
Let’s Meet Ternary Keys on Babai’s Plane:
A Hybrid of Lattice-reduction and Meet-LWE

Minki Hhan1, Jiseung Kim2, Changmin Lee1, and Yongha Son3

1 Korea Institute for Advanced Study
{minkihhan, changminlee}@kias.re.kr

2 Jeonbuk National University
jiseungkim@jbnu.ac.kr

3 Samsung SDS
yongha.son@samsung.com

Abstract. A cryptographic primitive based on the Learning With Er-
rors (LWE) problem with variants is a promising candidate for the ef-
ficient quantum-resistant public key cryptosystem. As the parameters
for such cryptosystems are chosen by the concrete attack cost for the
corresponding LWE problem, improving LWE solving algorithm has a
significant importance.
In this paper, we present a new hybrid attack on the LWE problem. This
new attack combines the primal lattice attack and an improved variant
of the MitM attack, Meet-LWE, recently suggested by May [Crypto’21].
This resolves the major open problem posed in the same paper.
To this end, we develop several technical tools for hybrid attacks; a new
property of Babai’s nearest plane algorithm with respect to projection,
an approximate variant of Meet-LWE, and a locality-sensitive hashing-
based near-collision finding algorithm.
We also present a comprehensive analysis of the proposed attack, which
involves the complicated arguments of both lattice and representation
techniques. In particular, we take special care in specifying the relevant
heuristics and also provide some experimental evidence for them.
We finally estimate the concrete cost of our attack, and observe better
cost for sparse LWE/NTRU keys than the other existing attacks. In par-
ticular, this result has a direct effect on the currently deployed parameter
sets used in some fully homomorphic encryption libraries.
Keywords: LWE, Hybrid lattice attack, Meet-in-the-middle algorithm

1 Introduction

The (search) learning with errors (LWE) problem [44] asks to find the secret key

s given (A, b) ∈ Zm×(n+1)
q such that b = As+ e mod q, where e is a small noisy

integer vector. The hardness of the LWE problem is well established by the re-
duction from the worst-case lattice problems, which provides strong confidence
in the security of LWE-based cryptosystems. However, this so-called provable
security is only guaranteed on a somewhat restricted parameter range, where
the schemes have poor efficiency. Thus, most of practical LWE-based schemes

uses other parameters for efficiency far from the provable range. In particular,
the size of secret key has a great effect on efficiency, so many LWE-based cryp-
tosystems choose the secret keys as binary/ternary vectors [18, 24, 29] or even
sparse vectors [10,16,37,38].

Meanwhile, as the parameters are outside the provable range, the concrete
security is measured against known attacks that solves the underlying LWE pa-
rameters [7]. Naturally, the use of small secret vector also opens new possibilities
in the adversary’s view, and the combinatorial attack is one of the most natural
approaches to exploit this feature. The Meet-in-the-middle (MitM) strategy due
to Odlyzko [33] that finds the secret key in time S0.5 has remained the best algo-
rithm for a long time, beyond the naive brute-force search that takes (roughly)
S time.

As a recent breakthrough on this line, May [42] proposes a new combinato-
rial attack called Meet-LWE based on the representation technique, originally
introduced in the context of subset sum-type problems [12, 15, 35]. The Meet-
LWE attack takes asymptotically Sc time to solve the LWE problem for c < 0.5,
which achieves c ≈ 0.3 for some sparse-key based schemes. However, the current
practical LWE parameters use a high dimensional vector as a secret key, so the
search space size S is extremely large. It turns out that the combinatorial al-
gorithms, even including Meet-LWE, themselves cannot beat the lattice attacks
(e.g., [6, 40]) in the practical parameter setting.

The hybrid attack refers the attack algorithms that combine lattice reduction
algorithms and combinatorial algorithms to take advantage of both attacks. This
attack first reduces the dimension of the search space using lattice reduction
algorithms; then, the combinatorial strategies are applied to solve the remaining
part with a much smaller search space. This line of work has been initiated
by the seminal work of Howgrave-Graham [34], which can be understood as a
combination of the lattice reduction and the MitM algorithm.

The best-known attack for LWE with sparse ternary keys is presumably the
hybrid strategies [34, 43, 45, 47]. As Meet-LWE improves over Odlyzko’s MitM,
the hybrid attack that combines the lattice reduction algorithm and Meet-LWE
is apparently expected to have some implications on the hardness of LWE. This
combination was already considered in the original paper of May, but it appears
that the direct application of Meet-LWE failed [42, Section 10]. The hybrid
attack combining lattice and Meet-LWE remains a central open problem in this
landscape of LWE attacks, which is the main subject of this paper.

1.1 Overview of Meet-LWE

We describe a brief review of the original Meet-LWE [42]. Suppose that we are
given a matrix M ∈ Zm×d

q and integer q as inputs, and want to find s ∈ T d(w(0))

for some w(0) such that Ms = e mod q for a unknown small error vector e, where
T d(w(0)) is a set of vectors in {0,±1}d with w(0) nonzero coordinates. Note that
LWE problem that asks to find s′ from (A, b = As′ + e) can be viewed as this
problem, by defining M = (−b|A) and s = (1|s′).

2

Meet-in-the-middle idea. To enumerate the sparse secret key s ∈ T d(w(0))
efficiently, let us consider the set S =

{
x | x ∈ T d(w(1))

}
for some w(1) ≥

w(0)/2. It is obvious that there exists two elements s
(1)
1 , s

(1)
2 ∈ T d(w(1)) such

that s = s
(1)
1 − s

(1)
2 , which is called a weight-w(1) representation of s. For such a

pair (s
(1)
1 , s

(1)
2), it holds that Ms

(1)
1 −Ms

(1)
2 = Ms = e mod q. Since e is a small

error, the above equation means that Ms
(1)
1 and Ms

(1)
2 are near-collision. Thus,

we can find s by constructing the set S, then find a representation (s
(1)
1 , s

(1)
2) of

s using the near-collision search in the set L := {Ms(1) mod q | s(1) ∈ S}.

Redundancy and projection constraint. However, note that there are quite
many weight-w(1) representations of s, and hence constructing the entire S is an
overkill. To minimize this redundancy of representations, Meet-LWE considers
the projection map πr : Zm → Zr on the first r coordinates to define smaller
sets with special constraints of the form πr([Ms(1)]q) = e; precisely

S
(1)
i = {x ∈ T d(w(1)) | πr(Mx mod q) = ei} for i ∈ {1, 2}

where e1, e2 are proper guesses for πr(e) such that πr(e) = e1−e2. The projection
dimension r is chosen so that one and only one representation pair survives in

S
(1)
1 × S

(1)
2 , which suffices to find s.

Error guessing by enumeration. However, the above idea succeeds only when
the initial error guessing e1, e2 is correct, that is, when it holds that πr(e) =
e1 − e2. Regarding this, the original Meet-LWE simply enumerated all possible
error candidates πr(e). As the projection dimension r is set to be a sub-linear
number O(d/ log d), this enumeration step can be asymptotically small, making
this attack feasible. On the other hand, the concrete complexity for enumeration
is definitely not negligibly small, and [42] indeed leaves it as an open question
to avoid this error enumeration step. 4

Extending to higher level. This projection idea can be recursively applied

to construct the set S
(1)
∗ , using the LWE-like equation πr(Ms(1) mod q) = e∗.

More precisely, each element of s(1) ∈ T d(w(1)) also has several representations

s(1) = s
(2)
1 − s

(2)
2 for s

(2)
1 , s

(2)
2 ∈ T d(w(2)) where w(2) ≥ w(1)/2. Then the above

constraint idea can be applied again to define smaller sets S
(2)
∗ so that one can

recover S
(1)
∗ . Finally, the proposed Meet-LWE algorithm comes from a recursive

application of this idea, up to level t.

Obstacle against hybrid with lattice. The main idea of the Meet-LWE
attack is to reduce the number of representation candidates by using the projec-
tion map. However, when applying a similar strategy for the hybrid attack, the
projection map does not work well. This is because Babai’s Nearest Plane algo-
rithm (NP algorithm hereafter) used for the hybrid attack perturbs the overall

4 To be honest, Kirshanova and May [36] independently suggested an approach that
avoids the error enumeration step. However, we argue their algorithm has some flaw;
see Appendix A for details.

3

axis of the space. In other words, we cannot use the LWE-like equation such as
πr(Ms(1) mod q) = e∗. We refer to [42, Section 10] for a more detailed discussion.

1.2 This work

We present a new hybrid attack, Primal-Meet-LWE, that combines the primal
lattice attack and Meet-LWE, resolving the open question of [42]. To achieve this
goal, we develop the following technical contributions.

1. (Babai’s nearest plane vs. projection (Section 4)) We show that the projec-
tion map to the last Gram-Schmidt basis coordinates is well compatible with
NP algorithm so that we can define an LWE-like equation on the projected
space. This opens a door toward the hybrid attack.

2. (Meet-LWE with approximate constraints (Section 5)) The projected vectors,
however, have real-valued coordinates so that it is infeasible to guess the
error by enumeration as in [42]. To deal with this, we consider the concept
of constraint to approximate one, and successfully extend Meet-LWE to our
interest setting.

3. (Near-collision finding method (Section 3)) Our change to approximate con-
straints requires to find near-collisions in every level. To have better efficiency
on this, we opted for the family of the torus LSH functions [23,43] with the
LSH amplification techniques [32].

We also estimate the concrete cost of Primal-Meet-LWE based on our
analysis for the cryptosystems using sparse ternary secret, especially fully ho-
momorphic encryption (FHE) [16,37,38], and some post-quantum cryptography
(PQC) [13, 18]. According to our estimation, our attack beats all the previous
attacks for some currently deployed parameters in FHE library [1,3], whose spar-
sity is quite extreme; e.g. 128 out of 215. However, since PQC literature tends
to avoid such a extreme sparsity, our attack falls behind the previous attack
(precisely, pure lattice attack [6]). We refer to Section 7 for further details and
discussions.

Meanwhile, our analysis of Primal-Meet-LWE requires (variants of) some
standard heuristic assumptions from the lattice cryptanalysis and the represen-
tation theory, and the average-case behavior of the near-collision finding algo-
rithms. In order to make our analysis more convincing, we put some experimental
efforts also, such as experimentally validations of the underlying heuristics, and
a proof-of-concept implementation of our newly proposed Meet-LWE with some
toy parameters. The details can be found in Appendix C.

1.3 Discussions

Necessity of sparse ternary/binary secrets. In most HE schemes, the ham-
ming weight of the secret key plays a significant role for the performance of so-
called bootstrapping operations. Although a line of works [37, 38] has reported
improvements in the efficiency of bootstrapping even for the non-sparse key [16],

4

the sparse-key bootstrapping procedures still perform much better in practice
and have better asymptotic complexity. Therefore, the use of sparse secret key
is still an appealing choice for HE regime, despite of the continuous reports of
attacks [21,22] (including ours).

Issues on the previous hybrid attack. Wunderer [47] and Nguyen [43]
pointed out several issues in literature’s Howgrave-Graham’s hybrid attack [34]
estimation and provided refined analysis. Our analysis mostly follows their anal-
ysis when required and reflects the issues they pointed out. In particular, [43]
pointed out the necessity of rigorous treatment for so-called admissible probabil-
ity. However, it only gives a loose lower and upper bound for this, which is hard
to compute the concrete value. As our analysis also needs to consider a similar
situation to admissible [34, 47] (See Figure 5, for example), we take significant
care about this probability on both theoretic and experimental sides, considering
the aforementioned points.

Related works. The other major lattice-based attack called dual attacks has
been significantly improved so far [27,30,41]. In particular, as a concurrent study,
a hybrid of dual and Meet-LWE attack is suggested by [14]. Unfortunately, [26]
claimed that the success probability of some dual attacks could be overestimated,
by raising some concern about the flaw of the assumption.

Glaser and May [28] recently extended Meet-LWE to the non-ternary key
cases, and Hoof, Kirshanova, and May [46] show the quantum version of Meet-
LWE, respectively. As ourPrimal-Meet-LWE only considers the original Meet-
LWE algorithm, exploring the extended hybrid attacks based on those works
should be a fascinating direction.

2 Preliminaries

Notations. For integers n, we denote [n] by the set {1, · · · , n}. For a real number
a, we write by [a]q the unique real number in [−q/2, q/2) such that q divides
a− [a]q. We write by Crℓ a r-dimensional hypercube of radius ℓ, say [−ℓ, ℓ]r. The
discrete Gaussian distribution with standard deviation σ is denoted by Gσ. We
also write the uniform distribution over a set S by U(S), and particularly write
U(Crℓ) by Ur

ℓ . For any distribution D, we denote a sampling from D by x ← D,
but in particular sampling from U(S) is simply denoted by x← S.

For a full-rank matrix B ∈ Rm×n, denote the Gram-Schmidt orthogonal-
ized matrix of B by B∗ = [b∗1 · · · b∗n], and the normalized matrix of B by B̄∗ =
[b̄∗1 · · · b̄∗n], i.e., b̄∗i = b∗i /∥b∗i ∥. For any matrix B, we define the fundamental par-
allelepiped P(B) := {Bx : x ∈ [−1/2, 1/2)n}.

2.1 Learning With Errors and Small Secrets

Definition 1 ((Search) Learning with error problem). For a secret key s
sampled from a distribution Dkey, the LWE problem asks to find s given a tuple
(A, b = As + e mod q) ∈ Zm×n

q × Zm
q for a uniform random matrix A and an

error vector e sampled from Derr.

5

As this paper focuses on the sparse ternary keys, we denote the set of n-
dimensional ternary vectors with weight w nonzero entries by

T d(w) = {x ∈ {±1, 0}n | s has w nonzero entries} 5

and consider the case of Dkey = U(T d(w)). The error distribution is usually
taken by the discrete Gaussian distribution Gσ over Z with standard deviation
σ, i.e., Derr = Gmσ . The superscript m will be omitted if it is clear from the
context. The discrete Gaussian distribution is occasionally approximated by the
continuous Gaussian distribution with the same standard deviation.

Representations of Secret. Our attack utilizes the representation of a ternary
vector.

Definition 2. For a vector x ∈ T d(h), we call a pair (xr, x
′
r) ∈ T d(w)×T d(w)

such that x = xr − x′r by a weight-w representation pair, or a w-rep pair of x.

The following lemma computes the number of w-rep pairs of x ∈ T d(h) from
simple combinatorics.

Lemma 1 (Adapted from [45]). Let h be an even integer and w be an integer
such that w ≥ h/2. For any x ∈ T d(h), the number of w-rep pairs of x is

R(d, h, w) =

(
h

h/2

)
·
(

d− h

w − h/2

)
· 2w−h/2.

Proof. See Appendix B.1. ⊓⊔

2.2 Lattices

A lattice is a discrete subgroup of Rm. For a (full-rank) matrix B = (b1, ..., bn) ∈
Rm×n, we denote the lattice {Bx | x ∈ Zn} by L(B), and call B as a basis
matrix of the lattice L(B). The Gaussian Heuristic then says that the nonzero
shortest element is (approximately) equal to

√
n

2πe · | det(B)|1/n.
The lattice reduction algorithm takes a basis of lattice L of rank n as input

and returns another “better” basis of L. We especially consider the Block-Korine-
Zolotarev (BKZ) algorithm [19] that is parameterized by a block size β, denoted
by BKZ-β. Assuming the Gaussian Heuristic, the Geometric Series Assumption
(GSA) predicts that the Gram-Schmidt norms ∥b∗i ∥ of the basis B reduced by
BKZ-β are estimated as follows

∥b∗i ∥ = δ
−2(i−1)+n−1
0 · det(B)

1
n (1)

for i = 1, ..., n, where δ0 =
(

β
2πe (πβ)

1/β
)1/(2(β−1))

.

Babai’s Nearest Plane Algorithm. Let L be a lattice with the basis B ∈
Rm×n. Intuitively, Babai’s NP algorithm considers a representation of v with

5 Our definition of T d(w) is different from [42], which defines T d(w) by the set of
vectors having w numbers of 1 and w numbers of −1.

6

respect to the Gram-Schmidt orthonormal basis B̄∗, and then reduces all com-
ponents into [−1/2, 1/2). Note that we define the output of the algorithm by
t − v, denoted by NPB(t), for later convenience, while the standard NP algo-
rithm aims at finding a lattice point v ∈ L(B) such that t − v ∈ P(B∗). The
following lemma summarizes the classic fact on the output of the NP algorithm.

Lemma 2. Given an input vector t and basis B, the output e of the Babai’s
nearest plane algorithm lies in P(B∗). Further, e is the unique vector in P(B∗)
such that t− e ∈ L(B).

2.3 Primal Hybrid Strategy

All primal hybrid attacks [17,34,45,47] share similar structures; the combination
of lattice reduction and combinatorial attack exploiting Babai’s nearest plane
algorithm, with some differences in targets, analysis, and optimizations. Our
attack almost identically follow the first lattice reduction part, and this section
review it.

Consider an LWE instance (A, b = As′ + e′ mod q) ∈ Zm′×n
q × Zm′

q with a
secret key s′ ∈ T n(w) and an error vector e′ sampled from Gaussian distribution
Gσ. For ease of representation, we consider an augmented matrix M̄ := (−A||b)
and s̄ = (s′, 1) ∈ T n+1(w + 1) so that the LWE equation b = As′ + e′ mod q
is equivalent to M̄ s̄ = e′ mod q. Then the primal lattice LP defined by the

following basis matrix P =

(
qIm′ M̄

In+1

)
. Note that LP contains a short vector

(e′, s̄) = P · (x, s̄) for a vector x ∈ Zm′
.

For hybrid attack, we consider some guessing dimension d ≤ n, and divide
the matrix M̄ into M̄ = (M0,M) by n − d + 1 and d columns, and the secret
key s̄ into (s0, s) according to M0 and M . In this view, we can re-write the basis
matrix P by

P =

(
B M

Id

)
where B =

(
qIm′ M0

In+1−d

)
. (2)

This representation converts (e′, s̄) = P · (x, s̄) into Bk + Ms = e where e =
(e′, s0) and k = (x, s0). It means thatMs−e is in the lattice L(B), or equivalently

Ms = e mod L(B).

For later usage, we formally write this process by Algorithm 1.
After defining the equation Ms = e mod L(B), the primal hybrid attack

runs as follows. First, sufficiently reduce the basis matrix B using lattice reduc-
tion algorithms so that NPB(Ms) = NPB(e) = e. Second, using combinatorial
guessing strategies, finds the partial secret key s such that NPB(Ms) = e.

The probability of NPB(e) = e. It should be remarked that the event NPB(e) =
e does not always happen, even if the basis B is highly reduced. Thus the prob-
ability of the event, denoted by pNP , should be taken into account when esti-
mating the attack complexity. The previous works [39, 45, 47] already analyzed

this for Gσ by pNP =
∏m

i=1 erf

(
∥b∗i ∥
2
√
2σ

)
, and we also used this.

7

Algorithm 1: Primal hybrid conversion

Input: An LWE instance (A, b) ∈ Zm′×n
q × Zm′

q s.t. b = As′ + e′ mod q,
and a guessing dimension 0 < d ≤ n

Output: Matrices M ∈ Zm×d
q and B ∈ Zm×m

q for m = m′ + n− d+ 1, s.t.
Ms = e mod L(B) for e = (e′, s0) and s = (s̄, 1) where
s′ = (s0, s̄) ∈ Zn−d+1 × Zd−1.

1 Set a matrix M̄ := (−A∥b)
2 Split the matrix M̄ into (M0,M) ∈ Zm′×(n−d+1)

q × Zm′×d
q

3 Define a matrix B as

(
qIm′ M0

In+1−d

)
4 return M and B

Normalizing the new error vector. Note that in the new error vector e =
(e′, s0) in the equation NPB(Ms) = e is in a bit weird shape: the former part
e′ comes from the error distribution and the latter part s0 is sparse ternary. We
found that no previous work explicitly point out this issue, but simply resolve
this by a well-known technique [9] that switches some secret coordinates by other
coordinates of the error vector. Using this, we can change the corresponding part
of the secret key s0 into some error vector sampled from Gaussian, and this makes
e = (e′, s0) exactly follow Gσ.

Remark 1 (Scaling factor normalizing). Many attacks on small secret use an
optimization called scaling factor technique [11], which uses new parameter ν > 0
and consider an error vector eν = (e′, νs0) to optimize the attack cost. This
argument is indeed experimentally validated in pure-lattice attack context [6],
and reflected to usvp attack in lattice-estimator [2]. However, we found that [45]
uses this scaling factor technique in a different context, to assume that eν =
(e′, νs0) follows Gaussian.6 Judging that this argument is a bit lack of rigorous
validation, we do not follow this despite the benefit of this on attack cost.

3 Near-Collision Finding Algorithm

This section presents a heuristic algorithm to find pairs of two close points among
a given set, based on the locality-sensitive hashing (LSH) method [23,32,43]. This
algorithm is called the near-collision finding (NCF) algorithm, and will be used
as a subroutine in our main attack in Section 5.

Throughout this section, we fix B by a zero-centered r-dimensional hypercube
having each coordinate length qi, namely B :=

∏r
i=1[−qi/2, qi/2).

Definition 3. We say that an (ordered) pair (y1, y2) ∈ B ×B is an (B, ℓ)-near-
collision if ∥y1 − y2∥∞ ≤ ℓ and y1 ̸= y2. When the domain B is clear from the
context, we simply say it by an ℓ-near-collision.

6 Furthermore, the estimation of previous primal hybrid attack [34] in lattice-
estimator [2] is also using this.

8

Informally speaking, the NCF algorithm is given an input list L ⊂ B and
asks to find ℓ-near collision pairs in L × L. We present an NCF algorithm that
exploits a variant of the torus LSH functions, adapting [43] that divides each
coordinate interval [−qi/2, qi/2) into the equal-length bin of length b.

Definition 4. Let ni := max{1, ⌊qi/b⌋}, and bi := qi/ni for each i ≤ [r]. Then
for a block-length parameter b, the family H(B; b) of torus LSH functions hc :
B →

∏
i∈[r] Zni

is defined as follows:

H(B; b) :=

{
hc(y) =

(⌊
yi + ci

bi

⌋
mod ni

)
i∈[r]

∣∣∣∣∣ c ∈ B

}
.

Our near-collision finding algorithm based on this LSH family proceeds by
randomly selecting a hash function hc from H(B; b), and labeling each element y
in L with hc(y). Then it checks whether each pair of elements with the same label
is ℓ-near-collision. This procedure is repeated R times with different choices of hc

to find more near-collisions, where R is determined later. Algorithm 2 describes
the procedure in details.

Algorithm 2: LSH-based near-collision finding algorithm

Input: A domain B, a list L ⊂ B, and a norm bound ℓ > 0
Params : A block-length b, and a repetition number R
Output: A set C of near-collision pairs in L× L

1 Set a family of torus LSH functions H = H(B; b)
2 Set C ← ∅
3 for i = 1 to R do
4 Sample a function hc ← H uniformly at random
5 Set T ← ∅
6 for each y ∈ L, store y in the bin labelled by T (hc(y))
7 for each bin T (addr) where addr ∈ Range(hc) do
8 for each pair (y1, y2) in T (addr)× T (addr) do
9 if ∥y1 − y2∥∞ ≤ ℓ, then C ← C ∪ {(y1, y2)}

10 end

11 end

12 end
13 return S

Analysis. In order to analyze Algorithm 2, we need to establish underlying
model of the list L. As the first one, we assume that the elements in L are
uniformly and independently distributed in the domain B. This assumption is
analogous to the well-distributed assumptions used in [12, 15, 35]. Formally, we
state the following model.

Model 1 (Purely random model) Each element in L is uniformly sampled
from U(B) and independent of any other element in L.

9

However, in some cases, our target the list L contains an unusually close
near-collision which occurrence probability is negligible under the purely random
model. Regarding this situation, we introduce another model that assumes the
existence of an additional random near-collision pair whose difference follows
some (discrete Gaussian) distribution D.

Model 2 (One special near-collision) The list L = L(D) is the union of a
pair (y1, y2) ∈ B sampled as y1 ← U(B), and y2 = y1 + e with eD and purely
random L′. We call the pair (y1, y2) by the special near-collision from D.

Finally, the following proposition describes the analysis of Algorithm 2 under
the models we established.

Proposition 1. Let B =
∏r

i=1[−qi/2, qi/2) be an r-dimensional domain, L ⊂ B
be an input list, and ℓ be a norm bound for a near-collision. Let b be a block-length
parameter, and let ni and bi be defined as Definition 3.

(Complexity) Let Thash(r) and Tcheck(r) denote the time cost of the hash query and
of checking if near-collision for the dimension-r vector(s), respectively. Under
Model 1 and Model 2, for any 0 < ϵ < 1, Algorithm 2 terminates in time

R (|L| · Thash(r) +Ncol(|L|, ϵ) · Tcheck(r))

where

Ncol(|L|, ϵ)7 =
|L|2

2
·

 ∏
1≤i≤r

1

ni

+

√√√√√R

ϵ
· |L|

2

2
·

 ∏
1≤i≤r

1

ni


with probability at least 1− ϵ, and requires |L| words of space for hash function
outputs.

(Correctness) Define plsh(e) =
∏

1≤i≤r
ni>1

(
1− |ei|

bi

)
, and

pncf (ℓ;χ) := Pr
e←χ

[∥e∥∞ ≤ ℓ] · E
e←χ

[
1− (1− plsh(e))

R
]
. (3)

for any r-dimensional distribution χ. Then

– Under Model 1, Algorithm 2 finds a random ℓ-near-collision with probability
at least pncf (ℓ;U([−ℓ, ℓ]r)).

– Under Model 2 with the special near-collision from D, Algorithm 2 finds the
special near-collision with probability at least pncf (ℓ;D).

Proof. See Appendix B.2. ⊓⊔
7 For the parameters appeared in our main attack, the first term dominates Ncol(|L|, ϵ)
since |L| ≫ R.

10

Concrete choice of the repetition number. Although pncf (ℓ;χ) in Propo-
sition 1 is expressed in a comprehensible form, it is hard to derive the choice of
R to make pncf (ℓ;χ) ≈ 1, due to the complexity of the integral-based formula

Ex←χ[1− (1− plsh(x))
R] =

∫
Pr[χ = x] ·

(
1− (1− plsh(x))

R
)
dx. (4)

Fortunately, we can express at least Eχ[plsh(x)] in the close-form for our interest
distribution, e.g., χ = Uℓ or χ = Gσ; precisely, for X = b√

2σ
,

Ex←Gσ [1− x/b] = erf(X) +
e−X

2−1
√
πX

and Ex←Uℓ [1− x/b] =

{
1− ℓ

2b if ℓ ≤ b
b
2ℓ o.w.

Using this fact, we explicitly set

R ≥ Clsh/Eχ[plsh(x)] (5)

for some Clsh > 0, expecting that the following approximation holds:

pncf (ℓ;χ) = Eχ[1− (1− plsh(x))
R] ≈ 1− (1− Eχ[plsh(x)])

R
. (6)

With the choice of R in Eq. (5), the right-hand side is lower bounded by
1−e−Clsh . However, Eq. (6) is in fact false so we cannot ensure our desired prob-
ability is close to 1 − e−Clsh . Regarding this, we experimentally check that the
choice of R ≥ Clsh/Eχ[plsh(x)] indeed makes the success probability pncf (ℓ;χ)
sufficiently large for our interested parameters b, ℓ and for Clsh = 10 in Ap-
pendix C.2, and use the values for the attack cost estimation in later Section 7.

4 Matrix Modulus

In this section, we introduce a matrix modulus notion inspired by Babai’s NP
algorithm, and define a projection map compatible with this matrix modulus
notion. This enables us to generalize the projection-based constraint idea of the
original Meet-LWE [42] into the primal hybrid case.

Definition 5. Let B = (b1| · · · |bn) ∈ Rm×n be a matrix. For vectors a, b ∈ Rm,
we write a = b mod B if a− b ∈ L(B).

We first review some basic properties of the map NPB . Let B = (b1| · · · |bn) ∈
Rm×n be a full-rank matrix with the Gram-Schmidt orthogonal and orthonormal
form B∗ and B̄∗ = (b̄∗1| · · · |b̄∗n), respectively. We define the coordinate vector with
respect to B̄∗

πB : v 7→
(
⟨b̄∗i , v⟩

)
1≤i≤n (7)

with respect to the Gram-Schmidt basis. Since Babai’s algorithm does not de-
pend on the choice of basis, for any vector v ∈ Rm, we have

πB(NPB(v)) = NPB∗(πB(v)), (8)

which only differ in the order of applying the basis change (from the standard
to Gram-Schmidt) and the Babai’s nearest plane algorithm.

11

Definition 6. Let B ∈ Rm×n be a full-rank matrix and v ∈ Rm. We define

[v]B := πB(NPB(v)) = NPB∗(πB(v)) ∈
n∏

i=1

[
−∥b

∗
i ∥
2

,
∥b∗i ∥
2

)
.

For a matrix M = (M1| · · · |Md) ∈ Rm×d, we define [M]B := ([M1]B | · · · |[Md]B)
by the column-wise application of [·]B.

Throughout this paper, we focus on the vectors with coordinates in the Gram-
Schmidt basis. Instead of being fully rigorous, we ambiguously write the above
output vector and the relevant vectors in the Gram-Schmidt basis by NPB(v) or
[v]B if there is no confusion; for example, Lemma 2 implies that

[v]B = NPB(v) = v mod B,

whose explicit meaning is [v]B = πB(NPB(v)) = NPB∗(πB(v)) = πB(v) mod B∗.
The notation [·]B satisfies the following useful properties: For two vectors

v, w ∈ Rn and c ∈ R, we have

[v + w]B = [v]B + [w]B mod B, [c · v]B = c[v]B mod B. (9)

For s = (s1, · · · , sd) ∈ Zd and M ∈ Rm×d, we also have by the linearity:

[Ms]B =

∑
i∈[d]

si ·Mi


B

=
∑
i∈[d]

[si ·Mi]B =
∑
i∈[d]

si · [Mi]B = [M]B · s. (10)

Projection for matrix modulus. To apply the Meet-LWE constraint idea, we
need to the projection map πB,r(v) that takes some r coordinates from πB(v).
However, in general, the r coordinate projection is generally incompatible with
modulo B operation, as Figure 1 shows.

b1

b2
v

(a) Modulo B then project

b1

b2
v

(b) Project then modulo B

Fig. 1: For a basis B = (b1, b2), the dashed line represents each coset modulo
B. The projection to the first coordinate and modulo B operation does not
commute.

Fortunately, we show the projection map πB,r to the last r coordinates, pre-
cisely

πB,r(v) := pr(πB(v)) for pr : (x1, · · · , xn) 7→ (xn−r+1, · · · , xn) (11)

12

solves this issue. Precisely, the following lemma asserts that (a sort of) com-
mutativity between the modulo B and πB,r (with the last Gram-Schmidt basis
coordinates) holds.

Lemma 3. Let B = [b1, · · · , bn] ∈ Rm×n be a full-rank matrix. Let τB,r(v) be
the representation of πB,r(v) with respect to the standard basis, say τB,r : v 7→∑

n−r+1≤i≤n⟨b̄∗i , v⟩b̄∗i , and Br = [τB,r(bn−r+1)| · · · |τB,r(bn)] ∈ Rm×r. Then it
holds that

pr([v]B) = [τB,r(v)]Br .

Proof. Using QR-decomposition, the matrix B can be represented as a product
of two matrices B = B̄∗ ·R. Considering Gram-Schmidt process, the matrix Br

is decomposed by Br = B̄∗rRr where B∗r is defined as an analogous of Br for
B∗, and Rr is the lower-right submatrix of R of size r × r; as Figure 2. Then
Figure 3 represents modulo B operation for v with respect to basis B̄∗. The
lower red part shows the claim: the left-hand side is pr([v]B), and the right-hand
side corresponds to [τB,r(v)]Br

.

= ·B B̃∗ R
Br B̃∗

r

Rr

Fig. 2: Gram-Schmidt on B and Br

[v]B
=

πB(v)− R · k

Rr

Fig. 3: Modulo B and Br operations

⊓⊔

Thanks to Lemma 3, we now able to introduce the notation

[v]B,r := pr([v]B) = [τB,r(v)]Br
. (12)

Also note that Lemma 3 directly implies that [v]B,r1 = [v]B,r2 mod Br2 for any
r1 ≥ r2, which in particular says that v = [v]B,r mod Br.

Computation cost of projection. Babai’s NP algorithm normally takesO(n2)
operations for the input dimension n. The following lemma provides some com-
putational advantage when the projection dimension r quite smaller than the
original attack dimension n.

Lemma 4. Let B ∈ Rm×n be a full-rank matrix. Given the Gram-Schmidt de-
composition B = B∗ · R and πB(v), the projection [v]B,r can be computed in
O(r2) unit operations.

Proof. Figure 3 shows that the computation of [v]B,r only depends on the r-
dimensional matrix Rr, not the original matrix B or R of the dimension n.
Therefore [v]B,r can be computed by a matrix-vector multiplication of dimension
r and subtraction of two vectors of dimension r, which can be done in O(r2) unit
(floating point) operations such as addition and multiplication. ⊓⊔

13

Splitting matrix modulus. The hybrid attack often encounters elements of
the form [v+ e]B for some small e such that [e]B = e. Due to the smallness of e,
it is expected that

[v + e]B = [v]B + e

where the RHS is coordinate-wise addition with respect to B̄∗. However, this
is not generally true when any modulo B reduction occurs, so previous hybrid
attacks [34, 47] enforced that the small e does not cause modulo B reduction.
This is reflected by the probability to the attack cost analysis; the admissible
definition [34, Definition 3] ([47, Definition 4.2], resp) and the related probabil-
ity [34, Lemma 6] ([47, Assumption 4], resp).

This condition is slightly mitigated when we consider [v+e]B,r, in a way that
it only requires no reduction by bi for i > n− r.

Lemma 5. Let v, e ∈ Rn, and write [v]B = (v1, · · · , vn) and [e]B = (e1, · · · , en).
If |vi + ei| ≤ ∥b∗i ∥/2 for every i ∈ [n− r + 1, n], then it holds that

[v + e]B,r = [v]B,r + [e]B,r.

Proof. In general, it holds that [v + e]B = [v]B + [e]B +
∑n

i=1 ci · bi for ci ∈ Z.
Here, the assumption implies that ci = 0 for i ∈ [n − r + 1, n], and we have

[v + e]B = [v]B + [e]B +
∑r−1

i=1 ci · bi. Since πB,r(bi) = 0 for every i ∈ [r − 1],
taking πB,r on both sides ends the proof. ⊓⊔

5 Meet-LWE for Matrix Modulus

In this section, we describe a generalization of the Meet-LWE algorithm, which
finds the solution of the equation Ms = e mod B. More precisely, given M ∈
Zm×d and B ∈ Zm×m, it asks to find s ∈ T d(w(0)) such that [Ms]B = e
holds8 where e is sampled from Gaussian distribution Gσ.

Equipped with πB,r defined in Section 4, we are now able to define the sets of
representations with projection-based constraint, as the first step to generalize
the Meet-LWE to matrix modulus. One can naively mimic the original Meet-
LWE by considering two sets

S
(1)
i := {x ∈ T d(w(1)) | [Mx]B,r = ei} for i ∈ {1, 2},

while guessing e1, e2 such that πB,r(e) = e1 − e2 with w(1) ≥ w(0)/2. At this
point, however, recall that the original Meet-LWE algorithm performs a brute-
force guess on the error vector ei, which was manageable because the number of
ei candidates only depends on r. However, the number of ei candidates remains
almost the same as that of e due to the non-orthogonality of the coordinate
system; see Figure 4, which makes this error enumeration infeasible.

8 This implicitly assumes [e]B = e. The probability of this event is already discussed
in Section 2.3, and we assume this holds throughout this section.

14

Fig. 4: The blue points denote the integer coordinate points with respect to the
standard basis. The dotted line represents the coordinate system determined
from B̃∗, and the gray lines show the projection τB,r.

We solve this problem by defining one level-1 set with approximate constraints
of the form ∥[Mx]B,r∥∞ ≈ 0; more precisely,

S(1) := {x ∈ T d(w(1)) | ∥[Mx]B,r(1)∥∞ ≤ ℓ(1)}.

for some small r(1) and ℓ(1). By taking this approach, we only need to construct
S(1) and then recover the solution s by finding a near-collision in S(1) × S(1).

However, we need to specify the relevant parameters r(1) and ℓ(1) to make
this argument substantial. For that, recall from the original Meet-LWE [42] that

the purpose of constraint was letting S
(1)
1 × S

(1)
2 contains one and only one rep

pair of s, and this was achieved by an proper choice of projection dimension r.
As an analogue of this argument for approximate constraint, we need to take
proper r(1), ℓ(1) so that S(1) contains one and only one w(1)-representation pair

(s
(1)
1 , s

′(1)
2) ∈ S(1) × S(1) of s; Figure 5 graphically explains this. This is in-

deed the main idea of analysis in the analysis Section 5.2, which requires much
complicated argument than the exact constraint case of [42].

Finally, to describe the extension to higher level, observe that the given
problem to solve Ms = e mod B is almost equivalent to construct

S(0) := {s ∈ T d(w(0)) : ∥[Ms]B∥∞ ≤ ℓ(0)},

for some appropriate ℓ(0). In this view, the argument above essentially reduces
the problem of constructing S(0) into the problem of constructing S(1) and find-
ing near-collisions in S(1). As S(1) is in the exactly same shape with S(0), we
again reduce the problem of constructing S(1) to level-2. This can be repeated
until arbitrary level-t with the intermediate sets

S(i) := {x ∈ T d(w(i)) | ∥[Mx]B,r(i)∥∞ ≤ ℓ(i)},

where the top level t is chosen so that |S(t)| becomes sufficiently small and it is
recoverable by exhaustive search. This ends with an overview of our attack.

15

Cr
(1)

ℓ(1)

πBr (P(B
∗))

[e]
B,r(1)

Fig. 5: The blue and red points represent [Ms
(1)
r]B,r(1) and [Ms

′(1)
r]B,r(1) respec-

tively, which are at distance [e]B,r(1) . We expect a representation (s
(1)
1 , s

(1)
2) that

makes both points have infinity norm less than ℓ(1), emphasized by a thick line.

5.1 Full Description with Optimizations

The Algorithm 3 describes the full procedure of our algorithm. Although this
algorithm is based on the aforementioned idea, a rigorous analysis needs some
more details, so we presented them below.

5.1.1 Algorithm Details. We present some necessary details for our attack.

The meaning of S̃(i). In Algorithm 3, we deliberately write the set obtained
during the attack by S̃(i), to distinguish it from S(i). We show that the attack suc-
ceeds with a high probability whenever the algorithm recovers a certain fraction
S̃(i) of S(i), which can be efficiently collected through the near-collision finding
algorithms. This allows us to avoid recovering the full set S(i), which turns out
to be quite burdensome, for example, due to the failure in near-collision finding.

Conditions on ℓ(i). The first condition ℓ(i) ≤ 2ℓ(i+1) is to ensure the existence
of rep pairs: If ℓ(i) > 2ℓ(i+1), it holds that ∥[Msr]B,r(i+1) − [Ms′r]B,r(i+1)∥ ≤
2ℓ(i+1) < ℓ(i) for any sr, s

′
r ∈ S(i+1), so that some s(i) ∈ S(i) satisfying 2ℓ(i+1) <

∥[Ms(i)]B,r(i+1)∥∞(≤ ℓ(i)) can never have rep pairs in S(i+1).
For the second condition, observe that we frequently encounter an element

of the form [v + e]B,r(i) where ∥[v]B,r(i)∥∞ ≤ ℓ(i) and ∥[e]B,r(i)∥∞ ≤ ℓ(i−1). We
invoke Lemma 5 for allowing [v + e]B,r(i) = [v]B,r(i) + [e]B,r(i) , which requires

ℓ(i) + ℓ(i−1) ≤ ∥b∗
m−r(i)+k

∥/2 for every k ∈ [r(i)]. Assuming ∥b∗i ∥ decreases (e.g.
GSA), this boils down to the second condition:

ℓ(i) + ℓ(i−1) ≤ ∥b∗m∥/2. (13)

Near-collision finding. The last r(i) coordinates of [Mx]B,r(i−1) ∈ L(i) are

small due to the constraint of S(i). For the first r(i−1)−r(i) coordinates, we only

16

Algorithm 3: Meet-LWE for matrix modulus with the top level t

Input: Matrices M ∈ Zm×d and B ∈ Zm×m

a norm bound ℓ(0) for e = [Ms]B
a solution weight w(0) of s ∈ T d(w(0))

Params : Split weights {w(i)}ti=1 s.t. w(i)/2 ≤ w(i+1) < w(i),
projection dimensions {r(i)}t−1

i=0 s.t. r(i) ≥ r(i+1),

norm bounds {ℓ(i)}t−1
i=0 s.t. ℓ(i) ≤ 2ℓ(i+1) and ℓ(i) + ℓ(i−1) ≤ ∥b

∗
m∥
2

,

torus LSH block-lengths {b(i)lsh}
t
i=1 s.t. b

(i)
lsh ≥ ℓ(i−1),

NCF repetition numbers {R(i)
lsh}

t
i=1

Output: The solution s such that ∥[Ms]B∥∞ ≤ ℓ(0).
1 Set the top-level set S̃(t) by a random subset of T d(w(t))
2 for i = t down to i = 1 do

// Find ℓ(i−1)-near-collisions with respect to [Mx]B,r(i−1)

3 Compute L(i) = {[Mx]B,r(i−1) | x ∈ S̃(i)}
4 CS(i) ← Algorithm 2(B(i), L(i), ℓ(i−1); b

(i)
lsh, R

(i)
lsh) with B

(i) defined as
Eq. (14)

5 Set S̃(i−1) = ∅
6 for each pair ([Msr]B,r(i−1) , [Ms′r]B,r(i−1)) ∈ CS(i) do

// Check the weight condition

7 if sr − s′r ∈ T d(w(i−1)) then S̃(i−1) ← S̃(i−1) ∪ {sr − s′r}
8 end

9 end

10 return S̃(0)

can use the fact that [Mx]B lies in P(B∗). Considering this, the domain B(i) of
the torus LSH is defined by

B(i) :=
∏

j∈[r(i−1)]

[
−qj

2
,
qj
2

)
for qj =

{
∥b∗

m−r(i−1)+j
∥ if j < r(i−1) − r(i)

2ℓ(i) if j ≥ r(i).
(14)

5.1.2 Optimizations. The following optimizations provide concrete improve-
ments to the attack complexity.

Bottom-level optimization. Unlike the upper-level lists, the target near-
collision in L(1) × L(1) is extremely rare. We choose an additional parame-
ter r(0) ≤ m and consider the last r(0) coordinates (instead of the entire m-
dimension) to execute NCF for L(1), whose detailed choice is presented in Re-
mark 3. Asymptotically, the NCF cost for L(1) now only depends on r(0) instead

of m. Lemma 4 shows that the cost to compute [·]B,r is O((r(0))
2
) floating point

operations. This is especially useful for large parameters used in homomorphic
encryptions, where m is about ≥ 10000 but r(0) can be chosen as ≤ 100.

Top-level optimization. The top-level set S̃(t) = S(t) is defined (in Line 1
of Algorithm 3) by a simple subset of T d(w(i)) without any constraint because

17

there is no way to use the constraints in the top level. Instead, as in the previous
works [34, 42], we take S(t) as a random subset of T d(w(t)) of some fixed size,
whose detailed choice and analysis are presented in Lemma 6 below. To be
compatible with the notation for the intermediate levels such as Eq. (14), we set
r(t) by a dummy dimension 0.

Remark 2 (Optimizing the hybrid attack of Howgrave-Graham). Our attack with
the top-level t = 1 is essentially a reinterpretation of the original Howgrave-
Graham’s hybrid attack [34], in the sense that both attacks aim to find one
representation pair (s1, s2) of the desired solution s in a smaller search space
S(1), such that [Ms1]B and [Ms2]B are close enough.

Looking at further details, our top-level t = 1 attack retains some optimiza-
tions that were not considered in the previous works: the LSH and bottom-level
optimizations. First, the original description of the meet-in-the-middle in [34]
can also be viewed as utilizing a sort of NCF algorithm. This part is already
addressed by the paper [43], replacing this part by (a variant of) Algorithm 2.
Furthermore, the optimization that only considers the last r(0) coordinates for
the bottom level can also be applied as well. In other words, every computation
of [·]B in Howgrave-Graham’s hybrid attack can be replaced by [·]B,r(0) for some

r(0) ≤ m, bringing concrete improvement on the cost of NCF.

5.2 Analysis of Meet-LWE for Matrix Modulus

This section presents the analysis of Algorithm 3, which is probably the most
involved part of this paper. The resulting statement is presented in the end of
this section as Theorem 1, and this entire section is a proof for that theorem.

5.2.1 Success Probability Overview. We start from the observation that

the attack success condition is s ∈ S̃(0), and write the event by E
(0)
rec. Then the

success probability pmeet
suc becomes Pr[E

(0)
rec] by definition. As an underlying idea

of the level reduction, we consider the following three events that imply E
(0)
rec.

E
(0)
sp : ∃ a w(1)-rep pair (s

(1)
1 , s

(1)
2) ∈ S(1)×S(1) of s, i.e., s splits into s

(1)
1 − s

(1)
2 .

We say (s
(1)
1 , s

(1)
2) by the level-1 target pair, and each s

(1)
k by the level-1

target element for k = 1, 2.

E
(1)
rec : The target elements s

(1)
1 , s

(1)
2 are included in S̃(1) conditioned on E

(0)
sp .

E
(0)
ncf : NCF on S̃(1) find the target pair (s

(1)
1 , s

(1)
2) conditioned on E

(1)
rec.

This provides

pmeet
suc = Pr[E(0)

rec] ≥ Pr[E(0)
sp ∧ E(1)

rec ∧ E
(0)
ncf] = Pr[E(0)

sp] · Pr[E(1)
rec] · Pr[E

(0)
ncf]

where the last equality holds because of the definitions of E
(1)
rec and E

(0)
ncf .

We can recursively extend this idea to higher levels for i ∈ [t− 1].

18

E
(i)
sp : ∃ a w(i+1)-rep pair (s

(i+1)
2k−1 , s

(i+1)
2k) ∈ S(i+1) × S(i+1) for each level-i target

element s
(i)
k ∈ S(i) for k ∈ [2i]. We say each (s

(i+1)
2k−1 , s

(i+1)
2k) by a level-(i+ 1)

target pair, and each s
(i+1)
k by the level-(i+ 1) target element.

E
(i+1)
rec : All level-(i+1) target elements s

(i+1)
k for k ∈ [2i+1], i.e., s

(i+1)
k ∈ S̃(i+1)

for k ∈ [2i+1] conditioned on E
(i)
sp .

E
(i)
ncf : NCF on S̃(i+1) find all level-(i+1) target pairs (s

(i+1)
2k−1 , s

(i+1)
2k) for k ∈ [2i]

conditioned on E
(i+1)
rec .

Then we have the following inequality

Pr[E(i)
rec] ≥ Pr[E(i)

sp] · Pr[E(i+1)
rec] · Pr[E(i)

ncf].

By applying this inequality for i = 0, · · · , t− 1, we have

pmeet
suc ≥

t−1∏
i=0

Pr[E(i)
sp] ·

t−1∏
i=0

Pr[E
(i)
ncf] · Pr[E

(t)
rec].

Since the top-level set S̃(t) is directly constructed and is defined by S̃(t) = S(t),

we have Pr[E
(t)
rec] = 1, and hence finally we have

pmeet
suc ≥

t−1∏
i=0

Pr[E(i)
sp] ·

t−1∏
i=0

Pr[E
(i)
ncf].

Therefore, the success probability computation reduces to the computation of
the probabilities of Esp and Encf , what we call by the splitting and near-collision
finding probability, respectively.

5.2.2 Computation of Splitting Probability. The goal of this part is

Proposition 2 and Lemma 6 at the end, which computes E
(i)
sp for intermediate

levels i < t− 1 and i = t− 1, respectively.

Intermediate level. We consider the partial event E
(i)
sp,k that the k-th level-i

target element s
(i)
k ∈ S(i) splits into S(i+1). This event means that there is a

w(i+1)-rep pair (s
(i+1)
2k−1 , s

(i+1)
2k) of s

(i)
k such that

([Ms
(i+1)
2k−1]B,r(i+1) , [Ms

(i+1)
2k]B,r(i+1)) ∈ Cr

(i+1)

ℓ(i+1) × Cr
(i+1)

ℓ(i+1) (15)

See again Figure 5 for a graphical illustration of this event.

Clearly, Pr[E
(i)
sp] = Pr[∧k∈[2i] E

(i)
sp,k] holds by definition. However, the target

elements s
(i)
k are tied by some relation, for example,

s
(i−2)
k = (s

(i)
4k−3 − s

(i)
4k−2)− (s

(i)
4k−1 − s

(i)
4k), (16)

which makes hard to compute the probability Pr[∧k∈[2i] E
(i)
sp,k]. So we establish

the following heuristic that makes the computation feasible.

19

Heuristic 1 (Independency) It holds that Pr[E
(i)
sp] ≥

∏
k∈[2i] Pr[E

(i)
sp,k].

Proof. See Appendix B.3 for justification, and Appendix C.3 for relevant exper-
iments. ⊓⊔

We now proceed to compute each probability Pr[E
(i)
sp,k] of the splitting event

occurs for s
(i)
k ∈ S(i). Let P (s

(i)
k) be the set{

([Msr]B,r(i+1) , [Ms′r]B,r(i+1))
∣∣ (sr, s

′
r) is a w(i+1)-rep pair of s(i)

}
,

whose size is the number of w(i+1)-rep pairs of s(i), say R(i) := R(d,w(i+1), w(i))

that can be computed by Lemma 1. Then the event E
(i)
sp,k means that at least

one pair in P (s
(i)
k) lies in Cr(i+1)

ℓ(i+1) . To analyze the probability, we need to specify

the distribution of P (s
(i)
k). Since the second element is automatically determined

by the first element x := [Msr]B,r(i+1) as [x+e]B,r(i+1) where e = [Ms
(i)
k]B,r(i+1) ,

we only regard the first element.

Heuristic 2 (Uniformity) We model the set

P1(s
(i)
k) :=

{
[Msr]B,r(i+1)

∣∣ (sr, s
′
r) is a w(i+1)-rep pair of s(i)

}
as follows:

– Let e = [Ms
(i)
k]B,r(i+1) , and repeat the following R(i)/2 times:

– Sample x← P(B∗
r(i+1)), and insert x and ([−x− e]B

r(i+1)
) into P (s

(i)
k).

Proof. See Appendix B.4 for justification, and Appendix C.1 for relevant exper-
iments.

Under this heuristic, we compute Pr[E
(i)
sp,k] and then Pr[E

(i)
sp] as follows.

Proposition 2. Assume Heuristic 2 holds for 0 ≤ i < t − 1 and Heuristic 1
holds for 1 ≤ i < t− 1. Then for 0 ≤ i < t− 1,

Pr[E
(i)
sp,k] = psp(χ

(i)
sp) := E

e←χ
(i)
sp

[
1− (1− prep(e))

R(i)/2
]
. (17)

where

χ(i)
sp =

{
Gr

(1)

σ if i = 0

Ur(i+1)

ℓ(i)
otherwise,

prep(e1, · · · , er(i+1)) =
∏

j∈[r(i+1)]

2ℓ(i+1) − |ej |
∥b∗

m−r(i+1)+j
∥ .

Further assuming Heuristic 1, we have Pr[E
(i)
sp] ≥

(
psp(χ

(i)
sp)
)2i

for 0 ≤ i < t−1.

Proof. See Appendix B.5. ⊓⊔

20

Top-level split. For the top-level set S(t) having no constraint, the analysis
becomes much simpler.

Lemma 6. Pr[E
(t−1)
sp] ≥

(
1− e−R

(t−1)·|S(t)|2/|T d(w(t))|2
)2t−1

. In particular, if

|S(t)| =
√
3 · |T

d(w(t))|√
R(t−1)

, we have Pr[E
(t−1)
sp] ≥ (1− e−3)2

t−1 ≥ 0.952
t−1

.

Proof. See Appendix B.6. ⊓⊔

5.2.3 Computation of Near-collision Finding Probability. The overall

story is similar to the E
(i)
sp : We also consider a joint probability Pr[∧k∈[2i] E

(i)
ncf,k]

where E
(i)
ncf,k expects the level-(i + 1) target pair (s

(i+1)
2k−1 , s

(i+1)
2k) is found by

NCF on S̃(i+1). Similarly to E
(i)
sp , we establish Heuristic 3 to lower bounds the

probability, and Heuristic 4 to uniformly model the target list.

Heuristic 3 (Independency) It holds that Pr[E
(i)
ncf] ≥

∏
k∈[2i] Pr[E

(i)
ncf,k].

Proof. See Appendix B.7 for justification, and Appendix C.3 for relevant exper-
iments. ⊓⊔

Heuristic 4 (Uniformity) We model the list

L(i+1) = {[Mx]B,r(i) | x ∈ S̃(i+1)} ⊂ B(i+1)

as follows:

– For i ≥ 1, L(i+1) follows Model 1 (purely random model)
– L(1) follows Model 2 (one special near-collision model) with D = Gσ.

Proof. See Appendix B.8 for justification, and Appendix C.1 for relevant exper-
iments. ⊓⊔

Under these heuristics, we compute Pr[E
(i)
ncf,k] and Pr[E

(i)
ncf] as follows.

Proposition 3. Assume Heuristics 3 and 4. Let

χ
(i)
ncf =

{
Gr

(0)

σ if i = 0

Ur(i)

ℓ(i)
otherwise,

and pnc(χ
(i)
ncf) := E

d←χ
(i)
ncf

 r(i+1)∏
j=r(i)+1

(
1−
|dj−r(i) |
∥b∗m−j∥

)
for 0 ≤ i ≤ t − 1. Let pncf (ℓ;χ) be computed as in Proposition 1. Then the
following holds for 0 ≤ i ≤ t− 1:

Pr[E
(i)
ncf] ≥

(
pnc(χ

(i)
ncf) · pncf (ℓ

(i);χ
(i)
ncf)

)2i
.

Proof. See Appendix B.9. ⊓⊔

Complexity analysis. We then proceed to the cost analysis. First, we compute
the cost of each i-th level of the main loop of Algorithm 3.

21

Lemma 7. For any 0 < ϵ < 1, the time cost T
(i)
loop of the i-th level of the main

loop of Algorithm 3 is dominated by

R
(i)
lsh ·

(
|S̃(i)| · Thash(r

(i−1)) +N
(i)
col(ϵ) · (Tcheck(r

(i−1)) + 2w(i))
)

with probability at least 1− ϵ, where N
(i)
col(ϵ) is defined as Proposition 1.

Proof. See Appendix B.10 ⊓⊔

The complexity of the overall algorithm is the summation of the cost of each
level, which is bounded well with probability 1− tϵ by the union bound.

For the concrete value of |S̃(i)|, we use a trivial bound |S(i)|. The intermediate
level size can be easily estimated by volume ratio:

|S(i)| = |T d(w(i))| ·
vol(Cr(i)

ℓ(i)
)

vol(P(B∗
r(i)

))
=

(
d

w(i)

)
2w

(i)

·
∏

j∈[r(i)]

2ℓ(i)

∥b∗
m−r(i)+j

∥
. (18)

As mentioned in top-level optimization, the top-level list size is fixed by |S(t)| =√
3|T d(w(t))|√

R(t−1)
.

Full Theorem Statement. Putting everything together, we have the full the-
orem that analyzes Algorithm 3. Note that again the contents in this section so
far is a proof for this theorem.

Theorem 1. Let M ∈ Zm×d and B ∈ Zm×m be matrices, ℓ(0) > 0 be a
real number, w(0) be a positive integer. Suppose that there exists a unique s ∈
T d(w(0)) such that ∥[Ms]B∥∞ ≤ ℓ(0) holds. Let t be a positive integer, and let

{w(i)}ti=1, {r(i)}t−1i=0, {ℓ
(i)}t−1i=0, {b

(i)
lsh}

t
i=1, {R

(i)
lsh}

t
i=1

be the set of parameters satisfying the conditions in Algorithm 3. Assuming
that Heuristics 1 to 4, the followings hold.

(Complexity) For any 0 < ϵ < 1, the running time of Algorithm 3 is dominated9

t∑
i=0

R
(i)
lsh ·

(
|S̃(i)| · Thash(r

(i−1)) +N
(i)
col(|S̃

(i)|, ϵ) · (Tcheck(r
(i−1)) + 2w(i))

)
(19)

with probability at least 1− t · ϵ, where N
(i)
col(|S̃(i)|, ϵ) is defined as Proposition 1

and

|S̃(i)| ≤


√
3|T d(w(t))|√

(w(t)

w(t)/2)·(
d−w(t)

w(t−1)−w(t)/2
)·2w−h/2

for i = t,(
d

w(i)

)
2w

(i) ·
∏

j∈[r(i)]
2ℓ(i)

∥b∗
m−r(i)+j

∥ otherwise.

9 Dominated by T means that it is less than (say) 1.001T for practical parameters.

22

(Correctness) Let pmeet
suc := Pr[s ∈ S̃(0)] be the probability that Algorithm 3 finds

the solution s. It holds that

pmeet
suc ≥

t−1∏
i=0

Pr[E(i)
sp] ·

t−1∏
i=0

Pr[E
(i)
ncf] (20)

where the explicit formulas for Pr[E
(i)
sp] and Pr[E

(i)
ncf] are given in Proposition 2

and Proposition 3, respectively.

Remark 3 (Choice of bottom-level dimension r(0)). Observe that when r(0) gets

bigger, N
(1)
col becomes smaller and R

(1)
lsh becomes larger. Using this fact, we choose

r(0) by the optimal one (between r(1) and m) that minimize T
(1)
loop.

Computation of psp(χ
(i)
sp) and the choice of r(i). Note that Pr[E

(t−1)
sp] can

be concisely computed by 0.952
t−1

by fixing only the top-level set size |S(t)|, as
Lemma 6. Meanwhile, for the intermediate levels probability in Proposition 2,

the exact computation of psp(χ
(i)
sp) := E

χ
(i)
sp

[
1− (1− prep(x))

R(i)/2
]
involves too

many parameters, so it is hard to expect such simplification. This is really cum-
bersome for the concrete attack cost estimation, so we consider a heuristic ap-

proach that enables a simple computation of psp(χ
(i)
sp).

Observe that the shape of psp(χ
(i)
sp) is almost similar to Eq. (4), so we again

take a similar approach. Precisely, we choose the maximal r(i+1)(≤ r(i)) so that

R(i)

2
≥ Cproj

E
χ
(i)
sp
[prep(x)]

(21)

for some constant Cproj > 0, since E
χ
(i)
sp

can be expressed in a closed-form again.

Similar to Eq. (5), the underlying rationale of this choice is an expectation that

psp(χ
(i)) := E

χ
(i)
sp
[(1− (1−prep(x))

R(i)/2] ≈ 1−
(
1− E

χ
(i)
sp
[prep(x)]

)R(i)/2

, (22)

where our choice of r(i) lower bounds the right-hand side by 1− e−Cproj . Again,
Eq. (22) is in fact false, so we experimentally verify that the probability psp(χ

(i))
is sufficiently large for our choice of r(i) and Cproj = 10 in Appendix C.2, and
use the values for the attack cost estimation in later Section 7.

6 Primal-Meet-LWE

This section proposes our new hybrid attack that combines the primal lattice
conversion Algorithm 1) and Meet-LWE for matrix modulus (Algorithm 3).
Note that, although we convert the LWE equation b = As′ + e′ mod q into
Ms = e mod B, we cannot know the exact hamming weight of the partial guess-
ing secret s. In this regard, we introduce a guess weight parameter w(0) while
expecting HW (s) = w(0). The formal description is given in Algorithm 4.

23

Algorithm 4: Primal-Meet-LWE

Input: LWE instances (A, b) ∈ Zm′×(n+1)
q such that b = As′ + e where e← Gσ

and s′ ← T n(h), and a top-level parameter t
Params : β: the block size for the BKZ reduction

d: the guessing dimension
meet-lwe-params = {(w(i), r(i), ℓ(i), b

(i)
lsh, R

(i)
lsh)}i satisfying the

conditions specified in Algorithm 3
Output: The secret key s′ ∈ T n(h) such that b = As′ + e mod q

1 (M,B)← Algorithm 1(A, b, d)
2 B ←BKZ-β(B)

3 L̃(0) ← Algorithm 3(M,B, ℓ(0), w(0), t;meet-lwe-params)

4 if ∃ sg ∈ L̃(0) then

5 Parse NPB(Msg) into (e, s̄) ∈ Zm′
× Zn−d+1.

6 return (s̄∥sg)
7 end
8 return ⊥

Theorem 2. Let (A, b) ∈ Zm×(n+1)
q be an LWE instance with a secret vector

s ∈ T d(w) and noise vector e← Gσ. Then Algorithm 4 with Params successfully
recovers the solution s with probability at least

psuc = pnp · phw · pmeet
suc ,

where pmeet
suc is the success probability of Algorithm 3 defined as Eq. (20),

pnp =

m+n−d+1∏
i=1

erf

(
∥b∗i ∥
√
2

σ

)
and phw =

(
n− w

d− w(0)

)(
w

w(0)

)
/

(
n

d

)
.

The execution time is estimated by Tbkz(m,β) + Tmeet where Tbkz(m,β) is the
running time of BKZ-β for m-dimensional lattice, and Tmeet is the running time
of Algorithm 3, computed as Eq. (19).

Proof. For the attack to succeed, we need the following events:

– NPB(e) = e, whose probability pnp is already discussed in Section 2.3.
– HW (s) = w(0), whose probability phw comes from simple combinatorics.
– sg ∈ L̃(0), whose probability is analyzed in Theorem 1 by pmeet

suc .

Therefore, the success probability of Algorithm 4 is psuc = pnp · phw · pmeet
suc .

The timing cost part is immediate: the computational cost is clearly domi-
nated by the BKZ reduction (Line 4) and the execution of Algorithm 3. ⊓⊔

7 Concrete Estimations

Given input LWE parameters such as m,n, q, σ, w, there would be the optimal
parameterizations of Algorithm 4 producing minimal cost

1

psuc
(Tbkz(m,β) + Tmeet)) .

24

We have implemented a Python script that investigates the minimal cost and
such optimal parameterization, which is available in Supplementary Material.

In particular, we consider two popular parameter regimes from the literature.
The first one comes from the fully homomorphic encryption (FHE) literature,
which employs huge n ≥ 215 and q ≥ 2500. In particular, it usually uses (ex-
tremely) sparse secret key of hamming weight from 64 to 192, which is essential
to have efficient bootstrapping procedures [16,20,31,38].

We also consider the other popular parameter regime, say the post-quantum
cryptography (PQC) literature, which have much smaller dimension n and mod-
ulus q than HE. In this regime, the secret key size still affects the efficiency, and
it is also common to use small secrets. For estimations, we especially figure out
the schemes based on sparse (or fixed hamming-weight) ternary secret [4, 18].10

Cost model and assumptions. We mainly follow the similar assumptions and
cost model used in lattice-estimator [2], since the estimations for previous attacks
(including non-hybrids) are obtained from that.

– We identify a single integer, a floating point number, and an element in Zq

as a unit word, and the unit cost of arithmetic operations over them by rop.
– For the hash table (or RAM) cost, we assume Thash(r) takes r unit costs, and

random access for the hash table takes a unit cost.
– We assume that BKZ-β algorithm on m-dimensional basis takes 5.46m ·

20.296β+20.388 [8] unit cost, which is a default setting in lattice-estimator [2].
– We use Geometric Series Assumption (GSA) to simulate the Gram-Schmidt

norm of BKZ output basis.

Remark 4. The cost model for the concrete security estimation reaches to the
point of considering gate-level cost for each unit operation or consider more
precise model for BKZ such as Z-shape model [25, 34]. We acknowledge that
these kinds of details should be eventually examined for our attack as well, and
leave it as a future work.

Restriction of parameter search range. For a quick estimation, we want to
exclusively focus on the some specific search range. In particular, we want to use

the heuristic suggestion of r(i) and R
(i)
lsh (Eq. (21) and Eq. (5)). However, recall

that this choice was based on (in fact, false) expectation of the form

Eχ[1− (1− p(x))R] ≈ 1− (1− Eχ(i) [p(x)])R],

so the target specific search range should resolve this issue anyhow. We manage to
find out some appropriate choices parameters from some trial-and-error, which
is summarized as Figure 6, and the relevant experimental details about the
approximation will be presented in Appendix C.2.
Estimation results. Table 1 shows estimation results of several attack strate-
gies for HE and PQC regimes, respectively, based on the parameter search

10 As a subtle issue, the error distribution of our target PQC scheme is uniform ternary
distribution. Our estimation is done by approximating it by Gaussian with the same
variance.

25

https://github.com/yonghaason/PrimalMeetLWE

Norm bounds ℓ(i), torus LSH block-length b
(i)
lsh, NCF repetition numbers

R
(i)
ncf , and projection dimensions r(i) are chosen as follows.

– ℓ(i) = 6σ for 0 ≤ i ≤ t− 1
– b

(i)
lsh = 12σ for 1 ≤ i ≤ t

– χ(0) = Gσ and χ(i) = Uℓ(i) for 1 ≤ i ≤ t.

– R
(i)
ncf =

⌈
Clsh/Eχ(i−1) [plsh(e)]

⌉
with Clsh = 10 for 1 ≤ i ≤ t (See

Eq. (5))
– r(i): the maximal one s.t. R(i−1) ≥ 2Cproj/Eχ(i−1) [prep(e)] with Cproj =

10, where R(i−1) is the number of w(i)-reps of w(i−1)-weight ternary
vector, for 1 ≤ i < t (See Eq. (21))

The other parameters, such as guessing dimension d, BKZ blocksize β, and
split weights w(i) are exhaustively searched.

Fig. 6: Parameter search range

range of Figure 6. The numbers for our attacks and the previous hybrid at-
tack (HG) [34] are obtained from our script11, and the others are obtained from
lattice-estimator [2]. For the reader interested in the optimal parameterization
itself as well as the optimal attack cost, the log files can be found also in Sup-
plementary Material.

The consequence is quite expectable. Our attack beats the previous best
attacks when the sparsity of the secret is severe, such as HE parameters or
(currently inactive) IEEE standards for NTRU [4]. However, our attack falls
behind the non-hybrid attack for larger hamming-weight, especially for the recent
PQC scheme such as NTRU for NIST PQC standardization [18], which confirms
again the recent trend of avoiding extremely sparse secrets. Nonetheless, our
attack is better than Howgrave-Graham’s hybrid attack [34] in every parameter
set, which shows that our generalization anyhow makes some advance from the
previous hybrid attack [34].

Separation of non-hybrids. One might be curious how hybrid attacks become
worse than ‘Non-hybs’ in a certain regime, or why ‘Non-hybs’ is not treated as
a special case of our hybrid attack with d = 0 and w(0) = 0 in our estimation.
This is because the post-processing combinatorial strategy requires many new
constraints regarding modulo B, which are not required for the pure lattice
attack (‘Non-hybs’). In particular, the condition Eq. (13) on Gram-Schmidt norm
∥b∗i ∥ critically affect such a drastic discrepancy.

11 The lattice-estimator [2] also provide some estimation of the HG attack [34]. However,
we rather use our own estimation, as we correctly deal with scaling factor Remark 1
and near-collision finding cost.

26

https://github.com/yonghaason/PrimalMeetLWE
https://github.com/yonghaason/PrimalMeetLWE

Consideration on the best level. For all our target parameters, our hybrid
attack obtains the minimal cost at top level 2, and top level 3 sometimes even
worse than top level 1 case; see (216, 21553, 192) case. This is in contrast to
the original Meet-LWE [42], which obtained the minimal attack cost at (up to)
top level 4. We suspect the following reasoning for this. First, recall that the
lattice reduction phase already significantly reduces the searching space. This
makes the improvements in the exponent from Meet-LWE over Meet-in-the-
middle marginal than the direct key search. Second, the higher-level iterations
retains more heavier overhead in the time complexity and success probability
than [42], particularly due to the near-collision finding algorithms.

(n, q, w)

Primal Strategy
Dual Strategy

[5, 21]Non-hybs
[6, 40]

HG [34]
(t = 1)

Ours

t = 2 t = 3

Homomorphic Encryption [16,31,37,38]

(215, 2699, 128) 161 132.9 127.1 127.5 133
(215, 2768, 192) 145 130.0 125.9 126.6 133
(216, 21553, 192) 145 129.5 127.1 138.1 136
(216, 21450, 64) 155 111.4 105.1 106.6 108

NTRU IEEE [4]

(659,2048,76) 153 148.2 135.4 145.7 136
(761,2048,84) 176 166.5 151.5 162.2 154

(1087,2048,126) 255 241.8 219.5 233.5 221

NTRU Encrypt [18], NTRU Prime [13]

(509,2048,254) 131 195.4 175.1 195.4 137
(677,2048,254) 171 242.2 216.2 238.2 175
(653,4621,288) 153 218.4 196.2 216.9 158

Table 1: Complexity estimations of LWE attacks. For all HE parameters, the er-
ror is (discrete) Gaussian of σ = 3.2. For other parameters, the error distribution
is the uniform distribution over [−1, 0, 1], and approximated by Gaussian distri-
bution of the same variance. We remark that there is a significant concern [26]
about the core assumption used for the dual strategy at the time of writing this
paper, so the estimation result for dual strategy loses some reliability.

27

References

1. HEAAN. https://github.com/snucrypto/HEAAN. Accessed: 2023-10-06.
2. Lattice-Estimator. https://github.com/malb/lattice-estimator. Accessed:

2023-10-06.
3. Lattigo. https://github.com/tuneinsight/lattigo. Accessed: 2023-10-06.
4. IEEE Standard Specification for Public Key Cryptographic Techniques Based on

Hard Problems over Lattices. IEEE Std 1363.1-2008, 2008. Accessed: 2022-05-27.
5. M. R. Albrecht. On dual lattice attacks against small-secret LWE and parameter

choices in HElib and SEAL. In Annual International Conference on the Theory
and Applications of Cryptographic Techniques, pages 103–129. Springer, 2017.

6. M. R. Albrecht, F. Göpfert, F. Virdia, and T. Wunderer. Revisiting the expected
cost of solving uSVP and applications to LWE. In International Conference on the
Theory and Application of Cryptology and Information Security, pages 297–322.
Springer, 2017.

7. M. R. Albrecht, R. Player, and S. Scott. On the concrete hardness of learning with
errors. Journal of Mathematical Cryptology, 9(3):169–203, 2015.

8. E. Alkim, L. Ducas, T. Pöppelmann, and P. Schwabe. Post-quantum key
{Exchange—A} new hope. In 25th USENIX Security Symposium (USENIX Secu-
rity 16), pages 327–343, 2016.

9. B. Applebaum, D. Cash, C. Peikert, and A. Sahai. Fast cryptographic primitives
and circular-secure encryption based on hard learning problems. In Advances in
Cryptology - CRYPTO 2009, 29th Annual International Cryptology Conference,
Santa Barbara, CA, USA, August 16-20, 2009. Proceedings, volume 5677 of Lecture
Notes in Computer Science, pages 595–618. Springer, 2009.

10. H. Baan, S. Bhattacharya, S. Fluhrer, O. Garcia-Morchon, T. Laarhoven, R. Ri-
etman, M.-J. O. Saarinen, L. Tolhuizen, and Z. Zhang. Round5: Compact and
fast post-quantum public-key encryption. In International Conference on Post-
Quantum Cryptography, pages 83–102. Springer, 2019.

11. S. Bai and S. D. Galbraith. Lattice decoding attacks on binary LWE. In
Australasian Conference on Information Security and Privacy, pages 322–337.
Springer, 2014.

12. A. Becker, J.-S. Coron, and A. Joux. Improved generic algorithms for hard knap-
sacks. In Annual International Conference on the Theory and Applications of
Cryptographic Techniques, pages 364–385. Springer, 2011.

13. D. J. Bernstein, B. B. Brumley, M.-S. Chen, C. Chuengsatiansup, T. Lange,
A. Marotzke, B.-Y. Peng, N. Tuveri, C. van Vredendaal, and B.-Y. Yang. Ntru
prime: round-3 updates. 2020.

14. L. Bi, X. Lu, J. Luo, and K. Wang. Hybrid dual and meet-lwe attack. In
Information Security and Privacy: 27th Australasian Conference, ACISP 2022,
Wollongong, NSW, Australia, November 28–30, 2022, Proceedings, pages 168–188.
Springer, 2022.

15. X. Bonnetain, R. Bricout, A. Schrottenloher, and Y. Shen. Improved classical and
quantum algorithms for subset-sum. In International Conference on the Theory
and Application of Cryptology and Information Security, pages 633–666. Springer,
2020.

16. J.-P. Bossuat, C. Mouchet, J. Troncoso-Pastoriza, and J.-P. Hubaux. Efficient
bootstrapping for approximate homomorphic encryption with non-sparse keys. In
Annual International Conference on the Theory and Applications of Cryptographic
Techniques, pages 587–617. Springer, 2021.

28

https://github.com/snucrypto/HEAAN
 https://github.com/malb/lattice-estimator
https://github.com/tuneinsight/lattigo

17. J. Buchmann, F. Göpfert, R. Player, and T. Wunderer. On the hardness of LWE
with binary error: Revisiting the hybrid lattice-reduction and meet-in-the-middle
attack. In International Conference on Cryptology in Africa, pages 24–43. Springer,
2016.

18. C. Chen, O. Danba, J. Hoffstein, A. Hülsing, J. Rijneveld, J. M. Schanck, T. Saito,
P. Schwabe, W. Whyte, K. Xagawa, T. Yamakawa, and Z. Zhang. PQC round-3
candidate: NTRU. Technical report, 2020. Accessed: 2022-05-20.

19. Y. Chen and P. Q. Nguyen. BKZ 2.0: Better lattice security estimates. In Inter-
national Conference on the Theory and Application of Cryptology and Information
Security, pages 1–20. Springer, 2011.

20. J. H. Cheon, K. Han, A. Kim, M. Kim, and Y. Song. Bootstrapping for approximate
homomorphic encryption. In Annual International Conference on the Theory and
Applications of Cryptographic Techniques, pages 360–384. Springer, 2018.

21. J. H. Cheon, M. Hhan, S. Hong, and Y. Son. A hybrid of dual and meet-in-the-
middle attack on sparse and ternary secret LWE. IEEE Access, 7:89497–89506,
2019.

22. B. R. Curtis and R. Player. On the feasibility and impact of standardising sparse-
secret LWE parameter sets for homomorphic encryption. In Proceedings of the 7th
ACM Workshop on Encrypted Computing & Applied Homomorphic Cryptography,
pages 1–10, 2019.

23. M. Datar, N. Immorlica, P. Indyk, and V. S. Mirrokni. Locality-sensitive hashing
scheme based on p-stable distributions. In Proceedings of the twentieth annual
symposium on Computational geometry, pages 253–262, 2004.

24. L. Ducas, A. Durmus, T. Lepoint, and V. Lyubashevsky. Lattice signatures and
bimodal gaussians. In Annual Cryptology Conference, pages 40–56. Springer, 2013.

25. L. Ducas, T. Espitau, and E. W. Postlethwaite. Finding short integer solutions
when the modulus is small. In Annual International Cryptology Conference, pages
150–176. Springer, 2023.

26. L. Ducas and L. N. Pulles. Does the dual-sieve attack on learning with errors even
work? In Annual International Cryptology Conference, pages 37–69. Springer, 2023.

27. T. Espitau, A. Joux, and N. Kharchenko. On a dual/hybrid approach to small
secret LWE. In International Conference on Cryptology in India, pages 440–462.
Springer, 2020.

28. T. Glaser and A. May. How to enumerate LWE keys as narrow as in Ky-
ber/Dilithium. Cryptology ePrint Archive, 2022.

29. T. Güneysu, V. Lyubashevsky, and T. Pöppelmann. Practical lattice-based cryp-
tography: A signature scheme for embedded systems. In International Workshop
on Cryptographic Hardware and Embedded Systems, pages 530–547. Springer, 2012.

30. Q. Guo and T. Johansson. Faster dual lattice attacks for solving LWE with appli-
cations to CRYSTALS. In International Conference on the Theory and Application
of Cryptology and Information Security, pages 33–62. Springer, 2021.

31. K. Han and D. Ki. Better bootstrapping for approximate homomorphic encryption.
In Cryptographers’ Track at the RSA Conference, pages 364–390. Springer, 2020.

32. S. Har-Peled, P. Indyk, and R. Motwani. Approximate nearest neighbor: Towards
removing the curse of dimensionality. Theory of computing, 8(1):321–350, 2012.

33. J. Hoffstein, J. Pipher, and J. H. Silverman. NTRU: A ring-based public key
cryptosystem. In International Algorithmic Number Theory Symposium, pages
267–288. Springer, 1998.

34. N. Howgrave-Graham. A hybrid lattice-reduction and meet-in-the-middle attack
against NTRU. In Annual International Cryptology Conference, pages 150–169.
Springer, 2007.

29

35. N. Howgrave-Graham and A. Joux. New generic algorithms for hard knapsacks. In
Annual International Conference on the Theory and Applications of Cryptographic
Techniques, pages 235–256. Springer, 2010.

36. E. Kirshanova and A. May. How to find ternary LWE keys using locality sensitive
hashing. In IMA International Conference on Cryptography and Coding, pages
247–264. Springer, 2021.

37. J.-W. Lee, E. Lee, Y. Lee, Y.-S. Kim, and J.-S. No. High-precision bootstrapping
of RNS-CKKS homomorphic encryption using optimal minimax polynomial ap-
proximation and inverse sine function. In Annual International Conference on the
Theory and Applications of Cryptographic Techniques, pages 618–647. Springer,
2021.

38. Y. Lee, J.-W. Lee, Y.-S. Kim, Y. Kim, J.-S. No, and H. Kang. High-precision
bootstrapping for approximate homomorphic encryption by error variance mini-
mization. In Advances in Cryptology–EUROCRYPT 2022: 41st Annual Interna-
tional Conference on the Theory and Applications of Cryptographic Techniques,
Trondheim, Norway, May 30–June 3, 2022, Proceedings, Part I, pages 551–580.
Springer, 2022.

39. R. Lindner and C. Peikert. Better key sizes (and attacks) for lwe-based encryption.
In Cryptographers’ Track at the RSA Conference, pages 319–339. Springer, 2011.

40. M. Liu and P. Q. Nguyen. Solving bdd by enumeration: An update. In Cryptog-
raphers’ Track at the RSA Conference, pages 293–309. Springer, 2013.

41. MATZOV. Report on the Security of LWE: Improved Dual Lattice Attack. https:
//zenodo.org/record/6493704, 2022. Accessed: 2023-10-06.

42. A. May. How to meet ternary LWE keys. In Annual International Cryptology
Conference, pages 701–731. Springer, 2021.

43. P. Q. Nguyen. Boosting the hybrid attack on ntru: Torus LSH, Permuted HNF
and Boxed Sphere. NIST Third PQC Standardization Conference, 2021.

44. O. Regev. On lattices, learning with errors, random linear codes, and cryptography.
Journal of the ACM (JACM), 56(6):1–40, 2009.

45. Y. Son and J. H. Cheon. Revisiting the hybrid attack on sparse secret LWE
and application to HE parameters. In Proceedings of the 7th ACM Workshop on
Encrypted Computing & Applied Homomorphic Cryptography, pages 11–20, 2019.

46. I. van Hoof, E. Kirshanova, and A. May. Quantum key search for ternary
LWE. In International Conference on Post-Quantum Cryptography, pages 117–
132. Springer, 2021.

47. T. Wunderer. A detailed analysis of the hybrid lattice-reduction and meet-in-the-
middle attack. Journal of Mathematical Cryptology, 13(1):1–26, 2019.

30

https://zenodo.org/record/6493704
https://zenodo.org/record/6493704

A Flaw in the analysis of [36]

As noted in the introduction, Kirshanova and May suggested the improved
Meet-LWE algorithm based on the locality-sensitive hashing, called LSH-Meet-
LWE [36]. We briefly describe some steps of the LSH-Meet-LWE algorithm and
the flaw in the analysis, which was confirmed by the personal conversation with
the authors.

Suppose that we are given a Ms = e mod q with the secret key s ∈ T n(w)
and the ternary error vector e. The following sets are the level-1 lists in the
LSH-Meet-LWE algorithm

L
(1)
1 =

{
s
(1)
1 ∈ T n(w/2) : Ms

(1)
1 ∈ Zn−r

q × {0}r/2 × {±1, 0}r/2
}

L
(1)
2 =

{
s
(1)
2 ∈ T n(w/2) : Ms

(1)
2 ∈ Zn−r

q × {±1, 0}r/2 × {0}r/2
}
.

These two lists have the different constraints on the last r coordinates; half of
the r coordinates are fixed to 0, and the other half is bounded by 1.

The number of representations (s
(1)
1 , s

(1)
2) ∈ T n(w/2) × T n(w/2) such that

s
(1)
1 − s

(1)
2 = s is R =

(
w

w/2

)2
. The authors claim that the choice of r such that

R ≈ qr/2 · (q/3)r/2 (23)

ensures that there is a representation (s
(1)
1 , s

(1)
2) ∈ L

(1)
1 × L

(1)
2 on expectation.

However, this claim turns out to be false.

Let us clarify the details of the problem. Since the list L
(1)
1 has 3r/2 possible

entries in the last r coordinates, the choice of Eq. (23) indeed ensures that there

is a representation (s
(1)
1 , s

(1)
2) such that s

(1)
1 ∈ L

(1)
1 on expectation. In the original

Meet-LWE attack (with the corresponding list definitions therein), s
(1)
1 ∈ L

(1)
1

automatically implies the event s
(1)
2 ∈ L

(1)
2 [42, Section 5]. This is because the

algorithm essentially enumerates all the possible r coordinates of the error vector.
This automatic implication is not the case for LSH-Meet-LWE, which does

not enumerate the partial error vector. The condition s
(1)
1 ∈ L

(1)
1 says that

πr(Ms
(1)
1) ∈ {0}r/2 × {±1, 0}r/2.

From the (simplified) LWE identity As = e mod q, we have

πr(Ms
(1)
2) = πr(e)− πr(Ms

(1)
1).

To make πr(Ms
(1)
2) ∈ {±1, 0}r/2 × {0}r/2 to be true, it must hold that

πr/2(Ms
(1)
1) = πr/2(e)

which only happens with probability 1/3r/2 (assuming e is sampled from the
uniform random ternary vector.) This probability is neglected in the original
analysis, and the algorithm becomes impractical if this analysis is included.

31

B Missing Proofs

B.1 Proof of Lemma 1

Observe that in order to x′r = x−xr be ternary, x and xr should agree on every
position where x and xr are both nonzero; if not x′r has some entry 2 or −2.
Writing ℓ be the number of such positions, x−xr should have h+w−2ℓ nonzero
positions. Since x′r = x − xr also has weight w, we know ℓ = h/2. Therefore,
we may choose ℓ = h/2 nonzero positions of xr among h nonzero positions of
x, which accounts for

(
h

h/2

)
term. The remaining w − h/2 nonzero positions of

xr can be both ±1 over d − h positions where x is zero, which accounts for(
d−h

w−h/2
)
· 2w−h/2 term. ⊓⊔

B.2 Proof of Proposition 1

The complexity part. Under Model 1, the probability that a random pair
(y1, y2) in L× L have the same image under for a fixed hc is

pcol =
∏

1≤i≤r

1

ni
. (24)

To prove the claim, we instead show the following: for any t > 0, the algorithm
terminates in time

R|L| · Thash +R(|L|2pcol/2 + t) · Tcheck

with probability at least 1 − R|L|2pcol/2t2, which clearly yields the claim by
taking ϵ = R|L|2pcol/2t2.

First, the number of hash evaluations is clearly R · |L| hash evaluations (lines
6-8) and consumes |L| words of space for hash table T .

The remaining part is dominated by the time for checking if the collision
pairs (y, z) in L such that hc(y) = hc(z) is ℓ-near-collision. We count such
pairs for a fixed hash function hc. Let |L| = N and write L = {y1, ..., yN}
and M := 1/pcol =

∏
1≤i≤r ni. Let Ii,j be a random variable that equals 1

if hc(yi) = hc(yj) and otherwise Ii,j = 0. Note that E[Ii,j] = 1/M over the
randomness of L. We will compute the value X :=

∑
i<j Ii,j , whose expectation

is E[X] = N(N − 1)/2M . The variance of X is computed as follows.

Var[X] = Var

∑
i<j

Ii,j

 = E


∑

i<j

Ii,j − E[Ii,j]

2


=

∑
i<j

∑
k<ℓ

E[Ii,jIk,ℓ]

− N2(N − 1)2

4M2
.

32

By considering the following three cases: 1) (i, j) = (k, ℓ), 2) |{i, j}∩{k, ℓ}| = 1,
and 3) otherwise, this quantity is computed by

Var[X] =
(M − 1)N(N − 1)

2M2
≤ E[X].

Applying Chebyshev’s inequality, we have

Pr [X ≥ E[X] + t] ≤ Var[X]

t2
≤ E[X]

t2

for any t > 0. In other words, with probability at least 1 − E[X]/t2, a single
iteration with hc suffices to check if E[X] + t pairs are ℓ-near-collision.

The full algorithm with R repetitions is expected to check whether less than

R · (E[X] + t) ≤ R · (|L|2pcol/2 + t)

pairs are ℓ-near-collision or not with probability at least 1− R · |L|2pcol/2t2 by
the union bound.

For Model 2, the above complexity analysis can be applied in almost the
same way since this model only differs from the purely random model by one
special near-collision pair, say (y1, y2). Regarding the high collision probability
of y1 and y2, the term +1 is added. The analysis for Model 1 applies to the other
pair. In other words, the claim almost similarly holds when assuming Model 2.

⊓⊔

The correctness part. We start from the probability that a fixed ℓ-near-
collision (y1, y2) ∈ B × B collides by a random hc. Writing e = (e1, · · · , er) :=
y1 − y2, the i-th coordinate of y1 and y2 are mapped into the same image by hc

with the probability 1 − |ei|/bi if ni > 1, and always mapped into 0 if ni = 1.
Thus the probability that y and y + e in B have the same image under hc is

plsh(e) =
∏

1≤i≤r
ni>1

(
1− |ei|

bi

)
. (25)

We first show the correctness of the algorithm under Model 1, which can be
rephrased as follows.

Lemma 8. Assume the input list L follows Model 1. Then Algorithm 2 finds a
random ℓ-near-collision pair with a probability at least

pncf (ℓ;U([−ℓ, ℓ]r)) := E
e←U([−ℓ,ℓ]r)

[
1− (1− plsh(e))

R
]

Proof. Let (y1, y2) be a random ℓ-near-collision pair. The probability of one
iteration succeeding to find this pair is plsh(e) of Eq. (25), which only depends
on the difference d = y1 − y2. Since we use R independent hash functions and it
suffices to succeed only one of them, the algorithm succeeds in finding (y1, y2)

with probability 1− (1− plsh(e))
R
.

33

Now let E be the probabilistic variable of the difference e = y1 − y2 of
the random ℓ-near-collision pair (y1, y2) in B, and then the success probability

is represented by Ee←E

[
1− (1− plsh(e))

R
]
. However, the distribution E of e

is slightly different from the uniform distribution over [−ℓ, ℓ]r; Pr[E = e] is

proportional to
∏

i∈[r]

(
1− |ei|qi

)
for ∥e∥∞ ≤ ℓ. So it remains to prove that

E
e←E

[
1− (1− plsh(e))

R
]
≥ E

e←[−ℓ,ℓ]r

[
1− (1− plsh(e))

R
]
. (26)

This can be proven by the probabilistic version of Chebyshev’s sum inequality

Ee←[−ℓ,ℓ][f · g] ≥ Ee←[−ℓ,ℓ][f] · Ee←[−ℓ,ℓ][g] (27)

when f, g are both non-increasing functions or satisfy (f(x)−f(y))(g(x)−g(y)) ≥
0 for any x, y ∈ [−ℓ, ℓ] in general.

We sketch the rough idea. The left-hand side of Eq. (26) can be written as(∫
[−ℓ,ℓ]r

(
1− (1− plsh(e))

R
)
·
(
1− |ei|

qi

)
de

)/(∫
[−ℓ,ℓ]r

(
1− |ei|

qi

)
de

)
.

For each i ∈ [r], fix all coordinates of e except x = ei. Let g(x) = C(1− |x|/qi)
and f(x) = 1− (1−D(1− |x|/bi))R for some C,D > 0. Then f, g are both even
functions and decreasing for [0, ℓ], so that (f(x)− f(y))(g(x)− g(y)) ≥ 0 for any
x, y ∈ [−ℓ, ℓ]. Thus, we can apply Eq. (27) for each ei for i ∈ [r] to obtain the
desired result. ⊓⊔

The correctness for Model 2 is almost analog of Lemma 8, where the prob-
ability that the infinity norm of the error e sampled from D is bounded by ℓ is
additionally taken into account.

Lemma 9. Assume the input list L follows Model 2 where the special near-
collision pair is sampled from D. Then Algorithm 2 finds the special near-collision
pair with a probability at least

pncf (ℓ;D) := Pr
e←D

[∥e∥∞ ≤ ℓ] · E
e←D

[
1− (1− plsh(e))

R
]
.

Lemma 8 and Lemma 9 completes the correctness part of Proposition 1. ⊓⊔

B.3 Justification of Heuristic 1

Let e
(j)
∗ := [Ms

(j)
∗]B,r(j+1) . First, observe that the following equation holds

Ms
(i)
k = Ms

(i+1)
2k−1 −Ms

(i+1)
2k mod Br(i+1)

and from Figure 5, the size of e
(i)
k = [Ms

(i)
k]B,r(i+1) is a crucial factor for E

(i)
sp,k;

when e
(i)
k gets smaller, it is more likely to [Ms

(i+1)
2k−1]B,r(i+1) and [Ms

(i+1)
2k]B,r(i+1)

both lie in Cr(i+1)

ℓ(i+1) . Thus, it is natural to consider the effect of Eq. (16) on e
(i)
k .

34

In this regard, observe that Eq. (16) with j < i − 1 is essentially about the

difference of e
(j+1)
∗ ; for example, j = i− 2 implies

e
(i−2)
ℓ = e

(i−1)
2ℓ−1 − e

(i−1)
2ℓ mod Br(i−1) .

We expect it has a rather indirect effect on e
(i)
k , and establish the following

argument.

Argument 1. It holds that

Pr[E(i)
sp] ≈ Pr[∧

k∈[2i]
E

(i)
sp,k] =

∏
k∈[2i−1]

Pr[E
(i)
sp,2k−1 ∧ E

(i)
sp,2k].

Meanwhile, Eq. (16) with j = i−1 that directly affects to e
(i)
k by the equation

e
(i−1)
k = e

(i)
2k−1 − e

(i)
2k mod Br(i) , and this would really make the probability

Pr[E
(i)
sp,2k−1 ∧ E

(i)
sp,2k] quite different from Pr[E

(i)
sp,2k−1] · Pr[E

(i)
sp,2k]. Fortunately,

we managed to argue the following lower bound.

Argument 2. It holds that for any k ∈ [2i−1],

Pr[E
(i)
sp,2k−1 ∧ E

(i)
sp,2k] ≥ Pr[E

(i)
sp,2k−1] · Pr[E

(i)
sp,2k].

We explain the rationale behind Argument 2. Write dk = [Ms
(i−1)
k]B,r(i+1) ,

e2k−1 = [Ms
(i)
2k−1]B,r(i+1) and e2k = [Ms

(i)
2k]B,r(i+1) by dropping superscripts

for a simpler description. Since dk ∈ Cr
(i+1)

ℓ(i−1) and e2k−1, e2k ∈ Cr
(i)

ℓ(i+1) from the
constraint, it holds that

dk = e2k−1 − e2k

without modulo B thanks to the condition on ℓ(i). Then the left-hand side of
Argument 2 expects that E

(i)
sp,2k−1 and E

(i)
sp,2k occur under the relation dk =

e2k−1 − e2k, and the right-hand side of Argument 2 expects a similar event but
for independent e2k−1 and e2k.

The relation dk = e2k−1 − e2k implies some restriction on the area where

(e2k−1, e2k) can lie. More precisely, considering that e2k−1, e2k ∈ Cr
(i)

ℓ(i+1) , the

relation restricts e2k−1 and e2k so that they never lie in some corner of Cr(i)
ℓ(i+1) .

On the other hand, on the right-hand side, there is no restriction on each e2k−1
and e2k. This implies that the “expected size” of e2k−1 and e2k is smaller in the

left-hand side. Finally, observing that the chance of E
(i)
sp,∗ increases as the size

of e∗ decreases, we may expect that the chance of E
(i)
sp,2k−1 ∧ E

(i)
sp,2k is larger in

the left-hand side on average. ⊓⊔

B.4 Justification of Heuristic 2

Basically, we model each element of [Msr]B,r(i+1) as a uniformly sample x from
P(B∗

r(i+1)) that are independent from each others. The insertion of [−x−e]B
r(i+1)

comes from the symmetric nature of rep pairs: If (sr, s
′
r) is a rep pair, so is

(−s′r,−sr). ⊓⊔

35

B.5 Proof for Proposition 2

Recall that E
(i)
sp,k means that at least one pair in P (s

(i)
k) lies in Cr(i+1)

ℓ(i+1) , and the

pair ([Msr]B,r(i+1) , [Ms′r]B,r(i+1)) ∈ P (s
(i)
k) is represented by (x, [x + e]B,r(i+1))

where x = [Msr]B,r(i+1) and e = [Ms
(i)
k]B,r(i+1) .

Under Heuristic 2, for each first element x of the pair in P (s
(i)
k), the proba-

bility that the corresponding second element is included in Cr(i+1)

ℓ(i+1) is

prep(e) = Pr
[
x ∈ Cr

(i+1)

ℓ(i+1) , [x+ e]B,r(i+1) ∈ Cr
(i+1)

ℓ(i+1) | x← P(B∗r(i+1))
]
. (28)

Since each first element is independent and by the symmetry of P (s
(i)
k), the

number of pairs in Cr(i+1)

ℓ(i+1) follows 2·B(R(i)/2, prep(e))
12 where e = [Ms

(i)
k]B,r(i+1) ,

and B(·, ·) is a binomial distribution.

We proceed to explain the distribution χ
(i)
sp where e is sampled. For i = 0,

our problem setting ensures that x = [Ms
(0)
1]B follows Gaussian distribution Gσ

so that χ
(0)
sp = Gr(1)σ .

For i ≥ 1, we use the fact that each level-i target element s
(i)
k ∈ S(i) defining

e = [Ms
(i)
k]B,r(i+1) is one element of a rep pair of some s

(i−1)
∗ ∈ S(i−1). When s

(i)
k

is the first element of the rep pair of s
(i−1)
∗ , Heuristic 2 for s

(i−1)
∗ immediately

implies the uniformity of e. If s
(i)
k is the second element, [Ms

(i)
k]B,r(i+1) follows

a [Ms
(i−1)
∗]B,r(i+1) -shift of uniform distribution, and hence still uniform. At the

same time, the constraint condition of S(i) enforces that e
(i)
k is included in Cr(i)

ℓ(i+1) ,

so we have e
(i)
k ← Ur(i)

ℓ(i+1) .
Finally, it holds that

Pr[E
(i)
sp,k] = Pr

e←χ
(i)
sp

[2 ·B(R(i)/2, prep(e)) > 0]

=

∫
Pr[χ(i)

sp = e]
(
1− (1− prep(e))

R(i)/2
)
de

= E
e←χ

(i)
sp

[
1− (1− prep(e))

R(i)/2
]

where the second equality holds from the law of total probability.
It remains to show the prep(x) computation. For that, we split prep(e) into

Pr
[
x ∈ Cr

(i+1)

ℓ(i+1) | x← P(B∗r(i+1))
]
· Pr

[
[x+ e]B

r(i+1)
∈ Cr

(i+1)

ℓ(i+1) | x← Cr
(i+1)

ℓ(i+1)

]
.

The first probability is immediately computed as the volume ratio

vol(Cr(i+1)

ℓ(i+1))

vol(P(B∗
r(i+1)))

=
∏

i∈[r(i+1)]

2ℓ(i+1)

∥b∗
m−r(i+1)+j

∥
.

12 We stress that it is not B(R(i), prep(e)), which does not take into account the sym-
metry.

36

The second probability expects that a random element x ∈ Cr(i+1)

ℓ(i+1) still re-

mains in Cr(i+1)

ℓ(i+1) after adding a vector e = (e1, · · · , er(i+1)). Looking at each

j-th coordinate, we expect that xj + ej lies in [−ℓ(i+1), ℓ(i+1)) where xj ←
[−ℓ(i+1), ℓ(i+1)), whose probability is exactly 1− |ej |

2ℓ(i+1) . Thus the second prob-

ability is
∏

j∈[r(i+1)]

(
1− |ej |

2ℓ(i+1)

)
. ⊓⊔

B.6 Proof for Lemma 6

A level-(t−1) target element s
(t−1)
k successfully splits into S̃(t) = S(t) ⊂ T d(w(t))

if S(t) includes a w(t)-rep pair (sr, s
′
r) (of s

(t−1)
k). The probability of both of sr, s

′
r

are included in S(t) is

p = (|S(t)|/|T d(w(t))|)2.

Since we have R(t−1) := R(d,w(t), w(t−1)) numbers of rep pairs, the number of
rep pairs in S(t) follows the distribution B(R(t−1), p), and hence at least one rep

pair of s
(i)
k is in S(t) with probability 1− (1− p)R

(t−1)

.

Recall we choose |S(t)| =
√
3|T d(w(t))|
R(t−1) . It gives

1− (1− p)R
(t−1)

≥ 1− e−R
(t−1)p ≥ 1− e−3 ≥ 0.95.

Since there are total 2t−1 numbers of level-(t− 1) target elements, we conclude
that

Pr[E(t−1)
sp] ≥

(
1− e−3

)2t−1

≥ 0.952
t−1

.

⊓⊔

B.7 Justification of Heuristic 3

This heuristic can be justified almost similarly to Heuristic 1, as the situation is

conceptually identical: The size of e
(i)
k = [Ms

(i)
k]B,r(i) is a crucial factor for the

event E
(i)
ncf,k that NCF on S̃(i+1) finds (s

(i+1)
2k−1 , s

(i+1)
2k). ⊓⊔

B.8 Justification of Heuristic 4

The heuristic is based on the reasonable assumption that the elements of L(i+1)

are uniformly and independently distributed. The level-1 list L(1) stands as an
exception to reflect the fact that the target near-collision we want to compute
through this list is unusually short. ⊓⊔

Remark 5. This heuristic does not reflect the symmetry of L(i) described in Heuris-
tic 2. We remark that ignoring symmetry does not significantly affect the analysis
here because our NCF algorithm does not utilize the symmetry of the underlying
domain.

37

B.9 Proof for Proposition 3

Let ej = [Ms
(i+1)
j]B,r(i) for j = 2k − 1, 2k. We argue that (e2k−1, e2k) becomes

an ℓ(i)-near-collision in L(i+1) with a certain probability.

Let dk = [Ms
(i)
k]B,r(i) so that

e2k = e2k−1 + dk mod Br(i) .

Since s
(i)
k ∈ S(i), we have ∥dk∥∞ ≤ ℓ(i) and the above equation implies what we

desired except the existence of the modulus mod Br(i) . We need to show that

e2k = e2k−1 + dk, or e2k,j = e2k−1,j + dk,j for every j ∈ [r(i)] (29)

to say that (e2k−1, e2k) is an ℓ(i)-near-collision.
Observe that the last r(i+1) coordinates of both e2k and e2k−1 are already

less than ℓ(i+1) thanks to level-(i+ 1) constraint and the condition of Eq. (13).
This implies that Eq. (29) holds for j ∈ [r(i) − r(i+1), r(i)].

In the remaining index j ∈ [r(i) − r(i+1)], considering Lemma 5, Eq. (29)
translates into

|e2k−1,j + dk,j | ≤ ∥b∗m−r(i)+j∥/2. (30)

According to the heuristic, each coordinate e2k−1,j is distributed uniformly over[
−∥b∗m−r(i)+j∥/2, ∥b

∗
m−r(i)∥/2

)
,

and hence the probability of Eq. (30) for j ∈ [r(i) − r(i+1)] is 1− |dk,j |
∥b∗

m−r(i)+j
∥ .

Since dk = [Ms
(i)
k]B,r(i) ← χ

(i)
ncf , the probability of Eq. (29) is

pnc(χ
(i)
ncf) := E

d←χ
(i)
ncf

 ∏
j∈[r(i)−r(i+1)]

(
1− |dj |
∥b∗

m−r(i)+j
∥

) ,

meaning that (e2k−1, e2k) becomes ℓ(i)-near-collision in B(i) with probability

pnc(χ
(i)
ncf). The probability that Algorithm 2 successfully finds the ℓ(i)-near-

collision pair (e2k−1, e2k) is pncf (ℓ
(i);χ

(i)
ncf) as analyzed in Proposition 1. For

i = 0, the target pair is the special near-collision with the distance e = [Ms]B
following the distribution Gσ. If i ≥ 1, the distance between the target pair fol-

lows Ur(i)

ℓ(i)
. ⊓⊔

Remark 6. Note that the shape of pnc(χncf) is almost identical with Eχ[prep(x)]
of Eq. (21) and Eχ[plsh(x)] of Eq. (5) as

Ex←χ

[∏(
1− |xj |

ℓj

)]
,

and the computation is also similar. Furthermore, when the Gram-Schmidt norm

∥b∗j∥ is sufficiently large, we can ignore the term pnc(χ
(i)
ncf) because it is almost

38

1, and hence Pr[E
(i)
ncf] ≳

(
pncf (ℓ

(i);χ
(i)
ncf)

)2i
. This particularly happens when

applying this attack for homomorphic encryption parameters, whose modulus q
size is enormous.

B.10 Proof for Lemma 7

The computation parts of the i-th level consist of the following steps.

– Line 3: Computing L(i) := {[Mx]B,r(i−1) | x ∈ S̃(i)}
– Line 4: Running Algorithm 2 over L(i)

– Line 6-11: Checking hamming weight

In the first item (Line 3), for M = (M1|...|Md), we first compute πB,r(i−1)(Mi)
(recall Eqs. (7) and (11)) for 1 ≤ i ≤ d, which is negligibly small compared to
the other costs. For x = (x1, ..., xd) ∈ S(i) ⊂ T d(w(i)), it holds that

πB,r(i−1)(Mx) =
∑
i∈[d]

xi · πB,r(i−1)(Mi)

which can be computed by using r(i−1) · w(i) flops using the fact that there are
at most w(i) nonzero coordinates in x. The computation of [v]B,r(i−1) requires

(r(i−1))2 operations from Lemma 4. The overall cost is much smaller than others.
The cost for the second item (Line 4) directly comes from Proposition 1 as

R
(i)
lsh

(
|S̃(i)| · Thash(r

(i−1)) +N
(i)
col(ϵ) · Tcheck(r

(i−1))
)
.

The number of Hamming weight checks for the third item (Line 6 − 11)

is trivially bounded by the number of near-collisions R
(i)
lsh · N

(i)
col detected by

Algorithm 2, and checking Hamming weight is done with 2w(i) operations by
storing the nonzero coordinates of each x ∈ S(i). ⊓⊔

C Experimental Validations

We briefly recall the flow of the analysis of Algorithm 3 in Section 5.2.

– The main components of success probability are Pr[E
(i)
sp] and Pr[E

(i)
ncf]. Propo-

sition 2 and Proposition 3 equipped with Heuristic 1 and Heuristic 3 lower
bound them as

Pr[E(i)
sp] ≥

(
psp(χ

(i)
sp)
)2i

and Pr[E
(i)
ncf] ≥

(
pnc(χ

(i)
ncf) · pncf (ℓ

(i);χ
(i)
ncf)

)2i
with some further elementary probability psp and pncf .

– Under uniformity and independence assumptions Heuristic 2 and Heuristic 4,
the probabilities psp and pncf are further represented by Eq. (17) and Eq. (3)
as

psp(χ
(i)
sp) = E

χ
(i)
sp

[
1− (1− prep(e))

R(i)/2
]
,

pncf (ℓ
(i);χ

(i)
ncf) ≈ E

χ
(i)
ncf

[
1− (1− plsh(e))

R
(i)
lsh

]
.

39

– The exact computation of Eχ[1−(1−p(x))R] requires excessively complicated
integral. We then instead consider 1 − (1 − Eχ(i) [p(x)])R] for the relevant
parameter settings, while expecting

Eχ[1− (1− p(x))R] ≈ 1− (1− Eχ[p(x)])
R]. (31)

This section experimentally validates these arguments, over our parameter
search range in Figure 6. First, we validate the uniformity heuristics in Ap-
pendix C.1. Then then argue that our parameter setting based on Eq. (31) still
yields sufficiently large success probability in Appendix C.2. We then check the
lower bound argument regarding the value of psp (and pncf) in Appendix C.3.
All scripts for experiment can be found in Supplementary Material.

We also want to remark that the projection dimensions r(i) are set at most
100 for the parameter sets where our attack shows the best performance in
Table 1. Thus we focus on r(i) ≤ 100 range in this section.

Simulation of the modulus matrix. In our main attack description, the
modulus matrix B ∈ Rm×m is assumed to be processed by BKZ with some β. For
our experiment, instead of directly running BKZ, we generate B by simulating its
Gram-Schmidt norm with GSA, and consider its representation under the Gram-
Schmidt orthonormal basis B̃∗. More precisely, given modulus q and BKZ block-
size β, we generate B by defining diagonal entries Bi,i as i-th Gram-Schmidt
norm determined by Eq. (1), and sampling Bi,j from the range [−Bi,i/2, Bi,i/2)
for j > i.

C.1 Uniformity Modelling

In this section, we consider Heuristic 2 and Heuristic 4, which commonly assumes
some discrete set S is uniformly and independently distributed in some domain
D. We verify this by checking for any random area A, it holds that

Rideal :=
vol(D ∩ A)
vol(D)

≈ Rreal :=
|S ∩ A|
|S|

.

More precisely, our experiments generate the set P1(s
(1)
k) and L(1) that cor-

responds to each heuristic, and plot the point (Rideal,Rreal) while randomly
choosing the area A.13 Figure 7 shows the result, where the parameters defining
each set are taken from the actual cost estimation in Section 7.

C.2 Exchange of Expectation

Recall that the choices of R
(i)
lsh and r(i) in Figure 6 were for 1−(1−Eχ[p(x)])

R ≈
1− e−10. However, pncf and psp correspond to Eχ[1− (1− p(x))R], but we can
only prove from Jensen’s inequality

Eχ[1− (1− p(x))R] ≤ 1− (1− Eχ[p(x)])
R.

13 More precisely, a random cube having nonempty intersection with the domain D

40

https://github.com/yonghaason/PrimalMeetLWE

0.1 0.3 0.5 0.7 0.9

0.1

0.3

0.5

0.7

0.9 P1(s
(1)
k)

L(1)

y = x

Fig. 7: Plots of (Rideal,Rreal) for each target set P1(s
(1)
k) and L(1) of Heuristic 2

and Heuristic 4, with parameters d = 8488, r(0) = 46, r(1) = 19, w(0) = 20, w(1) =
14, q = 2699 and β = 300.

Thus, our desired left-hand side can possibly be much smaller than 1− e−10, so
we cannot say pncf and psp are close to 1− e−10 yet.

To resolve this issue, we experimentally measure Eχ[1 − (1 − p(x))R] to ar-
gue the value is also sufficiently large. More precisely, recall the inner functions
prep(x) and plsh(x) in psp and pncf are of the form

prep(x) ∝
r(i+1)∏
j=1

(
1− |xj |

2ℓ(i+1)

)
and plsh(x) ∝

r(i)∏
j=1

(
1− |xi|

b
(i+1)
lsh

)
.

Furthermore, the corresponding distribution χ(i) of each coordinate of x is as
follows:

χ(i) =

{
Gσ if i = 0

U [−ℓ(i), ℓ(i)] if i ≥ 1.

Considering our choice of ℓ(i) = 6σ and b
(i)
lsh = 12σ, two inner functions prep(x)

and plsh(x) can be unified as

pr(x) :=

r∏
j=1

(
1− |xj |

12σ

)
.

Finally, Figure 8 shows the values of Eχ(i) [1−(1−pr(x))R] withR ≈ 10/Eχ(i) [pr(x)]
for some range of r, from which we could say at least pncf and psp is larger than
at least 0.6 for r ≤ 100. In fact, we use those values for psp and pncf to compute
the success probability for cost estimation in Section 7.

41

10 30 50 70 90
0

0.2

0.4

0.6

0.8

1

Projection dimension r

χ = Gσ
χ = U6σ

Fig. 8: Values of Ex←χ[1− (1− pr(x))
R] where R ≈ 10/Eχ(i) [pr(x)]. We use this

value for the estimations in Section 7. The probabilities could become smaller
for larger r, especially for the χ = U6σ case. However, the projection dimension
r(i) is indeed set ≤ 100 in the optimal parameterization in Section 7 and hence
this experiment faithfully shows what we need to validate.

C.3 Lower Bound to Product by Neglecting Relation

We now proceed to the validation of Heuristic 1 (Heuristic 3, resp) that lower

bound the probability Pr[E
(i)
sp] (Pr[E

(i)
ncf], resp) by the product of psp(χ

(i)
sp) (pncf (χ

(i)
ncf),

resp). We especially focus on Heuristic 1 that regards E
(i)
sp below, since our choice

b
(i)
lsh = 2ℓ(i−1) makes the validation for E

(i)
ncf is almost identical to E

(i)
sp .

First recall the event E
(i)
sp,k that there is a w(i+1)-rep pair (sr, s

′
r) for a target

element s
(i)
k such that

([Ms(i+1)
r]B,r(i+1) , [Ms′(i+1)

r]B,r(i+1)) ∈ Cr
(i+1)

ℓ(i+1) × Cr
(i+1)

ℓ(i+1)

⇔ ([Ms(i+1)
r]B,r(i+1) , [Ms(i+1)

r + e
(i)
k]B,r(i+1)) ∈ Cr

(i+1)

ℓ(i+1) × Cr
(i+1)

ℓ(i+1)

where C(i+1) := [−ℓ(i+1), ℓ(i+1)]r
(i+1)

and e
(i)
k = [Ms

(i)
k]B,r(i+1) . Under Heuris-

tic 2 that assumes the uniformity of [Ms
(i+1)
r], we can show that

Pr[E
(i)
sp,k] = E

e
(i)
k ←χ

(i)
sp
[f(e

(i)
k)] where f(e

(i)
k) := 1− (1− prep(e

(i)
k))R

(i)/2.

However, we cannot ensure

Pr[E(i)
sp] = Pr

[
∧

k∈[2i]
E

(i)
sp,k

]
=
∏

k∈[2i]

Pr[E
(i)
sp,k].

because every e
(i)
k are mutually dependent due to the representation equation

(Eq. (16)). In this regard, Heuristic 1 says that we can at least lower bound the
probability, which we validate below.

42

For simplicity, we focus on only i ≤ 2 cases since our estimation finds the
best performance with t ≤ 3. However, we believe the experiments also provide
some intuitions for higher level, along with our justification of Heuristic 1.

The case of i = 1. In this case, we need to claim the following.

Pr[E
(1)
sp,1 ∧ E

(1)
sp,2] ≥ Pr[E

(1)
sp,1] · Pr[E

(1)
sp,2].

For that, we investigate the expected value of
∏2

k=1 f(e
(1)
k) for the following

cases.

Exp1(1): Two vectors e
(1)
1 , e

(1)
2 ∈ C(1) have a relation e(0) = e

(1)
1 − e

(1)
2 where

e(0) ← Gσ.
Exp1(2): Two vectors e

(1)
1 , e

(1)
2 are independently sampled in C(1).

For the actual experiment, we simulate the parameter search range of Figure 6.
Precisely, we fix every norm bound ℓ(i) = 6σ. Then for each dimension r(1), we
choose the exponent R(1) so that R(1)/2 ≈ 10Eχ(1) [pr(x)]. The resulting graph
is given by Figure 9a, and the fact Exp1(1) ≥ Exp1(2) validates Heuristic 1.

The case of i = 2. In this case, we need to validate the following inequality
about the four events

Pr[E(2)
sp] ≥ Pr[E

(2)
sp,1] · Pr[E

(2)
sp,2] · Pr[E

(2)
sp,3] · Pr[E

(2)
sp,4].

We investigate the expected value of
∏4

k=1

(
1− (1− prep(e

(2)
k))R

(2)/2
)

for the

following cases.

Exp2(1): Four vectors e
(2)
k ∈ C(2) have relations

e(0) = e
(1)
1 − e

(1)
2 , e

(1)
1 = e

(2)
1 − e

(2)
2 and e

(1)
2 = e

(2)
3 − e

(2)
4

where e(0) ← Gσ, and e
(1)
1 , e

(1)
2 ∈ C(1).

Exp2(2): Identical with Exp2(1) except that e
(1)
1 and e

(1)
2 are independently

sampled from C(1).
Exp2(3): Four vectors e

(2)
k are independently sampled from C(2).

For the actual experiment, we again simulate the parameter search range of
Figure 6. Precisely, we fix every norm bound ℓ(i) = 6σ. Then for each dimension
r(2), we choose the exponent R(2) so that R(2)/2 ≈ 10Eχ(2) [pr(x)].

The result is given as Figure 9b. It can be directly checked that Exp2(3) ≥
Exp2(1) validates Heuristic 1. More interestingly, recall that our justification of
Heuristic 1 (Appendix B.8) consists of two sub-arguments

Argument 1: Pr[∧k∈[2i] E
(i)
sp,k] =

∏
k∈[2i−1] Pr[E

(i)
sp,2k−1 ∧ E

(i)
sp,2k]

Argument 2: Pr[E
(i)
sp,2k−1 ∧ E

(i)
sp,2k] ≥ Pr[E

(i)
sp,2k−1] · Pr[E

(i)
sp,2k].

In this regard, Exp2(1) ≈ Exp2(2) and Exp2(2) ≥ Exp2(3) validates Argument 1
and Argument 2 respectively, which makes our justification of Heuristic 1 more
reliable.

43

10 30 50 70 90
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

Projection dimension r(1)

Exp1(1)

Exp1(2)

(a) i = 1 case

10 30 50 70 90
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

Projection dimension r(2)

Exp2(1)

Exp2(2)

Exp2(3)

(b) i = 2 case

Fig. 9: Validation of Pr[E
(i)
sp] ≥

∏
k∈[2i] Pr[E

(i)
sp,k] (Heuristic 1). The real situation

corresponds to Exp1(1) (Exp2(1), respectively), and theoretic lower bound used
for the cost estimation in Section 7 corresponds to Exp1(2) (Exp2(3), respectively)

C.4 Full Implementation of Meet-LWE

The most involved part of this paper is definitely the description of Algorithm 3
and corresponding analysis in Section 5.2. To convince the correctness and anal-
ysis, we implement a proof-of-concept level of that algorithm. To recall, let
M ∈ Zm×m and B ∈ Zm×m such that there exists a solution s ∈ T d(h) satisfy-
ing Ms = e mod B for some small e sampled from some Gσ. Then the goal of
Algorithm 3 is to find the solution s ∈ T d(h).

We examine our implementation with the following toy parameters: m =
25, d = 20, h = 12, σ = 1, and the modulus matrix B is determined by the
last Gram-Schmidt norm ql = 30 with root-Hermite factor δ0 = 1.05. We further
choose the split weights (w(1), w(2)) = (8, 4) for level t = 2, and (w(1), w(2), w(3)) =
(10, 6, 3) for level t = 3, and the other attack parameters are chosen almost iden-
tically to Figure 6, except Cproj = Clsh = 2.

Running 100 executions for level t = 2 and t = 3, we observe 82 and 81
successes for t = 2 and t = 3 experiments respectively. This fact immediately
indicates that our proposed algorithm is indeed work. Meanwhile, computed
from our theoretic lower bound of success probability of Theorem 1, we have
0.06 and 0.002 for each case, which means that the lower bound is quite loose.
In particular, as the numbers in Table 1 obtained from the theoretic lower bound
estimation, we expect that more refined analysis will reduce the cost estimation,
and leave it as a future work.

44

	Let's Meet Ternary Keys on Babai's Plane: A Hybrid of Lattice-reduction and Meet-LWE
	Introduction
	Overview of Meet-LWE
	This work
	Discussions

	Preliminaries
	Learning With Errors and Small Secrets
	Lattices
	Primal Hybrid Strategy

	Near-Collision Finding Algorithm
	Matrix Modulus
	Meet-LWE for Matrix Modulus
	Full Description with Optimizations
	Algorithm Details.
	Optimizations.

	Analysis of Meet-LWE for Matrix Modulus
	Success Probability Overview.
	Computation of Splitting Probability.
	Computation of Near-collision Finding Probability.

	Primal-Meet-LWE
	Concrete Estimations
	Flaw in the analysis of KM21
	Missing Proofs
	Proof of lem: ambiguity
	Proof of prop: lshncf
	Justification of heuristic: splitprobability
	Justification of heuristic: splitmodelling
	Proof for prop: psplit
	Proof for lem: psplittop
	Justification of heuristic: ncfprobability
	Justification of heuristic: ncfmodelling
	Proof for prop: pncf
	Proof for lem: meet-lwe cost

	Experimental Validations
	Uniformity Modelling
	Exchange of Expectation
	Lower Bound to Product by Neglecting Relation
	Full Implementation of Meet-LWE

