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Abstract. The lattice-based CRYSTALS-Dilithium signature scheme
has been selected for standardization by the NIST. As part of the se-
lection process, a large number of implementations for platforms like
x86, ARM Cortex-M4, or – on the hardware side – Xilinx Artix-7 have
been presented and discussed by experts. While software implementa-
tions have been subject to side-channel analysis with several attacks
being published, an analysis of Dilithium hardware implementations and
their peculiarities has not taken place. With this work, we aim to fill
this gap, presenting an analysis of vulnerable operations and practically
showing a successful profiled Simple Power Analysis (SPA) and a Cor-
relation Power Analysis (CPA) on a recent hardware implementation by
Beckwith et al. Our SPA attack requires 700 000 profiling traces and
targets the first Number-Theoretic Transform (NTT) stage. After finish-
ing profiling, we can identify pairs of coefficients with 1 101 traces. The
full CPA attack finds secret coefficients with as low as 66 000 traces. In
response, we present specific countermeasures and show that they effec-
tively prevent both attacks.

1 Introduction

Quantum computers pose a real threat to communication security. Currently
deployed symmetric schemes can be adapted easily to withstand attacks even
from large-scale quantum computers. In contrast, asymmetric schemes like RSA
and ECC-based schemes can be broken without significant effort through Shor’s
algorithms [25]. Although it is not yet clear whether this threat will become a
reality in the near future, it is undisputed that action needs to be taken early
to prevent prospective damage. Therefore, the United States National Institute
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for Standards and Technology (NIST) launched standardization efforts for post-
quantum secure schemes for Key Encapsulation Mechanisms (KEMs) and digital
signatures in 2017.

After three rounds, with several schemes being dropped due to cryptanalytic
attacks, lacking efficiency, or missing confidence in their security assumptions,
NIST announced the schemes to be standardized in July 2022. As KEM, Kyber
has been selected, while four other schemes proceed to a fourth round and are
considered for standardization in the future. For signature schemes, Dilithium,
Falcon, and SPHINCS+ are being standardized, with Dilithium being the primary
choice.

Dilithium has undergone a thorough cryptanalytic process and guarantees se-
curity against Strong Existential Unforgeability under Chosen Message Attacks
(SUF-CMA). Besides, concrete implementations can be attacked by employ-
ing side-channel analysis, exploiting dependencies of physical characteristics on
secret values during computation. Several side-channel analyses have been pub-
lished on Dilithium software implementations in this context. In [22], Ravi et al.
show a signature forgery attack enabled by finding a partial secret key using a
power analysis. This work is extended to fault attacks on pqm4 implementations
of Dilithium and qTesla [23], also presenting a mitigation approach. Migliore et al.
carry out a side-channel evaluation targeting the ARM Cortex-M4 platform [21].
They are also the first to introduce concrete masking countermeasures. Following
this, Chen et al. present an efficient CPA attack on the Dilithium pqm4 software
implementation [9], succeeding with only 157 power measurements. Karabulut
et al. show that sampling of fixed-weight polynomials in Dilithium, NTRU, and
NTRU Prime is vulnerable to side-channel analysis [16]. Finally, Marzougui et
al. present a novel side-channel attack that exploits a vulnerability in a sam-
pling procedure [20]. However, their attack requires many measurements and
complex post-processing. Finally, a recent work by Azouaoui et al. [1] presents
a thorough analysis of side-channel requirements for Dilithium, including state-
of-the-art countermeasures.

All these works have in common that they target software platforms. At
the same time, there is no dedicated side-channel analysis targeting hardware
implementations, which is a glaring lack in light of Dilithium already being chosen
for standardization. Our work aims to close this gap by analyzing a recent Field-
Programmable Gate Array (FPGA) implementation, presenting a profiled SPA
and a CPA attack. Additionally, we investigate and implement countermeasures,
evaluating their efficacy against the before-proposed attacks.

Contribution. Hence, our contribution can be summarized as follows:

– We present the first power side-channel results of a Dilithium implementation
in reconfigurable hardware.

– We show several profiled SPA attacks on Dilithium-2 and -5, including:
• an evaluation of single-trace attacks on the decoding and the first NTT
stage, with up to 94.2% success probability to recover the correct coef-
ficient.
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• multi-trace attacks on decoding with 50 000 profiling traces, capable of
recovering the target coefficient with 130 traces during attack phase.

• multi-trace attacks on first NTT stage with 350 000 profiling traces
that enable full key recovery with a pair of target coefficients using
1 101 traces.

– We also show a CPA on the polynomial multiplication, recovering secret
coefficients with 66 000 traces, which are agnostic to the parameter set and
enable full key recovery.

– We present an analysis of how to apply masking as a countermeasure by
proposing arithmetic masking, effectively prohibiting the presented attacks.

2 Preliminaries

2.1 Notation

Throughout this work, we will use and assume the following notation. Let n and
q be two integers, such that n = 256 and q = 223 − 213 + 1. Further, let Rq

be a polynomial ring with Rq = Zq[X]/(Xn + 1). The infinity norm ||x||∞ of a
polynomial x is defined as the maximum absolute value among all its coefficients.
For polynomial vectors, this norm is defined as the maximum infinity norm of
all polynomials in the vector. Then, Sb denotes the set of polynomials in Rq

with infinity norm b and S̃b denotes the same set but excluding coefficients with
value −b. Furthermore, the set of polynomials in Rq with exactly τ non-zero
coefficients and infinity norm 1 is denoted as Bτ . In addition, let us denote
vectors in bold lower-case letters, e.g., v, while matrices are denoted in bold
upper-case letters, e.g., A. Polynomials in NTT domain are indicated by a hat,
e.g., ĉ. This is also used transitively; thus, Â denotes that each polynomial in
A is transformed to NTT domain individually. Finally, we denote the pointwise
multiplication with ◦.

2.2 CRYSTALS-Dilithium

As common for digital signature schemes, Dilithium provides the three core pro-
cedures for key generation, signature generation, and signature verification. In
the following, we briefly explain the key generation and signing and leave a fully
detailed description of the scheme to the official documentation [11].

Key Generation. Algorithm 1 shows the key generation of Dilithium. As can
be seen there, finding the secret key from knowing the public key is basically
the M-LWE problem. Moreover, once an attacker obtains either s1 or s2, she
can directly obtain the other value since A and t are public values. However,
Dilithium makes an interesting modification in moving the lower d bits of each
coefficient in t to the secret key in order to reduce the public key size, which
is what the function Power2Round does. Still, the polynomial vector t0, which
contains these lower bits, is considered public information.
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Algorithm 1 Dilithium key generation

1: ζ ← {0, 1}256
2: (ρ, ρ′,K) ∈ {0, 1}256 × {0, 1}512 × {0, 1}256 := SHAKE-256(ζ)
3: sample A ∈ Rk×ℓ

q deterministically in NTT domain from the output stream of
SHAKE-128(ρ)

4: sample (s1, s2) ∈ Sℓ
η × Sk

η from the output stream of SHAKE-256(ρ′)
5: t := As1 + s2
6: (t1, t0) := Power2Roundq(t, d)
7: tr ∈ {0, 1}256 := SHAKE-256(ρ||t1)
8: return (pk = (ρ, t1), sk = (ρ,K, tr, s1, s2, t0))

Algorithm 2 Dilithium signature generation

Require: secret key sk, message M
1: κ := 0, sample A as in key generation
2: µ ∈ {0, 1}512 := SHAKE-256(tr||M)
3: ρ′ ∈ {0, 1}512 := SHAKE-256(K||µ) for deterministic signing

ρ′ ← {0, 1}512 for randomized signing
4: while true do
5: sample y ∈ S̃ℓ

γ1
deterministically based on ρ′, κ

6: w := Ay
7: w1 := HighBitsq(w, 2γ2)

8: c̃ ∈ {0, 1}256 := SHAKE-256(µ||w1)
9: c ∈ Bτ := SampleInBall(c̃)
10: z := y + cs1
11: r0 := LowBitsq(w − cs2, 2γ2)
12: if ||z||∞ < γ1 − β and ||r0||∞ < γ2 − β then
13: h := MakeHintq(−ct0,w − cs2 + ct0, 2γ2)
14: if ||ct0||∞ < γ2 and the # of 1’s in h is less than or equal to ω then
15: return (z,h, c̃)

16: κ := κ+ ℓ

Signature Generation. Algorithm 2 describes the signature generation for a given
message and secret key. Most notably, there is a big rejection loop that only ter-
minates if the signature is approved not to leak any information on the secret
key, which is ensured by the checks starting in Line 13. Inside the loop, the
signing algorithm chooses a masking polynomial vector y with coefficients from
[−γ1, γ1), computesw = Ay, and rounds each coefficient of the resulting polyno-
mial vector according to the HighBitsq function. From this and the message, the
challenge polynomial c is sampled, which has precisely τ non-zero coefficients,
which are either 1 or -1. Then, a signature candidate z is computed as y + cs1.
Following this, it is checked whether the broad “noise” generated by y actually
hides cs1. Finally, using the MakeHintq function, the signing algorithm generates
“hints” for the verifier to compensate for the missing lower bits of t0. Note that
all polynomial multiplications are performed using the NTT for efficiency.
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Parameters. For Dilithium, three parameter sets are proposed, which aim at
the NIST security categories 2, 3, and 5. The security is scaled primarily via
increasing the matrix and vector dimensions (k, ℓ), which are (4, 4) for level 2,
(6, 5) for level 3, and (8, 7) for level 5. Another relevant parameter that changes
over the parameter sets is the secret key range η, which is 2 for levels 2 and 5,
and 4 for level 3.

2.3 Side-Channel Analysis

The field of side-channel analysis has been established with Kocher’s seminal
work [17] on timing side-channels. In the following, we briefly explain the two
relevant approaches for our work.

Simple Power Analysis. This technique aims to analyze power traces directly
to learn operations that have been executed and processed secrets. In the best
case, a single measurement is sufficient to completely recover the key. The most
important extension of SPA is profiled or template SPA. Here, the attack is per-
formed in two phases. In the profiling phase, the attacker measures the target
device performing several operations with known or chosen secret input, ob-
taining information about the device’s behavior depending on the input. In the
attack phase, she uses the knowledge from the first phase to recover the secret
by measuring the target device performing the operation with secret input.

This requires an extension of the attacker model. When introducing profiling,
the attacker must now have extended access to the target device, knowing or even
being able to choose several usually secret inputs. She may use one or multiple
traces in the attack phase, resulting in single-trace or multi-trace attacks.

Finding Points of Interest. To determine Points of Interest (POIs) that corre-
spond to differences between the observed classes, we use the sum of squared
pairwise t-differences (SOST) as the metric, which has been introduced in [13].
The idea is to measure many traces for each class, then compute the t-test
traces between any possible pair of classes, square them point-wise, and accu-
mulate the results. We then consider points if their SOST exceeds an adaptively
chosen threshold based on the overall noise level.

Matching Power Traces to a Template. To match new traces to the prepared
templates, we follow the approach first introduced in [8]. A template for a single
class consists of a mean trace and the pooled noise covariance matrix (for a
comprehensive definition, we refer to [10]). In the attack phase, when measuring
a power trace, we compute the probability of matching each template using the
probability density function of the multivariate normal distribution.

Updating the Ranking for Multi-Trace Attacks. Starting with one trace, we ob-
tain probabilities for matching each class, as explained before. Subsequently, we
analogously compute the probabilities for the following trace and update the
classification probabilities according to Bayes’ theorem.
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Correlation Power Analysis. CPA [5] has a very different concept, as the
attacker obtains many power measurements here. The idea then is to test all
possible hypotheses for a part of a key (e.g., a single coefficient) by correlating
a power model of an intermediate value that depends on the targeted key part
with the power traces. For this, the attacker either must be able to choose or at
least know the public input, which is in contrast to the profiled SPA, where she
also is required to know or choose secret inputs in the first phase. In our case,
for a digital signature scheme, the model is either the known or chosen message
attacker for the CPA.

Finally, the hypothesis with the highest absolute correlation coefficient is
identified as the correct key part. For this, Pearson’s correlation is used, i.e.,
the covariance of power model output and sample value normalized over the
product of the standard deviations of each of the two. As significance bound, we
use

√
28/N , where N is the number of processed traces [19].

Countermeasures. Many countermeasures have been proposed to mitigate
side-channel attacks. The straightforward idea is to purposefully decrease the
target devices’ signal-to-noise ratio (SNR) (where the signal is the leaking in-
formation). For instance, this can be achieved by noise generators that run in
parallel to sensitive operations [15]. However, this usually aims to increase the
number of measurements required for an attack.

If the algorithm whose implementation is to be secured allows re-ordering
of operations, shuffling [26] can be an option to counter single-trace SPA. By
this, the attacker may be able to recover the secret value but not its position
within the complete secret. For a CPA, shuffling only decreases the SNR because
a certain fraction of the measurements will have the operation that leaks the
secret aligned, with all other measurements being noise concerning the attack.

Thus, masking has been introduced [7, 14] to counter this attack as well,
which has its foundations in Shamir’s secret sharing. Here, a secret value x is split
into multiple uniform random shares. Regarding PQC, the two most common
masking schemes are Boolean and additive masking, splitting secrets either in
Boolean or additive shares. In order to process secret data, any linear function
in the masking domain can be performed share-wise. Non-linear functions have
a higher complexity growth and usually require refreshing the mask(s) during
intermediate steps.

Consequently, the CPA attacker does not obtain any information about the
secret, as only uniform random values are processed. This, of course, is only true
if the attacker is restricted to only one probe. Once she can probe both shares,
she can perform the same attack again. It follows that the masking degree is
always chosen according to a given attacker model.

3 Conceptual Considerations

The first reported implementation of the current specification was presented by
Land et al. [18]. This implementation heavily depends on Digital Signal Proces-
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sors (DSPs) that speed up the NTT significantly. However, it is relatively slow
and big compared to newer implementations. Instead, we target the state-of-the-
art implementation by Beckwith et al. [4]. We are aware of the more recent work
by Zhao et al. [27], which was unavailable at the start of our work. However,
since the operations we exploit are rather algorithmic-specific, we expect broad
applicability of our techniques. In the following, we explain and analyze several
operations within the target implementation.

3.1 Bit-Packing and Decoding of Secret Polynomials s1, s2

In general, the specification describes encoding as follows: An integer x ∈ [−η, η]
is packed as η − x such that the encoded value is non-negative. Particularly,
η = 2 for Dilithium security levels 2 and 5, and η = 4 for security level 3. Five
consecutive resulting three-bit values are packed to three bytes for all parameter
sets. In our target implementation, chunks of 64 bits are processed rather than
single coefficients, which is implemented with a FIFO, and then four coefficients
are decoded in parallel.

Since the implementation uses an unsigned representation, the decoding op-
eration (a subtraction) is modulo q. Thus, the decoded values are either close
to zero or close to q. This results in vastly different HWs for the cases depicted
in Table 1. As can be seen there, the particular value q = 223 − 213 + 1 addi-
tionally enables a clear distinction between the low-HW outputs, q− 2, and the
high-HW outputs. We expect that the significant differences in the HW to lead
to a distinguishable amount of power consumption, enabling SPA attacks.

3.2 Number-Theoretic Transform

After unpacking the secret polynomials in s1 and s2, they are transformed into
NTT representation. The NTT, as used in Dilithium, can be seen as a discrete
Fourier transform over polynomials in Rq, where modular arithmetic of the

Table 1: Hamming weight (HW) differences of decoded coefficients in s1 and s2

(a) η = 2

in out = η − in mod q HW(out)

0 0x000002 1
1 0x000001 1
2 0x000000 0
3 0x7fe000 10
4 0x7fdfff 22

(b) η = 4

in out = η − in mod q HW(out)

0 0x000004 1
1 0x000003 2
2 0x000002 1
3 0x000001 1
4 0x000000 0
5 0x7fe000 10
6 0x7fdfff 22
7 0x7fdffe 21
8 0x7fdffd 21
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â2

b̂2

Fig. 1: 2x2 BFU construction

polynomial coefficients replaces the complex arithmetic. Since the ring struc-
ture enables negative wrapped convolution, we can use an n-point NTT for fast
polynomial multiplication. For this, we transform both factor polynomials to the
NTT domain, multiply coefficient-wise in the NTT domain, and then apply the
inverse transform to the result to obtain the final product polynomial.

The core operation of the NTT is the so-called butterfly. Generally, the NTT
is easily parallelizable and thus, it is possible to make a design choice of how
many butterflies to instantiate. For the given n = 256, eight NTT layers must
be processed. However, in the targeted implementation, a 2 × 2-Butterfly Unit
(BFU) is deployed, which means that four butterflies are instantiated in a way
that four input coefficients are processed first through two butterflies and then
through the two others in order to perform two layers of NTT consecutively.
This is depicted in Fig. 1. In the following, we refer to this as one stage of the
NTT.

Note that for the butterfly, each output depends on all input values. More-
over, a1 is spread without multiplication, b1 is processed through one multiplica-
tion, a2 through two multiplications, and b2 through three. As the multiplications
are with primitive roots of unity, which range over the whole Zq, intermediate
values seem to be distributed uniformly in Zq regardless of the input distribu-
tion. However, for s1 and s2 the input space to the first layer is bounded by η,
which implicitly bounds the set of possible intermediate results and outputs of
the BFU. We expect that this results in more distinguishable power signatures,
facilitating more powerful SPA attacks.

3.3 Polynomial Multiplication

In Algorithm 2, we see that the secrets s1 and s2 are multiplied with the challenge
polynomial c. If the signature candidate is accepted, the hash c̃ that is used to
generate the challenge deterministically is part of the signature and thus publicly
known. Besides, c̃ is the hash of µ, which directly depends on the message M ,
and w1. Therefore, for the deterministic signing procedure, c deterministically
depends on the message. On the other hand, if randomized signing is deployed
– introduced initially to counter fault attacks – c is also randomized even for a
fixed message M through the randomization of y, which is used to compute w1.
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Moreover, the polynomial multiplications are performed in the NTT domain,
which is essentially a coefficient-wise modular multiplication between ĉ and the
vectors ŝ1 and ŝ2. This renders the aforementioned polynomial multiplications
a natural target for a CPA attack since we can target the polynomial vector ŝ1
coefficient by coefficient.

The advantage of such an attack would be its weak attacker model. For the
deterministic case, messages must be distinct, while for the randomized case
there is no restriction on the messages. In both cases, though, the attacker must
be able to trigger enough signings under the same secret key.

3.4 Measurement Setup

We perform all our attacks on a Xilinx Artix-7 100T FPGA – the hardware
platform recommended by NIST for comparison of hardware implementations –
running at 100MHz. We measured the power consumption via peripheral com-
ponents. Using an electromagnetic (EM) near-field probe, we measure the elec-
tromagnetic field of a capacitor on the board with a particularly low capacity
of 47 nF. Since this capacitor is placed very close to the FPGA and in its power
path, the capacitor’s electromagnetic emanation directly depends on the power
consumption of the FPGA. The advantage of this procedure is that no physi-
cal modifications are required on the target board. All measurements have been
performed with 20GS/s and a quantization of 12 bit.

4 Simple Power Analysis

In the following, we focus on the case η = 2 (Dilithium-2 and -5), which is more
promising. Still, we evaluate and discuss the case η = 4 (Dilithium-3) at the end
of this section.

4.1 Targeting Single Coefficients

As a first step towards a practical attack, we target single coefficients. We start
by applying an attacker model, in which three out of the four secret coefficients
decoded simultaneously are known, and the other one is attempted to recover.
In practice this means that during the profiling phase, the attacker builds the
templates knowing the three other secret coefficients. This results in less noise
compared to the more realistic scenario in which the attacker does not know the
other coefficients and thus would choose them randomly.

Interestingly, our countermeasures work also against this attacker. This re-
sults in an extended efficacy guarantee by deducting that the countermeasures
effectively hinder any weaker SPA attacker, i.e., also the attacker that does not
know the other three coefficients.
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Attacking the Decoding Step. For this, we measure 55 000 traces, using
a secret key as input fixed for all coefficients but one chosen randomly. We
divide this trace set into the profiling set of 50 000 traces and the attack set of
5 000 traces. Subsequently, we prepare templates for three different attacks:

1. Five classes, aiming for the classification of the exact coefficient value
2. Four classes, aiming to distinguish between input classes

– 0, 1 (yielding output HW 1)
– 2 (yielding output HW 0)
– 3 (yielding output HW 10)
– 4 (yielding output HW 22)

3. Three classes, aiming to distinguish between input classes

– 0, 1, 2 (yielding output HW 1 or 0)
– 3 (yielding output HW 10)
– 4 (yielding output HW 22)

Finally, we perform the three attacks on each subset of the attack set with the
same key, obtaining the single-trace success probabilities.

As can be seen in Table 2, the results match the expectations, and classifi-
cation works best for the case where three classes each internally have a very
similar HW, recovering with high probability whether the targeted output is 4
or 3 or a member of the set {0, 1, 2}. Nevertheless, the classification model with
the worst results, which is finding the exact coefficient value, also classifies each
class correctly with a significantly higher probability than guessing, which would
be 20%.

When extending this attack to the multi-trace setting, the picture changes
drastically. After at most 130 traces only, we can recover the correct coefficient
for all classes.

Attacking the First NTT Layer. As explained before in Section 3.2, the
four input coefficients to the BFU propagate differently as a1 is only added or
subtracted, while the others are also multiplied. We expect to classify coefficients
for attacking this first NTT stage better than for targeting the decoding. That is
because a small set of potential inputs is multiplied and reduced with the same
constants, which results in a more diversified power signature and thus can be
classified easier.

Table 2: Success rates of single-trace SPA on the decoder

Class
Avg.

0 1 2 3 4

48.8% 34.7% 49.5% 80.4% 99.4% 64.1%
64.6% 57.7% 86.0% 99.3% 74.4%

92.9% 88.1% 99.4% 93.2%
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Table 3: Success rates for attacking the first NTT stage in the single- and multi-trace
setting for η = 2 and η = 4

Target
η = 2 η = 4

Class
Avg.

Multi-t.:
Avg.

Multi-t.:

0 1 2 3 4 # Traces # Traces

a1 60.1% 59.1% 92.2% 89.6% 97.8% 79.8% 34 57.3% 87
b1 89.1% 88.4% 100.0% 89.3% 92.4% 91.8% 4 74.5% 10
a2 83.5% 88.1% 93.8% 96.6% 100.0% 92.5% 4 84.0% 45
b2 88.0% 90.2% 99.8% 94.6% 97.7% 94.2% 3 76.2% 23

Avg. 80.2% 81.5% 96.5% 92.5% 97.0% 89.6% 73.0%

The results in the left part of Table 3 show that the expectations again are
met. Overall, this attack yields better results for all classes, as now, we can
recover single coefficients that are processed as b1, a2, b2 with a probability of
over 90%. In contrast, as expected, a1 can be recovered with a lower probability.

Furthermore, Fig. 2 visualizes the results of the single-trace attacks. The con-
fusion matrices depict the probabilities of assigning each class during the attack
phase given each (known) correct class. There, the darkness of a square quan-
tifies the probability that, given the correct class for a trace (y-axis), a specific
class (x-axis) has been assigned by the attack. As shown in Fig. 2a, the attack on
a1 mainly confuses class 1 for class 0 with low probability while correctly clas-
sifying all other classes with high probability. Note that the diagonals in Fig. 2
represent the single rows in Table 3.

For the multi-trace setting, Table 3 also shows how many traces are required
to recover the correct coefficient with 100% probability. This demonstrates the
power of this attack, which requires at most 34 traces to recover any secret
coefficient.

4.2 Extension to Multiple Coefficients

We extend our approach of targeting a single secret coefficient on the first NTT
stage to attacking two coefficients simultaneously. A straightforward approach
here would be to target all possible 54 combinations of (a1, b1, a2, b2). However,
this would be a computationally very complex approach. Instead, we only target
the first half of the BFU. The same operation is applied to the input tuples
(a1, b1) and (a2, b2) independently. Thus, we can classify each possible input
tuple by targeting 5 × 5 = 25 classes instead of 54. This comes at the cost of
more profiling traces. Here, we require a profiling trace set with chosen secret
coefficients, where (a2, b2) are kept steady for attacking (a1, b1) and vice versa.
We increase the number of traces to 375 000 and divide them into 350 000 pro-
filing traces and 25 000 attack traces to ensure the same number per class as for
targeting single coefficients.

Fig. 3b shows the confusion matrix of this attack. As can be seen there, this
attack succeeds with a high probability of assigning the correct class (the diag-
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Fig. 2: Single-trace SPA confusion matrices for attacks on the first NTT stage with
η = 2

onal) but also shows some symmetry for assigning wrong classes, primarily due
to confusing (a1, b1) with (b1, a1). On average, the attack succeeds in classifying
the correct tuple with a probability of 51.5%, vastly better than guessing, which
would have a probability of 1/25. Moreover, in Fig. 3a, we see that the correct
guess is within the top 5 with an overwhelming probability of 94.8%.

Ultimately, we have also performed this attack in the multi-trace setting.
Here, we are able to recover the correct combination of both secret coefficients
after 1 101 traces. Using this approach, an attacker in the profiled SPA setting is
able to recover the full secret polynomials s1 and s2 with 700 000 profiling traces.
In particular, the attacker would profile the device under test with 350 000 traces
for all possible combinations of (a1, b1) and repeat the same for all possible
combinations of (a2, b2). Then, according to our experiments, the device would
be queried to perform 1 101 signing procedures (processing the secret key) and
measure the first NTT stage of all secret polynomials either for s1 or s2 to recover
it.
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4.3 Attack on η = 4

For security level 3, where η = 4, the amount of classes increases from 5 to 9. The
possible output HWs are shown in Table 1b. Similar to the results in Table 2,
we can clearly distinguish between all groups with similar output HW when
targeting the decoding. A multi-trace attack on the decoding finds the correct
coefficient after 2 267 traces, compared to 130 for η = 2. This demonstrates that
the increased number of possible coefficient values with similar HW downgrades
the attack.

Targeting the BFU, we have performed experiments using 90 000 traces for
profiling (i.e., 10 000 per class as for η = 2). The results are shown in the right
part of Table 3. As expected and as it is the case for η = 2, the attack works better
than those on the decoding, being capable of recovering the correct coefficient
after one trace with a significantly higher probability than guessing, which would
be 1/9. In the multi-trace setting, classifying the correct coefficient is possible
after at most 87 traces. Overall, the SPA on Dilithium-3 is less feasible compared
to the other parameter sets.
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(b) Confusion matrix

Fig. 3: Single-trace SPA results for NTT inputs a1 and b1.

Table 4: Success probabilities for single-trace SPA on the combined a1, b1.

b1
0 1 2 3 4

a1

0 37.1% 25.8% 34.1% 35.6% 48.8%
1 30.9% 27.2% 36.1% 40.2% 42.8%
2 34.4% 39.4% 46.1% 46.9% 48.2%
3 46.6% 60.2% 55.7% 73.3% 75.5%
4 64.1% 66.9% 76.3% 78.5% 83.2%
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5 Correlation Power Analysis on the Polynomial
Multiplication

In addition to our SPA, we perform a CPA on the polynomial multiplication
module, employing a weaker attacker model, as explained in Section 3.3.

For this attack, we observe many signature generations under the same secret
key, and then, given the public challenge polynomial c, we target the pointwise
multiplication ĉ ◦ ŝ1. In this attack, we cannot exploit that each coefficient of s1
has a bounded norm since, during multiplication, the polynomial is processed in
the NTT domain. Therefore, we have q hypotheses per coefficient in general.

5.1 Power Model

As a first approach, we chose to employ a HW model. As can be seen in Fig. 4,
we show that the correct hypothesis reaches the first rank after 80 000 traces.
However, there are also multiple wrong hypotheses exceeding the significance
bound significantly.
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Fig. 4: CPA results – HW model, 1 000 most promising hypotheses shown, correct
hypothesis in black, targeting ĉ ◦ t̂0

Instead, we adapt an idea from [9, Sec. III.B], where a software implemen-
tation is attacked and the hypothesis space is reduced by using the correlation
peak polarity as additional information. We identify that targeting the least sig-
nification bit (LSB) of the product between the challenge polynomial coefficient
and the hypotheses yields better results (i.e., no wrong hypotheses exceeding
the significance bound significantly). Moreover, this approach allows cutting the
number of hypotheses in half, resulting in a computationally less complex attack.
We observe that for each hypothesis h ∈ Zq \ {0} and each challenge polynomial
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coefficient ĉi ∈ Zq \ {0} of the challenge ĉ, the following equation holds:

lsb(ĉi · h mod q) = 1⊕ lsb(ĉi · (−h) mod q) (1)

It follows that for this power model, the hypotheses h and −h mod q yield in-
verted correlations. This can be used to halve the number of possible hypotheses
to the range [0, ⌊q/2⌋] by the following procedure. Fig. 5a shows the correlation
of the LSB of the public coefficient ĉi and the correlation with the LSB of the
negative value. Note how there is first a positive peak and then a negative peak
for the known ĉi. Correlations with other coefficients of the public polynomial
c might also show an inverse peak polarity: first negative, then positive. In any
case, the information of the correlation peak polarity is purely based on public
information, and thus can be computed by the attacker in any case.
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(a) Correlation of LSB of ĉi (black) and q −
ĉi (gray)
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(b) Correlation of LSB of ĉi · h mod q (black)
and ĉi · (−h) mod q (gray)

Fig. 5: Correlation for 100 000 traces of the LSB of ĉi and ĉi · h mod q. For the high-
lighted (black) case, h is the correct hypothesis since both have a positive peak first,
then a negative one.

Fig. 5b then shows very similar behavior for the correlation of the LSB of
ĉi · h mod q and ĉi · (−h) mod q. Our observation now is that if the correlation
peak polarity is the same for the power correlation of ĉi and ĉi · h mod q (where
h is the hypothesis that yields the highest absolute correlation), h is the correct
hypothesis. Otherwise, if the peak polarity does not match, q − h is the correct
hypothesis.

Thus, the attacker only needs to compute the correlations for half the hy-
potheses and then, after finding a hypothesis h with maximum absolute corre-
lation coefficient, decides between h and q − h based on whether the respective
ĉi yields

1. a positive, then a negative correlation peak. Then, if h yields
(a) a positive, then a negative correlation peak, h is the sought coefficient.
(b) a negative, then a positive correlation peak, q−h is the sought coefficient.

2. a negative, then a positive correlation peak. Then, if h yields
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(a) a positive, then a negative correlation peak, q−h is the sought coefficient.
(b) a negative, then a positive correlation peak, h is the sought coefficient.

5.2 Noise

In the targeted implementation, the Keccak core works during all multiplications
that include s1 or s2. This core generates most of the design’s power consump-
tion. This causes the problem that a lower quantization precision is left for the
targeted value since the Keccak power consumption is noise to it. Both issues lead
to requiring an increased number of traces for an attack. Thus, we investigate
the attack in two different scenarios:

1. Evaluate ĉ ◦ t̂0, where no Keccak runs in parallel, and
2. Evaluate ĉ ◦ ŝ1.

Compared to the first scenario, the concurrently operating Keccak module re-
duces the SNR by a factor of 25.

Therefore, the first scenario is a low-noise setting, and the second one is a
high-noise setting, enabling a clear comparison between both. We expect that
opening the FPGA packaging and probing the polynomial multiplication module
locally using an EM near-field probe would result in a similar low-noise setting
as for the first scenario.

5.3 Attacks

When targeting ĉ ◦ t̂0, we are able to recover the correct coefficients of t̂0 after
66 000 traces, as can be seen in Fig. 6a. Moreover, after 22 000 traces, the correct
hypothesis is within the top 2048 candidates, and after 57 000 traces, it is within
the top 32 candidates.

In Fig. 6b, it can be seen that the very same approach is becoming more
difficult for attacking s1 for the reasons mentioned above due to a decreased
SNR. Still, after 1 million traces, we can recover the correct coefficient. For this
attack, the correct hypothesis is in the top 2048 after 240 000 traces and the top
32 after 850 000 traces.

In summary, it is possible to recover the secret in any case, even assum-
ing a high-noise setting. Moreover, no invasive methods, such as opening the
FPGA packaging, are required, which would be a much more specialized attack
measuring the direct near-field EM emanation of the polynomial multiplication
module. Finally, we want to stress that, contrary to the SPA, this attack works
independently of η and thus is equally applicable to all security levels.

6 Countermeasures

6.1 Integration of Decoding into the First NTT Stage

Decoding the secrets s1 and s2 is an affine operation and thus can also be pro-
cessed easily in a later phase of signature generation. Therefore, our first ap-
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(a) Targeting ĉ ◦ t̂0

0.0 0.2 0.4 0.6 0.8 1.0
Traces 1e6

0.000

0.003

0.006

0.009

0.012

Co
rre

la
tio

n 
co

ef
fic

ie
nt

(b) Targeting ĉ ◦ ŝ1

Fig. 6: CPA results – LSB model, 1 000 most promising hypotheses shown, correct
hypothesis in black

proach aims at removing the parts of the decoder unit that process the targeted
secret coefficients and integrate the decoding step into the first level of the NTT.

As explained before, we assume that the leakage of the decoding mainly
depends on the differences of the HWs of the decoded values. Therefore, keeping
all processed coefficients at a similar level of HW would be advantageous. We
integrate the decoding into the BFU by feeding q + η − x into each BFU input,
where x is an encoded coefficient.

6.2 Masking

Masking must be deployed to counter both attacks through a comprehensive
countermeasure. A comprehensive masking approach, where secret data is never
processed nor transferred unmasked, requires that the secret key is already
masked in the first place. In particular, we have the option to either apply arith-
metic or Boolean masking. Applying arithmetic masking on s1 and s2, however,
is not possible efficiently as it would induce an unnecessary high overhead factor
for storing the masked key, since the coefficients are uniformly bounded by η
rather than uniform in Zq. Because memory is an expensive resource on em-
bedded hardware devices and the masking shares pose an overhead already, a
masking countermeasure that requires no additional overhead would be desir-
able.

Specifically, in a real-world device, the secret key usually would be stored
in a permanent memory outside of the FPGA, which would then have to be
dimensioned bigger by a factor of 23/3 to account for the larger shares, and
the key transfer would take equivalently longer compared to Boolean masking.
The problem intensifies when the system includes multiple keys. In this case,
external memory is virtually inevitable. Moreover, a smaller arithmetic masking
domain could also be used, but this would also require a similarly expensive
masking conversion compared to our proposal. Thus, only Boolean masking is
feasible, which raises the necessity of converting efficiently from the encoded,
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Boolean-masked representation of s1 and s2, to a decoded and arithmetically
masked representation.

Algorithm 3 First-order secure combined masking conversion and decoding,
adapted from [12, Alg. 12]

Require: b0, b1 such that b = b0 ⊕ b1
Ensure: a0, a1 such that a = a0 + a1 = η − b mod q
1: X,R← Zq × Z223

2: Y0 := ((X − η) + (223 − q))⊕R
3: Y1 := R
4: Z0, Z1 ← SecAddq((b0, b1), (Y0, Y1)) ▷ instantiate with SecAddq from [12, Alg. 8]
5: return a0 = X, a1 = q − (Z0 ⊕ Z1)

As already introduced in [3] and further developed in [12], an efficient con-
version from Boolean to arithmetic masking modulo q can be performed using a
secure adder over Boolean shares, which have been studied extensively in [2,24].
It is possible to adapt this procedure to integrate the decoding step into the
masking conversion.

The original idea from [12] is to sample a uniform random A ∈ Zq, then
generate a fresh Boolean sharing of (q−A)+(223−q) and add this with a secure
adder as described in [12, Alg. 8] to the masked input. Note that in order to
enable an easy reduction modulo q, this secure adder has the special property to
subtract an additional constant of 223 − q, which explains the uncommon form
of the input. The unmasked result of this operation then is one arithmetic share,
and A is the other.

Instead, to include the decoding into the masking conversion, we adapt this
procedure as shown in Algorithm 3:

1. We need two statistically random integers for the conversion, as shown in
Line 1.

2. We generate a fresh Boolean sharing of (X − η) + (223 − q) in Lines 2 and 3
using R and X. Note that this operation can also be done offline or – for
hardware – in parallel.

3. In Line 4, the Boolean masked input coefficient is added to the constructed
Boolean sharing using the aforementioned special adder [12, Alg. 8], yielding
a Boolean sharing of X − η+223 − q+ b− (223 − q) = X − η+ b. Since X is
uniformly random, it serves as an arithmetic mask and we can unmask the
Boolean sharing without revealing the secret b.

4. In order to obtain a valid arithmetic sharing of η−x, we need to subtract the
unmasked result from q, resulting in η−b−X mod q. Setting X as the other
arithmetic share, we have completed the conversion with implicit decoding.

Following this, we can perform all linear operations in the masking domain
simply by applying the function to each share. This includes both the NTT and
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multiplication with non-secret values like c. An implementation of this approach
requires two different secure adders over Boolean shares:

1. For Step 1 in [12, Alg. 8], a 3 plus 23 bit adder is required.
2. For Step 4 in [12, Alg. 8], a 23 plus 23 bit adder with 12 of the input bits

being hardcoded to zero, which enables substantial improvements compared
to a generic secure adder

Note that this approach is not restricted to hardware implementations alone,
but could very well also be done efficiently in a software implementation. For
this, a secure bit-sliced adder, as proposed by [6], could be utilized, enabling
parallelized processing of 32 or more coefficients.

It is possible to adapt this approach to an arbitrary masking order. For
this, [6, Alg. 11] can be modified analogously to our method above. This re-
quires an additional arithmetic-to-Boolean conversion to generate the Boolean
sharing from Lines 2 and 3 in Algorithm 3. The additional conversion can be also
performed offline and does not induce a further delay, even for higher orders.

6.3 Evaluation

Decoding in the First NTT Stage. Integrating the decoding into the first
NTT stage obviously eliminates the possibility of attacking the decoding as a
standalone step. Nonetheless, we evaluate the effect of this countermeasure on the
leakage of the BFU by performing the same single-coefficient attacks as explained
before. Table 5 shows the attack’s results compared to Table 3. Notably, even
though the countermeasure is not intended to prevent this attack, it mitigates
the SPA on the BFU. Additionally, the number of traces required to recover the
coefficients is doubled. We suppose that Table 5 quantifies the impact of the
diverse HWs of the first NTT stage while not altering the diversification of the
power signature after the arithmetic operations.

Arithmetic Masking. We also evaluate the efficacy of arithmetic masking
against the SPA and the CPA. First, we test whether the exact same CPA
works as before. Fig. 7 shows the results for the low-noise setting that targets
ĉ ◦ t̂0. As seen there, the correct hypothesis stays at about the same rank even
after 1 million traces. Also, the absolute correlation does not come close to the

Table 5: SPA results on BFU with integrated decoding given as percent points (resp.
difference of traces required in the multi-trace setting) with the η = 2 part of Table 3
as reference

Target
Class

Average ∆#Traces
0 1 2 3 4

a1 -3.4% -3.8% +2.9% -18.0% -8.4% -5.7% +31
b1 -23.0% -5.6% -17.7% -14.7% -14.1% -15.1% +3

19



0.0 0.2 0.4 0.6 0.8 1.0
Traces 1e6

22

25

28

211

214

217

220

Hy
po

th
es

is 
ra

nk
in

g

(a) Correct hypothesis ranking progression

0.0 0.2 0.4 0.6 0.8 1.0
Traces 1e6

0.000

0.003

0.006

0.009

0.012

Co
rre

la
tio

n 
co

ef
fic

ie
nt

(b) Absolute correlation progression for the 1 000
most promising hypotheses (gray) and the correct
hypothesis (black)

Fig. 7: CPA results for multiplication of ĉ with masked t̂0 for 1 000 000 traces
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Fig. 8: Fixed-vs-random t-test for NTT
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Fig. 9: SPA on NTT with masking, cf. Fig. 2
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higher-ranked hypotheses or even the significance threshold. Since the attack
does not work in the low-noise setting, we deduct that it does also not work
when the Keccak module produces noise in parallel.

Then, to evaluate the effect of masking on the SPA, we perform a standard
test-vector-based leakage assessment using a fixed-vs-random t-test on the NTT.
As can be seen in Fig. 8, the masking effectively hinders any distinction between
fixed and random input even after 1 000 000 traces.

Finally, we also attempt to perform the SPA on the whole BFU for single
coefficients. For the evaluation, we increase the number of traces to 450 000
instead of 50 000 during the profiling phase, employ the same overly powerful
attacker as before and confirm that the attack is not successful anymore. The
respective confusion matrix and ranking distribution can be found in Fig. 9.
From this, we deduce that no weaker SPA attacker can learn anything about the
secret, e.g., also the one we present in Section 4.2. Finally, we could not recover
any coefficient using a multi-trace attack with up to 10 000 traces per class.

7 Discussion and Future Work

Our work presents a first side-channel analysis of Dilithium in hardware. We
demonstrate attack surfaces and feasibility for single- and multi-trace profiled
SPA attacks, targeting the decoding of the secret polynomials and the first NTT
stage. Beyond this strong attacker model of profiled SPA, we show a practical
CPA attack on polynomial multiplication using power measurements. Regarding
the applicability of these attacks on other implementations, we can summarize
our findings as follow:

1. The SPA on the decoding exploits the specified range of the secret coefficients
and their HW, which does not depend on our targeted implementation. Thus,
we expect that the same attack surface exists for any implementation.

2. The SPA on the NTT similarly exploits the secret key range, benefitting from
the more unique power signatures generated by the BFU. Following this,
we expect that the attack works similarly for the implementations [18, 27],
which also contain BFUs (as necessary for computing an NTT). However,
the co-processor [18] detaches a “pre-computation” step from the signing
procedure, which performs the NTT of the secrets once and then stores the
transformed polynomial vectors for all subsequent signings under the same
secret key. This could mitigate the SPA attack by potentially preventing the
collection of multiple traces of the NTT transformation on s1 and s2.

3. The CPA on the polynomial multiplication is rather generic, as all imple-
mentations will perform the polynomial multiplication using the NTT, even
though the specification does not strictly require it.

Moreover, our work shows that random noise generated by a Keccak module
running in parallel to the multiplication does not effectively hinder either attack.
Finally, we also present countermeasures and evaluate that arithmetic masking
effectively prohibits all presented attacks.
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For future work, we leave both higher-order attacks and efficient higher-
order masking conversions with integrated decoding open. On a higher level, a
complete masked hardware implementation of Dilithium is desirable.
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21. Vincent Migliore, Benôıt Gérard, Mehdi Tibouchi, and Pierre-Alain Fouque. Mask-

ing Dilithium - efficient implementation and side-channel evaluation. In Robert H.
Deng, Valérie Gauthier-Umaña, Mart́ın Ochoa, and Moti Yung, editors, ACNS
19: 17th International Conference on Applied Cryptography and Network Secu-
rity, volume 11464 of Lecture Notes in Computer Science, pages 344–362, Bogota,
Colombia, June 5–7, 2019. Springer, Heidelberg, Germany.

22. Prasanna Ravi, Mahabir Prasad Jhanwar, James Howe, Anupam Chattopadhyay,
and Shivam Bhasin. Side-channel assisted existential forgery attack on Dilithium
- A NIST PQC candidate. Cryptology ePrint Archive, Report 2018/821, 2018.
https://eprint.iacr.org/2018/821.

23. Prasanna Ravi, Mahabir Prasad Jhanwar, James Howe, Anupam Chattopadhyay,
and Shivam Bhasin. Exploiting determinism in lattice-based signatures: Practi-
cal fault attacks on pqm4 implementations of NIST candidates. In Steven D.
Galbraith, Giovanni Russello, Willy Susilo, Dieter Gollmann, Engin Kirda, and
Zhenkai Liang, editors, ASIACCS 19: 14th ACM Symposium on Information,
Computer and Communications Security, pages 427–440, Auckland, New Zealand,
July 9–12, 2019. ACM Press.

24. Tobias Schneider, Amir Moradi, and Tim Güneysu. Arithmetic addition over
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