
FPGA Acceleration of Multi-Scalar Multiplication:
CycloneMSM

Kaveh Aasaraai, Don Beaver, Emanuele Cesena, Rahul Maganti,
Nicolas Stalder and Javier Varela

Jump Trading | Jump Crypto
{kaasaraai,jvarela}@jumptrading.com

{dbeaver,ecesena,rmaganti,nicolas}@jumpcrypto.com

October 14, 2022

Abstract. Multi-Scalar Multiplication (MSM) on elliptic curves is one of the primitives
and bottlenecks at the core of many zero-knowledge proof systems. Speeding up
MSM typically results in faster proof generation, which in turn makes ZK-based
applications practical.
We focus on accelerating large MSM on FPGA, and we present speed records for
BLS12-377 on FPGA: 5.66s for N = 226, sub-second for N = 222.
We developed a fully pipelined curve adder in extended Twisted Edwards coordinates
that runs at 250MHz. Our architecture incorporates a scheduler to reorder curve
operations, that’s suitable not just for hardware acceleration, but also for software
implementations using affine coordinates with batch inversion. The software imple-
mentation achieves +10 − 20% performance improvement over the state-of-the-art
gnark-crypto library.
Keywords: Multi-Scalar Multiplication, Elliptic Curve Cryptography, FPGA Design,
Zero-Knowledge Proofs

1 Introduction
Multi-Scalar Multiplication (MSM) on an elliptic curve refers to the computation of a
linear combination of points in the group. Given N points Pi and scalars ni, compute:

R = n1P1 + n2P2 + · · ·nN PN =
N∑

i=1
niPi .

The special case for N = 2 is key to many real-world applications, like verification of
ECDSA signatures, or speeding up single scalar multiplication via endomorphisms, when
available.

In recent years, the interest for larger N has grown in relationship to a variety of use
cases, including batch signature verification, homomorphic encryption, and Zero-Knowledge
(ZK) proofs.

Perhaps surprisingly, when dealing with large N such as N ≥ 220, we know how to
compute a MSM in just 13− 17N group operations with the bucket method, attributed
to [Pip76], outperforming the naive approach to compute N individual scalar multiplication
and add the results.

While the algorithm is relatively well understood, practical implementations on modern
platforms involving the optimization and tuning of the various parameters still constitute

mailto:kaasaraai@jumptrading.com,dbeaver@jumpcrypto.com,ecesena@jumpcrypto.com,rmaganti@jumpcrypto.com,nicolas@jumpcrypto.com,jvarela@jumptrading.com
mailto:kaasaraai@jumptrading.com,dbeaver@jumpcrypto.com,ecesena@jumpcrypto.com,rmaganti@jumpcrypto.com,nicolas@jumpcrypto.com,jvarela@jumptrading.com

2 FPGA Acceleration of Multi-Scalar Multiplication: CycloneMSM

an open area of research. Efficient software implementations of MSM can be found in open
source libraries, notably arkworks1 and gnark-crypto2.

In this work we analyze the problem of computing MSM on FPGA devices, for size
of N that are significantly larger than on-chip memory, e.g. N = 226. We show that the
techniques that we develop for hardware also lead to efficient software implementations,
improving upon the current state-of-the-art.

Our work is motivated by ZK applications, particularly in the context of blockchain
technology. ZK proofs are a building block to build both scalability solutions (e.g., ZK-
rollups) and privacy-enhanced applications for blockchains. In many concrete schemes,
generating a ZK proof requires computing a MSM, typically on a fairly large dataset.

Contribution
We present CycloneMSM, an implementation of Multi-Scalar Multiplication (MSM) on
BLS12-377, accelerated via FPGA. The implementation is optimized to compute a fixed-
base MSM on BLS12-377 for N = 226 independent uniformly random (UR) scalars, with
lowest latency. The implementation is correct for any set of scalars.

Architecture (Section 3). Our architecture has 3 main components: 1) a curve
adder, 2) a MSM controller, and 3) a scheduler to reorder operations and maximize
performance. We analyze the real-world case of UR scalars and present efficient schedulers
for hardware acceleration, as well as a software implementation using affine coordinates
with batch inversion.

FPGA Design (Section 4). We implement the bucket algorithm with a window
size of c = 16 using extended Twisted Edwards coordinates, available for BLS12-377 and
Bandersnatch. To accumulate points into buckets we use MixedAdd which only requires
7 mul in the field, thus reducing the circuit size.

Our FPGA runs at 250MHz, i.e., it can begin a new curve addition every 4ns. The
curve adder is fully pipelined and has length 96 stages. The controller implements a PCIe
interface between host and FPGA, a DDR (external memory) from/to SRAM (on-chip
memory) interface, and logic to accumulate points into buckets and aggregate buckets.
The scheduler runs on the FPGA, detects conflicting points (points with the same reduced
scalar) and stores them into a FIFO backed by SRAM and DDR, thus delaying their
processing.

Performance (Section 5). The design uses 525k LUTs, 661k registers, 404 BRAMs,
219 URAMs, 2277 DSPs and 3 DDR channels.

On average, our implementation computes a MSM for N = 226 UR scalars in 5.66s,
consuming 51W. For comparison, a purely software implementation in gnark-crypto takes
about 24s on an 18-core Intel Core i9-7980XE CPU at 4.8GHz, which consumes 530W.

For completeness, we show that the software implementation based on gnark-crypto,
using affine coordinates and batch inversion, achieves +10-20% performance improvement
over the original library.

Related Works
The bucket algorithm to compute MSM is described in [BDLO12, Gut20] and attributed
to [Pip76]. While the asymptotic complexity and the high-level algorithm are understood,
most work in literature focuses on relatively small input sizes (typically N ≤ 220). Larger
values of N require streaming data to/from external memory devices and scheduling point
additions out-of-order to maximize performance.

1https://github.com/arkworks-rs
2https://github.com/ConsenSys/gnark-crypto

https://github.com/arkworks-rs
https://github.com/ConsenSys/gnark-crypto

K. Aasaraai, D. Beaver, E. Cesena, R. Maganti, N. Stalder and J. Varela 3

Our work is motivated by participation in the ZPrize3, a competition among industry
partners and academic institutions to accelerate primitives related to zero-knowledge
cryptography. In this context, a similar work to ours is [Xav22]. At the time of writing, the
authors did not release information for large N , e.g. N = 226, and linearly interpolating
our work appears to be over 40% faster.

Broadening the view on ZK applications, PipeZK [ZWZ+21] introduces a framework
for hardware acceleration of various primitives, including MSM. We share their long term
view and consider our work one of the key building blocks to achieve high-performance ZK
applications through FPGA acceleration.

Several works in literature focus on improving the algorithmic efficiency of MSM.
[SIM12] focus on using redundant bit representations to reduce the number of bit oper-
ations. [DKS09, OS02, SZZG21, OS03, LTD08, SS14] take advantage of redundant bit
representations (or double base bit representations) with lower Hamming weights to reduce
the complexity of multipliers in hardware. Other approaches [MSZ21] take advantage of
the structure of the curve to create efficient precomputation strategies, including endomor-
phisms. A more application-specific implementation of MSM is detailed here: [BCG+18].
[DDQ07] also presents a good survey of efficient hardware implementations of elliptic curve
operations.

While our work targets specifically BLS12-377 due to the ZPrize specifications, many
other curves are growing in popularity, see e.g. [AEHG22] for a survey. Noteworthy is
Bandersnatch [MSZ21]. Generally speaking our FPGA design is adaptable to changing
base field and curve, granted we’re using extended Twisted Edwards coordinates.

Finally, we want to note that large MSM instances are explored in [BCHO22] where the
authors report that a MSM for N = 235 took several days to compute and they “stopped
at these sizes only due to time constraints”. Although we didn’t implement these large
sizes yet, we expect to bring the computation time down to a few hours, thus paving the
path for a completely new set of ZK schemes and applications that requires proof of very
large circuits, such as zero-knowledge virtual machines.

2 Background
2.1 Elliptic Curves, Twisted Edwards
Let Fq be a finite field of prime order q > 3. An elliptic curve E over Fq is a non-singular
curve defined by the Weierstrass equation:

y2 = x3 + ax + b , with a, b ∈ Fq .

For cryptographic applications we focus on curves whose group of rational points E(Fq)
has order divisible by a large prime r. We denote by G ⊆ E(Fq) the subgroup of order r,
and P∞ ∈ G the point at infinity.

Let ET be a Twisted Edwards curve given by the equation4:

−x2 + y2 = 1 + k

2 x2y2 , with k ∈ Fq . (1)

Every Twisted Edwards curve is birationally equivalent to an elliptic curve in Weierstrass
form. The converse only holds for some curves.

Example (BLS12-377 [BCG+18]). Let q be the 377-bit prime shown below. The elliptic
curve E : y2 = x3 + 1 over Fq is called BLS12-377. This is a pairing-friendly curve with
embedding degree 12. The group E(Fq) has order rc, where r is a 253-bit prime. BLS12-377

3https://zprize.io
4A more general definition uses ax2 + y2 = 1 + dx2y2, here we restrict to the case a = −1.

https://zprize.io

4 FPGA Acceleration of Multi-Scalar Multiplication: CycloneMSM

admits a Twisted Edwards representation ET as in (1), with k given below. Throughout
this paper, G will denote the subgroup of order r of either E(Fq) or ET (Fq), depending
on the context.
q = 0x01ae3a4617c510eac63b05c06ca1493b1a22d9f300f5138f1ef3622fba094800170b5d44300000008508c00000000001

r = 0x12ab655e9a2ca55660b44d1e5c37b00159aa76fed00000010a11800000000001

c = 170b5d44300000000000000000000000

k = 0x0196bab03169a4f2ca0b7670ae65fc7437786998c1a32d217f165b2fe0b32139735d947870e3d3e4e02c125684d6e016

Several coordinate systems have been developed to improve efficiency of operations in
G under different assumptions. We refer to the Explicit-Formulas Database [BL07] for a
complete list. For the purpose of evaluating performance, we denote by Dbl, Add resp. the
double and add operations in G, and by mul, inv resp. multiplication5 and inversion in
the field Fq (capitalized are curve operations, lowercase are field operations).

In this work we use the following coordinate systems. For Weierstrass curves: affine
coordinates (x, y), and extended Jacobian coordinates (X : Y : Z : W), where x = X/Z,
y = Y/W , Z3 = W 2. We denote MixedAdd the addition where the second operand is in
affine coordinates, or equivalently Z = W = 1. For Twisted Edwards curves: extended
affine coordinates (x, y, u) with u = kxy (note that we included k), and extended projective
(X : Y : Z : T), where x = X/Z, y = Y/Z, T = XY/Z. Analogously, we denote MixedAdd
the addition where the second operand is in extended affine coordinates.

In Table 1 we provide a summary of the coordinate systems used in this work, comparing
with the state-of-the-art implementation in gnark-crypto.

Table 1: Coordinate systems used in this work.

Hardware Software
Twisted Edwards Weierstrass

This work This work gnark-crypto
Extended Projective Affine Extended Jacobian

MixedAdd: 7 mul Add: 2 mul + 1 inv MixedAdd: 10 mul
Add: 9 mul Dbl: 3 mul + 1 inv Add: 14 mul

(unified addition) and extended Jacobian Dbl: 10 mul

2.2 Bucket Algorithm
Our goal is to compute a multi-scalar multiplication (MSM) for large N , e.g. N = 226.
Given points Pi ∈ G and scalars ni ∈ Zr, i ∈ [0..N), we want to compute:

R =
N−1∑
i=0

niPi ∈ G .

First, we’re going to describe an efficient algorithm to compute a reduced MSM:

N−1∑
i=0

n̄iPi = R̄ ,

where n̄i < 2c for a small constant c, for example c = 16. Next, we’ll use this algorithm to
compute the full MSM.

5For simplicity we won’t distinguish between multiplication and square in the field.

K. Aasaraai, D. Beaver, E. Cesena, R. Maganti, N. Stalder and J. Varela 5

Let bucket Bk, k ∈ [0..2c) be the set of points whose reduced scalar is equal to k:
Bk = {Pi | n̄i = k}, and Sk the sum of all points in Bk:

Sk =
∑

P ∈Bk

P (2)

The MSM can be rewritten as:

N−1∑
i=0

niPi =
2c−1∑
k=0

kSk =
2c−1∑
k=1

kSk .

An efficient algorithm to compute the reduced MSM works as follow:

1. Bucket accumulation phase: add each point Pi to the corresponding bucket sum Sk.

2. Bucket aggregation phase: efficiently compute
∑2c−1

k=1 kSk, via:

T∑
k=1

kSk = ST + (ST + ST −1) + · · ·+ (ST + ST −1 + · · ·+ S1) .

Let’s now return to the full MSM. The idea is to split the scalars in W windows of
c bits each, W = ⌈ 1

c log r⌉, compute the W reduced MSM and aggregate the final result.
For every j ∈ [0..W), denote: n

(j)
i = ni/2jc mod 2c. Then:

R(j) =
N−1∑
i=0

n
(j)
i Pi

is a reduced MSM that can be computed with the algorithm above, and finally:

R =
B−1∑
j=0

2jcR(j) .

Algorithm 1 summarizes the whole process, including a few well-known optimizations:

• Use mixed additions for faster bucket accumulation.

• Use signed scalars, thus 2c−1 of buckets instead of 2c, which leads to less memory
and most importantly half time for bucket aggregation.

Finally, let’s review the computational cost, with particular focus on the case where E
is BLS12-377, log r = 253-bit scalars, N = 226 points, c = 16-bit reduced scalars, W = 16
windows. For each window, i.e. W times:

• Bucket accumulation6: N MixedAdd

• Bucket aggregation: 2c Add

• Final result aggregation: c Dbl + 1 Add (negligible)

For sufficiently large N the computation is O(N), dominated by the WN MixedAdd.
6One could exclude adding points with reduced scalar = 0 (on average N/2c−1 for UR scalars), and

adding points for the first time in each bucket (2c−1 buckets). This leads to N − N/2c−1 − 2c−1 MixedAdd.
For large N , this is approximately N MixedAdd.

6 FPGA Acceleration of Multi-Scalar Multiplication: CycloneMSM

Algorithm 1 Bucket Method for Multi-Scalar Multiplication
1: function msm_init(points)
2: convert points, e.g. to Edwards
3: initialize context ctx
4: return ctx

5: function msm(ctx, scalars)
6: preprocess(scalars)
7: R← P∞
8: for j = W − 1 downto 0 do
9: accumulate(j, ctx, scalars)

10: R(j) ← aggregate(j, ctx)
11: R← R + R(j)

12: if j > 0 then R← 2cR

13: return R

14: function accumulate(j, ctx, scalars)
15: reset buckets
16: for i = 0 to N − 1 do
17: (k, sgn)← reduce(scalars[i], j)
18: P ← sgn · ctx.points[i]
19: Sk ← Sk + P ▷ MixedAdd

20: function aggregate(j, ctx)
21: K ← 2c−1 − 1
22: R̄← P∞ T ← SK

23: for k = K − 1 downto 1 do
24: R̄← R̄ + T ▷ Add
25: T ← T + Sk

26: return R̄

3 CycloneMSM
Equation (2), i.e. bucket accumulation, hides a detail that is critical for efficient implemen-
tations: the order in which points are accumulated into buckets. Most existing software
implementations (e.g., arkworks, gnark-crypto) process points in the order they were
given.

In this section we generalize Algorithm 1 by introducing a scheduler that controls the
order in which points are accumulated into buckets, we derive a scheduler that optimizes
bucket accumulation assuming UR scalars, and we present two relevant examples: FPGA
acceleration, and the use of affine coordinates with batch inversion.

3.1 Architecture
We present our architecture in Figure 1, composed of three main components: Curve
Adder, MSM Controller and Scheduler.

Figure 1: System architecture comprised of Curve Adder, MSM Controller and Scheduler.

Curve Adder. One or multiple elliptic curve addition operators. Multiple adders may be
used in different phases of the bucket algorithm, for example to compute in different
coordinate systems.

K. Aasaraai, D. Beaver, E. Cesena, R. Maganti, N. Stalder and J. Varela 7

MSM Controller. Responsible to handle the workflow of the MSM.

MSM Init. Initialize the system, store points, optionally perform pre-computaiton
on points, e.g. conversion to Twisted Edwards coordinates.

MSM. Compute the actual MSM, given N scalars. We implement the bucket
algorithm as W iterations of a bucket accumulation, then bucket aggregation,
and final result aggregation phases. Each phase relies on a Curve Adder for
actual computation. Bucket accumulation is driven by a Scheduler to maximize
performance.

Scheduler. Responsible for optimizing the order of operations during bucket aggregation,
to maximize performance. We will describe scheduling in detail in the next section.

Our main goal is to accelerate MSM computation via FPGA. However, for large N ,
the same architecture can be reused for software implementations, e.g. to speed up the
computation using affine coordinates and batch inversion. In the next sections we are
going to describe in details the benefits of scheduling and these two applications.

3.2 Scheduler for UR Scalars
At a high level, during the bucket accumulation phase, we want to enforce that T consecutive
point additions are independent.

We model the scheduler as an iterator that, at discrete time t = 0, 1, 2, . . ., returns a
reduced scalar k(t) and point P (t). We want to compute Sk(t) ← Sk(t) + P (t) but we want
to enforce the condition that:

k(t1) ̸= k(t2) if |t1 − t2| ≤ T . (3)

The idea is that, when all T buckets different, the T additions can be performed more
efficiently. Or vice versa, if any two buckets are the same, then we need to introduce an
artificial delay that makes the MSM less efficient.

We now want to analyze this problem and show that when scalars are UR it is possible
to build efficient schedulers that: 1) for correctness, satisfy the condition (3); and 2) for
efficiency, only reorder a small percentage points and scalars.

If scalars are UR, so are the reduced scalars for every window. Without loss of generality,
let {n̄i}N−1

i=0 , n̄i ≤ 2c−1, bet a sequence of UR reduced scalars. Since N is large, we can
approximate it as a sequence of discrete random variables following a Poisson distribution,
where the rate is λ = N/2c−1.

If E is the event of finding a collision: n̄j = n̄i, with i < j ≤ i+T . Then, the probability
of a collision, P (E) ≈ NT/2c−1. For example, for N = 226, c = 16 and T = 100, we expect
to find about 204, 800 collisions, which is about 0.3% of N .

This suggests that by rescheduling a small percentage of the N points and reduced
scalars (for each window), we can satisfy condition (3). Let’s introduce two examples of
schedulers: the delayed and the greedy scheduler.

Delayed scheduler. The idea is simply to delay conflicting points, reprocess them in
a second pass, delay again conflicting points to process them in a third pass, etc. It’s easy
to see that the probability to find collisions in subsequent passes decreases significantly. In
practice, for N = 226, rarely 4 passes are needed. The drawback of this approach is that
we need to store NT/2c−1 points and reduced scalars to recompute them later.

Greedy scheduler. Another approach is to reprocess a point as soon as possible.
For example, say ki = ki+1 is a conflict, and ki is output at time t, i.e. ki = k(t). Then
ki+1, Pi+1 can be processed at time t + T + 1. The advantage of the greedy scheduler is
that it needs to maintain a smaller queue of delayed points, since points are dequeued
frequently. In fact, the expected maximum length of the queue for N = 226 is about 10, so
the greedy scheduler requires very little storage compared to the delayed scheduler.

8 FPGA Acceleration of Multi-Scalar Multiplication: CycloneMSM

3.3 Applications: FPGA, Batch Affine
We consider two concrete applications that benefit from reordering operations via a sched-
uler: hardware acceleration via FPGA, and software implementation in affine coordinates
using batch inversion.

In hardware, let’s assume that a processor computes a point addition in T stages, i.e.
given inputs Sk, P at time t, it produces the output Sk + P at time t + T . Then we can
pipeline one point addition per clock cycle, provided that any new bucket does not conflict
with buckets already inside the pipeline. This is equivalent to condition (3).

In software, the use of affine coordinates for bucket accumulation can provide optimal
performance. Addition formulas in affine coordinates require 2 or 3 mul + 1 inv. By
computing additions in batches of T points and by using batch inversion (T inv →
3T mul + 1 inv), the cost can be reduced down to less than 6T mul + 1 inv. For large
enough T this is widely considered the best coordinate system, however none of the major
libraries implement MSM in affine coordinates. In order to process additions in batch, the
T input buckets need to be different, as expressed by condition (3).

In both cases, the use of a scheduler to reorder the operations can help maximize the
throughput of point additions. Said in another way, attempting to process points in order
would require to introduce empty bubbles in the FPGA pipeline, or shorten the batch size
in affine coordinates, leading to sub-optimal performance.

We stress that cost of scheduling points should be negligible compared to the cost of a
single point addition. The schedulers presented in the previous section are designed to
perform well under the assumption of UR scalars. It is trivial to build counter-examples
for which these schedulers perform poorly, for example the edge case where all scalars are
the same. For real-world applications, however, this is not particularly interesting.

4 FPGA Design
4.1 Field Arithmetic
Arithmetic in Fq is implemented using 377-bit integers in Montgomery representation,
using Montgomery parameter R = 2384 as in most software implementations.

Because of our choice of coordinates, we only need additions, subtractions and mul-
tiplications (mul) in the field, and no costly inversion. For mul we experimented with a
variety of possible implementations, either based on CIOS (the most widely adopted in
software) or combinations of schoolbook, Karatsuba and Toom-Cook methods followed by
Montgomery reduction. Here we limit the explanation to our final implementation.

Our final field mul is built with three 384-bit integer multiplications. The first and
last are done with a 3-layer Karatsuba starting from a base 48-bit integer multiplier built
with 6 DSPs, as shown in Figure 2. The intermediate one is of the form ab mod R, with b
constant, and where we only need the lower half of the result (mod R). This is implemented
as a custom multiplier based on the NAF representation of b: we aggregate bits of a in a
positive and a negative adder, and compute the final result by subtracting of the two.

Finally, note that R ≥ 4q. It is known that mul can accept inputs in redundant
representation a, b ∈ [0..2q), instead of just [0..q). We then use this fact to implement the
curve adder and save some modular reductions.

4.2 Constant Multiplier
Montgomery multiplication requires 2 constant multiplications. We use a mix of DSPs and
constant multipliers to compute the Montgomery multiplications. To further improve the
efficiency of the constant multiplier, we make use of other bit representations, including
NAF. A constant multiplier for ab, where a and b are represented as bits, accumulates the

K. Aasaraai, D. Beaver, E. Cesena, R. Maganti, N. Stalder and J. Varela 9

Figure 2: Integer multiplier, used to build field mul.

result of shifting a by i for every bi equal to 1. NAF is a unique signed bit representation
that reduces the hamming weight of a bit string s from 1

2 to 1
3 . NAF effectively splits

the adder tree into two components (one corresponding to the indices of the constant b
that are positive and one corresponding to the indices of b that are negative). The effect
of this is that the depth of the adder tree is reduced from log2 W (b) to log3 W (b), where
W (b) is the hamming weight of b. The adder tree for a constant multiplier with NAF is
summarized in Algorithm 2 and shown in Figure 3.

Algorithm 2 NAF Multiplier
function multiplyNAF(a, b)

// b is constant
(b0, . . . , bi . . . , bn) ← bits(b)
b̂ ← NAF (b)
// keep track of indices with 1 and −1
accpos ← 0, accneg ← 0
for i = 0 up to n do

// multiplier is hard-coded b/c b̂ is constant
if b̂i is 1 then

accpos ← (accpos + a≪ i)
if b̂i is −1 then

accneg ← accneg + (a≪ i)
acc← accpos − accneg

return acc

4.3 Curve Arithmetic
We implemented a fully pipelined Twisted Edwards adder in extended projective coordinates
that computes MixedAdd, and can be reconfigured to compute a full Add or Dbl in 2 cycles7.
The pipeline is shown in Figure 4, runs at 250MHz and has length 96 stages8, so it can
process a new MixedAdd every 4ns, returning the result after 96× 4ns = 384ns.

Inputs are points P1 = (X1 : Y1 : Z1 : T1) in extended projective and P2 = (x2, y2, u2)
in extended affine coordinates, with u2 = kx2y2 (i.e. u2 = kt2, not t2). Output is P1 + P2
in extended projective (X : Y : Z : T). We adapted formulas from [HWCD08, Sec. 4.2] to
compute a MixedAdd in 7 mul and also used the 4-processor version of the formulas, as
presented in Figure 5, to reduce the pipeline length.

Recall that our field multiplier accepts inputs in [0..2q). Hence we removed modular
reductions from additions (all but 2Z1) and subtractions. Specifically, if a, b ∈ [0..q), then
a + b is already in [0..2q), and q + a− b is always in [0..2q). This saves a few resources.

A full Add requires 9 mul, and we implemented it as a 2-cycle pipeline in order to
maintain low resource utilization. Denoting P2 = (X2 : Y2 : Z2 : T2), at stage 0 we feed

7We’re using unified formulas, so computing Dbl or Add is the same.
8The length depends on the frequency, for example at 125MHz the length is 65 stages.

10 FPGA Acceleration of Multi-Scalar Multiplication: CycloneMSM

Figure 3: Adder tree with NAF

Z1, Z2 into the multiplier, at stage 1 we feed T2, k. After 39 stages (the length of a
single Montgomery multiplier) we retrieve the results r0 = Z1Z2 and r1 = kT2, and feed
MixedAdd with inputs: (X1 : Y1 : r0 : T1) and (X2, Y2, r1).

4.4 MSM Acceleration
We implemented the bucket method assuming fixed-base MSM, and optimized it to achieve
low latency for N = 226, in particular trying to achieve linear latency for large enough N .

Figure 6 depicts the FPGA architecture, while the steps are specified in Algorithm 3.

Algorithm 3 CycloneMSM on FPGA
1: function msm_init(points)
2: convert points to Edwards
3: initialize FPGA + send points
4: return ctx

5: function msm(ctx, scalars)
6: preprocess(scalars)
7: R← P∞
8: for j = 0 to W − 1 do
9: accumulate(j, ctx, scalars)

10: R(j) ← aggregate(j, ctx)
11: R← R + R(j)

12: if j > 0 then R← 2cR

13: return R

14: function accumulate(j, ctx, scalars)
15: invoke fpga.accumulate(j)
16: send reduced scalars

17: function aggregate(j, ctx)
18: R̄← fpga.aggregate(j)
19: return R̄

20: function fpga.accumulate(j)
21: reset buckets
22: for (k, P) in sched(j, scalars) do
23: Sk ← Sk + P

24: function fpga.aggregate(j)
25: K ← 2c−1 − 1
26: R̄← P∞ T ← SK

27: for k = K − 1 downto 1 do
28: R̄← R̄ + T
29: T ← T + Sk

30: return R̄

MSM Init. We assumed an initialization phase where inputs are N points in Weier-
strass affine coordinates. Points are converted into affine Twisted Edwards (x, y, u = kxy),

K. Aasaraai, D. Beaver, E. Cesena, R. Maganti, N. Stalder and J. Varela 11

Figure 4: Fully pipelined MixedAdd in extended Twisted Edwards coordinates (left), where
-, +, 2, × and b are resp. subtractions, additions, double, field multiplication and alignment
buffers. The pipeline can be reconfigured to just run a field multiplication (right), leading
to a multi-cycle pipeline to compute a full Add.

Cost Step Processor 1 Processor 2 Processor 3 Processor 4
1 R1 ← Y1 −X1 R2 ← y2 − x2 R3 ← Y1 + X1 R4 ← y2 + x2

3 mul 2 R5 ← R1R2 R6 ← R3R4 R7 ← T1u2 R8 ← 2Z1
3 R1 ← R6 −R5 R2 ← R8 −R7 R3 ← R8 + R7 R4 ← R6 + R5

4 mul 4 X ← R1R2 Y ← R3R4 Z ← R2R3 T ← R1R4

Figure 5: MixedAdd in extended Twisted Edwards coordinates, cf. [HWCD08, Sec. 4.2]

sent to the FPGA and stored in DDR. Conversion from Weierstrass to Twisted Edwards
costs approximately like a curve operation, and can be sped up using batch inversion.

MSM. In the remainder of this section we focus on the actual computation of MSM
given N 256-bit scalars.

Our FPGA core can compute one MixedAdd per clock cycle, i.e. at 250MHz we need
to feed one reduced scalar every 4ns. Because of the PCIe bandwidth between host and
FPGA, we can receive at most 64-bit/cycle, therefore sending the whole scalars would be
sub-optimal.

In the current implementation we send one reduced scalar (16-bit) in every command.
Commands are 64-bit long and are sent in batches of 8. We did experiment with various
protocols between host and FPGA, but in the final iteration commands fundamentally
only contain the reduced scalars. Scalars are sent in order, and the FPGA implements a
delayed scheduler (cf. Section 3.2) to process points and scalars out of order.

We use signed scalars to reduce the total number of buckets in half. With c = 16-bit
signed reduced scalars we need 215 buckets on the FPGA, i.e. approximately 6MB of
SRAM. While the SRAM is not an issue per se, these SRAM blocks need to be wired to
the curve adder pipeline. Doubling the number of buckets did not work in our experiments
as we could not synthesize a pipeline at 250MHz due to wiring congestion.

Choice of window size c. The choice of c = 16 is primarily a trade off between the
amount of buckets and the speed of computing the reduced scalars. We estimated that
with c = 17 the whole algorithm would only be 7% faster, but it would require double the
number of buckets and more computation on the host side to reduce the scalars.

12 FPGA Acceleration of Multi-Scalar Multiplication: CycloneMSM

Figure 6: Architecture of FPGA implementation

Still, with c = 16 computing signed reduced scalars on the host proved to be challenging.
The computation requires to propagate a carry across 16-bit windows. Precomputing
N = 226 reduced scalars for all 16 columns takes a few seconds, which is unacceptably
high9. Computing the reduced scalars on the fly gets slower for higher columns, again
making it ineffective. Our latest implementation precomputes 64-bit signed windows (i.e.
it propagates carry at 64-bit level), and computes reduced scalars on the fly within these
windows, maximizing the speed at which the host can stream reduced scalars to the FPGA.
The precomputation is done on a parallel thread, while the host streams the first windows
to the FPGA. Precomputing over 64-bit windows and parallelizing this precomputation
provided over 15% speed up, from about 7s down to the final 5.66s for N = 226.

Bucket accumulation. As the FPGA receives the reduced scalars, it performs the
bucket accumulation phase, i.e., if the i-th reduced scalar is k, the FPGA computes
Sk ← Sk ± Pi. Points are streamed from DDR into SRAM using 3 channels, one per
coordinate. Based on the length of the curve adder pipeline T , the FPGA needs to account
for conflicts. A bucket can only be used once within the T stages of the pipeline (we need
to receive the output of the sum before we can use it again as an input). Conflicting points
are stored in a FIFO backed by SRAM and DDR. These points are sent to DDR, later
re-read and processed in a second pass. Conflicting points at the second pass are stored in
the FIFO again and processed at a 3rd pass. Practically speaking, given the assumption
of UR scalars, it’s very rare to ever get to a 4th pass and the total length of the FIFO
after all the passes is about 235,000, so this scheduler is pretty effective even if naive at
first sight. We note that the result is always correct, even in the worst case where all the
scalars are the same, however performance degrades significantly (roughly speaking 100×,
since the pipeline length is about 100).

Bucket aggregation. When the FPGA has processed all points, i.e. the first pass
in-order and the following delayed passes, it starts the bucket aggregation phase. Here
the curve adder pipeline is reconfigured to compute full Add operations as described in
Section 4.3. These are 2-cycle operations with latency about 1.5T , as the mul is about 1/2
the length of the whole pipeline.

We can compare the latency of the bucket aggregation against the bucket accumulation
phase, e.g. in the case of interest N = 226, c = 16, T = 100. Overall aggregation takes 2c

Add times c windows, i.e. 220 Add, so the latency is about 1.5T × 220 stages. The total
number of MixedAdd Nc is 230, hence the bucket aggregation phase accounts for about

9This is popular in software implementations, e.g. gnark-crypto and arkworks.

K. Aasaraai, D. Beaver, E. Cesena, R. Maganti, N. Stalder and J. Varela 13

15% of the computation time.
We chose this approach to limit the complexity on the FPGA, sacrificing a bit on

latency. In [Xav22], the authors show how to compute bucket aggregation in parallel at the
price of a handful of extra Add. We believe a better approach would be to interleave bucket
aggregation within the next window bucket accumulation, but we leave the implementation
as future work. We also considered performing the bucket aggregation on the host, but
this was ineffective on our platform.

Result aggregation. Finally, the result of each column is read by the host, and
aggregated in the final result. As mentioned, this has a negligible cost. We preferred to
leave this on the host side to minimize the complexity on the FPGA.

5 Evaluation
5.1 Methodology
We implemented the entire system in SystemVerilog RTL and evaluated it on AWS F1 with
an f1.2xlarge instance. This cloud platform provides access to cards with AMD-Xilinx
VU9P FPGAs. The card has four independent DDR channels, each with 16GB capacity
and a theoretical throughput of 16GB/s. The interface exposed to the design is 512-bits
wide, and is saturated at 250MHz. On this platform, we rely on the shell provided by
Amazon for all communications with the host and DDR. We find the platform and shell
easy to use, taking about 20% of the VU9P chip’s resources.

We report four metrics:

• Resource utilization: we report LUTs, registers, BRAMs, URAMs (if any), and
DSPs used in each configuration.

• Power: we rely on Vivado’s power report to get an estimate of the power dissipation
of the design. It should be noted that these are estimates by the tool, and actual
energy consumption can vary at runtime due to input data and environmental
properties, and would require live measurements.

• Clock speed: we report the clock speed achieved for each design.

• Latency: we report the time it takes to process the entire MSM network, including
the software component running on the host. We include data transfer times between
the FPGA and the host.

5.2 Experimental Results
Our design works at 250MHz. We stress that the numbers reported in this section strictly
depend on the clock speed. For example, the length of the curve adder pipeline is 96 stages,
but if we compile our design at 125MHz it lowers to 65 stages.

Table 2 reports resource utilization for our design. MSM refers to the full system,
including the AWS shell; MixedAdd is the curve adder pipeline only, mainly composed of 7
multipliers; mul is one multiplier, specifically the one used in the pipeline reconfiguration
to achieve the full Add. All 7 multipliers are similar, but minor variations can occur at
compilation time. At 250MHz, AWS reports that the max FPGA consumption is 51W,
average 14W. Vivado tools estimated 77.69W for the whole system, and 43.37W for our
design only.

In Table 3 we report timings to compute a full MSM with UR scalars, for various size
of N . For comparison, we run gnark-crypto on a 18-core Intel Core i9-7980XE CPU
running at 4.8GHz. On this machine power consumption is around 530W. This is the

14 FPGA Acceleration of Multi-Scalar Multiplication: CycloneMSM

Table 2: Utilization report for MSM.

System LUTs Regs BRAM URAM DSP Pipeline stages
MSM 525,298 661,146 404 219 2,277 –

MixedAdd 310,717 337,944 – – 2,268 96
mul 43,144 46,866 – – 324 39

fastest MSM benchmark we were able to achieve on CPU, while also testing arkworks on
the same and other machines.

For N = 226, the target of the ZPrize competition, we obtain over 4× performance
improvement, consuming 1/10 of the power.

We also included gnark-crypto times on the same AWS F1 machine, which is 4-core
Intel Xeon E5-2686 running at 2.3GHz. This comparison is meant to highlight the relatively
poor performance of the AWS F1 CPU, that explain some of the design choices we had
to make to achieve our results. At the end of the day, while our work is primarily on
hardware, we need a software component to interact with the FPGA.

Table 3: Time (ms) to compute MSM on BLS12-377 for various N .

CycloneMSM gnark-crypto
AWS F1 FPGA AWS F1 Intel i9

N 250MHz 4× 2.3GHz 18× 4.8GHz
222 817.9 10,544 1,727
223 1,133 19,064 3,330
224 1,761 36,180 6,192
225 3,016 70,953 11,891
226 5,656 143,985 24,013

5.3 Batch Affine
For completeness, we also implemented CycloneMSM in software, showcasing the use of
affine coordinates and batch inversion.

Our implementation is based on gnark-crypto. As we aim to contribute back to
the project, we focused on minimizing changes and only speed up the core of the MSM
computation. In CycloneMSM, buckets are represented in affine coordinates, accumulation
is done in batches of size T using batch inversion, and aggregation is done using extended
Jacobian coordinates –as in the original code– but with mixed addditions.

In Table 4 we report timings to compute a full MSM with UR scalars, for various size
of N . We compare results on the 4-core AWS F1 at 2.3GHz (this time the FPGA is not
used), the 18-core Intel i9 at 4.8GHz and a 8-core Macbook Pro with Apple M1 Pro at
3.2GHz.

On all platform we achieve +10% speed improvement for large N , and over 20%+ on
Mac. We stress that for smaller N the impact decreases, but it’s still 3-5% for N = 220.
Experimentally, we found that T = 100 for c = 20, and T = 40 for c = 16 are good default
values. We didn’t consider smaller values of c, as the number of conflicts grows and this
approach becomes ineffective.

In software like in hardware, we implemented the delayed scheduler. Interestingly, we
couldn’t build an efficient greedy scheduler, so we leave it as a challenge for the future.
The main reason is the excess of memory writes: the greedy scheduler needs to somehow
keep track of when a bucket was last used, for example by updating a hashmap of size

K. Aasaraai, D. Beaver, E. Cesena, R. Maganti, N. Stalder and J. Varela 15

Table 4: Time (ms) to compute MSM in software on BLS12-377 for various N .

M1 Pro AWS F1 Intel i9
N gnark Cyclone Gain gnark Cyclone Gain gnark Cyclone Gain
220 1,459 1,362 7% 2,656 2,571 3% 481 467 3%
221 2,870 2,629 8% 5,226 5,054 3% 946 891 6%
222 6,214 4,790 23% 10,544 8,928 15% 1,727 1,667 3%
223 11,340 8,793 22% 19,064 16,481 14% 3,330 2,830 15%
224 21,623 16,711 23% 36,180 31,547 13% 6,192 5,334 14%
225 41,982 33,016 21% 70,953 63,040 11% 11,891 10,239 14%
226 85,647 65,900 23% 143,985 124,231 14% 24,013 20,322 15%

2c−1 (number of buckets). Our implementation of the greedy scheduler was faster than
the original gnark-crypto only on Mac and AWS F1, but not on Intel i9, therefore we
abandoned it. In contrast, in the delayed scheduler we can detect collisions locally in each
batch, we don’t need a hashmap and we can signficantly reduce the number of memory
writes, leading to the results in Table 4.

6 Conclusion and Future Work
We present CycloneMSM, an implementation of MSM on BLS12-377 accelerated via FPGA.
The implementation is optimized to compute a fixed-base MSM on BLS12-377 for uniformly
random (UR) scalars, with lowest latency. We achieve 5.66s for N = 226, sub-second for
N = 222.

The novelty of our architecture are a fully pipelined curve adder that runs at 250MHz,
and a scheduler to reorder operations, maximize the usage of the curve adder and boost
perfomance. We analyze the real-world case of UR scalars and present efficient schedulers
suitable for hardware acceleration, as well as software implementation using affine coordi-
nates with batch inversion. For completeness, we show that the software implementation
achieves +10-20% performance improvement over gnark-crypto.

In future work, we plan to extend our FPGA implementation to different fields and
curve, and explore larger values of N . Some of the open challenges we’re left with are:
1) compute a N = 223 MSM in sub-second, maybe even N = 224 (though we don’t think it’s
achievable at 250MHz); 2) compute very large MSM, N = 236 and beyond; 3) implement
a more efficient scheduler, along the line of the greedy scheduler.

References
[AEHG22] Diego F Aranha, Youssef El Housni, and Aurore Guillevic. A survey of elliptic

curves for proof systems. Cryptology ePrint Archive, Paper 2022/586, 2022.
https://ia.cr/2022/586.

[BCG+18] Sean Bowe, Alessandro Chiesa, Matthew Green, Ian Miers, Pratyush Mishra,
and Howard Wu. Zexe: Enabling decentralized private computation. Cryptol-
ogy ePrint Archive, Paper 2018/962, 2018. https://ia.cr/2018/962.

[BCHO22] Jonathan Bootle, Alessandro Chiesa, Yuncong Hu, and Michele Orrú. Gemini:
Elastic snarks for diverse environments. In Annual International Conference
on the Theory and Applications of Cryptographic Techniques, pages 427–457.
Springer, 2022.

https://ia.cr/2022/586
https://ia.cr/2018/962

16 FPGA Acceleration of Multi-Scalar Multiplication: CycloneMSM

[BDLO12] Daniel J Bernstein, Jeroen Doumen, Tanja Lange, and Jan-Jaap Oosterwijk.
Faster batch forgery identification. In International Conference on Cryptology
in India, pages 454–473. Springer, 2012.

[BL07] Daniel J Bernstein and Tanja Lange. Explicit-formulas database, 2007. https:
//www.hyperelliptic.org/EFD.

[DDQ07] Guerric Meurice De Dormale and Jean-Jacques Quisquater. High-speed hard-
ware implementations of elliptic curve cryptography: A survey. Journal of
systems architecture, 53(2-3):72–84, 2007.

[DKS09] Christophe Doche, David R Kohel, and Francesco Sica. Double-base number
system for multi-scalar multiplications. In Annual International Conference
on the Theory and Applications of Cryptographic Techniques, pages 502–517.
Springer, 2009.

[Gut20] Gus Gutoski. Multi-scalar multiplication: state of the art & new ideas, 2020.
Presented at zkStudyClub: https://youtu.be/Bl5mQA7UL2I.

[HWCD08] Huseyin Hisil, Kenneth Koon-Ho Wong, Gary Carter, and Ed Dawson. Twisted
edwards curves revisited. In International Conference on the Theory and
Application of Cryptology and Information Security, pages 326–343. Springer,
2008.

[LTD08] Duo Liu, Zhiyong Tan, and Yiqi Dai. New elliptic curve multi-scalar multipli-
cation algorithm for a pair of integers to resist spa. In International Conference
on Information Security and Cryptology, pages 253–264. Springer, 2008.

[MSZ21] Simon Masson, Antonio Sanso, and Zhenfei Zhang. Bandersnatch: a fast
elliptic curve built over the BLS12-381 scalar field. Cryptology ePrint Archive,
Paper 2021/1152, 2021. https://ia.cr/2021/1152.

[OS02] Katsuyuki Okeya and Kouichi Sakurai. Fast multi-scalar multiplication meth-
ods on elliptic curves with precomputation strategy using montgomery trick.
In International Workshop on Cryptographic Hardware and Embedded Systems,
pages 564–578. Springer, 2002.

[OS03] Katsuyuki Okeya and Kouichi Sakurai. Use of montgomery trick in precompu-
tation of multi-scalar multiplication in elliptic curve cryptosystems. IEICE
transactions on fundamentals of electronics, communications and computer
sciences, 86(1):98–112, 2003.

[Pip76] Nicholas Pippenger. On the evaluation of powers and related problems. In
17th Annual Symposium on Foundations of Computer Science (sfcs 1976),
pages 258–263. IEEE Computer Society, 1976.

[SIM12] Vorapong Suppakitpaisarn, Hiroshi Imai, and Edahiro Masato. Fastest multi-
scalar multiplication based on optimal double-base chains. In World Congress
on Internet Security (WorldCIS-2012), pages 93–98. IEEE, 2012.

[SS14] Nagaraja Shylashree and Venugopalachar Sridhar. Hardware realization of
fast multi-scalar elliptic curve point multiplication by reducing the hamming
weights over gf (p). International Journal of Computer Network and Informa-
tion Security, 6(10):57–63, 2014.

[SZZG21] Da-Zhi Sun, Ji-Dong Zhong, Hong-De Zhang, and Xiang-Yu Guo. On multi-
scalar multiplication algorithms for register-constrained environments. Elec-
tronics, 10(5):605, 2021.

https://www.hyperelliptic.org/EFD
https://www.hyperelliptic.org/EFD
https://youtu.be/Bl5mQA7UL2I
https://ia.cr/2021/1152

K. Aasaraai, D. Beaver, E. Cesena, R. Maganti, N. Stalder and J. Varela 17

[Xav22] Charles F. Xavier. Pipemsm: Hardware acceleration for multi-scalar mul-
tiplication. Cryptology ePrint Archive, Paper 2022/999, 2022. https:
//ia.cr/2022/999.

[ZWZ+21] Ye Zhang, Shuo Wang, Xian Zhang, Jiangbin Dong, Xingzhong Mao, Fan
Long, Cong Wang, Dong Zhou, Mingyu Gao, and Guangyu Sun. Pipezk:
Accelerating zero-knowledge proof with a pipelined architecture. In 2021
ACM/IEEE 48th Annual International Symposium on Computer Architecture
(ISCA), pages 416–428. IEEE, 2021.

https://ia.cr/2022/999
https://ia.cr/2022/999

	Introduction
	Background
	Elliptic Curves, Twisted Edwards
	Bucket Algorithm

	CycloneMSM
	Architecture
	Scheduler for UR Scalars
	Applications: FPGA, Batch Affine

	FPGA Design
	Field Arithmetic
	Constant Multiplier
	Curve Arithmetic
	MSM Acceleration

	Evaluation
	Methodology
	Experimental Results
	Batch Affine

	Conclusion and Future Work

