
A Side-Channel Attack on a Hardware
Implementation of CRYSTALS-Kyber
Yanning Ji

KTH Royal Institute of Technology
Stockholm, Sweden

yanning@kth.se

Ruize Wang
KTH Royal Institute of Technology

Stockholm, Sweden
ruize@kth.se

Kalle Ngo
KTH Royal Institute of Technology

Stockholm, Sweden
kngo@kth.se

Elena Dubrova
KTH Royal Institute of Technology

Stockholm, Sweden
dubrova@kth.se

Linus Backlund
KTH Royal Institute of Technology

Stockholm, Sweden
lbackl@kth.se

Abstract—CRYSTALS-Kyber has been recently selected by the
NIST as a new public-key encryption and key-establishment
algorithm to be standardized. This makes it important to assess
how well CRYSTALS-Kyber implementations withstand side-
channel attacks. Software implementations of CRYSTALS-Kyber
have been already analyzed and the discovered vulnerabilities
were patched in the subsequently released versions. In this paper,
we present a profiling side-channel attack on a hardware im-
plementation of CRYSTALS-Kyber with the security parameter
k = 3, Kyber768. Since hardware implementations carry out
computation in parallel, they are typically more difficult to break
than their software counterparts. We demonstrate a successful
message (session key) recovery by deep learning-based power
analysis. Our results indicate that currently available hardware
implementations of CRYSTALS-Kyber need better protection
against side-channel attacks.

Index Terms—Post-quantum cryptography, CRYSTALS-
Kyber, LWE-based KEM, side-channel attack, FPGA, power
analysis, deep learning

I. INTRODUCTION

In July 2022, the National Institute of Standards and
Technology (NIST) has selected CRYSTALS-Kyber as a new
public-key encryption and key-establishment algorithm to be
standardized [1]. CRYSTALS-Kyber is a lattice-based crypto-
graphic algorithm that is expected to be capable of protecting
confidential information after the emergence of large-scale
quantum computers. Even if it might take many years until
large-scale quantum computers become a reality, the need for
long-term security necessitates an early start of the transition.
The industry is preparing to plan and budget for a shift
to quantum-resistant cryptographic algorithms. The National
Security Agency (NSA) has recently included CRYSTALS-
Kyber in the suite of cryptographic algorithms recommended
for national security systems [2].

The standardization of CRYSTALS-Kyber makes it im-
portant to assess the resistance of its implementations to
side-channel attacks (SCAs). Several software implementa-
tions of CRYSTALS-Kyber have been already analyzed [3]–
[6] and the discovered vulnerabilities were patched in the
subsequently released versions. However, to the best of our

knowledge, no successful attack on a hardware implemen-
tation of CRYSTALS-Kyber has been reported until now.
Hardware implementations are typically significantly more
difficult to break than software variants because they carry
out the computation in parallel. There are opinions that the
parallelism, in a combination with a smaller minimum feature
size of application-specific integrated circuits (ASICs) of field-
programmable gate array (FPGAs) process technologies may
provide a sufficient resistance against side-channel analysis
without any SCA-specific countermeasures.
Our Contributions: In this paper, we present a profiling side-
channel attack on a hardware implementation of CRYSTALS-
Kyber with the security parameter k = 3, Kyber768. Using
deep learning-based power analysis, we successfully recover
messages from a Xilinx Artix-7 FPGA implementation of
CRYSTALS-Kyber from [7]. In CRYSTALS-Kyber, a message
recovery from a properly generated ciphertext implies the
session key recovery since the session key is derived from
the message using hash functions. Furthermore, by recovering
messages contained in seven chosen ciphertexts [8], one can
extract the secret key of CRYSTALS-Kyber. Unlike the non-
profiling attack on Kyber512 presented in [9], our attack does
not require any knowledge of register reference values.

The success of our attack is due to the new sliced multi-bit
error injection method which is an extension of the original
multi-bit error injection method introduced in [10] for side-
channel analysis of software implementations of lattice-based
PKE/KEMs. Software implementations do not require slicing
because they execute instructions sequentially. However, slic-
ing is essential for hardware implementations. Our experimen-
tal results show that, without slicing, only 10% of messages
can be recovered with enumeration up to 264. With slicing,
we can recover all messages with the same enumeration.

The rest of this paper is organized as follows. Section II
reviews previous work related to side-channel analysis of
CRYSTALS-Kyber implementations. Section III gives a back-
ground on CRYSTALS-Kyber algorithm. Section IV describes
the equipment used in the experiments. Sections V and VI

present the profiling and attack stages, respectively. Sec-
tion VII summarizes experimental results. Section VIII con-
cludes the paper and discusses future work.

II. PREVIOUS WORK

Side-channel attacks on implementations of post-quantum
cryptographic algorithms have drawn a lot of attention since
the beginning of the NIST post-quantum cryptography (PQC)
standardization process in 2016. The lattice-based public key
encryption (PKE) algorithms and key encapsulation mecha-
nisms (KEMs) were the most popular targets. This is due to
the fact that many of the NIST PQC candidates are based
on lattice problems: an NTRU-based scheme NTRU [11],
a Learning With Errors (LWE)-based scheme CRYSTALS-
Kyber [12], and a Learning With Rounding (LWR)-based
scheme Saber [13]. The majority of the presented side-channel
attacks are on software implementations.

In [14], profiling deep-learning-based message recovery
attacks using a single power trace representing the execution
of the encapsulation procedure are demonstrated for unpro-
tected software implementations of CRYSTALS-Kyber, Saber,
and FrodoKEM. In [15], near field EM secret key recovery
attacks on unprotected and protected implementations of the
same algorithms are presented. It is shown how their masked
implementations can be broken in two steps, by attacking
each share individually. In [16] an attack on a first-order
masked implementation of CRYSTALS-Kyber using the one-
step method introduced in [17] is reported. It exploits the
message encoding vulnerability discovered in [14].

In [18], secret key recovery attacks on software implemen-
tations of lattice-based KEMs, including CRYSTALS-Kyber,
Saber, and NTRU, based on power/near field EM analysis
are demonstrated. These attacks make use of the side-channel
leakage during the re-encryption step of the decapsulation
procedure. In [19], correlation power analysis-based attacks
of all lattice-based candidates of the NIST are presented, tar-
geting the polynomial multiplication in unprotected software
implementations.

In [8], a near field EM emanations-based message re-
covery attack on an unprotected software implementation
of CRYSTALS-Kyber making use of a vulnerability in the
Fujisaki-Okamoto (FO) transform is described. In [20] an
EM-based chosen ciphertext side-channel attack on an un-
protected software implementation of CRYSTALS-Kyber is
shown. In [21], side-channel attacks on two implementa-
tions of masked polynomial comparison, demonstrated on
CRYSTALS-Kyber, are presented.

All attacks mentioned above targeted software implementa-
tions of CRYSTALS-Kyber and other lattice-based algorithms.
Since these algorithms perform many repeated computations,
it is of advantage to use hardware for their implementations.
In [22] a hardware implementation of CRYSTALS-Kyber in
FPGA is described which takes 10 times less clock cycles than
the ARM Cortex-M4 implementation of CRYSTALS-Kyber
from [23].

In [7] an even smaller and faster hardware implementation
of CRYSTALS-Kyber is presented. With suitably designed
pipelines and well-optimized architecture, this implementation
is capable of executing the decapsulation procedure of any
version of CRYSTALS-Kyber in 14,000 clock cycles while
consuming 7,500 LUTs only. Thus, it can fit into the smallest
Xilinx Artix-7 series devices.

However, the evaluation of resistance of hardware imple-
mentations of PQC KEMs to side-channel analysis is still
in the beginning. In [24] a power-based key recovery attack
on the McEliece cryptosystem, a round 4 candidate of the
NIST PQC, implemented in Xilinx Artix-7 FPGA is presented.
In [25], a deep learning-based power analysis of Saber im-
plemented in Xilinx Artix-7 FPGA is presented. Due to the
parallel processing of hardware, the MLP models are able to
predict the Hamming weight of messages with the accuracy
of 88% at most. The message bits cannot be distinguished
accurately. In [26] a preliminary power analysis of a hardware
implementation of CRYSTALS-Kyber from [22] is presented.
Leakage points were found using a t-test for the Kyber512
implementation in Xilinx Virtex-7 FPGA.

In [9], a non-profiling correlation EM analysis of an FPGA
implementation of Kyber512 (security parameter k = 2) is
presented targeting polynomial multiplication during the PKE
decryption step of the decapsulation algorithm. The attack
utilizes 166,620 traces to recover the secret key. However, it
requires knowledge of the register reference values.

To the best of our knowledge, no successful side-channel
attack on a hardware implementation of Kyber768 (security
parameter k = 3) has been demonstrated so far. Typically, the
higher the security parameter, the more difficult the implemen-
tation is to break.

III. CRYSTALS-KYBER ALGORITHM

CRYSTALS-Kyber [12] is an IND-CCA2-secure crypto-
graphic algorithm which means that it is indistinguishable
under an adaptive chosen ciphertext attack. The security of
CRYSTALS-Kyber relies on the hardness of the Module
Learning with Errors (M-LWE) problem.

CRYSTALS-Kyber contains a CPA-secure PKE scheme,
KYBER.CPAPKE, and a CCA-secure KEM scheme, KY-
BER.CCAKEM, based on a post-quantum version of the
Fujisaki-Okamoto transform [27]. These algorithms are de-
scribed in Fig. 1 and Fig. 2 respectively.

Let Zq denote the ring of integers modulo a prime q, and
Rq denote the quotient ring Zq[X]/(Xn + 1). CRYSTALS-
Kyber works with vectors of ring elements in Rk

q , where k is
the lattice dimension used to scale the security levels.

The term x ← χ(S; r) denotes sampling x from a distribu-
tion χ over a set S using seed r. The uniform distribution
is denoted by U . The centered binomial distribution with
parameter µ is denoted by βµ.

The Decodel function is designed to decode an array of
32l bytes into a 256 length polynomial with each coef-
ficient in {0, 1, · · · , 2l − 1}. The Encodel function is the
inverse of Decodel, which encodes each polynomial coefficient

KYBER.CPAPKE.KeyGen()
1: (ρ, σ)← U({0, 1}256)
2: A← U(Rk×k

q ; ρ)
3: s, e← βη1(R

k×1
q ;σ)

4: t = Encode12(As+ e)
5: s = Encode12(s)
6: return (pk = (t, ρ), sk = s)

KYBER.CPAPKE.Dec(s, c)
1: u = Decompressq(Decodedu(c1), du)
2: v = Decompressq(Decodedv (c2), dv)
3: s = Decode12(s)
4: m = Encode1(Compressq(v − sTu, 1))
5: return m

KYBER.CPAPKE.Enc(pk = (t, ρ),m, r)
1: t = Decode12(t)
2: A← U(Rk×k

q ; ρ)
3: r← βη1(R

k×1
q ; r)

4: e1 ← βη2(R
k×1
q ; r); e2 ← βη2(R

1×1
q ; r)

5: u = AT r+ e1

6: v = tT r+ e2 + Decompressq(m, 1)
7: c1 = Encodedu(Compressq(u, du)
8: c2 = Encodedv (Compressq(v, dv)
9: return c = (c1, c2)

Fig. 1: Description of KYBER.CPAPKE algorithm from [12].

KYBER.CCAKEM.KeyGen()
1: z ← U({0, 1}256)
2: (pk, s) = KYBER.CPAPKE.KeyGen()
3: sk = (s, pk,H(pk), z)
4: return (pk, sk)

KYBER.CCAKEM.Encaps(pk)
1: m← U({0, 1}256)
2: m = H(m)
3: (K̂, r) = G(m,H(pk))
4: c = KYBER.CPAPKE.Enc(pk,m, r)
5: K = KDF(K̂,H(c))
6: return (c,K)

KYBER.CCAKEM.Decaps(sk = (s, pk,H(pk), z),c)
1: m′ = KYBER.CPAPKE.Dec(s, c)
2: (K̂′, r′) = G(m′,H(pk))
3: c′ = KYBER.CPAPKE.Enc(pk,m′, r′)
4: if c = c′ then
5: return K = KDF(K̂,H(c))
6: else
7: return K = KDF(z,H(c))
8: end if

Fig. 2: Description of KYBER.CCAKEM algorithm from [12].

TABLE I: Parameters of CRYSTALS-Kyber.

n k q η1 η2 (du, dv)

KYBER512 256 2 3329 3 2 (10, 4)

KYBER768 256 3 3329 2 2 (10, 4)

KYBER1024 256 4 3329 2 2 (11, 5)

individually and concatenates the output byte arrays. The
Compressq(x, d) and Decompressq(x, d) functions are defined
as follows:

Compressq(x, d) = ⌈(2d/q) · x⌋mod+2d,

Decompressq(x, d) = ⌈(q/2d) · x⌋.

The functions G andH represent the SHA3-512 and SHA3-
256 hash functions, respectively. The KDF represents key
derivation function. It is realized by SHAKE-256.

There are three different parameter sets for CRYSTALS-
Kyber, called KYBER512, KYBER768 and KYBER1024, see
Table I. In this paper, we focus on KYBER768 with the
security level k = 3.

IV. EXPERIMENTAL SETUP

This section describes the equipment we use for trace
acquisition and the FPGA implementation of CRYSTALS-
Kyber from [7].

A. Equipment

Our equipment is shown in Fig. 3. It consists of the
ChipWhisperer-Lite board and the CW305 Artix-7 FPGA
target board.

The ChipWhisperer toolkits include hardware and open-
source software for security analysis based on a low-cost
hardware platform [28]. The ChipWhisperer-Lite board is in-
tegrated with high-speed power measurement and programmer
for the target device. The board is capable of capturing power
traces of the target device synchronously, and controls the
communication between the target device and the computer.
A shunt resistor is placed between the power supply and the
target device for power measurement. The ChipWhisperer-Lite
board has a maximum sampling rate of 105 MS/sec and a
buffer size of 24,400 samples.

The target board CW305 contains an Artix-7 XC7A100T
FPGA.

B. Target FPGA implementation

Our target is the FPGA implementation of CRYSTALS-
Kyber presented in [7]. It does not contain any countermea-
sures against side-channel attacks.

The implementation is described in Verilog. Its architecture
consists of a client module, which is responsible for encap-
sulation, and a server module which is responsible for key

Fig. 3: Equipment for trace acquisition.

generation and decapsulation. The implementation achieves
good performance with limited resources. It can fit into the
smallest Xilinx Artix-7 device. The implementation covers all
three versions of CRYSTALS-Kyber.

We adapted the implementation to a CW305 target board
and complemented it with a controller in Verilog which sends
in keys and ciphertexts to the server and reads out session keys
from the server. We synthesized the Kyber768 implementation
to target a Xilinx XC7A100TFTG256 FPGA device using the
Vivado synthesis toolchain.

V. PROFILING STAGE

This section describes our profiling strategy.

A. Training trace acquisition

Using the equipment described in the previous section, we
captured traces representing the execution of the decapita-
tion procedure KYBER.CCAKEM.Decaps(). For the profiling
stage, the traces are captured for ciphertexts generated by
KYBER.CPAPKE.Enc() for random messages. Since Kyber is
a public-key cryptographic algorithm, we can create a properly
generated ciphertext for any message using the corresponding
public key. Thus, the device under attack can be used for
creating a labeled dataset for profiling [17].

Fig. 4(a) shows a trace representing the execution of the
complete KYBER.CCAKEM.Decaps() procedure.

B. Location of points of interest

Since, for each trace Tj of the profiling set T , the value
of the message mj processed by KYBER.CCAKEM.Decaps()
during the acquisition of Tj is known, we can use Welch’s
t-test [29] to analyze the leakage and check if it is possible to
locate intervals corresponding to the individual message bytes.

For each byte i ∈ {0, 1, . . . , 31}, we partition T into two
sets, T0 and T1 as:

T0 = {Tj ∈ T | mj [i] < 128}
T1 = {Tj ∈ T | mj [i] > 128},

where mj [i] is ith byte of mj , for all j ∈ {1, 2, . . . , |T |}.
The t-test determines if there is a noticeable differences in the
means of T0 and T1 by computing:

t =
µ0 − µ1√
σ2
0

n0
+

σ2
1

n1

,

where µi, σi, and ni are the mean, standard deviation and
cardinality of Tk for k ∈ {0, 1}.

Fig. 4(c) shows the t-test results. One can clearly see 32
groups corresponding to the processing of 32 message bytes.
Fig. 4(d) gives a zoomed-in view of 8 bytes. We can see
two groups of t-test peaks for every byte, separated by a
space. Each byte, with the exception of the ones in the
beginning and at the end, overlaps with two adjacent bytes.
This overlap could mean that several computations involving
different message bytes are carried out in parallel. We will
discuss this issue in more details in Section VI.

C. Training set expansion by cut-and-join

From Fig. 4(d) we can see that that the shape of t-test peaks
for different bytes is similar. Hence, we can increase the size of
the profiling set by a factor of 32 (the number of bytes) using
the cut-and-join technique from [17] without having to capture
32 times as many traces. For each trace Tj ∈ T and each byte
i ∈ {0, 1, . . . , 31}, we cut an interval of Tj including all t-test
peaks for the byte i. The union of the resulting intervals gives
us the expanded profiling set. In our experiments, we use 64-
point intervals.

Fig. 5 shows the t-test results after cut-and-joining profiling
traces. One can see that the peaks of different bytes are
perfectly aligned. In the figure we show only selected bytes
in order not to make it too crowded, but the perfect alignment
holds for other bytes as well.

D. Trace pre-processing

As in many other side-channel attacks, we pre-process traces
by standardization (or variance scaling [30]) to smooth the
shifting along y-axis of power measurements.

Given a set of traces T with elements T = (τ1, . . . , τ|T |),
each trace T ∈ T is standardized to T ′ = (τ ′1, . . . , τ

′
|T |) such

that, for all i ∈ {1, . . . , |T |}:

τ ′i =
τi − µi

σi
,

where and µi and σi are the mean and standard deviation of
the traces of T at the ith data point.

TABLE II: MLP architecture used for message recovery.

Layer type Output shape # Parameters
Batch Normalization 1 64 256

Dense 1 64 4160
Batch Normalization 2 64 256

ReLU 1 64 0
Dense 2 256 16640
Softmax 256 0

Total parameters: 21312
Trainable parameters: 21056

E. Network architecture and training parameters

We use multilayer perceptron (MLP) neural networks with
the architecture shown in Table II.

The neural networks are trained with a batch size of 1024 for
a maximum of 100 epochs using early stopping with patience
20. We use Nadam optimizer with a learning rate of 0.01 and a
numerical stability constant epsilon = 1e-08. Categorical cross-
entropy is used as a loss function to evaluate the network
classification error. 70% of the training set is used for training
and 30% is left for validation. Only the model with the highest
validation accuracy is saved.

VI. ATTACK STAGE

In this section, we first describe the original multi-bit error
injection method proposed in [10] for the attacks on software
implementations of lattice-based PKE/KEMs and then explain
how we adopted it to recover messages from a hardware
implementation. We also show how session keys can be used
to derived from the recovered messages.

A. Multi-bit error injection

Let m = (m[0],m[1], . . . ,m[31]) be a message to be recov-
ered, where m[i] is the ith message byte for i ∈ {0, 1, · · · , 31},
and c = (u, v) be the corresponding ciphertext generated by
KYBER.CPAPKE.Enc() for m. It is known that, by subtracting
the center of the integer ring Zq from the jth coefficient of
v, the jth bit of m can be flipped without changing other
bits [15]. Using this property, the authors of [10] extend the
attack set for message recovery from a single trace to 256
traces by injecting all possible multi-bit errors to the message
bytes as follows.

For e ∈ {0, 1, 2, . . . , 255}, the original ciphertext c is
modified to ce such that CPAPKE.Dec() decrypts ce to

me = (m[0]⊕ e,m[1]⊕ e, . . . ,m[31]⊕ e).

This means that, all bits of m[i] in which the 8-bit binary
expansion of e that has the value “1” are flipped. Then, the
prediction for each m[i] ⊕ e for all possible 256 values of e
is made and the result is XORed with e to get m[i].

In this way, the multi-bit error injection method converts
a non-differential side-channel attack to a differential one.
This makes good predictions possible, with not-so-perfect deep
learning models, biased towards some labels, since at least one
of the traces in the extended attack set has the ground truth
label to which the models are biased towards.

B. Sliced multi-bit error injection

In [10], the multi-bit error injection attack method is applied
to a software implementations of Saber in which the message
bytes are processed sequentially. However, hardware imple-
mentations carry out computations in parallel. From Fig. 4,
we can see that the t-test peaks of the adjacent bytes are
overlapping. If the same error e is injected into all bytes, as
in [10], it may be cancelled out, reducing the attack efficiency.

We propose to overcome this problem by using the follow-
ing technique which we call slicing. Instead of injecting an
error e into all message bytes, we inject e into every fourth
byte. As a result, the attack set is expanded into a (256× 4)-
trace set captured for the ciphertexts ce decrypting to messages
me whose bytes me[i] are defined by:

me[i] =

{
m[i]⊕ e if i mod 4 = x,

m[i] otherwise,
(1)

where x ∈ {0, 1, 2, 3}.
Clearly, the number of slices may be different from four.

For implementations with a higher overlapping between the
byte’s computations, a larger number may be more suitable.

Fig. 6 illustrates the difference between error injection in
every byte and in every fourth byte. Each rectangular block
represents the computation of some byte value. If the same e
is injected into every byte, it may be cancelled out due to the
overlapping computation of adjacent bytes. However, if e is
injected into every fourth byte, the bytes with injected error
do not affect each other.

C. Attack trace acquisition

To recover the message m from a properly generated
ciphertext c, we collect the attack dataset as follows. For each
x ∈ {0, 1, 2, 3}, we construct 256 ciphertexts ce decrypting to
messages me defined by (1) and capture a set of 256 traces
TA during the decapsulation of these ciphertexts.

Eight message bytes m[i] such that (i mod 4) = x are
recovered from TA for each x by giving the segments of traces
Te representing the processing of me[i] = m[i]⊕e as input to
the MLP model N trained at the profiling stage. For each Te,
the model N outputs a score vector Si,e = N (Te) in which
the value of the lth element, Si,e[l], is the probability that
me[i] = l, for l, e ∈ {0, . . . , 255}.

The most likely label for m[i] among 256 candidates is
decided as:

l̃ = argmax
l∈{0,1,...,255}

(

255∏
e=0

Si,e[l ⊕ e]).

If l̃ = m[i], the classification is successful. The condition
l̃ = m[i] can be verified by checking if the rank of m[i] is
zero1.

1A rank of a byte b is the number of other bytes which have the probability
higher than b in the score vector.

Fig. 4: (a) An average trace representing the execution of KYBER.CCAKEM.Decaps(); (b) a segment representing the message
processing; (c) t-test results for all 32 message bytes; (d) a zoomed-in view of eight bytes.

Fig. 5: T-test results for bytes {0, 4, . . . , 28} after cut-and-join.

D. Session key recovery

A successful recovery of the message m from a prop-
erly generated ciphertext c trivially implies the session key
recovery, since the session key can be derived as K =
KDF(K̂,H(c)) where (K̂, r) = G(m,H(pk)) (see lines 3 and
5 of KYBER.CCAKEM.Encaps()).

VII. EXPERIMENTAL RESULTS

This section summarises our experimental results. Following
the profiling strategy in Section V, we captured 200K training

traces during the execution of KYBER.CCAKEM.Decaps()
procedure with input ciphertexts encrypting random messages.
The training set was then expanded to 6.4M using the cut-and-
join technique. An MLP model with the architecture listed in
Table II was trained. In Section VII-B we describe how model
analysis helped us to optimize the model.

A. Message/session key recovery attack

In this section, we present the results of message recovery
attacks. We compare the proposed sliced multi-bit error injec-
tion method to the original multi-bit error injection method
and to a direct repetition attack. All attacks are performed on
the same 10 messages selected at random. Table III shows the
time it takes to capture the test set for one message in each
case.

1) Sliced multi-bit error injection attack: For each message,
we captured 256 × 4 traces for the 4-sliced multi-bit error
injection attack. Each measurement was repeated N = 5 times.

Table IV summarizes the results of message recovery. It
shows the average and the maximum ranks of all message
bytes for each message. We can see that all maximum ranks are
smaller than 4. This means that we can recover the messages
by enumerating the bytes with ranks 0,1,2 and 3, i.e. using up
to 432 = 264 enumerations in total, which is feasible.

Fig. 7 shows how the enumeration complexity varies for
each message as we increase the number of traces. The y-axis

Fig. 6: An illustration of how the injected errors might be cancelled out. The blocks represent computations executed in parallel.

TABLE III: Time for capturing the training and test sets.

Attack method # Traces Time (min) Success rate

Test
set

repetition 256 x 5 5:40 0%

multi-bit error injection w/o slicing 256 x 5 5:40 10%
multi-bit error injection w/o slicing 256 x 20 13:21 10%

4-sliced multi-bit error injection 256 x 4 x 5 22:42 100%

Training
set 6 hours to capture 200K traces

Fig. 7: Enumeration complexity as a function of the number
of traces in the 4-sliced multi-bit error injection attack.

represents the number of enumerations required for message
recovery in log2 scale. The red dashed line marks the threshold
64 = log2(2

64) which we consider feasible. We can see that,
as the number of traces increases, the enumeration complexity
first sharply decreases, and then flattens. Further increase of
the number of repetitions N typically does not affect the ranks
significantly in our experiments.

2) Multi-bit error injection attack: To compare the pre-
sented 4-sliced method to the original multi-bit error injection
method, we also captured 256 traces in which the error e is

injected in all message bytes. We tested two cases with a
different number of repetitions: N = 5 and N = 20. The case
of N = 20 is included because the total number of traces used
by the original multi-bit error injection method with N = 20
is equal to the total the total number of traces used by the
4-sliced multi-bit error injection method with N = 5.

Table V summarizes the results of message recovery. We can
see that, for both N = 5 and N = 20 cases, only one message
can be recovered with enumeration up to ≤ 264, message 2.

Fig. 8 shows how the enumeration complexity changes as
the number of traces grows for the case of N = 5. We can see
that the curves flatten quite quickly. Therefore, further increase
of N from from 5 to 20 does not affect the ranks significantly.

This experiment shows that slicing is essential for an
attack on the hardware implementation of CRYSTALS-Kyber
from [7] in which the message bytes are processed in parallel.
Without slicing, only 10% of messages can be recovered
with enumeration up to 264. With slicing, we can recover all
messages with the same enumeration.

3) Repetition attack: To further highlight the effectiveness
of the presented sliced multi-bit error injection method, we
also compared it to a direct repetition attack which uses
multiple traces captured for the same ciphertext c.

Table VI shows the results of message recovery from 256×5
traces. Clearly, these ranks are not feasibly enumerable. We did
not attempted to increase to the number of test traces further
because it was obvious that the repetition attack does not work
on the target implementation.

TABLE IV: Results of the 4-sliced multi-bit error injection attack using 256× 4× 5 traces.

Error injected
into every 4th byte

Message

0 1 2 3 4 5 6 7 8 9

Avg. byte rank 0.09 0.19 0.09 0.09 0.03 0.19 0.06 0.22 0.28 0.16
Max. byte rank 2 2 1 1 1 2 1 2 3 3

All messages can be recovered with enumeration ≤ 264

TABLE V: Results of the multi-bit error injection attack without slicing.

Error injected
into all bytes

Message

0 1 2 3 4 5 6 7 8 9

256×5
traces

Avg. byte rank 1.63 2.34 0.34 0.84 0.72 1.59 1.93 1.88 2.28 1.09
Max. byte rank 15 24 2 13 5 23 25 24 26 8

256×20
traces

Avg. byte rank 1.56 1.94 0.31 0.69 0.78 1.22 1.88 1.88 2.16 1.06
Max. byte rank 16 19 2 11 6 15 20 23 22 9

1 out of 10 messages can be recovered with enumeration ≤ 264.

TABLE VI: Results of the repetition attack using 256× 5 traces.

Repetition attack Message

0 1 2 3 4 5 6 7 8 9

Avg. byte rank 116 123 127 120 121 99 130 105 138 116
Max. byte rank 251 237 247 248 253 240 255 248 252 255

No messages can be recovered with enumeration ≤ 264.

Fig. 8: Enumeration complexity as a function of the number
of traces in the multi-bit error injection attack without slicing.

B. Feature and model analysis

Explaining how deep learning models make decisions is
important because it may help identify and patch vulnerabil-
ities in the implementation under attack. It may also help in
optimizing the model.

1) Feature analysis: To evaluate the importance of different
input features for the model, we use two techniques: (1) weight
analysis, and (2) stuck-at-0 fault injection. Both techniques
have been shown useful in previous deep learning-based side-
channel attacks of lattice-based PKE/KEMs [31].

Fig. 9 shows a plot representing the weights of the input
Batch Normalization layer of the MLP used in the experi-
ments. The Batch Normalization first standardizes the input
values X of the layer using their respective mean, µ, and
standard deviation, σ, Xnorm = (X − µ)/σ, and then applies
the scaling, γ (gamma) and offset, β (beta), parameters to
the result, X ′ = (γ ∗ Xnorm) + β. The parameters γ and
β are learned by the model during the training process, i.e.
the backpropagation algorithm is adjusted to operate on the
transformed inputs, and error is used to update the new
scaling and offset parameters learned by the model. Thus,
a higher value of γ indicates the higher importance of the
corresponding input point in the decision taken by the model.

We can see that there are two clusters of peaks - one around
the point 50 and another - around the point 25. We can relate
these clusters to the peaks of the t-test shown in Fig. 5.

The relation becomes even more apparent after the stuck-
at-0 fault injection analysis. Fig. 10 shows how the prediction
accuracy of the model is affected by setting all but 9 con-
secutive points of a test trace to 0 before making inference
(implying that the model takes its decision based on these 9
points only). If the rank remains close to 0 after the stuck-at-0
faults are injected into all points except for {p−4, . . . , p+4}
(mod 64), the point p is important.

In Fig. 10 we can clearly see two “valleys” around the
points 50 and 25. They show that the most input features
for the model’s decision are contained in these intervals.
This, in turn, implies that the computations performed by
the implementation of CRYSTALS-Kyber during the corre-

Fig. 9: The γ parameters of the input Batch Normalization
layer. Greater γ indicates a more important data point.

Fig. 10: The effect of stuck-at-0 faults on the rank. For each
data point p ∈ {0, . . . , 63}, all points except {p − 4, . . . , p +
4} (mod 64) are set to 0 and inference is performed on the
modified data. If the rank remains close to 0, p is important.

sponding clock cycles leak side-channel information. We are
currently working on matching the identified points of interest
to the CRYSTALS-Kyber procedures in order to re-design the
implementation to make it more SCA-resistant.

2) Model analysis: In early experiments, we used MLPs
with the architecture similar to the one in Table II but with
6 dense layers instead of two. We were expecting models for
breaking a hardware implementation of CRYSTALS-Kyber to
be more complex than the ones used in the attacks on its
software implementations. For example, the MLPs used in [10]
for recovering message bytes from an ARM Cortex-M4 CPU
implementation of CRYSTALS-Kyber has 3 dense layers.

After multiple training attempts, our best model was able to

TABLE VII: The impact of the number of dense layers on the
maximum rank of MLPs. Each dense layer has 256 neurons.

Layers Message Avg Max
0 1 2 3 4 5 6 7 8 9

6 4 2 1 1 1 2 1 2 6 5 2.5 6
5 2 2 1 1 1 2 1 2 9 5 2.6 9
4 2 2 1 1 1 3 1 4 6 2 2.3 6
3 2 2 1 2 1 2 1 3 6 6 2.6 6
2 2 2 1 2 1 2 1 4 6 5 2.6 6

TABLE VIII: The impact of the layer size on the maximum
rank of MLPs with two dense layers.

Neurons Message Avg Max
0 1 2 3 4 5 6 7 8 9

256 2 2 1 2 1 2 1 4 6 5 2.6 6
128 2 2 1 2 1 2 1 3 6 6 2.6 6
64 2 2 1 1 1 2 1 2 3 3 1.8 3
32 2 2 1 2 1 2 1 2 6 6 2.5 6
16 2 2 1 2 1 2 1 2 8 7 2.8 8
8 5 2 1 2 2 2 1 3 8 5 3.1 8

recover 70% of messages with the enumeration less than 264

(see the first line of Table VII). We used the 4-slice multi-bit
error injection method for the attack, with 5 repetitions, as in
the experiments for Table IV.

To check if the model is optimal, we first dropped dense
layers one-by-one and re-trained. The results are summarised
in Table VII). Surprisingly, the model with two dense layers
had approximately the same accuracy as the models with
more layers. It could still recover 70% of messages with the
enumeration less than 264 and had the maximum rank of 6
(see the last line of Table VII).

We continued verifying optimality of the model with two
dense layers by incrementally halving the number of neurons
in the layer. For each case, we trained three models using the
same training set and hyperparameters. Table VIII shows the
results for the best of the three cases. We can see that the
model with 64 neurons outperforms the others. We selected
this model as optimal for the rest of experiments.

We also tried joining multiple models into an ensemble, but
this did not improve the prediction accuracy further. Probably
the models make dependent errors. We can see from the
columns of Table VIII that some messages are easy and
some are difficult for SCA. We do not yet have a confirmed
explanation of why this is the case. Traces for all messages
are captured under the same conditions, so it is unlikely that
measurements are to blame. Since there is an overlapping
in message byte processing (see Fig. 4 bottom), different
combinations of the bytes processed in parallel sum up to
different 8n-bit words. It is possible that the difficulty of
extracting a given byte from this word by SCA depends on
other bytes in the word. A larger set of experiments is required
to verify this hypothesis.

VIII. CONCLUSION

We demonstrated a message recovery attack on a hardware
implementation of CRYSTALS-Kyber by deep learning-based
power analysis. The success of the attack is due to the
sliced multi-bit error injection method which we introduced
in this paper. It is an extension of the original multi-bit error
injection method presented in [10] for side-channel analy-
sis of software implementations of lattice-based PKE/KEMs.
Software implementations do not require slicing because they
execute instructions sequentially. However, our experimental
results show that it is essential for hardware implementations.
Without slicing, only 10% of messages can be recovered
with enumeration up to 264. With slicing, we can recover all
messages with the same enumeration.

Future work includes re-designing the CRYSTALS-Kyber
implementation to make it resistant to side-channel attacks.

IX. ACKNOWLEDGMENTS

This work was supported in part by the Swedish Civil
Contingencies Agency (Grant No. 2020-11632), the Swedish
Research Council (Grant No. 2018-04482) and the Sweden’s
Innovation Agency Vinnova (Grant No. 2021-02426)

REFERENCES

[1] D. Moody, “Status Report on the Third Round of the NIST Post-
Quantum Cryptography Standardization Process,” Nistir 8309, pp. 1–27,
2022, https://nvlpubs.nist.gov/nistpubs/ir/2022/NIST.IR.8413.pdf.

[2] “Announcing the commercial national security algorithm suite
2.0,” National Security Agency, U.S Department of Defense, Sep
2022, https://media.defense.gov/2022/Sep/07/2003071834/-1/-1/0/CSA
CNSA 2.0 ALGORITHMS .PDF.

[3] J. Bos, L. Ducas, E. Kiltz, T. Lepoint, V. Lyubashevsky, J. M. Schanck,
P. Schwabe, G. Seiler, and D. Stehlé, “CRYSTALS-Kyber: a CCA-
secure module-lattice-based KEM,” in 2018 IEEE European Symposium
on Security and Privacy (EuroS&P). IEEE, 2018, pp. 353–367.

[4] J. W. Bos, M. Gourjon, J. Renes, T. Schneider, and C. van Vreden-
daal, “Masking Kyber: First-and higher-order implementations,” IACR
Transactions on Cryptographic Hardware and Embedded Systems, pp.
173–214, 2021.

[5] J.-P. D’Anvers, M. V. Beirendonck, and I. Verbauwhede, “Revisiting
higher-order masked comparison for lattice-based cryptography: Al-
gorithms and bit-sliced implementations,” Cryptology ePrint Archive,
Paper 2022/110, 2022, https://eprint.iacr.org/2022/110.

[6] D. Heinz, M. J. Kannwischer, G. Land, T. Pöppelmann, P. Schwabe,
and D. Sprenkels, “First-order masked Kyber on ARM Cortex-M4,”
Cryptology ePrint Archive, Paper 2022/058, 2022, https://eprint.iacr.org/
2022/058.

[7] Y. Xing and S. Li, “A compact hardware implementation of CCA-
secure key exchange mechanism CRYSTALS-KYBER on FPGA,” IACR
Transactions on Cryptographic Hardware and Embedded Systems, pp.
328–356, 2021.

[8] P. Ravi, S. Sinha Roy, A. Chattopadhyay, and S. Bhasin, “Generic side-
channel attacks on CCA-secure lattice-based PKE and KEMs,” IACR
Transactions on Cryptographic Hardware and Embedded Systems, vol.
2020, no. 3, p. 307–335, Jun. 2020.

[9] R. C. Rodriguez, F. Bruguier, E. Valea, and P. Benoit, “Correlation
electromagnetic analysis on an fpga implementation of crystals-kyber,”
Cryptology ePrint Archive, Paper 2022/1361, 2022, https://eprint.iacr.
org/2022/1361. [Online]. Available: https://eprint.iacr.org/2022/1361

[10] R. Wang, K. Ngo, and E. Dubrova, “Making biased DL models work:
Message and key recovery attacks on Saber using amplitude-modulated
EM emanations,” Cryptology ePrint Archive, Paper 2022/852, 2022,
https://eprint.iacr.org/2022/852.

[11] C. Chen et al., “NTRU algorithm specifications and
supporting documentation,” 2020, https://csrc.nist.gov/projects/
postquantum-cryptography/round-3-submissions.

[12] P. Schwabe et al., “CRYSTALS-Kyber algorithm specifications
and supporting documentation,” 2020, https://csrc.nist.gov/projects/
postquantum-cryptography/round-3-submissions.

[13] J. D’Anvers et al., “Saber algorithm specifications and
supporting documentation,” 2020, https://csrc.nist.gov/projects/
postquantum-cryptography/round-3-submissions.

[14] B.-Y. Sim, J. Kwon, J. Lee, I.-J. Kim, T.-H. Lee, J. Han, H. Yoon,
J. Cho, and D.-G. Han, “Single-trace attacks on the message encoding
of lattice-based KEMs,” IEEE Access, vol. 8, pp. 183 175–183 191, 2020.

[15] P. Ravi, S. Bhasin, S. S. Roy, and A. Chattopadhyay, “On exploiting
message leakage in (few) NIST PQC candidates for practical message
recovery attacks,” IEEE Transactions on Information Forensics and
Security, vol. 17, pp. 684–699, 2021.

[16] J. Wang, W. Cao, H. Chen, and H. Li, “Practical side-channel attack on
masked message encoding in latticed-based KEM,” Cryptology ePrint
Archive, Paper 2022/859, 2022, https://eprint.iacr.org/2022/859.

[17] K. Ngo, E. Dubrova, Q. Guo, and T. Johansson, “A side-channel attack
on a masked IND-CCA secure Saber KEM implementation,” IACR
Trans. on Cryptographic Hardware and Embedded Systems, pp. 676–
707, 2021.

[18] R. Ueno, K. Xagawa, Y. Tanaka, A. Ito, J. Takahashi, and N. Homma,
“Curse of re-encryption: A generic power/EM analysis on post-quantum
KEMs,” IACR Transactions on Cryptographic Hardware and Embedded
Systems, vol. 2022, no. 1, p. 296–322, Nov. 2021.

[19] C. Mujdei, A. Beckers, J. M. B. Mera, A. Karmakar, L. Wouters, and
I. Verbauwhede, “Side-channel analysis of lattice-based post-quantum
cryptography: Exploiting polynomial multiplication,” Cryptology ePrint
Archive, Paper 2022/474, 2022, https://eprint.iacr.org/2022/474.

[20] Z. Xu, O. M. Pemberton, S. Sinha Roy, D. Oswald, W. Yao, and
Z. Zheng, “Magnifying side-channel leakage of lattice-based cryp-
tosystems with chosen ciphertexts: The case study of Kyber,” IEEE
Transactions on Computers, pp. 1–1, 2021.

[21] S. Bhasin, J.-P. D’Anvers, D. Heinz, T. Pöppelmann, and M. V. Beiren-
donck, “Attacking and defending masked polynomial comparison for
lattice-based cryptography,” Cryptology ePrint Archive, Paper 2021/104,
2021, https://eprint.iacr.org/2021/104.

[22] Y. Huang, M. Huang, Z. Lei, and J. Wu, “A pure hardware implemen-
tation of CRYSTALS-KYBER PQC algorithm through resource reuse,”
IEICE Electronics Express, vol. 17, no. 17, pp. 20 200 234–20 200 234,
2020.

[23] L. Botros, M. J. Kannwischer, and P. Schwabe, “Memory-efficient high-
speed implementation of kyber on cortex-m4,” in Progress in Cryptology
– AFRICACRYPT 2019, J. Buchmann, A. Nitaj, and T. Rachidi, Eds.
Cham: Springer International Publishing, 2019, pp. 209–228.

[24] Q. Guo, A. Johansson, and T. Johansson, “A key-recovery side-channel
attack on Classic McEliece implementations,” IACR Transactions on
Cryptographic Hardware and Embedded Systems, vol. 2022, no. 4, p.
800–827, Aug. 2022.

[25] Y. Ji, “A deep learning based side-channel analysis of an FPGA imple-
mentation of Saber,” Master’s thesis, School of Electrical Engineering
and Computer Science, KTH, 2022.

[26] T. Kamucheka, M. Fahr, T. Teague, A. Nelson, D. Andrews, and
M. Huang, “Power-based side channel attack analysis on PQC al-
gorithms,” Cryptology ePrint Archive, Paper 2021/1021, 2021, https:
//eprint.iacr.org/2021/1021.

[27] E. Fujisaki and T. Okamoto, “Secure integration of asymmetric and
symmetric encryption schemes,” in Annual international cryptology
conference. Springer, 1999, pp. 537–554.

[28] NewAE Technology Inc., “Chipwhisperer,” https://newae.com/tools/
chipwhisperer.

[29] B. L. Welch, “The generalization of ‘student’s’problem when several
different population varlances are involved,” Biometrika, vol. 34, no.
1-2, pp. 28–35, 1947.

[30] A. Zheng and A. Casari, Feature engineering for machine learning:
principles and techniques for data scientists. O’Reilly Media, Inc.,
2018.

[31] R. Wang, K. Ngo, and E. Dubrova, “Side-channel analysis of Saber KEM
using amplitude-modulated EM emanations,” in Proc. of Euromicro
DSD/SEAA, 2022.

https://nvlpubs.nist.gov/nistpubs/ir/2022/NIST.IR.8413.pdf
https://media.defense.gov/2022/Sep/07/2003071834/-1/-1/0/CSA_CNSA_2.0_ALGORITHMS_.PDF
https://media.defense.gov/2022/Sep/07/2003071834/-1/-1/0/CSA_CNSA_2.0_ALGORITHMS_.PDF
https://eprint.iacr.org/2022/110
https://eprint.iacr.org/2022/058
https://eprint.iacr.org/2022/058
https://eprint.iacr.org/2022/1361
https://eprint.iacr.org/2022/1361
https://eprint.iacr.org/2022/1361
https://eprint.iacr.org/2022/852
https://csrc.nist.gov/projects/postquantum-cryptography/round-3-submissions
https://csrc.nist.gov/projects/postquantum-cryptography/round-3-submissions
https://csrc.nist.gov/projects/postquantum-cryptography/round-3-submissions
https://csrc.nist.gov/projects/postquantum-cryptography/round-3-submissions
https://csrc.nist.gov/projects/postquantum-cryptography/round-3-submissions
https://csrc.nist.gov/projects/postquantum-cryptography/round-3-submissions
https://eprint.iacr.org/2022/859
https://eprint.iacr.org/2022/474
https://eprint.iacr.org/2021/104
https://eprint.iacr.org/2021/1021
https://eprint.iacr.org/2021/1021
https://newae.com/tools/chipwhisperer
https://newae.com/tools/chipwhisperer

	Introduction
	Previous work
	CRYSTALS-Kyber algorithm
	Experimental setup
	Equipment
	Target FPGA implementation

	Profiling stage
	Training trace acquisition
	Location of points of interest
	Training set expansion by cut-and-join
	Trace pre-processing
	Network architecture and training parameters

	Attack stage
	Multi-bit error injection
	Sliced multi-bit error injection
	Attack trace acquisition
	Session key recovery

	Experimental results
	Message/session key recovery attack
	Sliced multi-bit error injection attack
	Multi-bit error injection attack
	Repetition attack

	Feature and model analysis
	Feature analysis
	Model analysis

	Conclusion
	Acknowledgments
	References

