
MIPS Assembly Language Implementation of GIFT-64-

128 Encryption

William Diehl

George Mason University, Fairfax, VA, 22030, USA
wdiehl@gmu.edu

Abstract. The GIFT-64-128 block cipher encryption is implemented in MIPS

assembly language. The program is assembled and simulated using the QtSPIM

simulator and produces functionally correct results. This implementation re-

quires 22,764 clock cycles per 64-bit block encryption, as well as 1,296 bytes of

code, and 192 bytes of data memory. The major functional units of the imple-

mentation are analyzed in terms of cycle count and bytes of code.

Keywords: GIFT, Encryption, Block Cipher, MIPS, Assembly Language

1 Introduction

Most modern software is written in high-level languages, such as C, C++, Java, or Py-

thon. Compilers and production tools have improved to the point that the tedious work

of assembly language coding is rarely required. However, in cases where we wish to

attain the maximum possible performance, or study in-depth the instruction sequences

or architectural components which realize maximum performance (or which are road-

blocks), we program in assembly language.

Cryptography is a required element of security in nearly all modern information tech-

nology. In particular, block ciphers are useful for realizing the cryptographic service

of confidentiality, i.e., preventing plaintext from being read by any party without the

corresponding secret key. Current research is ongoing to develop cryptographic block

ciphers, which have good performance, but which are also lightweight i.e., are low-

resource or energy-efficient, in both hardware in software.

In this research, we investigate an assembly language implementation of one block ci-

pher, GIFT-64-128, using the MIPS instruction set architecture (ISA). Our MIPS as-

sembly language implementation of GIFT-64-128 encryption is assembled and exe-

cuted in the QtSPIM simulator and is, to the best of our knowledge, the first implemen-

tation of GIFT in the MIPS architecture. We first design the program based on the

GIFT specification, then verify functionality in the QtSPIM simulator, and finally ana-

lyze the resulting code from the standpoint of performance (clock cycles) and required

resources (code and data memory). The MIPS assembly code is included as an appen-

dix at the end of this paper.

2

2 Background

2.1 GIFT Cipher

The GIFT cipher is a lightweight block cipher described in [1]. Descended from the

PRESENT cipher [2], it is designed primarily for energy-efficient hardware implemen-

tations. GIFT is a basic substitution-permutation cipher; in this research we implement

GIFT 64-128, which is encryption on a 64-bit block of plaintext using a 128-bit secret

key. Decryption is similar (through in reverse order) and is not considered in this work.

GIFT consists of a substitution layer with 4-bit S-Boxes (SubCells), a 64-bit bitwise

permutation (PermCells), and mixing of round key and round constants into the state in

each round (AddRoundKey). The key is updated per KeySchedule once per round, and

after the round key is provided to the state. 28 rounds are required for one block en-

cryption in GIFT-64-128. The basic flow of the GIFT cipher is shown in Fig. 1.

Since its introduction, GIFT has been investigated in both hardware and software im-

plementations, e.g., [3 – 6]. It has also been incorporated as the primitive in lightweight

authenticated encryption with associated data in the form of GIFT-COFB [7]. Hard-

ware and software implementations of GIFT-COFB have likewise been investigated in

[8 – 10].

Fig. 1. GIFT basic encryption flow, including SubCells, PermBits, AddRoundKey, and

KeySchedule. PT is Plaintext, CT is ciphertext, and K is the secret key.

3

2.2 MIPS

MIPS (Microprocessor without Interlocked Pipelined Stages) is a widely-known RISC

(reduced instruction set computer) microprocessor [11]. It is a load-store architecture

with 32 general purpose registers and can be tightly coupled with accelerators such as

a floating point (FP) coprocessor. Instructions are word-aligned to processor data bus

width (e.g., 32 bit) boundaries, and operations are permitted on byte, half word, and

word quantities. Although emphasis on general purpose open-source RISC architecture

has generally transitioned to the RISC-V, MIPS remains an important benchmark for

performance, and enjoys wide use in computer architecture textbooks and university

curricula [12]. Cryptographic functionality has been previously demonstrated in MIPS;

examples are [13 – 17].

QtSPIM is a popular open-source assembly and simulator environment for a 32-bit ver-

sion of MIPS and can be downloaded from [18]. The GIFT implementation in this

research uses the QtSPIM environment and conventions.

3 Implementation

A simplified and generic MIPS assembly language implementation of GIFT-64-128

encryption using the QtSPIM assembler and simulator environment is produced. The

source code is shown in the appendix. The program iteratively loops through 28 rounds.

Each round consists of SubCells, PermBits, AddRoundKey, KeySchedule, and minimal

ancillary control instructions. PermBits and AddRoundKey each call subroutines; there

are no nested subroutine calls. S-Boxes and round constants are pre-stored in look up

tables, as discussed below.

4 Analysis

The MIPS assembly language implementation is assembled and simulated in the

QtSPIM simulator. All default options of QtSPIM are enabled. Results of block en-

cryptions are verified against test vectors in [19] and are functionally correct. Analytic

results are shown in Table 1 in terms of clock cycles and corresponding bytes of code

in the .text segment. The function with both the longest run time and largest code usage

is PermCells. In fact, PermCells requires 355 clock cycles per round, representing 44%

of total required cycles. This is expected as GIFT (like its predecessor PRESENT) has

a complex bitwise permutation function which is difficult to render using general pur-

pose instructions such as shifts and rotates. Use of instruction set architectures (ISA)

with custom or programmable permutators (e.g., RISC-V), or innovative methodolo-

gies (e.g., [3]) can improve performance. The second most complex function in terms

of both run time and code size is “Extract Round Key,” i.e., generating the round key

𝑈||𝑉 as defined in [1] and adding it to state. The round key generation likewise is

dependent on shifts and rotations, and is more easily implemented in hardware.

4

SubCells is computed by pre-storing 4-bit S-Boxes in the .data segment, requiring 16

bytes. This can be compacted into 8 total bytes, or computed on-the-fly, but at the cost

of higher computational complexity. Round constants are retrieved from a pre-stored

look up table, which requires 112 bytes of memory in the .data segment. Round con-

stants can be generated on-the-fly using methods described in [1] but at increased com-

putational complexity. Additional functions are unremarkable.

A total of 813 clock cycles are required per round. As GIFT-64-128 consists of 28

rounds, a total of 22,764 cycles are required for one 64-bit block encryption. A total of

1,296 bytes, and 192 bytes of code (.text segment) and memory (.data segment) are

required, respectively. The stack is used for subroutine calls, however, stack memory

usage is negligible. System calls and housekeeping functions required by the QtSPIM

environment are not considered.

Table 1. Analysis of functional units by clock cycles and bytes of code (text). PT is Plaintext.

5 Conclusion

The first-known GIFT 64-128 block cipher encryption in MIPS assembly language is

achieved. The program is assembled and simulated in QtSPIM and achieves function-

ally correct block encryption results. This implementation of 64-bit block encryption

requires 22,764 clock cycles, 1,296 bytes of code, and 192 bytes of data memory. The

permutation function requires 44% of total clock cycles, and round key extraction is the

second most costly function in terms of performance. Future work can consider

Function Subfunction Cycles Bytes

Initialization 8 32

Sbox (Per byte of PT) 16 64

Sbox (8 bytes of PT) 128

PermCells 355 816

Extract Round Key 267 152

Add Round Constant 7 28

Update PT in Memory 4 16

Update Key State 33 128

Update Key in Memory 8 80

Loop Control 3 12

Misc 32

Per Round 813 1296

SubCells

AddRoundKey

Key Schedule

5

innovative permutation processing structures to improve performance, and the opti-

mized ratio of performance vs. code density should be explored. Results are generally

instructive for the future generation of RISC architectures, such as RISC-V.

References

1. A Banik, S., Pandey, S.K., Peyrin, T., Sasaki, Y., Sim, S.M., Todo, Y. (2017). GIFT: A

Small Present. In: Fischer, W., Homma, N. (eds) Cryptographic Hardware and Embedded

Systems – CHES 2017. CHES 2017. Lecture Notes in Computer Science(), vol 10529.

Springer, Cham. https://doi.org/10.1007/978-3-319-66787-4_16.

2. A Bogdanov, A., Knudsen, L.R., Leander, G., Paar, C., Poschmann, A., Robshaw, M.J.B.,

Seurin, Y., Vikkelsoe, C.: PRESENT: An ultra-lightweight block cipher. In Paillier, P., Ver-

bauwhede, I., eds.: CHES 2007. Volume 4727 of LNCS., Springer, Heidelberg (September

2007) 450-466.

3. Adomnicai, A., Najm, Z., & Peyrin, T. (2020). Fixslicing: A New GIFT Representation:

Fast Constant-Time Implementations of GIFT and GIFT-COFB on ARM Cortex-M. IACR

Transactions on Cryptographic Hardware and Embedded Systems, 2020(3), 402–427.

https://doi.org/10.13154/tches.v2020.i3.402-427.

4. Lara-Nino, C.A., Diaz-Perez, A., Morales-Sandoval, M. (2018). FPGA-Based Assessment

of Midori and GIFT Lightweight Block Ciphers. In: , et al. Information and Communications

Security. ICICS 2018. Lecture Notes in Computer Science(), vol 11149. Springer, Cham.

https://doi.org/10.1007/978-3-030-01950-1_45.

5. Jamuna Rani, D., Emalda Roslin, S. Optimized Implementation of Gift Cipher. Wireless

Pers Commun 119, 2185–2195 (2021). https://doi.org/10.1007/s11277-021-08325-2.

6. Gheorghe Pojoga and Kostas Papagiannopoulos. 2022. Low-latency implementation of the

GIFT cipher on RISC-V architectures. In Proceedings of the 19th ACM International Con-

ference on Computing Frontiers (CF '22). Association for Computing Machinery, New

York, NY, USA, 287–295. https://doi.org/10.1145/3528416.3530996.

7. S. Banik, A. Chakraborti, A. Inoue, T. Iwata, K. Minematsu, M. Nandi, T. Peyrin, Y. Sasaki,

S. Meng Sim, Y. Todo, “GIFT-COFB,” Cryptology ePrint Archive, Paper 2020/738.

8. Caforio, A., Collins, D., Banik, S., Regazzoni, F. (2022). A Small GIFT-COFB: Lightweight

Bit-Serial Architectures. In: Batina, L., Daemen, J. (eds) Progress in Cryptology -

AFRICACRYPT 2022. AFRICACRYPT 2022. Lecture Notes in Computer Science, vol

13503. Springer, Cham. https://doi.org/10.1007/978-3-031-17433-9_3.

9. B. Rezvani, F. Coleman, S. Sachin, W. Diehl, Hardware Implementations of NIST Light-

weight Cryptographic Candidates: A First Look, Cryptology ePrint Archive, Paper

2019/824.

10. B. Rezvani, T. Conroy, L. Beckwith, M. Bozzay, T. Laffoon, D. McFeeters, Y. Shi, M. Vu,

W. Diehl, “Efficient Simultaneous Deployment of Multiple Lightweight Authenticated Ci-

phers,” Cryptology ePrint Archive, Paper 2020/609.

11. David Patterson, John Hennessy, Computer Organization and Design MIPS Edition: The

Hardware/Software Interface, 5th Edition (2013), Elsiver.

12. Turley, Jim. "Wait, What? MIPS Becomes RISC-V". Electronic Engineering Journal. Mar.

21, 2021.

13. Wang, X., Gordon, S.D., McIntosh, A., Katz, J. (2016). Secure Computation of MIPS Ma-

chine Code. In: Askoxylakis, I., Ioannidis, S., Katsikas, S., Meadows, C. (eds) Computer

Security – ESORICS 2016. ESORICS 2016. Lecture Notes in Computer Science(), vol 9879.

Springer, Cham. https://doi.org/10.1007/978-3-319-45741-3_6.

https://doi.org/10.1007/978-3-319-66787-4_16
https://doi.org/10.1007/s11277-021-08325-2
https://doi.org/10.1145/3528416.3530996
https://doi.org/10.1007/978-3-031-17433-9_3
https://doi.org/10.1007/978-3-319-45741-3_6

6

14. Singh, Kirat, Biometric Based Network Security Using MIPS Cryptography Processor (May

9, 2015). Available at SSRN: https://ssrn.com/abstract=2777942 or

http://dx.doi.org/10.2139/ssrn.2777942.

15. T. Hiscock, O. Savry and L. Goubin, "Lightweight Software Encryption for Embedded Pro-

cessors," 2017 Euromicro Conference on Digital System Design (DSD), 2017, pp. 213-220,

doi: 10.1109/DSD.2017.25.

16. H. Anwar, M. Daneshtalab, M. Ebrahimi, J. Plosila and H. Tenhunen, "FPGA implementa-

tion of AES-based crypto processor," 2013 IEEE 20th International Conference on Electron-

ics, Circuits, and Systems (ICECS), 2013, pp. 369-372, doi: 10.1109/ICECS.2013.6815431.

17. Z. Zang, Y. Liu and R. C. C. Cheung, "Reconfigurable RISC-V Secure Processor And SoC

Integration," 2019 IEEE International Conference on Industrial Technology (ICIT), 2019,

pp. 827-832, doi: 10.1109/ICIT.2019.8755206.

18. J. Larus, QtSPIM, https://sourceforge.net/projects/spimsimulator/files/, Accessed: Oct. 8,

2022.

19. T. Peyrin, GIFT Block Cipher, https://github.com/giftcipher/gift, Accessed: Oct. 8, 2022.

Appendix

MIPS Assembly Source Code for GIFT-64-128 Encryption

GIFT-64-128 Encrypt (gift64enc.asm)

MIPS QtSPIM

William Diehl

08-18-2022

Encrypts one 64 bit block of plaintext (PT) to one 64 bit block of ciphertext (CT)

Using 128 bit secret key (K)

.data

sbox: .byte 0x1, 0xa, 0x4, 0xc, 0x6, 0xf, 0x3, 0x9, 0x2, 0xd, 0xb, 0x7, 0x5, 0x0, 0x8, 0xe

#PT and CT are located in indata; PT is overwritten by CT

indata: .byte 0x10, 0x32, 0x54, 0x76, 0x98, 0xba, 0xdc, 0xfe

inpermdata: .space 8

outpermdata: .space 8

#Secret Key K is below. K is overwritten by successive round key updates

inkey: .byte 0x10, 0x32, 0x54, 0x76, 0x98, 0xba, 0xdc, 0xfe

 .byte 0x10, 0x32, 0x54, 0x76, 0x98, 0xba, 0xdc, 0xfe

outkey: .space 16

roundkey: .word 0x00000008, 0x00000088, 0x00000888, 0x00008888

 .word 0x00088888, 0x00888880, 0x00888808, 0x00888088

 .word 0x00880888, 0x00808888, 0x00088880, 0x00888800

http://dx.doi.org/10.2139/ssrn.2777942
https://github.com/giftcipher/gift

7

 .word 0x00888008, 0x00880088, 0x00800888, 0x00008880

 .word 0x00088808, 0x00888080, 0x00880808, 0x00808088

 .word 0x00080880, 0x00808800, 0x00088000, 0x00880000

 .word 0x00800008, 0x00000080, 0x00000808, 0x00008088

numbytes: .word 8

#main routine

.text

.globl main

.ent main

main:

 li $s2, 0 # round counter (round 0)

roundloop:

#start subcells

 la $t0, indata

 la $t1, sbox

 la $t2, inpermdata

 lw $t3, numbytes

sboxloop:

 lbu $t4, ($t0)

 andi $t4, $t4, 0x0f

 addu $t5, $t1, $t4

 lbu $t6, ($t5)

 lbu $t4, ($t0)

 srl $t4, $t4, 4

 addu $t5, $t1, $t4

 lbu $t7, ($t5)

 sll $t7, $t7, 4

 or $t7, $t7, $t6

 sb $t7, ($t2)

 sub $t3, $t3, 1

 addu $t0, $t0, 1

 addu $t2, $t2, 1

 bgt $t3, 0, sboxloop

#subcells complete

#start permcells

8

 la $t1, inpermdata

 la $t2, outpermdata

 li $t0, 0

 lw $a0, ($t1)

 jal perm1

 ror $t0, $t0, 8

 lw $a0, 4($t1)

 jal perm1

 ror $t0, $t0, 8

 lw $a0, ($t1)

 jal perm2

 ror $t0, $t0, 8

 lw $a0, 4($t1)

 jal perm2

 ror $t0, $t0, 8

 sw $t0, ($t2)

 li $t0, 0

 lw $a0, ($t1)

 jal perm3

 ror $t0, $t0, 8

 lw $a0, 4($t1)

 jal perm3

 ror $t0, $t0, 8

 lw $a0, ($t1)

 jal perm4

 ror $t0, $t0, 8

 lw $a0, 4($t1)

 jal perm4

 ror $t0, $t0, 8

 sw $t0, 4($t2)

permcells complete

start extract round key

9

 la $t0, inkey

 la $t1, outpermdata

 lw $s0, ($t1) # lower state

 lw $s1, 4($t1) # upper state

 li $t2, 0

 li $t3, 0

 lbu $t2, ($t0) # k0l

 lbu $t3, 1($t0) # k0h

 jal extkeystate

 xor $s0, $s0, $t5

 xor $s1, $s1, $t6

 lbu $t2, 2($t0) # k1l

 lbu $t3, 3($t0) # k1h

 jal extkeystate

 sll $t5, $t5, 1

 sll $t6, $t6, 1

 xor $s0, $s0, $t5

 xor $s1, $s1, $t6

#extract round key complete

#start add round constant

 la $t2, roundkey

 addu $t2, $t2, $s2

 lw $t3, ($t2) # get the next round key

 xor $s0, $s0, $t3

 li $t3, 0x80000000

 xor $s1, $s1, $t3

#add round constant complete

#update indata with new state

 la $t0, indata

 sw $s0, ($t0)

 sw $s1, 4($t0)

#update key state

10

 la $t0, inkey

 la $t1, outkey

 lhu $t2, 2($t0)

 ror $t2, $t2, 2

 move $t3, $t2 # save $t2 in $t3

 srl $t2, $t2, 16 # shift upper 16 bits to lower 16 bits

 or $t3, $t2, $t3 # combine upper and lower halves to complete the rotate on 32-bit field

 sh $t3, 14($t1)

 lhu $t2, 0($t0)

 ror $t2, $t2, 12

 move $t3, $t2 # save $t2 in $t3

 srl $t2, $t2, 16 # shift upper 16 bits to lower 16 bits

 or $t3, $t2, $t3 # combine upper and lower halves to complete the rotate on 32-bit field

 sh $t3, 12($t1)

 lhu $t2, 14($t0)

 sh $t2, 10($t1)

 lhu $t2, 12($t0)

 sh $t2, 8($t1)

 lhu $t2, 10($t0)

 sh $t2, 6($t1)

 lhu $t2, 8($t0)

 sh $t2, 4($t1)

 lhu $t2, 6($t0)

 sh $t2, 2($t1)

 lhu $t2, 4($t0)

 sh $t2, 0($t1)

#put updated round key back in inkey

 lw $t2, ($t1)

 sw $t2, ($t0)

 lw $t2, 4($t1)

 sw $t2, 4($t0)

 lw $t2, 8($t1)

11

 sw $t2, 8($t0)

 lw $t2, 12($t1)

 sw $t2, 12($t0)

#update key state complete

#round loop control

 add $s2, $s2, 4

 blt $s2, 112, roundloop

#done

 li $v0, 10

 syscall

.end main

.globl perm1

.ent perm1

perm1:

 and $t3, $a0, 0x00000001

 or $t0, $t0, $t3 #target register

 ror $a0, $a0, 4

 and $t3, $a0, 0x00000002

 or $t0, $t0, $t3 #target register

 ror $a0, $a0, 4

 and $t3, $a0, 0x00000004

 or $t0, $t0, $t3 #target register

 ror $a0, $a0, 4

 and $t3, $a0, 0x00000008

 or $t0, $t0, $t3 #target register

 and $t3, $a0, 0x00000010

 or $t0, $t0, $t3 #target register

 ror $a0, $a0, 4

 and $t3, $a0, 0x00000020

 or $t0, $t0, $t3 #target register

 ror $a0, $a0, 4

 and $t3, $a0, 0x00000040

 or $t0, $t0, $t3 #target register

12

 ror $a0, $a0, 4

 and $t3, $a0, 0x00000080

 or $t0, $t0, $t3 #target register

 jr $ra

.end perm1

.globl perm2

.ent perm2

perm2:

 ror $a0, $a0, 12

 and $t3, $a0, 0x00000001

 or $t0, $t0, $t3 #target register

 rol $a0, $a0, 12

 and $t3, $a0, 0x00000002

 or $t0, $t0, $t3 #target register

 ror $a0, $a0, 4

 and $t3, $a0, 0x00000004

 or $t0, $t0, $t3 #target register

 ror $a0, $a0, 4

 and $t3, $a0, 0x00000008

 or $t0, $t0, $t3 #target register

 ror $a0, $a0, 16

 and $t3, $a0, 0x00000010

 or $t0, $t0, $t3 #target register

 rol $a0, $a0, 12

 and $t3, $a0, 0x00000020

 or $t0, $t0, $t3 #target register

 ror $a0, $a0, 4

 and $t3, $a0, 0x00000040

 or $t0, $t0, $t3 #target register

 ror $a0, $a0, 4

 and $t3, $a0, 0x00000080

 or $t0, $t0, $t3 #target register

13

 jr $ra

.end perm2

.globl perm3

.ent perm3

perm3:

 ror $a0, $a0, 8

 and $t3, $a0, 0x00000001

 or $t0, $t0, $t3 #target register

 ror $a0, $a0, 4

 and $t3, $a0, 0x00000002

 or $t0, $t0, $t3 #target register

 rol $a0, $a0, 12

 and $t3, $a0, 0x00000004

 or $t0, $t0, $t3 #target register

 ror $a0, $a0, 4

 and $t3, $a0, 0x00000008

 or $t0, $t0, $t3 #target register

 ror $a0, $a0, 16

 and $t3, $a0, 0x00000010

 or $t0, $t0, $t3 #target register

 ror $a0, $a0, 4

 and $t3, $a0, 0x00000020

 or $t0, $t0, $t3 #target register

 rol $a0, $a0, 12

 and $t3, $a0, 0x00000040

 or $t0, $t0, $t3 #target register

 ror $a0, $a0, 4

 and $t3, $a0, 0x00000080

 or $t0, $t0, $t3 #target register

 jr $ra

.end perm3

.globl perm4

14

.ent perm4

perm4:

 ror $a0, $a0, 4

 and $t3, $a0, 0x00000001

 or $t0, $t0, $t3 #target register

 ror $a0, $a0, 4

 and $t3, $a0, 0x00000002

 or $t0, $t0, $t3 #target register

 ror $a0, $a0, 4

 and $t3, $a0, 0x00000004

 or $t0, $t0, $t3 #target register

 rol $a0, $a0, 12

 and $t3, $a0, 0x00000008

 or $t0, $t0, $t3 #target register

 ror $a0, $a0, 16

 and $t3, $a0, 0x00000010

 or $t0, $t0, $t3 #target register

 ror $a0, $a0, 4

 and $t3, $a0, 0x00000020

 or $t0, $t0, $t3 #target register

 ror $a0, $a0, 4

 and $t3, $a0, 0x00000040

 or $t0, $t0, $t3 #target register

 rol $a0, $a0, 12

 and $t3, $a0, 0x00000080

 or $t0, $t0, $t3 #target register

 jr $ra

.end perm4

.globl extkeystate

.ent extkeystate

extkeystate:

 li $t7, 8

 li $t5, 0

15

 li $t6, 0

extkeyloop:

 and $t4, $t2, 0x00000001

 or $t5, $t5, $t4

 ror $t5, $t5, 4

 and $t4, $t3, 0x00000001

 or $t6, $t6, $t4

 ror $t6, $t6, 4

 srl $t2, $t2, 1

 srl $t3, $t3, 1

 sub $t7, $t7, 1

 bgt $t7, 0, extkeyloop

 jr $ra

.end extkeystate

