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Abstract. The GIFT-64-128 block cipher encryption is implemented in MIPS 

assembly language.  The program is assembled and simulated using the QtSPIM 

simulator and produces functionally correct results.  This implementation re-

quires 22,764 clock cycles per 64-bit block encryption, as well as 1,296 bytes of 

code, and 192 bytes of data memory.  The major functional units of the imple-

mentation are analyzed in terms of cycle count and bytes of code. 
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1 Introduction 

Most modern software is written in high-level languages, such as C, C++, Java, or Py-

thon.  Compilers and production tools have improved to the point that the tedious work 

of assembly language coding is rarely required.  However, in cases where we wish to 

attain the maximum possible performance, or study in-depth the instruction sequences 

or architectural components which realize maximum performance (or which are road-

blocks), we program in assembly language.   

 

Cryptography is a required element of security in nearly all modern information tech-

nology.  In particular, block ciphers are useful for realizing the cryptographic service 

of confidentiality, i.e., preventing plaintext from being read by any party without the 

corresponding secret key.  Current research is ongoing to develop cryptographic block 

ciphers, which have good performance, but which are also lightweight i.e., are low-

resource or energy-efficient, in both hardware in software.   

 

In this research, we investigate an assembly language implementation of one block ci-

pher, GIFT-64-128, using the MIPS instruction set architecture (ISA).  Our MIPS as-

sembly language implementation of GIFT-64-128 encryption is assembled and exe-

cuted in the QtSPIM simulator and is, to the best of our knowledge, the first implemen-

tation of GIFT in the MIPS architecture.  We first design the program based on the 

GIFT specification, then verify functionality in the QtSPIM simulator, and finally ana-

lyze the resulting code from the standpoint of performance (clock cycles) and required 

resources (code and data memory).  The MIPS assembly code is included as an appen-

dix at the end of this paper. 
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2 Background 

2.1 GIFT Cipher 

The GIFT cipher is a lightweight block cipher described in [1].  Descended from the 

PRESENT cipher [2], it is designed primarily for energy-efficient hardware implemen-

tations.  GIFT is a basic substitution-permutation cipher; in this research we implement 

GIFT 64-128, which is encryption on a 64-bit block of plaintext using a 128-bit secret 

key.  Decryption is similar (through in reverse order) and is not considered in this work.  

GIFT consists of a substitution layer with 4-bit S-Boxes (SubCells), a 64-bit bitwise 

permutation (PermCells), and mixing of round key and round constants into the state in 

each round (AddRoundKey).  The key is updated per KeySchedule once per round, and 

after the round key is provided to the state.  28 rounds are required for one block en-

cryption in GIFT-64-128. The basic flow of the GIFT cipher is shown in Fig. 1. 

 

Since its introduction, GIFT has been investigated in both hardware and software im-

plementations, e.g., [3 – 6].  It has also been incorporated as the primitive in lightweight 

authenticated encryption with associated data in the form of GIFT-COFB [7].  Hard-

ware and software implementations of GIFT-COFB have likewise been investigated in 

[8 – 10].  

 

Fig. 1. GIFT basic encryption flow, including SubCells, PermBits, AddRoundKey, and 

KeySchedule. PT is Plaintext, CT is ciphertext, and K is the secret key. 
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2.2 MIPS  

MIPS (Microprocessor without Interlocked Pipelined Stages) is a widely-known RISC 

(reduced instruction set computer) microprocessor [11].  It is a load-store architecture 

with 32 general purpose registers and can be tightly coupled with accelerators such as 

a floating point (FP) coprocessor.  Instructions are word-aligned to processor data bus 

width (e.g., 32 bit) boundaries, and operations are permitted on byte, half word, and 

word quantities. Although emphasis on general purpose open-source RISC architecture 

has generally transitioned to the RISC-V, MIPS remains an important benchmark for 

performance, and enjoys wide use in computer architecture textbooks and university 

curricula [12]. Cryptographic functionality has been previously demonstrated in MIPS; 

examples are [13 – 17]. 

 

QtSPIM is a popular open-source assembly and simulator environment for a 32-bit ver-

sion of MIPS and can be downloaded from [18].  The GIFT implementation in this 

research uses the QtSPIM environment and conventions. 

3 Implementation 

A simplified and generic MIPS assembly language implementation of GIFT-64-128 

encryption using the QtSPIM assembler and simulator environment is produced.  The 

source code is shown in the appendix. The program iteratively loops through 28 rounds.  

Each round consists of SubCells, PermBits, AddRoundKey, KeySchedule, and minimal 

ancillary control instructions.  PermBits and AddRoundKey each call subroutines; there 

are no nested subroutine calls.  S-Boxes and round constants are pre-stored in look up 

tables, as discussed below.   

4 Analysis 

The MIPS assembly language implementation is assembled and simulated in the 

QtSPIM simulator.  All default options of QtSPIM are enabled.  Results of block en-

cryptions are verified against test vectors in [19] and are functionally correct. Analytic 

results are shown in Table 1 in terms of clock cycles and corresponding bytes of code 

in the .text segment.  The function with both the longest run time and largest code usage 

is PermCells.  In fact, PermCells requires 355 clock cycles per round, representing 44% 

of total required cycles. This is expected as GIFT (like its predecessor PRESENT) has 

a complex bitwise permutation function which is difficult to render using general pur-

pose instructions such as shifts and rotates.  Use of instruction set architectures (ISA) 

with custom or programmable permutators (e.g., RISC-V), or innovative methodolo-

gies (e.g., [3]) can improve performance. The second most complex function in terms 

of both run time and code size is “Extract Round Key,” i.e., generating the round key 

𝑈||𝑉 as defined in [1] and adding it to state.  The round key generation likewise is 

dependent on shifts and rotations, and is more easily implemented in hardware.   
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SubCells is computed by pre-storing 4-bit S-Boxes in the .data segment, requiring 16 

bytes.  This can be compacted into 8 total bytes, or computed on-the-fly, but at the cost 

of higher computational complexity. Round constants are retrieved from a pre-stored 

look up table, which requires 112 bytes of memory in the .data segment.  Round con-

stants can be generated on-the-fly using methods described in [1] but at increased com-

putational complexity.  Additional functions are unremarkable. 

 

A total of 813 clock cycles are required per round.  As GIFT-64-128 consists of 28 

rounds, a total of 22,764 cycles are required for one 64-bit block encryption.  A total of 

1,296 bytes, and 192 bytes of code (.text segment) and memory (.data segment) are 

required, respectively.  The stack is used for subroutine calls, however, stack memory 

usage is negligible.  System calls and housekeeping functions required by the QtSPIM 

environment are not considered.  

Table 1. Analysis of functional units by clock cycles and bytes of code (text). PT is Plaintext. 

 
 

5 Conclusion 

The first-known GIFT 64-128 block cipher encryption in MIPS assembly language is 

achieved.  The program is assembled and simulated in QtSPIM and achieves function-

ally correct block encryption results.  This implementation of 64-bit block encryption 

requires 22,764 clock cycles, 1,296 bytes of code, and 192 bytes of data memory.  The 

permutation function requires 44% of total clock cycles, and round key extraction is the 

second most costly function in terms of performance.  Future work can consider 

Function Subfunction Cycles Bytes

Initialization 8 32

Sbox (Per byte of PT) 16 64

Sbox (8 bytes of PT) 128

PermCells 355 816

Extract Round Key 267 152

Add Round Constant 7 28

Update PT in Memory 4 16

Update Key State 33 128

Update Key in Memory 8 80

Loop Control 3 12

Misc 32

Per Round 813 1296

SubCells 

AddRoundKey

Key Schedule
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innovative permutation processing structures to improve performance, and the opti-

mized ratio of performance vs. code density should be explored.  Results are generally 

instructive for the future generation of RISC architectures, such as RISC-V. 
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Appendix 

MIPS Assembly Source Code for GIFT-64-128 Encryption 

 

# GIFT-64-128 Encrypt (gift64enc.asm) 

# MIPS QtSPIM 

# William Diehl 

# 08-18-2022 

# Encrypts one 64 bit block of plaintext (PT) to one 64 bit block of ciphertext (CT) 

# Using 128 bit secret key (K) 

 

.data 

 

sbox: .byte 0x1, 0xa, 0x4, 0xc, 0x6, 0xf, 0x3, 0x9, 0x2, 0xd, 0xb, 0x7, 0x5, 0x0, 0x8, 0xe 

 

#PT and CT are located in indata; PT is overwritten by CT 

 

indata: .byte 0x10, 0x32, 0x54, 0x76, 0x98, 0xba, 0xdc, 0xfe 

inpermdata: .space 8 

outpermdata: .space 8 

 

#Secret Key K is below.  K is overwritten by successive round key updates 

 

inkey: .byte 0x10, 0x32, 0x54, 0x76, 0x98, 0xba, 0xdc, 0xfe 

             .byte 0x10, 0x32, 0x54, 0x76, 0x98, 0xba, 0xdc, 0xfe 

 

outkey: .space 16 

roundkey: .word 0x00000008, 0x00000088, 0x00000888, 0x00008888 

             .word 0x00088888, 0x00888880, 0x00888808, 0x00888088 

        .word 0x00880888, 0x00808888, 0x00088880, 0x00888800 

http://dx.doi.org/10.2139/ssrn.2777942
https://github.com/giftcipher/gift
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          .word 0x00888008, 0x00880088, 0x00800888, 0x00008880 

          .word 0x00088808, 0x00888080, 0x00880808, 0x00808088 

          .word 0x00080880, 0x00808800, 0x00088000, 0x00880000 

          .word 0x00800008, 0x00000080, 0x00000808, 0x00008088 

numbytes: .word 8 

 

#main routine 

 

.text 

.globl main 

.ent main 

main: 

 

 li $s2, 0 # round counter (round 0) 

 

roundloop: 

 

#start subcells 

 la $t0, indata 

 la $t1, sbox 

 la $t2, inpermdata 

 lw $t3, numbytes 

  

sboxloop: 

  

 lbu $t4, ($t0) 

 andi $t4, $t4, 0x0f 

 addu $t5, $t1, $t4 

 lbu $t6, ($t5) 

 lbu $t4, ($t0) 

 srl $t4, $t4, 4 

 addu $t5, $t1, $t4 

 lbu $t7, ($t5) 

 sll $t7, $t7, 4 

 or $t7, $t7, $t6 

 sb $t7, ($t2) 

  

 sub $t3, $t3, 1 

 addu $t0, $t0, 1 

 addu $t2, $t2, 1 

 bgt $t3, 0, sboxloop 

 

#subcells complete 

#start permcells 
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 la $t1, inpermdata 

 la $t2, outpermdata 

 li $t0, 0 

  

 lw $a0, ($t1) 

 jal perm1 

 

 ror $t0, $t0, 8 

 lw $a0, 4($t1) 

 jal perm1 

 

 ror $t0, $t0, 8 

 lw $a0, ($t1) 

 jal perm2 

 

 ror $t0, $t0, 8 

 lw $a0, 4($t1) 

 jal perm2 

 

 ror $t0, $t0, 8 

  

 sw $t0, ($t2) 

 

 li $t0, 0 

 lw $a0, ($t1) 

 jal perm3 

  

 ror $t0, $t0, 8 

 lw $a0, 4($t1) 

 jal perm3 

 

 ror $t0, $t0, 8 

 lw $a0, ($t1) 

 jal perm4 

  

 ror $t0, $t0, 8 

 lw $a0, 4($t1) 

 jal perm4 

  

 ror $t0, $t0, 8 

 sw $t0, 4($t2) 

 

# permcells complete 

# start extract round key 
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 la $t0, inkey 

 la $t1, outpermdata 

 lw $s0, ($t1)  # lower state 

 lw $s1, 4($t1) # upper state 

  

 li $t2, 0 

 li $t3, 0 

  

 lbu $t2, ($t0) # k0l 

 lbu $t3, 1($t0) # k0h 

 

 jal extkeystate 

  

 xor $s0, $s0, $t5 

 xor $s1, $s1, $t6 

 

 lbu $t2, 2($t0) # k1l 

 lbu $t3, 3($t0) # k1h 

 

 jal extkeystate 

  

 sll $t5, $t5, 1 

 sll $t6, $t6, 1 

  

 xor $s0, $s0, $t5 

 xor $s1, $s1, $t6 

 

#extract round key complete 

#start add round constant 

 

 la $t2, roundkey 

 addu $t2, $t2, $s2  

 lw $t3, ($t2) # get the next round key 

 xor $s0, $s0, $t3 

 li $t3, 0x80000000 

 xor $s1, $s1, $t3 

 

#add round constant complete 

#update indata with new state 

 

    la $t0, indata 

 sw $s0, ($t0) 

 sw $s1, 4($t0) 

 

#update key state 
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 la $t0, inkey 

 la $t1, outkey  

  

 lhu $t2, 2($t0) 

 ror $t2, $t2, 2 

 move $t3, $t2 # save $t2 in $t3 

 srl $t2, $t2, 16 # shift upper 16 bits to lower 16 bits 

 or $t3, $t2, $t3 # combine upper and lower halves to complete the rotate on 32-bit field 

 sh $t3, 14($t1) 

  

 lhu $t2, 0($t0) 

 ror $t2, $t2, 12 

 move $t3, $t2 # save $t2 in $t3 

 srl $t2, $t2, 16 # shift upper 16 bits to lower 16 bits 

 or $t3, $t2, $t3 # combine upper and lower halves to complete the rotate on 32-bit field 

 sh $t3, 12($t1) 

 

 lhu $t2, 14($t0) 

 sh $t2, 10($t1) 

  

 lhu $t2, 12($t0) 

 sh $t2, 8($t1) 

   

 lhu $t2, 10($t0) 

 sh $t2, 6($t1) 

  

 lhu $t2, 8($t0) 

 sh $t2, 4($t1) 

  

 lhu $t2, 6($t0) 

 sh $t2, 2($t1) 

 

 lhu $t2, 4($t0) 

 sh $t2, 0($t1) 

  

#put updated round key back in inkey 

 

 lw $t2, ($t1) 

 sw $t2, ($t0) 

  

 lw $t2, 4($t1) 

 sw $t2, 4($t0) 

  

 lw $t2, 8($t1) 
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 sw $t2, 8($t0) 

  

 lw $t2, 12($t1) 

 sw $t2, 12($t0) 

  

#update key state complete 

#round loop control 

 

 add $s2, $s2, 4 

 blt $s2, 112, roundloop 

 

#done 

 li $v0, 10 

 syscall 

.end main 

 

.globl perm1 

.ent perm1 

perm1: 

 

 and $t3, $a0, 0x00000001 

 or $t0, $t0, $t3 #target register 

  

 ror $a0, $a0, 4 

 and $t3, $a0, 0x00000002 

 or $t0, $t0, $t3 #target register 

  

 ror $a0, $a0, 4 

 and $t3, $a0, 0x00000004 

 or $t0, $t0, $t3 #target register 

  

 ror $a0, $a0, 4 

 and $t3, $a0, 0x00000008 

 or $t0, $t0, $t3 #target register 

  

 and $t3, $a0, 0x00000010 

 or $t0, $t0, $t3 #target register 

 

 ror $a0, $a0, 4 

 and $t3, $a0, 0x00000020 

 or $t0, $t0, $t3 #target register 

 

 ror $a0, $a0, 4 

 and $t3, $a0, 0x00000040 

 or $t0, $t0, $t3 #target register 
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 ror $a0, $a0, 4 

 and $t3, $a0, 0x00000080 

 or $t0, $t0, $t3 #target register 

 

 jr $ra 

  

.end perm1 

 

.globl perm2 

.ent perm2 

perm2: 

 

 ror $a0, $a0, 12 

 and $t3, $a0, 0x00000001 

 or $t0, $t0, $t3 #target register 

  

 rol $a0, $a0, 12 

 and $t3, $a0, 0x00000002 

 or $t0, $t0, $t3 #target register 

  

 ror $a0, $a0, 4 

 and $t3, $a0, 0x00000004 

 or $t0, $t0, $t3 #target register 

  

 ror $a0, $a0, 4 

 and $t3, $a0, 0x00000008 

 or $t0, $t0, $t3 #target register 

 

 ror $a0, $a0, 16  

 and $t3, $a0, 0x00000010 

 or $t0, $t0, $t3 #target register 

 

 rol $a0, $a0, 12 

 and $t3, $a0, 0x00000020 

 or $t0, $t0, $t3 #target register 

 

 ror $a0, $a0, 4 

 and $t3, $a0, 0x00000040 

 or $t0, $t0, $t3 #target register 

  

 ror $a0, $a0, 4 

 and $t3, $a0, 0x00000080 

 or $t0, $t0, $t3 #target register 
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 jr $ra 

 

.end perm2 

 

.globl perm3 

.ent perm3 

perm3: 

 

 ror $a0, $a0, 8 

 and $t3, $a0, 0x00000001 

 or $t0, $t0, $t3 #target register 

  

 ror $a0, $a0, 4 

 and $t3, $a0, 0x00000002 

 or $t0, $t0, $t3 #target register 

  

 rol $a0, $a0, 12 

 and $t3, $a0, 0x00000004 

 or $t0, $t0, $t3 #target register 

  

 ror $a0, $a0, 4 

 and $t3, $a0, 0x00000008 

 or $t0, $t0, $t3 #target register 

 

 ror $a0, $a0, 16  

 and $t3, $a0, 0x00000010 

 or $t0, $t0, $t3 #target register 

 

 ror $a0, $a0, 4 

 and $t3, $a0, 0x00000020 

 or $t0, $t0, $t3 #target register 

 

 rol $a0, $a0, 12 

 and $t3, $a0, 0x00000040 

 or $t0, $t0, $t3 #target register 

  

 ror $a0, $a0, 4 

 and $t3, $a0, 0x00000080 

 or $t0, $t0, $t3 #target register 

 

 jr $ra 

 

.end perm3 

 

.globl perm4 
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.ent perm4 

perm4: 

 

 ror $a0, $a0, 4 

 and $t3, $a0, 0x00000001 

 or $t0, $t0, $t3 #target register 

  

 ror $a0, $a0, 4 

 and $t3, $a0, 0x00000002 

 or $t0, $t0, $t3 #target register 

  

 ror $a0, $a0, 4 

 and $t3, $a0, 0x00000004 

 or $t0, $t0, $t3 #target register 

  

 rol $a0, $a0, 12 

 and $t3, $a0, 0x00000008 

 or $t0, $t0, $t3 #target register 

 

 ror $a0, $a0, 16  

 and $t3, $a0, 0x00000010 

 or $t0, $t0, $t3 #target register 

 

 ror $a0, $a0, 4 

 and $t3, $a0, 0x00000020 

 or $t0, $t0, $t3 #target register 

 

 ror $a0, $a0, 4 

 and $t3, $a0, 0x00000040 

 or $t0, $t0, $t3 #target register 

  

 rol $a0, $a0, 12 

 and $t3, $a0, 0x00000080 

 or $t0, $t0, $t3 #target register 

 

 jr $ra 

 

.end perm4 

 

.globl extkeystate 

.ent extkeystate 

extkeystate: 

 

 li $t7, 8 

 li $t5, 0 
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 li $t6, 0 

 

extkeyloop: 

  

 and $t4, $t2, 0x00000001 

 or $t5, $t5, $t4 

 ror $t5, $t5, 4 

  

 and $t4, $t3, 0x00000001 

 or $t6, $t6, $t4 

 ror $t6, $t6, 4 

 srl $t2, $t2, 1 

 srl $t3, $t3, 1 

  

 sub $t7, $t7, 1 

 bgt $t7, 0, extkeyloop 

  

 jr $ra 

 

.end extkeystate 


