
Plug-and-play sanitization for TFHE

Florian Bourse and Malika Izabachène

Abstract. Fully Homomorphic encryption allows the evaluation of any
circuits over encrypted data while preserving the privacy of the data.
However, without any additional properties, no guarantee is provided
for the privacy of the circuits which are evaluated.
A sanitization algorithm allows to destroy all previous information about
how a ciphertext was obtained, ensuring that the circuit which was eval-
uated remains secret. In this paper, we present two techniques to ran-
domize RLWE ciphertexts, and show how they can be used to achieve
ciphertext sanitization for the TFHE scheme proposed by Chilotti et
al. (Asiacrypt 2016), by modifying the bootstrapping procedure inter-
nally. The first technique is a generalization of the strategy proposed
by Bourse et al. (Crypto 2016) to the ring setting. While this approach
adapts well in theory, we show evidence that it fails to provide a practical
solution.
To improve over this strategy, we relax the circuit privacy property to
its computational counterpart, and make use of an efficient public ran-
domizer composed of an RLWE-based public key encryption with addi-
tional properties on the ciphertexts distribution. This randomizer can
also be used in the soak-and-spin paradigm of Ducas and Stehlé (Euro-
crypt 2016). Using a backward induction over the circuit size, we also
improve on the proof technique from Bourse et al. to avoid randomiza-
tion at each step of the computation, enabling faster randomization and
smaller noise growth.
As a proof of concept, we provide a C implementation of our sanitization
strategy, which shows that a sanitized LWE ciphertext can be obtained
almost for free compared to a bootstrapped LWE ciphertext assuming
many discrete Gaussian samples at hand.

Keywords: Fully Homomorphic Encryption, circuit privacy, leftover hash
lemma, sanitization, bootstrapping implementation.

1 Introduction

A Fully Homomorphic Encryption (FHE) scheme allows to evaluate any circuit
over encrypted data without having to decrypt them. A standard requirement for
homomorphic encryption schemes is semantic security against chosen plaintext
attacks, which guarantees that the data remains unknown to the party who
evaluates the circuit.

For most of the known FHE schemes, semantic security relies on the hard-
ness of the Learning With Errors (LWE) problem [Reg05], or variants of LWE,
meaning that the message is slightly offset by some noise that grows after a

2

homomorphic computation. In order to be able to continue the computation, a
procedure called bootstrapping, first described in [Gen09], is used to refresh the
noise in a ciphertext to a fixed manageable level.

The bootstrapping procedure is costly compared to basic operations, but
packing techniques (e.g., [Bra12,BGV12,FV12,CKKS17,CZ17,MS18,GPL23])
provide efficient amortized timings. Unfortunately, these techniques still have a
very high latency (even though lots of ciphertexts can be bootstrapped at once,
the time it takes to bootstrap a single ciphertext remains prohibitively large)
and are not always compatible with certain real-time applications. A series of
works (e.g.,[AP14,DM15,CHK+18,CGGI20]) tackles this issue by optimizing the
bootstrapping of a single ciphertext, which is desirable in some scenarios.

Circuit privacy. Another property called circuit privacy is also crucial in many
scenarios where the evaluation circuit contains sensitive information; typical ex-
amples being classification algorithms or financial prediction algorithms or many
other scenarios where the delegated computation party may act as a service
provider. Intuitively, the idea behind circuit privacy is that no one can reverse-
engineer the computation into which a ciphertext went through. A bit more
formally, an FHE scheme achieves circuit privacy for a class of functions if the
output distribution of the evaluation procedure of the FHE scheme only depends
on the result and does not leak information on which function from the class was
evaluated. In addition, knowing the secret key should not give any advantage.

The property of circuit privacy has also found applications in cryptographic
protocols: a first example is the computation of a private set intersection of
two datasets based on homomorphic encryption [CLR17,CMdG+21] where a re-
ceiver has input set X and sends its dataset encrypted to a sender with input
Y . The latter performs some homomorphic computation so that at the end, the
receiver outputs X ∩ Y . In order to provide security against a semi-honest re-
ceiver, one technique relies on using a circuit-private homomorphic encryption
scheme. Another example can be found in the lattice-based threshold signature
constructions [BGG+18,ASY22], built from threshold FHE, which also require
to hide information in the computation of the partial decryption shares.

Different flavors of circuit privacy may be desired and some relations between
them can be established. Circuit privacy against malicious adversaries, where the
public keys and/or ciphertexts are not necessarily honestly generated, is much
stronger than circuit privacy against passive adversaries. Fortunately, [OPP14]
devised a technique to upgrade a compact FHE scheme circuit-private against
passive adversaries using another (possibly non-compact) FHE scheme circuit-
private against malicious adversaries, which can even possibly start from a non
circuit-private compact FHE schemes using some additional twists. Also, de-
pending on the application, the result of the computation might be sent back
and decrypted directly, but also might be sent to another server for additional
computation. This refinement of the circuit-private property has been defined
in [GHV10] as 1-hop for the first case, or multi-hop for the second case. An i-hop
circuit-private FHE scheme allows for i steps of computation before the cipher-
text has to be decrypted. Finally, an FHE scheme could achieve circuit privacy

3

for a particular class of functions but might fail to evaluate other functions in
a circuit-private way. Another closely related property is sanitization of FHE
ciphertexts as defined in [DS16], which asks that the FHE scheme includes a
Sanitize algorithm which maps ciphertexts to a canonical distribution depending
only on its underlying plaintext. It is straightforward to see that sanitization im-
plies circuit privacy: appending Sanitize at the end of each evaluation procedure
makes it possible for the FHE scheme to reach multi-hop circuit privacy for all
functions. The other direction requires some additional assumptions and techni-
cal details such as circular security assumption, but intuitively, a circuit-private
evaluation of the bootstrapping procedure would yield a sanitization algorithm.
We also note that the notion of circuit privacy for FHE is very closely related
to circuit privacy in multiparty computation (MPC), as FHE can be used as a
building block in low communication MPC protocols.

1.1 Previous works

The first circuit-private technique was proposed in [Gen09] and relies on
noise flooding by adding a fresh encryption of zero with a super-polynomially
larger noise. Indeed, the noise contained in a ciphertext is the main source
of leakage. And the idea is to add a noise with a very large parameter at
the end of the computation to drown the existing noise and to avoid an
adversary making use of the information it contains. This yields a 1-hop
scheme that is circuit-private for the class of all functions. This technique re-
quires the starting modulus-to-noise ratio to be super-polynomial, which makes
the security rely on a stronger LWE assumption, and requires larger parameters.

A new approach, proposed in [DS16] avoids this downside, and achieves
circuit-privacy for FHE schemes relying on LWE with a polynomial modulus-to-
noise ratio. Their sanitization algorithm relies on the use of the bootstrapping
and their technique is based on a paradigm called soak and spin, which consists
of iterations of two consecutive steps: a first one invokes a Refresh algorithm
which reduces the noise of the input ciphertext to a fixed level; a second step,
ReRand injects noise in the ciphertext in order to make it closer to a canonical
distribution of ciphertexts. After λ consecutive iterations of Refresh and Rerand
over any two input ciphertexts decrypting to the same message, the statistical
distance between the two output ciphertexts is bounded by 2−λ. An additional
requirement to their work is that the output of Rerand should decrypt to the
correct message with very high probability in order to reach the sanitization
property. The authors of [AP20] proposed a refined security analysis of the san-
itization algorithm proposed in [DS16] based on the use of the Rényi divergence
instead of the statistical distance. They showed that the number of iterations
can be reduced depending on the target number of evaluations that needs to
be hidden. They also set the parameters in the soak and spin process such that
decryption fails with exponentially small probability.

In [BdMW16], Bourse et al. showed how to achieve circuit privacy for NC1

circuits without relying on the circular security assumption, and basing its se-

4

curity on plain LWE with polynomial modulus-to-noise ratio. The main idea is
to tweak the computation paradigm to branching programs, which are shown
to be able to be evaluated in a circuit-private way using a two steps random-
ization process at each stage of the computation. This randomization process
consists of both switching the homomorphic product to its randomized counter-
part from [AP14], and adding a random Gaussian noise after each product. The
first step ensures that the distribution of the noise after one step of computa-
tion is close to a Gaussian noise, with a parameter independent of the previous
states of the evaluation; this is done by making use of the randomized homo-
morphic product. Adding a random Gaussian noise in the second step ensures
that at each step, the noise does not leak information about the computation
being carried on. The downside of this work is that it applies to schemes that are
not implemented in practice for efficiency reasons, namely the GSW cryptosys-
tem [GSW13] and its variants [BV14], and requires the functions to be converted
to branching programs.

A concurrent work [Klu22] claimed a similar LWE sanitization result by mod-
ifying the FHEW-like bootstrapping. The proof of the claim was not correct: in
the proof of Theorem 1, in the transition from Hybrid 1 to Hybrid 2, Lemma
11 is invoked with w = 1 on A of dimension N × ℓR for a polynomial of degree
N . However, in Lemma 11, the matrix A has dimension w − 1 × m for some
parameter m. We contacted the author regarding this issue and the proof has
been recently revised, so we will proceed with comparing the updated version.
On the theoretical side, one of our contribution is to extend the noise anal-
ysis from [BdMW16] to the ring setting, which additionally implies multi-
hop circuit privacy over rings without bootstrapping for branching programs,
whereas [Klu22] sanitization strategy cannot be used independently of the boot-
strapping. [Klu22] only considers statistical sanitization security. Though sta-
tistical sanitization is stronger, we investigate other trade-offs by proposing a
second sanitization strategy that relies on RLWE, a computational assumption.
With this relaxation, the sanitization property holds under the same assump-
tion as for the semantic security, allowing us to considerably reduce the size of
the public key. For sake of comparison, in the new version of [Klu22], the pub-
lic sanitization key is composed of 211.5 to 212.3 fresh LWE samples of zero in
dimension N = 211, while in our case it is made of one RLWE encryption of
zero in dimension N = 210. It is also noteworthy that [Klu22]’s implementation
differs from the scheme in two aspects: it samples rounded continuous Gaussian
instead of discrete Gaussians and it makes use of a mersenne twister generator
as a random source for the gaussian samples while we make use of the operating
system’s CSPRNG, which is cryptographically secure.

1.2 Our contributions

We propose a practical sanitization approach for FHE schemes with polynomial
modulus-to-noise ratio. Our solution is based on the bootstrapping procedure
implemented using GSW homomorphic product and applies to FHEW-like boot-
strappings. Also, our sanitization algorithm is compatible with recent improved

5

functional bootstrapping [BDF18,CIM19,GBA21,CLOT21,LY23] which allows
to support larger space messages with higher precision, provided the parameters
are adapted. We let the practical analysis of the combination of circuit-privacy
with each of those techniques for future work.

In practice, we obtain that the overhead of the sanitization property is very
low when comparing sanitizing and non-sanitizing TFHE bootstrapping for the
same set of parameters. For the sake of comparison, we evaluate the cost of [DS16]
randomization strategy for the TFHE bootstrapping. We discuss the comparison
of both approaches in details in Section 5.1 and give detailed timings in the
implementation section where we explain how our lemmata are used. In [DS16],
the randomization step makes use of a large combination of LWE encryptions of
zero. Compared to [DS16] strategy, our solution does not need to assume the
randomizer to be pre-computed or computed on the fly since it is made of a small
Gaussian noise plus only one RLWE encryption of zero and can be computed very
efficiently. As the randomizer we propose consists of a much smaller public key,
it allows to achieve a faster randomization and a smaller noise overhead after the
procedure. It can also be used directly in combination with other work including
the soak-and-spin technique from [DS16].

Our solution for sanitization relies on the same assumption as for FHE with-
out sanitization and achieves strong properties in that our definition of saniti-
zation is proven in the simulation based model and holds for a bounded simu-
lator, which implies the indistinguishable based sanitization property as defined
in [DS16]. Also, as in their work, our construction implies multi-hop circuit pri-
vacy for the class of all functions, not only for functions in NC1 as in [BdMW16].

Our first solution generalizes the randomization techniques
from [AP14,BdMW16] to the ring setting (see Lemma 9). One step of
our generalization needs to make use of a regularity lemma over ring structures
for power-of-two modulus. General Leftover Hash Lemma results over rings
do exist ([LW20, Theorem 5.5] for example), but for these general results, the
probability of collision over each prime ideal needs to be effectively computed.
While not setting restriction on q, [LPR13, Corollary 7.5] provides a regularity
lemma over rings but does not handle conditional distribution over lattice
cosets. [DGKS21] also proves a regularity lemma over rings for conditional
distributions when q is prime. In order to derive more efficient bounds for the
power-of-two modulus case, we adapt the techniques from [MM11] and specialize
the probability of collision over each prime ideals of power-two-modulus ring for
conditional distributions. We also develop additional techniques to analyze the
distributions of polynomials – combinations of uniformly random polynomials
and discrete Gaussian polynomials over lattices for the specialized case of a
power-of-two cyclotomic ring with a power-of-two modulus, which can also be
adapted to other ring structures.

We propose two sanitization strategies based on a combination of a random-
ized decomposition and a public randomizer, which can be either taken as a small
Gaussian noise or as the sum of a small Gaussian noise plus one additional RLWE
encryption of zero. As a direct implication of our first strategy and [BdMW16]

6

result, we obtain circuit-private branching programs for homomorphic computa-
tion over rings without relying on additional public key material. The first strat-
egy yields statistical circuit privacy under the assumption that the parameters
are large. Our second strategy removes the hard constraints on the parameters
and yields computational circuit privacy in a more efficient way. We provide
an implementation of our sanitization algorithm showing that sanitization of
FHE ciphertexts can be achieved in practice. As the TFHE bootstrapping does
not provide any sanitization property, our parameters fall in a different range
than the ones chosen for the TFHE and Concrete libraries [CGGI16,Zam22]
which provide very efficient non-sanitized bootstrapping. In order to measure
the quality of our sanitization strategy, we compare the relative cost between
the non-sanitized bootstrapping versus the sanitized bootstrapping for the same
set of parameters. In particular, we measured that if Gaussian samples could be
pre-computed, or generated in parallel of the sanitization execution1, the over-
head of our technique is almost negligible, and since the sanitization can be done
in place of the last bootstrapping after many computation steps, one can achieve
circuit privacy almost for free in that case.

Overview of the techniques. The underlying idea of our high-level strategy is
based on two observations. Recall that the bootstrapping procedure of TFHE
can be decomposed in 3 steps, called BlindRotate, Extract, and KeySwitch, as
illustrated on Figure 1. So if any of these 3 steps destroys unwanted information
of the input, all the information about any previous evaluation on the ciphertext
is washed away, and the bootstrapping procedure becomes a sanitizing algorithm.

Our focus will be on the BlindRotate procedure which we carefully modify
to be a circuit private evaluation for the class of function BlindRotatea,b : s 7→
(0, testv)·Xb−

∑
i siai parameterized by a LWE ciphertext (a, b) for any polynomial

testv and a variable s = (s0, . . . , sn−1) ∈ {0, 1}n. We notice that the BlindRotate
computation is mostly made of homomorphic evaluations of multiplexers i.e.
conditional operators, which behave nicely with respect to the circuit privacy
property as shown in [BdMW16] 2. We modify the BlindRotate procedure to make
it circuit-private, by randomizing the gadget decomposition that we combine
with a fresh randomizer at the end of the computation.

To avoid some of the dependencies between random variables, [BdMW16]
proceeds by induction and analyzes the distribution of the ciphertext after each
step of the computation, starting from the initial state. In order to prove their
result, a small Gaussian noise is required to be added at each step of the com-
putation. We improve on their strategy by using another proof by induction,
starting from the end towards the beginning, analyzing the noise added by the
remainder of the computation, and we show that adding just one public ran-
domizer at the very end is enough to prove FHE ciphertexts sanitization and

1 We believe that specialized hardware or libraries would significantly reduce the tim-
ing of the underlying Gaussian sampler, even without pre-computation.

2 [BdMW16] shows circuit-private evaluation for branching programs, while not ex-
actly being the same, it is close to multiplexers evaluation.

7

n-LWE RLWE N-LWE n-LWE

bk ks

BlindRotate Extract KeySwitch

Fig. 1. TFHE bootstrapping steps: n-LWE denotes a LWE ciphertext of dimension n.
After an initialization step not pictured here, the bootstrapping of an n-LWE ciphertext
into a fresh n-LWE ciphertext goes through three algorithms BlindRotate, Extract, and
KeySwitch and requires two sets of keys: the bootstrapping key bk and the keyswitching
key ks. More details will be given later in the paper.

hence circuit private evaluation. We notice that this proof technique can also be
applied to their setting as well and improve the parameters.

Additional challenges have to be tackled as BlindRotate is not exactly a
branching program. An additional difficulty compared to the evaluation of
branching programs is that the computation does not just carry information
through the different stages of the evaluation, but there are also multiplications
by powers of X being done on the underlying plaintext, and also on the previous
states of the accumulator inside the bootstrapping. In addition, as we are dealing
with polynomials and not scalar vectors, which means that the different compo-
nents are combined with each other along products, the standard tools at hand
for analyzing distribution cannot apply directly because of the dependencies be-
tween components. To tackle these issues, we carefully craft distributions that
are spherical so that multiplying them by a power of X doesn’t change the dis-
tribution. We then explicitly state the matrix-vector products along polynomial
multiplications in order to exploit known results on lattices.

To give a bit more details on one step of the induction, the distribution
of LWE ciphertexts is given by two elements beside its associated plaintext: a
vector that should be sampled uniformly at random, and the noise component
and both parts need to be considered by our analysis.

As in [BdMW16], we leverage the fact that the decomposition is now random-
ized with a large enough parameter in order to prove that the noise is statistically
close to a discrete Gaussian distribution as a linear combination of discrete Gaus-
sian distributions. And we add a small Gaussian variable that ensures that the
support of this discrete Gaussian is not a sublattice, i.e., all the values can be
reached by this noise and it is not restricted to a subset of values that could leak
information about the evaluation being carried on. As a side contribution, we
generalize the noise analysis from [BdMW16] to the ring setting and to arbitrary
lattices. We also extend underlying lemmata and derive underlying bounds to
handle Gaussian parameters that are not necessarily spherical by viewing prod-
ucts of polynomials in our specific case as matrix-vector products.

We also specialize the Leftover Hash Lemma to our setting, by analyzing the
structure of the ring, in order to randomize the uniform random vector part.

8

However, this requires quite large vectors, especially since we consider a power-
of-two modulus that is not prime. For example, when half of the elements are
not invertible (which is the case both with integers modulo a power of 2 and
with polynomials modulo XN + 1 modulo a power of 2), even when sampling
two uniformly random vectors a and b of size m, their inner-product can’t be
statistically close to uniform unlessm is at least super-logarithmic in the security
parameter λ. This is because with probability 1

2m , none of the elements of a is
invertible in such a ring, so the result is not invertible. The bound we derive
on the parameters with this technique was not practical. The full conditions
are given in Lemma 12 of Section 3. In TFHE, the parameters are optimized for
efficient bootstrapped operations, and in that case, the polynomial vectors could
be of size at most 6 and of size 7. So this first approach cannot be used for a
practical implementation of circuit privacy or sanitization. A possible strategy
would be to make use of an additional public key encryptions of zero as in
[DS16]. However, as this technique relies on the Leftover Hash Lemma, it requires
many encryptions of zero i.e. n log q, where n is the LWE dimension and q is the
modulus.

In Section 3.4, we propose a more efficient strategy that makes use of a
suitable public key encryption scheme for which we characterize the requisites
to reach FHE ciphertexts sanitization. In practice, the public randomizer just
consists of a single encryption of zero, which is multiplied by a fresh Gaussian
vector, and can be computed very efficiently. In this case, the sanitization prop-
erty is relaxed to its computational counterpart, relying on the hardness of the
decision RLWE problem with not necessarily binary secret key distribution. This
construction is inspired by the techniques used in the context of Functional En-
cryption in [MKMS22] where one needs to protect its data against an adversary
that can partially decrypt the ciphertext. We believe that this result is of in-
dependent interest. In particular, it can be plugged directly together with the
technique of [DS16] to improve its efficiency at the cost of relaxing the sanitiza-
tion property to hold computationally.

Organization. In Section 2, we present the notations used through the paper and
recall the preliminaries about Gaussian distributions and the TFHE scheme.
In Section 3, we present our generalization of the randomization techniques
of [BdMW16] that will be used for our result, as well as our new public key
encryption scheme that verifies the required properties. In Section 4, we present
our techniques for circuit privacy and show how to build a sanitization algorithm
for TFHE. In Section 5, we discuss the practical parameters of our implementa-
tion.

2 Preliminaries

In this section, we give notations, mathematical definitions and lemmata we will
use for our proofs.

9

2.1 Notations and definitions

In this paper, we will note λ a security parameter. The set of integers from 1 to n
will be noted [1, n] for convenience. We use lower case bold font, e.g. a, to denote
(possibly row) vectors, and upper case bold font, e.g. A, to denote matrices. We
write the left-right concatenation of matrices using |, e.g. (A | B). We will use ⊗
to denote the Kronecker product of two matrices. We let q be an integer modulus
such that q = Bℓ with B a power of 2. We denote T the set of real numbers
modulo one and the discretized torus Ẑq = {0, 1

q , · · · ,
q−1
q } is

1
qZ∩T. Note that

Ẑq is isomorphic to Zq = Z/qZ. In particular, the multiplication over Ẑq is given

by x · y = qx · y, for all x, y ∈ Ẑq.
We set B = {0, 1} and BN (X) the set of polynomials of degree at most N

with coefficients in B. We denote R = Z[X] mod XN + 1 the set of integer
polynomials of degree at most N , where N is a power-of-two. We set Rq =

Zq[X] mod XN + 1 and R̂q the set of polynomials with coefficients over Ẑq

modulo XN +1. Vectors are denoted as row vectors, and at denotes the column
vector which is the corresponding transpose vector of a. The absolute value of
an element a in T, denoted |a|, is the absolute value of its representative that is
closest to 0 (i.e., in]− 0.5, 0.5]). We also use this representative when we define
norms for vectors, matrices, and polynomials, and also use those for elements in
Ẑq. The euclidean norm of a vector a is denoted ∥a∥2 and its infinity norm is
denoted ∥a∥∞. The spectral norm of a square matrix A, i.e. its largest singular
value, is denoted ∥A∥2. In order to avoid cumbersome notations throughout the
paper, we will use the following shorthand notation to define anticyclic matrices
corresponding to polynomial multiplications modulo XN+1. We denote powX =(
1, X, . . . ,XN−1

)
∈ R1×N .

For any polynomial p =

N−1∑
i=0

piX
i ∈ R̂q, there exists a matrix P =

p0 −pN−1 −p1
p1 p0 −pN−1 . . . −p2
...

. . .
...

pN−1 p1 p0

 ∈ ẐN×N
q such that powX · P = powX ⊗ p. We

also use the following euclidean norm for polynomials in R̂q: ∥p∥2 =

√√√√N−1∑
i=0

p2i .

Gadget vector. We let g = (1/B, . . . , 1/Bℓ) ∈ R̂q
1×ℓ

be the vector of powers of
B and define the gadget matrix as G = Id+1 ⊗ gt, i.e.

G =


1/B · · · 1/Bℓ 0 · · · 0 · · · 0

0 · · · 0 1/B · · · 1/Bℓ . . .
...

...
. . .

. . . 0 0
0 · · · 0 · · · 0 1/B · · · 1/Bℓ


t

∈ R̂q
(d+1)·ℓ×(d+1)

(1)

10

2.2 Random variables

We write y← P when y is sampled from distribution P.

Variance and covariance. For a random variable X, we denote E[X] the ex-
pected value of X. The covariance of two random variables X and Y is
E [(X − E[X])(Y − E[Y])]. The covariance matrix Var (X) of a vector of random
variables X = (X1, . . . , XN) is the matrix whose coefficient on row i, column j is
the covariance of Xi and Xj . For any two real value vectors of random variables
X and Y and any real α, we have:

Var (αX+Y) = α2Var (X) + Var (Y) .

Statistical distance and min-entropy. The statistical distance between two prob-
ability distributions P and Q over a discrete domain X is defined as

∆ (P,Q) = 1
2

∑
a∈X |P(a)−Q(a)|

We say that two distributions P and Q are (statistically) close and we write
P ≈s Q if their statistical distance is negligible in λ. We say that they are
computationally close and we write P ≈c Q if no algorithm can distinguish be-
tween the two distributions in polynomial time with non-negligible probability,
i.e. for any polynomial time algorithm A, A (P) ≈s A (Q). The min-entropy of
a random variable X is defined as H∞(X) = − logmaxx Pr[X = x]. It gives a
bound on the probability of collision for two independent identically distributed
random variables X and X ′: Pr(X = X ′) ≤ 2−H∞(X)

The min-entropy is a useful tool when analyzing conditional probability distri-
bution thanks to the following property: for any random variable Y on a set Y,

H∞ (X | Y) ≥ H∞(X)− log |Y|.

2.3 Gaussian distribution over lattices

Lattices. An m-dimensional lattice is a discrete subgroup of Rm. Given k
linearly independent vectors of Rm (b1,b2, . . . ,bk), the lattice generated by
B = (b1 | b2 | . . . | bk) is of rank k and is denoted:

Λ(B) =

{
k∑

i=1

xibi ∈ Rm | xi ∈ Z

}
.

For any v ∈ Ẑd+1
q , we denote the cosets of the lattice orthogonal to the gadget

matrix G defined in equation (1) by

Λ⊥
v (G) = {u ∈ Z(d+1)·ℓ | Gtu ∈ v + Zd+1}, Λ⊥(G) = Λ⊥

0 (G)

For the sake of readability, we also extend the notation Λ⊥(G) to the set

of vectors of polynomials, by identifying a polynomial u =

N−1∑
i=0

uiX
i with the

vector of its coefficients u = (u0 | u1 | . . . | uN−1):

Λ⊥(G) = {u ∈ R(d+1)·ℓ | Gtu ∈ Rd+1}

which is a full rank lattice of dimension N(d+ 1) · ℓ.

11

Gaussian Distributions. The ellipsoidal Gaussian distribution over Rn centered
at 0 with covariance matrix Σ = StS where S ∈ Rm×n is a rank-n matrix, is
defined as:

ρS(x) = exp(−πxt(StS)−1x)

When S = sIn, the spherical Gaussian distribution ρS is also denoted ρs.

The ellipsoidal Gaussian distribution with parameter S over a countable set C

(a lattice Λ or a coset Λ+ x) is defined as ∀x ∈ C, DC,S(x) =
ρ

S(x)
ρ

S(C)
.

Lemma 1 (Preimage sampling [GPV08,Pei10,MP12,AP14]). There is

an efficient randomized decomposition function which on input v ∈ Ẑd+1
q out-

puts a sample u ∈ Z(d+1)ℓ from a distribution negligibly close to DΛ⊥
v (G),γ with

parameter γ = Õ(1).

In addition, we can reach the target distribution exactly using the sampler
from [BLP+13].

2.4 Additional lemmata

In the following, we will denote ηϵ(Λ) the smoothing parameter of a lattice
Λ. Intuitively, it is a Gaussian parameter value beyond which discrete Gaussian
distributions over Λ behaves almost as continuous Gaussian distributions, ϵ being
a bound on the statistical distance that appears in the following lemmata. The
next result gives a bound on the smoothing parameter of a generic lattice.

Lemma 2 ([MR07, Lemma 3.3]). Let Λ be any rank-m lattice and ε be any
positive real. Then

ηε (Λ) ≤ λm (Λ) ·
√

ln (2m (1 + 1/ε))

π

where λm (Λ) is the smallest R such that the ball BR centered in the origin and
with radius R contains m linearly independent vectors of Λ.

Lemma 3 ([Ban93]). For any n-dimensional lattice Λ and parameter s > 0,
the euclidean norm of a sample u from DΛ,s, ∥u∥2 ≤ s

√
n, except with probability

at most 2−2n.

Lemma 4 ([Reg05, Claim 3.8]). Let Λ ⊆ Zm be any lattice, c ∈ Rm, ε > 0
and r ≥ ηε(Λ). Then

ρr (Λ+ c) ∈ rm

det (Λ) (1± ε)

Lemma 5 ([AGHS13, Lemma 4]). For any rank-m lattice Λ, 0 < ε < 1,
vector c ∈ Rm, and rank-m matrix S ∈ Rk×m, such that σm(S) ≥ ηε (Λ), we
have

ρS (Λ+ c) ∈
[
1− ε

1 + ε
, 1

]
· ρS(Λ).

where σm(S) is the smallest singular value of S.

12

Lemma 6 (Simplified version of [Pei10, Theorem 3.1]). For any rank-m
lattice Λ, 0 < ε < 1

2 , vector c ∈ Rm, and rank-m matrix S1 ∈ Rk1×m and S2 ∈

Rk2×m. If min

(
σm

(√
S1

tS1 + S2
tS2

)
, σm

(√((
S1

tS1

)−1
+
(
S2

tS2

)−1
)−1

))
≥

ηε(Λ),
∆(y1 + y2,y

′) ≤ 8ε

where y1 ← DΛ+c,S1
,y2 ← DΛ,S2

, and y′ ← D
Λ+c,
√

S1
tS1+S2

tS2

Lemma 7 ([KLSS23, Lemma 5]). For any rank-m lattice Λ, ε > 0 and rank-

m matrix S ∈ Rk×m, σm (S) ≥ ηε (Λ) if
∥∥∥(StS)

−1
∥∥∥
2
≤ ηε (Λ)

−2
.

We use the following variant of the Leftover Hash Lemma, which can be
found in [ALS16] as a particular case of [MM11, Lemma 2.3]

Lemma 8. Let q = pk for p prime and k ≥ 1. Let m ≥ n ≥ 1. Take X a
distribution over Zm. Let D0 be the uniform distribution over Zn×m

q × Zn
q and

D1 be the distribution of (A,A ·x) ∈ Zn×m
q ×Zn

q , where A is uniformly random
in Zn×m

q and x is sampled from X . Then

∆(D0, D1) ≤
1

2

√√√√ k∑
i=1

pi·n · Pri,

where Pri is the collision probability of two independent samples from X mod pi.

2.5 Fully Homomorphic Encryption

In this paper, we focus on secret key fully homomorphic encryption for efficiency
reasons, meaning that the same key is required for encryption and decryption.
This is sufficient for many applications, but our results can be easily generalized
to the public key setting if required, by adding an encryption key which consists
of a set of encryptions of zero. The main downside becomes storing the public
key, as is usually the case in lattice-based cryptography.

Definition 1 (Fully Homomorphic Encryption). A fully homomor-
phic encryption scheme is given by four polynomial time algorithms,
(KeyGen,Encrypt,Decrypt,Eval) described as follow:

KeyGen(1λ) on input a security parameter λ outputs an evaluation key evk and
a secret key sk;

Encrypt(sk, µ) on input a secret key sk and a message µ returns a ciphertext
ct;

Decrypt(sk,ct) on input a secret key sk and a ciphertext ct returns a message
µ;

Eval(evk, f,ct1, . . . ,ctt) on input an evaluation key evk, a function f on t
inputs, and t ciphertexts ct1, . . . ,ctt returns a ciphertext ctf .

13

Let us denoteM the message space and C the ciphertext space. For µ ∈M,
we define Cµ = Decrypt(sk, ·)−1(µ), the set of all ciphertexts that decrypt to µ.

We say that an FHE scheme is correct if, for (evk, sk) sampled from
KeyGen(1λ) :

– for all messages µ ∈M: Encrypt(sk, µ) ∈ Cµ with overwhelming probability.
– for all functions f :Mt →M, (µ1, . . . , µt) ∈Mt, (ct1, . . . ,ctt) ∈ Cµ1

×. . .×
Cµt : Eval(evk, f,ct1, . . . ,ctt) ∈ Cf(µ1,...,µt) with overwhelming probability;

We say that an FHE scheme is compact if the ciphertexts are of polynomial
size. We say that an FHE has indistinguishability under chosen plaintext attacks
(IND-CPA security) or is semantically secure if no polynomial time adversary
can have a non-negligible advantage in guessing a bit β given oracle access to
the function (µ0, µ1) 7→ Encrypt(sk, µβ).

Definition 2 (Circuit Privacy). A (fully) homomorphic encryption scheme
is circuit-private for a class of functions F if the homomorphic evaluation of a
function f ∈ F on encrypted messages does not leak more information than the
evaluation result, even given the secret key, i.e. there exists a polynomial time
simulator Sim such that the following property holds for any f ∈ F :(

Sim
(
1λ, f(µ1, · · · , µt), (ct1, · · · ,ctt),evk

)
, (ct1, · · · ,ctt), sk

)
≈s (Eval (evk, f, (ct1, · · · ,ctt)) , (ct1, · · · ,ctt), sk) ,

where cti ← Encrypt(sk, µi), (evk, sk)← KeyGen(1λ).

Remark 1. We point out that we are only dealing with honest-but-curious ad-
versaries. This is captured by the fact that the ciphertexts and keys are sampled
correctly. To prevent attacks in the malicious setting, one can use the techniques
of [OPP14] to upgrade our scheme, using a maliciously circuit-private (possibly
non-compact) FHE scheme. In comparison, in the following definition of saniti-
zation, we still assume that the keys are sampled correctly, but privacy holds for
any ciphertext, even maliciously generated ones.

Sanitization of ciphertexts. Intuitively, the goal of a sanitization algorithm is to
remove all information conveyed in the ciphertext beside the message, that is, we
want to erase its memory from any previous evaluations. More formally, we ask
that a sanitization algorithm verifies two properties: it must be message-space
preserving and sanitizing. These properties are defined as follow:

Sanitize(evk,ct) on input an evaluation key evk and a ciphertext ct returns
a ciphertext cts.

We say that Sanitize is message-space preserving if for any µ ∈ M, any
ciphertext ct ∈ Cµ, Sanitize(evk,ct) ∈ Cµ with overwhelming probability. We
say that Sanitize is sanitizing if there exists a polynomial time simulator Sim
such that for any µ ∈M, any ciphertext ct ∈ Cµ, the following holds:(

Sim(1λ, µ,evk), sk
)
≈s (Sanitize(evk,ct), sk) ,

where evk is sampled honestly.

14

Remark 2. Note that given a sanitizing and message-space preserving Sanitize
algorithm, it is easy to construct an FHE scheme that is circuit-private for all
functions, by running Sanitize at the end of the evaluation procedure.

In this work, we also consider the relaxed variants of circuit-privacy and sani-
tization, where the closeness holds only computationally, instead of statistically.

2.6 Background on TFHE

The TFHE encryption scheme [CGGI20] encrypts messages in a subsetM of T,
using LWE. For simplicity, we will takeM = {0, 1

2} in the following.
A LWE encryption of a message µ ∈ M is a vector (a | a · s+ µ+ e) ∈

Ẑ1×(n+1)
q where a is uniform over Ẑ1×n

q , e is sampled from χϑ — a noise distri-
bution with variance ϑ. The secret key s is sampled from a uniform distribution
over Bn. In order to decrypt (a | b), one computes an approximation of µ defined
as the phase of ciphertext (a | b), φs (a | b) = b− a · s, and rounds it to nearest
element inM.

The first step of the bootstrapping is to deterministically map ciphertexts

from Ẑ1×(n+1)
q to Zn+1

2N . This incurs some rounding errors that could change
the result of decryption on ill-formed ciphertexts. We thus take this additional
rounding step into account when defining Cµ in order to capture sanitization and
message-space preserving even for maliciously generated ciphertexts. If param-
eters are set carefully, this has no impact on ciphertexts obtained in an honest
way. For µ ∈ {0, 1

2}, we say that

Cµ =

{
(a | b) ∈ Ẑ1×(n+1)

q

∣∣∣∣∣
∣∣∣∣∣⌊2Nb⌉ −

n∑
i=1

si⌊2Nai⌉ − µ

∣∣∣∣∣ ≤ 1

4

}
.

The error of a ciphertext c ∈ Cµ is defined as φs (c)−µ, and its variance Var (c)
as the variance of the error of c or equivalently the variance of φs (c).

The semantic security of this encryption scheme relies on the hardness of the
decision LWE problem [Reg05], or equivalently of its search counterpart:

– The decision LWE problem, parameterized by n and χϑ, asks to distinguish

the uniform distribution over Ẑ1×(n+1)
q from the distribution of fresh LWE

encryptions of 0 using the same secret key s sampled uniformly at random
in Bn.

– The search LWE problem asks to find s from polynomially many fresh LWE
encryptions of 0 using the same secret key s sampled uniformly at random
in Bn.

Our sanitization algorithm is based on the bootstrapping procedure of TFHE,
which is an optimized version of FHEW bootstrapping [DM15]. The idea behind
FHEW-based bootstrapping is to compute a ciphertext of Xφs(c). In order to
achieve this, polynomials are encrypted using two distinct schemes: RLWE — a
variant of LWE using ring elements — and RGSW.

15

A RLWE encryption of a message µ ∈ R̂q is a vector (a | a · s̃+ µ+ e) ∈
R̂q

1×(d+1)
, where a is uniformly random in R̂q

d
, e has coefficients sampled from

χϑ — ϑ is the noise variance. The secret key s̃ is sampled uniformly at random

over R̂q
d
. We note RLWEs̃(µ) the set of random variables (a | b) in R̂q

1×(d+1)

whose phases φs̃ (a | b) = b − a · s̃ of center µ, and RLWEs̃,ϑ(µ) a fresh RLWE
encryption of µ under secret key s̃ with noise variance ϑ. For c ∈ RLWEs̃(µ), we
define its error Err (c) = φs̃ (c) − µ, and we note Var (c) the covariance matrix
of its coefficients.

The semantic security of this encryption scheme relies on the hardness as-
sumption of the RLWE decision problem, the ring variant of the LWE decision
problem [LPR10].

A RGSW encryption of a message µ ∈ R is a matrix Z+µG in R̂q
(d+1)·ℓ×(d+1)

,
where each of the (d + 1) · ℓ rows of Z is a RLWE encryption of 0. The secret
key is the same as for RLWE and the matrix G is defined as in Section 2.1. We
note RGSWs̃,ϑ(µ) a fresh RGSW encryption of µ under secret key s̃ with noise
variance ϑ. More visually, we have:

RGSWs̃,ϑ(µ) =


RLWEs̃,ϑ(0)
RLWEs̃,ϑ(0)

...
RLWEs̃,ϑ(0)

+ µG = (A | As̃+ e) + µG

where A is sampled uniformly at random in R̂q
(d+1)·ℓ×d

, and each coefficient
appearing in e is sampled from χϑ.

Deterministic decomposition and external product: Any v ∈ R̂q
1×(d+1)

can
be uniquely and deterministically decomposed into a small vector G−1(v) ∈
R1×(d+1)·ℓ whose coefficients are integers in [−B/2, B/2[and such that G−1(v) ·
G = v. The full details are provided in supplementary materials Section A.1.
This allows to multiply a RGSW ciphertext C and a RLWE ciphertext c:

C⊡ c = G−1(c) ·C

This external product allows homomorphic evaluations of multiplexers with con-
venient noise growth c0+C⊡ (c1−c0) for a RGSW encryption C of the selector
bit, and RLWE encryptions of the two inputs c0 and c1.

TFHE Bootstrapping: The bootstrapping procedure is a common tool to all
known FHE schemes which allows to manage the noise growth during homo-
morphic evaluations. More formally, the bootstrapping takes as input an LWE
ciphertext of some message µ and a bootstrapping key bk and outputs an LWE
ciphertext of the same message µ, whose noise is below some bound controlled
via the choice of parameters. The TFHE bootstrapping procedure can be decom-
posed in four steps, that are illustrated in Figure 1. The four steps are described
below, with their type signatures explicitly defined.

16

– Initialization: n-LWE→ Zn+1
2N × R̂q.

Given an LWE ciphertext (a | b) ∈ Ẑn+1
q as input, we define b̄ = ⌊2Nb⌉ and

āi = ⌊2Nai⌉ ∈ Z2N for each i ∈ [n]. Note that the cumulated error induced
by rounding over Z2N is taken into account in the definition of Cµ. The first

step also initializes a test vector, testv
def
= v(X) ∈ R̂q, v(X) =

∑N−1
i=0 viX

i

and defines a noiseless RLWE encryption (0, testv). The test vector coeffi-
cients are chosen such that, after the BlindRotate, one can retrieve an LWE
ciphertext of the input message as the constant coefficient of the RLWE
ciphertext.

– BlindRotate: Zn+1
2N × R̂q × RGSWn → RLWE

Given testv ∈ R̂q, n coefficients (ā1, · · · , ān, b̄) ∈ Zn+1
2N , and a bootstrapping

key bki = RGSWs̃,ϑBK
(si) for i ∈ [n], the BlindRotate algorithm returns a

RLWE encryption of testv ·Xφ̄ where φ̄ = b̄−
∑n

i=1 siāi.
– Extract: RLWE→ dN -LWE
By interpreting a RLWE ciphertext of message µ ∈ R̂q under s̃ as a vector of
d+1 coefficients and taking into account the negacyclicity of the test vector
polynomial i.e. vi+N = −vi, Extract extracts an LWE ciphertext under key
K = KeyExtract(s̃) of dimension dN of the constant term of µ, µ(0).

– KeySwitch: dN -LWE× (n-LWE)dNt → n-LWE
Given a dN -LWE ciphertext containing a message µ under key K, and a
keyswitching key which consists of n-LWE encryptions of the bits of key K
multiplied by the first t powers of 1

Bks
under secret key s ∈ Bn, KeySwitch

outputs an n-LWE ciphertext of the same message µ under secret key s.

The security of TFHE thus relies on both the decision LWE problem as well
as the decision RLWE problem, but also on a circular assumption that states
having LWE and RLWE encryptions of each other’s secret key has no impact on
security.

3 Randomization over rings

In this section we discuss the randomization of RLWE ciphertexts, an essential
tool for reaching circuit privacy or sanitization properties. These results are of
independent interest and can be used directly in other works, such as [DS16]. We
present two solutions: the first one reaches the desired properties in a statistical
sense, i.e. with security against unbounded adversaries. However, the parameters
are unrealistic for an efficient implementation. The second one yields a very effi-
cient randomization technique, but only holds under the hardness of the decision
RLWE problem.

3.1 Gaussian Lemma over rings

We first start with the following lemma on discrete Gaussians, which is a gener-
alization of the result of [BdMW16] to the ring setting, and to arbitrary lattices
and Gaussian distributions that may not be spherical. It will be used both for
proving results over Λ⊥(G), and over 1

qR.

17

Lemma 9. Let ε > 0, Λ1 ⊂ Rd1 be a rank-d1N lattice, S1 ∈ Rk1×d1N be a rank-

d1N matrix, S2 ∈ Rk2×N be a rank-N matrix. For any e = (e1, . . . , ed1) ∈ R̂q
d1

and any c ∈ R̂q
d1
, let Ei be the matrix such that powX · Ei = powX ⊗ ei and

E = (E0 | E1 | . . . | Ed1
), then

if min(σd1N (S1), σN (qS2)) ≥ (1 + q ∥e∥2)λd1N (Λ) ·
√

ln(2d1N(1+1/ε))
π , we have

∆
(
etx+ y, e′

)
< 2ε

where x← DΛ1+c,S1
, y ← D 1

qR,S2
, and e′ ← D 1

qR,Γ , with

Γ =
√
St
2S2 +ESt

1S1Et.

Proof. In order to be able to use known results on lattices, let us consider
the naive coefficient embedding of the polynomials. That is, we consider c =
(c1,0, c1,1, . . . , c1,N−1, c2,0, . . . , cd1,N−1) ∈ 1

qZ
d1N . We define the following nota-

tions in order to better explain the intuition behind the proof:

– Ê =
(
E

∣∣∣ 1
q IN

)
∈ 1

qZ
N×N(d1+1);

– β =

(
S1 0
0 qS2

)
∈ Rk1+k2×N(d1+1);

– ĉ = (c, 0, . . . 0) ∈ 1
qZ

N(d1+1);

– Λ̂ = Λ1 × ZN ⊂ ZN(d1+1).

We want to show that:

∆

(
ÊDΛ̂+ĉ,β ,D 1

qZN ,
√

ÊβtβÊt

)
≤ 2ε

Both distributions have the same support : 1
qZ

N . Let us analyze the proba-

bility mass assigned to each element z of 1
qZ

N . We have(
ÊDΛ̂+ĉ,β

)
(z) =

ρβ(Lz)∑
ρβ(Lz′)

, with Lz =
{
v ∈ Λ̂+ ĉ | Êv = z

}
,

where the sum ranges over all cosets Lz′ of L0, when z′ ranges over 1
qZ

N .

The idea is to show that ρβ(Lz) is close to being proportional to ρ√
ÊβtβÊt

(z).

ρ√
ÊβtβÊt

(z) = ρ(uz), with uz = βÊt
(
ÊβtβÊt

)−1

z = β
(
βtβ

)−1
βtuz ∈ Rk1+k2 .

For any t ∈ Lz, ρβ(t) = ρ(ut), with ut = β
(
βtβ

)−1
t ∈ Rk1+k2 .

We have ut
zut = ut

zuz, so uz is orthogonal to ut − uz, which gives the identity

ρ(ut) = ρ(uz) · ρ(ut − uz)

ρβ(t) = ρ√
ÊβtβÊt

(z) · ρβ
(
t− βtuz

)
ρβ(Lz) = ρ√

ÊβtβÊt
(z) · ρβ

(
L0 + t− βtuz

)

18

We have that L0 is the sublattice of Λ̂ that is orthogonal to Ê, with Λ̂ of
dimension N(d1 + 1) and Ê of rank N , so L0 is of dimension d1N .
Let b1, . . . ,bd1N be a set of d1N independent vectors of Λ1 of norm bounded
by λd1N (Λ).
Then, (b1,−qEb1), . . . , (bd1N ,−qEbd1N), is a set of d1N independent vectors
of L0 of norm bounded by (1 + q ∥e∥2)λd1N (Λ). Using lemma 2 gives

ηε (L0) ≤ (1 + q ∥e∥2)λd1N (Λ) ·
√

ln (2d1N (1 + 1/ε))

π
.

And by lemma 5, ρβ (L0 + t− βtuz) ∈
[
1−ε
1+ε , 1

]
· ρβ(L0).

Putting all back together, this implies that the statistical distance between
ÊDΛ̂+ĉ,β and D 1

qZN ,
√

ÊβtβÊt
is at most 1− 1−ε

1+ε ≤ 2ε. ⊓⊔

3.2 Randomized decomposition

We now present one of the essential tools for randomizing RLWE ciphertexts: the
randomized decomposition that allows us to randomize the noise of a ciphertext.

Notice that since the gadget matrix G only has constant coefficients, the
product of G with a vector of polynomials u ∈ R(d+1)·ℓ operates independently
on each entry of u. We can thus extend the sampling function from Lemma 1 to
vectors of polynomials.

Definition 3 (Randomized Decomposition). We define the randomized de-

composition function G−1
r (·) : R̂q

1×(d+1)
→ R1×(d+1)·ℓ by using N copies of the

randomized decomposition over Ẑd+1
q given by Lemma 1 with parameter r, i.e.,

we decompose each coefficient independently.
We also define the randomized external product ⊡r, which is defined as the ex-
ternal product ⊡ from Section 2.6, replacing G−1 (·) by the randomized decom-
position G−1

r (·).

In the following, we denote ϑ⊡ the variance of a Gaussian of parameter r.

We have ϑ⊡ = r2

2πq2 . We give the full details of the randomized decomposition
in supplementary materials Section A.2. The following lemmata give bounds on
the noise propagation when using the randomized external product, which is an
adaptation of [CGGI20, Corollary 3.14].

Lemma 10 (Variance of randomized External Product). For any µ ∈ R̂q,
c ∈ RLWEs̃(µ) with ∥Var(c)∥2 = ϑc, and C = RGSWs̃,ϑC

(0). Then C ⊡r c ∈
RLWEs̃(0) and

∥Var (C⊡r c)∥2 ≤ 2πq2ϑ⊡(d+ 1)ℓNϑC

except with probability at most 2−2(d+1)·ℓ·N .

Proof. Let C = (A | As̃+ e), with A ∈ R̂q
(d+1)·ℓ×d

and e ∈ R̂q
(d+1)·ℓ

. We have

C⊡r c = G−1
r (c) ·C

=
(
G−1

r (c) ·A
∣∣ G−1

r (c) ·As̃+G−1
r (c) · e

)

19

So Err (C⊡r c) = G−1
r (c) · e. Using Lemma 3, the euclidean norm of G−1

r (c) is
bounded by r·

√
(d+ 1) · ℓ ·N except with probability at most 2−2(d+1)·ℓ·N . Since

all coefficients of e are independent, we conclude using properties on covariance
matrices. ⊓⊔

Lemma 11 (Variance of randomized Multiplexer). For any β, µ0, µ1 ∈
R̂q, c0 ∈ RLWEs̃(µ0) with ∥Var(c0)∥2 = ϑc0

, c1 ∈ RLWEs̃(µ1) with ∥Var(c1)∥2 =
ϑc1

, and C = RGSWs̃,ϑC
(β). Then c0 +C⊡r (c1 − c0) ∈ RLWEs̃(µβ) and

∥Var (c0 +C⊡r (c1 − c0))∥2 ≤ ϑcβ
+ 2πq2ϑ⊡(d+ 1)ℓNϑC

except with probability at most 2−2(d+1)·ℓ·N .

Proof. Let C = Z+ βG, with Z = RGSWs̃,ϑC
(0). We have

c0 +C⊡r (c1 − c0) = c0 +G−1
r (c1 − c0) · (Z+ βG)

= c0 +G−1
r (c1 − c0) · Z+ β (c1 − c0)

= c1β + Z⊡r (c1 − c0)

We conclude using Lemma 10. ⊓⊔

The following corollary instantiates lemma 9 with the notations of our ran-
domized decomposition.

Corollary 1. For any e = (e1, . . . , e(d+1)·ℓ) ∈ R̂q
(d+1)·ℓ

and any c ∈
R̂q

(d+1)·ℓ·N
, if min(ϑ⊡, ϑy) ≥ (1q + ∥e∥2)2

(
1 +B2

)
· ln(2·(d+1)·ℓ·N ·(1+1/ε))

2π2 , we
have:

∆
(
etD

Λ⊥(G)+c,q
√

2πϑ⊡
+D 1

qR,
√

2πϑy
,D 1

qR,Γ

)
≤ 2ε,

with Γ =

√√√√ϑy

2π
IN +

ϑ⊡

2π
q2

(d+1)·ℓ∑
i=1

Et
iEi.

3.3 Leftover Hash Lemma over rings

The following lemma shows that combining the randomized decomposition with
an additional small Gaussian noise is enough to randomize RLWE ciphertexts as
long as the parameters are large enough. It combines lemma 9 and a variant of
the Leftover Hash Lemma adapted to R̂q and its particular structure. We give
a detailed proof in Appendix B.

Lemma 12. Let ϵℓ, ϵ, r > 0. Under the following conditions:

– ℓ > 1
d+1

(
log (Nk−1)(1+ε)

4ϵ2ℓ(1−ε)
+ d

)
– r ≥

√
(2 + 2B2) · ln(2N(d+1)·ℓ(1+1/ε))

π ,

20

for any e ∈ R̂q
(d+1)·ℓ

, y ∈ R̂q, c ∈ R̂q
(d+1)·ℓ

:

∆
(
(A,xt ·A, etx+ y), (A,ut, etx+ y)

)
< εℓ

where A is uniform over R̂q
(d+1)·ℓ×d

, x← DΛ⊥(G)+c,r, u is uniform over R̂q
d
.

3.4 Using a sanitization key

In case the bounds required by Lemma 12 cannot be met, we propose a second
solution: adding a public key encryption of zero to the ciphertext. This tech-
nique allows for practical schemes, but the randomization guarantees rely on the
hardness of the decision RLWE problem.
We note that appending this sanitization key pk to the evaluation key gives more
power to an attacker. However, semantic security still relies on the decision LWE
and decision variant over rings, together with the circular security assumption.
We just assume more RLWE samples at hand.
In order for our result to hold, we require the following properties on the public
encryption scheme to be used, and present a particular construction that satis-
fies those conditions. Intuitively, we require that the ciphertext looks uniform to
an adversary, even knowing the secret key, except for the noise and the message.

Lemma 13 (Sanitization key). There exist two algorithms PkGen and PkEnc
such that:

PkGen(1λ, s̃): on input a security parameter λ, and a RLWE secret key s̃, PkGen
outputs a public key pk.

PkEnc(pk): for any RLWE secret key s̃, the output of PkEnc satisfies:

(pk,PkEnc(pk)) ≈c (pk, (u | us̃+ eu))

where u is uniform over Rd
q , eu has a variance bounded by some value

ϑpk with overwhelming probability and pk is honestly generated from
PkGen(1λ, s̃).

The distribution of eu is not important for the sanitization property but it
has to remain small for correctness.

One possible solution that reaches the statistical closeness would be to use
a public key a la Regev, with pk being a set of ω ((d+ 1)N log(q)) encryptions
of 0, and PkEnc (pk) being the sum of a random subset of those. However, the
size of the public key and the computational complexity to generate it will be
prohibitive in practice. Instead, we leverage the RLWE decisional assumption
to reduce the size of pk and the time to generate PkEnc (pk) to almost negli-
gible. We believe that the analysis of the distribution of ciphertexts produced
by PkEnc (pk), its generalization to higher dimension and its application are of
independent interest. For example, the public key can be used as a randomizer
in combination with the soak-and-spin technique of [DS16] to obtain a better
key size, efficiency and noise management trade-offs. More details are given in
Section 5.1.

21

Construction 1 We exhibit a concrete example of a construction satisfying the
property of Lemma 13.

– PkGen(1λ, s̃): on input the security parameter λ, and a secret key s̃ ∈ Rd,

pk = (A | As̃+ e) ∈ R̂q
d′×d+1

,

where A is uniform over R̂q
d′×d

, and each coefficient of e ∈ R̂q
d′

has coef-
ficients sampled from χϑe , for a noise variance ϑe.

– PkEnc(pk): on input public key pk, returns

r · pk+ (e′ | e′′) ∈ R̂q
1×d+1

,

where r← DR1×d′ ,q
√
2πϑr

, e′ ← D 1
qR

1×d,
√

2πϑe′
and e′′ ← D 1

qR,
√

2πϑe′′

Lemma 14. Under the hardness assumption of the RLWE decision problem with

noise variance ϑ, where 1
ϑ = 2

(
min

(
1
ϑr
, 1
ϑe′

)
+ 1

ϑe′′

(
∥qe∥22 + ∥s̃∥

2
2

))
as long as

the following condition is met:

ϑ ≥ 1

π
ηε

(
1

q
Z(d′+d)N

)2

Construction 1 satisfies the property of Lemma 13, with

ϑpk = ϑe′′ + q2ϑr ∥e∥22 + ∥s̃∥
2
2 ϑe′ .

To prove Lemma 14, we will use the following result, which is an adapta-
tion of [KLSS23, Lemma 7] to our notations. We provide a detailed proof in
Appendix C for the sake of completeness.

Lemma 15. For any s̃ ∈ Rd, e ∈ R̂q
d′

, let S̃i be the matrix such that powX ·S̃i =
powX ⊗ s̃i, and Ei be the matrix such that powX · Ei = powX ⊗ ei. We define

Γ =
(
qE1

t
∣∣∣ . . .

∣∣∣ qEd′
t
∣∣∣ − S̃t

1

∣∣∣ . . .
∣∣∣ − S̃t

d

)
. Note that powX · Γ = powX ⊗

(qet | − s̃t). We note

Σ =

(
2πϑrId′N 0

0 2πϑe′IdN

)
, Σv =

(
Σ−1 +

1

2πϑe′′
Γ tΓ

)−1

.

∆
(
(v, re− e′s̃+ e′′) , (v0 + v∗, re− e′s̃+ e′′)

)
= 0,

where r ← DR1×d′ ,q
√
2πϑr

, e′ ← D 1
qR

1×d,
√

2πϑe′
, e′′ ← D 1

qR,
√

2πϑe′′
, v =(1

q r
t

e′t

)
, v0 = 1

2πϑe′′
Σv

(
qe
−s̃

)
(re− e′s̃+ e′′) and v∗ ← D−v0+

1
qR

d′+d,
√
Σv

.

We are now ready to prove 14:

22

Proof. For any secret key s̃ ∈ Rd, and any e ∈ R̂q
d′

, let S̃i (resp. Ei) be the

matrix such that powX · S̃i = powX ⊗ s̃i (resp. powX ·Ei = powX ⊗ ei). We set

Γ =
(
qE1

t
∣∣∣. . .∣∣∣qEd′

t
∣∣∣−S̃t

1

∣∣∣. . .∣∣∣−S̃t
d

)
, Σ−1

v =
1

2πϑe′′
Γ tΓ+

1

2π

(
ϑrId′N 0

0 ϑe′IdN

)−1

.

Lemma 15 gives us:

(r, e′, re− e′s̃+ e′′) =
(
r0 + r∗, e′0 + e′

∗
, eu

)
, (2)

with eu = re− e′s̃+ e′′,

v0 =

(1
q r0

t

e′0
t

)
=

1

2πϑe′′
Σv

(
qe

−s̃

)
eu, v∗ ← D−v0+

1
qR

d′+d,
√
Σv

Next, we can split v∗ into v† + v̂, with v† ← DRd′+d,
√
2πϑ and v̂ ←

D
−v0+

1
qR

d′+d,
√

Σ̂
, with Σ̂ = Σv − 2πϑI(d′+d)N , by lemma 6, since :

Σ̂ is positive definite because σ(d′+d)N (Σv) is at least(
min

(
1

2πϑr
,

1

2πϑe′

)
+

1

2πϑe′′

(
∥qe∥22 + ∥s̃∥

2
2

))−1

≥ 4πϑ > 2πϑ, and

∥∥∥(2πϑI(d′+d)N

)−1
+ Σ̂−1

∥∥∥
2
=

1

2πϑ
+σ(d′+d)N

(
Σ̂
)−1

≤ 1

πϑ
≤ ηε

(
1

q
Z(d′+d)N

)−2

which implies that σ(d′+d)N

(((
2πϑI(d′+d)N

)−1
+ Σ̂−1

)−1
)
≥ ηε

(
1
qZ

(d′+d)N
)
.

We can then conclude by invoking the hardness of the decision RLWE prob-
lem. To sum up, we have the following hybrid argument

pk,PkEnc(pk) = pk, (rA+ e′ | (r(As̃+ e) + e′′)
= pk, (rA+ e′ | rAs̃+ re+ e′′)

= pk,
(
(r0 + r∗)A+ e′0 + e′

∗ | (by 2)(
(r0 + r∗)As̃+ e′0 + e′

∗)
s̃+ eu

)
≈s pk,

(
(r0 + r̂)A+ e′0 + ê′ + r†A+ e′

† | (by Lemma 6)(
(r0 + r̂)A+ e′0 + ê′ + r†A+ e′

†
)
s̃+ eu

)
≈c pk,

(
(r0 + r̂)A+ e′0 + ê′ + u | (RLWE)(
(r0 + r̂)A+ e′0 + ê′ + u

)
s̃+ eu

)
= pk, (u | us̃+ eu) ,

The bound on ϑpk is obtained by bounding the variance of re+ e′′ − e′s̃, using
Lemma 3 to bound ∥r∥2. ⊓⊔

23

3.5 Randomization of RLWE ciphertexts

Our procedure to scale and randomize a RLWE ciphertext consists of a ran-
domized decomposition, and the addition of a randomizer rerand. In order to
clearly expose the two strategies, we define:

– rerand = (0, y) and ≈ denotes ≈s, if ℓ >
1

d+1

(
log (Nk−1)(1+ε)

4ϵ2ℓ(1−ε)
+ d

)
;

– rerand = (0, y) + PkEnc(pk) and ≈ denotes ≈c otherwise,

with y ← D 1
qR,
√

2πϑ⊡
and pk honestly generated from PkGen(1λ, s̃).

The following lemma states that this randomization technique brings any
encryption of zero close to a canonical distribution.

Lemma 16. For any s̃ ∈ R̂q
d
, any e = (e1, . . . , e(d+1)·ℓ) ∈ R̂q

(d+1)·ℓ
, and any

v ∈ R̂q
d+1

, we have:

rerand+
(
A | As̃+ e

)
⊡r v ≈ rerand+

(
A | As̃+ e

)
⊡r 0,

where A is uniform over R̂q
(d+1)·ℓ×d

.

Proof. Assuming rerand = (0, y), with y ← D 1
qR,
√

2πϑ⊡
, we have:

rerand+
(
A | As̃+ e

)
⊡r v =

(
A⊡r v | (A⊡r v)s̃+ e⊡r v + y

)
≈s

(
u | u · s̃+ e⊡r v + y

)
by Lemma 12

≈s (u | u · s̃+ e′) by Corollary 1,

where u is uniform over R̂q
1×d

and e′ ← D 1
qR,Γ for some Γ given by Corollary 1.

Assuming rerand = (0, y) + PkEnc(pk), with y ← D 1
qR,
√

2πϑ⊡
and pk

honestly generated from PkGen(1λ, s̃), by Lemma 13, we have:

rerand+
(
A | As̃+ e

)
⊡r v ≈c

(
u+A⊡r v | (u+A⊡r v)s̃+ e⊡r v + y + eu

)
=

(
u | us̃+ e⊡r v + y + eu

)
≈s

(
u | us̃+ e′ + eu

)
by Corollary 1,

where u is uniform over R̂q
1×d

, the bound on the variance of eu is given by
Lemma 14, and e′ ← D 1

qR,Γ for some Γ given by Corollary 1.
⊓⊔

4 New sanitization algorithm

In this section, we first present our circuit private version of the BlindRotate
algorithm, which will be used as a building block for our sanitization procedure.
We then introduce the new Sanitize procedure and show that it verifies the
desired properties.

24

4.1 Circuit Private blind rotation

In order to achieve circuit privacy for the family of BlindRotate algorithms with
hardwired inputs (ā, b̄), the main loop of TFHE BlindRotate (line 3 of Algo-
rithm 1, which is a multiplexer operation) is replaced by its randomized coun-
terpart. We show by induction that adding one fresh randomizer at the end of
the computation is enough to hide all information about (ā, b̄) except for the
result.

Algorithm 1 Private computation of a RLWE encryption of testv · Xφ̄ where
(ā, b̄) ∈ Zn+1

2N , and φ̄ = b̄−
∑n

i=1 siāi

Input: (ā, b̄) ∈ Zn+1
2N , a bootstrapping key bk = (bki)i, where bki is a RGSW encryp-

tion of si for i ∈ [1, n], a fresh randomizer rerand.
Output: CP-BlindRotatetestv

(
(ā, b̄),bk, pk

)
: a RLWE encryption of testv · Xφ̄ where

φ̄ = b̄ −
∑n

i=1 siāi and whose distribution is statistically close to a distribution
independent from (ā, b̄), except for the message part.

1: ACC = (0, . . . , 0, testv ·X−b̄) ∈ R̂q
d+1

,
2: for i = 1 to n− 1

3: ACC+ = bki ⊡r ((X
āi − 1)ACC)

4: ACC+ = bkn ⊡r ((X
ān − 1)ACC) + rerand

5: Return ACC

Lemma 17. For any testv ∈ R̂q, the encryption scheme of Section 2.6 is circuit
private for the class of functions

(
CP-BlindRotatetestv

(
(ā, b̄), ·,rerand

))
(ā,b̄)

, if

rerand is a fresh randomizer as defined in Section 3.5.

Proof. For 0 ≤ t ≤ n, let us denote ACCt the value of the accumulator ACC after
t iterations of the loop, and ACC∗ the value of ACC after adding the randomizer
rerand. For 1 ≤ t ≤ n, after the t-th iteration we have:

ACCt =bkt ⊡r

((
X āt − 1

)
ACCt−1

)
+ ACCt−1

=(bkt − stG+ stG)⊡r

((
X āt − 1

)
ACCt−1

)
+ ACCt−1

=(bkt − stG)⊡r

((
X āt − 1

)
ACCt−1

)
+
(
1 +

(
X āt − 1

)
st
)
ACCt−1

Since 1 + (X āt − 1)st = X āt·st , we have,

ACCt =X ātstACCt−1 + (bkt − stG)⊡r

((
X āt − 1

)
ACCt−1

)
(3)

For the sake of readability, we define the following shorthand notations for

given ā and s:X≥t denotesX raised to the power

n∑
i=t

siāi. We prove by induction

25

that for t from n down to 0, the following holds:

ACC∗ ≈X≥t+1ACCt +

n∑
j=t+1

(bkj − sjG)⊡r 0+ rerand (4)

For t = n, we have ACC∗ = ACCn + rerand.

Now assume that (4) holds at step 1 ≤ t ≤ n, we show that the statement
still holds at step t− 1. Using (3), we have:

ACC∗ ≈ X≥t+1ACCt +

n∑
j=t+1

(bkj − sjG)⊡r 0+ rerand

= X≥t+1
(
X ātstACCt−1 + (bkt − stG)⊡r

((
X āt − 1

)
ACCt−1

))
+

n∑
j=t+1

(bkj − sjG)⊡r 0+ rerand

For any v ∈ R̂q
d+1

, XiΛ⊥(G) = Λ⊥(G), and
∥∥X−i · v

∥∥
2
= ∥v∥2, because

they have the same coefficients modulo X2N − 1 in absolute value. So for any
parameter r ∈ R, XiG−1

r (v) = G−1
r (Xi · v). This implies that

X≥t+1 ((bkt − stG)⊡r v) = (bkt − stG)⊡r (X
≥t+1 · v)

We conclude using Lemma 16.
Finally, when t = 0, X−b̄ ·X≥0 = Xφ̄ and we have:

ACC∗ =
(
0, testv ·Xφ̄

)
+

n∑
j=1

(bkj − sjG)⊡r 0+ rerand,

which is independent of ā and b̄, except for the result testv ·Xφ̄. The following
simulator Simcp (testv ·Xφ̄,bk,rerand) thus correctly simulates the output of
CP-BlindRotatetestv

(
(ā, b̄),bk,rerand

)
:

CP-BlindRotatetestv ((0, 0),bk,rerand) +
(
0, testv ·

(
Xφ̄ − 1

))
.⊓⊔

Lemma 18 (CP-BlindRotate noise propagation). Let bk = (bki)i be a boot-

strapping key where bki = RGSWs̃,ϑbk
(si) for i ∈ [1, n]. For any testv ∈ R̂q,

any (ā, b̄) ∈ Zn+1
2N , and c = CP-BlindRotatetestv

(
(ā, b̄),bk,pk

)
, we have that

c ∈ RLWEs̃(testv ·Xφ̄) where φ̄ = b̄−
∑n

i=1 siāi, and

∥Var (c)∥2 ≤ ϑ⊡ + n2πq2ϑ⊡(d+ 1)ℓNϑbk + ϑpk

Proof. The bound comes from the fact that Algorithm 1 performs n homomor-
phic multiplexers, each adding at most 2πq2ϑ⊡(d + 1)ℓNϑbk to the variance of
the accumulator using Lemma 11, and one Gaussian noise element y of variance
ϑ⊡ and public key of variance ϑpk. ⊓⊔

26

4.2 Sanitizing algorithm

We are now ready to present our sanitization algorithm. It is basically the
Bootstrap algorithm from TFHE, with the test vector testv chosen to evaluate
the identity function, and where BlindRotate is replaced with CP-BlindRotate. It
is described more formally in Algorithm 2.

Algorithm 2 Sanitizing algorithm for LWE encryption (a, b) of µ

Input: (a, b) an LWE encryption of µ, a bootstrapping key bk = (bki)i, where bki is
a RGSW encryption of si for i ∈ [1, n], a fresh randomizer rerand, a keyswitching
key ks, and two fixed messages µ0(= 0), µ1(=

1
2
).

Output: an LWE encryption (a′, b′) of µ0 if (a, b) ∈ C0 and µ1 if (a, b) ∈ C 1
2
.

1: µ̄ = µ0+µ1
2

and µ̄′ = µ0 − µ̄

2: testv = (1 +X + · · ·+XN−1) ·X−N
2 · µ̄′

3: b̄ = ⌊2Nb⌉ and āi = ⌊2Nai⌉
4: c′ = CP-BlindRotatetestv

(
(ā, b̄),bk,rerand

)
5: c = (0, µ̄) + Extract(c′)
6: Return KeySwitch(ks, c)

Lemma 19. Algorithm 2 is sanitizing for the encryption scheme described in
Section 2.6.

Proof. The simulator Sims(µ,bk,rerand,ks) follows the same steps as the
Sanitize algorithm except it computes c′ = Simcp(testv ·Xµ,bk,rerand), using
the simulator Simcp of Lemma 17 instead of calling CP-BlindRotate.
To better understand why our statement stands, even though the input passed
to Simcp does not seem to match the expected result from CP-BlindRotate, we
need to further analyze Extract which is recalled in details in the supplementary
materials, Section A.3 for the sake of completeness.
On input a RLWE ciphertext (a | b), Extract trims the polynomial b to only its
first coefficient b(0), and rearranges the coefficients of a(X−1) into a vector.
Recall that the output of Simcp(φ̄) has the following distribution:

CP-BlindRotatetestv ((0, 0),bk,pk) +
(
0, testv ·Xφ̄

)
.

As long as testv ·Xφ̄ = testv ·Xµ, ∆ (Extract (Simcp(φ̄)) ,Extract (Simcp(µ))) = 0.
This is the case when |⌊2Nb⌉ −

∑n
i=1 si⌊2Nai⌉ − µ| ≤ 1

4 , i.e. (a, b) ∈ Cµ. ⊓⊔

Lemma 20 (Sanitization noise propagation). If the parameters are set cor-
rectly, Algorithm 2 is message-space preserving. More precisely, we have that the
variance of its output has a norm bounded by

ϑ⊡ + n2πq2ϑ⊡(d+ 1)ℓNϑbk + ϑpk + d ·N
(
B−2t
ks

4
+ t · B

2
ks

4
ϑks

)
Proof. This results combines Lemma 18 and Lemma 21. ⊓⊔

27

B ℓ ϑbk (s̃ and e) ϑr = ϑe′ ϑe′′ ϑ⊡

q = 235 32 7 2−67.6 2−65.6 2−49.5 2−39.4

Table 1. Parameters and secret keys and ciphertexts noise variances taking a polyno-
mial of degree N = 1024.

5 Parameters, security and experimental results

In this section, we proceed to the selection of parameters for the CP-BlindRotate
given in Algorithm 1.

Circuit Privacy: The parameters are selected with respect to a careful trade-off
between efficiency and security. We summarize in Table 1 the variance parame-
ters we took with respect to the following bounds:

– RGSW ciphertexts: the bootstrapping key bk is made of n RGSW ciphertexts
with B = 32, ℓ = 7 and d = 1, with secret and noise variance ϑbk = 2−67.6.

– Corollary 1 gives a lower bound on the Gaussian parameter forG−1
r (). Taking

the statistical advantage ε = 2−80, we obtain ϑ⊡ = 2−39.4 where we bound
the norm of e in the condition of Corollary 1 using Lemma 3.

– PkEnc(pk) - public key: with d′ = d = 1 and ϑe = ϑ = ϑbk to rely on the
same hardness assumption as the RGSW ciphertexts, setting ϑr = ϑe′ =

4ϑbk and ϑe′′ = 4ϑbk

(
∥s̃∥22 + q2 ∥e∥22

)
ensures minimal noise growth ϑpk

while verifying the conditions of lemma 14. We again bound the norms using
lemma 3.

– LWE ciphertexts: the keyswitching key ks is made of n LWE ciphertexts of
dimension n = 538 and noise variance 2−27.2, base decomposition Bks = 4
and precision t = 7.

Correctness: In order to decrypt correctly, the amplitude of the error needs to be
< 1

4 (rather than 1
16 for the gate bootstrapping) with overwhelming probability.

With the parameters derived from Lemma 20, we obtain an LWE ciphertext
with error standard deviation σ ≈ 0.024 , which corresponds to a probability of
decryption failure below erf(1

4
√
2
σ) ≈ 2−82.7.

For LWE, RLWE and RGSW ciphertexts we use, the estimation based on the
last commit of the Lattice Estimator [APS15] gives 100 bits of security.

Implementation: As a proof of concept of our technique, we provide a C im-
plementation compatible with Windows, Linux, and MacOS and which is acces-
sible from https://github.com/fhe-extension/fhe-sanitize. We ran mul-
tiple experiments using the parameters described previously and provide the
results in Table 2. The randomness is sampled using the CSPRNG of windows
or directly from /dev/urandom. We use the library FFTW 3 for our Fourier

3 from https://www.fftw.org/.

https://github.com/fhe-extension/fhe-sanitize
https://www.fftw.org/

28

Bootstrap Sanitize Sanitize PkEnc(pk)
- w/ pre-computation w/o pre-computation -

0.42 s 0.52 s 7.5 s 1 ms

Table 2. Timings of our concrete implementation. The experiments were run on a
virtual machine of a 2.20GHz Intel Core i7-8750H laptop with timings given in seconds.
The first column reports the timing of our implementation of the standard TFHE
bootstrapping, the second one reports the timing of our sanitization algorithm using
pre-computed discrete Gaussian samples for G−1

r (·), the third one reports the timings
including the timings of Gaussian sampling computation.

transformation. We implement the sampler for G−1
r (·) using the Gaussian sam-

pler from [GPV08,MP12] and implement the inversion sampling for the base
sampler from [MW17]. Since our goal is to evaluate the overhead of our saniti-
zation technique, we compare the non-sanitizing bootstrapping (first column of
Table 2) and the sanitizing bootstrapping (remaining columns of Table 2) with
the same parameters on the same laptop, with the same level of optimizations4.

We found that generating small Gaussian samples with our base sampler
accounts for 80% of the total execution time of our implementation. We have
decided to implement precomputation for these samples to assess the efficiency
of our strategy with access to specialized hardware for Gaussian sampling, or to
determine if these samples could be computed in parallel or before the online
sanitization phase. In that case, sanitizing a FHE ciphertext with our strategy
takes 0.52s, which is a small overhead compared to 0.42s for a non-sanitizing
bootstrapping.
The following discussion shows that using the same set of parameters as ours,
about 5 to 6 cycles of the soak-and-spin strategy from [DS16] would be needed
to reach the same level of security. In order to derive concrete timings for this
comparison, one could sum the timings from column 1 and 4 of Table 2 (and
multiply it by the number of cycles required i.e. ≈ 5.7) but note that this should
take into account that we use our optimized public key randomizer instead of
the randomizer from [DS16].

5.1 Comparison with [DS16] sanitization strategy

In this section, we evaluate the cost of sanitizing a TFHE ciphertext using
the strategy proposed in [DS16] with our parameter set. As in the analysis
from [DS16]’s strategy applied to FHEW, proposed in [DS16, Section 4.3], our
analysis estimates the cost of the [DS16] approach without considering the total
probability of decryption failure. Note that such a choice would play in [DS16]
strategy’s advantage in this comparison.

Recall that [DS16] sanitization algorithm consists of the iterations of two
steps: (1) a refresh step which, given an LWE ciphertext as input, brings the

4 This explains our choice of implementing TFHE from scratch rather than using an
existing implementation of the bootstrapping.

29

noise down to a low level; (2) a randomization step which randomizes a cipher-
text by adding a linear combination of encryptions of 0 (which is analogous to
our PkEnc procedure) and the addition of a uniform noise to decrease the sta-
tistical distance between two hypothetical ciphertexts.
As done in the [DS16] analysis applied to FHEW, for maximal efficiency, this
randomization step is done right after the Extract but before switching to a lower
dimension, so that the noise in the encryptions of 0 can be chosen smaller since
we are using a larger dimension. The number of cycles in [DS16] strategy varies
depending on the FHE scheme and the parameters. This number is computed
from the magnitude of the noise of the current ciphertext compared to the mag-
nitude of the noise introduced by rerand.
Using our parameters, the first BlindRotate step outputs a LWE sample of stan-
dard deviation around 2−17.4. In order to randomize the left part of the LWE
ciphertext output, either we add a linear combination of ω ((d+ 1)N log(q)) fresh
encryptions of zero (after extraction and before keyswitching in order to have
a lower noise propagation); each adds a noise of standard deviation 2−33.8. An
other more efficient option would be to use our public randomizer which adds a
noise of standard deviation of about 2−24. We obtain that the noise introduced
by the randomization step is negligible compared to the noise introduced by the
BlindRotate step.
We first derive the noise induced by one partial cycle, and deduce the amount of
soaking noise that can be added without compromising correctness. We obtain
that the final standard deviation after one invocation of a partial cycle - which
includes a non circuit-private blindrotation step, a randomization of the left part
(which induces a negligible noise) and a keyswitching step - leads to a standard
deviation of around 0.015. With probability similar than ours, the LWE sample
has an error of amplitude less than 5

32 .

n-LWE RLWE N-LWE n-LWE

bk, pk ks

CP-BlindRotate Extract KeySwitch

n-LWE RLWE N-LWE N-LWE n-LWE

bk pk ks

BlindRotate Extract Rerand KeySwitch

× ≈ 5

Fig. 2. High-level overview of our sanitization strategy (bottom part) and [DS16] strat-
egy (top part).

30

Thus, the soaking noise amplitude B may be chosen up to around 3
32 ≈ 2−3.4

with almost the same decryption failure probability as ours. So one cycle reaches

a statistical distance between LWE ciphertexts of 2−17.4

2−3.4 = 2−14. In order to
reach the same statistical distance as ours i.e. 2−80 , we would need around
between 5 and 6 cycles. It can also be noted that our approach requires only
one bootstrapping, reducing the probability of decryption failure obtained at
the end. Figure 2 gives a high-level overview of both strategies to highlight the
differences between them: assuming we perform the same randomization step,
we perform them at each step of the BlindRotate algorithm, whereas the soak-
and-spin strategy applies it only once per iteration of the bootstrapping, but
requires between 5 to 6 such iterations to reach the same level of circuit privacy
security.

References

AGHS13. Shweta Agrawal, Craig Gentry, Shai Halevi, and Amit Sahai. Discrete
Gaussian leftover hash lemma over infinite domains. In Kazue Sako and
Palash Sarkar, editors, ASIACRYPT 2013, Part I, volume 8269 of LNCS,
pages 97–116. Springer, Heidelberg, December 2013.

ALS16. Shweta Agrawal, Benôıt Libert, and Damien Stehlé. Fully secure functional
encryption for inner products, from standard assumptions. In Matthew
Robshaw and Jonathan Katz, editors, CRYPTO 2016, Part III, volume
9816 of LNCS, pages 333–362. Springer, Heidelberg, August 2016.

AP14. Jacob Alperin-Sheriff and Chris Peikert. Faster bootstrapping with
polynomial error. In Juan A. Garay and Rosario Gennaro, editors,
CRYPTO 2014, Part I, volume 8616 of LNCS, pages 297–314. Springer,
Heidelberg, August 2014.

AP20. Marc Abboud and Thomas Prest. Cryptographic divergences: New tech-
niques and new applications. In Clemente Galdi and Vladimir Kolesnikov,
editors, SCN 20, volume 12238 of LNCS, pages 492–511. Springer, Heidel-
berg, September 2020.

APS15. Martin R. Albrecht, Rachel Player, and Sam Scott. On the concrete hard-
ness of learning with errors. Journal of Mathematical Cryptology. Volume
9, Issue 3, Pages 169–203, ISSN (Online) 1862-2984, October 2015.

ASY22. Shweta Agrawal, Damien Stehlé, and Anshu Yadav. Round-optimal
lattice-based threshold signatures, revisited. In Mikolaj Bojanczyk,
Emanuela Merelli, and David P. Woodruff, editors, ICALP 2022, volume
229 of LIPIcs, pages 8:1–8:20. Schloss Dagstuhl, July 2022.

Ban93. Wojciech Banaszczyk. New bounds in some transference theorems in the
geometry of numbers. Annals of Mathematics, 296(4):625–635, 1993.

BDF18. Guillaume Bonnoron, Léo Ducas, and Max Fillinger. Large FHE gates
from tensored homomorphic accumulator. In Antoine Joux, Abderrah-
mane Nitaj, and Tajjeeddine Rachidi, editors, AFRICACRYPT 18, vol-
ume 10831 of LNCS, pages 217–251. Springer, Heidelberg, May 2018.

BdMW16. Florian Bourse, Rafaël del Pino, Michele Minelli, and Hoeteck Wee. FHE
circuit privacy almost for free. In Matthew Robshaw and Jonathan Katz,
editors, CRYPTO 2016, Part II, volume 9815 of LNCS, pages 62–89.
Springer, Heidelberg, August 2016.

31

BGG+18. Dan Boneh, Rosario Gennaro, Steven Goldfeder, Aayush Jain, Sam Kim,
Peter M. R. Rasmussen, and Amit Sahai. Threshold cryptosystems from
threshold fully homomorphic encryption. In Hovav Shacham and Alexan-
dra Boldyreva, editors, CRYPTO 2018, Part I, volume 10991 of LNCS,
pages 565–596. Springer, Heidelberg, August 2018.

BGV12. Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. (Leveled) fully
homomorphic encryption without bootstrapping. In Shafi Goldwasser,
editor, ITCS 2012, pages 309–325. ACM, January 2012.

BLP+13. Zvika Brakerski, Adeline Langlois, Chris Peikert, Oded Regev, and Damien
Stehlé. Classical hardness of learning with errors. In Dan Boneh, Tim
Roughgarden, and Joan Feigenbaum, editors, 45th ACM STOC, pages
575–584. ACM Press, June 2013.

Bra12. Zvika Brakerski. Fully homomorphic encryption without modulus switch-
ing from classical GapSVP. In Reihaneh Safavi-Naini and Ran Canetti,
editors, CRYPTO 2012, volume 7417 of LNCS, pages 868–886. Springer,
Heidelberg, August 2012.

BV14. Zvika Brakerski and Vinod Vaikuntanathan. Lattice-based fhe as secure
as pke. In Moni Naor, editor, ITCS, pages 1–12. ACM, 2014.

CGGI16. Ilaria Chillotti, Nicolas Gama, Mariya Georgieva, and Malika Izabachène.
Fast fully homomorphic encryption library over the torus, 2016. https:

//github.com/tfhe/tfhe.

CGGI20. Ilaria Chillotti, Nicolas Gama, Mariya Georgieva, and Malika Izabachène.
TFHE: Fast fully homomorphic encryption over the torus. Journal of
Cryptology, 33(1):34–91, January 2020.

CHK+18. Jung Hee Cheon, Kyoohyung Han, Andrey Kim, Miran Kim, and Yong-
soo Song. Bootstrapping for approximate homomorphic encryption. In
Jesper Buus Nielsen and Vincent Rijmen, editors, EUROCRYPT 2018,
Part I, volume 10820 of LNCS, pages 360–384. Springer, Heidelberg,
April / May 2018.

CIM19. Sergiu Carpov, Malika Izabachène, and Victor Mollimard. New techniques
for multi-value input homomorphic evaluation and applications. In Mit-
suru Matsui, editor, CT-RSA 2019, volume 11405 of LNCS, pages 106–126.
Springer, Heidelberg, March 2019.

CKKS17. Jung Hee Cheon, Andrey Kim, Miran Kim, and Yong Soo Song. Homo-
morphic encryption for arithmetic of approximate numbers. In Tsuyoshi
Takagi and Thomas Peyrin, editors, ASIACRYPT 2017, Part I, volume
10624 of LNCS, pages 409–437. Springer, Heidelberg, December 2017.

CLOT21. Ilaria Chillotti, Damien Ligier, Jean-Baptiste Orfila, and Samuel Tap. Im-
proved programmable bootstrapping with larger precision and efficient
arithmetic circuits for TFHE. In Asiacrypt, LNCS 13092, pages 670–699.
Spinger-Verlag, 2021.

CLR17. Hao Chen, Kim Laine, and Peter Rindal. Fast private set intersection from
homomorphic encryption. In Bhavani M. Thuraisingham, David Evans,
Tal Malkin, and Dongyan Xu, editors, ACM CCS 2017, pages 1243–1255.
ACM Press, October / November 2017.

CMdG+21. Kelong Cong, Radames Cruz Moreno, Mariana Botelho da Gama, Wei
Dai, Ilia Iliashenko, Kim Laine, and Michael Rosenberg. Labeled psi from
homomorphic encryption with reduced computation and communication.
In CCS 2021, pages 1135–1150. ACM, 2021.

https://github.com/tfhe/tfhe
https://github.com/tfhe/tfhe

32

CZ17. Long Chen and Zhenfeng Zhang. Bootstrapping fully homomorphic
encryption with ring plaintexts within polynomial noise. In Tatsuaki
Okamoto, Yong Yu, Man Ho Au, and Yannan Li, editors, ProvSec 2017,
volume 10592 of LNCS, pages 285–304. Springer, Heidelberg, October
2017.

DGKS21. Dana Dachman-Soled, Huijing Gong, Mukul Kulkarni, and Aria Shahverdi.
Towards a ring analogue of the leftover hash lemma. J. Math. Cryptol.,
15(1):87–110, 2021.

DM15. Léo Ducas and Daniele Micciancio. FHEW: Bootstrapping homomorphic
encryption in less than a second. In Elisabeth Oswald and Marc Fischlin,
editors, EUROCRYPT 2015, Part I, volume 9056 of LNCS, pages 617–640.
Springer, Heidelberg, April 2015.

DS16. Léo Ducas and Damien Stehlé. Sanitization of FHE ciphertexts. In Marc
Fischlin and Jean-Sébastien Coron, editors, EUROCRYPT 2016, Part I,
volume 9665 of LNCS, pages 294–310. Springer, Heidelberg, May 2016.

FV12. Junfeng Fan and Frederik Vercauteren. Somewhat practical fully homo-
morphic encryption. Cryptology ePrint Archive, Report 2012/144, 2012.

GBA21. Antonio Guimarães, Edson Borin, and Diego F. Aranha. Revisiting the
functional bootstrap in TFHE. IACR TCHES, 2021(2):229–253, 2021.
https://tches.iacr.org/index.php/TCHES/article/view/8793.

Gen09. Craig Gentry. Fully homomorphic encryption using ideal lattices. In
Michael Mitzenmacher, editor, 41st ACM STOC, pages 169–178. ACM
Press, May / June 2009.

GHV10. Craig Gentry, Shai Halevi, and Vinod Vaikuntanathan. i-Hop homomor-
phic encryption and rerandomizable Yao circuits. In Tal Rabin, editor,
CRYPTO 2010, volume 6223 of LNCS, pages 155–172. Springer, Heidel-
berg, August 2010.

GPL23. Antonio Guimarães, Hilder V. L. Pereira, and Barry Van Leeuwen.
Amortized bootstrapping revisited: Simpler, asymptotically-faster, imple-
mented. In Advances in Cryptology - ASIACRYPT 2023 - 29th Interna-
tional Conference on the Theory and Application of Cryptology and In-
formation Security, Guangzhou, China, December 4-8, 2023, Proceedings,
Part VI, volume 14443 of Lecture Notes in Computer Science, pages 3–35.
Springer, 2023.

GPV08. Craig Gentry, Chris Peikert, and Vinod Vaikuntanathan. Trapdoors for
hard lattices and new cryptographic constructions. In Richard E. Lad-
ner and Cynthia Dwork, editors, 40th ACM STOC, pages 197–206. ACM
Press, May 2008.

GSW13. Craig Gentry, Amit Sahai, and Brent Waters. Homomorphic encryp-
tion from learning with errors: Conceptually-simpler, asymptotically-
faster, attribute-based. In Ran Canetti and Juan A. Garay, editors,
CRYPTO 2013, Part I, volume 8042 of LNCS, pages 75–92. Springer,
Heidelberg, August 2013.

KLSS23. Duhyeong Kim, Dongwon Lee, Jinyeong Seo, and Yongsoo Song. Toward
practical lattice-based proof of knowledge from hint-mlwe. In 43rd Annual
International Cryptology Conference, CRYPTO 2023, Santa Barbara, CA,
USA, August 20-24, 2023, Proceedings, Part V, volume 14085 of Lecture
Notes in Computer Science, pages 549–580. Springer, 2023.

Klu22. Kamil Kluczniak. Circuit privacy for FHEW/TFHE-style fully homomor-
phic encryption in practice. Cryptology ePrint Archive, Report 2022/1459,
2022. https://eprint.iacr.org/2022/1459.

https://tches.iacr.org/index.php/TCHES/article/view/8793
https://eprint.iacr.org/2022/1459

33

LPR10. Vadim Lyubashevsky, Chris Peikert, and Oded Regev. On ideal lattices
and learning with errors over rings. In Henri Gilbert, editor, EURO-
CRYPT 2010, volume 6110 of LNCS, pages 1–23. Springer, Heidelberg,
May / June 2010.

LPR13. Vadim Lyubashevsky, Chris Peikert, and Oded Regev. A toolkit for ring-
LWE cryptography. In Thomas Johansson and Phong Q. Nguyen, editors,
EUROCRYPT 2013, volume 7881 of LNCS, pages 35–54. Springer, Hei-
delberg, May 2013.

LW20. Feng-Hao Liu and Zhedong Wang. Rounding in the rings. In Daniele Mic-
ciancio and Thomas Ristenpart, editors, CRYPTO 2020, Part II, volume
12171 of LNCS, pages 296–326. Springer, Heidelberg, August 2020.

LY23. KangHoon Lee and Ji Won Yoon. Discretization error reduction for high
precision torus fully homomorphic encryption. In Alexandra Boldyreva
and Vladimir Kolesnikov, editors, PKC 2023, Part II, volume 13941 of
LNCS, pages 33–62. Springer, Heidelberg, May 2023.

MKMS22. Jose Maria Bermudo Mera, Angshuman Karmakar, Tilen Marc, and
Azam Soleimanian. Efficient lattice-based inner-product functional en-
cryption. In Goichiro Hanaoka, Junji Shikata, and Yohei Watanabe, edi-
tors, PKC 2022, Part II, volume 13178 of LNCS, pages 163–193. Springer,
Heidelberg, March 2022.

MM11. Daniele Micciancio and Petros Mol. Pseudorandom knapsacks and the
sample complexity of LWE search-to-decision reductions. In Phillip Ro-
gaway, editor, CRYPTO 2011, volume 6841 of LNCS, pages 465–484.
Springer, Heidelberg, August 2011.

MP12. Daniele Micciancio and Chris Peikert. Trapdoors for lattices: Simpler,
tighter, faster, smaller. In David Pointcheval and Thomas Johansson, edi-
tors, EUROCRYPT 2012, volume 7237 of LNCS, pages 700–718. Springer,
Heidelberg, April 2012.

MR07. Daniele Micciancio and Oded Regev. Worst-case to average-case reduc-
tions based on gaussian measures. SIAM J. Comput., 37(1):267–302, 2007.

MS18. Daniele Micciancio and Jessica Sorrell. Ring packing and amortized
FHEW bootstrapping. In Ioannis Chatzigiannakis, Christos Kaklamanis,
Dániel Marx, and Donald Sannella, editors, ICALP 2018, volume 107 of
LIPIcs, pages 100:1–100:14. Schloss Dagstuhl, July 2018.

MW17. Daniele Micciancio and Michael Walter. Gaussian sampling over the in-
tegers: Efficient, generic, constant-time. In Jonathan Katz and Hovav
Shacham, editors, CRYPTO 2017, Part II, volume 10402 of LNCS, pages
455–485. Springer, Heidelberg, August 2017.

OPP14. Rafail Ostrovsky, Anat Paskin-Cherniavsky, and Beni Paskin-
Cherniavsky. Maliciously circuit-private FHE. In Juan A. Garay
and Rosario Gennaro, editors, CRYPTO 2014, Part I, volume 8616 of
LNCS, pages 536–553. Springer, Heidelberg, August 2014.

Pei10. Chris Peikert. An efficient and parallel Gaussian sampler for lattices. In
Tal Rabin, editor, CRYPTO 2010, volume 6223 of LNCS, pages 80–97.
Springer, Heidelberg, August 2010.

Reg05. Oded Regev. On lattices, learning with errors, random linear codes, and
cryptography. In Harold N. Gabow and Ronald Fagin, editors, 37th ACM
STOC, pages 84–93. ACM Press, May 2005.

Zam22. Zama. TFHE-rs: A Pure Rust Implementation of the TFHE Scheme for
Boolean and Integer Arithmetics Over Encrypted Data, 2022. https:

//github.com/zama-ai/tfhe-rs.

https://github.com/zama-ai/tfhe-rs
https://github.com/zama-ai/tfhe-rs

34

Supplementary material

A TFHE Bootstrapping building blocks

A.1 G−1(·) computation

In Algorithm 3, we recall the G−1 algorithm that decomposes vectors in

R̂q
1×(d+1)

into vectors in R1×(d+1)·ℓ.

Algorithm 3 Gadget Decomposition

Input: A vector v = (v1 | . . . | vd+1) ∈ R̂q
1×(d+1)

Output: A vector x such that x ·G = v and ∥x∥∞ ≤ B/2

1: For each vi choose the unique representative

N−1∑
j=0

vi,jX
j , with vi,j ∈ Ẑq. Note that

vi,j is an exact multiple of 1
Bℓ .

2: Decompose each vi,j uniquely as

ℓ∑
p=1

vi,j,p
1

Bp
where each vi,j,p ∈ [−B/2, B/2[

3: for i = 1 to d+ 1
4: for p = 1 to ℓ

5: xi,p =

N−1∑
j=0

vi,j,pX
j ∈ R

6: Return (x1,1 | . . . | xd+1,ℓ)

A.2 G−1
r (·) computation

In Algorithm 4, we recall the G−1
r algorithm that decomposes vectors in

R̂q
1×(d+1)

into vectors in R1×(d+1)·ℓ with spherical Gaussian distribution on
a coset of Λ⊥(G).

A.3 Extract

In Algorithm 5, we recall the Extract algorithm that transforms RLWE ciphertexts
into N -LWE ciphertexts.

A.4 KeySwitch

In Algorithm 6, we recall the keyswitching procedure of the bootstrapping, and
the analysis of noise growth is provided in Lemma 21

35

Algorithm 4 Randomized Gadget Decomposition

Input: A vector v = (v1 | . . . | vd+1) ∈ R̂q
1×(d+1)

Output: A vector x from a spherical Gaussian distribution with parameter r such
that x ·G = v

1: For each vi choose the unique representative

N−1∑
j=0

vi,jX
j , with vi,j ∈ Ẑq. Note that

vi,j is an exact multiple of 1
Bℓ .

2: Set vj = (v1,j | . . . | vd+1,j)
3: For each j sample xj = (x1,j , . . . , x(d+1)·ℓ,j) ∈ R(d+1)·ℓ from Λ⊥

vj
(G) with parame-

ter r
4: for i = 1 to (d+ 1)ℓ

5: xi =

N−1∑
j=0

xi,jX
j ∈ R

6: Return
(
x1

∣∣ . . .
∣∣ x(d+1)·ℓ

)

Algorithm 5 Extracting an N -LWE ciphertext of the constant term from a
RLWE ciphertext

Input: c = (a, b) ∈ R̂q
d+1

.
Output: Extract (c): an N -LWE encryption of φs̃(c).

1: b′ = b(0).
2: for i = 1 to d

3: Set
(
a′
iN+j

)
j∈[0,N−1]

such that

N−1∑
j=0

a′
iN+jX

j = ai(
1

X
).

4: Return c′ = (a′, b′).

Lemma 21 (Algorithm 6 noise propagation). Let c ∈ ẐdN+1
q , ks =

(ksi,j)i,j, where ksi,j is an n-LWE encryption of Ki
1

Bj
ks

for i ∈ [1, dN] and j ∈
[1, t] with noise variance ϑks. Algorithm 6 outputs a sample c′ ∈ n-LWEs(φK(c))
such that:

Var (Err(c′)) ≤ Var (Err(c)) + d
tNB2

ks

4
ϑks +

∥K∥2

4B2t
ks

(5)

Proof. During the first step of the algorithm, each rounding induces an error of
at most 1

2Bt
ks
, hence the resulting variance for dN roundings.

Each part of the keyswitching key is multiplied by a coefficient between −Bks

2

and Bks

2 , hence the resulting variance for combining dtN of them.

36

Algorithm 6 keyswitching from secret key K of dimension dN to secret key s
of dimension n

Input: c = (a, b) ∈ ẐdN+1
q , a keyswitching key ks = (ksi,j)i,j , where ksi,j is an n-LWE

encryption of Ki
1

B
j
ks

for i ∈ [1, dN] and j ∈ [1, t].

Output: KeySwitch (c,ks): an n-LWE encryption of φK(c).

1: for i = 1 to dN
2: Round ai to the nearest element ⌊ai⌉Bt

ks
in 1

Bt
ks
Z.

3: Set (ai,j)j∈[1,t] such that

t∑
j=1

ai,j
1

Bj
ks

= ⌊ai⌉Bt
ks

(Decompose ⌊ai⌉Bt
ks

in basis

Bks).

4: Return c′ = (0, b)−
∑
i,j

ai,jksi,j where the sum ranges over [1, dN]× [1, t].

Given (a, b) a LWE ciphertext under secret key K in input, we have:

φs(c
′) = φs(0, b)−

dN∑
i=1

t∑
j=1

ai,jφs(KSi,j)

= b−
dN∑
i=1

t∑
j=1

ai,j

(
B−j
ks Ki + Err(KSi,j)

)

= b−
dN∑
i=1

ai,jB
−j
ks Ki +

dN∑
i=1

t∑
j=1

ai,jErr(KSi,j)

= b−
dN∑
i=1

⌊ai⌉Bt
ks
Ki −

dN∑
i=1

t∑
j=1

ai,jErr(KSi,j)

= b−
dN∑
i=1

aiKi −
dN∑
i=1

t∑
j=1

ai,jErr(KSi,j) +
dN∑
i=1

(ai − ⌊ai⌉Bt
ks
)Ki

= φK(a, b)−
dN∑
i=1

t∑
j=1

ai,jErr(KSi,j) +
dN∑
i=1

(ai − ⌊ai⌉Bt
ks
)Ki

The LWE ciphertext output by the keyswitching procedure has variance:

Var (Err(c′)) ≤ Var (Err(c)) +
tdNB2

ks

4
ϑks +

dN∑
i=1

K2
i

4B2t
ks

≤ Var (Err(c)) +
tdNB2

ks

4
ϑks +

∥K∥22
4B2t

ks

⊓⊔

37

B Proof of Lemma 12

Structure of Rq. First, let us discuss the structure of Rq, where q = 2k. Since
XN + 1 = (X + 1)N mod 2, the ideals of Rq are generated by X + 1 and 2, so
any ideal of Rq can be written as 2i(X +1)jRq, for some i ∈ [0, k− 1] and some
j ∈ [0, N − 1].
Moreover, we have that in Rq, (X + 1)N = 2Q(X), with Q an invertible poly-
nomial in Rq. This follows from the following three facts: First, (X + 1)N =

1 + 2X
N
2 + XN mod 4; this can be easily shown by induction (recall that

N is a power of 2). Second, for any polynomial P ∈ Rq, P is invertible

if and only if P mod (X + 1) is odd. If d is odd, ((X + 1)C(X) + d)
−1

=

1
d

∑N−1
i=0

(
− (X+1)C(X)

d

)i

. Third and last, the parity of P mod (X + 1) is the

same as the parity of the sum of the coefficients of P .

Combining all of these, we have that X
N
2 is invertible, so (X+1)NRq = 2Rq,

which gives us the following alternative definition for the ideals of Rq: any ideal
of Rq is of the form It = (X + 1)tRq for some t ∈ [0, Nk − 1].

We also have that any polynomial P ∈ Rq can be uniquely described as

P =

Nk−1∑
i=0

pi(X + 1)i, with pi ∈ {0, 1}.

In the following, we will use P mod (X + 1)j to denote the truncated sum
j−1∑
i=0

pi(X + 1)i, so P mod (X + 1) is actually P mod 2 mod (X + 1).

We also define the gcd of two elements of Rq in the following natural way:

gcd(P, P ′) is the smallest t in [0, Nk − 1] such that P, P ′ ∈ It

Proof. Our situation does not match the usual setting to use the Leftover Hash
Lemma over a ring structure, since we are dealing with rings, modulo a power
of 2. Thankfully, we can adapt the proof of [MM11, Lemma 2.3]. For any dis-
tribution Z over a set Z, we have the following relation between the statistical
distance between Z and the uniform distribution over Z, UZ , with the collision
probability of Z, Col(Z).

∆(Z,UZ) ≤
1

2

√
|Z| · Col(Z)− 1.

We are interested in the distance to uniformity of (A,xt ·A) conditioned on
etx + y, so following their arguments, we have this distance to uniformity
bounded by

1

2

√
qNdPr

(
(xt − x′t) ·A = 0

)

38

with A uniform and x,x′ ← DΛ⊥(G)+c,r conditioned on etx + y. Following
their techniques, we can condition on the gcd of x and x′, and obtain: for any

distribution X on R
(d+1)·ℓ
q , if gcd(x,x′) = t, Pr

(
(xt − x′t) ·A = 0

)
= 1

|It|d , so

∆
(
(A,xt ·A), (A,ut)

)
≤ 1

2

√√√√Nk−1∑
t=1

1

2d(Nk−t)
· Col(Xt)

where x← X and Xt = X mod (X+1)t. To conclude the proof, we just need to
analyze the collision probability of the distribution x mod (X+1)t conditioned
on etx + y, for any t ∈ {1, Nk − 1}, where x ← DΛ⊥(G)+c,r, which we bound
by its maximal value, when t = 1. In order to bound this quantity, we use the
min-entropy of x mod (X + 1). Since etx+ y only has qNd possibilities, so the
min-entropy of x mod (X + 1) conditioned on etx + y is greater than H∞(x
mod (X+1))−Nkd. For any v ∈

(
Λ⊥(G) + c

)
mod (X+1), if the conditions

of Lemma 4 are met, we have:

(
DΛ⊥(G)+c,r mod (X + 1)

)
(v) =

ρr(v + (X + 1)Λ⊥(G))

ρr(Λ⊥(G) + c)

≤ (1 + ε)r(d+1)·ℓ det(Λ⊥(G))

(1− ε)r(d+1)·ℓ det((X + 1)Λ⊥(G))

Let us analyze the lattice (X + 1)Λ⊥(G) more precisely. We define J ∈ ZN×N

the matrix such that powX · J = X + 1, and B0 ∈ Zℓ×ℓ the basis of the lattice
{u ∈ 1

qZ
ℓ | gu ∈ Z}, that is:

J =



1 0 . . . 0 −1

1 1 0
. . . 0

0
. . .

. . .
. . .

...
...
. . . 1 1 0

0 . . . 0 1 1


, B0 =


B −1

. . .
. . .

. . . −1
B



Note that while Λ⊥(G) is generated by the matrix Id⊗B0⊗IN , (X+1)Λ⊥(G)
is generated by Id⊗B0⊗J. Since det (J) = 2, we have that det

(
(x+ 1)Λ⊥(G)

)
=

2(d+1)·ℓ det
(
Λ⊥(G)

)
. This gives us the following bound on the min-entropy of

x← X1:

H∞
(
x
∣∣ etx+ y

)
≥ (d+ 1) · ℓ+ log

(
1− ε

1 + ε

)
−Nkd

Fixing ℓ large enough will ensure that the collision probability is below any
chosen value, allowing a choice of parameters that effectively yields sanitization
without the need for adding fresh encryptions of zero. The last condition that has
to be met is that the Gaussian parameter r has to be bigger than the smoothing
parameters of both Λ⊥(G) and (X + 1)Λ⊥(G). We conclude our discussion by

39

showing an upper bound on ηε
(
(X + 1)Λ⊥(G)

)
, the bigger one. The columns of

Id ⊗B0 ⊗ J all have their norm bounded by
√
2 + 2B2.

Using Lemma 2, it is sufficient to have r ≥
√

(2 + 2B2) · ln(2N(d+1)·ℓ(1+1/ε))
π .

Let εℓ > 0 such that:

1

2

√√√√Nk−1∑
t=1

1

2d(Nk−1)
· Col(Xt) < εℓ

Since the maximal min-entropy of x ∈ Xt conditioned on etx+y is obtained
for t = 1, it suffices to have:

(Nk − 1)2−d(Nk−1) · 2−H∞(x | etx+y) < (2εℓ)
2,

which gives ℓ > 1
d+1

(
log (Nk−1)(1+ε)

4ϵ2ℓ(1−ε)
+ d

)
.

⊓⊔

C Detailed adaptation of [KLSS23, Lemma 7]

We give the proof of Lemma 15.

Proof. For given y ∈ R̂q and x ∈ 1
qR

d′+d, the probability mass assigned to

(v0 + x, y), with v0 = 1
2πϑe′′

Σv

(
qe
−s̃

)
y by the first distribution is

D 1
qZ(d′+d)N ,

√
Σ (v0 + x) · D 1

qZN ,
√

2πϑe′′
(y − Γ (v0 + x))

∝ exp

(
−π

(
(v0 + x)

t
Σ−1 (v0 + x) +

1

2πϑe′′
(y − Γ (v0 + x))

t
(y − Γ (v0 + x))

))
=exp

(
−π

(
(v0 + x)

t
Σ−1

v (v0 + x) +
1

2πϑe′′

(
yty − (v0 + x)

t
Γ ty − ytΓ (v0 + x)

)))
=exp

(
−π

(
(v0 + x)

t
Σ−1

v (v0 + x) +
1

2πϑe′′
yty − (v0 + x)

t
Σv

−1v0 − v0
tΣv

−1 (v0 + x)

))
=exp

(
−π

(
xtΣ−1

v x− v0
tΣ−1

v v0 +
1

2πϑe′′
yty

))
So, for any given y, the mass given to v0 +x is proportional to ρ√Σv

. Hence
the result.

	Plug-and-play sanitization for TFHE
	Introduction
	Previous works
	Our contributions

	Preliminaries
	Notations and definitions
	Random variables
	Gaussian distribution over lattices
	Additional lemmata
	Fully Homomorphic Encryption
	Background on TFHE

	Randomization over rings
	Gaussian Lemma over rings
	Randomized decomposition
	Leftover Hash Lemma over rings
	Using a sanitization key
	Randomization of RLWE ciphertexts

	New sanitization algorithm
	Circuit Private blind rotation
	Sanitizing algorithm

	Parameters, security and experimental results
	Comparison with EC:DucSte16 sanitization strategy

	TFHE Bootstrapping building blocks
	G-1() computation
	G-1r() computation
	Extract
	KeySwitch

	Proof of Lemma 12
	Detailed adaptation of [Lemma 7]C:KLSS23

