). In a freeload-

ing scheme, the attacker builds her blocks with a certain artificial

gap from the rest of the network, 5 in our example. PHANTOM

then considers these blocks as part of the largest 5-cluster, and they

will precede the second half of the honest chain in the final ordering.

KNIGHT, in contrast, is not easily misled—it will recognize that

𝑘 = 0 suffices to cover the majority of the DAG. The same intu-

ition applies generally to any scenario where the network’s current

(adversarial) latency is smaller than the worst case (adversarial)

latency. Moreover, if the network suffers excessive delays due to

some anomaly, and PHANTOM’s latency bound is violated, trans-

actions may not be confirmed. KNIGHT’s operation, in contrast,

will remain intact, albeit inevitably slower.

2.4 Vanilla version
Turning KNIGHT’s optimization paradigm into a DAG ordering

rule seems straightforward:

Algorithm 1 Naïve ordering algorithm

Input: 𝐺 – the DAG to order

Output: Ordering of 𝐺

1: function Order-DAG(𝐺)

2: for 𝑘 = 0, 1 . . .∞ do
3: 𝑆 ← 𝑀𝐶𝑆𝑘

4: if |𝑆 | ≥ |𝐶 |
2

then
5: Order𝐺 according to some (deterministic) topologi-

cal sort that gives precedence to 𝑆

6: return the ordered DAG

However, Algorithm 1 is secure only in setups with constant

latency and a naïve attacker.
2
We will now describe the full ver-

sion of KNIGHT, which is secure against both spontaneous and

malicious changes in network latency.

2.5 Formal specification
We are now ready to present the holy grail of this work, the DAG-

KNIGHT protocol, as specified formally in Algorithm 2. Faithful to

its optimization paradigm, the complex of KNIGHT ’s procedures

(Algorithms 2-6) is designed to recognize the minimal 𝑘 for which

there exists a 𝑘-cluster that covers a majority of the DAG. Yet, the

choice of cluster entails more than merely finding a large enough

cluster, and produces a rather involved algorithm; these complexi-

ties will be explained and justified in Subsection 2.6. But first let us

provide a bird’s-eye view of the algorithm.

2.5.1 Overview. The algorithm receives as input a blockDAG 𝐺 ,

and outputs a selected tip of 𝐺 and an ordering over its blocks,

following these steps:

2
Additionally, line 3 involves solving an NP-hard problem [20].

• Compute the orderings of each tip on its past, and its selected

parent, recursively. (Alg. 2)

• Recognize iteratively the next conflict point between the

remaining tips P, namely, their latest common chain ances-

tor 𝑔. The induced hierarchy implies that disagreements, or

chain-splits, are dealt with from early to recent. (Alg. 2)

• For each conflict point 𝑔, decide between competing sets of

tips 𝑃𝑖 ’s (which agree with one another on this conflict) by

computing each set’s rank (see below), removing the losers

from the set of tips; if needed, run a tie-breaking procedure

(Alg. 4).

This elimination process terminates when a single tip re-

mains (|P | = 1) following the resolution of the most recent

conflict point, which is then returned as 𝐺 ’s selected tip.

(Alg. 2)

• The winning set is that for which at least one representative
3

achieves the lowest rank among all representatives of all sets.

(Alg. 3)

• The rank of a block, per a given conflict context, is the mini-

mal 𝑘 for which the 𝑘-cluster returned by the algorithm has

a subset which uniformly covers at least 50% of the DAG.

(Alg. 3)

• The 𝑘-cluster returned by the algorithm is computed recur-

sively, similarly to the GHOSTDAG cluster-selection (aka

colouring) procedure. A subtle condition, represented by the

boolean flag 𝑓 𝑟𝑒𝑒_𝑠𝑒𝑎𝑟𝑐ℎ, further dictates whether the re-

cursion is called for all parents of the block or only for those

which agree with it (on this conflict).
4
(Alg. 5)

• A set of blocks – a subset of the returned cluster – uniformly

covers 50% of G if for each block in the set, at least 50% of

its future belongs to the set (minus at most 𝑔(𝑘) ∈ 𝑜 (𝑘)).
Checking for the existence of a subset which satisfies this

property can be done efficiently, by traversing the DAG topo-

logically from tips to genesis, computing each block’s “vote”

between -1 and 1 (minus 1 represents a block that either does

not belong to the original cluster, or violates the coverage

condition), and returning genesis’ vote.
5
(Alg. 6)

2.5.2 Formal specification. We proceed to present the main proce-

dure of KNIGHT, Algorithm 2, and its subprocedures (Algorithms 3-

6). We begin with some formal definitions that the algorithms make

use of.

Definition 2. For a block 𝐵, chain-parent (𝐵) is a unique parent of
𝐵, set by KNIGHT’s chain-selection rule (line 5 in Algorithm 2). The
chain of 𝐵 is defined recursively by 𝑐ℎ𝑎𝑖𝑛 (𝐵) := (chain-parent (𝐵) ,
chain-parent (chain-parent (𝐵)) , . . . , 𝑔𝑒𝑛𝑒𝑠𝑖𝑠).

Observe that 𝑝𝑎𝑠𝑡 (𝐵) fully determines chain-parent (𝐵).

Definition 3. A set of blocks𝑋 ⊂ 𝐺 is said to agree in𝐺 if their latest
common chain ancestor is a chain-descendant of 𝑔 = 𝑔𝑒𝑛𝑒𝑠𝑖𝑠 (𝐺):
∃𝑔′ : 𝑔 ∈ 𝑐ℎ𝑎𝑖𝑛 (𝑔′) ∧ ∀𝐵 ∈ 𝑋 : 𝑔′ ∈ 𝑐ℎ𝑎𝑖𝑛 (𝐵).

3
A representative is any block in the inclusive past of the set of tips which does not

belong to the inclusive past of the other sets.

4
In short, a block may inherit the cluster from a disagreeing parent thereof only if the

latter’s rank is smaller than former’s rank, or if such a condition was met in a previous

recursion call.

5
This procedure borrows from the cascade voting of SPECTRE.

6

The DAG KNIGHT Protocol: A Parameterless Generalization of Nakamoto Consensus

Intuitively, two blocks agree in 𝐺 if they agree on 𝑔’s successor

in the chain.

Definition 4. For a set𝑋 ⊂ 𝑡𝑖𝑝𝑠 (𝐺) agreeing in𝐺 , the set 𝑟𝑒𝑝𝑠𝐺 (𝑋)
(representatives) is defined by{

𝑥 ∈ 𝑝𝑎𝑠𝑡 (𝑋) \ 𝑝𝑎𝑠𝑡 (𝑡𝑖𝑝𝑠 (𝐺) \ 𝑋) : 𝑥 agrees with 𝑋
}
.6

Definition 5. For a block 𝐵 and chain-ancestor 𝑔 ∈ 𝑐ℎ𝑎𝑖𝑛 (𝐵)
s.t. ∃𝑝1, 𝑝2 ∈ 𝑝𝑎𝑟𝑒𝑛𝑡𝑠 (𝐵) which do not agree over 𝑓 𝑢𝑡𝑢𝑟𝑒 (𝑔),
𝑟𝑎𝑛𝑘𝑓 𝑢𝑡𝑢𝑟𝑒 (𝑔) (𝐵) is defined to be the rank calculated by KNIGHT or-
dering when recursively executing Order-DAG (𝑝𝑎𝑠𝑡 (𝐵)) and for the
iteration of the While loop where 𝑔 was found (line 12 in Algorithm 2).

Definition 6. For 𝑈 ⊆ 𝐺,𝑑 ≥ 0, we say that 𝑈 is a 𝑑-UMC of

𝐺 (Uniform Majority Coverage), if 𝑔𝑒𝑛𝑒𝑠𝑖𝑠 (𝐺) ∈ 𝑈 AND ∀𝐵 ∈ 𝑈 ,
𝑓 𝑢𝑡𝑢𝑟𝑒 (𝐵) ∩𝑈 + 𝑑 ≥ 𝑓 𝑢𝑡𝑢𝑟𝑒 (𝐵) ∩ (𝐺 \𝑈)

For any non-negative integer 𝑘 , 𝑔 (𝑘) = 𝑜 (𝑘) is a function re-

turning a non-negative integer, used throughout the protocol. We

set 𝑔 (𝑘) B ⌊
√
𝑘⌋. When applied to sets of blocks, max and min

7

operators represent topology relations. That is, if 𝐵 = max𝐺 then

𝑓 𝑢𝑡𝑢𝑟𝑒 (𝐵)∩𝐺 = ∅, and likewise if𝐵 = min𝐺 then 𝑝𝑎𝑠𝑡 (𝐵)∩𝐺 = ∅.

Algorithm 2 KNIGHT DAG ordering algorithm

Input: 𝐺 – a block DAG

Output: Selected tip of 𝐺 , Ordering over 𝐺 ’s blocks

1: function Order-DAG(𝐺)

2: if 𝐺 is

{
𝑔𝑒𝑛𝑒𝑠𝑖𝑠

}
then

3: return 𝑔𝑒𝑛𝑒𝑠𝑖𝑠,
[
𝑔𝑒𝑛𝑒𝑠𝑖𝑠

]
4: for 𝐵 ∈ 𝑡𝑖𝑝𝑠 (𝐺) do
5: chain-parent (𝐵) , 𝑜𝑟𝑑𝑒𝑟𝐵 ← Order-DAG

(
𝑝𝑎𝑠𝑡 (𝐵)

)
6: P ← 𝑡𝑖𝑝𝑠 (𝐺)
7: while

��P�� > 1 do
8: 𝑔← latest common chain ancestor of all 𝐵 ∈ P
9: Partition P into maximal disjoint sets P1, . . . ,P𝑛 ⊂ P

s.t. latest common chain ancestor of P𝑖 is in 𝑓 𝑢𝑡𝑢𝑟𝑒 (𝑔)
10: for P𝑖 ∈

{
P1, . . . ,P𝑛

}
do

11: rank𝑖 ← Calculate-Rank

(
P𝑖 , 𝑓 𝑢𝑡𝑢𝑟𝑒𝐺 (𝑔)

)
12: 𝑟𝑎𝑛𝑘𝐺,𝑔 ← min

𝑖∈
{
1,...,𝑛

} rank𝑖
13: P ← Tie-Breaking

(
𝑓 𝑢𝑡𝑢𝑟𝑒𝐺 (𝑔) ,

{
P𝑖 : rank𝑖 =

𝑟𝑎𝑛𝑘𝐺,𝑔

})
14: 𝑝 ← the single element in P
15: return 𝑝,

[
𝑜𝑟𝑑𝑒𝑟𝑝 ∥ 𝑝 ∥ 𝑎𝑛𝑡𝑖𝑐𝑜𝑛𝑒 (𝑝)

]
⊲ operator ∥ is sequence

concatenation; 𝑎𝑛𝑡𝑖𝑐𝑜𝑛𝑒 (𝑝) is iterated in hash-based bottom-up topological order

2.6 Reviewing the components of KNIGHT
The algorithms presented above are admittedly involved. In this sub-

section we review their core components. The full version, which

will appear online, includes a line by line explanation of the three

procedures.

6
The 𝑝𝑎𝑠𝑡 operator is used on a set here and reflects the union over 𝑝𝑎𝑠𝑡 (𝐵) for
every block in the set.

7
As well as argmax, argmin.

8
Meaning that in this call to K-Colouring, 𝑣𝑖𝑟𝑡𝑢𝑎𝑙 (𝐺) is considered to agree with

P𝑖 .

Algorithm 3 Rank calculation procedure

Input: 𝐺 – a block DAG, P – a set of blocks in 𝐺 (typically P ⊂
𝑡𝑖𝑝𝑠 (𝐺))

Output: The rank of P in 𝐺

1: function Calculate-Rank(P,𝐺)
2: for 𝑘 = 0, 1 . . .∞ do
3: for 𝑟 ∈ 𝑟𝑒𝑝𝑠𝐺 (P) do
4: C𝑘 (𝑟) , _← K-Colouring

(
𝑟,𝐺, 𝑘, false

)
5: if UMC-Voting

(
𝐺 \ 𝑓 𝑢𝑡𝑢𝑟𝑒 (𝑟) , C𝑘 (𝑟) , 𝑔(𝑘)

)
> 0

then
6: return 𝑘

Algorithm 4 Rank tie-breaking procedure

Input: 𝐺 – a block DAG, P1, . . . ,P𝑚 ⊂ 𝑡𝑖𝑝𝑠 (𝐺)
Output: A set of tips P𝑖 wining the tie-breaking

1: function Tie-Breaking(𝐺,P1, . . . ,P𝑚)

2: 𝑘 ← the mutual rank of P1, . . . ,P𝑚 in 𝐺

3: F , _← K-Colouring

(
𝑣𝑖𝑟𝑡𝑢𝑎𝑙 (𝐺) ,𝐺, 𝑔(𝑘), true

)
4: for P𝑖 ∈

{
P1, . . . ,P𝑚

}
do

5: for 𝑘 ′ ∈
{
⌊𝑘/2⌋, . . . , 𝑘

}
do

6: _, 𝑐ℎ𝑎𝑖𝑛𝑖,𝑘′ ← K-Colouring

(
𝑣𝑖𝑟𝑡𝑢𝑎𝑙 (𝐺) ,𝐺, 𝑘 ′, false

)
conditioned

8
on 𝑣𝑖𝑟𝑡𝑢𝑎𝑙 (𝐺) agreeing with P𝑖

7: 𝐶𝑖 ←
⋃

𝑘′
{
𝐵 ∈ F : 𝑎𝑛𝑡𝑖𝑐𝑜𝑛𝑒 (𝐵) ∩ 𝑐ℎ𝑎𝑖𝑛𝑖,𝑘′ > 𝑘 ′

}
8: 𝑗 ← argmin𝑖∈1,...,𝑚 max {𝐶𝑖 } (break ties according to hash)

9: return P𝑗

2.6.1 Greedy maximization. To cope with the intractable nature of

finding the maximal 𝑘-cluster, we take an approach similar to [20]

where the NP-hard version was replaced with a greedy procedure,

called therein GHOSTDAG. We thus limit the search to extensions

of 𝑘-clusters of the previous tips of the DAG (K-Colouring, line 7).

2.6.2 Revisiting the Majority condition. Instead of requiring that

the selected 𝑘-cluster covers a majority of the DAG (equiv., the

majority of the future set of the genesis block), we check whether

it covers a majority of the future set of each of its member blocks,

including genesis; we refer to this property as uniform majority
coverage, or UMC. Blocks whose future the cluster fails to cover by

majority are cast out as outliers, and the procedure counts them

outside the cluster. The procedure induces a cascading majority

vote (borrowed from [19]) from recent blocks down to the genesis

block, and the latter’s vote dictates whether the majority cover is

satisfactory.

By extending the majority coverage requirement from genesis to

any (non-outlier) block in the 𝑘-cluster, we recover the “Markovian”

nature of the coverage property: Any new honest block “resets” the

process by posing an additional challenge to the attacker, namely, to

cover the majority of this new block. Indeed, honest miners possess

a majority of the hashrate, and blocks of honest miners are refer-

enced by their honest counterparts after at most 𝐷 seconds, after

which honest blocks are expected to win the block race with high

probability. To account for these 𝐷 seconds, we allow the cluster to

cover almost a majority—a deficit of 𝑔 (𝑘) blocks is permitted (line 5

in Calculate-Rank); this relaxed property is called 𝑔 (𝑘)-UMC.

7

Michael Sutton and Yonatan Sompolinsky

Algorithm 5 𝑘-colouring algorithm

Input: 𝐺 – a block DAG, 𝐶 – a block in 𝐺 , 𝑘 – a non-negative

integer, free_search – a Boolean indicating if the search can

maximize freely

Output: 𝑘-colouring of 𝑝𝑎𝑠𝑡𝐺 (𝐶), 𝑘-chain of 𝑝𝑎𝑠𝑡𝐺 (𝐶)
1: function K-Colouring(𝐶,𝐺, 𝑘, free_search)
2: if 𝑝𝑎𝑠𝑡𝐺 (𝐶) = ∅ then
3: return ∅, ∅
4: P ← ∅
5: for 𝐵 ∈ 𝑝𝑎𝑟𝑒𝑛𝑡𝑠 (𝐶) do
6: if 𝐵 agrees with 𝐶 then
7: 𝑏𝑙𝑢𝑒𝑠𝐵, 𝑐ℎ𝑎𝑖𝑛𝐵 ← K-Colouring

(
𝐵, 𝑝𝑎𝑠𝑡 (𝐵) ∩

𝐺,𝑘, free_search
)

8: P ← P ∪ 𝐵
9: else if free_search OR 𝑘 > 𝑟𝑎𝑛𝑘𝐺 (𝐶) then
10: 𝑏𝑙𝑢𝑒𝑠𝐵, 𝑐ℎ𝑎𝑖𝑛𝐵 ← K-Colouring

(
𝐵, 𝑝𝑎𝑠𝑡 (𝐵) ∩

𝐺,𝑘, true
)

11: P ← P ∪ 𝐵
12: 𝐵max ← argmax {|𝑏𝑙𝑢𝑒𝑠𝐵 | : 𝐵 ∈ P} (break ties according to hash)

13: 𝑏𝑙𝑢𝑒𝑠𝐺 , 𝑐ℎ𝑎𝑖𝑛𝐺 ← 𝑏𝑙𝑢𝑒𝑠𝐵max
∪

{
𝐵max

}
, 𝑐ℎ𝑎𝑖𝑛𝐵max

∪
{
𝐵max

}
14: for 𝐵 ∈ 𝑎𝑛𝑡𝑖𝑐𝑜𝑛𝑒 (𝐵max,𝐺) do in hash-based topological ordering

15: if
��𝑐ℎ𝑎𝑖𝑛𝐺 ∩ 𝑎𝑛𝑡𝑖𝑐𝑜𝑛𝑒 (𝐵)

�� ≤ 𝑘 AND 𝑏𝑙𝑢𝑒𝑠𝐺 ∩
𝑎𝑛𝑡𝑖𝑐𝑜𝑛𝑒 (𝐵max) < 𝑘 then

16: 𝑏𝑙𝑢𝑒𝑠𝐺 ← 𝑏𝑙𝑢𝑒𝑠𝐺 ∪
{
𝐵
}

17: return 𝑏𝑙𝑢𝑒𝑠𝐺 , 𝑐ℎ𝑎𝑖𝑛𝐺

Algorithm 6 UMC cascade voting procedure

Input: 𝐺 – a block DAG, 𝑈 ⊆ 𝐺 (typically a 𝑘-colouring), 𝑒 – a

non-negative integer representing the deficit threshold

Output: The voting result 𝑣𝑜𝑡𝑒 ∈
{
− 1, 1

}
of𝑈 ⊆ 𝐺

1: function UMC-Voting(𝐺,𝑈 , 𝑒)

2: 𝑣 ← ∑
𝐵∈𝑈 UMC-Voting

(
𝑓 𝑢𝑡𝑢𝑟𝑒 (𝐵) ,𝑈 ∩ 𝑓 𝑢𝑡𝑢𝑟𝑒 (𝐵) , 𝑒

)
3: return sign

(
𝑣 −

��𝐺 \𝑈 �� + 𝑒) ⊲ where sign (𝑥) B
{
1 𝑥 ≥ 0

−1 𝑥 < 0

2.6.3 Decouple ordering from colouring. Recall that our assump-

tions allow for an attacker to control the propagation time of any

message in the network up to some (unknown) bound 𝐷 . It follows

that the largest 𝑘-cluster, for 𝑘 ≈ 2·𝐷 ·𝜆 (which bounds the expected
size of an honest block’s natural anticone) is expected to satisfy

the majority coverage property (𝑔(𝑘)-UMC). One would expect,

therefore, that the following procedure would suffice to secure the

ordering: Find the minimal 𝑘 for which the largest 𝑘-cluster satisfies
the 𝑔(𝑘)-UMC property, and order the DAG according to that cluster.9

Albeit, this approach would undermine the stability of the order-

ing: If the network’s latency changes, spontaneously or maliciously,

from 𝑑 ≪ 𝐷 to 𝐷 the ordering of the DAG would change retroac-

tively from the largest 𝑘 (𝑑)-cluster to the largest 𝑘 (𝐷)-cluster,
undermining the convergence guarantee.

To cope with this challenge, we (re)introduce the notion of a

main chain, and order the DAG according to this chain. We show

this chain to be robust even under changes of delays, rendering the

ordering robust. The chain is formed as follows: Each block picks as

9
In other words, for 𝑘 = 0, 1, ... run 𝑘-GHOSTDAG, and return the first output that

satisfies the 𝑔 (𝑘)-UMC property.

its chain predecessor the block which minimizes its own 𝑘 , or more

accurately, its rank (Order-DAG, line 11). That is, we utilize the

optimization problem of KNIGHT to select the chain-predecessor

of each block rather than to order the entire historical DAG. This

decoupling allows the chain to “represent” different 𝑘’s along its

growth, which correspond to the effective latency at the time. For

example, if at chain-level 200 the attacker exposed a side-DAG that

required increasing 𝑘 from 5 to 7, the ordering of past blocks would

still be dictated by the chain below level 198, say.

This decoupling of cluster-selection from DAG-ordering spawns

an intricate design space with different inter-dependencies between

cluster-selection and chain-ordering. Interestingly, some natural

candidates turn out to be insecure, erring either on over-stability

(thereby compromising liveness) or on over-flexibility (compro-

mising safety). We strike a balance between these two necessary

objectives by allowing the cluster-selection to deviate from the

chain-selection of lower-ranked blocks (K-Colouring, line 9).

2.6.4 Tie-breaking for recovery. Consider a temporary anomaly

(“Poisson burst”) in the block creation process which led to an ab-

normally high rank𝐾 . After the network resumes normal operation,

we would like to recover the normal rank, denoted 𝑘★, or other-

wise liveness would be compromised (the waiting time for liveness

depends on a non-diverging upper bound over the rank); we thus

must guarantee healthy growth of the 𝑘★-cluster, even when the

current rank 𝐾 is excessively high.

In this context the tie-breaking rule between two chain-tip can-

didates of the same rank turns out to be crucial. A naïve rule would

prefer the larger 𝐾-cluster, yet such a design would allow an at-

tacker to keep the network at its current rank and prevent it from

recovering towards 𝑘★. Instead, we identify the tip whose clus-

ter utilized the excessive rank latest, and prefer its counterpart

(Tie-Breaking algorithm, line 8). The resulting chain-selection rule

forces a tie-preserving attacker to compete on ranks much lower

than the current one, and eventually to compete on the natural

rank, 𝑘★.

2.6.5 Adaptiveness to long-term delay changes. In the lack of an

a priori latency bound, a parameterless protocol necessarily per-

forms according to the actual (adversarial) latency, as discussed

in Section 1. However, in the context of a consensus protocol that

serves a continuous queue of transactions, the latencymight change

with time. It would then be undesirable if the protocol performs

according to the worst case historical latency rather than the recent

latency in the network. We formalize this requirement in Section 3.

To achieve this property, the protocol defines a conflict hierarchy,
eliminates iteratively the losing candidates, and selects the final

survival as the chain-predecessor. This logic is implemented in the

While loop in Order-DAG (line 7).

2.6.6 Representatives and monotonicity. In theory, an attacker may

attempt to artificially increase the rank of honest blocks by wasting

part of her hashrate to mine blocks that agree with honest blocks

but which do not belong to their 𝑘-cluster, where 𝑘 is the current

rank of honest blocks. While this scheme can be shown (yet, at

the expense of further complication of the analysis) to be overall

suboptimal on her part, it does undermine a desired “monotonous”

behaviour of the protocol. Consider a DAG𝐺 with two tips 𝐵 and𝐶 ,

8

The DAG KNIGHT Protocol: A Parameterless Generalization of Nakamoto Consensus

and assume that 𝐵 “won” and is𝐺 ’s selected chain tip. Consider the

effect of adding to 𝐺 a new block 𝐸, which references 𝐵 only. Since

𝐸 acknowledges 𝐵 but not 𝐶 , one would expect the addition of 𝐸 to

only increase the chance of 𝐵 to win over 𝐶 , and definitely not to

harm it. Alas, if a set of disconnected 𝐸’s are added to 𝐵’s future in

this manner, they may increase the rank of their part of the DAG,

and in particular may flip the choice and lead to the chain going

through 𝐶 . To recover the desired monotonous behaviour (thereby

simplifying our security analysis, as a byproduct), we dictate that

𝐶 competes with 𝐵 even if 𝐵 is no longer a tip of𝐺 (!) Thus, to win

the chain over 𝐸, 𝐶 must enjoy a rank lower than 𝐸 (the new tip)

but also of all blocks in 𝐸’s past (which are not in 𝐶’s past), and

𝐵 in particular; this exemplifies the role of the representative set

(Definition 4) used in line 3 of Calculate-Rank.

2.7 Runtime complexity
The algorithms specified in the previous article terminate in poly-

nomial time:

Proposition 1. Algorithm 2 terminates in polynomial time in |𝐺 |,
and returns a tip and an ordering of 𝐺 .

Proof. Observe the following facts:

• The while loop in line 7 decreases the size of P at each

iteration.

• Following line 13 it remains that P ≠ ∅, thus, after the loop,��P�� = 1 (line 14); thus, the return argument is not null, and

is an element in P.
• The overall recursion (line 5) terminates since ∀𝐵 ∈ 𝑡𝑖𝑝𝑠 (𝐺),
𝑝𝑎𝑠𝑡 (𝐵) ⊊ 𝐺 .

• The procedure Calculate-Rank terminates in polynomial

time, since the output of K-Colouring (𝐶,𝐺, 𝑘, ·), for any
block𝐶 ∈ 𝐺 , returns a k-UMC

10
, for 𝑘 = |𝐺 |, since all blocks

in 𝐺 belong to its largest |𝐺 |-cluster (there are, obviously,
much tighter arguments).

□

In a future version of this paper, we will present an equivalent

specification that takes as input two blocks and returns their respec-

tive ordering. This procedure is useful for certain types of clients

(e.g., what are known as “liteclients”), and can be shown to ter-

minate within a constant (in time) number of steps, concretely, in

O(𝐷 · 𝜆)2 steps.

3 MODEL AND FORMAL STATEMENT
We follow the prevalent models for a proof-of-work governed net-

work [13, 15] and its extensions to the block DAG framework [11, 19,

20]. A network of nodes (orminers) is denotedN , each node𝑢 main-

taining a replica of the DAG observable to it𝐺𝑢
𝑡 . The setH denotes

nodes that follow the mining protocol, which dictates that every

new block references all tips of the DAG observable to its miner

at its creation, and is broadcast by it immediately to the network.

The attacker deviates arbitrarily from the mining protocol, and can

further accelerate or delay messages from or to honest nodes up to

10
As shown in the full proof in Appendix A, UMC-Voting returns a positive sign if𝑈

is a 𝑑-UMC.

𝐷𝑡 seconds (𝐷𝑡 depends on time since network conditions and con-

nectivity might change with time); we denote by 𝐷max, or simply

𝐷 , the maximal 𝐷𝑡 across 𝑡 ∈ [0,∞). Importantly, 𝐷 = 𝐷max is a

function of the block size limit denoted 𝑏𝑙𝑜𝑐𝑘_𝑠𝑖𝑧𝑒_𝑙𝑖𝑚𝑖𝑡 (KB), since

large messages take longer to propagate. For brevity, we ignore

this parameter, and regard the block size as fixed. We emphasize

that 𝑏𝑙𝑜𝑐𝑘_𝑠𝑖𝑧𝑒_𝑙𝑖𝑚𝑖𝑡 can be increased in the same manner than

the block rate 𝜆 may be increased, as discussed in Subsection 5.1.

The proof-of-work mechanism targets a certain block creation

rate of 𝜆 blocks per second, kept (roughly) constant via a difficulty

adjustment algorithm, similarly to Bitcoin [13]. We denote the

proof-of-work protocol by 𝑝𝑜𝑤 (𝜆). Block creation thus follows

a Poisson process with parameter 𝜆, and the next block in the

network is created by an honest node with probability 1 − 𝛼𝑡 , for
some (unknown, potentially dynamic) 0 ≤ 𝛼𝑡 < 𝛼 (for 𝑡 ∈ [0,∞)).
If this inequality is guaranteed to hold for some range 𝑡 ≥ 𝑠 , We

say that 𝛼 is an 𝑠-updated bound over the attacker’s computational

power; this definition is used below to emphasize a self-stabilizing

property which allows to recover from “51% attacks”.

The DAG ordering rule 𝑂𝑅𝐷 is an algorithm that takes as input

a DAG of blocks and returns a linear ordering over its blocks. In our

parameterless model, as in the closely-related partial synchrony

model, the algorithm may take no parameters as input arguments

(such as 𝐷 , 𝛼 , 𝑘 , etc.). We require that all blocks in the DAG were

mined correctly according to 𝑝𝑜𝑤 (𝜆). If block 𝑎 admits a path to

block 𝑏 in the DAG, 𝑎 was necessarily created after 𝑏. The DAG

topology induces therefore a natural partial ordering, and the gist

of the ordering rule is to extend this to a full ordering over the

DAG.

3.1 Convergence of the ordering
The following definitions adapt and extend the model from PHAN-

TOM:

Property 1. An ordering rule 𝑂𝑅𝐷 is said to be:

• Parameterless if its only input argument is a block DAG𝐺 ; all
blocks in 𝐺 must be mined correctly according to the proof-of-
work protocol 𝑝𝑜𝑤 (𝜆).
• (1 − 𝛼)-convergent, if ∀𝑡 > 0, ∀𝑢 ∈ H and ∀𝑏 ∈ 𝐺𝑢

𝑡 :

lim

𝑟→∞
𝑟𝑖𝑠𝑘 (𝑏, 𝑡, 𝑟) = 0,

even when a fraction of at most 𝛼 of the mining power is byzan-
tine; the convergence rate of 𝑟𝑖𝑠𝑘 (·) should be in O(𝑓 (𝐷, 𝜆, 𝛼)),
for some function 𝑓 , and, in particular, may not grow indefi-
nitely with 𝑡 .11

• Scalable if there exists a constant 𝛼 > 0 such that it (1 − 𝛼)-
converges for all 𝜆 > 0; the maximal such 𝛼 is called the
security threshold of 𝑂𝑅𝐷 .
• Self stabilizing if the security threshold of𝑂𝑅𝐷 depends on the
𝑡-updated bound over the attacker’s computational power.12

11
Growing indefinitely with 𝑡 would imply that confirmation times are not bounded.

12
This property, which is satisfied by many proof-of-work consensus protocols, implies

that the protocol recovers from periods where the attacker’s computational power

exceeded the allowed threshold, and specifically from what is known as “51% attacks”.

In fact, some of these protocols, including KNIGHT, satisfy a stronger property and

allow the computational power of the attacker to exceed the bound for some limited

time-intervals in the future. Delving into these nuances is outside our scope.

9

Michael Sutton and Yonatan Sompolinsky

• Adaptive if the convergence rate of 𝑟𝑖𝑠𝑘 (𝑏, 𝑡, 𝑟) depends on
the recent delay rather than the historical delay; formally, if
it is in O (max𝑠≥𝑡 ((𝑔(𝑠 − 𝑡, 𝛼) · 𝑓 (𝐷𝑠 , 𝜆, 𝛼)))). The function
𝑔 represents the “memory” of the process, i.e., how far into the
past current values of 𝐷 (𝐷𝑠) impact convergence.

Here, 𝑟𝑖𝑠𝑘 (𝑏, 𝑡, 𝑟) is the probability that the ordering between 𝑏

and any other block 𝑐 changes between time 𝑡 and 𝑡 + 𝑟 [20].

3.2 Formal statement
Weare finally ready to formally state the achievement of the KNIGHT

protocol:

Theorem 2. KNIGHT’s ordering rule (Algorithm 2) is parameter-
less, scalable, self-stabilizing, and adaptive.

To the best of our knowledge, KNIGHT is the first proof-of-work

based protocol to satisfy all of these properties. For some compar-

isons: NC is not scalable, since its security threshold deteriorates

as the block creation rate 𝜆 grows; PHANTOM is not parameter-

less, since its ordering rule takes as input 𝑘 , corresponding to the

network’s worst case latency, and for the same reason it is not

adaptive.
13

SPECTRE does not guarantee convergence altogether

[19].

In Section 4 we will further shed light on the convergence rate

of KNIGHT, specifically, on the order of the functions 𝑓 and 𝑔. In

Appendix A we will provide a rigorous proof of Theorem 2.

4 CONFIRMATION TIMES
As common in proof-of-work protocols, the procedure for deter-

mining the robustness of the ordering – i.e., evaluating the func-

tion 𝑟𝑖𝑠𝑘 – is done by the client locally, outside the context of

consensus. The performance of the protocol in terms of speed is

captured by the convergence rate of 𝑟𝑖𝑠𝑘 . This metric should ar-

guably be dissected into two modes, optimistic and pessimistic.

In the former scenario, all participating nodes (miners) seem to

behave properly, and in particular there is no visible split in the

DAG; formally: all blocks agree on and amplify the entire chain

selection, save perhaps a constant-size suffix. In this optimistic sce-

nario, KNIGHT performs very fast, and transactions may be safely

confirmed after at most O
(
(ln(1/𝜖) + 𝐷 · 𝜆) /(1 − 2𝛼) + (𝐷 · 𝜆)2

)
steps, or O

((
ln(1/𝜖)

𝜆
+ 𝐷

)
/(1 − 2𝛼) + 𝐷2 · 𝜆

)
seconds. In terms of

Definition 1, the latter expression describes the asymptotic be-

haviour of the function 𝑓 . The function 𝑔 defined therein can be

shown to decay exponentially fast in its argument, implying that

confirmation times are highly dependent on the recent worst-case

latency in the network, and are insensitive to past or future network

hiccups.

In the pessimistic case, where an attacker continuously publishes

late blocks and thereby slows down chain solidification, our bounds

over confirmation times present an order-of-magnitude slow down:

O(exp(𝑐 · 𝐷 · 𝜆/(1 − 2 · 𝛼)) + ln(1/𝜖)/(1 − 2𝛼))) steps. This de-
scribes the asymptotic behaviour of 𝑓 in the pessimistic scenario

(the behaviour of 𝑔 remains the same). We stress that these bounds

are far from tight—they result from the intractability of analyzing

13
Indeed, any latency-parameterized protocol would not be adaptive. However, one

may conceive a parameterless protocol that is not adaptive.

the chain solidification under the most sophisticated attack, and

further grant the attacker unrealistic communication capabilities.

To overcome the intractability, and inspired by a technique from

PHANTOM paper, our analysis waits for a rare event in which

the honest network mined 𝑍 · 𝐷 · 𝜆 consecutive blocks in a chain,

for some predetermined constant 𝑍 . This event is guaranteed to

happen within a constant number of steps. While this condition is

an overkill, relaxing it and tightening the confirmation times is a

complex task, and we defer it to future work.

Notwithstanding, an attacker cannot slow down the confirmation

times of regular transactions, even if it carries out a visible attack.

As long as the user did not publish an explicit visible conflict to her

transaction, its receiver will be able to accept it in the same order-

of-magnitude as in the optimistic scenario. Indeed, in this case, the

ordering between the published transaction and other transactions

would be commutative, and thus the pending chain solidification

would be inconsequential to this transaction. Admittedly, in the

case of trading against a smart contract, this commutative property

might not hold.
14

The reader may find the comparison between asymptotic con-

firmation times in KNIGHT and other proof-of-work protocols in

Table 1 insightful. Among the protocols under comparison, NC is

the fastest to converge under visible (liveness) attacks, yet it con-

verges only for the range 𝛼 ∈ (0, 1/(1+𝐷 ·𝜆)) [21]. SPECTRE is the

fastest to converge under no visible attacks, it converges according

to the current (adversarial) latency 𝐷𝑡 , and does so slightly faster

than KNIGHT does. KNIGHT, in turn, converges in the invisible

and visible attack cases, and does so corresponding to 𝐷𝑡 as well,

in contrast to PHANTOM which converges in terms of 𝐷max = 𝐷

only. In Section 6 we will survey additional protocols.

Finally, we note that confirmation time analysis of KNIGHT can

be tightened significantly when restricted to the attacker range

𝛼 < 1/3. We defer this improvement to future work.

5 IMPLEMENTATION DETAILS
An implementation of Algorithm 2 and its subprocedures will be

made available online.

5.1 Block size limit
So far we treated synchronous protocols as assuming a bound

on latency 𝐷 . In fact, increasing 𝐷 and decreasing 𝜆 by the same

multiplicative factor has no effect and could be regarded as mere

change in units. Thus, in truth, the latency assumption takes the

form of a bound over 𝐷 · 𝜆.
Recall that 𝐷 depends on the size of messages 𝑏𝑙𝑜𝑐𝑘_𝑠𝑖𝑧𝑒_𝑙𝑖𝑚𝑖𝑡

(Section 3). Thus, increasing the block size would have a similar

effect to that of increasing the block rate 𝜆.15 Consequently, in

the same manner in which scalable protocols (Definition 1) re-

main secure under any 𝜆, they remain secure under any block size

𝑏𝑙𝑜𝑐𝑘_𝑠𝑖𝑧𝑒_𝑙𝑖𝑚𝑖𝑡 . In the following subsection we discuss whether

scalable parameterless protocols, such as KNIGHT, need to limit 𝜆

or 𝑏𝑙𝑜𝑐𝑘_𝑠𝑖𝑧𝑒_𝑙𝑖𝑚𝑖𝑡 .

14
These scenarios correspond, essentially, to the consensus properties safety, liveness,

and weak liveness, the latter defined in [19].

15
Notwithstanding, the function 𝐷 (𝑏𝑙𝑜𝑐𝑘_𝑠𝑖𝑧𝑒_𝑙𝑖𝑚𝑖𝑡) is nonhomogeneous.

10

The DAG KNIGHT Protocol: A Parameterless Generalization of Nakamoto Consensus

Visible attack No visible attack

NC O
(
(ln(1/𝜖)+𝐷𝑡𝜆)

max

{
0, 1−𝛼

1+𝐷𝑡 ·𝜆 −𝛼
}) (same as the visible attack case, asymptotically)

PHANTOM O
(
exp

(
𝑐1

𝑫max𝜆
1−2𝛼

)
+ ln(1/𝜖)

1−2𝛼

)
O

(
ln(1/𝜖)+𝑫max𝜆

1−2𝛼

)
SPECTRE ∞ O

(
ln(1/𝜖)+𝑫𝒕𝜆

1−2𝛼

)
KNIGHT O

(
exp

(
𝑐2

𝑫𝒕𝜆
1−2𝛼

)
+ ln(1/𝜖)

1−2𝛼

)
O

(
ln(1/𝜖)+𝑫𝒕𝜆

1−2𝛼 + (𝑫𝒕𝜆)2
)

Table 1: A comparison of the convergence rates of different proof-of-work protocols, in terms of time-steps (equiv., number
of blocks), in the presence of a visible ongoing liveness attack (left column) and when no such attack is carried visibly (right
column). 𝐷max denotes an a priori upper bound on the worst case latency, whereas 𝐷𝑡 denotes an upper bound on the current
latency (including possible delays by an adversary). To get expected confirmation times in seconds, multiply each expression
by the expected block interval 𝜆−1.

5.2 Difficulty Adjustment Algorithm (DAA)
NC and other proof-of-work protocols employ a DAA that increases

the difficulty-target of creating new blocks when the computational

power contributed to block creation (aka hashrate) increases, and

vice versa when it decreases; refer to [8] for a formal treatment. It is

common to ascribe the Sybil-resiliency of the system to this mech-

anism. However, in truth, proof-of-work suffices to protect against

Sybil-nodes even without any DAA. In fact, even if nodes were

free to choose the difficulty of their own blocks, one could devise a

secure consensus protocol by granting each block a weight, or “vot-

ing power”, in proportion to its difficulty. Instead, the motivation

for DAA is threefold:

• Existing protocols operate in the synchronous setup which

assumes an a priori bound over the number of blocks created

per one unit of delay, i.e., 𝐷 · 𝜆. For instance, NC assumes

𝐷 ·𝜆 ≪ 1, and PHANTOM assumes𝐷 ·𝜆 ≪ 𝑘+1. To preserve
these bounds and keep the protocol secure, 𝜆 cannot increase

indefinitely, and must be regulated by the protocol.

• DoS prevention: The capacity of the network and of nodes

is limited. The DAA throttles the block creation rate and

ensures that the maximum capacity is not exceeded.

• Some application considerations necessitate access to abso-

lute time, such as the regulation of minting, or timelocks.

These applications use the block count as a proxy for abso-

lute time.

The first consideration above is irrelevant to KNIGHT, which can

cope with dynamic𝐷 and 𝜆 (and𝐷 ·𝜆). While KNIGHT still requires

DAA for the latter considerations – particularly DoS prevention

– it could be satisfied perhaps with relaxed versions of DAA. we

hope that this discussion spurs new ideas for proof-of-work system

designs in the parameterless setup.

6 RELATEDWORK
We conclude this paper with a survey of related work. DAG-based

protocols have been mentioned extensively throughout the pa-

per, see for example Table 1. Additional relevant protocols in-

clude GHOST, which is an alternative chain-selection rule to NC’s

longest chain, and which performs similarly (in qualitative terms)

to NC [9, 10].

Thunderella [17] is a permissionless protocol that is responsive

in the strong sense of performing according to the network’s actual

latency; it requires a super majority of 75% to be honest for this

optimistic mode (compared to KNIGHT’s 51% majority), as well

as the pre-selection of a special “accelerator” node, which com-

promises the permissionless property of the system. The works

in [3, 7, 22] maintain 𝑘 parallel NC chains, where each block is

assigned in random to one of these chains. The ordering rule must

then specify the respective ordering between blocks in different

chains. These works operate in the synchronous setup, as they

pre-assume 𝑘 so as to ensure that each chain grows with negli-

gible latency; conceptually, as observed by [20], these protocols

require 𝐷 · 𝜆/(𝑘 + 1) ≪ 1. Prism [3] claim a confirmation time of

O(max(𝑐1(𝛼) · 𝐷, 𝑐2(𝛼) · 𝐵𝑣 · ln(1/𝜖))) seconds; here, 𝐵𝑣/𝐶 effec-

tively represents the number of blocks per second (𝜆, in our work).

Importantly, in the above term 𝐷 stands as a function that depends

only on network latency and does not depend on the block message

size (denoted 𝐵𝑣 , and in our work 𝑏𝑙𝑜𝑐𝑘_𝑠𝑖𝑧𝑒_𝑙𝑖𝑚𝑖𝑡). We find this

claim questionable, and argue that if indeed 𝐷 does not depend

on 𝑏𝑙𝑜𝑐𝑘_𝑠𝑖𝑧𝑒_𝑙𝑖𝑚𝑖𝑡 , then “proposer blocks” and “voter blocks” in

Prism do not in fact attest that “transaction blocks” referenced by

them have been fully published, which opens up data availability

attacks. The number of chains in Prism further depends on the

parameter 𝜖 .

The work in [18] proposes a series of protocols, Slush, Snowflake,

and Snowball, which use a network sampling technique to resolve

conflicts between nodes. The paper claims very fast confirmation

times (1.35 seconds). Yet, these protocols operate in the synchronous

model (see Section 2, “Achieving Liveness”), and thus confirmation

times in the pessimistic case are not responsive to the network’s

latency. The protocols are further limited to a fixed confidence

parameter 𝜖 (see e.g. Subsection 3.2 therein), similarly to Prism.

Finally, this line of work builds on novel assumptions on nodes’

ability to sample the network.

Our work was motivated by Pass and Shi’s impossibility result

regarding responsive consensus protocols [16], which is an adap-

tation of the classic 34% byzantine threshold bound on partially

synchronous protocols by Dwork et al. [6] to permissionless set-

tings. To circumvent this impossibility, we focused on a relaxed

property that aims to be responsive to the maximal latency causable

by an adversary, rather than to the observable latency; accordingly,

11

Michael Sutton and Yonatan Sompolinsky

Theorem 2 does not state KNIGHT as being responsive. KNIGHT

respects the bound of [6, 16] in that it is responsive to the current

worst-case adversarial latency (Δ, in their model) but not to the

actual observable one (𝛿 therein). Indeed, the impossibility result

(Section 9.2 in [16]) relies directly on the attacker increasing the

delay from 𝛿 to Δ after transactions have been confirmed. In our

model, however, transaction confirmation times depend on Δ (𝐷𝑡 ,

in our notation).

For discussion of tighter transaction confirmation policies, which

employ absolute time in addition to the ledger state, see [14]. The

results therein apply, qualitatively, to KNIGHT as well.

The achievement of KNIGHT is made possible by the decoupling

of the canonical protocol dictating the ordering over all transactions,

and the client protocol for estimating its finality (Subsection 1.4).

A similar decoupling was previously proposed in the Flexible BFT

paper [12]. That work operates in the traditional permissioned

setup, and is still restricted by the 34% threshold for byzantine

resilience of partially synchronous protocols, by Dwork et al. [6].

To reason about the fundamental difference in paradigm, observe

that the consensus participants in Flexible BFT are not agnostic

to the finality of transactions—they reach eventual agreement on

finality. In contrast, proof-of-work miners running KNIGHT need

not reach any agreement on finality of transactions, and are in fact

not required to interpret the state whatsoever. We believe that this

agnosticism towards the state is necessary when designing a 50%

BFT parameterless consensus protocol.

REFERENCES
[1] http://bitcoinfibre.org/stats.html.

[2] http://kgi.kaspad.net/.

[3] Vivek Bagaria, Sreeram Kannan, David Tse, Giulia Fanti, and Pramod Viswanath.

Prism: Deconstructing the blockchain to approach physical limits. In Proceedings
of the 2019 ACM SIGSAC Conference on Computer and Communications Security,
pages 585–602, 2019.

[4] Shehar Bano, Alberto Sonnino, Mustafa Al-Bassam, Sarah Azouvi, Patrick Mc-

Corry, Sarah Meiklejohn, and George Danezis. Sok: Consensus in the age of

blockchains. In Proceedings of the 1st ACM Conference on Advances in Financial
Technologies, pages 183–198, 2019.

[5] Edsger W Dijkstra. Self-stabilizing systems in spite of distributed control. Com-
munications of the ACM, 17(11):643–644, 1974.

[6] Cynthia Dwork, Nancy Lynch, and Larry Stockmeyer. Consensus in the presence

of partial synchrony. Journal of the ACM (JACM), 35(2):288–323, 1988.
[7] Matthias Fitzi, Peter Gazi, Aggelos Kiayias, and Alexander Russell. Parallel

chains: Improving throughput and latency of blockchain protocols via parallel

composition. IACR Cryptology ePrint Archive, 2018:1119, 2018.
[8] Juan Garay, Aggelos Kiayias, and Nikos Leonardos. The bitcoin backbone protocol

with chains of variable difficulty. In Annual International Cryptology Conference,
pages 291–323. Springer, 2017.

[9] Aggelos Kiayias and Giorgos Panagiotakos. On trees, chains and fast transactions

in the blockchain. Cryptology ePrint Archive, Report 2016/545, 2016.

[10] Lucianna Kiffer, Rajmohan Rajaraman, and Abhi Shelat. A better method to ana-

lyze blockchain consistency. In Proceedings of the 2018 ACM SIGSAC Conference
on Computer and Communications Security, pages 729–744, 2018.

[11] Yoad Lewenberg, Yonatan Sompolinsky, and Aviv Zohar. Inclusive block chain

protocols. In International Conference on Financial Cryptography and Data Secu-
rity, pages 528–547. Springer, 2015.

[12] Dahlia Malkhi, Kartik Nayak, and Ling Ren. Flexible byzantine fault tolerance. In

Proceedings of the 2019 ACM SIGSAC conference on computer and communications
security, pages 1041–1053, 2019.

[13] Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system, 2008.

[14] Seb Neumayer, Mayank Varia, and Ittay Eyal. An analysis of acceptance policies

for blockchain transactions. Cryptology ePrint Archive, 2018.
[15] Rafael Pass, Lior Seeman, and Abhi Shelat. Analysis of the blockchain protocol

in asynchronous networks. IACR Cryptology ePrint Archive, 2016:454, 2016.
[16] Rafael Pass and Elaine Shi. Hybrid consensus: Efficient consensus in the permis-

sionless model, 2016.

[17] Rafael Pass and Elaine Shi. Thunderella: Blockchains with optimistic instant

confirmation. In Annual International Conference on the Theory and Applications
of Cryptographic Techniques, pages 3–33. Springer, 2018.

[18] Team Rocket, Maofan Yin, Kevin Sekniqi, Robbert van Renesse, and Emin Gün

Sirer. Scalable and probabilistic leaderless bft consensus through metastability.

arXiv preprint arXiv:1906.08936, 2019.
[19] Yonatan Sompolinsky, Yoad Lewenberg, and Aviv Zohar. SPECTRE: A fast and

scalable cryptocurrency protocol. IACR Cryptology ePrint Archive, 2016:1159,
2016.

[20] Yonatan Sompolinsky, Shai Wyborski, and Aviv Zohar. PHANTOM and

GHOSTDAG: A scalable generalization of nakamoto consensus. Cryptology

ePrint Archive, Report 2018/104, 2018. https://eprint.iacr.org/2018/104.

[21] Yonatan Sompolinsky and Aviv Zohar. Secure high-rate transaction processing in

bitcoin. In International Conference on Financial Cryptography and Data Security,
pages 507–527. Springer, 2015.

[22] Haifeng Yu, Ivica Nikolic, Ruomu Hou, and Prateek Saxena. Ohie: Blockchain

scaling made simple. arXiv preprint arXiv:1811.12628, 2018.

A SECURITY PROOF
A.1 Definitions and Notation
Definition 7. 𝐺𝑡 is the oracle DAG at time 𝑡 . Similarly, for block 𝐵
mined at 𝑡𝑖𝑚𝑒 (𝐵), we abuse notation and define 𝐺𝐵 B 𝐺𝑡𝑖𝑚𝑒 (𝐵) .

Definition 8. F𝑘 (𝐵,𝐺) is the maximization-free 𝑘-cluster of block
𝐵 as calculated by the call K-Colouring (𝐵,𝐺, 𝑘, true) in Alg. 5.

Definition 9. C𝑘 (𝐵,𝐺) is the 𝑘-cluster of block 𝐵 as calculated
by K-Colouring (𝐵,𝐺, 𝑘, false) in Alg. 5. We use C (𝐵) to denote
C𝑘 (𝐵,𝐺) for the special case 𝑘 = 𝑘★. When the context is clear we
abbreviate and write simply C𝑘 (𝐵).

Definition 10. 𝑘-chain (𝐵,𝐺) is the chain of 𝑘-maximizing blocks
used by K-Colouring (𝐵,𝐺, 𝑘, 𝑓 𝑎𝑙𝑠𝑒) in order to compose C𝑘 (𝐵,𝐺).
More concretely, the 𝑘-chain parent of block 𝐵 is 𝐵max, assigned at
line 12 of Alg. 5, and so on, recursively.

Definition 11. C𝑘 (𝐵) is the complementary set of C𝑘 (𝐵) at
𝑡𝑖𝑚𝑒 (𝐵). More formally, C𝑘 (𝐵)B 𝐺𝐵 \ C𝑘 (𝐵)

Definition 12. The merge set of block 𝑥 is defined by
𝑚𝑒𝑟𝑔𝑒𝑠𝑒𝑡 (𝑥) B 𝑝𝑎𝑠𝑡 (𝑥) \ 𝑝𝑎𝑠𝑡 (chain-parent (𝑥)). We say block
𝑥 is merging block 𝑦 if 𝑦 ∈𝑚𝑒𝑟𝑔𝑒𝑠𝑒𝑡 (𝑥).

The set of blocks mined after and before block 𝑥 (in absolute time,

as seen by an external oracle), are denoted before (𝑥) and after (𝑥)
respectively. We use subscript notation 𝑋𝑥 ⟩, 𝑋 ⟨𝑥 and 𝑋 ⟨𝑥,𝑦⟩ over
a set of blocks 𝑋 , to indicate 𝑋 \ after (𝑥) , 𝑋 ∩ after (𝑥) and 𝑋 ∩
after (𝑥) \ after (𝑦) respectively.

We notate 𝑥 ⇒ 𝑦 if 𝑦 = chain-parent (𝑥). Similarly, we use

𝑥 ⇒𝑘 𝑦 if 𝑦 is the 𝑘-chain parent of 𝑥 .

A.2 K-cluster Combinatorics
Unlike the GHOSTDAG 𝑘-colouring algorithm (Algorithm 1 in

[20]), the K-Colouring procedure in Algorithm 5 uses weaker

colouring rules which give precedence to past and current chain
blocks (line 15 therein). Nonetheless, as we show below, for some

larger 𝐾 > 𝑘 the resulting cluster is still a valid 𝐾-cluster. Denote

𝐾 (𝑘) B (2𝑘 + 1) (𝑘 + 1).

Lemma 1. For any block 𝐵 and DAG 𝐺 , the cluster 𝐶 returned by
K-Colouring(𝐵,𝐺, 𝑘, ·) is a 𝐾 (𝑘)-cluster.

Proof. The first condition in line 15 implies that a block added to

the colouring cannot have more than 𝑘 chain-blocks in its anticone.

12

https://eprint.iacr.org/2018/104

The DAG KNIGHT Protocol: A Parameterless Generalization of Nakamoto Consensus

Hence by the time 𝐵 is coloured and added to 𝐶 , is holds that

|𝑎𝑛𝑡𝑖𝑐𝑜𝑛𝑒 (𝐵) ∩𝐶 | ≤ (𝑘 + 1) (𝑘 + 1). This follows from the fact that

each of the 𝑘 chain blocks prior to the chain-block merging 𝐵 has

merged at most 𝑘 blocks (from the second condition in line 15).

Likewise, only the next 𝑘 chain-blocks can colour blocks ∈
𝑎𝑛𝑡𝑖𝑐𝑜𝑛𝑒 (𝐵), resulting in 𝑘 (𝑘 + 1) more blocks. Combined we get

|𝑎𝑛𝑡𝑖𝑐𝑜𝑛𝑒 (𝐵) ∩𝐶 | ≤ (2𝑘 + 1) (𝑘 + 1) = 𝐾 (𝑘) □

Lemma 2. Let 𝐵1, 𝐵2, . . . , 𝐵𝑛−1, 𝐵𝑛 be a sequence of 𝑘-chain blocks
s.t. 𝐵𝑖−1 ⇒𝑘 𝐵𝑖 and let 𝐵 ∈ C𝑘 (𝐵1) \ C𝑘 (𝐵2) s.t. 𝐵𝑛 is the maximal
element ∈ 𝑘-chain (𝐵1) ∩ 𝑝𝑎𝑠𝑡 (𝐵); then C𝑘 (𝐵1) \ C𝑘 (𝐵𝑛) ≤ 4𝐾 (𝑘).

Proof.
16

The set 𝑝𝑎𝑠𝑡 (𝐵1) \ 𝑝𝑎𝑠𝑡 (𝐵𝑛) is covered by the anti-

cones of 𝐵, 𝐵2, 𝐵𝑛−1, 𝐵𝑛 ∈ C𝑘 (𝐵1), which immediately implies its

intersection with C𝑘 (𝐵1) is ≤ 4𝐾 (𝑘). To see the covering, assume

there exists a block 𝐷 not in any anticone, so 𝐷 ∉ 𝑎𝑛𝑡𝑖𝑐𝑜𝑛𝑒 (𝐵);
if 𝐷 ∈ 𝑓 𝑢𝑡𝑢𝑟𝑒 (𝐵) then it must be ∈ 𝑎𝑛𝑡𝑖𝑐𝑜𝑛𝑒 (𝐵2), otherwise
𝐵 ∈ 𝑝𝑎𝑠𝑡 (𝐵2); if on the other hand 𝐷 ∈ 𝑝𝑎𝑠𝑡 (𝐵) it cannot be
in 𝑓 𝑢𝑡𝑢𝑟𝑒 (𝐵𝑛−1) since that will contradict maximality of 𝐵𝑛 , thus

it must be ∈ 𝑝𝑎𝑠𝑡 (𝐵𝑛−1) which implies 𝐷 ∈ 𝑎𝑛𝑡𝑖𝑐𝑜𝑛𝑒 (𝐵𝑛), a con-
tradiction. □

Lemma 3. Let 𝐵1, . . . , 𝐵𝑛−1, 𝐵𝑛 be a sequence of 𝑘-chain blocks s.t.
𝐵𝑖−1 ⇒𝑘 𝐵𝑖 and let 𝐵 ∈ C𝑘 (𝐵1) s.t. 𝐵𝑛 is the maximal element ∈
𝑘-chain (𝐵1)∩𝑝𝑎𝑠𝑡 (𝐵), then

(
𝑓 𝑢𝑡𝑢𝑟𝑒 (𝐵𝑛)\𝑓 𝑢𝑡𝑢𝑟𝑒 (𝐵)

)
∩C𝑘 (𝐵1) ≤

2𝐾 (𝑘).

Proof. The set 𝑓 𝑢𝑡𝑢𝑟𝑒 (𝐵𝑛) \ 𝑓 𝑢𝑡𝑢𝑟𝑒 (𝐵) is covered by the an-

ticones of 𝐵, 𝐵𝑛−1 ∈ C𝑘 (𝐵1), which immediately implies its inter-

section with C𝑘 (𝐵1) is ≤ 2𝐾 (𝑘). To see the covering, assume there

exists a block in this set s.t. 𝐷 ∉ 𝑎𝑛𝑡𝑖𝑐𝑜𝑛𝑒 (𝐵) , ∉ 𝑎𝑛𝑡𝑖𝑐𝑜𝑛𝑒 (𝐵𝑛−1);
so 𝐷 ∈ 𝑝𝑎𝑠𝑡 (𝐵) hence it cannot be in 𝑓 𝑢𝑡𝑢𝑟𝑒 (𝐵𝑛−1) since that will
contradict maximality of 𝐵𝑛 , so it must be ∈ 𝑝𝑎𝑠𝑡 (𝐵𝑛−1) which
implies 𝐷 ∉ 𝑓 𝑢𝑡𝑢𝑟𝑒 (𝐵𝑛), a contradiction. □

A.3 Main theorem
We are now ready to prove our main result. For the reader’s conve-

nience, we first restate the claim:

Theorem 2. KNIGHT’s ordering rule (Algorithm 2) is parameter-
less, scalable, self-stabilizing, and adaptive.

A.4 Proof
We fix an arbitrary honest node 𝑢 ∈ ℎ𝑜𝑛𝑒𝑠𝑡 and assume its point of

view. We thus abbreviate 𝑣𝑖𝑟𝑡𝑢𝑎𝑙𝑡 to represent the virtual block of

node 𝑢 at time 𝑡 . We additionally regard the pov of a hypothetical

oracle node that sees all blocks immediately upon their creation,

including the attacker; in fact, the omnipotent attacker in our model

enjoys the same pov as the oracle node.

Below, we will skip proofs of the more straightforward claims.

We will close this gap in a future version of this paper.

A.4.1 Chain growth. We begin by analyzing the growth rate of the

maximization-free colouring F𝑘 (𝑣𝑖𝑟𝑡𝑢𝑎𝑙𝑡) and show that there ex-

ists a “natural” 𝑘 for which this colouring yields > 50% growth. This

“free-search” algorithm can be seen as a modified GHOSTDAG [20],

where by weakening the colouring rules we were able to strengthen

16
The proofs of the current and following lemmas are in spirit of PHANTOM’s

freeloader bound [20].

the growth-rate proven for GHOSTDAG from achieving a relative

majority (over the attacker), to achieving an absolute majority.

Claim 1. There exists 𝑘𝑛𝑎𝑡𝑢𝑟𝑎𝑙 , depending only on 𝐷 , 𝛼 and 𝜆, s.t.
the expected growth of F𝑘𝑛𝑎𝑡𝑢𝑟𝑎𝑙 (𝑣𝑖𝑟𝑡𝑢𝑎𝑙𝑡) is strictly larger than 0.5;
that is,

E
(��F𝑘𝑛𝑎𝑡𝑢𝑟𝑎𝑙 (𝑣𝑖𝑟𝑡𝑢𝑎𝑙𝑡+𝑟) �� − ��F𝑘★ (𝑣𝑖𝑟𝑡𝑢𝑎𝑙𝑡) ��) > 0.5𝑟𝜆.

We now use the maximization-free expected growth-rate, and

utilize the Tie-Breaking algorithm, to show that larger-than 50%

growth-rate is achieved also for the non-free colouring, albeit with

a larger 𝑘 parameter.

Proposition 3. There exists 𝑘★, depending only on 𝐷 , 𝛼 and 𝜆 s.t.
the expected growth of C𝑘★ (𝑣𝑖𝑟𝑡𝑢𝑎𝑙𝑡) is strictly larger than 0.5; that
is,

E
(��C𝑘★ (𝑣𝑖𝑟𝑡𝑢𝑎𝑙𝑡+𝑟) �� − ��C𝑘★ (𝑣𝑖𝑟𝑡𝑢𝑎𝑙𝑡) ��) > 0.5𝑟𝜆.

Corollary 2. If𝑈 is 𝑑-UMC of 𝐺 , then UMC-Voting
(
𝐺,𝑈 ,𝑑

)
> 0.

Claim 3. UMC-Voting
(
𝐺𝑡 , C𝑘★ (𝑣𝑖𝑟𝑡𝑢𝑎𝑙𝑡) , 𝑔(𝑘★)

)
has positive

value in expectation.

A.4.2 Liveness collapse.

Definition 13. The attacker advantage 𝑎𝑑𝑣 (𝑡) at time 𝑡 as
𝑎𝑑𝑣 (𝑡) B max𝐵∈C𝑘★ (𝑣𝑖𝑟𝑡𝑢𝑎𝑙𝑡) 𝑓 𝑢𝑡𝑢𝑟𝑒 (𝐵)∩ (𝐺𝑡 \ C𝑘★ (𝑣𝑖𝑟𝑡𝑢𝑎𝑙𝑡))−
𝑓 𝑢𝑡𝑢𝑟𝑒 (𝐵) ∩ C𝑘★ (𝑣𝑖𝑟𝑡𝑢𝑎𝑙𝑡).

Lemma 4. The attacker advantage 𝑎𝑑𝑣 (𝑡) is upper bounded by a
stochastic process which admits a stationary distribution with 𝐶0 =
O(𝑘𝑛𝑎𝑡𝑢𝑟𝑎𝑙) skew and an exponentially decaying tail.

Definition 14. A burst event B𝑡,𝑍 is an honest chain burst of size
𝐶0 + 3𝑍 starting at time 𝑡 , where 𝑍 is a function of 𝐾 (𝑘★).

Let B denote the sequence of blocks constituting the burst event

B𝑡,𝑍 and let B𝑖 be the 𝑖’th block from the start of the event. Denote

the particular blocks s B B1, 𝜙 B B𝐶0
, d B B𝐶0+𝑍 , e B B𝐶0+2𝑍 .

These blocks represent the starting point s of the event, the pivot
block 𝜙 which we claim to be on any future honest chain, the defeat
block d representing the point where the attacker is in sufficient

deficit, and the end block of the burst, e.

Definition 15. An honest block-race win eventW𝑡 is the event that
starting from time 𝑡 , ∀𝑠 > 𝑡, C (𝑣𝑖𝑟𝑡𝑢𝑎𝑙𝑠) ⟨𝑡 ≥ C (𝑣𝑖𝑟𝑡𝑢𝑎𝑙𝑠)⟨𝑡
Definition 16. The event-sequence E𝑡,𝑍 is defined to be the sequence
of events (i) 𝑎𝑑𝑣 (𝑡) ≤ 𝐶0, (ii) followed by a burst B𝑡,𝑍 , (iii) followed
by a block-race winW𝑡𝑖𝑚𝑒 (e) . Note that all events are independent
and have positive probability.

Definition 17. A is the set of non-convinced blocks following the
burst event, i.e., the set

{
𝐵 ∈ 𝐺 ⟨e,∞⟩ : 𝜙 ∉ 𝑐ℎ𝑎𝑖𝑛 (𝐵)

}
.

Definition 18. H𝑐 is the set of chain blocks of honest node𝑢, starting
from block d of the burst event, i.e., the set

{
𝐵 ∈ 𝐺 ⟨d,∞⟩ : ∃𝑡 >

𝑡𝑖𝑚𝑒 (d) , 𝐵 ∈ 𝑐ℎ𝑎𝑖𝑛 (𝑣𝑖𝑟𝑡𝑢𝑎𝑙𝑡)
}
.

Claim 4. For block 𝑎 ∈ A, denote 𝑎1 = min 𝑐ℎ𝑎𝑖𝑛 (𝑎)∩after (e) and
𝑎2 = max 𝑐ℎ𝑎𝑖𝑛 (𝑎) ∩ before (s). Then it holds that ∀𝑝 ∈ B⟨𝜙 , 𝑝 ∈
𝑎𝑛𝑡𝑖𝑐𝑜𝑛𝑒 (𝑎1) ∪ 𝑎𝑛𝑡𝑖𝑐𝑜𝑛𝑒 (𝑎2).

13

Michael Sutton and Yonatan Sompolinsky

Proof. Assume there exists such 𝑝 ∉ 𝑎𝑛𝑡𝑖𝑐𝑜𝑛𝑒 (𝑎1) ∪
𝑎𝑛𝑡𝑖𝑐𝑜𝑛𝑒 (𝑎2), then 𝑝 ∈ 𝑝𝑎𝑠𝑡 (𝑎1) ∩ 𝑓 𝑢𝑡𝑢𝑟𝑒 (𝑎2), so 𝑝 ∈ 𝑐ℎ𝑎𝑖𝑛 (𝑎),
contradicting 𝑎 ∈ A . □

Claim 5. For block 𝑎 ∈ A, C𝑘 (𝑎) ∩ B⟨𝜙 ≤ 2𝐾 (𝑘).

Proof. Follows from Claim 4 and from the definition of a 𝑘-

cluster. □

The proof of the claim below assumes that the colouring of

𝑐ℎ𝑎𝑖𝑛 (𝐵) coincides with 𝑘-chain (𝐵,𝐺), for any 𝑘 and for any sub-

DAG𝐺 . Following the proof we alleviate this assumption. Addition-

ally, for legibility, the proof does not distinguish explicitly between

𝑘★ and 𝐾 (𝑘★). This merely means that some of the constants such

as 𝑍 need to be set larger and with respect to 𝐾 (𝑘★) rather than
𝑘★.

Claim 6. (main claim) Conditioned on the occurrence of event-
sequence E𝑡,𝑍 , it holds that for any ℎ ∈ H𝑐 \ A, and for any 𝑎 ∈ A
merging ℎ,

𝑝𝑎𝑠𝑡 (𝑎) ∩ after (ℎ) \ 𝑓 𝑢𝑡𝑢𝑟𝑒 (ℎ) ≥ C (ℎ) ⟨d − C (ℎ)⟨d .

Proof. Assume for contradiction the claim is false. We look at

the minimal event ℎ, 𝑎 violating the claim statement, i.e., 𝑎 ∈ A is a

merging block of ℎ ∈ H𝑐 \A and 𝑝𝑎𝑠𝑡 (𝑎) ∩after (ℎ) \ 𝑓 𝑢𝑡𝑢𝑟𝑒 (ℎ) <
C (ℎ) ⟨d − C (ℎ)⟨d.

Denote 𝑔 to be the most recent shared chain-ancestor of ℎ and 𝑎,

i.e., 𝑔 = max 𝑐ℎ𝑎𝑖𝑛 (ℎ) ∩𝑐ℎ𝑎𝑖𝑛 (𝑎). We analyze the run of Algorithm

2 for the recursive call where 𝐺 = 𝑝𝑎𝑠𝑡 (𝑎) (line 5), and for the

iteration of the While loop at which 𝑔 is obtained (line 8), and

reach a contradiction to the algorithm’s decision. Throughout the

proof and sub-claims, we implicitly use a context DAG C which

all sets are intersected with. We set the broader context to be C =

𝑓 𝑢𝑡𝑢𝑟𝑒 (𝑔) ∩𝑝𝑎𝑠𝑡 (𝑎), however at some inner arguments we narrow

the context further.

From minimality of 𝑎 we have that 𝑓 𝑢𝑡𝑢𝑟𝑒 (ℎ) ∩ A = ∅. To
see this, assume otherwise and let 𝑎′ = min 𝑓 𝑢𝑡𝑢𝑟𝑒 (ℎ) ∩ A.

So ℎ ∈ 𝑚𝑒𝑟𝑔𝑒𝑠𝑒𝑡 (𝑎′) since ℎ ∉ A, 𝑎′ ∈ A. Additionally,

since 𝑎′ ∈ 𝑝𝑎𝑠𝑡 (𝑎) it holds that 𝑝𝑎𝑠𝑡 (𝑎′) ⊂ 𝑝𝑎𝑠𝑡 (𝑎), hence
𝑝𝑎𝑠𝑡 (𝑎′)∩after (ℎ)\𝑓 𝑢𝑡𝑢𝑟𝑒 (ℎ) ⊂ 𝑝𝑎𝑠𝑡 (𝑎)∩after (ℎ)\𝑓 𝑢𝑡𝑢𝑟𝑒 (ℎ) <
C (ℎ) ⟨d − C (ℎ)⟨d, contradicting minimality of 𝑎.

We now prove that ∀𝑞 ∈ 𝑎𝑛𝑡𝑖𝑐𝑜𝑛𝑒 (ℎ) ∩ A, 𝑟𝑎𝑛𝑘C (ℎ) <

𝑟𝑎𝑛𝑘C (𝑞).

Claim 6.1. C (ℎ) is a
(
4𝑘★ + 2

)
-UMC of C \ 𝑓 𝑢𝑡𝑢𝑟𝑒 (ℎ).

Proof. In the following, we narrow the implicit context to be

C \ 𝑓 𝑢𝑡𝑢𝑟𝑒 (ℎ).
By definition of a UMC it needs to be shown that every block

in C (ℎ) has bounded negative score (within the context). More

formally, we need to show that for every block 𝑏 ∈ C (ℎ), it holds
that 𝑓 𝑢𝑡𝑢𝑟𝑒 (𝑏) ∩ C (ℎ) + 4𝑘★ + 2 ≥ 𝑓 𝑢𝑡𝑢𝑟𝑒 (𝑏) \ C (ℎ).

Intuitively, while blocks before and during the start of the burst

enjoy the natural advantage of the burst, for blocks following

𝑡𝑖𝑚𝑒 (d) a more sophisticated argument, using the contradiction

hypothesis, is required.We thus begin by proving a tighter result for

chain blocks mined after 𝑡𝑖𝑚𝑒 (d), subsequently using it to prove

the bound for all blocks in C (ℎ) ⟨d.

Claim 6.1.1. ∀𝑝 ∈ 𝑐ℎ𝑎𝑖𝑛 (ℎ) ⟨d , 𝑓 𝑢𝑡𝑢𝑟𝑒 (𝑝) ∩ C (ℎ) + 2𝑘★ + 2 ≥
𝑓 𝑢𝑡𝑢𝑟𝑒 (𝑝) \ C (ℎ) .

Proof. Note that 𝑝 ∈ H𝑐 \ A since 𝑝 ∈ 𝑐ℎ𝑎𝑖𝑛 (ℎ) , ℎ ∈ H𝑐 \ A,

thus from minimality of ℎ, 𝑎 we have that after (𝑝) \ 𝑓 𝑢𝑡𝑢𝑟𝑒 (𝑝) ≥
C (𝑝) ⟨d − C (𝑝)⟨d.

Partition after (𝑝) into the following disjoint sets: 𝑚 B
𝑓 𝑢𝑡𝑢𝑟𝑒 (𝑝)∩C (ℎ), 𝑣 B after (𝑝)\ 𝑓 𝑢𝑡𝑢𝑟𝑒 (𝑝) and𝑢 B 𝑓 𝑢𝑡𝑢𝑟𝑒 (𝑝)\
C (ℎ). Additionally, define ℓ B after (ℎ). The following claims show

relations regarding these definitions.

Claim 6.1.1.1. C (ℎ) − C (𝑝) ≥ 𝑢 + 𝑣 − ℓ − 𝑘★ − 1.

Proof. Since 𝑝 ∈ 𝑐ℎ𝑎𝑖𝑛 (ℎ) it follows by incrementality of C (ℎ)
over 𝑐ℎ𝑎𝑖𝑛 (ℎ) that C (𝑝) ⊂ C (ℎ). It also follows by 𝑘★-cluster

anticone bound that 𝑎𝑛𝑡𝑖𝑐𝑜𝑛𝑒 (𝑝) ∩ C (ℎ) ≤ 𝑘★ + 1.
We now contrast both expressions C (ℎ) − C (𝑝) and 𝑢 + 𝑣 − ℓ

with the set𝐺 ⟨𝑝,ℎ⟩ \ C (ℎ) and show that they differ only by 𝑘★ + 1.
Observe that C (𝑝) = 𝐺𝑝 \ C (𝑝) = 𝐺𝑝 \ C (ℎ) +𝐺𝑝 ∩ (C (ℎ) \

C (𝑝)), and that C (ℎ) = 𝐺ℎ \ C (ℎ). Thus by subtraction we obtain

C (ℎ)− C (𝑝) = (𝐺ℎ \𝐺𝑝) \ C (ℎ) −𝐺𝑝 ∩ (C (ℎ) \ C (𝑝)) = 𝐺 ⟨𝑝,ℎ⟩ \
C (ℎ) − (before (𝑝) \ 𝑝𝑎𝑠𝑡 (𝑝)) ∩ C (ℎ).

On the other hand 𝑣 +𝑢−ℓ = after (𝑝) \ 𝑓 𝑢𝑡𝑢𝑟𝑒 (𝑝) + 𝑓 𝑢𝑡𝑢𝑟𝑒 (𝑝) \
C (ℎ) − after (ℎ) = (after (𝑝) \ 𝑓 𝑢𝑡𝑢𝑟𝑒 (𝑝)) \ C (ℎ) + (after (𝑝) \
𝑓 𝑢𝑡𝑢𝑟𝑒 (𝑝)) ∩ C (ℎ) + 𝑓 𝑢𝑡𝑢𝑟𝑒 (𝑝) \ C (ℎ) − after (ℎ) = 𝐺 ⟨𝑝,ℎ⟩ \
C (ℎ) + (after (𝑝) \ 𝑓 𝑢𝑡𝑢𝑟𝑒 (𝑝)) ∩ C (ℎ).

Combining both parts we have C (ℎ) − C (𝑝) + (before (𝑝) \
𝑝𝑎𝑠𝑡 (𝑝)) ∩ C (ℎ) = 𝐺 ⟨𝑝,ℎ⟩ \ C (ℎ) = 𝑣 + 𝑢 − ℓ − (after (𝑝) \
𝑓 𝑢𝑡𝑢𝑟𝑒 (𝑝)) ∩ C (ℎ), thus C (ℎ)− C (𝑝) = 𝑣 +𝑢 − ℓ −𝑎𝑛𝑡𝑖𝑐𝑜𝑛𝑒 (𝑝) ∩
C (ℎ) ≥ 𝑣 + 𝑢 − ℓ − 𝑘★ − 1. □

Claim 6.1.1.2. 𝑚 + 𝑘★ + 1 ≥ C (ℎ) − C (𝑝) .

Proof. As shown in the previous claim, C (𝑝) ⊂ C (ℎ). It follows
by elementary set logic that C (ℎ) − C (𝑝) = C (ℎ) \ C (𝑝) = C (ℎ) \
𝑝𝑎𝑠𝑡 (𝑝) = C (ℎ) ∩𝑎𝑛𝑡𝑖𝑐𝑜𝑛𝑒 (𝑝) + C (ℎ) ∩ 𝑓 𝑢𝑡𝑢𝑟𝑒 (𝑝) ≤ 𝑘★ + 1 +𝑚;

where the last transition is from 𝑘★-cluster anticone bound. □

Using the above definitions and the contradiction hypothesis we

have 𝑣 ≥ C (𝑝) ⟨d − C (𝑝)⟨d and ℓ < C (ℎ) ⟨d − C (ℎ)⟨d. Negating
the first inequality and summing the expressions we obtain

C (ℎ) ⟨d − C (𝑝) ⟨d > ℓ − 𝑣 + C (ℎ)⟨d − C (𝑝)⟨d .

Applying Claims 6.1.1.1, 6.1.1.2 on both sides we get that𝑚+𝑘★+1 >

ℓ −𝑣 +𝑣 +𝑢 − ℓ −𝑘★− 1 = 𝑢 −𝑘★− 1, which translates to the desired

result: 𝑓 𝑢𝑡𝑢𝑟𝑒 (𝑝) ∩ C (ℎ) + 2𝑘★ + 2 ≥ 𝑓 𝑢𝑡𝑢𝑟𝑒 (𝑝) \ C (ℎ).
□

For a non-chain block 𝑏 ∈ C (ℎ) ⟨d \ 𝑐ℎ𝑎𝑖𝑛 (ℎ), denote 𝑝 =

max 𝑐ℎ𝑎𝑖𝑛 (ℎ) ⟨d ∩ 𝑝𝑎𝑠𝑡 (𝑏). Plugging 𝐵1 = ℎ, 𝐵𝑛 = 𝑝, 𝐵 = 𝑏 into

Lemma 3 we get that 𝑓 𝑢𝑡𝑢𝑟𝑒 (𝑏) ∩ C (ℎ) + 2𝑘★ ≥ 𝑓 𝑢𝑡𝑢𝑟𝑒 (𝑝) ∩
C (ℎ). Combining with Claim 6.1.1 we conclude that 𝑓 𝑢𝑡𝑢𝑟𝑒 (𝑏) ∩
C (ℎ) + 4𝑘★ + 2 ≥ 𝑓 𝑢𝑡𝑢𝑟𝑒 (𝑝) ∩ C (ℎ) + 2𝑘★ + 2 ≥ 𝑓 𝑢𝑡𝑢𝑟𝑒 (𝑝) \
C (ℎ) > 𝑓 𝑢𝑡𝑢𝑟𝑒 (𝑏) \ C (ℎ); where that last inequality follows from

𝑓 𝑢𝑡𝑢𝑟𝑒 (𝑝) ⊃ 𝑓 𝑢𝑡𝑢𝑟𝑒 (𝑏).
It remains to prove the bound for blocks before and during the

start of the burst. For a block 𝑏 ∈ C (ℎ)s⟩ , we have from event-

sequence E𝑡,𝑍 that 𝑎𝑑𝑣 (s) ≤ 𝐶0, thus by definition 𝑓 𝑢𝑡𝑢𝑟𝑒 (𝑏)s⟩ ∩
14

The DAG KNIGHT Protocol: A Parameterless Generalization of Nakamoto Consensus

C (ℎ) +𝐶0 ≥ 𝑓 𝑢𝑡𝑢𝑟𝑒 (𝑏)s⟩ \ C (ℎ). Additionally, by construction of

the burst event, 𝑓 𝑢𝑡𝑢𝑟𝑒 (𝑏) ⟨s,d⟩∩C (ℎ) = 𝐶0+𝑍 > 𝑓 𝑢𝑡𝑢𝑟𝑒 (𝑏) ⟨s,d⟩ \
C (ℎ) = 0. Finally, since after (ℎ) < C (ℎ) ⟨d − C (ℎ)⟨d, it follows
that 𝑓 𝑢𝑡𝑢𝑟𝑒 (𝑏) ⟨d∩C (ℎ) ≥ 𝑓 𝑢𝑡𝑢𝑟𝑒 (𝑏) ⟨d \C (ℎ). Summing over all

time periods we get that 𝑓 𝑢𝑡𝑢𝑟𝑒 (𝑏) ∩ C (ℎ) ≥ 𝑓 𝑢𝑡𝑢𝑟𝑒 (𝑏) \ C (ℎ),
as claimed.

For blocks 𝑏 ∈ C (ℎ) ⟨s,d⟩ , similar arguments hold. □

Claim 6.2. ∀𝑞 ∈ 𝑎𝑛𝑡𝑖𝑐𝑜𝑛𝑒 (ℎ) ∩ A,∀𝑘 ≤ 𝑍−5𝑘★
4

, C𝑘 (𝑞) is not a
𝑍−5𝑘★

4
-UMC of C \ 𝑓 𝑢𝑡𝑢𝑟𝑒 (𝑞).

Proof. We seek to show the existence of a weak block in C𝑘 (𝑞)
which has negative score greater than

𝑍−5𝑘★
4

, thus disobeying the

UMC requirement. We show this over a maximal pre-burst block

in the intersection C (ℎ) ∩ C𝑘 (𝑞).
We begin by showing that the attacker cannot effectively freeload

following the burst event. To that end, we show in the following

claim that C𝑘 (𝑞) ⟨e is bounded in size by the number of blocks out

of C (ℎ) ⟨e.

Claim 6.2.1. C𝑘 (𝑞) ⟨e ≤ 𝑝𝑎𝑠𝑡 (𝑞) ⟨e \ C (ℎ) ⟨e.

Proof. First, in the simple case where C𝑘 (𝑞) ⟨e ∩ C (ℎ) ⟨e = ∅
the proof is immediate since C𝑘 (𝑞) ⟨e ⊆ 𝑝𝑎𝑠𝑡 (𝑞) ⟨e \ C (ℎ) ⟨e.

For the more complex case, where C𝑘 (𝑞) ⟨e ∩ C (ℎ) ⟨e ≠ ∅, we
define a counting process and reach the desired result using the

bound 𝑘 ≤ 𝑍−5𝑘★
4

.

Define a sequence of chain blocks 𝑞 = 𝑞0, . . . , 𝑞𝑛 ∈ A in the

following way:

• Denote Δ𝑖−1 B C (ℎ) ∩ C𝑘 (𝑞) ∩𝑚𝑒𝑟𝑔𝑒𝑠𝑒𝑡 (𝑞𝑖−1)
• Given 𝑞𝑖−1, if Δ𝑖−1 ≠ ∅, select 𝑞𝑖 to be max 𝑐ℎ𝑎𝑖𝑛 (𝑞𝑖−1) ∩
𝑝𝑎𝑠𝑡 (Δ𝑖−1).
• Otherwise if Δ𝑖−1 = ∅, select 𝑞𝑖 to be max 𝑐ℎ𝑎𝑖𝑛 (𝑞𝑖−1) s.t.
C (ℎ) ∩ C𝑘 (𝑞) ∩𝑚𝑒𝑟𝑔𝑒𝑠𝑒𝑡 (𝑞𝑖) ≠ ∅ if such a block exists, or

max 𝑐ℎ𝑎𝑖𝑛 (𝑞𝑖−1) ∩ before (𝜙) otherwise.
• If 𝑞𝑖 ∈ before (𝜙), halt the process and set 𝑛 = 𝑖 .

It is true by construction that
¤⋃𝑛
𝑖=1 𝑝𝑎𝑠𝑡 (𝑞𝑖−1) ⟨e \ 𝑝𝑎𝑠𝑡 (𝑞𝑖) ⟨e is

a partitioning of 𝑝𝑎𝑠𝑡 (𝑞) ⟨e. It thus remains to show that for each

partition 𝑖, C𝑘 (𝑞)∩𝑝𝑎𝑠𝑡 (𝑞𝑖−1) \𝑝𝑎𝑠𝑡 (𝑞𝑖) ≤ 𝑝𝑎𝑠𝑡 (𝑞𝑖−1) \𝑝𝑎𝑠𝑡 (𝑞𝑖) \
C (ℎ).

For the first case where Δ𝑖−1 ≠ ∅, let 𝑏 be any element of Δ𝑖−1.
Plugging 𝐵1 = 𝑞𝑖−1, 𝐵𝑛 = 𝑞𝑖 , 𝐵 = 𝑏 into Lemma 2 we get that

C𝑘 (𝑞) ∩𝑝𝑎𝑠𝑡 (𝑞𝑖−1) \𝑝𝑎𝑠𝑡 (𝑞𝑖) ≤ 4𝑘 ≤ 𝑍 −5𝑘★. Additionally, it can
be shown (from minimality of ℎ, 𝑎 and from block-race condition)

that 𝑝𝑎𝑠𝑡 (𝑞𝑖−1)∩after (𝑏)\ 𝑓 𝑢𝑡𝑢𝑟𝑒 (𝑏) ≥ 𝑍−4𝑘★, thus 𝑝𝑎𝑠𝑡 (𝑞𝑖−1)\
𝑝𝑎𝑠𝑡 (𝑞𝑖) \ C (ℎ) ≥ 𝑍 − 5𝑘★. Combined, C𝑘 (𝑞) ∩ 𝑝𝑎𝑠𝑡 (𝑞𝑖−1) \
𝑝𝑎𝑠𝑡 (𝑞𝑖) ≤ 𝑍 − 5𝑘★ ≤ 𝑝𝑎𝑠𝑡 (𝑞𝑖−1) \ 𝑝𝑎𝑠𝑡 (𝑞𝑖) \ C (ℎ), as claimed.

In the second case where Δ𝑖−1 = ∅, the result is immediate since

by construction C𝑘 (𝑞) ∩ 𝑝𝑎𝑠𝑡 (𝑞𝑖−1) \ 𝑝𝑎𝑠𝑡 (𝑞𝑖) ⊆ 𝑝𝑎𝑠𝑡 (𝑞𝑖−1) \
𝑝𝑎𝑠𝑡 (𝑞𝑖) \ C (ℎ).

□

We proceed by using the above to show that C𝑘 (𝑞) has smaller

than 𝑍 advantage within post-burst blocks.

Claim 6.2.2. C𝑘 (𝑞) ⟨e < 𝑝𝑎𝑠𝑡 (𝑎) ⟨e \ C𝑘 (𝑞) \ 𝑓 𝑢𝑡𝑢𝑟𝑒 (𝑞) + 𝑍 .

Proof. Recall that after (ℎ) \ 𝑓 𝑢𝑡𝑢𝑟𝑒 (ℎ) < 𝑍 +C (ℎ) ⟨e− C (ℎ)⟨e.
Reorganizing terms we obtain that after (ℎ)\ 𝑓 𝑢𝑡𝑢𝑟𝑒 (ℎ)+ C (ℎ)⟨e <

𝑍+C (ℎ) ⟨e; noting that by definition 𝑝𝑎𝑠𝑡 (𝑎) ⟨e\C (ℎ)\𝑓 𝑢𝑡𝑢𝑟𝑒 (ℎ) =
C (ℎ)⟨e + after (ℎ) \ 𝑓 𝑢𝑡𝑢𝑟𝑒 (ℎ) we derive that 𝑝𝑎𝑠𝑡 (𝑎) ⟨e \ C (ℎ) \
𝑓 𝑢𝑡𝑢𝑟𝑒 (ℎ) < C (ℎ) ⟨e + 𝑍 .

Define 𝑚 B C (ℎ) ⟨e, 𝑢 B 𝑝𝑎𝑠𝑡 (𝑎) ⟨e \ C (ℎ) \ 𝑓 𝑢𝑡𝑢𝑟𝑒 (ℎ) \
𝑓 𝑢𝑡𝑢𝑟𝑒 (𝑞) and 𝑣 B C𝑘 (𝑞) ⟨e. We get that 𝑢 ≤ 𝑝𝑎𝑠𝑡 (𝑎) ⟨e \ C (ℎ) \
𝑓 𝑢𝑡𝑢𝑟𝑒 (ℎ) < C (ℎ) ⟨e + 𝑍 =𝑚 + 𝑍 . Adding 𝑢 to both sides we have

2𝑢 < 𝑚 + 𝑢 + 𝑍 ≤ 𝑝𝑎𝑠𝑡 (𝑎) ⟨e \ 𝑓 𝑢𝑡𝑢𝑟𝑒 (𝑞) + 𝑍 .
From Claim 6.2.1 we have that C𝑘 (𝑞) ⟨e ≤ 𝑝𝑎𝑠𝑡 (𝑞) ⟨e \ C (ℎ) ⟨e.

Noting that 𝑣 = C𝑘 (𝑞) ⟨e ≤ 𝑝𝑎𝑠𝑡 (𝑞) ⟨e \ C (ℎ) ⟨e ⊂ 𝑝𝑎𝑠𝑡 (𝑎) ⟨e \
C (ℎ) \ 𝑓 𝑢𝑡𝑢𝑟𝑒 (ℎ) \ 𝑓 𝑢𝑡𝑢𝑟𝑒 (𝑞) = 𝑢, we get that 𝑣 ≤ 𝑢. Thus 2𝑣 <

𝑝𝑎𝑠𝑡 (𝑎) ⟨e \ 𝑓 𝑢𝑡𝑢𝑟𝑒 (𝑞) +𝑍 . Reorganizing terms and noting that 𝑣 ⊂
𝑝𝑎𝑠𝑡 (𝑎) ⟨e \ 𝑓 𝑢𝑡𝑢𝑟𝑒 (𝑞), we conclude that C𝑘 (𝑞) ⟨e < 𝑝𝑎𝑠𝑡 (𝑎) ⟨e \
C𝑘 (𝑞) \ 𝑓 𝑢𝑡𝑢𝑟𝑒 (𝑞) + 𝑍 , as claimed. □

To complete the argument, we determine the attacker’s weak

block. Let 𝑤 B maxC (ℎ)𝜙 ⟩ ∩ C𝑘 (𝑞)𝜙 ⟩ (this intersection is

not empty as it contains 𝑔). If 𝑤 ∈ after (s), then 𝑤 ∈ B, so
from maximality and burst structure 𝑓 𝑢𝑡𝑢𝑟𝑒 (𝑤)𝜙 ⟩ ∩ C𝑘 (𝑞) −
𝑓 𝑢𝑡𝑢𝑟𝑒 (𝑤)𝜙 ⟩ \ C𝑘 (𝑞) ≤ 0. Otherwise, 𝑤 ∈ before (s). We have

from event-sequence E𝑡,𝑍 that 𝑎𝑑𝑣 (s) ≤ 𝐶0, thus by definition

𝑓 𝑢𝑡𝑢𝑟𝑒 (𝑤)s⟩∩C (ℎ) +𝐶0 ≥ 𝑓 𝑢𝑡𝑢𝑟𝑒 (𝑤)s⟩ \C (ℎ). Frommaximality,

we have that 𝑓 𝑢𝑡𝑢𝑟𝑒 (𝑤)s⟩∩C (ℎ) and 𝑓 𝑢𝑡𝑢𝑟𝑒 (𝑤)s⟩∩C𝑘 (𝑞) are dis-
joint, thus 𝑓 𝑢𝑡𝑢𝑟𝑒 (𝑤)s⟩ \C𝑘 (𝑞) +𝐶0 ≥ 𝑓 𝑢𝑡𝑢𝑟𝑒 (𝑤)s⟩∩C (ℎ) +𝐶0 ≥
𝑓 𝑢𝑡𝑢𝑟𝑒 (𝑤)s⟩ \ C (ℎ) ≥ 𝑓 𝑢𝑡𝑢𝑟𝑒 (𝑤)s⟩ ∩ C𝑘 (𝑞). Noticing (again, by

maximality) that all𝐶0 blocks of B⟨s,𝜙 ⟩ are not in C𝑘 (𝑞) we obtain
that 𝑓 𝑢𝑡𝑢𝑟𝑒 (𝑤)𝜙 ⟩ ∩ C𝑘 (𝑞) − 𝑓 𝑢𝑡𝑢𝑟𝑒 (𝑤)𝜙 ⟩ \ C𝑘 (𝑞) ≤ 𝐶0 −𝐶0 = 0.

Since 𝑞 ∈ A we have from Claim 5 that C𝑘 (𝑞) ∩ B⟨𝜙 ≤ 2𝑘 ≤
𝑍−5𝑘★

2
. Noting that the remainder of the burst is not in C𝑘 (𝑞)

we get that 𝑓 𝑢𝑡𝑢𝑟𝑒 (𝑤) ⟨𝜙,e⟩ ∩ C𝑘 (𝑞) − 𝑓 𝑢𝑡𝑢𝑟𝑒 (𝑤) ⟨𝜙,e⟩ \ C𝑘 (𝑞) ≤
−3𝑍 + 𝑍 − 5𝑘★ ≤ −2𝑍 .

Using Claim 6.2.2 and summing over all time periods we get

𝑓 𝑢𝑡𝑢𝑟𝑒 (𝑤) ∩ C𝑘 (𝑞) − 𝑓 𝑢𝑡𝑢𝑟𝑒 (𝑤) \ C𝑘 (𝑞) < −𝑍 < −𝑍−5𝑘★
4

, as we

need. □

To conclude , it remains to set 𝑍 large enough s.t. 4𝑘★ ≤ 𝑍−5𝑘★
4

and thus ∀𝑞 ∈ 𝑎𝑛𝑡𝑖𝑐𝑜𝑛𝑒 (ℎ) ∩A, 𝑟𝑎𝑛𝑘𝑝𝑎𝑠𝑡 (𝑎) (ℎ) < 𝑟𝑎𝑛𝑘𝑝𝑎𝑠𝑡 (𝑎) (𝑞).
Recall that 𝑓 𝑢𝑡𝑢𝑟𝑒 (ℎ) ∩ 𝑝𝑎𝑠𝑡 (𝑎) ∩ A = ∅, so by definition

𝑡 ∈ 𝑟𝑒𝑝𝑠 (P \ A), thus 𝑟𝑎𝑛𝑘𝑝𝑎𝑠𝑡 (𝑎) (P \ A) ≤ 𝑟𝑎𝑛𝑘𝑝𝑎𝑠𝑡 (𝑎) (ℎ).
On the other hand, for any P𝑖 disagreeing with P \ A, it holds

that 𝑟𝑒𝑝𝑠 (P𝑖) ⊆ 𝑎𝑛𝑡𝑖𝑐𝑜𝑛𝑒 (ℎ) ∩ A, thus 𝑟𝑎𝑛𝑘𝑝𝑎𝑠𝑡 (𝑎) (P𝑖) >

𝑟𝑎𝑛𝑘𝑝𝑎𝑠𝑡 (𝑎) (ℎ), contradicting 𝑎 ∈ A, since 𝑎 must select a chain

parent from P \ A. □

As stated earlier, the above proof relies on some simplifying

assumptions. We now set out to show how it can be generalized to

the actual colouring algorithm.We first deal with the case where the

recursive call within K-Colouring has never set free_search = 𝑡𝑟𝑢𝑒 .

This means that ∀𝑎 ∈ A, 𝑘-chain (𝑎) ⟨d ⊂ A, thus all inequalities

in the above proof trivially hold.

The more challenging case is the one where a recursive call

to K-Colouring switches to free_search = 𝑡𝑟𝑢𝑒 (line 10), hence by

that allowing the attacker to “inherit” the honest colouring. Observe

that this can only happen if 𝑘 > 𝑟𝑎𝑛𝑘𝐺 (𝐶), thus implicitly forcing

15

Michael Sutton and Yonatan Sompolinsky

a rank increase. The following extended argument captures exactly

this property:

Claim 7. (generalized main claim) Conditioned on the occurrence
of event-sequence E𝑡,𝑍 , it holds that for any ℎ ∈ H𝑐 \A, and for any
𝑎 ∈ A merging ℎ,

𝑝𝑎𝑠𝑡 (𝑎) ∩ after (ℎ) \ 𝑓 𝑢𝑡𝑢𝑟𝑒 (ℎ)

≥ C (ℎ) ⟨d − C (ℎ)⟨d
+max

(
0, 4𝑘★ − 𝑟𝑎𝑛𝑘𝐺 (𝑎)

)
· 𝑍 .

(1)

A full proof of this claim will appear in a future version of the

paper.

To conclude the proof of Theorem 2, the following Corollary

shows that, indeed, following event-sequence E𝑡,𝑍 , the attacker
can never regain an advantage:

Corollary 8. Conditioned on the occurrence of event-sequence E𝑡,𝑍 ,
the attacker cannot reorg below the burst event. More formally, ∀𝑠 ≥
𝑡𝑖𝑚𝑒 (e) , 𝜙 ∈ 𝑐ℎ𝑎𝑖𝑛 (𝑣𝑖𝑟𝑡𝑢𝑎𝑙𝑠). 17

Proof. All sets within the current proof are implicitly inter-

sected with after (e).

We first observe that at the starting point, i.e., at time 𝑠 =

𝑡𝑖𝑚𝑒 (e), it holds by construction of the burst event that 𝜙 ∈
𝑐ℎ𝑎𝑖𝑛 (𝑣𝑖𝑟𝑡𝑢𝑎𝑙𝑠). Assume for contradiction there exists a minimal

time 𝑠 > 𝑡𝑖𝑚𝑒 (e) s.t. 𝑣𝑖𝑟𝑡𝑢𝑎𝑙𝑠 ∈ A.

We will use the properties of the event-sequence (specifically,

block race win and the initial burst advantage) to provide an upper

bound on 𝐺𝑠−1 and a lower bound on 𝐺𝑠 , and arrive at a contradic-

tion.

From minimality of 𝑠 , there exists a block ℎ ∈ H𝑐 \ A s.t.

𝑣𝑖𝑟𝑡𝑢𝑎𝑙𝑠−1 ⇒ ℎ. Additionally, from block-race win we have that

C (𝑣𝑖𝑟𝑡𝑢𝑎𝑙𝑠−1) ≥ C (𝑣𝑖𝑟𝑡𝑢𝑎𝑙𝑠−1), thus 2C (𝑣𝑖𝑟𝑡𝑢𝑎𝑙𝑠−1) ≥ 𝐺𝑠−1,
which leads to 2C (ℎ) + 2𝑘★ ≥ 𝐺𝑠−1

On the other hand, at time 𝑠 , let 𝑎 ∈ A be the merging block of

ℎ (be it any 𝑎 ∈ 𝑐ℎ𝑎𝑖𝑛 (𝑣𝑖𝑟𝑡𝑢𝑎𝑙𝑠) or 𝑣𝑖𝑟𝑡𝑢𝑎𝑙𝑠 itself), then by Claim 6

it holds that 𝑝𝑎𝑠𝑡 (𝑎) ∩ after (ℎ) \ 𝑓 𝑢𝑡𝑢𝑟𝑒 (ℎ) ≥ 𝑍 + C (ℎ) − C (ℎ).
It follows that𝐺𝑠 ≥ 𝐺𝑡𝑖𝑚𝑒 (ℎ) + C (ℎ) − C (ℎ)+𝑍 = C (ℎ) + C (ℎ)+
C (ℎ) − C (ℎ) + 𝑍 = 2C (ℎ) + 𝑍 .

Combined, we get that 2C (ℎ) + 2𝑘★ ≥ 𝐺𝑠−1 = 𝐺𝑠 − 1 ≥ 2C (ℎ) +
𝑍 − 1, which yields 2𝑘★ ≥ 𝑍 − 1, a contradiction. □

17
Equivalently: H𝑐 ∩ A = ∅.

16

	Abstract
	1 Introduction
	1.1 KNIGHT optimization framework
	1.2 Parameterlessness
	1.3 Partial Synchrony
	1.4 Responsiveness
	1.5 Consensus protocols, principal categories
	1.6 Structure of this paper

	2 The DAG KNIGHT protocol
	2.1 Preliminaries
	2.2 PHANTOM optimization paradigm
	2.3 KNIGHT optimization paradigm
	2.4 Vanilla version
	2.5 Formal specification
	2.6 Reviewing the components of KNIGHT
	2.7 Runtime complexity

	3 Model and formal statement
	3.1 Convergence of the ordering
	3.2 Formal statement

	4 Confirmation times
	5 Implementation details
	5.1 Block size limit
	5.2 Difficulty Adjustment Algorithm (DAA)

	6 Related work
	References
	A Security Proof
	A.1 Definitions and Notation
	A.2 K-cluster Combinatorics
	A.3 Main theorem
	A.4 Proof

