
A multivariate noise-free HE proposal

Gerald Gavin1 and Sandrine Tainturier2

1 Laboratory ERIC - University of Lyon
gerald.gavin@univ-lyon1.fr

2 Adecco - Geneve
sandrine-tainturier@orange.fr

Abstract. In [Gav16], [GB19], [GT20], new ideas to build homomor-
phic encryption schemes have been presented. Authors propose private-
key encryption schemes whose secret key is a rational function ϕ/ϕ′. By
construction, these schemes are not homomorphic. To get homomorphic
properties, nonlinear homomorphic operators are derived from the se-
cret key. In [GT20], an additive homomorphic encryption is proposed.
In this paper, we adopt the same approach to build a HE based on the
same private-key encryption scheme. We obtain a multivariate encryp-
tion scheme in the sense that the knowledge of the CPA attacker can
be turned into an over-defined system of nonlinear equations (contrarily
to LWE-based encryptions). The factoring assumption is introduced in
order to make a large class of attacks based on Grœbner basis irrelevant.
While we did not propose a formal security proof relying on a classical
cryptographic assumption, we hopefully provide convincing evidence for
security.

1 Introduction

The prospect of outsourcing an increasing amount of data storage and man-
agement to cloud services raises many new privacy concerns for individuals and
businesses alike. The privacy concerns can be satisfactorily addressed if users en-
crypt the data they send to the cloud. If the encryption scheme is homomorphic,
the cloud can still perform meaningful computations on the data, even though
it is encrypted.

The theoretical problem of constructing a fully homomorphic encryption
scheme (HE) supporting arbitrary functions f , was only recently solved by the
breakthrough work of Gentry [Gen09]. More recently, further fully homomorphic
schemes were presented [SS10],[vDGHV10],[CNT12],[GHS12a],[GSW13] follow-
ing Gentry’s framework. The underlying tool behind all these schemes is the use
of Euclidean lattices, which have previously proved powerful for devising many
cryptographic primitives. A central aspect of Gentry’s fully homomorphic scheme
(and the subsequent schemes) is the ciphertext refreshing Recrypt operation.
Even if many improvements have been made in one decade, this operation re-
mains very costly [LNV11], [GHS12b], [DM15], [CGGI18]. Indeed, bootstrapped
bit operations are still about one billion times slower than their plaintext equiv-
alents (see [CGGI18]).

We adopt a recent approach developed in [Gav16], [GB19], [GT20] where the
secret key is a (multivariate) rational function ϕD/ϕ

′
D. A ciphertext is here a

randomly chosen vector c over Zn satisfying ϕD/ϕ
′
D(c) = x. In particular, an

encryption c of 0 satisfied ϕD(c) = 0. It follows that the expanded represen-
tations of ϕD should not be polynomial-size (otherwise the CPA attacker could
recover it by solving a polynomial-size linear system). In order to get polynomial-
time encryptions and decryptions, ϕD/ϕ

′
D should be written in a compact form,

e.g. a factored or semi-factored form. By construction, the generic cryptosystem
described above is not homomorphic in the sense that the vector sum is not
a homomorphic operator. To get homomorphic properties, we develop ad hoc
nonlinear homomorphic operators Add and Mult, sometimes denoted by ⊕ or ⊗.

1.1 Overview of the paper

We consider a private-key encryption scheme where the secret key is a randomly
chosen square 2κ− by − 2κ matrix S defined over Zn, n being a RSA modulus.
To encrypt x, randomly choose x1, . . . , xκ, r1, . . . , rκ in Zn s.t. x1 + . . .+xκ = x
and output

c = S−1


r1x1
r1
· · ·
rκxκ
rκ


Throughout this paper, we will use the following convenient notation:

X(c)
def
= (x1, . . . , xκ)

R(c)
def
= (r1, . . . , rκ)

Clearly, c is an encryption of 0 if and only if

ϕD(c)
def
=

κ∑
ℓ=1

⟨s2ℓ−1, c⟩
∏
ℓ′ ̸=ℓ

⟨s2ℓ′ , c⟩ = 0

where si refers to the ith row of S.

In Section 2, we propose some security results based on symmetry under the
factoring assumption. In particular, these results will ensure that the secret key
S cannot be recovered under the factoring assumption.

In Section 3, we formally present the private-key encryption scheme described
above. The basic attack of this scheme consists of recovering the monomial co-
efficients of ϕD by solving a linear system. The key underlying idea is that the
expanded representation of ϕD is exponential-size (and thus cannot be recovered)
provided

κ = Θ(λ)

2

In Section 4, we propose simple/naive homomorphic operators keeping some
symmetry properties. The (naive) operator Add exactly follows the one consid-
ered in [GT20]. This operator is nonlinear (quadratic) and ensures that

X(c⊕ c′) = (x1 + x′1, . . . , xκ + x′κ)

R(c⊕ c′) = (r1r
′
1, . . . , rκr

′
κ)

A high-level description of this operator is proposed in Figure 1.

Add

S−1


r1x1

r1
· · ·
rκxκ

rκ

 , S−1


r′1x

′
1

r′1
· · ·
r′κx

′
κ

r′κ


 = S−1


r1r

′
1(x1 + x′

1)
r1r

′
1

· · ·
rκr

′
κ(xκ + x′

κ)
rκr

′
κ


Fig. 1. Description of the naive operator Add.

The implementation of Mult is a little bit more complex. It cannot be achieved
by applying only one quadratic operator. Indeed, it exploits the equality

xx′ =

κ∑
i=1

κ∑
j=1

xix
′
j

It follows that at least κ operators are necessary to store all the products xix
′
j in

some intermediate vectors. In the naive implementation of Mult, this is achieved
by applying κ quadratic operators O1, . . . ,Oκ. For instance, a high-level descrip-
tion of the naive operator O1 is given in Figure 2: O1(c, c

′) outputs an encryption
of x1x

′
1 + . . .+ xκx

′
κ.

O1

S−1


r1x1

r1
· · ·
rκxκ

rκ

 , S−1


r′1x

′
1

r′1
· · ·
r′κx

′
κ

r′κ


 = S−1


r1r

′
1x1x

′
1

r1r
′
1

· · ·
rκr

′
κxκx

′
κ

rκr
′
κ


Fig. 2. Description of the naive operator O1.

It then suffices to homomorphically add these vectors, i.e.

Mult(c, c′) = O1(c, c
′)⊕ · · · ⊕ Oκ(c, c

′)

A security analysis is proposed in Section 5. We first prove a fundamental re-
sult based on symmetry assuming the hardness of factoring. Proposition 3 states

3

that relevant information about S cannot be recovered. Roughly speaking, only
symmetric values (evaluations of polynomials over S) can be efficiently recov-
ered, while natural compact representations of ϕD do not deal with symmetric
values. This result excludes a large class of attacks based on Grœbner basis or
more generally based on variable elimination theory.

We then exhibit some weaknesses of this scheme by listing some efficient
attacks. We mainly adopt this approach in a pedagogical point of view. We wish
to provide some intuition about the ideas behind our construction. In particular,
we exhibit a common point of all the identified attacks. This leads us to propose
an (informal) assumption (see Assumption 1). This will then guide us to develop
new homomorphic operators in Section 6. These operators can be seen as a
randomization/generalization of the naive ones.

While Assumption 1 was not formally reduced to the security of our scheme,
we modestly think that some strong evidence about this are provided.

Remark 1. A SageMath implementation of the HE is given in Appendix B. The
source code of this implementation and the sources of some attacks proposed in
this paper can be found in the following archive:

https://drive.google.com/drive/folders/1fkma-sacLO5LA7eqgln-D7OTpYXN6xCQ?usp=sharing

1.2 Notation

We use standard Landau notations. Throughout this paper, we let λ denote the
security parameter: all known attacks against the cryptographic scheme under
scope should require 2Ω(λ) bit operations to mount. Let κ ≥ 2 be an integer and
let n be a large prime or a RSA modulus. All the computations considered in this
paper will be done in Zn.

– ∆κ refers to the set of permutations over {1, . . . , κ}.

– Σκ = {σ1, . . . , σκ} ⊂ ∆κ defined by σi(j) = (i + j − 2 mod κ) + 1, , i.e.
σi(1) = i;σi(2) = i+ 1; . . . ;σi(κ) = i− 1.

– The cardinality of a set S will be denoted by #S.

– ’Choose at random x ∈ X’ will systematically mean that x is chosen accord-

ing to uniform probability distribution over X, i.e. x
$← X.

– The inner product of two vectors v and v′ is denoted by ⟨v,v′⟩

– The set of all square t− by − t matrices over Zn is denoted by Zt×t
n .

Remark 2. The number M(m, d) of m-variate monomials of degree d is equal to(
d+m− 1

d

)
. In particular, M(2κ, κ) ≈ (27/4)κ.

4

2 Some security results under the factoring assumption

Throughout this section, n denotes a randomly chosen RSA-modulus. Given a

function ϕ : Zr
n → Zn, zϕ

def
= #{x ∈ Zr

n|ϕ(x) = 0}/nr. Classically a polyno-
mial will be said null (or identically null) if each coefficient of its expanded
representation is equal to 0.

2.1 Roots of polynomials

The following result proved in [AM09] establishes that it is difficult to output a
polynomial ϕ such that zϕ is non-negligible. The security of RSA in the generic
ring model can be quite straightforwardly derived from this result (see [AM09]).

Theorem 1. (Lemma 4 of [AM09] and Proposition 1 of [GT20]). As-
suming factoring is hard, there is no p.p.t algorithm A which inputs n and which
outputs1 a {+,−,×}-circuit representing a non-null polynomial ϕ ∈ Zn[X1, . . . , Xr]
such that zϕ is non-negligible.

Thanks to this lemma, showing that two polynomials (built without knowing
the factorization of n) are equal with non-negligible probability becomes an
algebraic problem: it suffices to prove that they are identically equal.

2.2 Symmetry

Let κ ≥ 2 and t ≥ 1 be integers. Recall that ∆κ denotes the set of the permu-
tations over {1, . . . , κ}. Throughout this section, we will consider an arbitrary
subset Σ ⊆ ∆κ. Let y1, y2 be randomly chosen in Zn. It is well-known that re-
covering y1 with non-negligible probability given only S = y1 + y2 or P = y1y2
is difficult assuming the hardness of factoring (y1, y2 are the roots of the poly-
nomial y2 − Sy + P). In this section, we propose to extend this. The following
definition naturally extends the classical definition of symmetric polynomials.

Definition 1. Consider the tuples of indeterminate (Yℓ = (Xℓ1, . . . , Xℓt))ℓ=1,...,κ.
A polynomial ϕ ∈ Zn[Y1, . . . , Yκ] is Σ-symmetric if for any permutation σ ∈ Σ,

ϕ(Y1, . . . , Yκ) = ϕ(Yσ(1), . . . , Yσ(κ))

Let P be an arbitrary p.p.t algorithm which inputs n and outputs m Σ-
symmetric polynomials s1, . . . , sm and a non Σ-symmetric polynomial π. Eval-
uating π only given evaluations of s1, . . . ,sm is difficult.

Lemma 1. Let n be a randomly chosen RSA modulus and (s1, . . . , sm, π) ←
P(n). Assuming the hardness of factoring, there is no p.p.t algorithm which
outputs π(y) given only s1(y), . . . , sm(y) with non-negligible probability over the

choice of n, y
$← Zκt

n .

Proof. See [GT20].
�

1 with non-negligible probability (the coin toss being the choice of n and the internal
randomness of A)

5

3 A private-key encryption scheme

We propose here a private-key encryption scheme where the secret key K con-
tains 2κ randomly chosen secret vectors s1, . . . , s2κ belonging to Z2κ

n . Encrypting
x ∈ Zn simply consists of randomly choosing c ∈ Z2κ

n satisfying

⟨s1, c⟩
⟨s2, c⟩

+ · · ·+ ⟨s2κ−1, c⟩
⟨s2κ, c⟩

= x (1)

By assuming the vectors s1, . . . , s2κ linearly independent, our scheme can be
defined as follows:

Definition 2. Let λ be a security parameter. The functions KeyGen, Encrypt,
Decrypt are defined as follows:

– KeyGen(λ). Let κ be a positive integer indexed by λ, let n be a randomly
chosen RSA-modulus. Choose at random an invertible matrix S ∈ Z2κ×2κ

n .
Output

K = {S} ; pp = {n, κ}

– Encrypt(K, pp, x ∈ Zn). Choose at random r1, . . . , rκ in Z∗
n and x1, . . . , xκ

in Zn s.t. x1 + · · ·+ xκ = x. Output

c = S−1


r1x1
r1
· · ·
rκxκ
rκ


– Decrypt(K, pp, c ∈ Z2κ

n). Output

x =

κ∑
ℓ=1

⟨s2ℓ−1, c⟩
⟨s2ℓ, c⟩

where si refers to the ith row of S.

Throughout this paper, Li denotes the linear function defined by Li(v) = ⟨si,v⟩.
Moreover, pp = {n, κ} will be assumed to be public. The homomorphic opera-
tor(s), developed later, will be included in pp. Proving correctness is straight-
forward by using the relation x = r1x1/r1 + . . . + rκxκ/rκ. The function De-
crypt can be represented by the ratio of two degree-κ polynomials ϕD, ϕ

′
D ∈

Zn[X1, · · · , X2κ] defined by

ϕD =

κ∑
ℓ=1

L2ℓ−1

∏
ℓ′ ̸=ℓ

L2ℓ′ ; ϕ
′
D =

κ∏
ℓ=1

L2ℓ (2)

i.e.
Decrypt(K, pp, c) = ϕD(c)/ϕ′D(c)

6

At this step, our scheme is not homomorphic in the sense that the vector sum is
not an homomorphic operator. Indeed, c and a · c are encryptions of the same
message for any a ∈ Z∗

n.
We can identify two independent sources of randomness in Encrypt: the choice

of the shares xi and the choice of the masks ri. As mentioned in the introduction,
we will consider the following convenient notation capturing these two types of
randomness:

X(c)
def
= (x1, . . . , xκ) = (L1(c)/L2(c), . . . ,L2κ−1(c)/L2κ(c))

R(c)
def
= (r1, . . . , rκ) = (L2(c), . . . ,L2κ(c))

The factoring assumption. The factorization of n is not used in KeyGen.
Consequently, the generation of n could be externalized2 (for instance generated
by an oracle). In other words, n could be a public input of KeyGen. It follows
that all the polynomials considered in our security analysis are built without
using the factorization of n. It follows that Proposition 1 and Lemma 1 can be
invoked.

The basic attack. The most natural attack consists of solving a linear system
in order to recover ϕD. Let c ← Encrypt(K, pp, 0) be an encryption of 0. By
definition, ϕD (see (2)) satisfies

ϕD(c) =

κ∏
ℓ=1

rℓ ·
κ∑

ℓ′=1

xℓ′ = 0

ensuring that ϕD(c) = 0. By considering several encryptions c1, . . . , ct of 0, we
get the system of equations ϕD(c1) = 0, . . . , ϕD(ct) = 0.

The expanded representation of ϕD could be thus recovered3 by solving a
linear system whose variables are its monomial coefficients. However, this at-
tack fails provided κ = Θ(λ) because the expanded representation of ϕD is
exponential-size in this case (see Remark 2). For instance, by choosing κ = 13,
the attack consists of solving a linear system dealing with approximatively 5 ·109
variables: this is currently assumed to be infeasible.

4 A naive implementation of the homomorphic operators

Let S ← KeyGen(λ). In this section, we will consider the quadratic polyno-
mials Lij ∈ Zn[U1, . . . , U2κ, V1, . . . , V2κ] defined by Lij(u,v) = Li(u)Lj(v) =
⟨si,u⟩⟨sj ,v⟩.

In this section, we propose a natural and simple way to implement the homomor-
phic operators. Throughout this paper, we will consider the following encryptions

2 ensuring that its factorization was forgotten just after its generation
3 up to a multiplicative factor

7

c and c′ of x and x′

c = S−1


r1x1
r1
· · ·
rκxκ
rκ

 ; c′ = S−1


r′1x

′
1

r′1
· · ·
r′κx

′
κ

r′κ


4.1 The additive operator

The additive operator exploits the basic equality

a

b
+
a′

b′
=
ab′ + a′b

bb′

showing that the numerator and the denominator of the sum can be obtained
by evaluating quadratic polynomials over a, a′, b, b′. This is the starting point to
build an additive operator Add (denoted sometimes ⊕) satisfying (see Figure 1)

X(c⊕ c′) = (x1 + x′1, . . . , xκ + x′κ)

R(c⊕ c′) = (r1r
′
1, . . . , rκr

′
κ)

Definition 3. AddGen(S) outputs the expanded representation of the quadratic
polynomials q1, . . . , q2κ defined by

 q1
· · ·
q2κ

 = S−1


L12 + L21

L22

· · ·
L2κ−1,2κ + L2κ,2κ−1

L2κ,2κ


As each quadratic polynomial qi has O(κ2) monomials, the running time of
AddGen is O(κ4) (2κ sums of 2κ quadratic polynomials). The operator Add ←
AddGen(S) consists of evaluating the polynomials q1, . . . , q2κ, i.e. Add(u,v) =
(q1(u,v), . . . , q2κ(u,v)), leading to a running time in O(κ3). See Appendix A
for a toy implementation of Add.

Proposition 1. Add← AddGen(S) is a valid additive homomorphic operator.

Proof. By construction, for any ℓ = 1, . . . , κ

⟨s2ℓ−1, (q1(c, c
′), . . . , q2κ(c, c

′))⟩
= L2ℓ−1,2ℓ(c, c

′) + L2ℓ,2ℓ−1(c, c
′)

= rℓxℓr
′
ℓ + r′ℓx

′
ℓrℓ

= rℓr
′
ℓ(xℓ + x′ℓ)

and

⟨s2ℓ, (q1(c, c′), . . . , q2κ(c, c′))⟩

8

= L2ℓ,2ℓ(c, c
′)

= rℓr
′
ℓ

It follows that

Decrypt(K, pp,Add(c, c′))

=
r1r

′
1(x1+x′

1)
r1r′1

+ . . .
rκr

′
κ(xκ+x′

κ)
rκr′κ

= x1 + x′1 + . . .+ xκ + x′κ = x+ x′

�

4.2 The multiplicative operator

The idea behind the operator ⊗ exploits the equality

xx′ =
∑

1≤i,j≤κ

xix
′
j =

κ∑
i=1

πi

with πi =
∑κ

j=1 xjx
′
σi(j)

(recall that σi is the permutation over {1, . . . , κ} defined
by σi(1) = i, σi(2) = i+ 1,. . . , σi(κ) = i− 1).

Simply speaking, κ quadratic operators O1, . . . ,Oκ are required to build
encryptions of π1, . . . , πκ. More precisely,

X(Oi(c, c
′)) = (x1x

′
σi(1)

, . . . , xκx
′
σi(κ)

)

R(Oi(c, c
′)) = (r1r

′
σi(1)

, . . . , rκr
′
σi(κ)

)

It then suffices to homomorphically add these encryptions to obtain an encryp-
tion of xx′.

‘

Definition 4. Given i ∈ {1, . . . , κ}, OGen(S,i) outputs the expanded represen-
tation of the quadratic polynomials q1, . . . , q2κ defined by

 q1
· · ·
q2κ

 = S−1


L1,2σi(1)−1

L2,2σi(1)

· · ·
L2κ−1,2σi(κ)−1

L2κ,2σi(κ)


and Oi(c, c

′) = (qi1(c, c
′), . . . , qi,2κ(c, c

′))

As highlighted in Fig. 3, Oi(c, c
′) is a valid operator which outputs an encryption

of πi. The multiplicative operator can be then defined as follows

c⊗ c′ = O1(c, c
′)⊕ . . .⊕Oκ(c, c

′)

Proposition 2. The operator ⊗ is a valid multiplicative homomorphic operator.

9

Proof. It suffices to show that c′′ ← Oi(c, c
′) is an encryption of πi =

∑κ
j=1 xix

′
σi(j)

.

Decrypt(S, pp, c′′)

=
∑κ

ℓ=1

rℓr
′
σi(ℓ)

xℓxσi(ℓ)
′

rℓr′σi(ℓ)

= x1x
′
σi(1)

+ . . .+ xκx
′
σi(κ)

= πi
�

Oi

S−1


r1x1

r1
· · ·
rκxκ

rκ

 , S−1


r′1x

′
1

r′1
· · ·
r′κx

′
κ

r′κ


 = S−1


r1r

′
σi(1)

x1x
′
σi(1)

r1r
′
σi(1)

· · ·
rκr

′
σi(κ)

xκx
′
σi(κ)

rκr
′
σi(κ)


Fig. 3. Description of the operator Oi showing that Decrypt(K, pp,Oi(c, c

′)) = πi

Case κ = 2. Given two encryptions c, c′ of x, x′, we have

O1(c, c
′) = T


r1r

′
1x1x

′
1

r1r
′
1

r2r
′
2x2x

′
2

r2r
′
2

 ; O2(c, c
′) = T


r1r

′
2x1x

′
2

r1r
′
2

r2r
′
1x2x

′
1

r2r
′
1


implying that c′′ = Mult(c, c′)

def
= Add(O1(c, c

′),O2(c, c
′)) is a valid encryption of xx′.

Indeed,

c′′ = T


r21r

′
1r

′
2(x1x

′
1 + x1x

′
2)

r21r
′
1r

′
2

r22r
′
1r

′
2(x2x

′
1 + x2x

′
2)

r22r
′
1r

′
2


and Decrypt(K, pp, c′′) = x1x

′
1 + x1x

′
2 + x2x

′
1 + x2x

′
2 = (x′

1 + x′
2)(x1 + x2) = xx′.

4.3 Towards a public-key encryption

The classic way (see [Rot11]) to transform a private-key cryptosystem into a
public-key cryptosystem consists of publicizing encryptions c1, . . . , ct of known
values x1, . . . , xt and using the homomorphic operators to encrypt x. Let En-
crypt1 denote this new encryption function. Assuming the IND-CPA security of
the private-key cryptosystem, it suffices that Encrypt1(pk, x) and Encrypt(K, pp, x)
are computationally indistinguishable to ensure the IND-CPA security of the
public-key cryptosystem. One can easily check this can be achieved (with over-
whelming probability) by choosing t = O(κ).

10

5 Security analysis

In order to make the basic attack fail,

κ = Θ(λ)

throughout this paper. To simplify our security analysis, we propose minor mod-
ifications in the definitions of the encrypting function and the homomorphic op-
erators (see definitions 2, 7 and 8) consisting of replacing S−1 by detS × S−1.
It is straightforward to show that our construction remains correct. This is done
to ensure that each value known by the CPA attacker can be expressed as a
polynomial defined over the coefficients of S.

There are classically two sources of randomness behind the knowledge of the
CPA attacker. The first source of randomness is the internal randomness of Key-
Gen, i.e. the choice ofK = {S}. The second source of randomness comes from the
encryption oracle. After receiving the challenge encryption c0 ← Encrypt(K, pp, x0),
the CPA attacker requests the encryption oracle to get encryptions c1, . . . , ct of
arbitrarily chosen plaintexts x1, . . . , xt ∈ Zn.

Definition 5. Let S ← KeyGen(λ), let (xi1, ri1, . . . , xiκ, riκ) be the values (ran-
domly) chosen by the encryption oracle to produce4 ci. For any ℓ ∈ {1, . . . , κ},
the random vector θℓ is defined by

θℓ = (s2ℓ−1, s2ℓ, (xiℓ, riℓ)i=0,...,t)

The random vector (θ1, . . . , θκ) is denoted by θ.

The knowledge of the CPA attacker can be represented as a vector α ∈ Zγ
n, with

γ = O(κ4) provided t = Θ(κ).

Definition 6. The CPA attacker’s knowledge (c0, . . . , ct, x1, . . . , xt,Add,Mult)
can be represented by a vector α, the ith component of α being the evaluation of

a polynomial αi over θ, i.e. α = (α1(θ), α2(θ), . . .)
def
= α(θ).

The polynomials αi have intrinsical symmetry properties.

Lemma 2. Each polynomial αi is Σκ-symmetric (see Definition 1).

Proof. See [GT20]

�

This result means that αi(θ1, . . . , θκ) = αi(θσ(1), . . . , θσ(κ)) for any σ ∈ Σκ. For
instance, Add and the operators O1, . . . ,Oκ remain unchanged by permuting
θ1, . . . , θκ according to σj , i.e. replacing (θ1, . . . , θκ) by (θj , . . . , θκ, θ1, . . . , θj−1).

4 ci = T (ri1xi1, ri1, . . . , riκxiκ, riκ).

11

5.1 A fundamental result

By mixing Lemma 1 and Lemma 2, we get the following fundamental result.

Proposition 3. Assume the hardness of factoring, π(θ) cannot be evaluated
provided π is a polynomial which is not Σκ-symmetric. In particular, the CPA
attacker cannot recover any:

1. coefficient of S,

2. product of strictly less than κ coefficients of S,

3. polynomial5 Li1 × · · · × Lit provided t < κ,

Proof. A direct consequence of Lemmas 1 and 2.
�

Consider, for instance, the polynomial

ϕD =

κ∑
ℓ=1

L2ℓ−1

∏
ℓ′≠ℓ

L2ℓ′

can be used to distinguish between encryptions of 0 and encryptions of 1. Clearly,
each monomial coefficient of ϕD is Σκ-symmetric (and thus could be perhaps
recovered). However, the expanded representation of ϕD (or its multiples) is
exponential-size provided κ = Θ(λ) and thus cannot be recovered.
By construction, ϕD (or its multiples) could nevertheless be efficiently repre-
sented with the linear functions Li (or O(1)-products of these linear functions).
However, these compact semi-factored representations do not deal with symmet-
ric quantities and they cannot be recovered according to Proposition 3. Unfortu-
nately, our scheme suffers from some vulnerabilities detailed in the two following
subsections.

5.2 Algebraic attacks based on Grœbner basis

The knowledge of the CPA attacks can be seen as evaluations of polynomials
over θ. Hence, our scheme can be seen as the over-defined system of nonlinear
equations

α1 − α1(θ) = 0

α2 − α2(θ) = 0

· · ·

Let I denote the ideal generated by the polynomials αi − αi(θ). Computing
Grœbner basis [Buc06] of I is relevant to solve such systems of equations.

By using variable elimination technics (e.g. based on Groebner basis), uni-
variate equations dealing with any coefficient sij of S could be recovered by

5 and thus cannot be evaluated

12

computing I ∩ ⟨sij⟩. However, thanks to symmetry, such equations are ensured
to be nonlinear and thus cannot be solved under the factoring assumption. This
is exactly what Proposition 3 encapsulates.

Nevertheless, other attacks based on Grœbner basis can be imagined. This
is the object of this section.

A basic example. Similarly to the basic attack of the private-key encryption
scheme (see Section 3), the system of equations

ϕD(ci)− xiϕ′D(ci) = 0 for any i = 0, . . . , t (3)

can be considered as linear. The number of variables of this linear system be-
ing equal 2 ×M(2κ, κ) (see notation of the introduction), it is exponential-size
provided κ = Θ(λ).

By considering these equations as nonlinear, i.e. defined over the variables
sij and x0 (assuming x1, . . . , xt are known), attacks based on Grœbner basis
could be relevant to recover x0. We simply consider the ideal I generated by the
polynomials ϕD(ci)− xiϕ′D(ci), i.e.

κ∑
ℓ=1

⟨s2ℓ−1, ci⟩
∏
ℓ′ ̸=ℓ

⟨s2ℓ′ , ci⟩ − xi
κ∏

ℓ=1

⟨s2ℓ, ci⟩

We then eliminate the variables sij to recover x0.

We first experiment the case κ = 1. We measure the running times w.r.t. t.

t 4 5 6 7 · · · 10 · · · 15
time(ms) 1.5 1.5 1.5 1.5 · · · 1.6 · · · 1.6

Consider now κ = 2. We obtain the following running times

t 18 19 20 21 · · · 25 · · · 30
time(s) 780 125 21 21 · · · 22 · · · 21

By noticing that M(4, 2) = 10, we notice a major threshold effect when

t < 2×M(2κ, κ)

In other words, when the system of equations (3) cannot be considered as linear
(because the number of equations is too small, i.e. strictly smaller than 2 ×
M(2κ, κ)), elimination technics seem dramatically not efficient to recover x0.
This would be sufficient to prove the inefficiency of such attacks by recalling
that M(2κ, κ) is exponential in κ. Because of prohibitive running times, this
threshold effect was unfortunately not confirmed for higher values of κ, i.e. we
did not obtain any result within 24h for κ = 3. Nevertheless, this clearly suggests
the inefficiency of these attacks.

13

Moreover, the above experiments are intrinsically not efficient. Indeed, the
expanded representation of the polynomials ϕD and ϕ′D is exponential w.r.t. κ
and thus cannot be directly considered. To overcome this, new variables could
be introduced. For instance, we introduce the variables xi1, . . . , xiκ for each
encryption ci and replace (3) by the κ+ 1 following equations

⟨s2ℓ−1, ci⟩ = xiℓ · ⟨s2ℓ, ci⟩ for any ℓ = 1, . . . , κ

xi1 + . . .+ xiκ = xi

This dramatically degrades performance in all our experiments. Indeed, recov-
ering x0 requires the elimination of the variables xij which intrinsically leads
to the polynomials ϕD and ϕ′D. In our opinion, Grœbner basis are clearly not
relevant tools to attack our private-key encryption (without taking into account
homomorphic operators) provided

κ = Θ(λ)

Attack 1. We here propose to decrypt the challenge encryption only knowing
the homomorphic operators (without any access to the encryption oracle). For
concreteness, we consider the ideal I containing the polynomials related to the
homomorphic operators and the challenge encryption.
The methods based on Grœbner basis deal with expanded representations. As the
number of monomials of each coefficient of S−1 (or more precisely detS × S−1)
is exponential w.r.t. κ.

A first way to overcome this could consist of introducing new variables
t11, t12, . . . , t2κ,2κ and replacing S−1 by the matrix T = [tij]. This can be done
by adding to the ideal I all the equations coming from the equality T × S = Id.
However, this approach dramatically increases the running times in all our ex-
periments.

Let us propose an other approach. For instance, let us consider the operator
(q1, . . . , q2κ) = O1. By definition,

S

 q1
· · ·
q2κ

−
L11

· · ·
L2κ,2κ

 = 0

The polynomials coming from this equation are only quadratic ensuring polynomial-
size expanded representations6.

By using these basic optimizations (see Fig. 4 for a Sagemath implementation
of this attack dealing with the case κ = 2), the challenge encryption can be
decrypted with the following running times:

κ 2 . . . 6 7 8
time(s) 0.06 . . . 24 83 330

It is unclear whether these attacks are efficient or not. Nevertheless, they seem
more efficient than the basic attack.
6 The same can be done with the other operators.

14

Remark 3. The above running times are not improved by including the encryp-
tions c1, . . . , ct in the ideal I. This explains why they were not considered in
Attack 1.

Remark 4. Attacks based on Grœbner basis seem totally inefficient if Mult is
discarded from I. This enhances our confidence in the security of the additive
scheme proposed in [GT20].

5.3 Attacks using specificities of the homomorphic operators

The attacks based on Grœbner basis are general in the sense that they can be
mounted whatever the way to define the homomorphic operators is. We here
propose a list (hopefully exhaustive) of efficient attacks exploiting specificities
of our construction.

Attack 2. By definition of our operator ⊗, we can write (u ∼ v meaning that
∃k s.t. u = kv),

c⊗ c ∼ S−1


rκ1x1(x1 + x2 + . . .+ xκ)
rκ1
· · ·
rκκxκ(x1 + x2 + . . .+ xκ)
rκκ

 ∼ S−1


rκ1x1x
rκ1
· · ·
rκκxκx
rκκ


This is obviously a disaster in term of security. Indeed, if c is an encryption of
0 then

c⊗ c ∼ S−1


0
rκ1
· · ·
0
rκκ


Let c1, . . . , cκ be encryptions of 0. To test whether a challenge encryption c is
an encryption of 0, it suffices to check that c⊗ c belongs to the vectorial space
spanned by the vectors c1 ⊗ c1,. . . , cκ ⊗ cκ.

Attack 3. Let us consider the operator O1 defined in the previous section, i.e.
applying O1 consists of evaluating the polynomials q1, . . . , q2κ defined by

 q1
· · ·
q2κ

 = S−1


L11

L22

· · ·
L2κ,2κ


As the vector v = S−1(0, 1, 0, 1, . . . , 0, 1) is the unique vector satisfying Add(u,v) =
u for any valid encryption u, it can be recovered by solving a linear system. It

15

import time
n=97; kappa=2; ka=2*kappa
alpha=[];pi=[];L=[];LL=[];qq=[]
R. <x1,x2,x,s11,s12,s13,s14,s21,s22,s23,s24,s31,s32,s33,s34,s41,s42,s43,s44,u1,u2,u3,u4,v1,v2,v3,v4>
=PolynomialRing(FiniteField(n),27)
u=vector([u1,u2,u3,u4])
v=vector([v1,v2,v3,v4])
S=matrix(4,4,[s11,s12,s13,s14,s21,s22,s23,s24,s31,s32,s33,s34,s41,s42,s43,s44])
SS=matrix(FiniteField(n),4,4,(randint(1, n) for i in range(16)))
TT=SS.inverse()
c=vector([1,2,3,4])
o=S*c
pi=[x1+x2-x]
pi.append(o[0]-x1*o[1])
pi.append(o[2]-x2*o[3])
su=S*u
sv=S*v
ssu=SS*u
ssv=SS*v
L.append(vector([(su[0]*sv[0]),su[1]*sv[1],su[2]*sv[2],su[3]*sv[3]]))
L.append(vector([(su[0]*sv[1]+su[1]*sv[0]),su[1]*sv[1],su[2]*sv[3]+su[3]*sv[2],su[3]*sv[3]]))
L.append(vector([(su[0]*sv[2]),su[1]*sv[3],su[2]*sv[0],su[3]*sv[1]]))
LL.append(vector([(ssu[0]*ssv[0]),ssu[1]*ssv[1],ssu[2]*ssv[2],ssu[3]*ssv[3]]))
LL.append(vector([(ssu[0]*ssv[1]+ssu[1]*ssv[0]),ssu[1]*ssv[1],ssu[2]*ssv[3]+ssu[3]*ssv[2],ssu[3]*ssv[3]]))
LL.append(vector([(ssu[0]*ssv[2]),ssu[1]*ssv[3],ssu[2]*ssv[0],ssu[3]*ssv[1]]))
for i in range(kappa+1):

q=TT*LL[i]
for j in range(ka):

qq.append(q[j])
for t in range(kappa+1):

for i in range(ka):
u=[0]*ka
u[i]=u[i]+1
for k in range(ka):

v=[0]*ka
v[k]=v[k]+1
Z=[0]*ka
for d in range(ka):

Z[d]=qq[ka*t+d].coefficient(u1:u[0],u2:u[1],u3:u[2],u4:u[3],v1:v[0],v2:v[1],v3:v[2],v4:v[3])
ZZ=vector(Z)
Y=S*ZZ
for m in range(ka):

p=Y[m]-L[t][m].coefficient(u1:u[0],u2:u[1],u3:u[2],u4:u[3],v1:v[0],v2:v[1],v3:v[2],v4:v[3])
alpha.append(p)

tp1=time.clock()
IF=R.ideal(alpha+pi)
H=IF.elimination ideal([x1,x2,s12,s13,s14,s21,s22,s23,s24,s31,s32,s33,s34,s41,s42,s43,s44])
print(H)
tp2=time.clock()
print(tp2-tp1)

Fig. 4. Implementation of Attack 1 : a SageMath program decrypting the challenge
encryption c = (1, 2, 3, 4) only knowing the homomorphic operators in the case κ = 2.
We obtained ”Ideal (s11*x - 31*s11, s11∧3 + 6*s11∧2 - 25*s11) of Multivariate Polynomial
Ring in x1, x2, x, s11, s12, s13, s14, s21, s22, s23, s24, s31, s32, s33, s34, s41, s42, s43,
s44, u1, u2, u3, u4, v1, v2, v3, v4 over Finite Field of size 97”.

16

follows that O1(c,v) is equal to the vector w = S−1(0, r1, 0, r2, . . . , 0, rκ). By
solving the equation Add(u,w) = c, we get the vector

c̃ = S−1


x1
1
· · ·
xκ
1


satisfying ⟨s1+s3+· · ·+s2κ−1, c̃⟩ = x. This leads to an efficient attack consisting
of solving a linear system of size 2κ.

Attack 4. Let us consider the vector v = uκ−1 built as follows:

– u0 = c

– ui = Oi+1(ui−1, c) for any i = 1, . . . , κ− 1

By construction,

v = S−1



r1 . . . rκ−1x1 . . . xκ−1

r1 . . . rκ−1

r2 . . . rκx2 . . . xκ
r2 . . . rκ
· · ·
rκr1 . . . rκ−2xκx1 . . . xκ−2

rκr1 . . . rκ−2


Il follows that

φ(c,v)
def
= L14(c,v) + L36(c,v) + . . .+ L2κ−1,2(c,v)

= r1 · · · rκ (x1 + . . .+ xκ)

= ϕD(c)

can be used to distinguish encryptions of 0 from random ones. Moreover, as this
polynomial is quadratic, it expanded representation can be polynomially recov-
ered by solving a linear system (by considering sufficiently many encryptions of
0).

Attack 5. Thanks to the operator O1, one can obtain vectors c1 = c, c2, . . . , c4κ
satisfying

ci = S−1


ri1x

i
1

ri1
· · ·
riκx

i
κ

riκ


As ⟨s1, ci⟩ − xi1⟨s2, ci⟩ = 0, the determinant of the following matrix

17


c11 . . . c1,2κ −x1c11 . . . −x1c1,2κ
c21 . . . c2,2κ −x21c21 . . . −x21c2,2κ
· · ·
c4κ,1 . . . c4κ,2κ −x4κ1 c4κ,1 . . . −x4κ1 c4κ,2κ


is null. This leads to an univariate degree-κ(6κ + 1) equation in x1. Thanks
to symmetry properties, x2, . . . , xκ are also solutions of this equation. In other
words, the equation is

(x− x1)6κ+1 · · · (x− xκ)6κ+1 = 0

with overwhetming probability. Thus, x = x1 + . . . + xκ can be recovered in
polynomial-time (it can be recovered from the coefficient of xd−1, d being the
degree of the equation).

5.4 An assumption

The attacks 2,3,4,5 belong to the class of attacks by linearization defined in
[GT20]. Informally, these attacks consist of using the homomorphic operators
(in an arbitrary way) to build new encryptions v1, . . . , vr from the challenge
encryption c (and known encryptions). This leads to an efficient attack if there
exists a small polynomial ϕ such that ϕ(v1, . . . , vr) = 0 if and only if c is an
encryption of 0. Indeed, the monomial coefficients of ϕ can be efficiently recovered
by solving a linear system (as done in the basic attack). It can be then used to
distinguish encryptions of 0 from random ones.

Let us try to find a common point between all the attacks of Section 5.3.
Assume c′′ = O(c, c′) where O is one of the (naive) operators previously defined.
By construction,

X(c′′) = ϕO,X(X(c), X(c′)) =
(
ϕO,X
i (X(c), X(c′))

)
i=1,...,κ

R(c′′) = ϕO,R(R(c), R(c′)) =
(
ϕO,R
i (R(c), R(c′))

)
i=1,...,κ

where ϕO,X
i and ϕO,R

i are public polynomials. For instance,

ϕAdd,X(X(c), X(c′)) = X(c) +X(c′)

All the attacks of Section 5.3 exploit the fact the functions ϕO,X
i and ϕO,R

i

are known and deterministic. By assuming that these conditions are necessary
to mount efficient attacks, it would be relevant to build operators where ϕO,X

i

and ϕO,R
i are probabilistic functions. This leads us to formulate the following

assumption.

Assumption 1 (Informal). Our construction would be IND-CPA secure if the

functions ϕO,X
i and ϕO,R

i were probabilistic.

18

This is obviously not possible to build probabilistic homomorphic operators.
However, the new homomorphic operators developed in the next section will
ensure that X(c′′) does not only depend on X(c) and X(c′) but it also depends
on R(c′), R(c′). Similarly R(c′′) will not only depend on R(c) and R(c) but it
will also depend on X(c′), X(c′). In other words,

X(c′′) =
(
ϕO,X
i (R(c), R(c′), X(c), X(c′))

)
i=1,...,κ

R(c′′) =
(
ϕO,R
i (R(c), R(c′), X(c), X(c′))

)
i=1,...,κ

Roughly speaking, the two independent sources of randomness associated to
the functions X and R will be mixed in the construction of c′′. The functions
ϕO,X
1 , . . . , ϕO,X

κ , ϕO,R
1 , . . . , ϕO,R

κ will be randomly and independently chosen in a
given set of rational functions. Moreover, Proposition 3 can be straightforwardly
extended to show that these functions cannot be recovered under the factoring
assumption.

6 New homomorphic operators

Notation. P and Q will refer to subsets of homogeneous polynomials belonging
to Zn[U1, . . . , U2κ, V1, . . . , V2κ]. The choice of these sets will be discussed later.
In the following of the paper, the operators Add,O1, . . . ,Oκ developed in the
previous sections will be denoted by Addnaive,Onaive

1 , . . . ,Onaive
κ .

6.1 The additive operator

Ideally, we would like to build an encryption c′′=Add(c, c′) defined by

c′′ = S−1


η1r1r

′
1(x1 + x′1 + ν1)

η1r1r
′
1

· · ·
ηκrκr

′
κ(xκ + x′κ + νκ)

ηκrκr
′
κ


where ηℓ, νℓ are randomly chosen in Zn ensuring that ν1+. . .+νκ = 0. This would
be sufficient to ensure that c′′ is drawn according to a probability distribution
indistinguishable from Encrypt(K, pp, x+ x′).

However, it is obviously not possible to build such encryptions with deterministic
operators. We propose to define ηℓ and νℓ as evaluations of secret polynomials
over c, c′.

Definition 7. AddGen(S) randomly chooses polynomials η1, . . . , ηκ ∈ P and
ν0, . . . , νκ ∈ Q s.t. ν1 + . . .+ νκ = 0 and outputs the expanded representation of
the polynomials q1, . . . , q2κ defined by

19

 q1
· · ·
q2κ

 = S−1


η1 (ν0(L12 + L21) + ν1L22)
η1ν0L22

· · ·
ηκ (ν0(L2κ−1,2κ + L2κ,2κ−1) + νκL2κ,2κ)
ηκν0L2κ,2κ


The operator Add← AddGen(S) consists of evaluating the polynomials q1, . . . , q2κ,
i.e.

Add(u,v) = (q1(u,v), . . . , q2κ(u,v))

It follows that the running time of Add is polynomial as long as the expanded
representation of the polynomials ηℓ, νℓ is polynomial-size. It is typically the case
provided their degree is O(1).

Proposition 4. The operator ⊕ is a valid additive homomorphic operator.

Proof. Let c′′=Add(c, c′).

c′′ = S−1


η1(c, c

′)r1r
′
1 (ν0(c, c

′)(x1 + x′1) + ν1(c, c
′))

η1(c, c
′)ν0(c, c

′)r1r
′
1

· · ·
ηκ(c, c

′)rκr
′
κ(ν0(c, c

′)(xκ + x′κ) + νκ(c, c
′))

ηκ(c, c
′)ν0(c, c

′)rκr
′
κ


According to Theorem 1, (ηℓν0)(c, c

′) = 0 holds with negligible probability.
Thus,

Decrypt(S, pp, c′′)

=

κ∑
ℓ=1

ηℓ(c, c
′)rℓr

′
ℓ (ν0(c, c

′)(xℓ + x′ℓ) + νℓ(c, c
′))

ηℓ(c, c′)ν0(c, c′)rℓr′ℓ

=x1 + x′1 +
ν1(c, c

′)

ν0(c, c′)
+ . . .+ xκ + x′κ +

νκ(c, c
′)

ν0(c, c′)

=x1 + x′1 + . . .+ xκ + x′κ +
ν1(c, c

′) + . . .+ νκ(c, c
′)

ν0(c, c′)

=x1 + x′1 + . . .+ xκ + x′κ

=x+ x′

�

Remark 5. The role of ν0 is to ensure that the polynomials q1, . . . , q2κ are ho-
mogeneous.

Remark 6. The naive operator Addnaive is obtained by setting ν0 = η1 = · · · =
ηκ = 1, ν1 = · · · = νκ = 0.

20

6.2 A multiplicative operator

Similarly to the operator Addnaive, the naive operators Onaive
i are modified as

follows:

Definition 8. Given i ∈ {1, . . . , κ}, OGen(S, i) randomly chooses polynomials
η1, . . . , ηκ ∈ P and ν0, . . . , νκ ∈ Q and outputs the expanded representation of
the polynomials q1, . . . , q2κ defined by

 q1
· · ·
q2κ

 = S−1


η1

(
ν0L1,2σi(1)−1 + ν1L2,2σi(1)

)
η1ν0L2,2σi(1)

· · ·
ηκ

(
ν0L2κ−1,2σi(κ)−1 + νκL2κ,2σi(κ)

)
ηκν0L2κ,2σi(κ)


The operator Oi ← OGen(S, i) consists of evaluating the polynomials q1, . . . , q2κ,
i.e. Oi(u,v) = (q1(u,v), . . . , q2κ(u,v)). The multiplicative operator can be then
defined as follows

c⊗ c′ = O1(c, c
′)⊕ . . .⊕Oκ(c, c

′)

Proposition 5. The operator ⊗ is a valid multiplicative homomorphic operator.

Proof. It suffices to show that c′′ ← Oi(c, c
′) is an encryption of πi =

∑κ
j=1 xix

′
σi(j)

.

According to Theorem 1, (ηℓν0)(c, c
′) = 0 holds with negligible probability.

Thus,

Decrypt(S, pp, c′′)

=

κ∑
ℓ=1

ηℓ(c, c
′)rℓr

′
σi(ℓ)

(
ν0(c, c

′)xℓxσi(ℓ)′ + νℓ(c, c
′)
)

ηℓ(c, c′)ν0(c, c′)rℓr′σi(ℓ)

=x1x
′
σi(1)

+
ν1(c, c

′)

ν0(c, c′)
+ . . .+ xκx

′
σi(κ)

+
νκ(c, c

′)

ν0(c, c′)

=x1x
′
σi(1)

+ . . .+ xκx
′
σi(κ)

+
ν1(c, c

′) + . . .+ νκ(c, c
′)

ν0(c, c′)

=x1x
′
σi(1)

+ . . .+ xκx
′
σi(κ)

=πi

�

6.3 Increasing randomness for almost free

In this section, we propose to increase randomness in our homomorphic operators
without degrading performance. We will experimentally show that this added
randomness strongly increases the running time of Grœbner basis attacks (see
Section 7.2).

21

Operator Rand. We can easily modify the operators Oi (the same can be done
for Add) in order to output encryptions valid under a randomly chosen key Ti
(instead of S). For instance, the operator O1 can be redefined as follows

OS→T1
1 = T−1

1


η1 (ν0L11 + ν1L22)
η1ν0L22

· · ·
ηκ (ν0L2κ−1,2κ−1 + νκL2κ,2κ)
ηκν0L2κ,2κ


By construction, c′′ = OS→Ti

i (c, c′) is a valid encryption of πi under the key

Ti. We then develop operators RandTi→T ′
i to switch keys and to randomize en-

cryptions (without modifying the plaintexts). Let Li
j denote the linear function

Li
j(u) = ⟨tij ,u⟩ where tij is the jth row of Ti. The operator RandTi→T ′

i can be
defined as follows:

RandTi→T ′
i = T ′−1

i


η1

(
ν0Li

1 + ν1Li
2

)
η1ν0Li

2

· · ·
ηκ

(
ν0Li

2κ−1 + νκLi
2κ

)
ηκν0Li

2κ


where ηℓ and νℓ are randomly chosen variate-2κ polynomials ensuring that

ν1 + . . . + νκ = 0. By construction c′′′ = RandTi→T ′
i (c′′) is a valid encryption

of πi under the key T ′
i . This randomization can be chained, i.e. by considering

operators RandTi→T ′
i , RandT

′
i→T ′′

i , . . . ,RandT
[γ]
i →S . We can thus define the func-

tion OGen(S, i, γ), extending the function OGen(S, i), which outputs the operator

O[γ]
i defined by

O[γ]
i (c, c′) = RandT

[γ]
i →S

(
. . .

(
RandT

′
i→T ′′

i

(
RandTi→T ′

i

(
OS→Ti

i (c, c′)
)))

. . .
)

It should be noticed that considering operators Rand does not affect so much the
running time of the homomorphic operators: they run at least κ faster than the

operators Oi. For instance, if the polynomials ηℓ, νℓ are linear then O[γ]
i runs in

O(κ5 + γκ4)

Remark 7. The ideas of this section could be used to control homomorphic com-
putations. Consider a set of encryptions c1, . . . , ct valid under randomly chosen
keys S1, . . . , St. Given an arithmetic circuit ϕ and a randomly chosen key T , rel-
evant operators can be developed to compute c = Eval(ϕ, c1, . . . , ct) valid under
T but nothing else (under T).

7 Security analysis

In our security analysis and in all our experiments, the polynomials νℓ, ηℓ will
be linear. More precisely, νℓ, ηℓ will be randomly chosen in the sets of linear
polynomials respectively P,Q ⊂ Zn[U1, . . . , U2κ, V1, . . . , V2κ] defined by:

22

– P = {a1U1 + . . .+ a2κU2κ|ai ∈ Zn}

– Q = {a1V1 + . . .+ a2κV2κ|ai ∈ Zn}

Under this choice, each polynomial associated to each homomorphic operator is
in the form ∑

(i,j,k,ℓ)∈{1,...,2κ}4:i≤j,k≤ℓ

aijkℓUiUjVkVℓ

7.1 Security vs Assumption 1

In the construction of our new homomorphic operators, symmetry properties
are kept. Hence, Proposition 3 can be straightforwardly extended to our new
settings. To achieve this, it suffices to incorporate the internal randomness of
AddGen and OGen in θ.

Proposition 6. Assuming the hardness of factoring, π(θ) cannot be evaluated
provided π is a polynomial which is not Σκ-symmetric. In particular, the CPA
attacker cannot recover any:

1. coefficient of S,

2. product of strictly less than κ coefficients of S,

3. polynomial7 Li1 × · · · × Lit provided t < κ,

4. polynomial νℓ, ηℓ for any ℓ = 1, . . . , κ

Remark 8. This proposition does not ensure anything about ν0.

Let c′′ = O(c, c′) with O ∈ {O1, . . . ,Oκ,Add}. For instance, if O = Add then
we have

X(c′′) =

(
x1 + x′1 +

ν1(c, c
′)

ν0(c, c′)
, . . . , xκ + x′κ +

νκ(c, c
′)

ν0(c, c′)

)
R(c′′) = ν0(c, c

′) (r1r
′
1η1(c, c

′), . . . , rκr
′
κηκ(c, c

′))

Hence, X(c′′) does not only depend on X(c), X(c′) and R(c′′) does not only
depend on R(c), R(c′), i.e.

X(c′′) = ϕO,X(X(c), X(c′), R(c), R(c′))

R(c′′) = ϕO,R(X(c), X(c′), R(c), R(c′))

It follows that X(c′′) is a probabilistic function (randomness coming from R(c),
R(c′)) of X(c), X(c′) and R(c′′) is a probabilistic function of R(c), R(c′). The
same remark can be done for the other operators. Moreover, Proposition 3 en-
sures that these functions cannot be recovered under the factoring assumption
(the polynomials νℓ and ηℓ cannot be recovered). According to Assumption 1,
this suggests IND-CPA security.

7 and thus cannot be evaluated

23

7.2 Algebraic attacks based on Grœbner basis

We here propose new experiments clearly suggesting that algebraic attacks based
on variable elimination technics are not efficient. First of all, Proposition 6 can be
invoked to exclude a large class of attacks. For instance, coefficients of S cannot
be recovered by using such attacks. Indeed, even if univariate equations dealing
with coefficients of S can be recovered, symmetry ensures that these equations
are not linear and the factoring assumption ensures they cannot be solved. This
is fundamental in our security analysis.

Proposition 6 does not say anything about the polynomial ν0. In consequence,
this polynomial will be assumed to be known. In all our experiments, we will set

ν0(u,v) = u1 + . . .+ u2κ

As done in Section 5.2, we consider the ideal I generated by the polynomials
derived from the homomorphic operators and the ones derived from the challenge
encryption c, i.e.

⟨s2ℓ−1, c⟩ = xℓ · ⟨s2ℓ, c⟩ for any ℓ = 1, . . . , κ

x1 + . . .+ xκ = x

The basic attack exploits the basic equation ϕD(c)− xϕ′D(c) = 0, i.e.

κ∑
ℓ=1

⟨s2ℓ−1, c⟩
∏
ℓ′ ̸=ℓ

⟨s2ℓ′ , c⟩ − x
κ∏

ℓ=1

⟨s2ℓ, c⟩ = 0

By construction, this equation is exponential-size provided κ = Θ(λ). However,
shorter equations could be efficiently recovered with the introduction of the
homomorphic operators. We are here interested in recovering any equation in
the form

ϕ(c, x, S, coeff) = 0

where ϕ is a short polynomial8 and coeff represents the monomial coefficients of
all the polynomials νℓ, ηℓ involved in homomorphic operators. Similarly to the
basic attack, such equations lead to attacks consisting of solving linear systems.
More precisely, by considering encryptions c1, . . . , ct of known values y1, . . . , yt,
we obtain the following system of equationsϕ(c, x, S, coeff) = 0

ϕ(ci, yi, S, coeff) = 0 for any i = 1, . . . , t

By considering this system as linear, univariate equations only dealing with x
can be recovered provided t is sufficiently large. Such equations would be relevant
to distinguish between x = 0 and x = 1.

8 ϕ(c, x, S, coeff) =
∑

i ϕi(c, S, coeff)× xi with ϕi not null for at least one i ≥ 1.

24

Such attacks are efficient provided the expanded representation of ϕ is polynomial-
size. Ideally, an equation in the form

x− a = 0

or more generally ψ(c, x, S, coeff) × (x − a) = 0 would allow the attacker to
immediately conclude that x = a without requesting the oracle encryption, i.e.
without considering the encryptions c1, . . . , ct. As expected, we obtained such
equations.

To get such equations, it suffices to eliminate the variables x1, . . . , xκ. A
sageMath program dealing with the case κ = 2 can be found in Appendix C.
While this takes only 0.06 seconds with the naive operators in the case κ = 2,
30s were required with the new ones and approximatively 6h for κ = 3. This is
encouraging but not sufficient to conclude this attack is not polynomial.

We carried on other experiments in this sense. We considered the operators

O[γ]
i introduced in Section 6.3, choosing γ = 1. This dramatically affects the

running time, e.g. 20 hours in the case κ = 2. It is tempting to assume that the
running time of these attacks is exponential w.r.t. γ. To enhance this idea, we
propose other experiments dealing with higher values of γ.

Experiments highlighting the role of the parameter γ. Throughout this
experiment, we set κ = 2. In order to not have prohibitive running times and
thus to consider higher values of γ, we will consider the naive operators Addnaive,
Onaive

1 and Onaive
2 (instead of the new versions of these operators) randomized

as explained in Section 6.3: in particular the operators RandT→T ′
are defined

exactly in the same manner9. We obtain the following running times.

γ 0 1 2 3
time(s) 0.06 423 8200 179000

These running times clearly confirm our intuition. Nevertheless, improve-
ments could be perhaps obtained by reducing the number of variables in the
ideal I. For instance, some/all operators Rand (the polynomials derived from
these operators) can be simply removed from I (more exactly, not used to gen-
erate I). We propose to break the chains of operators Rand by removing at least
one operator Rand in each chain (associated to each operator Addnaive, Onaive

1

and Onaive
2). We observe that the running times are significantly degraded. More

interesting, there does not apparently exist any equation shorter than the basic
one. In particular, x cannot be recovered anymore. Roughly speaking, this means
that information is lost when randomizing chains are broken. This suggests that
the running times previously obtained cannot be improved by considering sub-
ideals I ′ ⊂ I.
9 For instance, Addnaive,S→T0 returns encryptions valid under a randomly chosen
key T0. These encryptions are then randomized by applying a chain of operators
RandTi→Ti+1 with Tγ = S.

25

Claim 1. Algebraic attacks based on Grœbner basis are inefficient provided10

κ = Θ(λ) and γ = Θ(λ).

Discussion. This claim is only based on experimental results. Further investi-
gations should be obviously done in this sense. Maybe subs-systems of equations
could be considered in order to reduce the number of variables (generally more
crucial than the number of polynomials). Other approaches could be maybe
investigated. In our experiments, Grœbner basis of intersections of ideals are
computed, i.e. I ∩ J where J is the ideal of all the polynomials not depending
on x1, . . . , xκ. It may seem like overkill in the sense we only need one equation
in the form

ϕ(c, x, S, coeff) = 0

7.3 Efficiency

As mentioned above, the running time of the homomorphic operators is poly-
nomial as long as the expanded representation of the polynomials νℓ and ηℓ is
polynomial-size. In all the experiments conducted in this section, the polynomi-
als νℓ and ηℓ are linear. Under this choice, the running time of Add is O(κ5) and
the running time of Mult is O(κ6).

Let us consider κ = 13 (ensuring the inefficiency of the basic attack11). Eval-
uating Add consists of evaluating 26 degree-4 variate-26 polynomials. To achieve
this, 3 × 106 multiplications over Zn should be achieved. Similarly, evaluating
Mult requires around 26× (3× 106) = 78× 106 multiplications.

It should be noticed that evaluating these operators consists of evaluating
expanded polynomials. It can be thus highly parallelized. Moreover, some im-
provements can be imagined but this is not the purpose of this paper.

8 Future Work / Open questions

Several ways can be chosen to extend our security analysis. The most formal
one would consist of formally reducing a classical cryptographic problem to the
security of our scheme. Algebraic attacks based on Grœbner basis should be
deeper investigated. In our opinion, it is a nice cryptanalysis challenge. Assump-
tion 1 should be also deeper investigated. To achieve it, one could also search
new attacks against the naive encryption scheme (which is relatively simple to
analyze). Finally, the factoring assumption is required to make some algebraic
attacks based on Grœbner basis irrelevant. Indeed, let us consider the public
operator Add = (q1, . . . , q2κ). Without the factoring assumption, the rows s2ℓ
could be efficiently recovered by solving12 the following equation

⟨s2ℓ, (q1, . . . , q2κ)⟩ = ηℓν0L2ℓ,2ℓ

10 γ is the parameter used in Section 6.3.
11 which appears to be the most efficient identified attack
12 by using variable elimination technics applied on the ideal of the polynomials derived

from ⟨s2ℓ, (q1, . . . , q2κ)⟩ = ηℓν0L2ℓ,2ℓ.

26

New ideas should be considered to remove this assumption. We carried on some
preliminary experiments in this sense. In order to increase the ratio between the
number of variables and the number of polynomials in I, we considered higher
degree polynomials νℓ, ηℓ while S was chosen as follows,

S =


S1 0 · · · 0

0 S2 · · ·
...

...
. . . 0

0 · · · 0 Sκ


where S1, . . . , Sκ are square matrices. Assume κ = Θ(λ), the running times
of the homomorphic operators remain polynomial as long as the size of the
matrices Si is O(1) and the degree of the polynomials νℓ and ηℓ is polynomial.
We obtained promising experimental results suggesting recovering S by using
elimination technics (e.g. with Grœbner basis) is (highly) exponential with the
degree of these polynomials. Informally speaking, this suggests that the result
encapsulated by Proposition 3 remains true without the factoring assumption.

In our opinion, many other developments could be made. For instance, our
scheme can be straightforwardly turned into a HE over real numbers. To achieve
this, it suffices to choose S over the reals, e.g. S ← [0, 1]2κ×2κ. Indeed, c and
a × c are encryptions of the same value for any a ∈ R∗. Moreover c and c + ε
are encryptions of close values. Hence, the ciphertexts can be normalized after
each homomorphic operation avoiding that ciphertext-size leaks information. We
carried on promising experiments in this sense.

References

[AM09] Divesh Aggarwal and Ueli M. Maurer. Breaking RSA generically is equiv-
alent to factoring. In Advances in Cryptology - EUROCRYPT 2009, 28th
Annual International Conference on the Theory and Applications of Cryp-
tographic Techniques, Cologne, Germany, April 26-30, 2009. Proceedings,
pages 36–53, 2009.

[Buc06] Bruno Buchberger. Bruno buchberger’s phd thesis 1965: An algorithm for
finding the basis elements of the residue class ring of a zero dimensional
polynomial ideal. Journal of Symbolic Computation, 41(3):475–511, 2006.
Logic, Mathematics and Computer Science: Interactions in honor of Bruno
Buchberger (60th birthday).

[CGGI18] Ilaria Chillotti, Nicolas Gama, Mariya Georgieva, and Malika Izabachène.
TFHE: fast fully homomorphic encryption over the torus. IACR Cryptol-
ogy ePrint Archive, 2018:421, 2018.

[CNT12] Jean-Sébastien Coron, David Naccache, and Mehdi Tibouchi. Public key
compression and modulus switching for fully homomorphic encryption over
the integers. In EUROCRYPT, pages 446–464, 2012.

[DM15] Léo Ducas and Daniele Micciancio. FHEW: bootstrapping homomorphic
encryption in less than a second. In Advances in Cryptology - EURO-
CRYPT 2015 - 34th Annual International Conference on the Theory and

27

Applications of Cryptographic Techniques, Sofia, Bulgaria, April 26-30,
2015, Proceedings, Part I, pages 617–640, 2015.

[Gav16] Gérald Gavin. An efficient somewhat homomorphic encryption scheme
based on factorization. Cryptology ePrint Archive, Report 2016/897, 2016.
http://eprint.iacr.org/2016/897.

[GB19] Gérald Gavin and Stéphane Bonnevay. Fractional lwe: a nonlinear
variant of lwe. Cryptology ePrint Archive, Report 2019/2502, 2019.
http://eprint.iacr.org/2019/2502.

[Gen09] Craig Gentry. Fully homomorphic encryption using ideal lattices. In
STOC, pages 169–178, 2009.

[GHS12a] Craig Gentry, Shai Halevi, and Nigel P. Smart. Fully homomorphic en-
cryption with polylog overhead. In EUROCRYPT, pages 465–482, 2012.

[GHS12b] Craig Gentry, Shai Halevi, and Nigel P. Smart. Homomorphic evaluation
of the aes circuit. In CRYPTO, pages 850–867, 2012.

[GSW13] Craig Gentry, Amit Sahai, and Brent Waters. Homomorphic encryption
from learning with errors: Conceptually-simpler, asymptotically-faster,
attribute-based. In Advances in Cryptology - CRYPTO 2013 - 33rd Annual
Cryptology Conference, Santa Barbara, CA, USA, August 18-22, 2013.
Proceedings, Part I, pages 75–92, 2013.

[GT20] Gérald Gavin and Sandrine Tainturier. New ideas to build noise-free ho-
momorphic cryptosystems. In Abderrahmane Nitaj and Amr M. Youssef,
editors, Progress in Cryptology - AFRICACRYPT 2020 - 12th Interna-
tional Conference on Cryptology in Africa, Cairo, Egypt, July 20-22, 2020,
Proceedings, volume 12174 of Lecture Notes in Computer Science, pages
423–451. Springer, 2020.

[LNV11] Kristin Lauter, Michael Naehrig, and Vinod Vaikuntanathan. Can ho-
momorphic encryption be practical? IACR Cryptology ePrint Archive,
2011:405, 2011.

[Rot11] Ron Rothblum. Homomorphic Encryption: From Private-Key to Public-
Key, pages 219–234. Springer Berlin Heidelberg, Berlin, Heidelberg, 2011.

[SS10] Damien Stehlé and Ron Steinfeld. Faster fully homomorphic encryption.
In ASIACRYPT, pages 377–394, 2010.

[vDGHV10] Marten van Dijk, Craig Gentry, Shai Halevi, and Vinod Vaikuntanathan.
Fully homomorphic encryption over the integers. In EUROCRYPT, pages
24–43, 2010.

28

A Implementation of the naive Add in the case κ = 1

In this section, we provide an example of the implementation of the homomorphic
scheme for κ = 1. Let S = [sij] ∈ Z2×2

n and ∆ = s11s22 − s12s21.

Add = (q1, q2)← AddGen(S) is defined by

∆ · q1(u,v) =(2s22s11s21 − s12s221)u1v1
+s222s11(u1v2 + u2v1)

+s12s
2
22u2v2

∆ · q2(u,v) =− s11s221u1v1
−s221s12(u1v2 + u2v1)

+(s11s
2
22 − 2s21s12s22)u2v2

B SageMath implementation

###
#
The polynomial nu i and eta i are linear
kappa should be here smaller than 15
The operators Rand are not considered here
#
###

import time
n=random prime(2∧80,true)
print(n)
kappa=3
ka=2*kappa
R.<u1,u2,u3,u4,u5,u6,u7,u8,u9,u10,u11,u12,u13,u14,u15,u16,u17,u18,u19,u20,v1,v2,v3,v4,v5,v6,v7,v8,v9,
v10,v11,v12,v13,v14,v15,v16,v17,v18,v19,v20>=PolynomialRing(FiniteField(n),40)
U=[u1,u2,u3,u4,u5,u6,u7,u8,u9,u10,u11,u12,u13,u14,u15,u16,u17,u18,u19,u20]
V=[v1,v2,v3,v4,v5,v6,v7,v8,v9,v10,v11,v12,v13,v14,v15,v16,v17,v18,v19,v20]

################## KeyGen(kappa) ###########################

ss=list((randint(0, n) for i in range(ka*ka)))
S=matrix(FiniteField(n),ka,ka,ss)
SI=S.inverse()
u=vector(U[0:ka:1])
v=vector(V[0:ka:1])
su=S*u
sv=S*v

##################### Operator Add ##########################

Sommenui=vector([0]*ka)
nu0=vector(randint(0,n) for i in range(ka))
SAdd=[]

29

for i in range(kappa):
if (i==kappa-1):

etai=vector(randint(0,n) for i in range(ka))
SAdd.append((etai*v)*((nu0*u)*(su[2*i]*sv[2*i+1]+sv[2*i]*su[2*i+1])-(Sommenui*u)*su[2*i+1]*sv[2*i+1]))
SAdd.append((etai*v)*(nu0*u)*su[2*i+1]*sv[2*i+1])

else:
nui=vector(randint(0,n) for i in range(ka))
Sommenui=Sommenui+nui
etai=vector(randint(0,n) for i in range(ka))
SAdd.append((etai*v)*((nu0*u)*(su[2*i]*sv[2*i+1]+sv[2*i]*su[2*i+1])+(nui*u)*su[2*i+1]*sv[2*i+1]))
SAdd.append((etai*v)*(nu0*u)*su[2*i+1]*sv[2*i+1])

SSAdd=vector(SAdd)
Add1=SI*SSAdd

def Add(c1,c2):
e1=[0]*30
e2=[0]*30
for i in range(ka):

e1[i]=c1[i]
e2[i]=c2[i]
c3=[0]*ka
for i in range(ka):

c3[i]=Add1[i].subs(u1=e1[0],u2=e1[1],u3=e1[2],u4=e1[3],u5=e1[4],u6=e1[5],u7=e1[6],u8=e1[7],u9=e1[8],
u10=e1[9],u11=e1[10],u12=e1[11],u13=e1[12],u14=e1[13],u15=e1[14],u16=e1[15],u17=e1[16],u18=e1[17],
u19=e1[18],u20=e1[19],v1=e2[0],v2=e2[1],v3=e2[2],v4=e2[3],v5=e2[4],v6=e2[5],v7=e2[6],v8=e2[7],
v9=e2[8],v10=e2[9],v11=e2[10],v12=e2[11],v13=e2[12],v14=e2[13],v15=e2[14],v16=e2[15],v17=e2[16],
v18=e2[17],v19=e2[18],v20=e2[19])

return vector(c3)

###################### Operator Mult ###########################

O=[]
for k in range(kappa):

Sommenui=vector([0]*ka)
nu0=vector(randint(0,n) for i in range(ka))
SOk=[]
for i in range(kappa):

if (i==kappa-1):
etai=vector(randint(0,n) for i in range(ka))
SOk.append((etai*v)*((nu0*u)*(su[2*i]*sv[(2*i+2*k)
SOk.append((etai*v)*(nu0*u)*su[2*i+1]*sv[(2*i+1+2*k)

else:
nui=vector(randint(0,n) for i in range(ka))
Sommenui=Sommenui+nui
etai=vector(randint(0,n) for i in range(ka))
SOk.append((etai*v)*((nu0*u)*(su[2*i]*sv[(2*i+2*k)
SOk.append((etai*v)*(nu0*u)*su[2*i+1]*sv[(2*i+1+2*k)

SSOk=vector(SOk)
O.append(SI*SSOk)

def Mult(c1,c2):
e1=[0]*30
e2=[0]*30
for i in range(ka):

e1[i]=c1[i]
e2[i]=c2[i]
c=[0]*kappa
for k in range(kappa):

c[k]=[0]*ka
for i in range(ka):

c[k][i]=O[k][i].subs(u1=e1[0],u2=e1[1],u3=e1[2],u4=e1[3],u5=e1[4],u6=e1[5],u7=e1[6],
u8=e1[7],u9=e1[8],u10=e1[9],u11=e1[10],u12=e1[11],u13=e1[12],u14=e1[13],u15=e1[14],
u16=e1[15],u17=e1[16],u18=e1[17],u19=e1[18],u20=e1[19],v1=e2[0],v2=e2[1],v3=e2[2],
v4=e2[3],v5=e2[4],v6=e2[5],v7=e2[6],v8=e2[7],v9=e2[8],v10=e2[9],v11=e2[10],v12=e2[11],
v13=e2[12],v14=e2[13],v15=e2[14],v16=e2[15],v17=e2[16],v18=e2[17],v19=e2[18],v20=e2[19])

30

c12=c[0]
for i in range(1,kappa):

c12=Add(c12,c[i])
return c12

##################### Encrypt/decrypt #########################

def Encrypt(x):
xx=vector(randint(0,n) for i in range(kappa))
Sumxx=0
for i in range(kappa-1):

Sumxx=Sumxx+xx[i]
xx[kappa-1]=n-Sumxx
rr=vector(randint(1,n) for i in range(kappa))
Sc=[]
for i in range(kappa):

Sc.append(rr[i]*xx[i])
Sc.append(rr[i])
SSc=vector(Sc)
return SI*SSc

def Decrypt(c):
Sc=S*c
x=0
for i in range(kappa):

x=x+Sc[2*i]/Sc[2*i+1]
return x

####################### Main ############################

tp1=time.clock()
print(’ca commence...’)
c1=Encrypt(9)
c2=Encrypt(11)
print(Decrypt(Add(c1,c2)))
print(Decrypt(Mult(c1,c1)))
tp2=time.clock()
print(’running time: ’,tp2-tp1)

C Algebraic attack dealing with κ = 2

n=97
ka=4
R. <d11, d12, d13, d14, d21, d22, d23, d24, e11, e12, e13, e14, e21, e22, e23, e24, f11, f12, f13, f14,
f21, f22, f23, f24, x1, x2, c11, c12, c13, c14, c21, c22, c23, c24, a11, a12, a13,a14,a21,a22,a23, a24,
b11, b12, b13, b14, b21, b22, b23, b24, u1, u2, u3, u4, v1, v2, v3, v4, s11, s12, s13, s14, s21, s22,
s23, s24, s31, s32, s33, s34, s41, s42, s43, s44, R1>=PolynomialRing(FiniteField(n),75)
alpha=list();qq=list();pi=list();L=list();LL=list();ZL=list()
S = matrix(4, 4, [s11,s12,s13,s14,s21,s22,s23,s24,s31,s32,s33,s34,s41,s42,s43,s44])
u=vector([u1,u2,u3,u4])
v=vector([v1,v2,v3,v4])
a1=vector([a11,a12,a13,a14]); a2=vector([a21,a22,a23,a24])
b1=vector([b11,b12,b13,b14]); b2=vector([b21,b22,b23,b24])
c1=vector([c11,c12,c13,c14]); c2=vector([c21,c22,c23,c24])
d1=vector([d11,d12,d13,d14]); d2=vector([d21,d22,d23,d24])
e1=vector([e11,e12,e13,e14]); e2=vector([e21,e22,e23,e24])
f1=vector([f11,f12,f13,f14]); f2=vector([f21,f22,f23,f24])
aa1=vector([randint(1, n) for i in range(4)]);aa2=vector([randint(1, n) for i in range(4)])
bb1=vector([randint(1, n) for i in range(4)]);bb2=vector([randint(1, n) for i in range(4)])
cc1=vector([randint(1, n) for i in range(4)]);cc2=vector([randint(1, n) for i in range(4)])
dd1=vector([randint(1, n) for i in range(4)]);dd2=vector([randint(1, n) for i in range(4)])
ee1=vector([randint(1, n) for i in range(4)]);ee2=vector([randint(1, n) for i in range(4)])

31

ff1=vector([randint(1, n) for i in range(4)]);ff2=vector([randint(1, n) for i in range(4)])
SS=matrix(FiniteField(n),4,4,(randint(1,n) for i in range(16)))
TT=SS.inverse()
c=[1,2,3,4]
alpha.append(c[0]*s11+c[1]*s12+c[2]*s13+c[3]*s14-x1*(c[0]*s21+c[1]*s22+c[2]*s23+c[3]*s24))
alpha.append(c[0]*s31+c[1]*s32+c[2]*s33+c[3]*s34-x2*(c[0]*s41+c[1]*s42+c[2]*s43+c[3]*s44))
su=S*u
sv=S*v
ssu=SS*u
ssv=SS*v
O=vector([1,1,1,1])

L.append(vector([(d1*v) * ((O*u) * (su[0]*sv[0]) + (a2*u) * (su[1]*sv[1])), (d1*v) * (O*u) *su[1]*sv[1],
(d2*v) * ((O*u) * (su[2]*sv[2]) - (a2*u) * (su[3]*sv[3])), (d2*v) * (O*u) * su[3]*sv[3]]))

L.append(vector([(e1*v) * ((O*u) * (su[0]*sv[1] + su[1]*sv[0]) + (b2*u) * (su[1]*sv[1])),(e1*v) *
(O*u)*su[1]*sv[1], (e2*v) * ((O*u) * (su[2]*sv[3] + su[3]*sv[2]) - (b2*u) * (su[3]*sv[3])),(e2*v) *
(O*u)*su[3]*sv[3]]))

L.append(vector([(f1*v) * ((O*u) * (su[0]*sv[2]) + (c2*u) * (su[1]*sv[3])), (f1*v) * (O*u) * su[1]*sv[3],(f2*v)
* ((O*u) * (su[2]*sv[0]) - (c2*u) * su[3]*sv[1]), (f2*v) * (O*u) * su[3]*sv[1]]))

LL.append(vector([(dd1*v) * ((O*u) * (ssu[0]*ssv[0]) + (aa2*u) * (ssu[1]*ssv[1])), (dd1*v) * (O*u)
* ssu[1]*ssv[1], (dd2*v) * ((O*u) * (ssu[2]*ssv[2]) - (aa2*u) * (ssu[3]*ssv[3])),(dd2*v) * (O*u) *
ssu[3]*ssv[3]]))

LL.append(vector([(ee1*v) * ((O*u) * (ssu[0]*ssv[1] + ssu[1]*ssv[0]) + (bb2*u) * (ssu[1]*ssv[1])),
(ee1*v) * (O*u) * ssu[1]*ssv[1],(ee2*v) * ((O*u) * (ssu[2]*ssv[3] + ssu[3]*ssv[2]) - (bb2*u) * (ssu[3]*ssv[3])),(ee2*v)
* (O*u) * ssu[3]*ssv[3]]))

LL.append(vector([(ff1*v) * ((O*u) * (ssu[0]*ssv[2]) + (cc2*u) * (ssu[1]*ssv[3])),(ff1*v) * (O*u) *
ssu[1]*ssv[3],(ff2*v) * ((O*u) * (ssu[2]*ssv[0]) - (cc2*u) * (ssu[3]*ssv[1])), (ff2*v) * (O*u) * ssu[3]*ssv[1]]))

for i in range(3):
q=TT*LL[i]
for j in range(ka):

qq.append(q[j])

for t in range(3):
for i in range(ka):

for j in range(ka-i):
u=[0]*ka
u[i]=u[i]+1
u[i+j]=u[i+j]+1
for k in range(ka):

for l in range(ka-k):
v=[0]*ka
v[k+l]=v[k+l]+1
v[k]=v[k]+1
ZL=[0]*ka
for mm in range(ka):

ZL[mm]=qq[ka*t+mm].coefficient(u1:u[0],u2:u[1],u3:u[2],u4:u[3],v1:v[0],v2:v[1],v3:v[2],v4:v[3])
Z=vector(ZL)
Y=S*Z
for m in range(ka):

p=Y[m]-L[t][m].coefficient(u1:u[0],u2:u[1],u3:u[2],u4:u[3],v1:v[0],v2:v[1],v3:v[2],v4:v[3])
alpha.append(p)

pi=[x1+x2-R1]
IF=R.ideal(alpha+pi)
H=IF.elimination ideal([x1,x2])
print(H)

32

