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ABSTRACT
A cryptographic accumulator is a compressed data structure with

associated algorithms used for secure membership testing. In the

growing space of digital credentials, accumulators are used to man-

age sets of valid credentials, giving efficient and anonymous meth-

ods for credential holders to prove their validity. Unlike traditional

credentials like digital signatures, one can easily revoke credentials

with an accumulator; however, each revocation forces existing cre-

dential holders to engage in an expensive update process. Previous

works make this faster and easier by sacrificing anonymity. To

improve performance without compromising privacy, we present

ALLOSAUR, a multi-party accumulator based on pairings. In AL-
LOSAUR, we eliminate the cost of accumulating new credentials, let

“credential managers” manage the accumulator values with secure

multiparty computation, and allow anonymous credential updates

with a square-root reduction in communication costs as compared

to existing work.

A deployed digital credential system is a vast and complicated

system, and existing formalisms do not fully address the scope

or power of a real-world adversary. We develop a thorough “UC-

style” formalism that allows arbitrary malicious behaviour from

an adversary controlling a minority of credential managers and

arbitrary numbers of users, credentials, and verifiers. In our new

formalism we present a novel definition of privacy that captures

as much anonymity as possible while accounting for inevitable

losses from interaction with the system. The detail in our formalism

reveals real-world issues in existing accumulator constructions, all

of which ALLOSAUR avoids.

The typical bottleneck in accumulator-based digital credential

systems is handling revocations of credentials. Our proof-of-concept
implementation of ALLOSAUR can update over 1000 revocations

with less than half a second of total computation and 16 kB com-

munication, which is at least a 5x improvement over the previous

state-of-the-art in both metrics.

KEYWORDS
Bilinear Pairing, Cryptographic Accumulator, Anonymous Creden-

tials

1 INTRODUCTION
Digital credentials aim to replace common physical credentials such

as driver’s licenses or credit cards [CL02]; however, the ease of elec-

tronic data collection means we must take great care to preserve

The source code of our related implementations is available at https://github.com/sam-

jaques/allosaurust.

privacy and anonymity if we switch to digital credentials. A typical

scenario involving digital credentials works as follows: a creden-
tial holder (user) requests a digital credential from a credential
issuer, who cryptographically signs the credential and its relevant

data (e.g., date of birth, address, etc.). Zero-knowledge proofs al-

low users to anonymously prove possession of this credential to

verifiers without either user or verifier interacting with the issuer.

However, typical applications require occasional or frequent

revocation. Driver’s licenses can expire or be revoked, a professional

can lose their license, or someone may stop paying for their parking

permit. A basic digital signature cannot be revoked once issued, so

digital credential schemes often rely on accumulators [Bd94]. An
accumulator produces a short commitment to a set of elements (the

accumulator value), as well as proofs of membership (and sometimes

non-membership) for any element in the set. A Merkle tree [Mer88]

is a simple accumulator.

For digital credentials, the issuer will give each user a random ID

which is added to the accumulator, and awitness that allows the user
to prove this fact. The verifier will download the accumulator value,

and when the user needs to prove possession of their credentials

they will produce a zero-knowledge proof that their ID is in the

accumulator and that the relevant aspects of their credential also

belong to that ID. In this work we focus entirely on the part of the

proof that the accumulator contains some ID.

With an accumulator, the credential issuer can add or remove

these IDs as needed. One can see that this must change the accu-

mulator value: since users do not interact with the issuer to prove

that their ID is in the accumulator, a verifier would have no way

to tell that a user’s ID was revoked unless the accumulator value

changes. Furthermore, we want the accumulator value itself to be

constant-sized, and a simple information-theoretic argument shows

that in this case users’ witnesses must change as well: if not, the

accumulator value contains all the information about which users

were revoked, which is impossible for a constant-sized object.

This means that accumulators need efficient witness update

protocols. For these we include another party, one or more accu-
mulator managers (servers), who interact with users to update

their witnesses. The servers may not have access to all the secret

information belonging to the credential issuer. An update proto-

col creates another attack surface against privacy. When a user

attempts to prove possession of a credential to some verifier, this

verifier may have a more up-to-date accumulator value and prompt

the user to update. This means if an update and verification happen

shortly after one another, it was likely the same user doing both.

If the update protocol is not anonymous, then the verifier and an

accumulator manager could collude to connect these events and

de-anonymize the user.

https://github.com/sam-jaques/allosaurust
https://github.com/sam-jaques/allosaurust
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To illustrate this attack, imagine using digital credentials as

parking permits (e.g., a car communicating with a parking meter

by Bluetooth). If a city administration manages the parking permits

and the parking meters, then a parking meter at a specific location

could send a signal when a car attempts to park but needs to update

its credentials. If the city also maintains the update server, they

could connect the car’s update event (containing the car’s license

number) with the parking meter’s update request, and thus know

exactly who is parking where and for how long, throughout the

entire city. To avoid this, the update itself must also be anonymous.

Anonymous updates are possible [VB20, CKS09], and a common

approach is to bundle the update data which servers then publish

and which users can download and use to update their credentials

locally. However, [CH10] shows that with𝑚 updates to the accu-

mulator value, this update bundle needs Ω(𝑚) bits, and in many

applications it also needs Ω(𝑚) computation. For many users with

smartphones or other small devices, this computation may be too

costly.

In this workwe present a new point in this trade-off of anonymity

against efficiency: by using an interactive protocol we escape the
lower bound and can update over𝑚 revocations with a single round

of only𝑂 (
√
𝑚) communication between server and user and𝑂 (

√
𝑚)

user-side computation. We reach the same anonymity guarantees

as with update data that is not user-specific; however, we rely on

multiple update servers and a non-collusion assumption. We stress

that with non-anonymous updates, a collusion between any verifier

or accumulator manager will de-anonymize the user, while in our

approach the user remains anonymous as long as there exists some

fraction of honest accumulator managers.

When managing a distributed accumulator with digital creden-

tial witnesses, a common challenge is ensuring that all of the accu-

mulator managers maintain a consistent state of the accumulator.

Typically some sort of consensus protocol is necessary to ensure

consistency, and this is why most digital credentials are used on top

of blockchains or distributed databases that effectively run consen-

sus protocols [Fou19, Din21, Hel21, Pol22, oBC22, oO21, Tan21].

Two current large-scale production deployments based on the

Hyperledger Indy blockchain are the government of British Columbia’s

OrgBook [oBC23] (a digital credential system designed to reduce

the estimated C$10 billion in business licensing red tape) and the

government of Finland’s Findy Network [Vuo21] (aimed to stream-

line verification of personal information like insurance or profes-

sional qualifications). Neither of these large-scale digital identity

systems use provably anonymous updates.

1.1 Our Techniques
We sketch the ideas of our main contributions here. Our starting

point is the pairing-based accumulator of Nguyen [Ngu05]. We

work over an elliptic curve group of order 𝑞, where the accumulator

value𝐴 includes a point𝑉 in this group and users’ IDs are elements

𝑦 ∈ F𝑞 . The accumulator has a secret key 𝛼 ∈ F𝑞 , so that to add an

element 𝑦 to the accumulator, the servers update the accumulator

value by multiplying by (𝑦 + 𝛼), setting 𝑉𝑛𝑒𝑤 = (𝑦 + 𝛼)𝑉𝑜𝑙𝑑 . To
delete 𝑦, the servers instead divide, setting 𝑉𝑛𝑒𝑤 = 1

𝑦+𝛼𝑉𝑜𝑙𝑑 . For
an accumulator value with a point 𝑉 , the witness for an ID 𝑦 is

the value
1

𝑦+𝛼𝑉 , just like a BBS+ signature [ASM06, BBS04]. When

first added, the accumulator manager(s) give a blind signature of a

long-term secret for each user, to prevent replay attacks.

Single-server implementation. Recent work breaks the non- mem-

bership proofs of Nguyen’s accumulator [BUV21] and points to-

wards difficulties for efficient non- membership proofs, so we focus

on an accumulator with only membership proofs. This removes the

need to change the accumulator value with the addition of IDs –

we only need to update on deletions – so we adopt the static update

of [KB21]. While [KB21] only proves passive security, our security

model needs active security so we base it on a new assumption

which we call the 𝑛-Inversion Symmetric Diffie-Hellman Problem.

In the full version we prove this assumption in the generic group

model.

For updates, we use the batch update protocol of [VB20]. Sim-

ply put, their method uses polynomials in F𝑞 [𝑥] constructed from

the set of deleted elements. A user evaluates these polynomials

on their ID 𝑦 ∈ F𝑞 , and combines them with 𝑂 (1) elliptic curve
operations. Constructing these polynomials takes time superlinear

in the number of deleted elements, so instead we set a maximum

degree for any update polynomial. The user evaluates each polyno-

mial separately, and effectively performs many sequential updates

locally. This reduces server computation by a factor of 25 for 1,000

deletions while increasing communication by less than 1%.

Multi-Server Protocol. For our multi-server protocol, which we

call ALLOSAUR, we use typical secure multi-party computation

(MPC) techniques for the core accumulator functions of addition

and deletion, as in [HKRW21]. For user updates, our insight is

that we have already capped the degree of the update polynomials

to some value 𝑘 , so a user can send powers of their ID – 𝑦, 𝑦2,

𝑦3, up to 𝑦𝑘 – and an update server can evalute all of the update

polynomials with only these powers, sending a single value back to

the user as a result. For𝑚 updates, setting 𝑘 =
√
𝑚 gives the𝑂 (

√
𝑚)

communication costs. This is non-anonymous, so we instead use

an affine secret sharing scheme, so each server gets one share for
each power of 𝑦. Since the scheme is affine, the server can still

evaluate the polynomial on the shares by multiplying the powers

by the required coefficient and adding them together. Once the user

receives all the results from the servers, they can reconstruct the

result: the evaluation of the update polynomials on their ID 𝑦.

Formalism for Anonymity. We present, to the best of our knowl-

edge, the first formal definition of anonymity for an accumulator.

Because we are concerned with traffic analysis and anonymity, our

formalism needs a fine-grained view of all messages among many

parties, both honest and adversarial. Hence, it would be very diffi-

cult to rely on a black-box UC-secure [Can01] model of the MPC,

such as in [HKRW21]. Instead, we work in a “UC-style” formalism,

similar to [GKL15]. This means we use the ideal functionality of

subroutines like a message board and authenticated channels, and

define an ideal functionality implicitly through a control program,

but ultimately provide game-based security proofs. A full UC-secure

protocol would be ideal, but this would substantially complicate an

already long and formal paper, so we defer this to future work.

Reduction to PIR. We use an interactive protocol to escape the

update lower bound of [CH10]. An interactive protocol that blindly
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Scheme Type Unlimited Multi Anonymous Revocations? Updates

size? party? updates? Communication User cost Server cost

(various) Merkle Tree ✓ 𝑂 (log𝑁 ) 𝑂 (1) 𝑂 (log𝑁 )
[Agi22] Other ✓ – – – –

Braavos [BCD
+
17] RSA ✓ ✓ ✓ 𝑂 (𝑚) 𝑂 (𝑚) 𝑂 (1)

[BBDE19] Other ✓ ✓ ✓ 𝑂 (𝑚) 𝑂 (𝑚) 𝑂 (𝑚)
[CKS09] Pairing ✓ 𝑂 (1) 𝑂 (1) 𝑂 (𝑚)

[HKRW21] Pairing ([Ngu05]) ✓ ✓ ✓ 𝑂 (1) 𝑂 (1) 𝑂 (1)
[KB21] Pairing ([Ngu05]) ✓* ✓ 𝑂 (𝑚) 𝑂 (𝑚) 𝑂 (1)
[VB20] Pairing ([Ngu05]) ✓ ✓ ✓ 𝑂 (𝑚) 𝑂 (𝑚) 𝑂 (𝑚2)

ALLOSAUR Pairing ([Ngu05]) ✓ ✓ ✓ ✓ 𝑂 (
√
𝑚) 𝑂 (

√
𝑚) 𝑂 (𝑚)

Table 1: Comparison of accumulator features for 𝑁 elements and updates over𝑚 changes to the accumulated set. *The accu-
mulator can accommodate an arbitrary number of elements; however, it has a non-adaptive security definition.

retrieves one value from a set closely resembles private informa-

tion retrieval (PIR) [CGKS95]. We formalize that similarity with a

reduction from PIR to blind witness updates.

Limitations. One of two main downsides of our scheme is that

users require an anonymous connection such as TOR [DMS04] to

reach the accumulator managers for the updates. However, this

is a general problem with anonymous updates, and eliminating

this requirement makes it very hard for users to decorrelate from

their past behavior. That is, users would need such an anonymous

connection even just to download data, meaning all the schemes in

Table 1 have the same anonymous connection requirement. Since

most schemes assume an anonymous connection betweeen user

and verifier, other protocols with batch update data could have

verifiers store this update data and send it to the user locally, which

our method does not allow. However, it may be possible for users

to tunnel their connections through the verifier. Since we assume

collusion between verifiers and dishonest accumulator managers

anyway, this should not harm anonymity as long as users can

establish separate encrypted and authenticated channels to each

accumulator manager.

The second issue is interaction between user and server. Generic

update data that users download and use locally requires less ef-

fort from the servers, who must handle requests from all users.

We took this tradeoff because we expect the servers have more

computational power than users. A more carefully optimized imple-

mentation could cache the coefficients of the update polynomials,

which would save a constant fraction of the server’s computation

between users updating over the same set of revocations.

Our Main Contributions.

• An optimized implementation of the single-server protocol

(Section 3)

• ALLOSAUR, an anonymous multi-server protocol (Section 4)

• Performance evaluation of these two schemes (Section 6)

• Reduction from blind updates to PIR (Appendix B)

• A new formalism, definitions, and proofs (in the full version

of this paper), summarized in Section 5)

1.2 Other Approaches
The lower bounds of [CH10] and our reduction to PIR show why

other works do not satisfy our anonymity and efficiency require-

ments. An anonymous update must at least imply PIR on the set

of changes to the accumulator; however, applying PIR directly to

this set is not enough for an update protocol. We found no effi-

cient method to do this for Merkle-tree nor RSA accumulators.
1

The update in ALLOSAUR only works because of the batch update

polynomials of [VB20], which we compute with a distributed inner

product.

An alternative use of PIR for any accumulator (or even just

digital signatures) is to have the accumulator manager maintain a

list of all valid witnesses, and update them all with every change.

Users could make a PIR request into this database to get their up-

to-date witness. This is secure and anonymous, but the number of

computations for any known PIR scheme is at least linear in the

database size. If the server must do one PIR for each user with each

update, then the total computation of the accumulator manager

is quadratic in the number of users, and must be done once per

accumulator epoch. This is infeasible for systems with millions of

users or more, even with recent substantial improvements to PIR

(e.g. [CHK22]). Perhaps a multi-user batch PIR could work, though

this is a challenging protocol to construct since users must protect

against both adversarial servers and other adversarial users, all

potentially colluding to de-anonymize them. Solving this problem

would be interesting future work.

Adding expiry dates to credentials fails for the same reason,

because we imagine frequent turnover (e.g., updating once per

day). If all user’s credentials expire after one day, each user needs to

request a new credential every day. To issue credentials to only valid

users, servers could compute a credential for all valid users which

the users would retrieve with PIR. This case also has a quadratic

computational cost each day.

In the use cases we imagine, users and verifiers have limited

computational power compared to servers. This forbids methods

like bloom filters [HRMM18, HRMM19] or sending a list of revoked

credentials to each verifier (like certificate revocation lists). Our

work concerns onlymembership, and in practice our systems would

1
We could certainly use general zero knowledge proof techniques in these instances

but don’t believe they would outperform our current construction.
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rely on other techniques such as [BCF
+
21] to prove other properties

of the credential. Future work could combine anonymous proofs

of membership with a number of different things, such as digital

signatures, which, as demonstrated in [BDET19], could be combined

with expiry dates for a “revoke-by-default” sort of system.

2 DEFINITIONS
The basic structure of an accumulator is a large set of user IDs,
denotedY. The accumulator manager creates an initial accumulator
value 𝐴, which represents an accumulated set 𝑆 of elements from

Y. The accumulator value is often short, so it cannot truly store

the accumulated set; the accumulator manager typically stores the

accumulated set as local auxiliary data. A function Gen creates the

first accumulator value, and subsequently, Add and Del instruct the
accumulator manager to modify the accumulator value to add or

delete elements from the accumulated set.

Each user has a specific ID 𝑦 ∈ Y. They can interact with the

accumulator manager to retrieve a witness 𝑤 for their element 𝑦.

The witness, combined with the accumulator value, should allow

the user to prove that they are part of the accumulated set. This is

captured in a verify protocol Ver, where a verifier who knows the

accumulator value (e.g., by downloading it from the accumulator

manager) interacts with a user so that the user can prove they

possess a valid witness.

Finally, there is an interactive update between the user and the

accumulator manager, which allows the user to update their witness

when the accumulator value changes.

To formalize this, we modify an existing definition [HKRW21].

We will write interactive protocols as ⟨A(𝑎),B(𝑏)⟩ → (𝑠𝑎, 𝑠𝑏 ,Λ),
where 𝑎 (resp. 𝑏) is the private input toA (resp. B) and 𝑠𝑎 (resp. 𝑠𝑏 )

is its private output. Λ is the transcript of exchanged messages.

A dynamic accumulator consists of PPT algorithms (Gen, Add,
Del,Ver) and PPT interactive protocols (⟨Wit𝑢 ,Wit𝑠 ⟩, ⟨Prove,Ver𝑣⟩,
⟨Upd𝑢 ,Upd𝑠 ⟩), with a key space𝐾𝜆 , input spaceY𝑘 for each𝑘 ∈ 𝐾𝜆 ,
such that:

• Gen() → (sk, 𝐴0, aux0) creates an initial accumulator value

𝐴0, an accumulator key sk, and auxiliary information aux0.
Other definitions assume an output pk, but we follow [BCY20]

and include pk as part of the accumulator. The auxiliary in-

formation can be any data type necesssary; often it includes

the set of accumulated elements.

• Add(sk, 𝐴𝑖 , 𝑦, aux𝑖 ) → (𝐴𝑖+1, aux𝑖+1, aux𝑢𝑝𝑑 ) should add 𝑦

to the accumulator. It takes an accumulator value and a user

ID 𝑦, updates the accumulator and its auxiliary information

and produces some auxiliary information to use for updating

witnesses. Again, aux𝑢𝑝𝑑 can be any data type, such as a list

of the added elements and previous accumulator values. Add
is allowed to output ⊥ (e.g., if 𝑦 is already in the set).

• Del(sk, 𝐴𝑖 , 𝑦, aux) → (𝐴𝑖+1, aux𝑖+1, aux𝑢𝑝𝑑 ) has the same

functionality as Add, but deletes elements from the accumu-

lated set.

• ⟨Wit𝑢 (𝑦),Wit𝑠 (sk, aux, 𝐴𝑖 )⟩ → (𝑤, ∅,Λ) allows a user to

obtain a witness𝑤 for an accumulator𝐴𝑖 , if𝑦 has been added

to the accumulator. The user runsWit𝑢 and the accumulator

manager(s) runWit𝑠 .

• Ver(𝑦,𝑤,𝐴𝑖 ) → {0, 1} is a deterministic algorithm to verify

a witness. If 𝑤 was generated as a witness for 𝑦 for the

accumulator 𝐴𝑖 , this should output 1, and otherwise 0.

• ⟨Prove(𝑦,𝑤,𝐴𝑖 ),Ver(𝐴𝑖 )⟩ → ({0, 1}, {0, 1},Λ) allows a user
to prove to a verifier that the user possesses a witness and

an element 𝑦, such that 𝑦 is in the accumulated set.

• ⟨Upd𝑢 (𝑦,𝑤,𝐴𝑖 ),Upd𝑠 (sk, 𝐴𝑖+𝑡 , aux𝑢𝑝𝑑 )⟩ → (𝑤 ′, ∅,Λ) up-
dates a membership witness, using the auxiliary information

from some combination of additions and deletions.

To avoid cluttering notation:

• Other accumulators have an Eval function which initializes

the accumulator with an initial set. We assume the accumula-

tor is initialized with the empty set, and elements are added

one at a time. Certain accumulators benefit from efficient

batch initialization, which our definition could accommodate

by allowing Add to have a different behaviour for the first

few additions.

• We assume that Upd can parse the concatenation of update

information from multiple ordered additions or deletions.

• All the algorithms take 1
𝜆
as an input, and we omit this.

We also define dynamic functions Add,Del, andUpd for security
games. These are convenience functions intended to capture the

persistent state that an accumulator manager will keep. We assume

there is an environment for Add that contains an accumulator

𝐴, a secret key sk, auxiliary information aux, update information

aux𝑢𝑝𝑑 , and an accumulated set 𝑆 . Add is called with just a set

𝑆 ′ as input, and calls Add for each 𝑦 ∈ 𝑆 ′ and the appropriate

environment variables. It then updates 𝐴 and appends to aux𝑢𝑝𝑑
with the output of each Add, and updates 𝑆 ← 𝑆 ∪ 𝑆 ′. To avoid

cluttering notation, we assume Add(∅) does nothing and returns.

Del(𝑆 ′) is the same except it calls Del and sets 𝑆 ← 𝑆 \ 𝑆 ′. For Upd,
we also assume it uses the environment variables sk,𝐴, and aux𝑢𝑝𝑑 .

Issuing Credentials. Our definition does not include a credential

issuer. In practice we assume the credential issuer will sign all

requests for additions and deletions to certify to the accumulator

manager that they are valid. For our security analysis, we remove

this functionality, as in all cases we focus on a powerful adversary

who can control additions and deletions into the accumulated set.

2.1 Security
The algorithms of an accumulator must satisfy the following:

Correctness. Any sequence of additions and deletions implicitly

defines a set of elements that are supposed to be in the accumulator;

if we update a witness from the auxiliary information of these

additions and deletions, it should verify properly.

Let 𝑆0 = ∅, and let 𝑇1, . . . ,𝑇𝑛 and 𝑅1, . . . , 𝑅𝑛 be a collection of

subsets ofY such that: (a) 𝑆𝑖+1 := (𝑆𝑖 ∪𝑇𝑖+1) \𝑅𝑖+1; (b)𝑇𝑖+1∩𝑆𝑖 = ∅
(c) 𝑅𝑖+1 ⊆ 𝑆𝑖 ∪𝑇𝑖+1.
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Then for any 𝑗 ≤ 𝑛 and any 𝑦 such that 𝑦 ∈ 𝑆𝑖 for all 𝑖 ≥ 𝑗 ,

Pr


Ver(𝑦,𝑤𝑛, 𝐴) = 𝑎𝑣

��������������

(𝐴, aux, sk) ← Gen()
Add(𝑇𝑖 ),Del(𝑅𝑖 )

} 𝑗−1
𝑖=1

𝑤 𝑗−1,⊥,Λ← ⟨Wit𝑢 (𝑦),Wit𝑠 (sk, aux, 𝐴)⟩
Add(𝑇𝑖 ),Del(𝑅𝑖 )

𝑤𝑖 ← Upd(𝑦,𝑤𝑖−1)

}𝑛
𝑖=𝑗

(𝑎𝑝 , 𝑎𝑣,Λ) ← ⟨Prove(𝐴,𝑦,𝑤𝑛),Ver(𝐴)⟩


equals one. In words, we generate an inititial accumulator, then

perform a sequence of 𝑗 additions and deletions. After this, a user

requests a witness. Then we perform another sequence of 𝑛 −
𝑗 additions and deletions, with the user updating between each

change. Given all of this, the user should still pass the witness

verification protocol, no matter what user ID we used or sequence

of additions and deletions, as long as the ID is in the accumulated

set throughout this process.

Commitment soundness. Previous works defined “collision- free-

ness”, which is based on a non-interactive verification function.

We skip this because it is implied by a stronger notion, which is

that only users who were issued a valid witness should be able to

pass the verification protocol. Since the verification is blind and

interactive, this requires extra care: An adversary could pass an

insecure protocol without needing any values of 𝑦 or𝑤 . We must

ensure this does not happen.

Further, if an adversary ever obtains a value of 𝑦 and 𝑤 , then

they should be able to pass the verification protocol at any time,

at least until 𝑦 is removed from the accumulator. We also want to

allow the adversary to add and remove any elements it wants from

the accumulator.

Ultimately, we must only prevent an adversary from passing the

protocol without possessing a valid pair of𝑦 and𝑤 . Thus, we define

soundness with an extractor: If an adversary can pass the protocol,

then an extractor algorithm should be able to produce a valid 𝑦 and

𝑤 from the adversary’s state.

We assume here that during the interactive witness issuance,

one of the messages to the accumulator manager is the element 𝑦

for which a witness is requested. From this, we can define the set

𝑆 ′ as the intersection of the implicitly-defined set 𝑆 of accumulated

elements with the set of all 𝑦 that an adversary sends during in-

teraction with Wit𝑠 . With this definition, for any PPT adversary

A = (A0,A1) such that

Pr

𝑎𝑣 = 1

�������
(𝐴, aux, sk) ← Gen()

st← AWit𝑠 ,Add,Del,Upd
0

(𝐴)
(st, 𝑎𝑣,Λ) ← ⟨A1 (𝐴, aux, aux𝑢𝑝𝑑 , st),Ver𝑣 (𝐴)⟩


is greater than negl(𝜆), then there exists an extractor E such that

Pr

[
Ver(𝐴,𝑦,𝑤) = 1

��(𝑦,𝑤) ← E(𝐴, aux, aux𝑢𝑝𝑑 , 𝑆, st)] ≥ negl(𝜆)

and for any extractor E, the following must be negligible in 𝜆:

Pr

[
𝑦 ∉ 𝑆 ′ ∧ Ver(𝐴,𝑦,𝑤) = 1

��(𝑦,𝑤) ← E(𝐴, aux, aux𝑢𝑝𝑑 , 𝑆, st)] .
The extractor is not explicitly given oracle access to A, but one

can assume the first extractor implements any algorithms that A

implements based on the order of existential quantifiers: for all A,

we can choose E in this way.

The restriction of 𝑦 to 𝑆 ′ (and not just 𝑆) ensures that the extrac-

tor is able to extract one of the adversary’s witnesses. [VB20] do

not satisfy this definition; we detail an attack in Section 3.1.

2.2 Anonymity
Proof Indistinguishability. If an adversary controls all parameters

of the scheme, even generating a user’s ID and witness, they should

still not be able to distinguish proofs sent by different users. User

IDs are public in many use cases, and the number of users is not

cryptographically large (e.g., on the order of 2
30
), and an adversarial

verifier may have extra information that can narrow down the set

of possible users. Hence, we assume the worst case and require that

an adversary cannot distinguish users even among a set of just 2.

Formally: For all PPT adversaries A = (A0,A1),

Pr


𝑏 ′ = 𝑏

���������
(st, 𝐴,𝑦0,𝑤0, 𝑦1,𝑤1) ← A0 ()

𝑤0,𝑤1 ← ⊥ if Ver(𝐴,𝑦0,𝑤0) ≠ Ver(𝐴,𝑦1,𝑤1)
𝑏

$←− {0, 1}
𝑏 ′ ← AProve(𝐴,𝑦𝑏 ,𝑤𝑏 )

1
(st)


− 1

2

must be negligible in 𝜆.

Here we emphasize that in our definitions of the algorithms of

an accumulator, the only persistent state that belongs to a user is

its values of 𝑦 and 𝑤 . This means that A0 can simulate as many

users as it wants, and as many updates as it wants, before finally

producing the outputs to the challenger.

Update Indistinguishability. For this indistinguishability game,

we assume a single update interaction. An adversary creates an

entire accumulator, and passes two elements to a challenger, ensur-

ing that both (or neither) have valid witnesses. Then the adversary

interacts with one at random. As with proof indistinguishability,

because the user has no persistent state, an adversary can simu-

late any number of interactions with any number of users before

providing the challenges.

Without anonymous connections (e.g., the user connects from

the same IP address each time), witness updates are only pseudony-

mous, even with a perfectly blind protocol. This definition does

not capture the power of a stronger adversary that has this ability

to connect different sessions. Our lengthy formalism in the full

version does capture this, however.

For blind updates, all PPT adversaries (A0,A1) must satisfy:

Pr


𝑏 = 𝑏 ′

���������
(sk, aux, 𝐴,𝑦0,𝑤0, 𝑦1,𝑤1, st) ← A0 ()

𝑤0,𝑤1 ← ⊥ if Ver(𝐴,𝑦0,𝑤0) ≠ Ver(𝐴,𝑦1,𝑤1)
𝑏

$←− {0, 1}
𝑏 ′,𝑤 ′

𝑏
,Λ← ⟨A1 (st),Upd𝑢 ((sk), 𝐴0, 𝑦𝑏 ,𝑤𝑏 )⟩


− 1

2

must be negligible in 𝜆.

If the server colludes with a verifier, they can break anonymity

by revoking a user’s credentials and checking whether they are still

able to verify (hence why𝑤0 and𝑤1 are set to ⊥ if their validity is

different). This is unavoidable in a collision-free accumulator. Unlike

other anonymity-breaking collusions that we try to avoid, this

attack is publicly logged because accumulator values and changes

are public. An audit would notice the spurious revocation of a
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user’s credentials. Our work focuses on technical aspects, but any

real implementation of an anonymous accumulator must include a

policy on what should be done in this case.

3 SINGLE-SERVER PROTOCOL
The starting point for our single-server protocol is Nguyen’s pairing-

based accumulator [Ngu05]. We use the batch update protocols of

Vitto and Biryukov [VB20] and the static update of [KB21]. In the

notation of [BCD
+
17], we construct a dynamic positive accumula-

tor, meaning we can add and delete elements and users can prove

membership. Recent work breaks this kind of construction if non-

membership witness proofs are provided [BUV21]. If an application

needs non- membership proofs, it can use two accumulators in par-

allel, with one representing elements in the accumulated set and

another representing elements not in the set [BCD
+
17].

The accumulator uses two elliptic curve groups 𝐺1 and 𝐺2 of

prime order 𝑞, with a Type 3 pairing 𝑒 : 𝐺1 ×𝐺2 → 𝐺𝑇 . There are

public generators 𝑃 , 𝑃 , and 𝑒 (𝑃, 𝑃) of the three groups, as well as
another six points 𝐾,𝐾0, 𝑋,𝑌 , 𝑍 ∈ 𝐺1 and 𝐾̃ ∈ 𝐺2. These points

should all be selected uniformly at random and no one should know

the discrete logarithm of any point with respect to any other point.

We also use a (collision-resistant) hash function 𝐻 : {0, 1}∗ →
{0, 1}2𝜆 , which our security proofs model as a random oracle.

Generation. Gen() starts by selecting uniformly random values

𝛼 , 𝑠𝑚 , and 𝑣 . It sets sk ← (𝛼, 𝑠𝑚), 𝑄̃ ← 𝛼𝑃 , 𝑉 ← 𝑣𝑃 , 𝑄̃𝑚 ← 𝑠𝑚𝐾̃ ,

and 𝐴0 ← (𝑉 , 𝑄̃, 𝑄̃𝑚).
Because we have a trapdoor and we do not use non-membership

witnesses, there is no need to “pre-load” the accumulator with any

points. We can set aux = (𝑆 = ∅,𝑊 = ∅). The set 𝑆 represents the
accumulated set, and𝑊 is a set of witnesses for all accumulated

elements.

Additions. For Add(sk, 𝑦, 𝐴, aux), it parses aux as (𝑆,𝑊 ), sk as

(𝛼, 𝑠𝑚) and 𝐴 as (𝑉 , 𝑄̃, 𝑄̃𝑚). If 𝑦 ∉ 𝑆 , it sets 𝑆 = 𝑆 ∪ {𝑦} and
𝑊 =𝑊 ∪ {(𝑦, 1

𝑦+𝛼𝑉 )}.
Add does not change 𝐴. The notion of the “accumulated set” is

only implicitly defined by the set of valid witnesses. Further, since

we have not revoked any credentials, it is fine to have existing

witnesses verify with this accumulator after this addition.

Deletions. Del(sk, 𝑦, 𝐴, aux) parses aux, sk, and 𝐴 in the same

way as Add. If 𝑦 ∈ 𝑆 , it sets 𝑉 ← 1

𝑦+𝛼𝑉 , concatenates (𝑦,𝑉 ) to
aux𝑢𝑝𝑑 , and sets 𝑆 ← 𝑆 \ {𝑦}.

Then for all (𝑦′,𝐶) ∈𝑊 , it sets 𝐶 = 1

𝑦−𝑦′ (𝐶 −𝑉 ). This updates
the list of valid witnesses. This isn’t necessary for a single-server

accumulator, as it possesses the secret key and can create each

witness by computing
1

𝑦+𝛼𝑉 , or even compute witnesses on-the-fly

during other operations. However, we explain it this way because

our multi-server protocol maintains a database of witnesses to avoid

any MPC for deletions.

Witness issuance. This is an interactive protocol. It starts with

Wit𝑢 (𝑦), which selects a random 𝑥, 𝑘 ∈ F𝑞 , computes 𝑅𝐼𝐷 ←
𝑥𝐾 , and sets ℎ ← 𝐻 (𝑅𝐼𝐷 , 𝑘𝐾). Then Wit𝑢 sends (𝑦,ℎ, 𝑘 − ℎ𝑥
mod 𝑞, 𝑅𝐼𝐷 ). This is a Schnorr proof-of-knowledge for the discrete
log of 𝑅𝐼𝐷 .

Upon receiving a tuple (𝑦,ℎ, 𝑟, 𝑅), the server runningWit𝑠 checks
that 𝐻 (𝑅, 𝑟𝐾 + ℎ𝑅) = ℎ; if so, it computes 𝑅𝑚 ← 1

𝑦+𝑠𝑚 (𝑅 + 𝐾0). It
looks up (𝑦,𝐶) ∈𝑊 (as part of aux) and sends (𝐶, 𝑅𝑚) back.

On receiving (𝐶, 𝑅𝑚), Wit𝑢 sets𝑤 ← (𝑥,𝐶, 𝑅𝑚).
The point 𝑅𝑚 is a long-term signature which never changes,

which allows the user to prove that they are the valid “owner” of

the ID 𝑦, even when performing zero-knowledge proofs that do not

reveal 𝑦. In contrast, the point𝐶 must change with the accumulator

value.

Verifications. Ver(𝐴,𝑦,𝑤) parses𝐴 as (𝑉 , 𝑄̃, 𝑄̃𝑚) and𝑤 as (𝑥,𝐶, 𝑅𝑚).
It outputs 1 if 𝑒 (𝐶,𝑦𝑃 + 𝑄̃) = 𝑒 (𝑉 , 𝑃) and 𝑒 (𝑅𝑚, 𝑦𝐾̃ + 𝑄̃𝑚) =

𝑒 (𝑥𝐾 + 𝐾0, 𝑄̃𝑚).

Proofs. We use a non-interactive zero-knowledge proof from

Nguyen [Ngu05] to prove knowledge of (𝑥,𝑦,𝐶, 𝑅𝑚) such that

𝑒 (𝐶,𝑦𝑃 + 𝑄̃) = 𝑒 (𝑉 , 𝑃) and 𝑒 (𝑅𝑚, 𝑦𝐾̃ + 𝑄̃𝑚) = 𝑒 (𝑥𝐾 + 𝐾0, 𝐾̃), i.e.,
that Ver(𝐴,𝑦,𝑤) = 1. This protocol uses a Fiat-Shamir transform

of a three-round interactive protocol. The full details are in the

full version. To prevent replay attacks, the verifier sends a random

challenge string to the prover and requires a fast response from the

prover.

Updates. To start, Upd𝑢 first sends a request of the number of

accumulator changes since their witness was last valid. Follow-

ing [VB20], we use exactly the tuples corresponding to deletions,

to produce a list (𝑦𝑑 ,𝑉𝑑 ), . . . , (𝑦1,𝑉1) of all deletions used. These
deleted elements are considered public knowledge. Since all user

interactions hide their ID 𝑦, deleting the element should not be

correlatable with any of the activity from the user owning 𝑦.

The deletions are numbered so that 𝑦𝑑 was the most recently

deleted element. This defines two polynomials in 𝑋 over F𝑞

𝑣 (𝑋, 𝛼)𝑉0 =
𝑑∑
𝑠=1

𝑉𝑠

𝑠−1∏
𝑗=1

(𝑦 𝑗 − 𝑋 ) and 𝑑 (𝑋 ) =
𝑑∏
𝑡=1

(𝑦𝑡 − 𝑋 ),

where 𝑉0 is the accumulator value before the first deletion, the last

accumulator value for which the user’s witness is valid.

A user could compute 𝑣 (𝑋, 𝛼)𝑉0 without knowledge of the secret
𝛼 , since it is implicit in the form of the intermediate accumulator

values 𝑉𝑠 . To save user computation, the server computes the co-

efficients of both polynomials, where the coefficients of 𝑣 (𝑋, 𝛼)𝑉0
(as a polynomial in 𝑋 ) will be points Ω𝑖 in 𝐺1. Then Upd𝑠 sends
{Ω0, . . . ,Ω𝑑 } and (𝑑0, . . . , 𝑑𝑑 ) to the user.

Upd𝑢 then computes 𝑑 (𝑦) and 𝑣 (𝑦, 𝛼)𝑉0 using these coefficients.

If 𝑑 (𝑦) ≠ 0, the user parses their witness as (𝑥,𝐶, 𝑅𝑚) and sets

𝐶 ← 𝑑 (𝑦)−1 (𝐶 − 𝑣 (𝑦, 𝛼)𝑉 ); otherwise, they set 𝐶 = O.
So far this is identical to [VB20]. Notice that computing the up-

date polynomials is quadratic in the number of roots. However,

update polynomials from repeated updates can be applied sequen-

tially. Thus, the server need not compute the full update polynomial,

but can split it into repeated updates of some fixed size. The server

sends each one, and the user updates sequentially. Because the

update polynomials require neither the user’s element 𝑦 nor their

existing witness, the server can compute and send all of these poly-

nomials without further user input, and the user can apply them

all without further server input.
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3.1 Security
We next discuss the security of our single-server anonymous accu-

mulator. Proving security of an anonymous accumulator – which

amounts to a complicated set of interactive protocols – is extremely

complicated, particularlywhenwewant to prove privacy/anonymity

properties. This takes us dozens of pages to formalize in a UC-style

framework, so we cannot present this in full here. While we would

be thrilled with a simpler proof of security, we could not conceive

of one and leave it as interesting future work.

So, we defer the formal proofs of security to our more expressive

formalism in the full version. Here, we give some intuition for

the proofs and describe the new hardness assumption we require.

We also provide examples of shortcomings of security definitions

in previous work as an explanation of why our security proofs

must (unfortunately) be so complicated. We note that completeness

follows straightforwardly from the definitions.

In other instantiations of this style of accumulator [Ngu05, VB20,

HKRW21], addition of an element 𝑦 requires changing the accumu-

lator value𝑉 to (𝑦 +𝛼)𝑉 . Since we do not provide non-membership

witnesses, we can exclude this. [KB21] make the same choice but

are only able to prove security against a static adversary who must

choose which elements to obtain witnesses from before starting

the security game. For active security, we require the hardness of

a new group problem, the “𝑛-Inversion Symmetric Diffie-Helman

problem” (𝑛-ISDH), defined as follows:

Definition 3.1. Let𝐺1,𝐺2, and𝐺𝑇 be groups with a type-3 pairing

from 𝐺1 ×𝐺2 to 𝐺𝑇 . Given 𝐺 , 𝜆𝐺,𝛾𝐺 ∈ 𝐺1, 𝐺̃, 𝜆𝐺̃ ∈ 𝐺2, and query

access to a function 𝑓 : (𝑦,𝑄) ↦→ 1

𝜆+𝑦𝑄 for 𝑄 ∈ 𝐺1, compute(
𝑛∏
𝑖=1

1

𝜆 + 𝑦𝑖
𝛾𝐺,𝑦1, . . . , 𝑦𝑛

)
such that at least one value of𝑦 appears in the list𝑦1, . . . , 𝑦𝑛 at least

one more time than it was queried to 𝑓 .

Such “one-more” styles of problem appear in other blind signa-

ture schemes. In the full version we prove in the generic group

model that this problem has (generic) security approximately equal

to the cube root of the group size. Since the 𝑛-ISDH problem al-

most captures witness issuance directly, the proof of soundness is

straightforward, once we extract a witness from the zero knowledge

proofs with the techniques of [Ngu05].

To show update indistinguishability, the only message the user

sends is the time since their last update. In the security game, the

two “challenge users” have witnesses valid for the same accumula-

tor. This makes them indistinguishable.

A Possible Attack on [VB20]. We stress here the importance of the

long-term signature 𝑅𝑚 . Since verification uses a zero-knowledge
proof of knowledge, an adversary with any witness can prove that

it is a valid witness, and the verifier has no way of knowing which

ID𝑦 the adversary used. Since the values𝑦 are public, and witnesses

are not assumed to be private, an adversary has easy access to this

data. Hence, we need users to generate their long-term secret 𝑥

which the server associates to the element 𝑦 via the blind signature

𝑅𝑚 . As described, we rely on the server to correctly decide when it

should send a witness to some party; in ALLOSAUR, the servers
only make one signature 𝑅𝑚 for any ID 𝑦.

The long-term signature started with [Ngu05] but is missing

from [VB20]. Because the authors of [VB20] modify the accumu-

lator during additions, if an element 𝑦 is added to an accumulator

value 𝑉 , then the old accumulator value becomes a witness for

𝑦 in the new accumulator. They note this problem and point out

that single additions, as opposed to batch operations, create such

impersonation attacks. However, a batch addition creates the same

problem. In their specification, the accumulator manager publishes

a polynomial 𝑑A (𝑥) consisting of all additions to the accumulator.

Thus, an adversary with no valid ID𝑦 nor witness can request the

batch update from accumulator 𝑉0 to 𝑉𝑡 . They receive 𝑑A (𝑥) and
a sequence of elliptic curve points Ω0, . . . ,Ω𝑡−1. They can factor

𝑑A (𝑥) (which is efficient over a finite field) to obtain the list of

additions {𝑦1, . . . , 𝑦𝑡 }. They know that

𝑣A (𝑥)𝑉0 :=
𝑡∑

𝑠=1

©­«
𝑠−1∏
𝑖=1

(𝑦𝑖 + 𝛼)
𝑡∏

𝑗=𝑠+1
(𝑦 𝑗 − 𝑥)

ª®¬𝑉0 =
𝑡−1∑
𝑖=0

𝑥𝑖Ω𝑖 .

𝑣A (𝑥) is homogenous
2
in 𝛼 and 𝑥 ; thus, the coefficient of 𝑥𝑡−2

is some linear polynomial 𝑎1𝛼 + 𝑎0, with the coefficients of this
polynomial being known functions of 𝑦1, . . . , 𝑦𝑡 . Since the adver-

sary knows 𝑦1, . . . , 𝑦𝑡 , they can compute the coefficients and find

𝑎−1
1
(Ω𝑡−2 − 𝑎0𝑉0) = 𝛼𝑉0. Similarly, the coefficient of 𝑥𝑡−3 is a poly-

nomial 𝑎2𝛼
2+𝑎1𝛼+𝑎0; since the adversary knows all the coefficients

and now they know 𝛼𝑉0, they can use Ω𝑡−3 to compute 𝛼2𝑉0.

Continuing, the adversary obtains𝑉0, 𝛼𝑉0, . . . , 𝛼
𝑡−1𝑉0 with𝑂 (𝑡2)

finite field and elliptic curve operations. From this they compute∏𝑡−1
𝑖=1 (𝑦𝑖 + 𝛼)𝑉0, which is a valid witness for 𝑦𝑡 relative to the

updated accumulator value 𝑉𝑡 .

Thus, receiving the public batch update polynomial gives enough

information to efficiently find an accumulated value 𝑦 and a valid

witness for it, breaking soundness as we define it.

A tempting mitigation is to require a valid membership proof

from each user before responding with the batch update infor-

mation; however, this fails. Once an adversary has a single valid

ID-witness pair, they can successfully request updates and obtain

valid ID-witness pairs for all users added to the accumulator from

that point. Then even if the adversary’s original ID is deleted from

the accumulator, they can continue to successfully request updates

using any of the other pairs they obtained.

Of course, if the server locally computes the batch updates, this

prevents the attack. But in this case the server could compute

updates more easily by directly issuing a new witness
1

𝑦+𝛼𝑉 . This
is also completely deanonymizing.

The definition of collision resistance in [VB20] (Definition 1)

requires an adversary to produce both a membership proof and

non-membership proof for the same element, which our attack

does not allow. We claim that the missing piece in their definition

is that they define the adversary’s success in terms of an offline

verification function, rather than in terms of passing the online

verification protocol. Their definition forces the adversary to use

the same element, whereas the verification protocol – being zero-

knowledge – does not allow any such restrictions. In practice, it

is likely a real security risk if someone can pass the verification

2
Their more general update polynomial 𝑣A,D (𝑥) is also homogenous; we only analyze

𝑣A (𝑥) here for simplicity.
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protocol using a credential that does not “belong” to them in some

sense.

While real deployments will likely have some second layer of

proof that a user genuinely owns 𝑦, we see it as a “foot-gun” to not

include this check in the accumulator backbone, since an anony-

mous credential implementation without this will be insecure. To

us, this reinforces the need for extreme care in the definitions of

anonymous primitives like this, and this is why we spend such

effort defining security and anoymity in our protocol.

Replay Attacks. As a much simpler real-world attack, an adver-

sary can play the role of a verifier, retrieve a zero-knowledge proof

ofmembership, and present this to any other verifier. Nguyen’s [Ngu05]

verification protocol has a prover send a commitment, a verifier

send a challenge in response, and a prover respond to the challenge.

In this case an adversary could fool a verifier by mounting a “per-

son in the middle” attack and forwarding all messages between the

verifier and an honest prover.

Preventing this attack needs some method to ensure every proof

is verifier-specific. For example, if verifiers had unique verifiable

IDs, this could be part of the challenge given to provers. However,

this requires another digital credential ecosystem for verifiers! More

promising might be for the prover to include some unique aspect of

the verification session, such as the IP address of the prover’s TOR

exit node. In ALLOSAUR, verifiers only accept proofs that respond

fast enough to their challenge, which is secure if messages follow a

consistent round structure. Formalizing any of these mitigations

in the single-server case is more difficult, so we do not include it.

However, we hope that these problems motivate our complicated

security definitions (and thus, unfortunately, a lengthy full paper).

4 MULTI-SERVER PROTOCOL
Our full protocol ALLOSAUR, short for “Accumulator with Low-
Latency Oblivious Sublinear Anonymous credential Updates with
Revocations” is described and implemented in the full version. Here

we summarize the main techniques.

We suppose there are 𝑁 servers, of which at most 𝑡 are dishonest.

They have read and write access to an append-only message board

with eventual delivery. This can easily be built on top of a blockchain

or other consensus protocol that satisfies a typical notion of Byzan-

tine fault tolerance; we reiterate that such a blockchain or protocol

would be necessary for 𝑁 servers to keep a consistent accumulator

state anyway and thus is reasonable to assume. All users and all

servers can establish authenticated, encrypted, and anonymous

pairwise channels. We refer to each addition or deletion to the accu-

mulator as an “epoch”. For the core accumulator functions, servers

will maintain secret values by linear shares, meaning for a secret 𝑥 ,

each server 𝑖 will have a share 𝑥𝑖 such that 𝑥 = 𝑥1 + · · · +𝑥𝑁 . This is

a 𝑁 -out-of-𝑁 secret sharing that is affine and can easily be applied

to elliptic curve points: 𝑥𝑃 = 𝑥1𝑃 + · · · + 𝑥𝑁 𝑃 for any point 𝑃 .

To open a shared value, each server publicly sends a commit-

ment to their share using a simple hash-based commitment scheme,

then reveals the opening once they receive a commitment from

all other servers. Unlike fully-fledged secure MPC schemes such

as SPDZ [DKL
+
13], this is all the extra authentication we need,

since the accumulator functionality itself provides checks for each

computation. This flavor of MPC may be of independent interest.

As the final MPC component, servers need a method to generate

Beaver triples [Bea92b], which are shares of three random values

𝑎, 𝑏, 𝑐 ∈ 𝐹𝑞 satisfying 𝑎 · 𝑏 = 𝑐 . Methods such as MASCOT [KOS16]

can provide these, and these can be prepared “offline” and stored

until a computation needs them. For every triple, we also require

public commitments to the shares from each server. Beaver triples

allow multiplication: Given shares of 𝑥 and 𝑦, each server locally

computes 𝜖𝑖 := 𝑥𝑖 − 𝑎𝑖 and 𝛿𝑖 := 𝑦𝑖 − 𝑏𝑖 , then opens these shares so

all servers have 𝜖 and 𝛿 . Then they each locally compute 𝑐𝑖 + 𝑥𝑖𝛿 +
𝑦𝑖𝜖 − 𝜖𝛿 , which is a valid share of 𝑥𝑦.

Multiplication then gives inversion: Given shares of 𝑥 , servers

generate a random value 𝑟 and use a Beaver triple to compute 𝑥𝑟 ,

which they open. Because 𝑟 is uniformly random, this gives no

information about 𝑥 (except that 𝑥 ≠ 0). Each server then locally

computes (𝑥𝑟 )−1𝑟𝑖 , which is a valid share of 𝑥−1.
Any of these computations can be destructively verified, meaning

that in case of a problem the servers can open their commitments

to the Beaver triples and step through the computation. This will

detect any server deviating from the protocol, though it will reveal

the secret values. We assume that in practice, the consequences

of being blamed by this abort process will be severe enough to

deter such behaviour, even for a denial of service attack. An im-

plementation must specify a policy for the case when a server has

misbehaved in this way. Identifiable abort is a standard technique in

MPC (e.g., [IOZ14]), and in our setting it might be possible without

revealing all secrets, since commitments to Beaver triples could be

verified by pairings. We leave this to future work.

Generation. To startGen(), each server generates random values

for 𝛼 , 𝑠𝑚 , and 𝑣 . They open 𝑄̃ = 𝛼𝑃 , 𝑄̃𝑚 = 𝑠𝑚𝐾̃ , and 𝑉 = 𝑣𝑃 using

the opening protocol described above, then set 𝐴0 ← (𝑉 , 𝑄̃, 𝑄̃𝑚),
as in the single-server case.

Additions. For Add(sk, 𝑦, 𝐴, aux), we parse aux = (𝑌,𝑊 ), 𝐴 =

(𝑉 , 𝑄̃, 𝑄̃𝑚), and sk = (𝛼, 𝑠𝑚). Notice that sk is stored as secret

shares among the 𝑘 servers, while all servers have the other data in

the clear. The servers compute
1

𝑦+𝛼 use the Beaver triple inversion

method, then multiply this by 𝑉 and open the result (denote it as

𝐶). Each server locally checks that 𝑒 (𝐶,𝑦𝑃 + 𝑄̃) = 𝑒 (𝑃, 𝑃), and if so,

stores the result as𝑊 ←𝑊 ∪ {(𝑦, 1

𝑦+𝛼𝑉 )}.
Here the servers do not modify𝐴. The opened result is left public

so that the user assigned to ID 𝑦 can retrieve the value
1

𝑦+𝛼𝑉 from

the public message board, which forms part of their witness.

Deletions. For Del(sk, 𝑦, 𝐴, aux), servers do no MPC except pub-

lishing the new accumulator value. They compute this value by

parsing aux = (𝑌,𝑊 ) and finding (𝑦,𝐶) ∈𝑊 , and using 𝐶 as the

new accumulator value 𝑉 . They then delete (𝑦,𝐶) from𝑊 , and for

all other (𝑦′,𝐶 ′) ∈𝑊 , they set 𝐶 ′ ← 1

𝑦−𝑦′ (𝐶
′ −𝑉 ).

Witness issuance. As in the single-server protocol, users running

Wit𝑢 (𝑦) select random 𝑥, 𝑘 ∈ F𝑞 , compute 𝑅𝐼𝐷 ← 𝑥𝐾 and set

ℎ ← 𝐻 (𝑅𝐼𝐷 , 𝑘𝐾), and send (𝑦,ℎ, 𝑘−ℎ𝑥 mod 𝑞, 𝑅𝐼𝐷 ) to each server.
The servers all locally verify that the tuple (𝑦,ℎ, 𝑟, 𝑅) that they

received satisfies 𝐻 (𝑅, 𝑟𝐾 + ℎ𝑅) = ℎ, and if so they use the Beaver

triple inversion to compute
1

𝑦+𝑠𝑚 , multiply this by 𝑅 + 𝐾0, and
open the result. Denoting the result as 𝑅𝑚 , they locally check that

𝑒 (𝑅𝑚, 𝑦𝐾̃ + 𝑄̃𝑚) = 𝑒 (𝑅, 𝐾̃); if this fails, they start an abort process
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where they open the commitments to the Beaver triples and verify

each other’s computation.

If the check succeeds, the user reads the value 𝑅𝑚 from the public

message board. For the “𝐶” component of their witness, the user

can either look for the messages on the message board when their

ID 𝑦 was added to the accumulator, or the servers could supply this

message. In either case, the user then starts the update protocol, if

necessary.

Updates. Figure 1 shows the update process. To start an update,

we assume the user knows the epoch of the accumulator they wish

to update to and the number of deletions from their last update to

the current one, denoted 𝐷 (this is public data the user can request

if needed). They set 𝑘 ≈
√
𝐷 and compute 𝑦,𝑦2, . . . , 𝑦𝑘 . With 𝑡-out-

of-𝑛 Shamir secret sharing, they divide each 𝑦 𝑗 into shares {𝑦 𝑗
𝑖
}𝑁
𝑖=1

,

meaning 𝑦
𝑗
𝑖
= 𝑝 𝑗 (𝑖) for a random degree-𝑡 polynomial 𝑝 𝑗 such that

𝑝 𝑗 (0) = 𝑦 𝑗 . They send all {𝑦 𝑗
𝑖
}𝑘
𝑗=1

to server 𝑖 , for all 𝑖 .

Each server locally computes the coefficients of the degree-𝑘

update polynomials 𝑑 (𝑥) and 𝑣 (𝑥, 𝛼)𝑉 as in the single server case.

They multiply the 𝑗th coefficient with the share of 𝑦 𝑗 , sum the

results, and send them back to the user. There are approximately

√
𝐷

update polynomials, and each server performs these computations

for each update polynomial.

Once the user receives at least 𝑡 + 1 results, they reconstruct the

secret from 𝑡 shares, giving them 𝑑 (𝑦) and 𝑣 (𝑦, 𝛼)𝑉 for each update

polynomial. They use the last share as a check. Then they complete

the update as normal. If the check fails, the user downloads all the

update data (the previous accumulator values and the deleted ele-

ments) and uses this data to compute the expected answer from each

server. If any server’s messages do not match what was expected,

the user sends these messages to the other servers. We assume all

of the updates messages from the servers are signed, so that this is

undeniable proof that a server misbehaved in the update protocol.

If a user was deleted from the accumulated set, the update fails

and the user will find 𝑑 (𝑦) = 0. We expect most applications will

notify users if they are deleted, but for completeness, we specify

that in this case a user iterate through all public messages to find if

they were re-added to the accumulated set. If not, they return with

no valid witness; otherwise, they download the new witness from

this re-addition and restart the update protocol from that epoch.

Verifications and proofs. These are done nearly identically to the

single-server case. However, we include an accumulator “hand-

shake”, where the user and verifier choose the most up-to-date

accumulator between them. If the verifier is out-of-date they sim-

ply download the latest accumulator, and if the user is out-of-date

they start the update protocol.

Critically, the user must discard the witness it obtains from an

update done as a subroutine of verification, or else the pattern of

which start and end epoch of the update might act as a fingerprint

for that user.

While the MPC for the main functions of the accumulator re-

quires an append-only message board, the update messages do not.

As long as enough servers are honest and fast, the user can success-

fully update. This is best thought of as an entirely separate kind of

MPC; if the main messsage board is a slow blockchain, the update

protocol can be much faster.

4.1 Security
The full security proofs are quite complicated and tedious; here we

only outline the intuition. This description entirely omits issues of

progress and ensuring synchronicity, which we deal with in the

full protocol description and proofs.

Committing to secret shares before opening them ensures that

the opened value is authentic, and checking each change to the

accumulator with pairings ensures that servers must perform the

computations as specified. If they do not, opening the Beaver triple

commitments guarantees that precisely the misbehaving servers

are identified. This ensures the MPC computations are correct.

Correctness, collision-freeness, completeness, and commitment

soundness then almost follow readily because ALLOSAUR matches

the single-server case. We must only ensure that the new update

protocol provides no extra information.

Because the coefficients of the update polynomials 𝑑 (𝑥) and
𝑣 (𝑥, 𝛼) are entirely computed from public data, there is no security

or integrity risk from treating the user as a trusted third party. If

the user sends invalid shares of 𝑦,𝑦2, . . . , 𝑦𝑘 , this will only cause

problems for that user. This means we can use bare Shamir secret

sharing with no extra layer of authenticity. For integrity of the

result, the user waits for 𝑡 + 1 servers to return shares. If all the

shares are points on the same polynomial of degree 𝑡 , then the user

is assured that they were computed correctly, since we assume an

honest majority. For update indistinguishability, a basic property

of Shamir secret sharing is that if fewer than 𝑡 servers collude,

then their shares are uniformly random. Hence, they provide no

information about the user’s ID. The remaining metadata about

which epoch the user updates from is specified to be constant.

5 MULTI-PARTY FRAMEWORK
The definitions in Section 2 specify a fixed ordering of execution

and messages; however, we want to model an asynchronous multi-

party setting. Once we specify this, the security definitions are

nearly identical (though indistinguishability needs more care), but

fully specifying the communication and execution is fiendishly

complicated. We summarize the main ideas here. The formalism is

in a “UC-style”, with a control program coordinating messages, an

adversarial machine, and honest user machines.

The control program starts by creating 𝑁 server players, of which
the adversary corrupts at most 𝑁 /3. All players have read access

to a public, append-only message board. Mainly we require a con-

sensus ordering and guaranteed delivery; to model this, we divide

execution into rounds. All players can post to the public message

board, but the control program stores all public messages posted

in one round. At the end of the round allows the adversary to ar-

bitrarily permute the messages before adding them to the actual

public message board. A practical implementation of a message

board could be a blockchain with reasonable timing guarantees.

There are also private message boards between all players, which

model private communication channels with guaranteed delivery.

The adversary can also permute messages in these boards, though

it can only read the metadata of each message when doing so.

To execute functions, any player can post a function message to

the message board. We divide functions into core accumulator func-

tions (Gen, Add, Del, Wit𝑠 ) which only server players execute and
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Figure 1: Schematic of the update protocol. Servers partition the revoked IDs into chunks of size 𝑘 , creating𝑚 ≈ 𝐷/𝑘 different
update polynomials. A user divides powers of their ID into shares (shown in yellow), which each server uses to evaluate the
update polynomials. The figure shows this for 𝑑 (𝑥) and the same process happens for 𝑣 (𝑥, 𝛼)𝑉 (not shown). The user then
reconstructs the results and sequentially updates the “𝐶” component of their witness𝑚 times.

which they execute atomically, and user functions (Wit𝑢 , Upd𝑠,𝑢 ,
Prove, Ver) which players execute simultaneously.

The adversary creates new honest user players by request, which

prompts the user to post an Add message with their own ID. There

is no verification of a “legitimate” Add; the accumulator will accept

any Add message posted. This allows the adversary to create as

many corrupted or honest user players as it wishes, though it cannot
add or corrupt more server players than it chose at the beginning.

In practice, this models corrupted issuers.

Tracking the accumulator is complicated, so rather than define an

ideal functionality outright, we define an observer program which

implicitly defines the ideal functionality through the messages it

expects to see. When players post calls to Add or Del, the observer
program tracks a set 𝑆 which represents the elements that should
be in the accumulator. It also stores all values of the accumulator

which are posted. This is essential for us to prove soundness.

5.1 Security
This framework needs only three notions of security, though these

notions are complicated and interactive. We only outline them here.

Correctness. Whenever a player posts a Provemessage to another

user (which tells that user to prove ownership of its credentials), this

prompts the observer program to record a challenge. If an honest

user (a prover) is requested to prove its credentials to another honest

user (a verifier), then the observer program’s challenge notes some

time limit before which the verifier must post the results of the

verification. If the user is in the accumulated set, the posted result

must be “true”, and otherwise “false”. If the result is wrong or it

is not posted soon enough, the observer program “fails”. If the

observer program fails, the adversary wins. We say an accumulator

is correct if it does not fail against any PPT adversary.

This definition ensures that not only do honest users see the

expected behaviour, but it also guarantees progress. If the adversary

were able to stall the accumulator (say, by posting nonsense, or

not posting at all) then this would delay the user from respond-

ing. We assume eventual guaranteed delivery of messages so the

adversary cannot mount denial of service attacks that would slow

communication by too much.

Commitment Soundness. We define commitment soundness us-

ing an extractor almost identically to the single-server case.

Indistinguishability. Our security definition for anonymity is

by far the most complicated of our definitions. We aimed for two

notions of privacy: first, user interactions with the protocol should

not reveal more information than necessary (e.g., users that prove

ownership of credentials reveal that they are one of the users with

valid credentials), and second, different user interactions should

not be correlatable. The second goal is critical because out-of-band

privacy loss happens in many use cases. For example, if valid digital

credentials permit someone to vote, this interaction must be de-
anonymized to prevent voter fraud. However, if that same person

presents the same credentials moments later to buy cigarettes, no

one should be able to connect the two events.

In our model, the control program manages pseudonyms for each
user. When a user posts a message, they add a pseudonym to a
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“sender” field. Users can request as many pseudonyms as they wish

and they can switch between them at any time. These are purely a

part of the formalism, but model any internet anonymity protocol,

such as TOR, I2P, mixnets, etc. We assume that users will use such

a protocol to connect to the servers managing the accumulator.

Our goal for anonymity is then simply indistinguishability: the

adversary should not be able to determine if two pseudonyms 𝑝1
and 𝑝2 belong to the same user. As stated, this is impossible to

achieve because basic accumulator operations break anonymity.

For example, if a user owns the ID 𝑦 which is currently the only ID

in the accumulator, then any verification of their credentials will

immediately de-anonymize them, since they are the only user that

could successfully verify.

Thus, we instead define anonymity sets. Each pseudonym 𝑝

has an anonymity set consisting of user IDs 𝑦. The goal is that the

anonymity set for 𝑝 contains the IDs of all users which were equally

likely to send all the messages that 𝑝 sends. The observer program

updates anonymity sets whenever it sees a message requesting a

user to perform some operation.

We allow the adversary access to a function which partially de-

anonymizes users: the adversary sends a list of IDs {𝑦1, . . . , 𝑦𝑛},
each user (represented by their ID) is provided a new pseudonym

{𝑝1, . . . , 𝑝𝑛}, and the new pseudonyms are returned in a random

order to the adversary. This initializes the anonymity set of each

pseudonym 𝑝𝑖 to {𝑦1, . . . , 𝑦𝑛}.
Given all of this, the baseline probability that 𝑝1 and 𝑝2 belong

to the same user is
|𝐴1∩𝐴2 |
|𝐴1 | · |𝐴2 | , where 𝐴1 and 𝐴2 are the anonymity

sets of 𝑝1 and 𝑝2 respectively. Thus, we say an accumulator is

indistinguishable if the adversary cannot correlate two pseudonyms

with significantly higher probability than this.

In real life, an adversary may know that specific users might use

their IDs at a certain place and time. To model this, we allow the

adversary to select users by their pseudonyms and request that they

perform some action (update, verify, etc.). This may de-anonymize

the user somewhat (e.g., if verification fails), and so the anonymity

set for that pseudonym must change to match this.

Our definition means that the construction of the anonymity

sets is very protocol-specific, so, while we formally define indistin-

guishability, we leave it to the protocol designer to define a function

to manage anonymity sets. This is an abstract function that is not

actually implemented; rather, it defines the anonymity the protocol

can achieve. This means one could define an accumulator which

creates singleton anonymity sets for each message. The baseline

probability defined above is 1, so technically this is “indistinguish-

able”, but obviously not anonymous. Rather than explicitly define

a meaning for “anonymous”, we leave that to the protocol. This

forces a protocol specification to include a precise accounting of

the anonymity loss from each message.

We see that user availability needs at least 𝑡 honest servers

but user privacy needs at least 𝑁 − 𝑡 honest players; it may be

that 𝑁 − 𝑡 < 𝑡 . While our formalism considers only fully active

adversaries, ALLOSAUR may still be robust against a malicious

majority if fewer than 𝑁 − 𝑡 are actively malicious and the rest are

only honest-but-curious.

Anonymity. Users send two types of messages in ALLOSAUR: up-
dates and verifications. Verifications are zero-knowledge [Ngu05]

and the update protocol only sends secret shares which are indistin-

guishable from random. Thus, only the metadata is de-anonymizing.

Here we describe the anonymity loss of this metadata.

An update must specify a user’s starting epoch in order to con-

struct the right update polynomials. Hence, when a user starts an

update from epoch 𝑛1 to epoch 𝑛2, their anonymity set must be

restricted to users whose last update brought them to epoch 𝑛1,

excluding users who have since updated from that point.

Further, if a user was deleted between 𝑛1 and 𝑛2, but re-added at

some 𝑛′ < 𝑛2, the update polynomial does not work. The user must

find a new witness from the addition and update it from epoch 𝑛′

to epoch 𝑛2. This completely deanonymizes them, since this is the

only case when users request update polynomials twice in a row,

and each epoch adds at most one user.

The anonymity set of a verification message will include either

all users with IDs currently in the accumulator (if the verification

succeeds) or all users not in the accumulator (if it fails). More than

that, however, if a user must verify their credentials against epoch

𝑛, but they only have a witness valid for epoch 𝑛0 < 𝑛, they must

update their witness before verify. Hence, their anonymity set be-

comes restricted in the same way as for an update. This anonymity

loss from timing re-emphasizes why users discard witnesses up-

dated during verifications.

To obtain anonymity, we thus recommend fixed intervals where

users coordinate to update their witnesses; for example, at the start

of each day, and for users to discard an updated witness if they

perform the update as part of a verification. Requiring synchro-

nized updates seems to defeat the purpose of our work, since we

aimed to obscure updates to prevent timing attacks! This is why

we propose ephemeral updates during verifications: any update

which will persistently change a user’s state must synchronize with

other users, whereas for live updates, users will discard the new

credential after use. This allows fine-scale “liveness” without harm-

ing anonymity. Second, “sleepy” users that miss update intervals

will be correlatable, but such updates will not provide any more

information.

In the full version we prove that these ideas capture all the meta-

data anonymity loss from ALLOSAUR. In the end, these anonymity

sets are intersected with the direct de-anonymizing data the adver-

sary requested. In practice, we interpret this to mean that whatever

de-anonymizing information an adversary already has (e.g., certain

types of people tend to use their credentials in this certain place),

the descriptions above show how much more anonymity they lose

from using the accumulator. We emphasize here that anonymity

sets are defined for each pseudonym. This means that even if one

pseudonym has been mostly de-anonymized to a user with ID 𝑦,

that same user’s anonymity can “heal”: future messages from that

user with different pseudonyms can have much larger anonymity

sets. We define this rigorously in the full version of this paper and

note that our extremely complicated anonymity formalisms are the

primary reason for its length.

Rounds. Our anonymity definition requires fairly coarse “rounds”,

so that users essentially synchronize their messages. This is a ne-

cessity given how we model our adversary. Our adversary chooses

exactly which user should perform a specific function, so we must

synchronize the responses to these requests.
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Figure 2: Performance and communication for cre-
dential updates. Error bars are 95% confidence inter-
vals frombootstrap resampling over 20 samples. Our
single-server optimizations hardly affect communi-
cation nor user-side computation, so the results for
[VB20] overlap with the results of our optimization.
We did not benchmark [VB20] for updates over 2400
revocations because the benchmarks took too long.

This gives a lot of power to the adversary. In real life, if an ad-

versary knows precisely which user is about to perform a function,

then they have already de-anonymized that user. The notion we

would like to capture is precisely how much extra information an

adversary obtains. If the adversary has some distribution over pos-

sible users that might perform an action, then the protocol should

reveal no extra information (besides certain inevitable information

like whether the user has a valid credential, etc.).

Rounds also prevent replay attacks. Verifiers send a random

challenge string to be included in each proof, preventing adversaries

from storing a proof from an honest user, but verifiers also require

the response to return in one round. An adversary cannot execute

a person-in-the-middle attack because they would need another

round to forward that challenge to an honest prover. This timing

requirement may be unrealistic, and a practical implementation

might need a different approach to thwart replay attacks which

could occur in a very short time window. We emphasize that some
replay prevention is necessary for many applications.

6 PERFORMANCE
We wrote a proof-of-concept implemention of the update protocol

of ALLOSAUR in Rust. It uses a curve of order ≈ 2
255

in BLS

family [BLS03] with embedding degree 12 over a 381-bit prime

field.

Witness updates will be the main performance bottleneck: when

an ID is added or deleted, the accumulator value changes only once,

but every user must update their witness. Further, performance of

the core accumulator functions will depend enormously on the net-

work and the public message board. The main online computation

of our core accumulator functions – a field inversion – is essentially

identical to the Delete operation in [HKRW21]. They report, for

5 servers with a dishonest majority in a simulation of a WAN, an

average online time of about 1 second with 370 bytes of communi-

cation, and around 2 seconds and 165 kB of communication for the

offline precomputation (i.e., of Beaver triples).

Ourwitness update protocol has three stages: a user pre-computes

powers of their share and divides them into Shamir secret shares,

which they send to the servers. The servers then compute the full

update polynomial on the shares, and return them to the user. Fi-

nally, the user assembles the results into the full update.

We benchmarked each stage separately on an Intel Core i7-8750H

2.20 GHz CPU. To compare with [VB20], we used the Rust imple-

mentation of [Lod21], and also our optimized implemention from

Section 3.

Our optimized single-server update barely increases communica-

tion but vastly improves server computation. ALLOSAUR is a strict

improvement over the single-server case for updates of 60 or more

changes, with major benefits in user-side computation and commu-

nication for larger updates. Communication costs in ALLOSAUR
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are higher for smaller updates, due to the use of multiple servers.

These would increase further if a system chose to use more servers.
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A ANONYMITY EXAMPLES
Here we give three examples of how anonymity can change with

an accumulator, and how our formalism handles these changes.

A.1 Out-of-band data
Imagine a town with 10 people who only drink alcohol, 5 who

only smoke, and 6 who do both. Suppose all verifiers collude, and

they record that one day someone proves their age to buy alcohol

through a connection with pseudonym 𝑝 , and the next day someone

proves their age to buy cigarettes with a pseudonym 𝑝 ′. Was this

the same person?

To formallymodel this, the adversarywould request pseudonyms

for all users who drink alcohol and request one of them verify their

identity. Then the adversary would request pseudonyms for every-

one who smokes, and request one of them verify. If the protocol

does not restrict the anonymity sets, then the anonymity set 𝐴1 of

𝑝 will be the 16 drinkers, the anonymity set 𝐴2for 𝑝
′
will be the 11

smokers, and the adversary’s chance that they are the same user is

|𝐴1∩𝐴2 |
|𝐴1 | · |𝐴2 | =

6

11·16 .
If a user used the same pseudonym for these two events, then

they would still be anonymous in the sense that their real identity

is not directly connected to the pseudonym, but they would lose

a lot of anonymity. An adversary could immediately reduce the

anonymity set of the first pseudonym from the 16 alcohol drinkers

to the 6 who also smoke. In contrast, if there were no such extra

information, then the first pseudonym could belong to any of the

10+6 drinkers and the second could belong to any of the 5+6 smok-

ers, giving a
6

11·16 chance that they are the same. As we define it,

an indistinguishable credential gives no information beyond this.

Further, if the first pseudonym 𝑝 is de-anonymized somehow

(say, they are the only person who buys a speciality product), then

if the same person uses their credential again, they will pick a

new pseudonym 𝑝 ′′, and this will be just as uncorrelated to other

pseudonyms.

A.2 Epoch Metadata
Since an adversary who controls a server can record when dif-

ferent pseudonyms request updates, this allows them to correlate

pseudonyms based on the epoch in which their witness is valid.

Figure 3 shows an example of this phenomenon.

A.3 Update fingerprinting
A critical part of ALLOSAUR is that users must specify precisely
which accumulator they are updating from and which accumulator

they are updating to. This can correlate different updates if the

accumulator updates frequently, since a user might be the only one

updating from a given accumulator. Figure 4 shows such “update

fingerprinting”. In Figure 4, only one user updates to epoch 3 (oth-

ers update past it), so pseudonyms 𝑝2 and 𝑝6 belong to the same

user. In our formalism, we restrict anonymity sets to reflect these

correlations.

While this isn’t obviously an anonymity problem, it’s risky for

the user. The use of the credential in epoch 2 might be completely
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(e) Once again all users verify. Since all users have equally
up-to-date witnesses, their anonymity has healed, and their
pseudonyms are indistinguishable.

Figure 3: Sketch of how our formalism handles anonymity
sets, and how the metadata of update patterns can partially
and temporarily reduce anonymity.
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Figure 4: A series of updates for 5 users. The table shows the updates in the order they might be received, and the graph
connects updates to and from the same epoch. While each update uses a unique pseudonym and provides no de-anonymizing
information, the epochs of the update can be connected as in the graph. For example, we see that pseudonym 𝑝6 must belong
to the same user as pseudonym 𝑝2. We also see that anonymity can be restored: pseudonym 𝑝14, from epoch 17 to 19, could
belong to the same user as pseudonym 𝑝10 or 𝑝8, but we do not know which.

de-anonymized (e.g., voting) while the use of the credential in

epoch 6 might be privacy-sensitive (e.g., filling a prescription). If

updates correlate these pseudonyms, then this de-anonymizes the

privacy-sensitive interaction, which is undesirable.

Because of this problem, we recommend that users synchronize

their updates. We can see that if many users update to and from the

same epoch, they are indistinguishable from one another and hence

anonymous. However, users cannot necessarily synchronize the up-

dates they perform as part of a verification, so verification updates

will provide fine-grained epoch data. This is why we recommend

discarding updated witnesses during verification.

This phenomenon is not unique to ALLOSAUR. Any batch up-

date, such as that of [VB20] which ALLOSAUR derives from, will

have the same issue. A user could “fuzz” the update by adding

some noise to their update data by requesting updates from random

epochs before their current value. This has several issues, however:

• With ALLOSAUR, this is not possible as the user cannot

remove elements from the batch update polynomial. For

[VB20], the same problem occurs, and instead users would

need to construct the batch update polynomials themselves

from the list of revoked elements and the list of previous

accumulator values, which is more expensive.

• This reduces the information, but does not eliminate it. Re-

questing an update from epoch 𝑡 implies a user had a witness

valid for an epoch at least as high as 𝑡 . Moreover, an adver-

sary could create a distribution of likely epochs based on

known or guessed user behaviour. This will be quite narrow

unless the user chooses quite large intervals to “fuzz”, but

the communication costs of updating increase proportional

to the size of this interval.

B PRIVATE INFORMATION RETRIEVAL
Following the definition from [DMO00], a private information re-
trieval (PIR) scheme is a triple (Data,Query,Rec) of probabilistic
algorithms (implicitly parameterized by 1

𝜆
). Imagine that a server

runs Data and a user runsQuery and Rec. They have the following
form:

• Data(𝐷) takes as input a database 𝐷 , and interacts with

Query(𝑛, 𝑖) which takes in the database size 𝑛 = |𝐷 | and an

index 𝑖 , and they output a hint ℎ𝑢 for the user making the

query.

• Rec(𝑛, 𝑖, ℎ𝑢 ) → {0, 1} takes the length of the database, the

requested index, and the hint(s) from the interactive protocol,

and recovers the 𝑖th element of the database 𝐷 .

These algorithms satisfy two security requirements

Correctness : For any 𝑛 ∈ N, and any database 𝐷 ∈ {0, 1}𝑛
(represented as 𝐷 = (𝐷1, 𝐷2, . . . , 𝐷𝑛) for 𝐷𝑖 ∈ {0, 1}), then
for all 𝑖 ∈ [𝑛],

Pr

[
Rec(𝑛, 𝑖, ℎ𝑢 ) = 𝐷𝑖

��(ℎ𝑢 , ℎ𝑠 ,Λ) ← ⟨Query(𝑛, 𝑖),Data(𝐷)⟩
]

≥ 1 − negl(𝜆)
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Privacy : For any 𝑛 ∈ N, any database 𝐷 ∈ {0, 1}𝑛 , and any

two 𝑖, 𝑗 ∈ [𝑛], then for any PPT algorithm A, we require

Pr

[
𝑏 = 1

��(ℎ𝑢 , 𝑏,Λ) ← ⟨Query(𝑛, 𝑖),A(𝐷)⟩
]

− Pr
[
𝑏 = 1

��(ℎ𝑢 , 𝑏,Λ) ← ⟨Query(𝑛, 𝑗),A(𝐷)⟩
]
≤ negl(𝜆)

There is a strong similarity between PIR and blind updates. In

the following we let C𝐴 denote the cost of each subroutine 𝐴. Re-

call that an additive accumulator can add elements and a negative

accumulator allows users to prove non-membership. We assume

existence of an efficient, injective function from [𝑛] to the set of

possible elements in the accumulator, which exists for all existing

accumulator constructions.

Lemma B.1. Suppose there is an additive negative accumulator
with blind updates (i.e., some maximum advantage 𝛼 ≤ negl(𝜆)),
where the communication complexity of a blind witness update for𝑚
new additions and deletions is 𝑐 (𝑚). Then for an 𝑛-bit database, there
is a PIR with:

• Computational cost at most CGen + CAdd (𝑛) + CUpd𝑠 (𝑛) for
Data.
• Computational cost CWit + CUpd𝑢 (𝑛) + CVer forQuery.
• Communication cost 𝑐 (𝑛) + |𝐴| + |aux0 | + |sk| (i.e., the length of
an accumulator, its secret key, and the initial auxiliary data).
• Maximum advantage in the user privacy game of 2𝛼 .

Proof. PIR Construction: Given a database 𝐷 ∈ {0, 1}𝑛 , Data
will first call Gen(𝑛) → (sk, 𝐴0, aux0) and send all of this output

Query. Using an injective PRF 𝑓 which maps [𝑛] to valid user IDs

for the accumulator, Data will then call Add(sk, 𝐴𝑖 , 𝑓 ( 𝑗), aux𝑖 ) to
add 𝑦 𝑗 := 𝑓 ( 𝑗) to the accumulator for all 𝐷 𝑗 = 0 in 𝐷 , eventually

producing a final accumulator value 𝐴𝑡 with auxiliary update data

aux𝑢𝑝𝑑 .
Query(𝑛, 𝑖) will set 𝑦𝑖 = 𝑓 (𝑖) and locally run the protocol

⟨Wit𝑢 (𝑥𝑖 ),Wit𝑠 (sk, aux0, 𝐴0)⟩

to obtain𝑤𝑖 . It then begins the witness update protocol, running

Upd𝑢 (𝑦𝑖 ,𝑤𝑖 , 𝐴0). Data will run Upd𝑠 (sk, 𝐴𝑡 , aux𝑢𝑝𝑑 ). At the end
of this interaction, the user running Query will have a new ac-

cumulator 𝐴𝑡 , and a new witness 𝑤 ′
𝑖
. The hint they output is

ℎ𝑢 = (𝑦𝑖 ,𝑤 ′𝑖 , 𝐴𝑡 ). If any of these functions fail,Query halts.

Finally, Rec(ℎ𝑢 , 𝑛, 𝑖) will run Ver(𝑦𝑖 ,𝑤 ′𝑖 , 𝐴𝑡 ) and output the re-

sult.

Complexity: Data runs Gen once, runs Add at most 𝑛 times,

and Upd𝑠 for an update of size at most 𝑛. Query runs Wit once
(both sides), then Upd𝑢 for an update of size at most 𝑛, and Ver.
The communication is the communication of the blind update, plus

Data must send a blank accumulator and its secret key.

Security: The completeness property of the accumulator and

the injectivity of 𝑓 guarantees that if 𝐷𝑖 = 0, then 𝑦𝑖 was added to

the accumulator, so the non-membership witness must be invalid,

and Ver(pk, 𝑥𝑖 ,𝑤 ′𝑖 , 𝐴
′) = 0. Conversely, if 𝐷𝑖 = 1, then 𝑥𝑖 was not

added to the accumulator, and the non-membership witness will

stay valid, so Ver(pk, 𝑥𝑖 ,𝑤 ′𝑖 , 𝐴
′) = 1.

For user privacy, we show how to construct an adversary A ′ =
(A ′

0
,A1) out of the blindness of the accumulator from an adver-

sary A against the PIR. Let 𝑖0 and 𝑖1 be a pair of indices for some

database 𝐷 for which A has the maximum advantage, meaning

thatA outputs 1 with probability 𝑝 for index 𝑖0 and outputs 1 with

probability 𝑝 + 𝛽 for index 𝑖1, where 𝛽 is the advantage of A.

Since Query halts if given improperly-formatted initial data,

we can assume A sends the expected initial data: an accumulator

value 𝐴0, a secret key sk, and auxiliary data aux0. We construct

A ′
0
by running the first stage of A, which will output all this

data initially. Given the indices 𝑖 and 𝑗 , 𝐴𝑑𝑣 ′
0
sets 𝑦0 = 𝑓 (𝑖0) and

𝑦1 = 𝑓 (𝑖1) and runsWit𝑢 andWit𝑠 to recover witnesses for each.

Again, assuming Query halts if this fails, we can suppose these

functions run successfully on the values provided by A. This gives

𝑤0 and𝑤1, which A ′
0
outputs along with 𝐴0, sk, aux0, 𝑦0, 𝑦1, and

its entire internal state as the first step of the blind update game.

At this point we see that 𝐴0 contains no elements, so it is the

case that Ver(𝑦𝑏 ,𝑤𝑏 , 𝐴0) = 1 for both 𝑏 ∈ {0, 1}. Thus, during the
second stage of the blind update gate, Upd𝑢 will interact exactly as

Query(𝑛, 𝑖𝑏 ), which can then be forwarded toA. WhenA outputs

𝑏 ′ ∈ {0, 1}, A ′
1
simply outputs thisas its response.

If𝑏 = 0 thenA interacts withQuery(𝑛, 𝑖0),A ′wins ifA outputs

0, which happens with probability 1 − 𝑝 . Instead if 𝑏 = 1, A ′ wins
whenA outputs 1, which has probability 𝑝+𝛽 . The total probability
of A ′ winning is then

1

2

(1 − 𝑝) + 1

2

(𝑝 + 𝛽) = 1

2

+ 𝛽
2

.

and thus 𝐴𝑑𝑣 ′ has advantage 𝛽
2
in the distinguishing game against

the blind update, meaning 𝛽 ≤ 2𝛼 . □

Corollary B.2. The same result holds for subtractive positive
accumulators.

Proof. A subtractive positive accumulator implies an additive

negative accumulator by initializing the accumulator to contain

all possible future elements. For PIR this is a well-known set: Data
will add 𝑓 (𝑖) to the accumulator for all 𝑖 ∈ [𝑛] before sending it to

the user. □

While the definition of a PIR we used does not distinguish pre-

computation and online computation, we point out that this PIR

can construct the accumulator as an offline precomputation, and

only perform Upd during the online phase.

C INVERSION SYMMETRIC DIFFIE-HELMAN
PROBLEM

Here we prove the security of our new group assumption, the 𝑛-

ISDH problem, in the generic group model. Recall the definition:

Definition C.1. Let 𝐺1, 𝐺2, and 𝐺𝑇 be groups with a type-3

pairing from𝐺1×𝐺2 to𝐺𝑇 . Given𝐺 , 𝜆𝐺,𝛾𝐺 ∈ 𝐺1, 𝐺̃, 𝜆𝐺̃ ∈ 𝐺2, and

query access to a function 𝑓 : (𝑦,𝑄) ↦→ 1

𝜆+𝑦𝑄 for𝑄 ∈ 𝐺1, compute(
𝑘∏
𝑖=1

1

𝜆 + 𝑦𝑖
𝛾𝐺,𝑦1, . . . , 𝑦𝑘

)
such that at least one value of𝑦 appears in the list𝑦1, . . . , 𝑦𝑘 at least

one more time than we queried it to 𝑓 .

We assume opaque encodings 𝛼1, 𝛼2, 𝛼𝑇 : Z𝑞 → {0, 1}∗, which
encode 𝐺1, 𝐺2, and 𝐺𝑇 , respectively, such that 𝛼1 (𝑎) encodes 𝑎𝑃 ,
𝛼2 (𝑎) encodes 𝑎𝑃 , and 𝛼𝑇 (𝑎) encodes 𝑒 (𝑃, 𝑃)𝑎 .
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An addition oracle𝑀 (𝛼 (𝑎), 𝛼 (𝑏)) returns 𝛼 (𝑎+𝑏); a scalar multi-

plication oracle 𝑆 (𝑎, 𝛼 (𝑏)) returns𝛼 (𝑎𝑏); a pairing oracle 𝑃 (𝛼1 (𝑎), 𝛼2 (𝑏))
returns 𝛼𝑇 (𝑎𝑏).

Our proof will follow a typical group model strategy. We will

simulate the group oracle by constructing polynomials from each

query in terms of two variables, 𝑥 and 𝑧, which will represent the

values 𝜆 and 𝛾 respectively. As the adversary makes queries to addi-

tion, scalar multiplication, and pairing, we will store their queries

as polynomials constructed from these elementary operations. In

fact they will be rational functions (i.e., ratios of two polynomials)

since we must also simulate the function 𝑓 .

Rational functions over Z𝑞 are “almost” isomorphic to the group

in question; however, in the real group, 𝑥 and 𝑧 have fixed values

𝑥∗ and 𝑧∗. If we selected random values for 𝑥∗ and 𝑧∗ and evalu-

ated the polynomials before any queries from the adversary, this is

indistinguishable from the real group problem. If we select random

values after the queries, it is highly likely to be indistinguishable,

but it might not be: for example, if the adversary happens to request

operations that produce a constant polynomial equal to the value

of 𝑥∗, our simulator would not return the same value as 𝑥 . In short,

we need to know the probability that there are unexpected relations

between the polynomials we construct if we evaluate them after

the game is over. If no such relations occured, then our simulation

is indistinguishable to the adversary.

In the case of an indistinguishable simulation, the adversary’s

result should be something it queried to the simulator, and thus be

in our list of rational functions. If the result is correct, it satisfies

a particular equation of polynomials, but we will show that this

equation cannot be satisfied. Therefore, either (a) the simulation

was indistinguishable, so the adversary failed; or (b) our simulation

produced an unexpected relation that the adversary could exploit

in the real group problem. An upper bound on the probability of

(b) gives the result.

Theorem C.2. In the generic group model for |𝐺1 | = |𝐺2 | =
|𝐺𝑇 | = 𝑞, an adversary making 𝑄 queries to the group oracle and 𝑛
queries to the affine inversion oracle 𝑓 to produce a 𝑘-tuple 𝑦1, . . . , 𝑦𝑘
as an answer, succeeds in solving the 𝑛-ISDH problem with probability
at most

𝑂

(
𝑄2𝑛

𝑞
+ 𝑘𝑛
𝑞

)
.

Proof. A simulator S will interact with the adversary A. The

simulator maintains three lists, 𝐿1, 𝐿2, and 𝐿𝑇 , to represent queries

in 𝐺1, 𝐺2, and 𝐺𝑇 , respectively. Each element of list 𝐿𝑖 (for 𝑖 ∈
{1, 2,𝑇 }) is a pair (𝐹𝑖,𝑠 , 𝛼𝑠 ), where 𝐹𝑖,𝑠 is a rational function of

polyomials in Z𝑞 [𝑥, 𝑧] and 𝛼𝑠 is a random string to represent a

group element.

The simulator dynamically maintains these lists, and initializes

them as follows: For 𝐿1, it chooses three random strings 𝛼0, 𝛼1, and

𝛼2, then sets 𝐹1,0 = 1, 𝐹1,1 = 𝑥 , and 𝐹1,2 = 𝑧. These represent𝐺 , 𝜆𝐺 ,

and 𝛾𝐺 , respectively.

For 𝐿2, S chooses random strings 𝛽0 and 𝛽1 and sets 𝐹2,0 = 1

and 𝐹2,1 = 𝑥 , to represent 𝐺̃ and 𝜆𝐺̃ . S initializes 𝐿𝑇 as empty.

At this point S can send the random strings to A as the input

points to the problem. Then S must correctly simulate the oracles

that A can access. Each oracle follows a very similar process.

For addition in group𝐺𝑖 for 𝑖 ∈ {1, 2} or multiplication for 𝑖 = 𝑇 ,

A sends 𝛼𝑠 and 𝛼𝑡 . Then S finds the indices 𝑗, 𝑘 where 𝛼𝑠 and

𝛼𝑡 are in its list 𝐿𝑖 (it returns ⊥ if no such indices exist), and S
computes 𝐹 = 𝐹𝑖, 𝑗 +𝐹𝑖,𝑘 . S looks for 𝐹 (as a rational function) as the

first element of some pair in 𝐿𝑖 . If such a pair (𝐹, 𝛼𝐹 ) exists, then
S returns the associated string 𝛼𝐹 ; otherwise, it chooses a random

string 𝛼 and adds a new pair (𝐹, 𝛼) to 𝐿𝑖 before returning 𝛼 to A.

Subtraction is the same process, except with 𝐹 = 𝐹𝑖, 𝑗 − 𝐹𝑖,𝑘 .
For scalar multiplication (exponentiation in 𝐺𝑇 ) in 𝐺𝑖 , A inputs

𝛼𝑠 and 𝑎 ∈ Z𝑞 . S finds the index 𝑗 for 𝛼𝑠 ∈ 𝐿𝑖 , returning ⊥ if it’s

not there, and computes 𝐹 = 𝐹𝑖, 𝑗𝑎. It checks for 𝐹 ∈ 𝐿𝑖 , and returns

the associated 𝛼 if it exists. Otherwise, it adds (𝐹, 𝛼) for a random
string 𝛼 , increments 𝑆𝑖 , and returns 𝛼 to A.

For pairings,A inputs 𝛼 and 𝛽 . Then S finds (𝐹1,𝑖 , 𝛼𝑖 ) ∈ 𝐿1 such
that 𝛼𝑖 = 𝛼 and (𝐹2, 𝑗 , 𝛽 𝑗 ) ∈ 𝐿2 such that 𝛽 𝑗 = 𝛽 (returning ⊥ if

there are no such indices). It computes 𝐹 = 𝐹1,𝑖𝐹2, 𝑗 and checks for

𝐹 ∈ 𝐿𝑇 . If it finds 𝐹 , it returns the associated string. Otherwise, it

generates a random 𝛾 , adds (𝐹,𝛾) to 𝐿𝑇 , and outputs 𝛾 .

For the affine inverse oracle, A inputs 𝛼 and 𝑦. S finds (𝐹1,𝑖 , 𝛼𝑖 )
so that 𝛼𝑖 = 𝛼 , then sets 𝐹 =

𝐹1,𝑖
𝑥+𝑦 and checks if 𝐹 ∈ 𝐿1; if so, it

returns the associated 𝛼 . Otherwise, it selects a random 𝛼 and adds

(𝐹, 𝛼) to 𝐿1, increments 𝑆1 and outputs 𝛼 .

We argue that if 𝑌 is the multiset of all 𝑦𝑖 that the adversary
has queried (i.e., if the adversary queries twice with a specific 𝑦,

it appears twice in 𝑌 ), then every polynomial 𝐹1,𝑠 will have the

form
𝑝1 (𝑥)+𝑝2 (𝑥)𝑧∏

𝑦𝑖 ∈𝐼 (𝑦𝑖+𝑥)
for some 𝐼 ⊆ 𝑌 , such that the degree of 𝑝1 (𝑥)

is at most |𝐼 | + 1 and the degree of 𝑝2 (𝑥) is at most |𝐼 |. This holds
by induction: It is certainly true for the initial elements sent to A.

Trivially, it holds after a scalar multiplication. For an addition, we

can see that

𝑝1 (𝑥) + 𝑝2 (𝑥)𝑧∏
𝑦𝑖 ∈𝐼1
(𝑦𝑖 + 𝑥)

+ 𝑟1 (𝑥) + 𝑟2 (𝑥)𝑧∏
𝑦𝑖 ∈𝐼2
(𝑦𝑖 + 𝑥)

=

(𝑝1 (𝑥) + 𝑝2 (𝑥)𝑧)
∏

𝑦𝑖 ∈𝐼2\𝐼1
(𝑦𝑖 + 𝑥) + (𝑟1 (𝑥) + 𝑟2 (𝑥)𝑧)

∏
𝑦𝑖 ∈𝐼1\𝐼2

(𝑦𝑖 + 𝑥)∏
𝑦𝑖 ∈𝐼1∪𝐼2

(𝑦𝑖 + 𝑥)

Here the union of two multisets is defined by taking each entry

the maximum number of times it appears in either multiset. The

degree of the left term in the numerator, with no 𝑧 terms is at

most |𝐼1 | + 1 + |𝐼2 \ 𝐼1 | = |𝐼1 ∪ 𝐼2 | + 1, which is the same bound

for the degree on the right term. With the 𝑧, the degree is at most

|𝐼1 | + |𝐼2 \ 𝐼1 | = |𝐼1 ∪ 𝐼2 |
The polynomials 𝐹2,𝑠 will have degree at most 1, since A can

only access additions and scalar multiplications in 𝐺2.

The polynomials 𝐹𝑇,𝑠 will have the form
𝑝1 (𝑥)+𝑝2 (𝑥)𝑧

𝑞𝑠 (𝑥) , where

𝑞𝑠 (𝑥) =
∏

𝑦𝑖 ∈𝐼 (𝑦𝑖 + 𝑥) and deg(𝑝1,2 (𝑥)) ≤ |𝐼 | + {1, 2}. This holds
by induction with the same proofs as for 𝐹1,𝑠 , but with a base case

that includes a product 𝐹1,𝑠𝐹2,𝑡 , which will increase the degree of

the numerator by at most 1.

When A is finished, it outputs (𝛼𝑦, 𝑦1, . . . , 𝑦𝑘 ). The value 𝛼𝑦
must correspond to a function 𝐹𝑦 in 𝐿1 (if not,A guessed at random
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and we can add a random exponentiation of some 𝐹 as (𝐹, 𝛼𝑦) in 𝐿1
to 𝐿1). If A is successful, then letting 𝐴 be the multiset 𝑦1, . . . , 𝑦𝑘 ,

we can define

𝑃 (𝑥) =
∏
𝑦∈𝐴
(𝑥 + 𝑦)

and we must have that
1

𝑃
𝐹𝑦 = 𝑧.

Since we knowthat 𝐹𝑦 =
𝑝1,𝑦 (𝑥)+𝑝2,𝑦 (𝑥)𝑧

𝑞𝑦 (𝑥) for some polynomials

𝑝1,𝑦 (𝑥), 𝑝2,𝑦 (𝑥), and 𝑞𝑦 (𝑥), we can rearrange to

(𝑝1,𝑦 (𝑥) + 𝑧𝑝2,𝑦 (𝑥))𝑃 (𝑥) − 𝑞𝑦 (𝑥)𝑧 = 0.

We argue that this polynomial is not identically 0. For it to be

identically zero, we would need the 𝑧 coefficient (as a polynomial of

𝑥 ) to be zero, which is 𝑍 (𝑥) := 𝑝2,𝑦 (𝑥)𝑃 (𝑥) − 𝑞𝑦 (𝑥) = 0. However,

translating the requirement of the problem that some 𝑦 in the

adversary’s list 𝐴 appears one more time than it was queried to 𝑓 ,

we conclude that there is some 𝑦 ∈ 𝐴 and some ℓ ≥ 1 such that

(𝑦 +𝑥)ℓ divides 𝑃 (𝑥) and (𝑦 +𝑥)ℓ−1 divides 𝑞𝑦 (𝑥), but (𝑦 +𝑥)ℓ does
not divide 𝑞𝑦 (𝑥). Thus, factoring out (𝑦 + 𝑥)ℓ−1 and evaluating the

polynomial 𝑍 (𝑥) at −𝑦 gives 𝑍 (−𝑦) = −𝑞𝑦 (−𝑦) ≠ 0. Hence, the

polynomial 𝑍 (𝑥) = 𝑝2,𝑦 (𝑥)𝑃 (𝑥) − 𝑞𝑦 (𝑥) cannot be identically zero.

However, these rational functions do not correctly represent the

group, because they do not account for the relationship between

𝑥 and 𝑧. For that we would need to choose fixed values of 𝑥∗ and
𝑧∗, which represent the actual values of 𝜆 and 𝛾 , and evaluate all

the rational functions we produced. If we had done this before we

started the game, it would have been perfectly indistinguishable,

so we check the probability that the result is different evaluating at

the end. If it is, we assume (to the adversary’s advantage) that A
wins with probability 1.

The three problems that could occur are:

(1) one of the affine inversions is impossible, because𝑦𝑖 +𝑥∗ = 0;

(2) two rational functions 𝐹𝑖,𝑡 ≠ 𝐹𝑖,𝑠 are equal when evaluated

at 𝑥∗, 𝑧∗ for some 𝑖 ∈ {1, 2,𝑇 };
(3) the adversary’s response polynomial 𝐹𝑦𝑃 evaluates to 𝑧∗

when given inputs of 𝑥∗ and 𝑧∗.

The first case occurs with probability at most 𝑝1 :=
𝑛
𝑞 .

For the second and third case, if we evaluate on some 𝑧∗, all
functions become rational functions of 𝑥 . With 𝑛 total affine in-

verse queries, then an equation 𝐹𝑖,𝑠 (𝑥, 𝑧∗) − 𝐹𝑖,𝑡 (𝑥, 𝑧∗) = 0 can be

rearranged to a polynomial of degree at most 𝑛 + 1 (if 𝑖 = 1), or 1 (if

𝑖 = 2), or 𝑛 + 2 (if 𝑖 = 𝑇 ). Thus, it has at most 𝑛 + 2 roots, so for a

random non-zero challenge 𝑥∗ this equation holds with probability

at most
𝑛+1
𝑞−1 ,

1

𝑞−1 , or
𝑛+2
𝑞−1 , for 𝑖 = 1, 2,𝑇 , respectively. Letting 𝑆1, 𝑆2,

and 𝑆𝑇 be the size of each list 𝐿1, 𝐿2, and 𝐿𝑇 , be the probability of

any of these relations occuring is at most

𝑝2 ≤
(
𝑆1

2

)
𝑛 + 1
𝑞 − 1 +

(
𝑆2

2

)
1

𝑞 − 1 +
(
𝑆𝑇

2

)
𝑛 + 2
𝑞 − 1 .

Similarly, for the third case with 𝐹𝑦 (𝑥, 𝑧∗)𝑃 (𝑥) = 𝑧∗, we rear-
range as before to

(𝑝1,𝑦 (𝑥) + 𝑧∗𝑝2,𝑦 (𝑥))𝑃 (𝑥) − 𝑞𝑦 (𝑥)𝑧∗

and conclude that this has degree at most 𝑘 (𝑛 + 1), so the final case
occurs with probability at most 𝑝3 :=

𝑘 (𝑛+1)
𝑞 .

Given that the adversary makes 𝑄 group queries, 𝑛 affine inver-

sion queries, 𝑆1 starts with 3 elements and 𝑆2 starts with 2, we see

that𝑄 +𝑛 = (𝑆1 − 3) + (𝑆2 − 2) +𝑆𝑇 , or that 𝑆1 +𝑆2 +𝑆𝑇 = 𝑄 +𝑛 + 5.
Since binomial terms are convex, we bound the total probability as

𝜖 ≤𝑝1 + 𝑝2 + 𝑝3

≤𝑂
(
𝑄2𝑛

𝑞
+ 𝑘𝑛
𝑞

)
□
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D MPC SUMMARY
This supplementary material details our formal model and proves its security. Here we explain the sections, and highlight the more interesting

notions.

Appendix E introduces the basic notion of the formalism, then gives the functionality of the psuedonyms, message boards, a clock,

and a random oracle. These functions should be generally familiar, as we expect them to be instantiated with well-known protocols.

For Appendix F, notice that the ideal functionality of an anonymous accumulator would be complicated and would depend greatly on the

order of inputs, so instead we define an observer program that observes all the messages and computes the expected result. Think of this

program like a function to compute the ideal functionality on-the-fly. In short, it tracks which IDs are supposed to be in the accumulator and

which are not, and when different functions should complete their execution.

Then Appendix G defines a control program which manages the execution of players and adversaries. In short, it runs players in a

randomized order, with adversarial players in this order, and relays their messages back and forth to the message board.

With all the formalism done, we define security in Appendix H. The observer program has done a lot of the work to track what should
happen, so the security definitions mainly refer to the outputs of the observer. Correctness and commitment soundness are straightforward

extensions of the definitions from Section 2, but user indistinguishability is more novel.

Now we want to specify the actual protocol. First, Appendix I specifies basic functions for each player to follow which ensure that they

handle messages in order, and have a method to wait for messages from other players. This is relatively uninteresting but necessary to

complete the formalism. We also need some basic MPC building blocks, like the creation of Beaver triples, commitment schemes, and secure

opening of unauthenticated secret shares, which are given in Appendix I. These will be unsurprising to anyone familiar with MPC.

Appendix K then specifies the actual protocol. The skeleton of the protocol is already in Section 4 and the main difference in this

more formal specification is that we precisely deal with edge cases like updates when a witness was deleted and re-added multiple times,

what players should do when the posted accumulator does not match, and so forth. This section is not critical to understand ALLOSAUR, but
does contain key steps it must take to be fully secure.

From there, the remaining sections prove the security notions; Appendix L provides a more detailed summary of just the proof sections.

Most of the necessary statements are basic facts about guaranteed and synchronized progress by honest players. Readers who expect such

behaviour for MPC protocols can skip the first few sections of proofs. The first “cryptographic” proof is in Appendix V, where we show
soundness with the new 𝑛-ISDH assumption.

Proofs of anonymity are in two sections: Appendix W proves the straightforward statements that the zero-knowledge proofs in verification,

and the secret-sharing of updates, give no user-specific information. This leaves us to deal with the metadata anonymity loss in Appendix X.

Perhaps the most approachable section is Appendix Y, which provides an example of a pattern of user behaviour that will produce anonymity.

E MULTI-PARTY FORMALISM
Our formalism involves three types of program:

• the control program, which coordinates execution of the other players, relays messages, and maintains a representation of an ideal

accumulator.

• the players, which represent honest servers and users.

• the adversary, which performs arbitrary, bounded computations.

A true UC formalism would cleanly separate the functionality of, e.g., digital signatures from the rest of the protocol. The control program

should send data back and forth from players and adversary to other programs, which act independently. As much as is practical we follow

this philosophy, but strict separation would bog down the description.

For example, authenticated channels with digital signatures prevent impersonation of messages, but adding even a formal functionality of

digital signatures is unnecessarily complex. Instead we break the control flow slightly and permit the control program and all non-accumulator

funcationality access to a global variable representing the currently active player, to correctly decide who has sent each message.

We start by describing these other functionalities, which have well-known realizations. Throughout we use coloured_text for global
variables.

E.1 Pseudonyms
To model anonymous internet connections, such as TOR [DMS04], we introduce pseudonyms.Pseudonyms in our formalism are unique

IDs which a pseudonym program manages, assigning each pseudonym exclusively and irrevocably to one player. Players can request new

pseudonyms at any time. Pseudonyms are managed through a dictionary identities, mapping each pseudonym to the player which owns it.

When players post messages, they add one of their pseudonyms as a “sender” argument, and the pseudonym program assigns that sender to

the message.

Though we assume messages are private, we also assume they are authenticated. This is why the pseudonyms are exclusive: a pseudonym

represents a session with a particular signing key.
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PSEUDONYM_SETUP (num_players)
1: identities← new empty dictionary

2: for 𝑖 = 1 to num_players do
3: identities[𝑖] ← 𝑖

4: end for

Program 1: Establishes a number of initial players (the servers) who will be given non-anonymous pseudonyms.

PSEUDONYM_GIVE (player)
1: 𝑝 ←

$
2
2𝜆 \ identities.keys

2: identities[𝑝] ← player
3: RETURN(𝑝)

Program 2: Chooses an unused pseudonym, assigns it to the player index given as argument, and returns it. This function
is not accessible to players.

PSEUDONYM_NEW ()
1: return PSEUDONYM_GIVE(ACTIVE_PLAYER_ID)

Program 3: Draws a random new unused pseudonym to assign to the currently active player, and returns it.

PSEUDONYM_VERIFY (pseudonym)
1: RETURN(identities[pseudonym] == ACTIVE_PLAYER_ID)

Program 4: Ensures the active player owns this pseudonym.

PSEUDONYM_GET ()
1: 𝑃 ← {pseud : identities[pseud] = ACTIVE_PLAYER_ID }
2: RETURN(𝑃)

Program 5: Returns all pseudonyms belonging to the active player.

PSEUDONYM_CHECK_CORRUPTED (pseudonym, corrupted_players)
1: RETURN(identities[pseudonym] ∈ corrupted_players)

Program 6: Checks whether a pseudonym belongs to a corrupted set.

For tracking anonymity, the pseudonym program will also return a set of pseudonyms belonging to a set of player IDs.

PSEUDONYMS_FROM_SET (players)
1: pseudonyms← ∅
2: for (pseud, id) ∈ identities do
3: if id ∈ players then
4: pseudonyms.add(pseud)
5: end if
6: end for
7: RETURN(pseudonyms)

Program 7: Returns all pseudonyms belonging to a set of players.

We will also allow the observer program to de-anonymize pseudonyms at will.
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PSEUDONYM_GET_IDENTITY (pseudonym)
1: RETURN(identities[pseudonym])

Program 8: De-anonymize a single pseudonym.

E.2 Message Boards
We model a public, authenticated, consensus channel with guaranteed delivery as a message board. In our formalism, we allow all players to

post to the message board and to read from it. However, the message board program does not immediately add each posted message to the

board. Instead we allow the adversary to arbitrarily re-order messages between rounds. After each round, the order of the messages is fixed

and all players are able to read them. This creates a somewhat artifical “round”. In real terms, a round is the maximum delay that a message

might face before reaching being added to the channel.

A player attempting to post on a message board must include a pseudonym to use. The message board program first requests that the

pseudonym program verifies that this pseudonym belongs to the active player before attaching it to the message as metadata.

MESSAGE_BOARD_SETUP ()
1: // Initialize a dynamic array to represent committed values.

2: BOARD←empty dynamic array

3: // Initialize a dynamic array to represent uncommitted values.

4: TEMP_BOARD←empty dynamic array.

Program 9: Initialize public message board.

MESSAGE_BOARD_POST (message, sender)
1: // Ensure the sender (a pseudonym) is the current active player

2: if not PSEUDONYM_VERIFY(sender) then
3: RETURN
4: end if
5: // Add message to the temporary array.

6: TEMP_BOARD.Add(message, sender)

Program 10: Send a message to the public bulletin board, which may be reordered before the end of the round.

MESSAGE_BOARD_DELIVER ()
1: 𝜋 ← ADVERSARY.reorder (TEMP_BOARD)
2: Rearrange the messages in TEMP_BOARD by 𝜋

3: Add the contents of TEMP_BOARD to BOARD, in order

4: TEMP_BOARD← empty dynamic array

Program 11: Asks the adversary for a permutation, permutes the messages, then posts them to the permanent message
board.

MESSAGE_BOARD_PULL (index)
1: if |BOARD| ≤ index then
2: RETURN(BOARD.index).
3: else
4: RETURN(⊥)
5: end if

Program 12: Returns a message from the public bulletin board. Messages are requested by an index 𝑖, requiring players
to track the last message they saw, but since they can download the entire message board, this is equivalent to other data
structures. Since users can process data locally, this is also equivalent to more complicated requests, such as “retrieve all
messages matching some criteria”, which a real-world host might allow.
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Private message boards. The message board program maintains a dictionary of private message boards, indexed by players’ pseudonyms. As

with the public board, any player can post to the private message board for any pseudonym, but only the player which owns that pseudonym

can read the messages on that board, and they do so via a similar interface to the public board. Since players may have many pseudonyms,

they may have many private message boards. Private message boards represent encrypted, available, authenticated channels. Critically, we

assume all messages are signed, so that players can reveal the private messages if they need to prove dishonest behaviour from another

player. The PRIVATE_MESSAGE_BOARD_REVEAL function represents this

When the adversary is allowed to reorder private messages, they are allowed to see the senders and the lengths of each message, but not

the contents. The ordering in which messages are posted provides some de-anonymizing information to the adversary. In some cases this

gives no advantage; in others we need to account for this. To avoid these issues, the message board program shuffles private messages before

sending to the adversary. This is more of a relic of the formalism than a real-world capability: in practice, the adversary might have access to

far more fine-grained timing information, but the timing of messages sent will also be much less informative, since different players will

run asynchronously. Moreoever, our formalism does not allow the adversary to correlate timings between different message boards, which

would be possible (to some extent) in real life.

PRIVATE_MESSAGE_BOARD_SETUP ()
1: // Represents committed values.

2: PRIVATE_BOARDS←empty dictionary

3: // Represents uncommitted values.

4: PRIVATE_TEMP_BOARDS←empty dictionary

5: // Represents metadata of each message.

6: MESSAGE_HEADERS← empty dictionary

Program 13: Initialize private message boards.

PRIVATE_MESSAGE_BOARD_POST(message, sender, receiver)
1: // Ensure the sender (a pseudonym) is the current active player

2: if not PSEUDONYM_VERIFY(sender) then
3: RETURN
4: end if
5: // Create new message boards for new pseudonyms.

6: if receiver ∉ PRIVATE_TEMP_BOARDS.keys then
7: PRIVATE_TEMP_BOARDS.add(receiver, empty queue)
8: MESSAGE_HEADERS.add(receiver, empty queue)
9: end if
10: // Add𝑚 to the temporary array.

11: PRIVATE_TEMP_BOARDS[receiver] .Add(message, sender)
12: MESSAGE_HEADERS[receiver] .Add (round_num, sender, length(message))

Program 14: Posts amessage to a pseudonymous privatemessage board. Itmaintains a list of headers so that the adversary
can later view metadata of each message, but not the internal data.

PRIVATE_MESSAGE_BOARD_DELIVER ()
1: for 𝑖 = 0 to |PRIVATE_BOARDS| do
2: 𝜎 ← random shuffle

3: Rearrange elements of MESSAGE_HEADERS[𝑖] by 𝜎
4: 𝜋 ← ADVERSARY.reorder (MESSAGE_HEADERS[𝑖])
5: Rearrange the messages in PRIVATE_TEMP_BOARDS[𝑖] by 𝜋 ◦ 𝜎
6: Add the contents of PRIVATE_TEMP_BOARDS[𝑖] to PRIVATE_BOARDS[𝑖], in order

7: PRIVAET_TEMP_BOARDS[𝑖] ← empty dynamic array

8: MESSAGE_HEADERS[𝑖] ← empty dynamic array

9: end for
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Program 15: Delivers private messages from temporary boards to permanent boards, with adversarial ordering based on
metadata. Messages are shuffled before delivered to the adversary; otherwise, there are some timing vulnerabilities to
anonymity.

PRIVATE_MESSAGE_BOARD_PULL(index, receiver)
1: if not PSEUDONYM_VERIFY(receiver) then
2: RETURN
3: end if
4: RETURN(PRIVATE_BOARDS[receiver] [index]).

Program 16: Retrieve messages from a private message board, ensuring that the requesting player has read access to the
board.

PRIVATE_MESSAGE_BOARD_REVEAL(receiver, index)
1: if PSEUDONYM_VERIFY(receiver) then
2: RETURN
3: end if
4: BOARD.append(PRIVATE_BOARDS[receiver] [index]).

Program 17: Reveal private messages. Models the function of digital signatures

Observer Functions. We will include some extra functions beyond the normal function of a message board that the accumulator control

program will use to manage anonymity. One will return the set of all pseudonyms that have sent any messages in the last round, from both

private and public message boards, and the other returns all posted messages of a specific type (e.g., function messages).

MESSAGE_BOARD_GET_SENDERS()
1: 𝑃 ← all senders of all messages in TEMP_BOARD
2: for private_board in PRIVATE_TEMP_BOARDS do
3: 𝑃 ← 𝑃∪ all senders of all messages in private_board
4: end for
5: RETURN(𝑃)

Program 18: Returns the pseudonyms of all messages sent in the current round.

The next function returns all messages of a certain type

MESSAGE_BOARD_GET_FUNCTIONS(type)
1: 𝑀 ← all messages in TEMP_BOARD such that the type is type
2: for private_board in PRIVATE_TEMP_BOARDS do
3: 𝑀.insert all messages in private_board such that the type is type
4: end for
5: RETURN(𝑀)

Program 19: Returns all function messages

E.3 Clock
Our protocol requires a global clock. This ensures that players run in fairly large discrete rounds to prevent fine-grain timing attacks. We

imagine this is accomplished by some broadcast signal and agreement on the duration of a single “round”.
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CLOCK_INITIALIZE()
1: clock_time← 0

CLOCK_GET_TIME()
1: RETURN(clock_time)

CLOCK_INCREMENT()
1: clock_time← clock_time + 1

Program 20: Basic functions of the clock object.

E.4 Random Oracle
We also require a random oracle.

RANDOM_ORACLE (𝑥)
1: if 𝑥 ∈ RO then
2: return RO[𝑥]
3: else
4: 𝑟 ←

$
{0, 1}2𝜆

5: Add {𝑥 : 𝑟 } to RO
6: return 𝑟
7: end if

Program 21: A standard random oracle function.

F ACCUMULATOR FORMALISM
Our asynchronous multi-party specification for an accumulator intends to replicate the functionality of the definitions in Section 2, but most

functions we cannot define as step-by-step functions, since they may run in parallel, across several rounds and across several players. Rather,

the functions are implicitly defined by the expected behaviour of the accumulator, and the messages the control program expects to see. We

treat messages as objects here, having fields such as type, which can be implemented via any formatting.

Throughout this section, we say that players “should” perform some behaviour. This means that the control program looks for behaviour

like this, and the honest players will lose one or more security games if they do not do the expected behaviour.

F.1 Player Functionality
Initialization. An accumulator protocol must implement

SETUP_PLAYER_HONEST(𝑖),
which creates player 𝑖 , and

RUN_PLAYER_HONEST(𝑖),
which runs player 𝑖 . When a player runs, they should process and respond to all posted messages in a round, but this may differ by protocol.

In our formalism, players have access to the API of the message boards, the pseudonyms, and the random oracle. In practice these may be

parameters or arguments to the setup.

Core Accumulator Functions. Any function that we expect server players to run, which manages the behaviour of the accumulator, we

refer to as a core accumulator function. The control program never calls these directly; rather, any player (typically the adversary) can post a

request for these functions to the message board, and other players will respond. The expected messages and the expected responses are:

• GEN → accumulator: Prompts the server players to initialize the accumulator. They should post a message of type ACC at some

point after this request, which will contain this first value of the accumulator.

• ADD(𝑦, proof) → accumulator: Prompts the server players to add the element 𝑦 to the accumulator, so they should post a message

of type ACC representing the new accumulator. The second component of proof is optional; the first time it is present indicates that

the player who sent this Add function owns the element 𝑦. The server players should provide a long-term blind signature to the user

based on this proof.

• DEL(𝑦) → accumulator: Prompts the server players to delete the element 𝑦 from the accumulator, and post a new accumulator via a

ACC-type message.
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User Functions. Similar to the core accumulator functions, there are also several functions that user players must implement in response

to function messages, again mostly from the adversary.

• WIT(𝑦) → sk,witness, which takes as input a user ID 𝑦 and prompts the protocol to generate a new user player who will have ID 𝑦,

a long-term secret key sk, and a witness for their secret key and ID witness. This requires interaction with the server players, so the

new player should send an Add message with their user ID, and a proof of knowledge of sk that will become part of their witness.

• VER(prover, epoch) starts an interactive protocol between a prover and a verifier (the prover is specified by a pseudonym), where the

prover proves they have a valid witness or not for the accumulator of the provided epoch. At the end of the protocol the verifier

player should call

OBSERVER_CHECK_PROOF and provide:

– an epoch of a valid accumulator

– a boolean result (did the proving player have a valid witness for that accumulator?)

– the pseudonym of the prover.

• PROVE(epoch) is the other half of the prove-and-verify protocol, where a user will provide a proof for this epoch.

• UPDATE(epoch) → witness updates a user’s witness to epoch. In ALLOSAUR this is interactive, though it need not be (e.g., [VB20]

uses public update data).

Messages of type ACC should have a value for the accumulator, and an epoch value, an increasing value to synchronize which accumulator

is which. The epoch should increment with every Add and Del call.

Blames. Messages of type BLAME are meant to inform all users that some player is not trustworthy. These have a second field data,
which can take one of three values: START, indicating that something has gone wrong and the servers will attempt to blame someone; END
indicating that the servers have finished attempting to blame someone, and (user, 𝑖), where is the player ID of a player to be blamed.

F.2 Accumulator Functionality
Because of the complex nature of the accumulator and the messages it sends, we do not define the ideal functionality in the functions above,

but specify it implicitly by “observer” functions. Our formalism will treat these as functions of the control program, but we stress that they

do not control any user or adversary behaviour, but only observe it.

OBSERVER_INITIALIZE ()
1: user_IDs← empty reflexive dictionary // Maps user IDs to accumulator elements 𝑦

2: round_limit←∞// time limits for verification

3: S ←empty dynamic array //the set of accumulated elements

4: A ←empty dynamic array // accumulators

5: ver_time_limit← ACCUMULATOR_VERIFY_TIME(𝜆, 𝑁 )// a time limit defined by the protocol

6: // Each array in blames is the ID of a server who blamed another server

7: blames←array of 𝑁 empty sets

8: challenges←empty priority queue of N4, sorted by the last entry.// verification challenges

9: anon_sets←empty dictionary// anonymity sets

10: used_pseudonyms← empty set // pseudonyms already used for some function request

Program 22: Initialize all global variables for the accumulator.

ACCUMULATOR_VERIFY_TIME (𝜆, 𝑁 )
1: RETURN(a time limit that the protocol specifies)

Program 23: Give a time limit for verifications.

Message Checks. The observer must maintain a notion of an “ideal accumulator”, representing an accumulated set of which elements have

been added or deleted, as well as the actual accumulator values. It does this by iterating through all new public messages at the end of every

round, and updating accordingly.

First it checks for ACC messages, and it simply stores all such messages in an array A, indexed by both the epoch and the player which

posted it. It does not enforce any structure or consistency, and is agnostic to consensus.

Then it looks for FNC-type messages of Del or Add, each of which changes the ideal accumulated set in the expected way. The observer

tracks this with a list of sets S, and with every Del or Add the observer appends a new set to the list, equal to the last set plus or minus the

element added or deleted.
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Finally, it checks blame messages. The servers themselves manage consistency by posting public blame messages. A blame message

simply gives the index of another server to be blamed, and the observer tracks these. If enough players blame a specific server, the observer

triggers an abort. For this reason the abort function takes a single argument, representing a server. In any security game, if the game aborts

with the index of a corrupted server, the adversary loses.

OBSERVER_UPDATE_IDEAL (message)
1: // Users cannot modify the accumulator

2: if message.sender ∉ servers then
3: RETURN
4: end if
5: if message is formatted as an ACC-type message then
6: 𝐴← message.data
7: // We only consider the first accumulator value each server sends

8: if A[message.epoch] [message.sender] ≠ ⊥ then
9: A[message.epoch] [message.sender] ← 𝐴

10: end if
11: else if message is formatted as a FNC-type message then
12: if message is formatted as a Del message with ID 𝑦 then
13: S.append(S.last \ {𝑦})
14: A .append array of size |servers| initialized with ⊥
15: else if message is formatted as an Add message with ID 𝑦 then
16: S.append(S.last ∪ {𝑦})
17: A .append array of size |servers| initialized with ⊥
18: // If an add request contains a proof, it signals a new user to track

19: if message is the first message to add 𝑦 with a proof attribute then
20: user_IDs.set(𝑦 :

21: PSEUDONYM_GET_IDENTITY(message.sender))
22: end if
23: end if
24: else if message is a BLAME-type message then
25: blames[𝑚.user] .add(𝑚.sender)
26: if size(blames[𝑚.user]) ≥ BLAME_THRESHOLD then
27: ACCUMULATOR_ABORT(𝑚.user)
28: end if
29: end if

Program24: Check if amessage carries important accumulator information, andupdate the ideal accumulator as required.

Starting User Behaviour. When new user behaviour is requested (via messages), the observer logs what the user is requested to do, to

ensure they correctly perform this.

OBSERVER_CHECK_FUNCTIONS(fncs)
1: // fncs is a list of function-type messages

2: for (reciever, function, data) in fncs do
3: id← PSEUDONYM_GET_IDENTITY(reciever)
4: 𝑦 ← user_IDS[id] // ⊥ if user has no ID yet

5: // Check that the request is well-formed

6: if function ∉ {Wit𝑢 ,Upd𝑢 ,Ver𝑢 } then
7: Skip this iteration of the loop

8: end if
9: if fncs contains more than one message to receiver or

receiver ∈ old_pseudonyms then
10: //Users ignore multiple function requests to the same pseudonym

11: Skip this iteration of the loop

12: end if
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13: // Disallow user functions before the accumulator is generated

14: if |A| = 0 then
15: RETURN
16: end if
17: if fun = Wit then
18: // Assign the ID 𝑦 to this player, if they have no ID

19: if 𝑦 = ⊥ then
20: user_IDs.add(𝑦 : id)
21: end if
22: else if id = ⊥ then
23: // For all other functions, the player must exist

24: Skip this iteration of the loop

25: end if
26: // When a proof is requested, this records the arguments.

27: if fun = Prove then
28: OBSERVER_START_PROOF(data.verifier, data.epoch, id)
29: else if fun = Upd then
30: // Nothing to track with an update

31: end if
32: end for
33: // Update anonymity sets

34: RESTRICT_ANONYMITY(fncs)

Program 25: Prompts users to perform specific functions. If it is Prove, this starts a proof challenge, which the observer
program manages.

This allows the observer to track three key features of these messages: when users are added, when users should verify credentials, and

anonymity.

Anonymity. When any function is queued for a user, the observer adds it to a list of functions to be executed, which it uses to manage

anonymity sets. This is done after all messages are sent, but before they are re-ordered and committed. We do not define the anonymity sets

in the general formalism, and leave it to each protocol to decide how anonymity sets are defined and managed.

This does not mean that a real implementation of the protocol must implement such a function. Instead, specifying a protocol and proving

its security must involve specifying a theoretical observer function

RESTRICT_ANONYMITY, which gives a precise accounting of how much anonymity each user has in each round.

F.3 Verification
Sending a Prove message instructs a user to prove their identity, so the observer creates a “challenge” for each request, to check whether the

user correctly verifies its credentials within some time period. A user requested to prove their credentials to a player pseudonym verifier
should convince that verifier to call a special function OBSERVER_CHECK_PROOF with an argument indicating whether the verification

succeeded.

OBSERVER_START_PROOF (verifier, epoch, prover)
1: if verifier has posted no messages on the message board, or prover == ⊥ then
2: RETURN
3: end if
4: // Ensure this accumulator will eventually be posted

5: if |S| < epoch then
6: RETURN
7: end if
8: // Do not create a challenge if either party is corrupt

9: if PSEUDONYM_CHECK_CORRUPTED(verifier) or
PSEUDONYM_CHECK_CORRUPTED(prover) then

10: RETURN
11: end if
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12: // Servers do not have IDs, so ignore challenges to servers

13: if prover ∈ servers then
14: RETURN
15: end if
16: 𝑇 ← maximum index of A with |servers| non-empty entries

17: // Compute the numbered of queued changes to the accumulator

18: changes← length(A) −𝑇
19: time_limit← round_num + ver_time_limit + time_per_change ∗ changes
20: challenges.add(prover, verifier, epoch, time_limit)
21: round_limit← min{time_limit, round_limit}

Program 26: When a proof request is posted, this keeps a record of the verifier, prover, and the start time, to later check
that the verification was correctly performed within a specific amount of time.

The purpose of creating a challenge for each proof is to ensure progress. Each challenge creates a deadline for the verifier to post a valid

response; if the response is not posted in time, the control program will exit with a failure.

When a user calls OBSERVER_CHECK_PROOF, the observer program compares the output to the previously-recorded challenges. If the

challenge was answered correctly, it deletes the challenge, and otherwise it calls a failure function and ends the accumulator game.

This function ignores any calls from corrupt players. An adversary can choose to simply give nonsense answers at any time, and since

only the observer program sees this function, there is no need to respond to the adversary.

OBSERVER_CHECK_PROOF (verifier, prover, result, epoch)
1: // Adversary’s can call this function, so we ensure the verifier is honest

2: if not PSEUDONYM_VERIFY(verifier) then
3: RETURN
4: end if
5: // Ignore responses from corrupt players

6: if ACTIVE_PLAYER_ID ∈ C then
7: RETURN
8: end if
9: // A proof for a non-existent accumulator is obviously incorrect

10: if |A[epoch] | < |server| then
11: ACCUMULATOR_FAIL
12: end if
13: // If an honest player every validates an adversarial proof, record the fact

14: if PSEUDONYM_CHECK_CORRUPTED(prover) then
15: if result then
16: adv_verified← TRUE
17: end if
18: RETURN
19: end if
20: // If the user passes but is not supposed to pass (resp. fail), the accumulator fails

21: 𝑦 ← user_IDs[PSEUDONYM_GET_IDENTITY(prover)]
22: if (𝑦 ∈ S[𝑁 ] and 𝑏 == 0) or (𝑦 ∉ S[𝑁 ] and 𝑏 == 1) then
23: ACCUMULATOR_FAIL
24: end if
25: // Reaching this point implies success

26: // Remove the corresponding challenge(s), so the accumulator does not time out

27: for (𝑝, 𝑣, 𝑛, 𝑡) inchallenges do
28: if 𝑝 = prover and 𝑣 = verifier and 𝑛 ≤ epoch then
29: Remove (𝑝, 𝑣, 𝑛, 𝑡) fromchallenges
30: end if
31: end for
32: if challenges non-empty then
33: // challenges is sorted so the first element has smallest time value
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34: round_limit←challenges[0] .time
35: else
36: round_limit←∞
37: end if

Program 27: Checks that a previously-started verification passes as it should, based on the set of accumulated elements.

G CONTROL FLOW
The basic structure of the control program is to initialize all users and allow the adversary to corrupt some subset of them. It then iterates

through “rounds”, and in each round, it sequentially and atomically runs each player (including adversarially corrupted players). The order

in which the players run in each round is dictated by the adversary. Here we divide the players into two types: servers and users. The control
program initializes server players at the beginning of the game, and they maintain the accumulator. The control program initializes user

players at the adversary’s direction, and user players maintain only their own credentials. This structure is a static corruption model.

After each round, the adversary can produce some output in an attempt to win the security game.

We use purple text to denote global variables of each user.

G.1 Main Control Flow

ACCUMULATOR_GAME (𝜆, 𝑁 , 𝑘):
1: OBSERVER_INITIALIZE (𝜆, 𝑁 )
2:

3: // Give control of at most 𝑘 allowable players to the adversary.

4: C ← ADVERSARY.corrupt(𝜆, 𝑁 , 𝑘).
5: if |C| > 𝑘 or C ⊈ [𝑁 ] then
6: ACCUMULATOR_ABORT(any index in C)
7: end if
8: adv_id← any index in C
9: for 𝑖 = 1 to 𝑁 , 𝑖 ∉ C do
10: SETUP_PLAYER_HONEST(𝑖)
11: end for
12:

13: // Run the main protocol.

14: loop
15: //Run a round of the protocol.

16: GAME_ROUND ().
17: 𝑏 ← GAME_NEXT_ROUND()
18: // Stop if the adversary is done.

19: if 𝑏 == 0 then
20: answer← ADVERSARY.finalize()
21: Output: ADVERSARY: answer
22: Output: all global variables

23: HALT
24: end if
25: end loop

Program 28: Accumulator protocol (the starting point of execution). This initializes variables, players, and the adversary,
who then corrupts some players. After this, it runs accumulator rounds until it either aborts, fails, or the adversary decides
to stop execution and output some answer. The desired stopping conditions depend on the particular security game.

ACCUMULATOR_ABORT (player 𝑖):
1: if 𝑖 ∈ C then
2: Output: ADVERSARY FAILS

3: else
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4: Output: FAIL

5: end if
6: Output: all global variables

7: HALT

ACCUMULATOR_FAIL ():
1: Output: FAIL

2: Output: all global variables

3: HALT

Program 29: Two alternative ways to halt the accumulator. “Abort” represents a case where a player 𝑖 has done something
wrong; “Fail” represents a case where the accumulator has failed in its functionality.

INITIALIZE_GAME (𝜆, num_servers)
1: // Initialize pseudonyms, with servers having public pseudonyms

2: PSEUDONYM_SETUP(num_servers)
3: // Initialize empty message boards.

4: MESSAGE_BOARD_SETUP().
5: PRIVATE_MESSAGE_BOARD_SETUP()
6: CLOCK_INITIALIZE()
7: ACTIVE_PLAYER_ID← 0

8: num_players← num_servers
9: servers← [num_servers]
10: C ← ∅ // Set of corrupted players

11: message_index← 0// Index of last public message board

12: OBSERVER_INITIALIZE()

Program 30: Initialize all subroutines and global variables for the control program to manage players.

GAME_ROUND ():
1: 𝑃 ← ∅ // Used to track which players already ran

2: 𝜎 ← random permutation of [num_players] such that 𝜎 (𝑝) = 𝑝 for all 𝑝 ≤ |servers|
3: loop
4: id← ADVERSARY.choose_player(num_players)
5: // Abort if incorrect player chosen.

6: if id ∉ {1, . . . , num_players} then
7: ACCUMULATOR_ABORT(adv_id);
8: end if
9: id← 𝜎 (id)
10: 𝑃 .insert(id)
11: GAME_RUN_PLAYER (id)
12: // Adversary decides whether to end the round

13: if ADVERSARY.finish_round() then
14: // End round only if all players have run

15: if {1, . . . , num_players} ⊆ 𝑃 then
16: RETURN
17: end if
18: end if
19: end loop

Program 31: One round of the accumulator. The adversary dynamically chooses players to run, potentially running some
players many times. Once all players have run, the adversary is allowed to end the round.
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GAME_NEXT_ROUND ():
1: // Find function messages to track anonymity

2: fncs← MESSAGE_BOARD_GET_FUNCTIONS(FNC)
3: RESTRICT_ANONYMITY(fncs)
4: // Deliver messages

5: MESSAGE_BOARD_DELIVER()
6: PRIVATE_MESSAGE_BOARD_DELIVER()
7: // Track accumulator functionality

8: loop
9: 𝑚 ← MESSAGE_BOARD_PULL(message_index)
10: if 𝑚 = ⊥ then
11: BREAK
12: end if
13: OBSERVER_UPDATE_IDEAL(𝑚)
14: message_index + +
15: end loop
16: CLOCK_INCREMENT()
17: // Check for timeout

18: if CLOCK_GET_TIME() > round_limit then
19: ACCUMULATOR_FAIL
20: end if
21: // Get adversarial response

22: 𝑏 ← ADVERSARY.𝑟𝑜𝑢𝑛𝑑 ()
23: RETURN(𝑏).

Program 32: Finalize a round of the accumulator. Calls the observer to restrict anonymity and check the status of the
accumulator, then increments the round..

GAME_RUN_PLAYER (𝑖)
1: Track who sends messages

2: Set //ACTIVE_PLAYER_ID← 𝑖

3: // Check if 𝑖 is not in the corrupted set.

4: if 𝑖 ∉ C then
5: RUN_PLAYER_HONEST (𝑖);
6: else
7: ADVERSARY.run_player (𝑖);
8: end if
9: Default player ID is adversarial

10: ACTIVE_PLAYER_ID← adv_id

Program 33: Run a player, either honestly or as the adversary.

To prompt user behaviour, the adversary will post function messages. This means the control program need not concern itself with

requesting user functions besides setting up a player and running them once per round.

De-anonymizing. Messages can only be sent to pseudonyms. Thus, for an adversary to request some user behaviour, they must have

a pseudonym for that user. We would instead like to model a scenario where an adversary can prompt a specific user to perform some

behaviour, and leave the user to select a new pseudonym if they need to. To do this, we give the adversary the ability to send a set of user

IDs 𝑦1, . . . , 𝑦ℓ , and the control program will request a new pseudonym for each user, and return the pseudonyms to the adversary, albeit

shuffled. This gives the adversary a fresh set of pseudonyms, where the anonymity set for each pseudonym is {𝑦1, . . . , 𝑦ℓ }. From there, the

adversary chooses to send function messages to the pseudonyms as it wishes.

GAME_DEANONYMIZE (Y)
1: 𝑃 ← ∅
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2: // All honest user IDs

3: Y ← Y \ {𝑦 : user_ids[𝑦] ∈ C}
4: if Y contains any duplicate elements then
5: RETURN
6: end if
7: for 𝑦 ∈ Y do
8: // Create a new honest player as needed

9: if 𝑦 ∉ user_IDs then
10: new_index← num_players
11: SETUP_PLAYER_HONEST(new_index)
12: user_IDs[𝑦] ← new_index
13: num_players + +
14: end if
15: // This assigns a new pseudonym for 𝑦, and adds it to 𝑃

16: 𝑃 .add(PSEUDONYM_GIVE(user_IDs[𝑦]))
17: end for
18: // Restricts anonymity sets of these pseudonyms to the input users

19: for 𝑝 ∈ 𝑃 do
20: if 𝑝 ∉ anon_sets then
21: anon_sets[𝑝] ← Y
22: else
23: anon_sets[𝑝] ← anon_sets[𝑝] ∩ Y
24: end if
25: end for
26: 𝑃 .sort() // decorrelates 𝑃 from Y
27: RETURN(𝑃)

Program 34: Create new pseudonyms for a set of players and return them.

In our protocol definition, only this function can add new users. Since the adversary is the only player that can request this, this means

the adversary controls which users are added, and also controls which ID they have by sendingWit messages. Once an adversary creates a

user in this way, the user then behaves honestly and outside of the adversary’s control.

For dishonest users, the adversary can simply request a new pseudonymous ID and simulate such a user “internally”, i.e., the control flow

does not need a separate program to act as a corrupted user.

G.2 Public Functions
Certain control program functions are available for the users to call; they are as follows:

• PSEUDONYM_NEW
• PSEUDONYM_GET
• MESSAGE_BOARD_POST
• MESSAGE_BOARD_PULL
• PRIVATE_MESSAGE_BOARD_POST
• PRIVATE_MESSAGE_BOARD_PULL
• PRIVATE_MESSAGE_BOARD_REVEAL
• RANDOM_ORACLE
• CLOCK_GET_TIME
• OBSERVER_CHECK_PROOF

G.3 Adversaries
The adversary can be any collection of PPT interactive Turing machines. They must implement the following functions, which the control

program will call at various points during execution. The adversary has an internal persistent state that all of these functions share access to.

(1) ADVERSARY.corrupt(𝜆, 𝑁 , 𝑘) → 𝐶: Returns a subset of indices between 1 and 𝑁 , representing server players to be corrupted and

under the adversary’s control.

(2) ADVERSARY.choose_player(𝑃) → 𝑖: This returns an index between 1 and 𝑃 , representing the next player to run.
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(3) ADVERSARY.finish_round() → 𝑏: Returns a boolean value, of whether the adversary has decided to finish the current round in

order to start the next one.

(4) ADVERSARY.reorder(DYNAMIC_ARRAY) → 𝜋 : Given an array of messages (or message headers), output a permutation 𝜋 , from

which they will be re-ordered.

(5) ADVERSARY.run_player(i): Run a (corrupted) player 𝑖 .

(6) ADVERSARY.round() → 𝑏: Finish any calculations at the end of a round, and output a boolean value 𝑏 ∈ {0, 1} indicating whether

to stop the game.

(7) ADVERSARY.finalize() → 𝐴: Once the adversary calls for the game to stop, it gets this chance to finalize its calculations and produce

an answer 𝐴 (whose form depends on the security game).

During the execution of any of the above functions, the adversary can call any of the public functions, as well asGAME_DEANONYMIZE.

H SECURITY
Unlike the single server case, where we presented the functions an accumulator must execute and then defined security in terms of these

functions, the formalism we have so far described, which has no rigorous definition of the behaviour of any accumulator function, is

sufficient to define security. That is, a specific protocol need not implement a specific Gen or Wit function; rather, the desired functionality

of maintaining an accumulator and its credentials is part of the observer program’s internal state, and it is up to the protocol to ensure it

meets the required functionality.

As an example, an empty protocol (where all honest players do nothing) would fit into our formalism (imagine that the formalism

“compiles”), but it would fail correctness. The adversary would request additions to the accumulator which would never be fulfilled, the user

would never verify their credentials, and the observer program would reach its internal time limit.

By the structure of our formalism, all security games involve the same interactions of the adversary and the control program. The only

difference between them is the adversary’s goals. For this reason we do not need to write a formal security “game”; in all cases, we consider

answer, state← ACCUMULATOR_GAME(𝜆, 𝑁 , 𝑘)

and define security in terms of the probability that answer (the result of execution; possibly an answer from the adversary) and state (the
internal state of the observer program) satisfy certain properties. We access variables in state with the same syntax as the observer program’s

global variables in the accumulator functionality.

Informally, our three goals are to ensure that honest users are able to verify their credentials, dishonest users cannot verify credentials

they do not have, and messages from different pseudonyms are not correlatable.

H.1 Correctness
The goal of the correctness game is to ensure that the accumulator progresses as expected and all honest users are able to produce the correct

proofs of their credentials.

Definition H.1. An accumulator is correct if, for all PPT adversaries A,

Pr

[
answer = FAIL

����answer,state
← ACCUMULATOR_GAME(𝜆, 𝑁 , 𝑘)

]
≤ negl(𝜆)

where ACCUMULATOR_GAME interacts with A.

Inspecting the pseudocde, there are conditions that can cause answer =FAIL:

(1) When a verifier calls OBSERVER_CHECK_PROOF, the control program finds the ID 𝑦 associated to the prover’s pseudonym and

checks whether 𝑦 is supposed to be in the accumulator for the provided epoch. This tells it what the result should be; if the result is

different, the control program calls ACCUMULATOR_FAIL. If this happens, the adversary wins. The specifics of this are detailed in

the formalism of

OBSERVER_START_PROOF and OBSERVER_CHECK_PROOF.
(2) Every time any user requests a proof from an honest user, indicating that a user should verify their identity, the control program sets

a round limit. If the corresponding verification is not called before that limit, the accumulator also fails.

(3) If a majority of server players post blame messages towards an honest player.

H.2 Commitment Soundness
Here the goal is that an adversary cannot produce fake credentials. Because credentials are blinded, this complicates the definition in two

ways:

(1) An adversary may find a way to pass the verification protocol without any credentials at all;

(2) An adversary may find a way to create credentials it should not have.

To address the first issue, we do not require a soundness adversary to ouput a witness, but rather the observer program tracks (Line 16 of
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OBSERVER_CHECK_PROOF) whether an adversarial player has ever successfully passed a verification protocol. To ensure that the adversary
needs a witness to do this, we define an extractor function which can call the adversarial functions (including modifying internal state) a

polynomial number of times and access the transcript of the accumulator game. The extractor attempts to outputs a tuple (𝑦, 𝑛,𝑤) consisting
of an ID 𝑦, an epoch 𝑛, and a witness𝑤 .

To decide whether the extracted witness is valid or not, we need two functions: Acc and Ver.
Acc takes as input an array of accumulator values and outputs either ⊥ (for no consensus) or another accumulator. This represents some

sort of consensus; for example, it could take the majority value of the array (if it exists). In ALLOSAUR this function outputs ⊥ unless there

are |servers| values in the array which are all identical, in which case it outputs that value.

The second function is Ver(𝐴,𝑦,𝑤) → {0, 1} which takes as input an accumulator 𝐴, a user ID 𝑦, and a witness𝑤 . Intuitively, this should

ouput 1 if and only if𝑤 is a “valid” witness.

Thus, if an adversary ever passes the verification protocol, there should be an extractor that can successfully extract a valid witness.

For the second goal of our definition, to ensure an adversary only possesses credentials they “should” have, we require that for any
extractor, the extracted witness belongs to the adversary and matches the accumulated set. The observer program tracks which player owns

which ID 𝑦 via user_IDs, so once an extractor outputs (𝑦, 𝑛,𝑤), the ID 𝑦 must belong to a corrupted player. Second, the value 𝑦 should

belong to the accumulated set S at epoch 𝑛.

Formally,

Definition H.2. An accumulator is blind commitment sound if, for all PPT adversaries A such that

Pr

[
adv_verified = TRUE

����answer,state
← ACCUMULATOR_GAME(𝜆, 𝑁 , 𝑘)

]
≥ negl(𝜆)

then there exists an extractor E such that, given access to A, its internal state, and the public message board BOARD (as part of the output

state),

Pr

[
Ver(𝐴,𝑦,𝑤) = 1

����(𝑦, 𝑛,𝑤) ← E(A,BOARD)𝐴← Acc(A[𝑛])

]
≥ negl(𝜆)

Further, for all such extractors, it must also hold that

Pr


Ver(A[𝑛], 𝑦,𝑤) = 1

and

{
user_IDs[𝑦] ∉ C, or
∀𝑚 ≥ 𝑛 : Acc(A[𝑚]) = ⊥ or 𝑦 ∉ S[𝑚]

�������(𝑦, 𝑛,𝑤) ← E(A,BOARD)
 ≤ negl(𝜆)

H.3 User indistinguishability
To clarify our notation, a user has 3 “identities” in the accumulator:

• An internal ID 𝑖 that only the control program knows or uses.

• A user ID 𝑦 that is given to the user on creation and remains constant throughout execution.

• Multiple pseudonyms 𝑝 , which are used to address messages to and from the user.

In practical terms, the user ID 𝑦 might already be pseudonymous (in ALLOSAUR it is a random element of a finite field); however, the privacy

notion we want to capture is that different interactions with the accumulator cannot be correlated. At certain points, a user’s real identity is

correlated with certain interactions (for example, when they verify their credentials), so we must ensure that these interactions are not

correlated with each other.

To that end, our goal is to prevent correlation between distinct pseudonyms. This cannot be perfectly achieved, since there is implicit data

available from just the metadata of different messages: for example, if a pseudonym posts a message which passes a verification, then we

know the ID associated to that pseudonym must be in the accumulated set.

Thus, the observer program tracks anonymity sets. The anonymity sets are subsets of all user IDs 𝑦, and they are indexed by a pseudonym.

An anonymity set represents all possible user IDs which might belong to a specified pseudonym.

Definition H.3. An accumulator is indistinguishable if, for all PPT adversaries A and all integers 𝑛12, 𝑛1, 𝑛2:

Pr


identities[𝑝1]

=

identities[𝑝2]

������������

answer,
state

← ACCUMULATOR_GAME(𝜆, 𝑁 , 𝑘)

answer = ADVERSARY:(𝑝1, 𝑝1)
|anon_sets[𝑝1] ∩ anon_sets[𝑝2] | = 𝑛12

|anon_sets[𝑝1] | = 𝑛1
|anon_sets[𝑝2] | = 𝑛2


≤ 𝑛12

𝑛1𝑛2
+ negl(𝜆)

The target probability, which the adversary must exceed, is the probability that if we draw two random IDs from the anonymity set of the

pseudonyms 𝑝1 and 𝑝2 that the adversary provides, that these IDs will match. However, this definition means that the target probability

depends on the specific state of a single execution. This creates a slight paradox: we must define security statistically, in terms of all possible
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executions, but the threshold for security depends on the execution-specific anonymity sets. We solve this by conditioning the size of the

anonymity sets.

To justify this definition, users must disguise their messages using some internal randomness to have any hope of anonymity. This means

that many different executions (either based on randomness of the users, or the control program’s randomness in the order of execution

of user players) will create indistinguishable messages. We thus expect, in an indistinguishable accumulator, many executions where the

adversary outputs the same pair of pseudonyms, even though different users are given those pseudonyms.

Our definition captures the notion that the specifics of the protocol should not reveal any more information than they need to. However,

since the construction of anonymity sets is left to the protocol, one could define a protocol which is “indistinguishable” by having completely

non-anonymous messages. While this could be a problem, it instead forces the definition of a protocol which claims any anonymity to

precisely quantify the anonymity lost from the metadata of each message.

Notice also how the definition forces an indistinguishability adversary to grant some anonymity to users in the game. If all pseudonyms

are totally de-anonymized and contain only a single user ID, then the target probability is either 0 (the pseudonyms belong to different users)

or 1 (the pseudonyms belong to the same user), and the adversary can never exceed probability 1.

I COMMON FUNCTIONALITY
The functionality we described so far is enough to define the relevant security games, and the rest could be left up to each protocol. However,

there is a basic flow of user execution we describe here that could form a robust basis for any protocol.

I.1 User control flow
Our basic control for a user is to first iterate through all received messages and add any function calls to one of two functions to execute: a

queue of core accumulator functions, which are public functions that should be run in-order, and a queue of user functions, which are meant

to be run simultaneously.

At many points during execution, these functions may need to wait for other players to post messages. Thus, we need some functionality

to pause and resume execution. The formalism here does this by defining a data type for a function stack: it should contain all local variables

and a record of the point of execution of every function in the stack. Users call it via GetCallStack(line number). During execution, if a

player must wait for the next round, the player will return this stack to RUN_PLAYER_HONEST, which stores it for the next round. A

real-world implementation could use any mechanism to wait for messages to be posted.

For functions, they are run in a given order for anonymity reasons. The ordering of user functions is as follows:

Ver𝑠 > Upd𝑠 > Wit𝑢 > Upd𝑢 > Ver𝑢

where multiple calls to Upd𝑢 or Ver𝑢 are sorted so that (a) calls that started in earlier rounds are first, and (b) among those that started in the

same round, those with the greatest accumulator number are first.

We use purple text to represent variables which are local to each player, but persistent between rounds. Implicitly, these are actually

arrays of data that are indexed by the player’s ID. We will be a bit sloppy and allow users access to the control program variable servers; this
is public data since the number of servers will be a global parameter of the scheme and the server players’ IDs are numbered sequentially.

SETUP_PLAYER_HONEST (id)
1: // Recall that users have access to a pseudonym

2: // manager, public and private message boards,

3: // and a random oracle. We do not provide these

4: // as input here, but each player is given access

5: // to these objects.

6: if id ∈ servers then
7: role← server
8: else
9: role← user
10: end if
11: core_function_queue← ∅// core accumulator functions

12: user_function_queue←empty priority queue// user functions

13: data_set← ∅// all public messages

14: private_data_set← ∅// all private messages

15: Function← ⊥// current core accumulator functions

16: public_index← 0// index into public message board

17: private_index← empty dictionary// indices into private message boards

18: acc_epoch← −1// current epoch
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19: accs← [] // all posted accumulators

20: wait_counter← 0 // tracks timeout ofWAIT
21: wait_number← 0 // synchronizes calls toWAIT
22: open_number← 0 // synchronizes calls to OPEN
23: random_share_count← 0 // used for secret sharing

24: triple_share_count← 0

25: curr_round← CLOCK_GET_TIME() // tracks last round
26: pseudonyms← ∅ // tracks all used pseudonyms

Program 35: Initialize local player variables

User Functions. Users are prompted to start functions by messages posted to the public or private message boards. We want core

accumulator functions to run sequentially; other functions are run simultaneously.

RUN_PLAYER_HONEST (𝑖)
1: // Ensures a user only runs once per round

2: if curr_round ≥ CLOCK_GET_TIME() then
3: RETURN
4: end if
5: HONEST_PLAYER_PROCESS_MESSAGES(𝑖)
6: loop
7: // If no function is currently being executed

8: if Function == ⊥ then
9: if core_function_queue not empty then
10: 𝑚 ← core_function_queue.pop()
11: fun←𝑚.fun_type
12: fun_data←𝑚.data
13: Function← (fun, fun_data, line = 0)
14: end if
15: end if
16: if Function ≠ ⊥ then
17: // Run another round of Function
18: // This is defined by the actual implementation

19: Function← RUN(Function)
20: end if
21: // If the previous function hasn’t finished, we must wait for the next round

22: if Function ≠ ⊥ then
23: BREAK_LOOP
24: end if
25: end loop
26: // Run all user functions

27: current_user_funs← user_function_queue
28: user_function_queue← empty queue

29: for User_Function in current_user_funs do
30: New_Function← RUN(User_Function)
31: if New_Function ≠ ⊥ then
32: user_function_queue.push(New_Function)
33: end if
34: end for

Program 36: A single round for an honest player. This retrieves all new messages from the last round, then continues
execution of the accumulator functions requested, before posting any new messages this player creates.

When users process messages, they do a quick check for formatting. This ensures that all functions contain all the necessary data, e.g.,

that an Add function contains a user ID, etc.
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HONEST_PLAYER_PROCESS_MESSAGES (𝑖)

1: // Process messages since last round

2: loop
3: message MESSAGE_BOARD_PULL(public_index)
4: if message == null then
5: Exit loop

6: else if message is not correctly formatted then
7: Skip to next loop iteration

8: end if
9: public_index + +
10: if message.type is FNC then
11: if message.fun_type ∈ {Gen,Add,Del,Wit𝑠 } and role = server then
12: core_function_queue.add(message)
13: else
14: fun← message.fun_type
15: fun_data← message.data
16: user_function_queue.add(fun, fun_data, line = 0)
17: end if
18: else if message.type is ACC then
19: if |servers| ACC messages are posted with the same counter and same value of accumulator then
20: accs[message.counter] .append(message.accumulator)
21: end if
22: else if message.type is DAT then
23: data_set.add(message)
24: end if
25: end loop
26: // Users have one private message board for all their pseudonyms

27: for 𝑝 in PSEUDONYM_GET() do
28: new_functions← empty list

29: loop
30: message← PRIVATE_MESSAGE_BOARD_PULL(private_index[𝑝], 𝑝)
31: if message == null then
32: Exit loop

33: end if
34: private_index[𝑝] + +
35: if message is not correctly formatted then
36: Skip to next loop iteration

37: end if
38: if message.type is FNC then
39: // Ignore function requests to used pseudonyms

40: if 𝑝 ∉ pseudonyms then
41: new_functions.add(message)
42: end if
43: else
44: private_data_set.add(message)
45: end if
46: end loop
47: // Ignore multiple messages to one pseudonym

48: if new_functions contains only one message then
49: user_function_queue.add(new_functions)
50: end if
51: pseudonyms.add(𝑝)
52: end for
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Program 37: Processing messages for an honest player. This retrieves all new messages from the last round, queueing up
any functions necessary to run.

I.2 Wait
When a player runs a particular function, it likely requires communication with other players. A common functionality is a WAIT function,

which will pause execution of a particular function until a specified message is received.

A function callsWAIT with a sender and a condition as argument.WAIT checks if the required message is in the players data_set list,
and if not, it returns execution to RUN_PLAYER_HONEST, with a call stack of the current point in execution in order to resume in the next

round (when hopefully the desired message is posted). If the message is present,WAIT returns the value.

In this way, in every round where the data does not appear, the function will resume at this particular call to WAIT, and if the data is still

not there, it immediately returns and continues waiting. If the data is there, it will continue execution.

WAIT (sender, condition, pseudonym)
1: wait_counter← 0

2: // Checks the local data set for the message

3: for𝑚 in data_set (iterated in order received) do
4: //Takes the first matching message, ensuring consensus

5: if condition(𝑚) and𝑚.sender = sender then
6: RETURN(𝑚) to calling function

7: end if
8: end for
9: // Track number of rounds, to blame players that do not post the required messages

10: wait_counter + +
11: if wait_counter == WAIT_THRESHOLD then
12: MESSAGE_BOARD_POST(message = (type = BLAME, user = sender), sender = pseudonym)
13: end if
14: Function← GetCallStack(3)
15: RETURN(Function) to RUN_PLAYER_HONEST

Program 38: Halts execution during another function until some data is received (checked via “condition”) from a par-
ticular sender. The argument Function is the function that called WAIT, and counter is the counter of where this WAIT
appeared in the function’s logic.

PRIVATE_WAIT (sender, condition, pseudonym)
1: local_wait_counter← 0

2: // Checks the local data set

3: for𝑚 in private_data_set (iterated in order received) do
4: Takes the first matching message, ensuring consensus

5: if condition(𝑚) and𝑚.sender = sender then
6: RETURN(𝑚) to calling function

7: end if
8: end for
9: local_wait_counter + +
10: if local_wait_counter == WAIT_THRESHOLD then
11: MESSAGE_BOARD_POST(message = (type = BLAME, user = sender), sender = pseudonym)
12: end if
13: Function← GetCallStack(3)
14: RETURN(Function) to RUN_PLAYER_HONEST

Program 39: The same functionality asWAIT, except this waits for a message on a private message board.
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J SECRET SHARING
Our protocol requires access to shared secrets for the secure multi-party computation (MPC). While we could adopt a fully-formed scheme

for this (e.g., SPDZ), we instead use smaller pieces, as great portions of MPC protocols govern only integrity, which the accumulator can

provide for free. For our MPC, we will use the classic Beaver triple technique [Bea92a]. We alsowant security against malicious adversaries

who may try to stop the protocol, so we will enforce the identifiable abort property [BOS16].

In this section we define both the control program and ideal functionality (in the style of [BOS16]), as well as useful user functions to deal

with these shared secrets.

The accumulator control program will callMPC_INITIALIZE during

OBSERVER_INITIALIZE. This creates a new player and saves the ID and pseudonym of this player, as well as posting a single initialization

message to the message board. The trusted third party will use this pseudonym to post secret shares and their commitments to other players.

MPC_INITIALIZE (·)
1: random_share_count← 0

2: triple_share_count← 0

3: // Create player ID who will be a random secret trusted third party

4: secret_ttp_id← num_players + 1
5: SETUP_PLAYER_HONEST(secret_ttp_id)
6: secret_ttp_pseudonym← PSEUDONYM_NEW()
7: MESSAGE_BOARD_POST(message = (“secret_shares”), sender = secret_ttp_pseudonym)

Program 40: Sets up the necessary infrastructure for secret sharing.

Here the control program manages shared secrets, privately sending the shares to each server while posting commitments to the public

message board. We use our random oracle commitment scheme, but any commitment scheme will work. In certain cases the Beaver triple

generation may produce commitments as a byproduct. We require the adversary to implement a function provide_shares, through which

the adversary will provide its shares.

BRACKET (𝑥, id)
1: Initialize a vector x ∈ Fnum_servers

𝑞 .

2: // Obtain arbitrary inputs for the adversarial shares.

3: y← ADVERSARY.provide_shares().
4: // Incorporate the adversarial shares

5: for 𝑖 ∈ servers do
6: if 𝑖 ∈ C then
7: Set x𝑖 = y𝑖 .
8: end if
9: // Set the remaining shares randomly.

10: if 𝑖 ∉ C then
11: Set x𝑖 ← F𝑞 .
12: end if
13: end for
14: // Fix one of the non-adversarial shares so the sum is 𝑥 .

15: Choose some 𝑗 such that 𝑗 ∉ C.
16: 𝑥 𝑗 ← 𝑥 −∑

𝑖∈servers−𝑗 𝑥𝑖 .
17: // Generate “commitments” to each 𝑥𝑖 .

18: previous_active_player← ACTIVE_PLAYER_ID
19: ACTIVE_PLAYER_ID← secret_ttp_id
20: Σ← empty array

21: for 𝑖 ∈ servers do
22: (𝜎𝑥𝑖 , 𝑜𝑖 ) ← COMMIT (𝑥𝑖 ).
23: message← (type = DAT, data = (type + “triple_share”, {𝑥𝑖 , 𝑜𝑖 , id})
24: PRIVATE_MESSAGE_BOARD_POST(message, receiver = 𝑖, sender = secret_ttp_pseudonym)
25: Σ[𝑖] ← 𝜎𝑥𝑖
26: end for
27: message← (type = DAT, data = (“triple_share_commit”, id, Σ))
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28: MESSAGE_BOARD_POST(message, sender = secret_ttp_pseudonym)
29: ACTIVE_PLAYER_ID← previous_active_player

Program 41: Linearly shares a secret in an 𝑛 out of 𝑛 way.

Given this functionality for creating and posting secrets, we define a function that all players can call at any time, which creates a Beaver

triple.

INPUT_TRIPLE (·)
1: Sample 𝑎, 𝑏 ← F𝑞 uniformly at random.

2: Set 𝑐 = 𝑎 · 𝑏.
3: BRACKET (𝑎, triple_share_count)
4: BRACKET (𝑏, triple_share_count + 1)
5: BRACKET (𝑐, triple_share_count + 2)
6: triple_share_count← triple_share_count + 3

Program 42: Creates and posts secret shares for a Beaver triple.

User functions. We assume all players can call GET_SHARED_RANDOM and INPUT_TRIPLE at will. For convenience, we define the

following functions for players, which track the shared secrets they have already received and request more as needed.

We define a global player variable secret_ttp, which they will set to be the sender pseudonym of the first message of “secret shares” which

is posted to the accumulator.

We use the following commitment scheme, whose main purpose is for random oracle proofs to be easier.

COMMIT (𝑥)
1: 𝑟 ←

$
{0, 1}2𝜆

2: 𝑐 ← RANDOM_ORACLE(𝑥, 𝑟 )
3: RETURN(𝑐, 𝑜 = (𝑥, 𝑟 ))

Program 43: Hash-based commitment.

OPEN_COMMIT (𝑐, 𝑜)
1: (𝑥, 𝑟 ) ← 𝑜

2: 𝑐 ′ ← RANDOM_ORACLE(𝑥, 𝑟 )
3: if 𝑐 ′ = 𝑐 then
4: RETURN(𝑥)
5: else
6: RETURN(⊥)
7: end if

Program 44: Hash-based commitment opening.

GET_SHARED_RANDOM (pseudonym)
1: 𝑟 ←

$
F𝑝

2: (𝑐, 𝑜) ← COMMIT(𝑟 )
3: MESSAGE_BOARD_POST(type = DAT,

data = (“random”, random_share_counter, 𝑐), sender = pseudonym)
4: commits← empty array of size num_servers
5: for 𝑗 ∈ servers do
6: commits[ 𝑗] ←WAIT( 𝑗,

𝑚 such that𝑚.data = (“random”, random_share_counter, 𝑐 𝑗 )
for some 𝑐 𝑗
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7: end for
8: 𝑅 ← (share = 𝑟, open = 𝑜, id = random_share_counter,

commit = commits)
9: random_share_counter + +
10: RETURN(𝑅)

Program 45: Samples a random value and commits to it on the public message board.

GET_SHARED_TRIPLE ()
1: 𝑇 ← empty array of size 3

2: // If no unused Beaver triples are left, request a new one

3: if data_set has no message from secret_ttp with data (“triple_share_commit′′, triple_share_counter, Σ) for some Σ then
4: INPUT_TRIPLE()
5: end if
6: for 𝑖 ∈ {0, 1, 2} do
7: 𝑚1 ←WAIT(secret_ttp,

(“triple_share_commit′′, triple_share_counter + 𝑖, Σ))
for some Σ

8: 𝑚2 ← PRIVATE_WAIT(secret_ttp,
(“triple_share′′, 𝑥, 𝜎𝑥 , triple_share_counter + 𝑖))
for some 𝑥 and 𝜎𝑥

9: wait_number← wait_number + 1
10: // Shared secret data types have a share, ID, and commitments to other player’s shares

11: 𝑇 [𝑖] ← (share =𝑚2 .𝑥, id = triple_share_counter, commit =𝑚1 .Σ)
12: triple_share_counter← triple_share_counter + 3
13: end for
14: RETURN(𝑇 [0],𝑇 [1],𝑇 [2])

Program 46: Retrieves the next secret-shared Beaver triple from themessage board. If none is present, requests the control
program to post another.

J.1 Identifiable Abort
To accomplish identifiable aborts, ALLOSAUR will have a destructive blame where all players will reveal their secrets (hence rendering the

accumulator insecure) in order to assign blame to a specific player. For this they need a function to check whether a shared secret was used

correctly, given as follows.

CHECK_SHARED_VALUE (𝑦, pseudonym)
1: // This player posts an opening of their secret share

2: 𝑚 ← (type = DAT, data = (“open_share”, 𝑦.id, 𝑦.open))
3: MESSAGE_BOARD_POST(𝑚, sender = pseudonym)
4: 𝑜𝑠,𝑦𝑠 ←empty array of size |servers|
5: for 𝑗 ∈ servers do
6: // Get an opening for each player’s share

7: opening←WAIT( 𝑗, (type = DAT, data = (open_share, id, 𝑜)))
for some 𝑜

8: 𝑜𝑠 [ 𝑗] ← opening.𝑜
9: // Open the share

10: 𝑦𝑠 [ 𝑗] ← OPEN_COMMIT(𝑦.commit[ 𝑗], 𝑜𝑠 [ 𝑗])
11: // If the opening is invalid, blame the player

12: if 𝑦𝑠 [ 𝑗] == ⊥ then
13: MESSAGE_BOARD_POST(type = BLAME, user = 𝑗, sender = pseudonym)
14: end if
15: wait_number← wait_number + 1
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16: end for
17: RETURN(𝑦𝑠)

Program 47: Reveals a shared secret, then compares the values posted by other players to the commitments obtained from
the public message board when that secret was first established. If anything doesn’t match, it blames that player. Then it
returns all shares.

J.2 Open
Opening shared secrets takes some care to prevent adversarial players from controlling the final value. We use a naive approach and simply

post commitments to the share, then output the share once all other players have posted a commitment.

Our shared secret functionality gives an ID to every shared secret.OPENwill open a particular secret and and returns both the reconstructed

value and all the shares. Most calls will ignore the shares.

OPEN (𝑥, pseudonym)
1: // Post a commitment to this player’s share

2: 𝑐, open← COMMIT(𝑥, open_number)
3: 𝑚 ← (type = DAT, data = (“open_commit”, open_number, 𝑐))
4: MESSAGE_BOARD_POST(𝑚.sender = pseudonym)
5: commits← empty array of size 𝑁

6: // Wait for other player’s commitments

7: for 𝑗 ∈ servers do
8: commit←WAIT( 𝑗,𝑚.data = (“open_commit”, open_number, 𝑐 𝑗 ))

for some 𝑐 𝑗
9: commits[ 𝑗] ← commit.𝑐 𝑗
10: wait_number← wait_number + 1
11: end for
12: // Post the opening for the share

13: 𝑚 ← (type = DAT, data = (“open_reveal”, open_number, open𝑖 ))
14: MESSAGE_BOARD_POST(𝑚, sender = pseudonym)
15: 𝑥𝑠 ← empty array of size 𝑁

16: // Wait for all shares

17: for 𝑗 ∈ servers do
18: open←WAIT( 𝑗,𝑚.data = (“open_reveal”, open_number, open𝑗 )
19: 𝑥𝑠 [ 𝑗] ← OPEN_COMMIT(commits[ 𝑗], open)
20: // Blame any invalid openings

21: if 𝑥𝑠 [ 𝑗] == ⊥ then
22: MESSAGE_BOARD_POST(type = BLAME, user = 𝑗, sender = pseudonym)
23: end if
24: wait_number← wait_number + 1
25: end for
26: open_number← open_number + 1
27: 𝑥 ← the value 𝑥 constructed from the shares {𝑥1, . . . , 𝑥 |servers |}
28: RETURN(𝑥, (𝑥1, . . . , 𝑥 |servers |))

Program 48: Function for one user to open a specific shared secret.

In certain cases we will need to back-track and ensure that an opening matches a value revealed later, in order to perform blames. The

following function covers this case:

CHECK_OPEN (𝑋, id, pseudonym)
1: // 𝑋 is an array of secret values

2: check← True
3: // Find the original opening
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4: for 𝑗 ∈ servers do
5: Find the first𝑚1,𝑚2 in data_set such that for some 𝑐 𝑗 , 𝑜 𝑗 :

6: sender == 𝑗 for both𝑚1 and𝑚2

7: 𝑚1 .data = (“open_commit”, id, 𝑐 𝑗 )
8: 𝑚2 .data = (“open_reveal”, id, 𝑜 𝑗 )
9: 𝑥 𝑗 ← OPEN_COMMIT(𝑐 𝑗 , 𝑜 𝑗 )
10: if 𝑥 𝑗 ≠ 𝑋 [ 𝑗] then
11: check← False
12: MESSAGE_BOARD_POST(type = BLAME, user = 𝑗, sender = pseudonym)
13: end if
14: end for
15: // Abandon all execution if the check failed

16: if not check then
17: RETURN ⊥ to RUN_PLAYER_HONEST
18: end if
19: RETURN

Program 49: Function to check that a set of opened values provided as input (𝑋 ) match what was previously posted during
an Open indexed by id.

J.3 Invert
Our only use for Beaver triples will be inverting shared secrets in a finite field, which we with the following standard technique:

INVERT (𝑥, 𝑟, (𝑎, 𝑏, 𝑐), pseudonym)
1: // 𝑥, 𝑟, 𝑎, 𝑏, 𝑐 are all secret shares; (𝑎, 𝑏, 𝑐) is a Beaver triple
2: 𝜖_share← 𝑥 − 𝑎
3: 𝛿_share← 𝑟 − 𝑏
4: 𝜖 ← OPEN(𝜖_share, pseudonym)
5: 𝛿 ← OPEN(𝛿_share, pseudonym)
6: 𝑧_share← 𝑐 + 𝜖 · 𝑟 + 𝛿 · 𝑥 − 𝜖 · 𝛿
7: 𝑧 ← OPEN(𝑧_share, pseudonym)
8: if 𝑧 == 0 then
9: 𝑦 ← 0

10: else
11: 𝑦 ← 𝑧−1𝑟 mod 𝑞

12: end if
13: RETURN( [𝑦])

Program 50: Inverts a shared secret 𝑥 .

During a destructure blame, we will need to check that an inverse was performed correctly, and that is done as follows.

CHECK_INVERSE (open_start, shares𝑥 , 𝑟 , 𝑎, 𝑏, 𝑐, pseudonym)
1: shares𝑟 ← CHECK_SHARED_VALUE(𝑟, pseudonym)
2: shares𝑎 ← CHECK_SHARED_VALUE(𝑎, pseudonym)
3: shares𝑏 ← CHECK_SHARED_VALUE(𝑏, pseudonym)
4: shares𝑐 ← CHECK_SHARED_VALUE(𝑐, pseudonym)
5: shares𝜖 [ 𝑗] ← shares𝑥 [ 𝑗] − shares𝑎 [ 𝑗] for all 𝑗
6: shares𝛿 [ 𝑗] ← shares𝑟 [ 𝑗] − shares𝑏 [ 𝑗] for all 𝑗
7: CHECK_OPEN(shares𝜖 , open_start, pseudonym)
8: CHECK_OPEN(shares𝛿 , open_start + 1, pseudonym)
9: 𝜖 ← reconstruct from shares𝜖
10: 𝛿 ← reconstruct from shares𝛿
11: shares𝑧 [ 𝑗] ← shares𝑐 [ 𝑗] + 𝜖 · shares𝑟 [ 𝑗] + 𝛿 · shares𝑥 [ 𝑗] + 𝜖 · 𝛿 for all 𝑗
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12: CHECK_OPEN(shares𝑧 , open_start + 2, pseudonym)
13: 𝑧 ← reconstruct from shares𝑧
14: if 𝑧 == 0 mod 𝑞 then
15: shares𝑦 [ 𝑗] ← 0 for all 𝑗

16: else
17: shares𝑦 [ 𝑗] ← 𝑧−1shares𝑟 [ 𝑗] mod 𝑞 for all 𝑗

18: end if
19: RETURN(shares𝑦)

Program 51: Checks that an inverse was performed correctly, assuming opens for that inverse start at open_start, using
the randomness 𝑟 and Beaver triple (𝑎, 𝑏, 𝑐) (where each of these inputs is a tuple of (share, id, Σ)).

K ALLOSAUR
At its core, our multi-server construction is identical to the single-server construction, except that the secret values 𝛼 and 𝑠𝑚 are shared

among all the servers. This means that all computations using these values require multi-party computation, as well as mechanisms to

achieve consensus on the updated value of the accumulator.

K.1 Differences with previous accumulators
No non-membership witnesses. Because of security issues, we assume that applications needing non-membership witnesses will use a

second accumulator tracking elements not in the first accumulator.

The accumulator does not change with additions. When an element 𝑦 is added to the accumulator, the value of the accumulator (say,𝑉 ) does

not change. However, the servers compute
1

𝑦+𝛼𝑉 anyway, since this will be the witness that the user can obtain from the public messages.

Servers maintain a witness for everyone. When 𝑦 is added to the accumulator, the servers store the value
1

𝑦+𝛼𝑉 . They update this value

every time the accumulator changes (i.e., with deletions). When an element 𝑦 is deleted, the servers do not do any MPC, they simply set the

accumulator value to equal the witness they have stored for 𝑦.

This may be sub-optimal in practice. Since updates can be batched, or MPC used, we leave this as a later design decision.

Servers compute user updates. When a user 𝑦 requests an update, the servers compute the batch polynomial of [VB20]. To do this

anonymously, the user divides all powers of 𝑦, as 1, 𝑦,𝑦2, 𝑦3, . . . with Shamir secret sharing. The servers apply the polynomial to their shares

of the powers of 𝑦, which the user reassembles.

Trapdoor secret shares are linear; user secret shares are randomized Shamir shares. In our implementation, the trapdoors of the accumulator

(e.g., 𝛼) are shared so that if server 𝑖 has a share 𝛼𝑖 , then 𝛼 = 𝛼1 + · · · + 𝛼𝑁 . In contrast, the user uses a 𝑡-out-of-𝑛 Shamir secret sharing

scheme to split their ID 𝑦 during updates.

K.2 Parameters
ALLOSAUR needs the same parameters as the single-server case: two elliptic curve groups𝐺1 and𝐺2 of prime order 𝑞, with a Type 2 pairing

𝑒 : 𝐺1 ×𝐺2 → 𝐺𝑇 . There are public generators 𝑃 , 𝑃 , and 𝑒 (𝑃, 𝑃) of the three groups, as well as another three points 𝐾,𝐾0 ∈ 𝐺1 and 𝐾̃ ∈ 𝐺2.

Finally, we have points 𝑋 , 𝑌 , and 𝑍 in𝐺1, used for verification. All points must be random, i.e., no one should know the discrete logarithm of

any point with respect to any other.

We could start with only two generators and use the multi-party assumptions to create the other points in a trusted set-up phase. Instead

we assume they are pre-determined, for example by hashing “ALLOSAUR: Point K” onto a BLS curve [BLS03].

K.3 Core Accumulator Functions
The servers run these functions to maintain the accumulator. As the servers are not anonymous, we omit the sender argument to all posted

messages, since it will always equal self_id.
The first function that the servers should run is GEN, which initializes the shared secrets and the first value of the accumulator. We also

define

POST_ACCUMULATOR, which posts the value of the accumulator and waits for all other servers to post the same value, blaming any

server who posts a different value. As long as a majority of players agree, then either there will always be consensus or some player will be

blamed and the accumulator will abort.
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GEN ()
1: // Blame any player that calls this setup after it is already started

2: if acc_counter ≥ 0 then
3: for messages gen on the messages board of type FNC with fun_type == Gen besides the first do
4: MESSAGE_BOARD_POST(type = BLAME, user = gen.sender)
5: end for
6: RETURN(⊥)
7: end if
8: loop
9: // Create public keys randomly

10: 𝛼 ← GET_SHARED_RANDOM()
11: 𝑠𝑚 ← GET_SHARED_RANDOM()
12: 𝑟 ← GET_SHARED_RANDOM()
13: sk← (𝛼, 𝑠𝑚)
14: 𝑄̃_share← 𝛼.share · 𝑃
15: 𝑉 _share← 𝑟 .share · 𝑃
16: 𝑄̃𝑚_share← 𝑠𝑚 .share · 𝐾̃
17: 𝑄̃, (𝑄̃𝑐𝑜𝑚) ← OPEN(𝑄̃_share)
18: 𝑄̃𝑚, (𝑄̃𝑚,𝑐𝑜𝑚) ← OPEN(𝑄̃𝑚_share)
19: // Random initial accumulator value

20: 𝑉 ← OPEN(𝑉 _share)
21: // If public values are trivial, check that they were produced honestly and either repeat or blame

22: if 𝑄̃ = O or 𝑄̃𝑚 = O then
23: shares𝛼 ← CHECK_SHARED_VALUE(𝛼)
24: shares𝑠 ← CHECK_SHARED_VALUE(𝑠𝑚)
25: for 𝑗 ∈ servers do
26: if 𝑄̃𝑐𝑜𝑚 [ 𝑗] ≠ shares𝛼 [ 𝑗]𝑃 or 𝑄̃𝑚,𝑐𝑜𝑚 [ 𝑗] ≠ shares𝑠 [ 𝑗]𝐾̃ then
27: MESSAGE_BOARD_POST(type = BLAME, user = 𝑗)
28: end if
29: end for
30: else
31: Break loop

32: end if
33: end loop
34: aux, auxupd ← ∅// list of elements currently in accumulator

35: acc← (𝑉 , 𝑄̃, 𝑄̃𝑚)
36: acc_counter← 0

37: gen_commit← (𝑄̃𝑐𝑜𝑚, 𝑄̃𝑚,𝑐𝑜𝑚)
38: wits←empty dictionary// dictionary of valid witnesses

39: Y← ∅// list of all elements ever added

40: POST_ACCUMULATOR(acc, acc_epoch)
41: RETURN(⊥)

Program 52: Accumulator generator function. Creates the two constant “public-key” components of the accumulator and
picks a random starting value.

POST_ACCUMULATOR (𝐴, epoch)
1: acc_mess← (type = ACC,𝑚.epoch = epoch,𝑚.accumulator = 𝐴).
2: MESSAGE_BOARD_POST(acc_mess)
3: for 𝑗 ∈ servers do
4: 𝑚 ←WAIT( 𝑗, (𝑚.type == ACC,𝑚.epoch == epoch))
5: if 𝑚.accumulator ≠ 𝐴 then
6: MESSAGE_BOARD_POST(type = BLAME,𝑚.user == 𝑗)
7: end if
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8: wait_number← wait_number + 1
9: end for

Program 53: Updates the value of the accumulator on the bulletin board, and ensure that other players post a matching
value.

To avoid unnecessary MPC, we perform one inversion every time an element is added to the accumulator, and one extra inversion the

first time an element is added. Since the inversion during this addition is posted publicly, this avoids the need for any Wit𝑠 function: users
who want their witness simply read the public messages posted during the inversion. In practice, servers could condense this data by posting

a list of current witnesses.

ADD posts a new accumulator, which is technically unnecessary as the value does not change. Doing so makes it simpler for our proofs

to match changes to the accumulator with posted epochs.

ADD (𝑦, proof)
1: // Blame any player that tries to add before the accumulator is initialized.

2: if acc_epoch < 0 then
3: Let sender be the sender ID of the message that started this ADD function

4: MESSAGE_BOARD_POST(type = BLAME, user = sender)
5: end if
6: // If 𝑦 has never been added before, attempt to create a long-term signature.

7: if 𝑦 ∉ Y then
8: SIGN(𝑦, proof)
9: end if
10: Y← Y ∪ {𝑦}
11: Add the element if it is not already in the accumulator

12: if 𝑦 ∉ aux then
13: aux← aux ∪ {𝑦}
14: auxupd ← auxupd∥{(𝑦, 1)}
15: acc_epoch← acc_epoch + 1
16: // This message tells the user that their first/new witness is about to be posted

17: MESSAGE_BOARD_POST(type = DAT, data = (“witness”, 𝑦, open_number, acc_epoch))
18: // Produces a witness 𝑉 ′ for 𝑦
19: 𝑉 ′ ← AFF_INV_ACC(𝑦)
20: wits[𝑦] ← 𝑉 ′ // 𝑦 would not be in the accumulator previously

21: // Ensure other servers posted the messages necessary for 𝑦 to find their witness

22: for 𝑗 ∈ servers do
23: if data_set does not contain a message with data (“witness′′, 𝑦, open_number − 4) from player 𝑗 then
24: MESSAGE_BOARD_POST(type = BLAME, user = 𝑗)
25: end if
26: end for
27: end if
28: POST_ACCUMULATOR(acc, acc_epoch)
29: RETURN(⊥)

Program 54: Adds an element to the accumulator.

When a user is first added, they need a signature (separate from their witness) that will be static throughout execution. This is done via

SIGN.

SIGN (𝑦, proof)
1: // Check that the user knows the discrete log of 𝑅𝐼𝐷 via a Schnorr proof

2: (ℎ, 𝑠, 𝑅𝐼𝐷 ) ← proof
3: 𝐾 ′ ← 𝑠𝐾 + ℎ𝑅𝐼𝐷
4: if RANDOM_ORACLE(𝑅𝐼𝐷 , 𝐾 ′) ≠ ℎ then
5: RETURN(⊥)
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6: end if
7: // Compute the signature with MPC, implicitly posting it on the public message board

8: AFF_INV_SIGN(𝑦, 𝑅𝐼𝐷 + 𝐾0)
9: RETURN(⊥)

Program 55: Creates the long-term component of a user’s witness, if they send a valid proof

Both SIGN and ADD require affine inversion (i.e., (𝑦, 𝑃) ↦→ 1

𝑦+𝑠 𝑃 for a secret 𝑠). There are two near-identical functions defined to do this,

AFF_INV_ACC and AFF_INV_SIGN.

Here we see that because the resulting value can immediately be verified using pairings, there is no need for extra MPC verification. If the

pairing check fails, then servers know that the MPC was not performed correctly and they can open all secrets to decide who did not do the

correct computation.

An extension to our protocol could likely do this non-destructively with 𝑡-out-of-𝑛 secret sharing for 𝑡 < 𝑛, and some homomorphic

commitment to shared secrets. We leave this for future work.

AFF_INV_ACC (𝑦)
1: // Compute a single finite field inverse with a Beaver triple

2: 𝛼, 𝑠 ← sk
3: // Adding 𝑦 to one share creates a share of 𝑦 + 𝛼
4: if 𝑖 == 1 then
5: (𝑦 + 𝛼)_share← 𝑦 + 𝛼.share
6: else
7: (𝑦 + 𝛼)_share← 𝛼.share
8: end if
9: 𝑟 ← GET_SHARED_RANDOM()
10: (𝑎, 𝑏, 𝑐) ← GET_SHARED_TRIPLE()
11: 𝑤_share← INVERT((𝑦 + 𝛼)_share, 𝑟 .share, (𝑎.share, 𝑏.share, 𝑐 .share))
12: 𝑉 ′_share← 𝑤_share ·𝑉
13: 𝑉 ′ ← OPEN(𝑉 ′_share)
14: // Check that the computation worked correctly; if not, find the malicious server

15: if 𝑒 (𝑉 ′, 𝑦𝑃 + 𝑄̃) ≠ 𝑒 (𝑉 , 𝑃) then
16: Start a blame process

17: // Break the accumulator so the revealed secret is useless

18: acc_epoch← acc_epoch + 1
19: POST_ACCUMULATOR(⊥, acc_epoch)
20: MESSAGE_BOARD_POST(BLAME, data = START)
21: Check that accumulator was properly generated

22: (shares𝛼 , shares𝑠 ) ← CHECK_GEN()
23: Check the inversion itself

24: shares𝛼 [1] ← shares𝛼 [1] + 𝑦
25: shares𝑤 ← CHECK_INVERSE (open_number − 4, shares𝛼 , 𝑟 , 𝑎, 𝑏, 𝑐)
26: shares𝑣 [ 𝑗] ← shares𝑤 [ 𝑗]𝑉 for all 𝑗

27: CHECK_OPEN(shares𝑣, open_number − 1)
28: end if
29: RETURN(𝑉 ′)

Program 56: Affine inversion of accumulator value.

AFF_INV_SIGN (𝑦,𝑋 )
1: // Compute a single finite field inverse with a Beaver triple

2: 𝛼, 𝑠 ← sk
3: if 𝑖 == 1 then
4: (𝑦 + 𝑠)_share← 𝑦 + 𝑠 .share
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5: else
6: (𝑦 + 𝑠)_share← 𝑠 .share
7: end if
8: 𝑟 ← GET_SHARED_RANDOM()
9: (𝑎, 𝑏, 𝑐) ← GET_SHARED_TRIPLE()
10: 𝑤_share← INVERT((𝑦 + 𝑠)_share, 𝑟 .share, (𝑎.share, 𝑏.share, 𝑐 .share))
11: 𝑅𝑚_share← 𝑤_share · 𝑋
12: 𝑅𝑚 ← OPEN(𝑅𝑚_share)
13: //Check that the computation worked correctly; if not, find the malicious server

14: if 𝑒 (𝑅𝑚, 𝐾̃) ≠ 𝑒 (𝑋,𝑦𝐾̃ + 𝑄̃𝑚) then
15: acc_epoch← acc_epoch + 1
16: POST_ACCUMULATOR(⊥, acc_epoch)
17: MESSAGE_BOARD_POST(BLAME, data = START)
18: (shares𝛼 , shares𝑠 ) ← CHECK_GEN()
19: shares𝑠 [1] ← shares𝑠 [1] + 𝑦
20: shares𝑚 ← CHECK_INVERSE (open_number − 4, shares𝑠 , 𝑟 , 𝑎, 𝑏, 𝑐)
21: shares𝑅 [ 𝑗] ← shares𝑚 [ 𝑗]𝑋 for all 𝑗

22: CHECK_OPEN(shares𝑅, open_number − 1)
23: end if
24: RETURN(𝑅𝑚)

Program 57: Affine inversion of second part of public key. The logic is identical to AFF_INV_ACC.

If the check fails and the servers start a blame, they will need to verify that GEN was computed correctly, as follows:

CHECK_GEN ()
1: // Check that secrets were initially well-formed

2: blames← ∅
3: 𝛼, 𝑠 ← sk
4: shares𝛼 ← CHECK_SHARED_VALUE (𝛼)
5: shares𝑠 ← CHECK_SHARED_VALUE(𝑠𝑚)
6: // Ensure the public keys matched the secrets

7: (𝑄̃𝑐𝑜𝑚, 𝑄̃𝑚,𝑐𝑜𝑚) ← gen_commit
8: for 𝑗 ∈ servers do
9: if shares𝛼 [ 𝑗] · 𝑃 ≠ 𝑄̃𝑐𝑜𝑚 [ 𝑗] then
10: blames.add( 𝑗)
11: end if
12: if shares𝑠 [ 𝑗]𝐾̃ ≠ 𝑄̃𝑚,𝑐𝑜𝑚 [ 𝑗] then
13: blames.add( 𝑗)
14: end if
15: end for
16: if blames ≠ ∅ then
17: for 𝑗 ∈ blames do
18: MESSAGE_BOARD_POST(type = BLAME, user = 𝑗)
19: end for
20: RETURN ⊥ to RUN_PLAYER_HONEST
21: end if
22: RETURN(shares𝛼 , shares𝑠 )

Program 58: Reveals all accumulator secrets and checks that they were posted honestly.

The servers maintain a set wits of witnesses for each user, and during deletions, they update each of these witnesses. These updates do

not require any secret data. Since Nguyen’s accumulator has the property that the value of the accumulator after deleting an element 𝑦 is the

same as the value of a witness for 𝑦, then the servers can effectively delete an element from the accumulator without any MPC by simply

using the witness that they have stored.
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DEL (𝑦)
1: // Blame if this function comes before initialization of the accumulator

2: if acc_epoch < 0 then
3: Let sender be the sender ID of the message that started this DEL function

4: MESSAGE_BOARD_POST(type = BLAME, user = sender)
5: RETURN
6: end if
7: if 𝑦 ∈ aux then
8: aux← aux \ {𝑦}
9: auxupd ← auxupd∥{(𝑦,V)}
10: // 𝑉 ′ is the new accumulator, the deleted element’s witness

11: 𝑉 ′ ← wits[𝑦]
12: // Remove 𝑦 from wits and update all other witnesses

13: for 𝑦′ ∈ wits do
14: wits[𝑦′] ← 1

𝑦−𝑦′ (wits[𝑦′] −𝑉 ′)
15: end for
16: acc← (𝑉 ′, 𝑄̃, 𝑄̃𝑚)
17: acc_epoch← acc_epoch + 1
18: end if
19: POST_ACCUMULATOR(acc, acc_epoch)
20: RETURN(⊥)

Program 59: Accumulator Delete function

K.4 Private User Functions
Witnesses. The first function every user runs is WIT. Here the user selects a random long-term secret and masks it, then asks for their ID

𝑦 (given to them by the adversary) to be added to the accumulator, along with a signature. Once this is done, they wait for their new witness

to be posted to the public message board, after which they read and store it.

WIT (𝑦)
1: if user_id is already initialized or role = server then
2: RETURN
3: end if
4: // Wait for the first accumulator

5: while |accs| = 0 do
6: RETURN(5)
7: end while
8: pseud←pseudonym of initialWit message

9: witness← (0,O, (O,O))
10: next_witness← 0

11: // Long-term secret

12: sk←
$
F∗𝑞

13: 𝑅𝐼𝐷 ← sk𝐾
14: 𝑘 ←

$
F∗𝑞

15: ℎ ← RANDOM_ORACLE(𝑅𝐼𝐷 , 𝑘𝐾)
16: proof ← (ℎ, 𝑘 − ℎsk mod 𝑞, 𝑅) // basic Schnorr proof
17: // Request the servers to add them to the accumulator

18: MESSAGE_BOARD_POST(type = FNC, fun_type = Add, data = (𝑦, proof), sender = pseud)
19: // Wait for a long-term signature

20: WAIT for messages from all server players of type open_commit and open_reveal such that:

21: - the ID numbers all equal

22: - they assemble to a value 𝑅𝑚

23: - 𝑅𝑚 satisfies 𝑒 (𝑅𝑚, 𝑦𝐾̃ + 𝑄̃𝑚) = 𝑒 (𝑅𝐼𝐷 + 𝐾0, 𝐾̃)
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24: // Find their first witness

25: (𝑛,𝐶) ← FIND_WITNESS(𝑦, 0,∞)
26: witness← (𝑛,𝐶, 𝑅𝑚)
27: next_witness← 𝑛

28: // tracks in-progress witness epochs

29: user_id← 𝑦

30: RETURN

Program 60: Initializes a user. Creates a Schnorr proof of their secret sk and posts the proof as part of an Addmessage, so
they obtain both a witness and a long-term signature.

FIND_WITNESS (𝑦,min_epoch,max_epoch)
1: // Look for the message the servers post which indicates that they are starting the witness computation

2: if data_set contains a data message from any player with data = (“witness”, 𝑦, 𝑛 ∈ N,𝑚 ∈ N),𝑚 ≤ max_epoch then
3: open_id, epoch← 𝑛,𝑚 from the latest message of this type with𝑚 ≤ max_epoch
4: else
5: RETURN(⊥)
6: end if
7: 𝐶𝑠 ← empty array

8: // Retrieve the appropriate messages. The wait returns immediately, since the above check ensures the messages are already posted

9: for 𝑖 ∈ servers do
10: c←WAIT(𝑖, (type == DAT, data = (open_commit, open_id + 3, 𝑐)))
11: o←WAIT(𝑖, (type == DAT, data = (open_reveal, open_id + 3, 𝑜)))
12: 𝐶𝑠 [𝑖] ← OPEN(𝑐, 𝑜)
13: end for
14: 𝐶 ∈ 𝐺1 ←reconstruct shares in 𝐶𝑠

15: RETURN(𝑖,𝐶)

Program 61: Finds a witness posted on the public message board as a result of an MPC affine inversion.

Updates. Update messages request users to update to a specific epoch. Users first ensure that this update makes sense (e.g., they do not

have a witness for a later epoch) and then (mainly for readability) they call subroutines to return the updated value. We allow users to

compute several updates at once. By the nature of the update process, a user can start the update process from epoch 𝑛1 to epoch 𝑛2 before

they have a valid witness for epoch 𝑛1; they simply wait for the previous update to finish before continuing. Importantly, once a user starts
an update to an epoch 𝑛, they will not start any more updates to epochs less than 𝑛, even if they have not yet finished the update.

UPDATE (new_epoch)
1: if next_witness ≥ new_epoch

or |accs| < new_epoch
or next_witness == 0 or role = server
or user_id = ⊥ then

2: RETURN(⊥)
3: end if
4: // Ensures that users only update once per round, and update greedily

5: if there is a function message of type Upd𝑢 posted in the current round with epoch > new_epoch then
6: RETURN(⊥)
7: end if
8: // Signals to other functions that a new witness update is in progress

9: pseudonym← psuedonym of update request message

10: last_epoch← next_witness
11: next_witness← new_epoch
12: // Start protocol to obtain the new witness (takes several rounds)

13: witness← RETURN_UPDATE(witness, last_epoch, new_epoch, pseudonym)
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14: // Give the new witness to any new updates that started

15: for all entries in wit_waits with key new_epoch do
16: wit_waits[new_epoch] ← witness
17: end for
18: RETURN(⊥)

Program 62: Witness update function. This mainly manages epochs, ensuring users update to a more recent epoch.

To update witnesses, we use the batch update protocol of [VB20] but offload this computation to the servers. Since the batch update only

requires evaluating a polynomial based on public data (a list of deleted users and previous accumulator values) the servers can compute this

using only this public data, carrying no risk of revealing secret information to the user. Instead, the security goal here is that the user keeps

their ID secret. Thus, a user first splits their ID according to a Shamir secret-sharing scheme.

Shamir secret-sharing has two main benefits, besides anonymity. Choosing a 𝑡-out-of-𝑛 scheme means that if there are at least 𝑡 honest

servers, corrupt players cannot enact a denial-of-service attack, as the honest servers provide enough data for the user to continue. For a

user to verifiably blame a corrupt server for not posting something, especially when all messages are private, is a formidable challenge, and

this lets us avoid the problem entirely.

The second benefit is that if the users receives 𝑡 + 1 shares, they can validate the result by checking that all shares lie on the same

polynomial. Again, if there are at least 𝑡 honest servers, if the results fit the same interpolated polynomial then the user knows it is the

correct polynomial. In fact a user has a more direct integrity check – whether the update gave them a valid witness – but in the edge case

where a user is deleted and their update should fail, an adversary could de-anonymize slightly by sending incorrect shares that produce a

valid witness. While this case is somewhat pathological, the polynomial interpolation integrity check avoids it.

In case the returned witness is not valid, then either a server was dishonest or the user was genuinely deleted. One option for the user

here is to wait for the remaining update messages from other servers, since (by assumption) there are enough honest servers to ensure a

valid update. However, the user has no method to check which response was invalid. Instead, here we assume the user accesses the public

message board for an expensive update, where they download all accumulator update data and compute the update themselves.

Once the user downloads this data, they can compute the batch update polynomials and compute what each server should have returned,

via BLAMEU. If any server deviates from the expected protocol, the user will notice and will post the server’s messages to the public message

board, requesting the remaining servers trigger a blame.

If the user downloads this information and finds that servers all behaved correctly, this assures the user that their ID was deleted from the

accumulator (they could also determine this by checking the sequence of deletions posted to the message board). In this case, they check the

message board to see if they were re-added to the accumulator. If they were, that means the servers posted a new witness for this user. The

user retrieves this witness (the latest witness available, for the rare case in which the user was deleted and re-added more than once between

updates), and then must update this witness to the desired epoch by recursing the entire procedure.

If the user was deleted but not re-added, they return with the identity point on the curve as their witness, which is always invalid.

In practice we expect users will not be deleted often, and they will know when they are deleted from out-of-band data. This means the

expensive download will happen rarely, if at all, so we do not expect it to be an excessive burden. This also means the remaining edge cases

may never happen, but we want ALLOSAUR to handle them gracefully anyway.

RETURN_UPDATE (witness, old_epoch, new_epoch, pseudonym)
1: // This checks if there is already an update in progress. If so we add a request for that update to return its result here

2: if witness.epoch ≠ old_epoch then
3: wit_waits.add(old_epoch,⊥)
4: end if
5: // Perform the interactive protocol with the servers

6: (W,D,𝑊 𝑠, 𝐷𝑠,𝑦𝑠) ← GET_UPDATE(witness, old_epoch, new_epoch, pseudonym)
7: // Get the posted accumulator for this epoch

8: (𝑉 , 𝑄̃, 𝑄̃𝑚) ← accs[new_epoch]
9: // Check if the MPC failed

10: if any element ofW or D is ⊥ then
11: // Download and verify the servers’ behaviour

12: for 𝑖 over all senders of messages in𝑊𝑠 or 𝐷𝑠 do
13: BLAMEU (𝑖, old_epoch, new_epoch, 𝑦𝑠 [𝑖],𝑊 𝑠 [𝑖], 𝐷𝑠 [𝑖], pseudonym)
14: end for
15: RETURN(new_epoch,O, 𝑅𝑚)
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16: else if any element of D is 0 or witness invalid then
17: // In this case the player’s ID was deleted

18: // They must now find a new witness, if it existss

19: witness← FIND_WITNESS(𝑦,witness.epoch, new_epoch)
20: // If they cannot find a new witness, they are no longer part of the accumulated set. They return an invalid witness.

21: if witness == ⊥ then
22: RETURN(new_epoch,O, 𝑅𝑚)
23: else
24: // If they find a new witness, they may need to update the new witness recursively

25: (epoch,𝐶, 𝑅𝑚) ← witness
26: (𝑉 , 𝑄̃, 𝑄̃𝑚) ← accs[epoch]
27: if epoch < new_epoch and 𝑒 (𝐶 ′, 𝑦𝑃 + 𝑄̃) == 𝑒 (𝑉 , 𝑃) then
28: RETURN(RETURN_UPDATE(witness, epoch, new_epoch))
29: end if
30: end if
31: else
32: // Valid non-zero points mean the update should work directly

33: // Obtain the previous witness value 𝐶 , whether directly or from a previous update

34: if old_epoch ≠ witness.epoch then
35: // Waits for previous update to finish

36: while wit_waits[old_epoch] == ⊥ do
37: RETURN(GetCallStack(36))
38: end while
39: (old_epoch,𝐶, 𝑅𝑚) ← wit_waits[old_epoch]
40: wit_waits.delete(old_epoch) // delete only one

41: else
42: (old_epoch,𝐶, 𝑅𝑚) ← witness
43: end if
44: // Final steps of the batch update

45: 𝐶 ′ ← PROCESS_UPDATE(D,W,𝐶)
46: RETURN((new_epoch,𝐶 ′, 𝑅𝑚))
47: end if

Program 63: Finds the latest valid witness. This checks validity and recurses as necessary.

CREATE_SHARE ( [𝑦1, . . . , 𝑦𝑘 ], 𝑁 , 𝑡)
1: 𝑝 ← random array of size 𝑘 , with entries as arrays of F𝑞 of size 𝑡

2: for 𝑖 in 1 to 𝑘 do
3: 𝑝 [𝑖] [0] ← 𝑦𝑖
4: end for
5: // Create random points; not strictly necessary

6: 𝑥1, . . . , 𝑥𝑁 ←$
F𝑁𝑞

7: shares←empty array of size 𝑁

8: for 𝑗 from 1 to 𝑁 do
9: // Treat 𝑝 as coefficients of a polynomial

10: shares[ 𝑗] ← 𝑝 (𝑥 𝑗 ) mod 𝑞

11: end for
12: RETURN( [𝑥1, . . . , 𝑥𝑁 ], shares)

Program 64: Shamir secret share creation. Produces 𝑁 shares of 𝑥 such that 𝑡 shares can reconstruct 𝑥 .

OPEN_SHARE ( [𝑥1, . . . , 𝑥𝑁 ], shares, 𝑡, indices)
1: 𝑉 ← 𝑡 × 𝑡 matrix
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2: for 𝑖 = 1 to 𝑡 do
3: 𝑗 ← indices[𝑖]
4: 𝑖th row of 𝑉 ← (1, 𝑥 𝑗 , 𝑥2𝑗 , . . . , 𝑥

𝑡−1
𝑗
)

5: end for
6: 𝑝 ← 𝑉 −1 · shares
7: for 𝑖 = 𝑡 + 1 to |indices| do
8: 𝑗 ← indices[𝑖]
9: if 𝑝 (𝑥 𝑗 ) ≠ shares[𝑖] then
10: RETURN(⊥)
11: end if
12: end for
13: RETURN(𝑝 (0))

Program 65: Reconstructs a secret from shares. This is not an efficient method, but demonstrates the principal.

GET_UPDATE (old_epoch, new_epoch, pseudonym)
1: 𝑑 ← new_epoch − old_epoch
2: // Instructs servers to expect update data

3: MESSAGE_BOARD_POST(type = FNC, fun_type = Upds, data = (new_epoch, old_epoch), sender = pseudonym)
4: 𝑘 ← ⌊

√
𝑑⌉

5: 𝑦𝑠 ← array of length 𝑘 − 1, each entry initialized to an array of length 𝑁

6: // Take 𝑡 as the number of honest players. Users do not actually have access to C but in practice the protocol should decide on a

threshold expected to be greater than the number of dishonest servers

7: 𝑡 ← 𝑁 − |C|
8: (𝑦𝑠, 𝑥𝑠) ← CREATE_SHARE( [𝑦,𝑦2, . . . , 𝑦𝑘−1], 𝑡, 𝑁 )
9: // Give each server shares of powers of their ID 𝑦

10: for 𝑗 from 0 to 𝑁 − 1 do
11: PRIVATE_MESSAGE_BOARD_POST(type = DATA, data = (𝑦𝑠 [0] [ 𝑗], 𝑦𝑠 [1] [ 𝑗], . . . , 𝑦𝑠 [𝑘 − 1] [ 𝑗])), dest = 𝑗), sender =

pseudonym)
12: end for
13: 𝑊𝑠 ← array of length 𝑁 initialized with ⊥
14: 𝐷𝑠 ← array of length 𝑁 initialized with ⊥
15: // Expect server responses in 2 rounds

16: for 𝑖 = 1 to 2 do
17: RETURN(GetCallStack(16))
18: end for
19: for 𝑗 ∈ servers do
20: if private_data_set contains a message𝑚 from 𝑗 to pseudonym

with𝑚.data ∈ wit ×𝐺𝑚
1
× F𝑚𝑞 × ℎ

such that ℎ = RANDOM_ORACLE(𝑦𝑠 [ 𝑗], new_epoch, old_epoch) then
21: Let (wit,𝑊 𝑠, 𝐷) =𝑚.data
22: 𝑊𝑠 [ 𝑗] ←𝑊

23: 𝐷𝑠 [ 𝑗] ← 𝐷

24: end if
25: end for
26: Reconstruct update information

27: W ←empty list

28: D ←empty list

29: for ℓ from 0 to𝑚 do
30: // Notation to use the second index of𝑊𝑠 and 𝐷𝑠

31: W[ℓ] ← OPEN_SHARE(𝑥𝑠,𝑊𝑠 [all] [ℓ], 𝑡, 𝑗 :𝑊𝑠 [ 𝑗] [ℓ] ≠ ⊥)
32: D[ℓ] ← OPEN_SHARE(𝑥𝑠, 𝐷𝑠 [all] [ℓ], 𝑡, 𝑗 : 𝐷𝑠 [ 𝑗] [ℓ] ≠ ⊥)
33: end for
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34: RETURN(W,D,𝑊 𝑠, 𝐷𝑠,𝑦𝑠)

Program 66: Interactive part of witness update (user side).

PROCESS_UPDATE (D,W,witness)
1: new_witness← witness
2: for (𝑑,𝑊 ) ∈ (D,W) do
3: new_witness← 𝑑−1 (new_witness −𝑊 )
4: end for
5: RETURN(new_witness)

Program 67: Given an array of tuples to update a witness, repeatedly applies them to finish an update.

UPD_HELP (𝑉 ,𝑌 𝑦̧_shares, 𝑑, 𝑘,𝑚)
1: Y1, . . . ,Y𝑚 ← split 𝑌 into sub-lists of length 𝑘

2: V1, . . . ,V𝑚 ← split 𝑉 into sub-lists of length 𝑘

3: 𝐷𝑠,𝑊𝑠 ← empty arrays

4: for 𝑖 in 1 to𝑚 do
5: 𝑑 (𝑥) ←∏𝑘

𝑡=1 (Y𝑖 [𝑡] − 𝑥) as a polynomial mod 𝑞

6: 𝑤𝑠 ←
∏𝑠

𝑡=1 (Y𝑖 [𝑡] − 𝑥) mod 𝑞 for all 𝑠 from 1 to 𝑘 − 1 (𝑤0 (𝑥) = 1)

7: // The inner product means to treat the coefficients of 𝑑 as a vector

8: // This multiplies the share of 𝑦𝑖 by the coefficient of 𝑥𝑖 in 𝑑 (𝑥), for all 𝑖
9: 𝐷 ← ⟨𝑑, (1, 𝑦_shares)⟩
10: 𝑣𝑠 ← ⟨𝑤𝑠 , (1, 𝑦_shares)⟩ // include trailing 0s in𝑤𝑠

11: 𝑊 ← ∑𝑘−1
𝑠=0 𝑣𝑠 ·𝑉𝑖 ·𝑘−𝑠

12: 𝐷𝑠.append(𝐷)
13: 𝑊𝑠.append(𝑊 )
14: end for
15: RETURN(𝑊𝑠, 𝐷𝑠)

Program 68: Computes the public update polynomial on the shares of some user ID provided. Servers use this for regular
updates, and users call this during blames to verify a server computed it correctly. Our implementation uses slightlymore
efficient methods to perform the same computations.

When a user’s update fails, they call BLAMEU. First it checks whether they were honestly deleted, and stops blaming if they were.

Otherwise, they can check precisely which server failed, because they have all the public data the server was supposed to use. Once they

find the dishonest server, they ask for the private messages to be publicly revealed, so that honest server players can blame the malicious

server. In practice, this would involve just posting the signed responses from the malicious server.

BLAMEU (id, old_epoch, new_epoch, 𝑦_shares,𝑊 , 𝐷, 𝑡, pseudonym)
1: Create an ordered list L of (𝑦𝑖 , {Add,Del}) of all addition and deletion function calls posted to the message board

2: Find all accumulator values for these changes

3: V ← empty dynamic array

4: for 𝑖 from old_epoch to new_epoch do
5: if L[𝑖] = (𝑦,Del) then
6: V .append((𝑦, accs[𝑖]))
7: end if
8: end for
9: Let 𝑌 = [𝑦1, . . . , 𝑦𝑑 ] be the values of 𝑦 added toV
10: Let 𝑉 = [𝑉1, . . . ,𝑉𝑑 ] be the first argument of the accumulator values added toV
11: 𝑘 ← length(𝑦_shares),𝑚 ← length(𝑊 )
12: 𝑊𝑐ℎ𝑒𝑐𝑘 , 𝐷𝑐ℎ𝑒𝑐𝑘 ← UPD_HELP(id,𝑉 , 𝑌 𝑦̧_shares, 𝑑, 𝑘,𝑚, 𝑡)
13: if𝑊𝑐ℎ𝑒𝑐𝑘 ≠𝑊 or 𝐷𝑐ℎ𝑒𝑐𝑘 ≠ 𝐷 then
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14: // Any mismatched server responses get revealed publicly to show that the server misbehaved.

15: Let 𝑛1 be the index of the first messages to server id for the update

16: Let 𝑛2 be the index of the last messages to server id for the update

17: for 𝑛 = 𝑛1 to 𝑛2 do
18: PRIVATE_MESSAGE_BOARD_REVEAL(pseudonym, 𝑛)
19: end for
20: MESSAGE_BOARD_POST(type = FNC, fun_type = Blame,

data = (id, old_epoch, new_epoch, 𝑛1, 𝑛2, 𝑡, 𝑦_shares),
sender = pseudonym)

21: end if

Program 69: Accumulator Blame (user-side), used for failed witness verification.

Proofs. For verification, a user must ensure they have an up-to-date witness. Since this may require an update, the user pauses execution

for as long as an update might take before continuing, to obscure whether or not they needed an update.

We decided that the updates performed during verifications should be ephemeral and the updated witness is deleted after verification.

This is because we imagine a real-world implementation will update in regular, predictable intervals, but having an update that precisely
matches the epoch of a specific verification would de-anonymize a user.

If the user has already updated their witness to a later epoch, they will prove membership with respect to that later epoch.

Once all of the anonymity is taken care of, we use exactly the same zero-knowledge proof of the original accumulator [Ngu05].

PROVE (verifier, epoch_request)
1: if role = server

or user_id = ⊥ then
2: RETURN()
3: end if
4: // If there is no consensus accumulator that epoch, return immediately

5: if |accs| < epoch_num then
6: RETURN()
7: end if
8: pseudonym← pseudonym that recevied original function call

9: // Maximum witness epoch the user has or will have

10: start_epoch← next_witness
11: ver_round← current_round + 4
12: // Update witness if the requested epoch is too high

13: if epoch_request > start_epoch then
14: witness← RETURN_UPDATE(

witness, start_epocḩ epoch_request, pseudonym)
15: end if
16: // Wait to ensure verifications happen at the same round, regardless of whether an update was necessary.

17: while current_round < ver_round do
18: RETURN(GetCallStack(18))
19: end while
20: // Wait for the verifier to send a challenge

21: challenge_message← PRIVATE_WAIT(sender = verifier,
data = (“proof_challenge”, 𝑐, epoch),
round ≥ ver_round − 1, dest = pseudonym)

for some 𝑐

22: challenge← challenge_message.data.𝑐
23: // Ensure that this player only responds to each challenge once

24: Delete challenge_message from private_data_set
25: // If the user has a more recent witness, verify for that epoch

26: epoch_request = max{epoch_request, start_epoch)
27: if 𝑒 (𝐶,𝑦𝑃 + 𝑄̃) = 𝑒 (𝑉 , 𝑃) then
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28: // This zero-knowledege proof is from Nguyen [Ngu05]

29: 𝑟1, 𝑟2, 𝑟3, 𝑘0, . . . , 𝑘7 ←$
Z𝑞

30: 𝑈1 = 𝑅𝑚 + 𝑟1𝑍
31: 𝑈2 ← 𝐶 + 𝑟2𝑍
32: 𝑅 ← 𝑟1𝑋 + 𝑟2𝑌 + 𝑟3𝑍
33: 𝑇1 ← 𝑘1𝑋 + 𝑘2𝑌 + 𝑘3𝑍
34: 𝑇2 ← 𝑘4𝑋 + 𝑘5𝑌 + 𝑘6𝑍 − 𝑘7𝑅
35: Π1 = 𝑒 (𝐾, 𝐾̃)𝑘0𝑒 (𝑈1, 𝐾̃)−𝑘7𝑒 (𝑍, 𝐾̃)𝑘4𝑒 (𝑍, 𝑄̃𝑚)𝑘1
36: Π2 = 𝑒 (𝑈2, 𝑃)−𝑘7𝑒 (𝑍, 𝑃)𝑘5𝑒 (𝑍, 𝑄̃)𝑘2
37: 𝑐 ← RANDOM_ORACLE(challenge,𝑉 ,𝑈1,𝑈2, 𝑅,𝑇1,𝑇2,Π1,Π2)
38: 𝑠0 ← 𝑘0 + 𝑐 · sk
39: 𝑠𝑖 ← 𝑘𝑖 + 𝑐𝑟𝑖 for 𝑖 ∈ {1, 2, 3}
40: 𝑠𝑖 ← 𝑘𝑖 + 𝑐𝑟𝑖−3𝑦 for 𝑖 ∈ {4, 5, 6}
41: 𝑠7 ← 𝑘7 + 𝑐𝑦
42: proof ← (𝑈1,𝑈2, 𝑅, 𝑐, 𝑠1, . . . , 𝑠7)
43: else
44: // Send empty proof if user has no valid witness

45: proof ← ⊥
46: end if
47: 𝑚 ← (type = DATA)
48: 𝑚.data← (“proof”, epoch_request, proof)
49: PRIVATE_MESSAGE_BOARD_POST(𝑚, dest = verifier,

sender = pseudonym)
50: RETURN(⊥)

Program 70: Prove knowledge of a valid witness.

Upon receiving a verification proof, any other player (user or server) can verify it. If the verification is malformed, including referencing

an accumulator epoch that has yet to be posted, the verifier treats this as a failed verification.

VER (prover, epoch)
1: // Wait for a consensus accumulator for this epoch

2: while accs[epoch] contains ⊥ do
3: RETURN(GetCallStack(2))
4: end while
5: pseudonym←pseudonym that sent original message

6: PRIVATE_MESSAGE_BOARD_POST(type = FNC, fun_type = Prove, data = (epoch), dest = prover, sender = pseudonym)
7: // Wait 3 rounds for the user to all but one round of any necessary updates

8: for 𝑖 = 1 to 3 do
9: RETURN(GetCallStack(8))
10: end for
11: // Post ephemeral challenge

12: challenge←
$
{0, 1}2𝜆

13: PRIVATE_MESSAGE_BOARD_POST(type = DAT, data = (“proof_challenge”, challenge, epoch), sender = pseudonym)
14: // Wait exactly one round for the user to respond

15: RETURN(15)
16: for𝑚 ∈ private_data_set such that:

𝑚.recipient = pseudonym,𝑚.sender = prover,
𝑚.type = DAT,𝑚.data = (“proof”, epoch, proof),
𝑚.round = CLOCK_GET_TIME() − 1 do

17: // If the proof is malformed, treat it as failure

18: if 𝑚.data.proof ∉ 𝐺3

1
× (Z𝑞)8 or epoch > max index(accs) then

19: OBSERVER_CHECK_PROOF(
pseudonym, sender, result = 0, epoch)

20: Skip to next loop iteration
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21: end if
22: 𝑉 ← accs[𝑚.epoch]
23: (𝑈1,𝑈2, 𝑅,𝑇1,𝑇2, 𝑐, 𝑠1, . . . , 𝑠7) ←𝑚.data.proof
24: 𝑇1 ← 𝑠1𝑋 + 𝑠2𝑌 + 𝑠3𝑍 − 𝑐𝑅
25: 𝑇2 ← 𝑠4𝑋 + 𝑠5𝑌 + 𝑠6𝑍 − 𝑠7𝑅
26: Π1 ← 𝑒 (𝐾, 𝐾̃)𝑠0𝑒 (𝑈1, 𝐾̃)−𝑠7𝑒 (𝑍, 𝐾̃)𝑠4𝑒 (𝑍, 𝑄̃𝑚)𝑠1𝑒 (𝐾0, 𝐾̃)𝑐𝑒 (𝑈1, 𝑄̃𝑚)−𝑐
27: Π2 ← 𝑒 (𝑈2, 𝑃)−𝑠7𝑒 (𝑍, 𝑃)𝑠5𝑒 (𝑍, 𝑄̃)𝑠2𝑒 (𝑉 , 𝑃)𝑐𝑒 (𝑈2, 𝑄̃)−𝑐
28: if 𝑐 ≠ RANDOM_ORACLE(challenge,𝑉 ,𝑈1,𝑈2, 𝑅,𝑇1,𝑇2,Π1,Π2) then
29: // Do nothing; we post failure at the end if necesssary

30: else
31: // Any success almost certainly matches the challenge, so note success and return

32: OBSERVER_CHECK_PROOF(pseudonym, sender, TRUE,𝑚.epoch)
33: RETURN
34: end if
35: end for
36: // Ending the loop means no message passed the proof. Record this as failure.

37: OBSERVER_CHECK_PROOF(pseudonym, sender, FALSE,𝑚.epoch)
38: RETURN

Program 71: Accumulator Verification function (verifier)..

K.5 Private Server Functions
Servers receiving an update request will immediately compute the result using their public data and return it.

UPDS (sender, curr_epoch, last_epoch)
1: if role = user then
2: RETURN()
3: end if
4: 𝑑 ← curr_epoch − last_epoch
5: 𝑘 ← ⌊

√
𝑑⌉

6: 𝑚 ← ⌈𝑑/𝑘⌉
7: Let aux′ be all the tuples in auxupd from last_epoch to curr_epoch
8: Let 𝑌 be an array of 𝑦1, 𝑦2, . . . , 𝑦𝑑 , the values of 𝑦 corresponding to deletions in aux′

9: Let 𝑉 be an array of 𝑉1, . . . ,𝑉𝑑 , the values of 𝑉 corresponding to deletions in aux′

10: 𝑦_share_message = (𝑦1, . . . 𝑦𝑘−1) ←WAIT(sender, (𝑚.type == DATA,𝑚.data ∈ F𝑘−1𝑝 ))
11: 𝑦_shares = (𝑦1, . . . , 𝑦𝑘−1) ← 𝑦_share_message.data
12: 𝑊,𝐷 ← UPD_HELP(𝑉 ,𝑌,𝑦shares, 𝑑, 𝑘,𝑚)
13: // The tag is necessary to ensure that these values are associated to this request

14: // Without this tag, malicious users could claim the response is a malformed response to a different request.

15: tag← RANDOM_ORACLE(𝑦_shares, curr_epoch, last_epoch)
16: 𝑚 ← (type = DATA, data = (“wit”,𝑊 , 𝐷, tag))
17: PRIVATE_MESSAGE_BOARD_POST(𝑚, sender)
18: RETURN(⊥)

Program 72: Server side of witness update.

When a user posts a blame message from a bad update, the servers execute this function which checks for all update messages to look for

one which was malformed.

BLAME (sender, id, upd_end, upd_start, 𝑦_shares)
1: 𝑊,𝑦, 𝐷 ← ⊥
2: // Find all revealed messages matching the update

3: Let blames be all messages𝑚 ∈ data_set such that:
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𝑚.sender = sender
𝑚.type = DATA
𝑚.data = (“wit”,𝑊 , 𝐷,ℎ) such that

𝑊 ∈ 𝐺𝑘
1
, 𝐷 ∈ F𝑘𝑞 , and ℎ ∈ {0, 1}2𝜆

ℎ = RANDOM_ORACLE(𝑦_shares, upd_end, upd_start)
4: if blames has length 0 then
5: RETURN(⊥)
6: end if
7: 𝑑 ← upd_end − upd_start
8: 𝑘 ← ⌊

√
𝑑⌉

9: 𝑚 ← ⌈𝑑/𝑘⌉
10: Let aux′ be all the tuples in auxupd from upd_start to upd_end
11: Let 𝑌 be an array of 𝑦1, 𝑦2, . . . , 𝑦𝑑 , the values of 𝑦 corresponding to deletions in aux′

12: Let 𝑉 be an array of 𝑉1, . . . ,𝑉𝑑 , the values of 𝑉 corresponding to deletions in aux′

13: // Replicate the computations of the accused server to check if they were done correctly

14: for all messages𝑚 in blames do
15: 𝑊,𝐷,ℎ ←𝑚.data
16: 𝑊𝑐ℎ𝑒𝑐𝑘 , 𝐷𝑐ℎ𝑒𝑐𝑘 ← UPD_HELP(𝑉 ,𝑌,𝑦_shares, 𝑑, 𝑘,𝑚)
17: if𝑊𝑐ℎ𝑒𝑐𝑘 ≠𝑊 or 𝐷𝑐ℎ𝑒𝑐𝑘 ≠ 𝐷 then
18: MESSAGE_BOARD_POST(type = BLAME, user = id)
19: end if
20: end for

Program 73: Accumulator Blame (server-side), used for failed witness verification.

K.6 Anonymity Control Programs
After a round is finished and players have posted all their messages, the observer program updates the anonymity sets. Recall that anonymity

sets are already restricted from adversarial calls to GAME_DEANONYMIZE. Besides that, anonymity is reduced because:

• Users requesting a new witness are completely non-anonymous, since they include their ID in the request!

• Users posting a verification proof must be in the set of users either in the accumulator or not, depending on the validity of the proof.

• Users requesting an update from epoch 𝑛1 to epoch 𝑛2 must be in the set of users which last updated to epoch 𝑛1.

To manage this, whenever a function request is sent to a specific pseudonym 𝑝 belonging to a user 𝑦, the observer program modifies the

anonymity sets as follows:

• On aWit request, the anonymity set for 𝑝 is reduced to just {𝑦}.
• On an Upd request, the anonymity set of 𝑝 is reduced to all all users whose current witness epoch matches the current witness epoch

of 𝑦, and who are also request to update to the same epoch as 𝑝 . Further:

– If the user is sent multiple Upd requests, they will only act on the one with the largest valid epoch

– If 𝑦 receives multiple update requests to different pseudonyms, the user will ignore most of them. To avoid doubt, the anonymity

set is restricted to {𝑦}.
– The user’s “current witness epoch” might be the the update of a previous but unfinished update call

– If the user ID 𝑦 was deleted and re-added before the epoch of the update, they will send another message 2 rounds after the

first, whose start epoch matchs the epoch that 𝑦 was re-added. Because only one element is added in each epoch, this completely

de-anonymizes 𝑦; the anonymity set is reduced to {𝑦}
• On a Prove request, the anonymity set is restricted similarly to updates. However, since PROVE does not change the user’s internal

state (witness updates during PROVE are ephemeral), the observer does not require other users 𝑦′ in the anonymity set of 𝑝 to have

also been requested to Prove.
• A Ver request causes no restrictions, as it neither reads from nor writes to any user-specific variables.

• If the pseudonym sends a message with a proof, the anonymity set for that pseudonym is restricted to only users that are either in the

accumulated set or not, depending on whether the proof is valid.

These anonymity set restricts are conservative. Multiple update requests sent to different pseudonyms of the same user might be difficult

for an adversary to correlate; however, deciding precisely how much correlation the adversary gets is also difficult. By completely reducing

the anonymity set in this case, an adversary who does this has no hope of winning the indistinguishability game using such messages,

because there are no two users among the anonymity set that the adversary can distinguish.
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RESTRICT_ANONYMITY (fncs)
1: // For users without a witness yet, check if they will retrieve one from the message board this round

2: Y0 ← {𝑦 : user_epochs[𝑦] = 0}
3: for 𝑦 ∈ Y0 do
4: // A consensus accumulator containing 𝑦 implies that ADD made a witness for 𝑦

5: 𝑛 ← min{𝑚 : 𝑦 ∈ S[𝑚], |A[𝑚] | = |servers|}
6: if 𝑛 exists then
7: user_epochs[𝑦] ← 𝑛

8: Y0 .del(𝑦)
9: end if
10: end for
11: // All honest players

12: Y ← all user IDs 𝑦 belonging to players not in C
13: // Process proof messages

14: 𝑀𝑝𝑟𝑜𝑜 𝑓 𝑠 ← MESSAGE_BOARD_GET_FUNCTIONS(DAT)
15: Restrict𝑀𝑝𝑟𝑜𝑜 𝑓 𝑠 to all messages with𝑚.data = (“proof”, ...)
16: // Restrict based on whether the proof should be valid or not

17: for𝑚 ∈ 𝑀𝑝𝑟𝑜𝑜 𝑓 𝑠 do
18: if not PSEUDONYM_CHECK_CORRUPTED(𝑚.sender, C) then
19: anon_sets[𝑚.sender] = anon_sets[m.sender] ∩ Y ∩ S[𝑚.epoch] \ Y0
20: end if
21: end for
22: 𝑀 ← MESSAGE_BOARD_GET_FUNCTIONS(FNC)
23: // Find multiple function requests to the same pseudonym, since users will also do so

24: for tuples (𝑚1,𝑚2, . . . ) of more than one message in𝑀 with the same recipient do
25: used_pseudonyms.add(𝑚1 .recipient)
26: end for
27: // Ignore all messages to used pseudonyms

28: Restrict𝑀 to messages with recipients not in used_pseudonyms
29: // Witness issuance is completely de-anonymizing

30: for𝑚 ∈ 𝑀 such that𝑚.type = FNC and𝑚.fun_type = Wit do
31: // If the user already exists, they will ignore witness requests

32: if 𝑦 ∉ user_epochs then
33: 𝑦 ←𝑚.data.user_id
34: anon_sets[𝑚.recipient] = {𝑦}
35: user_epochs[𝑦] ← 0

36: end if
37: end for
38: // Process update requests

39: // Removing used pseudonyms means each𝑚 is sent to a unique pseudonym

40: M𝑢𝑝𝑑 ← {𝑚 ∈ 𝑀 :𝑚.type = FNC and𝑚.fun_type = Upd𝑢 }
41: //MY𝑢𝑝𝑑 will match update messages to the user ID for the update

42: MY𝑢𝑝𝑑 ← ∅
43: // Restrict to honest user updates to epochs with consensus

44: for𝑚 ∈ M𝑢𝑝𝑑 do
45: if |A[𝑚.epoch] | < |servers| then
46: Skip to next loop iteration

47: end if
48: if not PSEUDONYM_CHECK_CORRUPTED(𝑚.recipient, C) then
49: MY𝑢𝑝𝑑 .add(𝑚, user_IDs[PSEUDONYM_GET_IDENTITY(𝑚.receiver)])
50: end if
51: end for
52: // Find any user given multiple updates to different pseudonyms

53: MY𝑑𝑢𝑝 ← {(𝑦,𝑚) : there is more than one tuple (𝑦, ∗) inMY𝑢𝑝𝑑 }
54: // Only the remaining users inMY𝑢𝑝𝑑 have any anonymity
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55: MY𝑢𝑝𝑑 ←MY𝑢𝑝𝑑 \MY𝑑𝑢𝑝

56: forMY ⊆ MY𝑢𝑝𝑑 with the same value of𝑚.epoch do
57: PartitionMY intoM1, . . . ,Mℓ based on𝑚 such that:

there are some 𝑛1, . . . , 𝑛ℓ such that for all (𝑦,𝑚) ∈ MY𝑖 ,

user_epochs[𝑦] = 𝑛𝑖
58: // Find users that were deleted and re-added

59: Y𝑑𝑒𝑙,𝑖 ← {𝑦′ ∈ Y𝑖 : 𝑦′ ∈ S[𝑛 + 1] \ S[𝑛], user_epochs[𝑦′] ≤ 𝑛 < 𝑚.epoch − 1}
60: for 𝑖 = 1 to ℓ do
61: // Users without valid witnesses yet are ignored

62: if user_epochs[𝑦] = ⊥ or 0 then
63: Skip to next loop iteration

64: end if
65: for (𝑚,𝑦) ∈ MY𝑖 do
66: if 𝑦 ∈ Y𝑑𝑒𝑙,𝑖 then
67: anon_sets[𝑚.recipient] ← {𝑦}
68: else
69: anon_restriction← ∩{𝑦 : (∗, 𝑦) ∈ MY𝑖 } \ (Y𝑑𝑒𝑙,𝑖 ∪ Y0)
70: 𝑝 ←𝑚.recipient
71: anon_sets[𝑝] ← anon_sets[𝑝] ∩ anon_restriction
72: end if
73: end for
74: end for
75: // Update the maximum witness each user is expected to have

76: for (𝑚,𝑦) ∈ MY do
77: user_epochs[𝑦] ←𝑚.epoch
78: end for
79: end for
80: // De-anonymize users with multiple update messages

81: for (𝑚,𝑦) ∈ MY𝑑𝑢𝑝 do
82: anon_sets[𝑚.recipient] ← {𝑦}
83: user_epochs[𝑦] ← max{user_epochs[𝑦],𝑚.epoch}
84: end for
85: // Restrict anonymity based on proof requests

86: M𝑣𝑒𝑟 ← {𝑚 ∈ 𝑀 :𝑚.type = FNC and𝑚.fun_type = Prove}
87: RestrictM𝑣𝑒𝑟 to only𝑚 with𝑚.epoch such that

A[𝑚.epoch] = |servers|
88: for𝑚 ∈ M𝑣𝑒𝑟 do
89: 𝑦 ← user_IDs[PSEUDONYM_GET_IDENTITY(𝑚.receiver)]
90: // Ignore uninitialized users (who will ignore this request)

91: if user_epochs[𝑦] = 0 or ⊥ then
92: Skip to next loop iteration

93: end if
94: // Get users with same current witness epoch

95: Y𝑢𝑝𝑑 ← {𝑦′ : user_epochs[𝑦′] = user_epochs[𝑦]}
96: Y𝑑𝑒𝑙,𝑖 ← {𝑦′ ∈ Y𝑖 : 𝑦′ ∈ S[𝑛 + 1] \ S[𝑛], user_epochs[𝑦′] ≤ 𝑛 < 𝑚.epoch − 1}
97: // Users that were deleted and re-added will be completely de-anonymized

98: if 𝑦 ∈ Y𝑑𝑒𝑙 then
99: anon_sets[𝑚.receiver] = {𝑦}
100: else
101: anon_sets[𝑚.receiver] = anon_sets[𝑚.receiver] ∩ Y𝑢𝑝𝑑 \ (Y𝑑𝑒𝑙 ∪ Y0)
102: end if
103: end for
104: used_pseudonyms← used_pseudonyms ∪

{all recipient pseudonyms in𝑀}
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Program 74: Updates the anonymity sets based on a posted message.

L PROOF OUTLINE
In the next sections we prove security. Since our formalism executes functions asynchronously except for the round structure, our first task

is to show that the server players proceed through the same steps in the same order. Appendix M shows that honest server players execute

the same functions in the same order as each other during all core accumulator functions (Gen, Add, Del, and all of their subroutines), which
follows straightforwardly from the fixed ordering of the message board. Appendix N shows that all honest server players execute the same

steps in the same rounds, mainly by showing that when server players wait for each other (e.g., to open a secret share), this should take only

one round.

From here we need to show that the adversary must execute the same steps as honest server players or they will be blamed. Appendix O

shows this based on binding property of the commitment scheme, which means that if the MPC arithmetic goes wrong, the honest players

can reliably determine who misbehaved by opening various commitments to the secret data. Once this is done, we can talk about “the

accumulator”, and we show that it is maintained in the same way as in the single-server case in Appendix P. This includes showing that the

internal database of witnesses that each honest server player maintains, wits, contains valid witnesses for each ID 𝑦 that was added to the

accumulator.

Then Appendix Q shows that the servers correctly issue witnesses during the Add operations and that the users will be able to find these

witnesses. Then we must show that user updates work correctly. Appendix R shows that when a user updates its witness, whether as part

of UPDATE or PROVE, it always completes between 2 and 4 rounds. We also show in this section that if a user has a witness for some

epoch, it is correct: it is a valid witness if the user is in the accumulated set, and invalid otherwise. This allows us to state that verifications

work correctly: an honest user will produce a valid proof during verification if and only if they are in the accumulated set. While the basic

correctness follows readily from inspecting the polynomial arithmetic introduced in [VB20], the bulk of this section deals with how UPDATE
handles different edge cases, like users being deleted between updates.

Then Appendix S uses the results on progress to show that requests to Add and Del proceed in a timely fashion. This implies that

verification requests finish within the required time to prevent the accumulator from timing out. With all of this groundwork in place, we

can then show correctness, Definition H.1, in Theorem S.9.

For soundness and indistinguishability, we require some basic results on simulating the accumulator for an adversary. In Appendix T

we show that, we can force an adversary to be the first to open its shares when opening any shared secret, allowing a simulator to

indistinguishably open any secret share to any value it needs by reprogramming the random oracle.

To show soundness, we first need to construct an extractor. Our extractor comes from the soundness proof of [Ngu05], and works by

replaying an adversary and reprogramming the random oracle. This proof is only correct thanks to our single-round response to verifier

challenges, which we suspect highlights that there is a genuine security threat in our model if there are no defenses against replay attacks.

We must then show that all extracted witnesses belong to the adversary. This relies on our new group problem, which we define in

Appendix V and prove secure later in Appendix C. In Appendix V we use the hard group problem on two different aspects of the scheme to

show that extracted witnesses must match a valid accumulator and belong to the adversary. This shows soundness, Theorem V.6, as defined

in Definition H.2.

Finally we must prove indistinguishability, Definition H.3. It is straightforward in Appendix W to show that we can simulate the messages

of both updates and proofs, since these are based on secret-sharing and zero-knowledge proofs, respectively. More challenging is addressing

all metadata, in Appendix X. To do this we define the notion of what messages a pseudonym might send in response to other messages, and

show that if two pseudonyms are in the same anonymity set, they will respond in exactly the same way to all future messages. Further, we

show that for the two functions which modify users’ internaal state – WIT and UPDATE – all pseudonyms receiving such requests receive

the same request in the same round. This ensures that the modifications to user state are the same through anonymity sets. All of this allows

us to show that we can swap the pseudonyms of two users in the same anonymity set without the adversary noticing. As this demonstrates

that there is no correlation between the adversary’s behaviour and which pseudonyms are assigned to which user (at least within the same

anonymity set), indistnguishability follows readily.

This proves all required security definitions. However, our definition of indistinguishability does not make any guarantees about anonymity.

We thus define a pattern of adversarial inputs (and hence of user behaviour) in Appendix Y, which creates a non-trivial level of anonymity.

L.1 Notation
Throughout the proofs, we use the following terminology:

• “honest server player” refers to one of the players with id in servers that is not in the set of players corrupted by the adversary.

• “core accumulator functions” refers to GEN, ADD, and DEL.
• “user functions” refers toWIT, UPDATE𝑠,𝑢 , PROVE, and VER.
• “consensus accumulator” refers to an accumulator for an epoch 𝑛 such that all server players have posted an accumulator value, and

all their accumulator values match.
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L.2 Assumptions
We make the following assumptions through all the following proofs.

Every proof reasons about the execution of subroutines during execution of

answer,
state

← ACCUMULATOR_GAME(𝜆, 𝑁 , 𝑘).

The value 𝑘 (the maximum number of corrupt players) is chosen so that 𝑘 < 1

2
𝑁 , and the global constant BLAME_THRESHOLD is

greater than 𝑘 and less than 𝑁 − 𝑘 .
The value ⊥ can be used without error in any operation, but composing ⊥ with any other data returns ⊥, i.e., 𝑥 ← 𝑥 + ⊥ means 𝑥 ← ⊥.

M ORDERING PROOFS
M.1 Outline
In this section we prove that honest server players follow the same steps in the same order throughout core accumulator functions. Since

these functions branch at several points, we must show that honest server players follow the same branches.

First, Proposition M.1 shows that all players run the same core accumulator functions in the same order, and Proposition M.2 shows that

their data sets (i.e., public messages) are the same. Both follow straightforwardly from the append-only public message board. Then we show,

Proposition M.3, that if GEN does not run first, then an adversary gets blamed; the checks in every other function ensure this.

To show that the branching is the same, we must show that the variables that the branching depends on will be the same. First it is

straightforward to show that aux and Y are the same (Proposition M.4), since they depend only on arguments to the core accumulator

functions. The only remaining branching is in the “blame branches” of the affine inversion computations, which rely on the outputs of

multi-party computations, so we must prove consistency of these computations.

For this we start by showing in Proposition M.5 thatWAIT returns the same value for all honest players, which follows because if players

wait for the same kind of message posted to a public message board, the first satisfying message must be the same for all of them. Since

OPEN is just many calls to WAIT, this implies (Proposition M.6) that OPEN also returns the same value, at least if it waits for the same

shares.

At this point we need to ensure that the arguments to OPEN are consistent, so that players are not waiting for different shared secrets to

open. This is fundamentally inductive, since the inputs to OPEN depend on previous branches of computation, which depend on previous

outputs of OPEN. We first argue that if no blame branch is taken, then the numbering of each call to OPEN is consistent (Proposition M.7),

which is clear because it is incremented sequentially. This means that if no blame occurs, the indices of the shared randomness and Beaver

triples are consistent (Proposition M.8), again since they are incremented sequentially. Together this gives the final result, Proposition M.9

all the arguments to OPEN will have the same indices, so they return the same outputs, so the variables used to decide whether to enter the

blame branch are consistent.

We summarize the section with Theorem M.10: all honest server players follow the same branching. This follows from the previous logic.

M.2 Proofs
To start, we show basic properties of the order of execution.

Proposition M.1. Let L𝑖 (𝑛) be an ordered list of all the core accumulator functions that an honest server player 𝑖 has started to run, including
the arguments to the function, by the end of round 𝑛. Then for any two honest server players 𝑖 and 𝑗 , either L𝑖 (𝑛) is a substring of L 𝑗 (𝑛) or vice
verse.

Proof. Honest server players only call core accumulator functions that were posted to the message board. The message board functionality

provides a consistent ordering, and honest players execute functions from this board via a first-in-first-out queue. □

Proposition M.2. In each round, all honest players have the same data in data_set in the same order. Moreover, if data_set = D in round 𝑖 ,
in all future rounds data_set = D∥D′ for some D′, i.e., it is append-only.

Proof. The execution of RUN_PLAYER_HONEST is the same for all honest players, and adds data to data_set in the order it is posted

on the message board, which is the same data in the same order for all players. Moreover, from the start of each round to the end, the

message board does not change, thus each player has the same data. Append-only is trivially true by construction. □

Note that private_data_set will likely be different.

Proposition M.3. If ADD or DEL is posted to the message board before GEN, the adversary will be blamed and the accumulator will abort.

Proof. All of the stated functions begin by checking if acc_counter < 0, blaming the sender of the function message if it is. Since this

variable is initialized to −1, and only incremented in GEN, the result follows. □

Proposition M.4. All honest server players have the same data in aux and Y at the start of the execution of the same accumulator function.
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Proof. The object aux is only modified in ADD and DEL. While a partial execution of either function will push these variables out of

sync across honest server players, this proposition only states that they are the same at the start of the execution of one of these functions, so

we need only show that once honest server players finish these functions, they are in sync. It will take more work to show that the players

are in sync during execution.

The only branch in the value of aux is based on the value of aux itself. Honest players execute the ADD and DEL functions in the same

order as each other. Thus, they will perform the same modifications to aux, and hence they will always have the same value when they start

ADD and DEL, so they will keep the same value by induction.

For Y the same logic applies, with the slight caveat that the execution depends also on the argument to proof – but since this is the same

for all players, their execution follows the same branches. □

We now argue that when players wait for messages from each other, they will always return with the same message. We do not yet show

that this message is correct or even well-formed. We call a message that satisfies the conditions of aWAIT a satisfying message.
PRIVATE_WAIT does not have this property, as one player may send a different satisfying message to each other player waiting for a

private message from them.

Proposition M.5. All honest server players that call WAIT with the same argument either will return the same argument, if they return an
argument at all.

Proof. Since each player’s data_set is the same and append-only, the first instance of a message matching some condition is well-defined

and consistent across players. Therefore, if two players return a message, they must select the same message. □

We next argue that OPEN produces consistent values.

Proposition M.6. Each honest server player calls OPEN with sequentially increasing values of open_number. Any honest server players
which return with a value from a call to the OPEN with the same value of open_number will all return the same value. Similarly, if honest
server players call
CHECK_SHARED_VALUE with shares 𝑦 that have the same id and return, they will also return the same value.

Proof. The first statement is clear by the incrementing of open_number during calls to OPEN.
By Proposition M.5, all honest players will obtain the same value from each call toWAIT. By the structure of OPEN, all honest players

will wait for the same messages, with one exception: each honest player 𝑖 will not wait for a message from itself.

For such an honest player 𝑖 , 𝑖 will post the commitment and opening of their message, and only post one message for each value of

open_number. This satisfies the requirements of theWAIT call of the other honest players. Thus, all honest players will end up with the

same values of commits and open. Here, if an adversarial player posted a malicious commitment and/or opening, it may corrupt the output

of OPEN_COMMIT; however, since OPEN_COMMIT is deterministic, each honest server player will obtain the same corrupted output.

That is, no matter what is posted, all honest server players obtain all the same shares, and thus return the same value.

The exact same logic applies to CHECK_SHARED_VALUE: all honest server players post the value that matches the WAIT for other

honest server players. □

This shows that all honest server players have the same data, except for individual secrets. We refer to a “blame” as any time an honest

server player starts to execute the branches in AFF_INV_ACC or AFF_INV_SIGN based on a malformed result.

These values are consistent, but there is no guarantee they are correct. If the players get out of sync, they may attempt to open different

shares. This does not occur either; because they always open the same values, they will always branch the same way.

Proposition M.7. If no honest server player enters the “blame” branch of
AFF_INV_ACC or AFF_INV_SIGN, then all honest server players calling OPEN with the same value of open_number will call it in the same
core accumulator function, with the same arguments, with same call stack and line numbers.

Proof. We have already shown that honest server players execute the same core accumulator functions in the same order. Thus we must

only show that, within such a function, that all branching leading to different calls to OPEN will branch the same way for all players. We

thus argue by induction. For the base case, the first call to OPEN occurs in the first call to GEN, which will branch the same way because it

is the first call to GEN.
For the inductive case, we ignore all branching that does not lead to different calls to OPEN. All remaining branching in core accumulator

functions depends on either aux or (in DEL) the outputs of previous calls to OPEN. By Proposition M.6, all players obtain the same values

for previous calls to OPEN, and inductively, these correspond to the same values in the code (e.g., they will obtain the same value for 𝑄̃).

Thus, they will branch the same way in each function, proving the statement. □

At this point we have not yet shown that any call to OPEN will necessarily complete, we have only given guarantees on its output if it

does. We now argue that shared randomness is dealt with sensibly.
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Proposition M.8. If no honest server player enters the “blame” branch of
AFF_INV_ACC or AFF_INV_SIGN, then all calls to
GET_SHARED_RANDOM() and GET_SHARED_TRIPLE() by honest server players that occur at the same lines in the same core accumulator
functions with the same arguments will return secret shares with the same ID.

Proof. The previous arguments about branching apply here as well; all calls to these functions occur within branching that we argued is

identical across all honest server players. Thus, we can sequentially number all calls to these functions and these numbers will be consistent

across honest server players. Since each one will increment either random_share_counter or triple_share_counter each time, these IDs

will increment with the calls to these functions. □

During GEN, each player posts their share of 𝑄̃ and 𝑄̃𝑚 , equal to 𝑃 or 𝐾̃ multiplied by their share of 𝛼 and 𝑠𝑚 (respectively), and honest

server players store these shares in gen_commit. During GET_SHARED_RANDOM, each player posted a commitment to these shares.

Thus, when CHECK_GEN opens these commitments, it should immediately show if a player misbehaved during this step. We show later

that this works; for now we only show that CHECK_GEN returns consistent results for all honest server players.

Proposition M.9. Any honest server players that enter the “blame” branch of AFF_INV_ACC or AFF_INV_SIGN will follow the same
branches within this execution.

Proof. We show this for AFF_INV_ACC, but the same logic applies to

AFF_INV_SIGN. First, if any honest server player gets “stuck” (i.e., permanently waiting) at any point, then the proposition statement holds

vacuously.

Otherwise, the first branch point is in CHECK_GEN, but the logic of Proposition M.8 shows that all honest server players will follow the

same branches in it, and return with the same set. They then call CHECK_INVERSE. By Proposition P.2 the 𝑉 argument is the same; from

previous propositions open_number is the same, and by Proposition M.8, all honest server players have the same IDs for 𝑟 , 𝑎, 𝑏, and 𝑐 .

This means that within CHECK_INVERSE, they will all return with the same shares from each call to CHECK_SHARED_VALUE. From
this, we can see that each call to CHECK_OPEN will branch the same way as well. Finally, this implies that CHECK_INVERSE, if it returns,
will return the same values.

This means that shares𝑣 will have the same value for all honest server players, and the next call to CHECK_OPEN will also have the

same values and thus branch in the same way. This applies to both AFF_INV_SIGN and AFF_INV_ACC. □

This leads to our main consistency theorem:

Theorem M.10. All honest server players follow the same branches during execution of all core accumulator functions, except for possibly
posting differing blames withinWAIT.

Proof. We must show this inductively over the branch points of execution, which could occur during GEN, DEL, and ADD or any of

their subroutines. These are executed in the same order (Proposition M.1), so our inductive hypothesis on branching also implies that all

incremented variables will stay consistent across all honest server players.

By Proposition M.3, all honest server players execute GEN first. The first branch in this is during GET_SHARED_RANDOM.

Since each call to GET_SHARED_RANDOM and

GET_SHARED_TRIPLE sequentially increases random_share_counter or triple_share_counter, honest server players will wait for the
same messages during calls toWAIT during these functions.

From Proposition M.5, honest server players return with the same values from WAIT if it is called with the same arguments. Here we do

not yet have a guarantee that some honest server players will not post the same blame as others if they were waiting for much longer (we

later show this does not happen), but this does not affect any other branching.

This means GEN branches in the same way until it reaches

POST_ACCUMULATOR. Since the accumulator epoch is incremented the same for all honest server players, they again wait for the same

messages, so they branch in the same way.

Next we reason about ADD. Players follow the same branch at Line 7 because Proposition M.4 shows Y is the same. During SIGN, the
value of proof is the same for all honest server players (it was part of a public message) and AFF_INV_SIGN follows the same branches

during OPEN and INVERT by the same logic of incrementing the indices of random shares and Beaver triples. It then follows the same

blame branch by Proposition M.9. Thus, SIGN follows the same branches.

Then at Line 12 the honest server players again follow the same branches by Proposition M.4, and during AFF_INV_ACC the same logic

applies and they branch in the same way. Finally, they reach POST_ACCUMULATOR, which follows the same branches by the same logic

as in GEN.
DEL has the same subroutines as ADD, so the proof is identical. □
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N PROGRESS PROOFS
N.1 Outline
In this section we prove that the adversary cannot stall progress of the accumulator without getting blamed. Mainly this will involve proving

that during any WAIT calls, honest server players wait for the same data and do not become deadlocked.

Recall that WAIT is given a player ID and a condition, and it waits for that player to post a message satisfying the given condi-

tion, and then returns that message. All calls to WAIT during core accumulator functions (during OPEN, POST_ACCUMULATOR, or
GET_SHARED_RANDOM) occur in a loop that iterates over all server players, waiting for a message from each. We refer to such a loop as

a “WAIT loop”.

Implicitly, throughout we use Proposition N.1, which states that the conditions are always evaluable in polynomial time and satisfiable.

Then we show that the numbering of OPEN, where manyWAIT calls occur, is consistent among honest server players (Proposition N.2).

This allows us to sequentially number all calls to WAIT, Proposition N.3, such that honest server players will call them in order, which

is clear by Theorem M.10 since execution follows the same branches. This means theWAIT loops are the same among the honest server

players, so honest server players will post messages satisfying the requirements of the other players in the loop before starting the loop

Proposition N.4, and thanks to the numbering, these messages are unique.

All of this shows the consistency of theWAIT calls, so since the honest server players wait for the same message, they will return from

eachWAIT in the same round (Proposition N.5). Since users proceed through execution without interruption between calls toWAIT, this
gives us our main Theorem N.6, stating that honest server players will both call and return from the sameWAIT in the same round.

That gives us two helpful corollaries: Corollary N.7, honest users will not blame each other in a WAIT for not posting the required

message in time, and Proposition N.8, that aWAIT loop finishes in a bounded number of rounds or some corrupted player has delayed it and

will be blamed.

N.2 Proofs
We implicitly use the follow proposition throughout.

Proposition N.1. All calls to WAIT by honest server players use a condition that is evaluable in polynomial time and for which it is possible
for a satisfying message to exist.

Proof. Clear by inspection of all calls toWAIT. □

Proposition N.2. All honest server players calling OPEN with the same value of open_number will call it in the same core accumulator
function, with the same arguments, with the same call stack and line numbers.

Proof. The proof is exactly the same as Proposition M.7, except Proposition M.9 guarantees that all branching is the same. □

We need to order the calls toWAIT. For this, we use wait_number.
This counter ensures each player numbers calls to WAIT sequentially. We have honest server players call WAIT for messages from

themselves, which is technically unnecessary but makes the following proofs much cleaner. Since all the calls to WAIT occur in loops over

messages from all server players (either in OPEN, GET_SHARED_RANDOM, or POST_ACCUMULATOR), in the same order, there exists

one server player that all honest server players will wait on first. That player, if honest, could skip waiting on their own message, which

would cause a vast array of off-by-one errors in these proofs, which would be inconsequntial since that player would immediately be forced

to wait for a different honest player’s message in the same wait loop). Instead we simply force all players to wait for their own messages.

Proposition N.3. All players which call WAIT with the same value of
wait_number will return with the same message, and if 𝑛1 < 𝑛2, all players which execute WAIT𝑛1

and WAIT𝑛2
will call WAIT𝑛1

before
WAIT𝑛2

.

Proof. Since honest server players follow the same branching by Proposition M.9, they will reach the same WAIT in the same order. □

This justifies numbering the calls to WAIT sequentially, and using WAIT𝑛 to refer to the WAIT that each player will call when

wait_number = 𝑛.

Proposition N.4. Before entering a loop of calls toWAIT for all server players, any honest server player 𝑖 will post a message that will satisfy
the requirements of all other honest server players in that loop waiting for a message from player 𝑖 . Moreover, this will be the first and only
message satisfying thatWAIT.

Proof. The first is clear by inspection. For the second, since calls to WAIT are only in OPEN and POST_ACCUMULATOR, they are

indexed by

open_number or an accumulator epoch, which both increment with each call, so no other message will match these indices. WAIT also

checks the sender of a message and the message board functionality ensures this is added to each message, so no other player could post a

satisfying message. □
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We are now ready to show that wait calls must progress in a fixed number of rounds.

Proposition N.5. If at least one honest server player calls (not necessarily starts) WAIT𝑘 in round 𝑛1, all honest server players will complete
execution of WAIT𝑘 in the same round as each other, or by at most round 𝑛1 +WAIT_THRESHOLD they will all have blamed the same player.

Proof. Suppose more than one player calls a WAIT for a message from player 𝑖 in round 𝑛1. WAIT checks messages in data_set, but by
Proposition M.2, this is the same for all honest server players in each round. This means in each round, all honest server players will reach

the same conclusion about whether data_set contains a message satisfying the conditions of theWAIT. Thus, if a player posts a message

satisfying these conditions in round 𝑛2 − 1, then in round 𝑛2 it will be posted to the message board and all honest server players will return

from WAIT. If player 𝑖 does not post a satisfying message within WAIT_THRESHOLD rounds, all players still waiting will post a blame of

player 𝑖 . Since every player’s wait counter is at least 0 in round 𝑛1, by 𝑛1 +WAIT_THRESHOLD they will have all blamed player 𝑖 . □

Notice here that we haven’t restricted to whether the satisfying message must be posted by a corrupted or honest player. It doesn’t matter

at this point, thanks to Propositions Proposition M.5 and Proposition N.5: honest server players return at the same time with the same values

from the same WAIT. This will let us show in the next theorem that honest server players progress at almost exactly the same rate. That is,

they are at most round out of sync with each other.

Theorem N.6. For any 𝑛, all honest server players that callWAIT𝑛 in a core accumulator function call it in the same round as each other, and
complete it in the same round as each other.

Proof. We prove by induction, which is well-defined by Proposition N.3. Theorem M.10 shows that all branching is the same, so the

statement is true in the first round, since all honest server players will reachWAIT1 in the same round.

Then suppose it is true up to the 𝑛th call toWAIT. By induction, all honest server players complete this call in the same round (say, 𝑘).

There are two cases here: In the first case, they complete execution of all queued core accumulator functions. They will not call another

WAIT until a new message is posted to the message board; however, since they see all the same messages in the same round, they will all

start thisWAIT in the same round.

The second case is that they return from WAIT and proceed immediately to the execution of another wait. Since all honest server players

execute the same functions in the same order, they will all have the same WAIT in their function queue. Thus they will all start this call in

the same round.

By Proposition N.4 they will all post a satisfying message for their wait in that round and only that round. Thus, if the honest server

players wait for a message from anohter honest server player, then none of them will complete that WAIT, since none of the messages will

be posted until the next round. If they are waiting for a message from a corrupt player, then it doesn’t matter when the corrupt player posts

the same message, since we just showed that the honest players all start waiting for it in the same round and then Proposition N.5 shows

that they return from theWAIT in the same round. □

Corollary N.7. For anyWAIT_THRESHOLD ≥ 2, honest server players will never blame each other during aWAIT.

Proof. Following the logic in Theorem N.6, if all honest server players startWAIT in round𝑚, then they will all post a satisfying message

in the same round. Thus, they will all have posted a satisfying message before the wait_counter variable reaches 2. □

This corollary means we can setWAIT_THRESHOLD = 2. This is short because we have pushed a lot of the synchronization into the

structure of the public message board itself.

PropositionN.8. All honest server players will complete execution of anyWAIT loop over server players within atmost |C|WAIT_THRESHOLD+
1 rounds, or they will blame a corrupted player.

Proof. By Theorem N.6, all honest server players will enter the firstWAIT in the same round as each other. Once all the honest server

players have entered the loop, they will all have posted satisfying messages, by Proposition N.4. Thus, all honest server players will finish all

subsequentWAIT calls for messages from honest server players in the same round that they are called. For each corrupted player, the honest

server players will enter the WAIT in the same round, so the corrupted player must post a satisfying message within WAIT_THRESHOLD
rounds or all honest server players will blame them. Thus, each corrupted player adds at mostWAIT_THRESHOLD rounds to the execution.

Adding up the maximum number of rounds gives the total number of rounds. □

From this point forward we define 𝑇𝑤𝑎𝑖𝑡 = |C|WAIT_THRESHOLD + 1.
We could have a tighter bound by slightly modifying execution to have one wait threshold for all players in such a WAIT loop. We opted

not to, to make the specification and proofs simpler.
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O CONSISTENCY PROOFS
O.1 Outline
We now reason that the adversarial server player must act like an honest server player, or else they will be blamed. This would be guaranteed

by more complicated MPC protocols, but here we argue from the nature of the accumulator arithmetic.

Our blame procedure works by revealing all the secret shares used for the multi-party computation, re-computing the expected messages

from each party, and blaming anyone whose messages deviated from this.

To show that this works, recall that in our protocol, all random shares and Beaver triples post commitments to the shares on the public

message board before use. Since these are binding, it means that revealed secret shares must be genuine. We start by showing that honest

server players can connect the commitments to the shares which were used, by showing that all honest server players will store the same

commitments for the same ID of share or triple, Proposition O.1. This allows us to argue in Proposition O.2, that

CHECK_SHARED_VALUE, which reveals a committed secret share and checks the commitments, will not blame any honest players.

Once the secret shares are revealed, the blame process works by stepping through the multi-party computation and comparing the

expected output. This first involves checking that the accumulator parameters were generated correctly, and so Proposition O.3 shows that

CHECK_GEN does not blame honest players, mainly because it only checks the openings of shared values. Then Proposition O.4 shows that

once the shared secrets are revealed, the expected messages calculated in the blame will match what honest players post. Thus, no honest

players will be blamed.

It remains to show that adversarial players will be blamed. To do that, we use the binding properties of the commitment to argue that

if an adversary passes CHECK_SHARED_VALUE without being blamed, then for random shares the resulting value must be random

(Proposition O.5) and for Beaver triples the resulting value must be a valid Beaver triple (Proposition O.6). This then shows that GEN will

successfully pass the first loop and produce valid parameters, Proposition O.7, and it will not blame any honest party (Proposition O.8). By

showing that an adversary must post values that are the same as what an honest user would post, we can show in Proposition O.9 that the

only way for the affine inversion functions to enter the blame branch is if the adversary caused the multi-party computation to fail, and in

this case the honest players can find unexpected messages from the adversary and successfully blame them.

O.2 Proofs
PropositionO.1. If two honest server players 𝑖 and 𝑗 have values𝑦𝑖 and𝑦 𝑗 (respectively) in shared_triples or shared_random, if𝑦𝑖 .id = 𝑦 𝑗 .id,

then
𝑦𝑖 .commit = 𝑦 𝑗 .commit.

Proof. The control program only posts shared triple values with unique IDs. Thus, honest server players will only have values with the

same ID if they came from the same message, which means they found the same value for commit on the public message board. Other players

post commitments to randomness publicly, and by Proposition M.5 the honest players will store commitments from the same messages. Since

honest players only post messages with a label of “random” during GET_SHARED_RANDOM and they increment random_share_counter
every time, honest players only post one such message, and thus the commitment a player posts, which other players see, will match what

they store internally. □

Proposition O.2. During execution of CHECK_SHARED_VALUE, no honest server player will blame another honest server player, and all
honest server players will return with all the shares from other honest server players.

Proof. We know that the honest server players will not blame each other during theWAIT; further, this guarantees that they execute

the same WAIT and execute CHECK_SHARED_VALUE with a share with the same id.
Every honest server player posts a message which contains their share of the secret 𝑦, proving the second part of the statements. Since this

share corresponds one-to-one with the commitments posted to the public message board (Proposition O.1), then 𝑦.commit[ 𝑗] will commit to

the share posted by any honest server player 𝑗 . Thus, they will not post a blame message for that honest server player. □

Proposition O.3. During execution of CHECK_GEN, no honest server player will blame another honest server player. If no blame occurs, all
honest server players return with shares𝛼 , shares𝑠 that match the shares of 𝛼 and 𝑠𝑚 belonging to all other honest server players.

Proof. Recall that honest players form 𝑄̃ and 𝑄̃𝑚 by multiplying their shares of 𝛼 and 𝑠𝑚 by 𝑃 and 𝐾̃ respectively, then opening the

resulting shared elliptic curve point. Honest server player save the points output during this opening in 𝑄̃𝑐𝑜𝑚 and 𝑄̃𝑚,𝑐𝑜𝑚 .

During CHECK_GEN, the honest server players will execute
CHECK_SHARED_VALUE. Since the shared random values 𝛼 and 𝑠𝑚 from GEN are obtained in a fixed order, they will have the same ID,

and no honest server player will blame another. Further, they will return with the the same shares by Proposition O.2.

This means that for any honest server player 𝑖 , if 𝑗 is the index of any other honest server player, then during 𝑖’s execution, shares𝛼 [ 𝑗]
equals the value of 𝛼.share that 𝑗 used, proving the second part of the statement. This means shares𝛼 [ 𝑗] · 𝑃 will be precisely the value that

player 𝑗 output during OPEN( [𝑄̃]), which means that will be the value that player 𝑖 has in 𝑄̃𝑐𝑜𝑚 . Thus, the first check will pass.

The same logic applies with the second check for 𝑄̃𝑚,𝑐𝑜𝑚 . □
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Proposition O.4. During execution of DEL or ADD, no honest server player will blame another honest player.

Proof. Our proof will argue over each of the lines where blame messages could be posted: in the first check to see if the accumulator

exists when the function was called, during aWAIT, during the check in ADD for messages with a “witness” label, and during the blame

branches of AFF_INV_ACC and AFF_INV_SIGN.
First, only users post Add messages and, thanks to Line 5 ofWIT, they wait until the first accumulator is posted before doing so.

Next, Proposition N.8 shows that honest server players will not blame each other duringWAIT.
Then we argue that the loop at Line 17 in ADD, checking for messages with a “witness” label, will not blame an honest server player. All

honest server players post a message matching the criteria of this loop in Line 17 before executing AFF_INV_ACC in Line 19. We know that

AFF_INV_ACC will take at least one round to complete, since all honest server players must wait for a message from other honest server

players. Thus, the “witness” messages will be posted and added to data_set by the time this finishes, which finishes before executing the

loop at Line 17. Thus, the required messages will be posted from all honest server players during this loop.

Finally we argue about the blames posted from AFF_INV_ACC, noting that the logic is identical for AFF_INV_SIGN. For this we argue
line-by-line through the blame branch, using previous propositions to show that each line does not blame an honest player.

The statement is certainly true if no honest server players take the blame branch at Line 15 inAFF_INV_ACC. Thus, assume 𝑒 (𝑉 ′, 𝑦𝑃+𝑄̃) ≠
𝑒 (𝑉 , 𝑃) so that the honest players enter the blame branch. All honest server players will notice this and begin the blame branch, starting by

posting ⊥ as the new accumulator in Line 19. Since all honest server players do this, they will not blame each other in this step.

Proposition O.3 shows that the honest server players do not blame each other during CHECK_GEN(), and they return with the shares

of 𝛼 and 𝑠 . This means in Line 24, adding 𝑦 to shares𝛼 [1] will mean that shares𝛼 [𝑖] = [𝑦 + 𝛼]𝑖 (with the latter value defined in the local

execution for player 𝑖). We then step through CHECK_INVERSE.
As the shared values 𝑟 , 𝑎, 𝑏, and 𝑐 are all called with the same ID, they pass CHECK_SHARED_VALUE and reveal all the shares. Since all

these shares are the same for honest players, each honest server player will have the same value for shares𝜖,𝛿 [ 𝑗] if 𝑗 is the index of another
honest server player.

When they call the first CHECK_OPEN at Line 7, the ID will correspond to the first OPEN that was called during INVERT at Line 4.

Stepping through the logic of INVERT and CHECK_INVERSE, we see that shares𝜖 will precisely match the values of [𝜖] that were opened.
Thus, during CHECK_OPEN, the value 𝑥 obtained from the commitments will precisely match the value it is checked against. We can see

that no honest server player will post more than one message with label open_commit or open_reveal with the same ID.

The same logic applies as we step through the rest of CHECK_INVERSE. Since all honest server players are comparing the same values,

they will all blame the same player 𝑗 if they blame any player at all, and thus they will either all exit or none will exit. Thus, they will all

return from CHECK_INVERSE with the same values of shares𝑤 without blaming each other, and with shares𝑤 matching the local values of

[𝑤].
From there, we see that shares𝑣 [ 𝑗] match the local values of [𝑉 ′]. Thus, when the honest server players call the final CHECK_OPEN,

they will also not blame each other. □

We must next show that the blame branch must blame someone, and since we just showed it cannot be an honest player, it must blame a

corrupt player. To do this, we need two propositions showing notions of soundness of the shared random values and Beaver triples.

Proposition O.5. If an honest server player returns with 𝑟 from
CHECK_SHARED_VALUE(𝑋 ) without posting a blame, where 𝑋 is a single random shared value, then with probability at least 1−𝑂 ( 𝑇 2

2
2𝜆 ), the

shares in 𝑟 add up to a uniformly random value.

Proof. We first consider when the commitments to 𝑋 are first posted in Line 3 of GET_SHARED_RANDOM. Let 𝑐1, . . . , 𝑐𝑁 be the

commitments. For each 𝑐𝑖 posted by a corrupted player, let (𝑟𝑖 , 𝑜𝑖 ) be an input to the random oracle that produces this output. The probability

that there are two such queries matching this output is 𝑂 ( 𝑇 2

2
2𝜆 ), so we ignore this case. If there has been no input producing this output

yet, choose a random (𝑟𝑖 , 𝑜𝑖 ) and assign the output of the random oracle on this string to be this commitment (with probability
1

2
4𝜆 , this

string has not been queried and so this is indistinguishable to the adversary). In this way we have effectively defined a unique “share” 𝑟𝑖
corresponding to each commitment.

Notice that for each honest player, we could choose a different opening and share (𝑟𝑖 , 𝑜𝑖 ) and reprogram the random oracle to still map

this to 𝑐𝑖 , making this indistinguishable to the adversary unless it has queried (𝑟𝑖 , 𝑜𝑖 ), which only occurs with probability
𝑇𝑁
2
2𝜆 . This means

that the sum of the shares we define in this way is uniformly random, except with probability 𝑂 ( 𝑇 2

2
2𝜆 ).

Now we consider that during CHECK_SHARED_VALUE, for a corrupted player to not be blamed, each corrupted player 𝑖 must post a

satisfying message at Line 7 which opens commitment 𝑖 . The probability of finding an opening which is not the original query is at most
𝑇
2
2𝜆 ,

so we can again assume this does not happen and the adversary must post the opening (𝑟𝑖 , 𝑜𝑖 ). This means the honest server players will

return with the values 𝑟1, . . . , 𝑟𝑁 defined earlier in this proof, which are uniformly random. □

Proposition O.6. If an honest server player returns with 𝑥 from
CHECK_SHARED_VALUE(𝑋 ) without posting a blame, where 𝑋 is one shared value from a Beaver Triple, then 𝑥 matches the shares posted
during GET_SHARED_TRIPLE with probability at least 1 − 𝑇

2
2𝜆 (where 𝑇 is the total number of random oracle queries).



ALLOSAUR

Proof. Direct inspection shows that honest server players will post a valid opening of their share of a Beaver Triple, which will be

recovered by other players in the WAIT at Line 7. If a corrupted player posts a satisfying message and is not blamed, it must be an opening

matching the control program’s commitment (as computed on Line 22 of BRACKET), since the honest server player saved that commitment.

Matching an existing commitment has probability at most
𝑇
2
2𝜆 . □

With these two propositions, we can prove our two main results of this section: either a corrupted player gets blamed, or GEN efficiently

generates the parameters of the scheme and AFF_INV_ACC and AFF_INV_SIGN correctly compute the required values.

Proposition O.7. With probability at least 1 −𝑂 ( 𝑇 2

2
2𝜆 ), the loop to generate parameters at Line 8 in GEN completes within 𝑂 (1) repetitions,

or blames a corrupted server player.

Proof. The loop completes in one iteration unless one of 𝑄̃ or 𝑄̃𝑚 are the identity point. If they are, the checks at Line 26 ensure that

the output of CHECK_SHARED_VALUE matches the components of 𝑄̃ and 𝑄̃𝑚 . By Proposition O.5, this output is uniformly random (or a

corrupted server player is blamed). This means this condition of the parameters being identity points occurs with probability at most 2/𝑞, so
only 𝑂 (1) repetitions are needed to find non-identity values. □

Proposition O.8. All honest server players that reach the end of execution of CHECK_GEN(𝑦) will have the same set blames. If two honest
server players return from CHECK_GEN with a set of secret shares, they will return with the same set.

Proof. All honest server players will return the same shares from

CHECK_SHARED_VALUE, if they return, by Proposition M.6. Similarly, the shares that go into gen_commit are posted publicly, so all

honest server players will obtain the same values. This means they all have the same values for the loop over servers to check shares at

Line 8 in CHECK_GEN, so they will blame the same players, if any. □

Proposition O.9. If an honest server player enters the blame branch of
AFF_INV_ACC or AFF_INV_SIGN, then with probability at least 1 −𝑂 ( 𝑇 2

2
2𝜆 ) it will post a blame towards some player (where 𝑇 is the total

number of random oracle queries of the adversary).

Proof. We prove by contradiction: assume that an honest player enters and completes the blame branch and also posts no blame, which

should never happen. Our proof mainly relies on the last two propositions showing that checking shared values outputs the shared values

we expect or blames a corrupted player.

We thus step through execution of the blame branch. First, during CHECK_GEN, no blame implies that shares𝛼 [ 𝑗] · 𝑃 = 𝑄̃𝑐𝑜𝑚 [ 𝑗]
for all 𝑗 , so

∑
𝑗 shares𝛼 [ 𝑗]𝑃 =

∑
𝑗 𝑄̃𝑐𝑜𝑚 [ 𝑗]. During GEN, honest server players computed 𝑄̃ =

∑
𝑗 𝑄̃𝑐𝑜𝑚 [ 𝑗]. Therefore, we can define

𝛼 :=
∑

𝑗 shares𝛼 [ 𝑗] and conclude that 𝑄̃ = 𝛼𝑃 . After returning from CHECK_GEN, we conclude that shares𝛼 add up to 𝑦 + 𝛼 .
We then proceed through CHECK_INVERSE. Since

CHECK_SHARED_VALUE posted no blame, Proposition O.6 shows that it returns shares of 𝑎, 𝑏, and 𝑐 which form a valid Beaver triple (since

the control program posted them) with probability at least 1 − 3𝑇
2
2𝜆 . Checking 𝑟 , CHECK_SHARED_VALUE returns some shares shares𝑟 ,

which we do not yet guarantee match the 𝑟 from INVERT, but as Proposition O.5 shows, they add up to a uniformly random value 𝑟 ′ except
with probability 𝑂 ( 𝑇 2

2
2𝜆 ).

For CHECK_OPEN at Line 7 not to blame any player, the values posted in Line 4 of INVERT must be valid shares of 𝜖 = 𝑥 − 𝑎; similarly

for 𝛿 = 𝑟 ′ −𝑏. Then CHECK_OPEN at Line 12 implies that the value in INVERT must be 𝑐 + 𝜖 · 𝑟 ′ + 𝛿 · 𝑥 + 𝜖𝛿 , which must equal 𝑥 · 𝑟 since 𝑎,
𝑏, 𝑐 was a valid Beaver triple. At this point, 𝑧−1𝑟 ′ = 𝑥−1 mod 𝑞, unless 𝑧 ≡ 0 mod 𝑞. Since 𝑟 ′ is uniformly random, this occurs only with

probability
1

𝑞 , so we ignore this case. Here 𝑥 = 𝑦 + 𝛼 .
This means shares𝑤 returned from CHECK_INVERSE in Line 25 of

CHECK_GEN will add up to ((𝑦 + 𝛼)𝑟 ′)−1𝑟 ′ = (𝑦 + 𝛼)−1. Then shares𝑣 will add up to (𝑦 + 𝛼)−1𝑉 . Since CHECK_OPEN compares this to

the shares which opened to 𝑉 ′, and blamed no player, this means the shares of 𝑉 ′ match shares𝑣 , so 𝑉 ′ = (𝑦 + 𝛼)−1𝑉 .
In turn, this means that 𝑒 (𝑉 ′, 𝑦𝑃 + 𝑄̃) = 𝑒 ((𝑦 + 𝛼)−1𝑉 ,𝑦𝑃 + 𝛼𝑃) = 𝑒 (𝑉 , 𝑃). Thus, the conditional statement starting this blame branch will

not execute, contradicting the hypothesis. □

P ACCUMULATOR STRUCTURE PROOFS
P.1 Outline
Our next goal is to prove that the accumulator truly encodes the set of accumulated elements in some sense. Roughly speaking, we will simply

show that when all server players act like honest server players (as Appendix O shows they must), the output matches the single-server case.

More specifically, we first show in Proposition P.1 that the internal auxiliary data of an honest server player matches the observer’s record

of the accumulated set. By our previous results on the consistency of computations, we can show in Proposition P.2 that honest players will

compute the same value of the accumulator in each epoch (whether or not it is right), meaning that corrupt players must also post the same

value or be blamed (Proposition P.4). Then we argue based on the actual structure of the multi-party computation, i.e., that it performs a

finite field inversion, that the inversions computed in ADD are correct. Since these are stored as witnesses for each player, these stored
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witnesses are correct (Lemma P.6). Together this shows that ADD and DEL compute that they are supposed to, so Proposition P.7 shows that

the structure of the accumulator matches the single server case.

P.2 Proofs
Proposition P.1. For an honest server player at the end of execution of ADD or DEL, the set in aux is exactly the same as S[acc_counter].

Proof. We prove by induction. This is true when the accumulator starts, as both sets are empty.

Suppose this is true up to acc_counter = 𝑛, meaning that at the end of the execution of either ADD or DEL which modified acc_counter
(the only functions to do so), S[acc_counter] = aux. Since ADD and DEL are executed in the order that they are posted, and the control

function adds to S in the same order that ADD and DEL are posted, then S[acc_counter+ 1] = aux∪ {𝑦} if the next function call is ADD(𝑦)
(the same logic will hold for DEL). At Line 13 of this call to ADD, aux will get modified to aux ∪ {𝑦}, and then either the execution fails but

blames a corrupted server player (in which case the honest server player never reaches the end of execution), or it does reach the end of

execution and increments acc_epoch, proving the inductive case of the statement. □

Proposition P.2. All messages of type ACC from honest server players will have the same value of𝑚.accumulator for the same value of
𝑚.epoch. Further, if an honest server player sends a message of type ACC with a value𝑚.epoch = 𝑛, then the next message of type ACC from
that player will have𝑚.epoch = 𝑛 + 1.

Proof. The only time an honest server player posts a message of type ACC is during POST_ACCUMULATOR, and this is only called

from GEN, ADD, and DEL.
All honest server players start with acc_epoch = −1, and they only update it to 0 during a call to GEN (they blame the adversary if a call

to ADD or DEL comes earlier). During the first call to GEN, all honest server players will obtain the same value for the accumulator, since it

is derived by calls to OPEN.
Since all core accumulator functions execute in the same order for all honest server players, they will execute the same ADD and DEL in

the same order. During each, they increment acc_epoch exactly once before calling

POST_ACCUMULATOR, when they post a message of type ACC. This proves the second part of the proposition.

For the first, we proceed by induction on acc_epoch. We already showed that the statement holds during GEN. If the next call to

POST_ACCUMULATOR comes from a call to ADD, all honest server players will post the same value of the accumulator because it does

not change in ADD. If it comes from a call to DEL, the only part that changes is the first value𝑉 , which is the return value of a call to OPEN,
which all honest server players will obtain the same value for by Proposition M.6. □

Proposition P.3. No honest server player will blame another honest server player during execution of POST_ACCUMULATOR.

Proof. Since honest server players will call the same WAIT in the same round as each other (Theorem N.6) and post the required values

before doing so, no honest server will be blamed for failing to post an accumulator. The required condition to not be blamed by honest

server player 𝑖 during POST_ACCUMULATOR, at Line 5, is that the value of𝑚.accumulator is not equal to the value that 𝑖 obtains, but all

honest server players will post the same value by Proposition P.2. □

Proposition P.4. If a corrupted server player does not post the same value of accumulator as all honest server players post when they begin
POST_ACCUMULATOR, the adversary will be blamed and the accumulator will abort.

Proof. Once the honest server players begin POST_ACCUMULATOR, they will not blame each other by Proposition P.3, and by

Proposition N.8 they will progress between each WAIT in a bounded time, so they will eventually wait for a value from a corrupted server

player. Since they execute this loop in the same order, all honest server players will wait for a message from the same corrupted server player

in the same round. If the corrupted server player posts nothing they will be blamed during theWAIT, and if they post a non-matching value,

they will be blamed by all honest server players, which form a majority. □

Recall that A, a variable of the observer program, is structured so that A[𝑖] [ 𝑗] is the 𝑖th accumulator that has been posted, as posted by

player 𝑗 .

Corollary P.5. If the observer program’s values for the accumulator in A at index 𝑛 contains more than |C| values, then either they will be
|servers| repetitions of the same value, or within 2𝑇𝑤𝑎𝑖𝑡 rounds the accumulator will abort and blame a corrupted player.

Proof. The observer program only modifies A at Line 9 of

OBSERVER_UPDATE_IDEAL. A is a two-dimensional array, indexed first by the accumulator epoch, and then by the player ID of server

players. It only modifies each epoch once for each server player. This means that a single player (corrupt or honest) can only modify one

value in A[𝑛] once, for each 𝑛. Thus, for a specific epoch 𝑛, the adversary only controls at most |C| values.
The observer program only adds a new array toA when a message of type ACC is posted. While corrupt server players could post such a

message at any time, this could produce at most |C| values. To find more values posted, an honest server player must post a value, which

they only do as part of
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POST_ACCUMULATOR. However, if they start this, then by Proposition P.4, the adversary’s accumulator value must match the honest

players or they will be blamed. By Proposition N.8 the corrupted players must post a value within 2𝑇𝑤𝑎𝑖𝑡 rounds, and they will be blamed if

they do not match the same value as the honest players. □

We use wits to assist in computations for DEL, and we show the necessary properties for this.

Lemma P.6. For all honest players at the end of any round, either wits[𝑦] = 1

𝑦+𝛼𝑉 , where acc = (𝑉 , 𝑄̃, 𝑄̃𝑚) and 𝑄̃ = 𝛼𝑃 or an honest player
posts a BLAME message.

Proof. Only GEN, ADD, and DEL modify wits. The statement holds vacuously during GEN. We prove for the others by induction on

the calls to add or delete.

During ADD, when honest server players call AFF_INV_ACC(𝑦), if they do not follow the blame branch, then that means the output 𝑉 ′

satisfies 𝑒 (𝑉 ′, 𝑦𝑃 + 𝑄̃) = 𝑒 (𝑉 , 𝑃) which means 𝑉 ′ = 1

𝑦+𝛼𝑉 by non-degeneracy of pairings. Thus, when 𝑉 ′ is added to wits, the statement

holds for that value 𝑦. Since the accumulator value doesn’t change during ADD, the statement still holds for all other values 𝑦′.
We then consider calls to DEL(𝑦). At Line 11 it sets 𝑉 ′ ← 1

𝑦+𝛼𝑉 , and this will become the new accumulator value. Since 𝑦 is removed

from wits, we can ignore it. Then, for all other 𝑦′ ∈ wits, Line 14 in DEL sets 𝐶 ′ = 1

𝑦−𝑦′ (𝐶 −𝑉
′), where we let 𝐶 := wits[𝑦′] (i.e., before it’s

modified). By induction, 𝐶 = 1

𝑦′+𝛼𝑉 . This tells us that

𝐶 ′ =
1

𝑦 − 𝑦′

(
1

𝑦′ + 𝛼𝑉 −
1

𝑦 + 𝛼𝑉
)
=

1

𝑦′ + 𝛼𝑉
′

Thus, the property holds for all values in wits. □

For the next Proposition, we define 𝛼 ∈ F𝑞 such that 𝑄̃ = 𝛼𝑃 .

Proposition P.7. Let 𝑦1, 𝑦2, . . . be the sequence of arguments 𝑦 to ADD and DEL, ordered as the calls to ADD and DEL were ordered on the
message board. Then, in all rounds, for 𝑖 > 0, if |A[𝑖] | > |C| and no server players have been blamed, then if the 𝑖th call (starting at 1) to ADD
or DEL was a call to:
• ADD, then A[𝑖] [0] = A[𝑖 − 1] [0]
• DEL, then letting (𝑉 , 𝑄̃, 𝑄̃𝑚) = A[𝑖 − 1] [0], we have that either:
– A[𝑖] [0] = ( 1

𝑦𝑖+𝛼𝑉 , 𝑄̃, 𝑄̃𝑚) if 𝑦𝑖 ∈ S[𝑖 − 1]
– A[𝑖] [0] = A[𝑖 − 1] [0] if 𝑦𝑖 ∉ S[𝑖 − 1]

Proof. By Corollary P.5, the value ofA[𝑖] is consistent and matches the value posted by honest server players if the condition on its size

is met and no player is blamed. Thus we can consider the execution of honest server players; they execute ADD and DEL in the same order

as these functions are posted on the message board, and these are the only functions that cause them to post messages of type ACC. If they
call ADD, then they do not change the accumulator value at all.

If they call DEL(𝑦), then since aux = S[𝑖 − 1] by Proposition P.1 then the new accumulator𝑉 ′ is either the same as the old one (if 𝑦 ∈ aux)
or the witness for player 𝑦 in wits, which by Lemma P.6 will equal

1

𝑦+𝛼𝑉 , and the statement holds. □

Q WITNESS PROOFS
Q.1 Outline
A witness for this accumulator is defined as a tuple (𝑖, 𝑥,𝐶, 𝑅𝑚) ∈ N × F𝑞 ×𝐺1 ×𝐺1, consisting of an epoch number 𝑖 , a long-term secret 𝑥 , a

short-term signature 𝐶 (which is updated as the accumulator changes) and a long-term signature 𝑅𝑚 . We say such a witness is valid if there

is a consensus accumulator posted for accumulator round 𝑖 , and the witness passes the pairing checks for that accumulator.

Our goal in this section is to prove that honest user players obtain valid witnesses when they are initialized. Our protocol has the servers

compute a witness for a user when the user is added to the accumulator, and once they do, they post a consensus accumulator for that epoch.

Thus, as in Proposition Q.1, once a consensus accumualtor is posted for the addition of 𝑦, the witness messages for 𝑦 are posted. A user can

then call FIND_WITNESS and recover this witness (Proposition Q.2), and this requires no waiting if the consensus accumulator is already

posted.

A user also needs the long-term signature 𝑅𝑚 . This is computed the first time that a user sends an Add message with a proof argument, so

we show that honest users will send valid proofs and thus trigger the signature computation in Proposition Q.3. This shows that once a user

posts such an Add message, it can eventually find both components of its witness. Since WIT posts such a message, Proposition Q.4 shows

that it provides a valid initial witness to a user.

Q.2 Proofs
The first proposition states that once the server players post the messages in Add, then they will post the data necessary for a user to

reconstruct their witness.
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Proposition Q.1. Let 𝑛 be such that there is a consensus accumulator posted for epoch 𝑛 and 𝑦 ∈ S[𝑛] \ S[𝑛 − 1]. Then the public message
board contains a unique message from each server of the form:
• (“witness”, 𝑦, 𝑖, 𝑛) for some 𝑖
• (open_commit, 𝑖 + 3, 𝑐) for the same 𝑖 and some opening 𝑐 , from each server player
• (open_reveal, 𝑖 + 3, 𝑜) for the same 𝑖 and some opening 𝑜 , from each server player.

Proof. If an honest server player calls ADD, then it only posts a new accumulator (say, (𝑉 , 𝑄̃, 𝑄̃𝑚)) at Line 28. Thus, if a consensus
accumulator exists for epoch 𝑛, then the honest server players finished execution of the rest of ADD. By Proposition P.1, the accumulator

must have been posted as a resut of ADD(𝑦), and during execution, 𝑦 ∉ aux during execution of Add(𝑦).
This means all honest server player will enter the IF block at Line 12. In this block, at Line 13 the server players will post the messages

of the form (“witness”, 𝑦, open_number, acc_epoch). At Line 19, the honest server players will return with a value of 𝑉 ′ which satisfies

𝑒 (𝑉 ′, 𝑦𝑃 + 𝑄̃) = 𝑒 (𝑉 , 𝑃) by the same logic as Lemma P.6. This means that the value𝑉 ′ was opened, so the commitments and openings which

construct 𝑉 ′, as produced during OPEN, are present on the message board before the honest server player posts the new accumulator.

Counting the calls to OPEN during AFF_INV_ACC shows that the values of 𝑖 are correct.

Because the open numbers and accumulator epochs increment with each posting, each server only posts one message of each of these

types. □

Proposition Q.2. If an honest user player calls FIND_WITNESS such that a consensus accumulator is posted for the argument ofmax_epoch,
then the user will return in the same round. If min_epoch ≤ 𝑛 ≤ max_epoch is the maximum epoch such that 𝑦 ∈ S[𝑛] \ S[𝑛 − 1], then the
honest user returns with a value 𝐶 and the epoch number 𝑛, such that for the 𝑛th accumulator (𝑉 , 𝑄̃, 𝑄̃𝑚),

𝑒 (𝐶,𝑦𝑃 + 𝑄̃) = 𝑒 (𝑉 , 𝑃).

If no such 𝑛 exists, the user will return ⊥.

Proof. By Proposition Q.1, such an 𝑛 exists if and only if the message required at Line 2 of FIND_WITNESS contains a unique satisfying
message. Thus, the user will immediately return from the calls toWAIT at Lines 10 and Line 10. The values it returns will correspond to

shares of 𝐶 that satisfying the pairing equation by Proposition Q.1.

Then, if no such 𝑛 exists, the user returns ⊥. □

Proposition Q.3. If an honest user is the first player to send an Add message for some argument 𝑦, then when the honest server players
execute that ADD, they will call AFF_INV_SIGN from within SIGN.

Proof. By inspection of ADD, honest server players will execute SIGN precisely on the first call to ADD for each ID 𝑦. Honest users

only post ADD messages as part of WIT. Comparing the proof they construct to the check in SIGN gives the result. □

Proposition Q.4. Suppose a player with user id 𝑦 starts WIT, and suppose they post the first message of Add with argument 𝑦. Let𝑚 be the
first round after a consensus accumulator is posted with 𝑦 ∈ S. Then by round𝑚 at the latest, that player will have returned with a valid witness,
or the accumulator will exit by blaming a corrupted player.

Proof. DuringWIT, the user will post an Add message with data (𝑦, proof). This is the only time a user will post an Add message (no

other function requests this, and thanks to the check at Line 1, users only execute this once). Hence, if they post the first Add message with

𝑦, then when the honest server programs execute this ADD, 𝑦 ∉ Y. Then the servers will call SIGN. By Proposition Q.3, the honest server

players will call AFF_INV_SIGN. If they do not blame a corrupted player, then by Proposition O.9 they did not enter the blame branch, so

the value 𝑅𝑚 that they post will match what the user requires.

Similarly, during this execution of ADD, 𝑦 ∉ aux for any honest server player, so they will enter AFF_INV_ACC and (if they do not blame)

will post 𝑉 ′ such that 𝑒 (𝑉 ′, 𝑦𝑃 + 𝑄̃) = 𝑒 (𝑉 , 𝑃). where 𝑉 is the accumulator in the round𝑚 that they post in the message (“witness”, 𝑦, 𝑛,𝑚).
Once this is posted, the honest servers will then post the accumulator value. That means that if𝑚 is the first round that a consensus

accumulator is posted (meaning all server players have posted an accumulator value) then all players completed AFF_INV_ACC, so the

value 𝑉 ′ was posted to the message board by then.

By inspection, the messages that FIND_WITNESS requires to return any witness are precisely those posted during ADD(𝑦). Since a
(“witness”, 𝑦, 𝑛,𝑚) message was already posted, FIND_WITNESS will wait until the required data is posted, which must be done before the

consensus accumulator. □

R UPDATE CORRECTNESS PROOFS
R.1 Outline
In this section we show that updates run correctly and blame adversarial players as needed. The main computations of an update are the

batch update polynomials of [VB20], though done obliviously with Shamir secret shares [Sha79], though the full update protocol is more

complicated to handle pathological cases, such as updating over epochs where a user is repeatedly removed and re-added to the accumulator.
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We start with Proposition R.1, showing that the batch update polynomials with the secret sharing work correctly when honest server

players respond. To handle corrupt players, recall that the batch update involves server players evaluating a polynomial based entirely on

public data (previous accumulators and the deleted IDs) on the shares the user provides. Thus, if the returned value is incorrect, a user can

reveal their shares and any player can replicate exactly the response each server should have provided to determine which server misbehaved

and should be blamed. Honest server players will not be blamed, by Proposition R.2. Since we assume an honest majority, a simple argument

in Proposition R.4 based on polynomial interpolation shows that corrupt players must match the honest behaviour or be blamed, and so the

the subroutine which evaluates the update polynomial (GET_UPDATE) will succeed. Since it is only two rounds of communication, and a

user only needs the honest players to respond (they can reconstruct the result from only a portion of the shares, since they use Shamir

shares), GET_UPDATE always takes exactly 2 rounds (Proposition R.3).

Next we consider the wrapper function RETURN_UPDATE, which handles the edge cases. If a user is deleted, one of the update

polynomials is 0 and this function will check for a new witness posted to the public message board. If it finds one, it must recurse to update

this new witness to the latest epoch; however, it only recurses once (Proposition R.6) because it always chooses the latest new witness. Since

only GET_UPDATE needs to wait for other players, we see in Proposition R.8 that RETURN_UPDATE will take at most 4 rounds.

Another edge cases is if a user is requested to update multiple times. Multiple requests in the same round are ignored (only the latest

epoch is used), but since each update takes several rounds, a previous update may be in progress when a new one is requested. Since the

update polynomials can be evaluated without a valid witness, a user can request the update polynomials be evaluated for a future update,

wait for a a previous update to finish, then apply the update polynomials to the newly-updated witness locally. Thus, Proposition R.10 shows

that RETURN_UPDATE takes at most 4 rounds when called as part of UPDATE, and Corollary R.11 extends this to when it is called in

PROVE. This gives us all the update progress results we need.
For correctness, in Proposition R.12 we argue that since the update polynomials work, and a user will find a new witness on the message

board if it exists, that if a user updates to an epoch for which they are in the accumulated set, they will return with a valid witness. Since

user witnesses are always the output of updates (except their first witness, which is valid by Proposition Q.4), Corollary R.13 can easily show

that user witnesses for epochs where the user is accumulated will always be valid.

Conversely, we must also show that if a user is not in the accumulated set, their witness should be invalid. Proposition R.14 shows this by

exhaustively checking subcases, and similarly in Proposition R.15 we show that if a user has a witness for an accumulator they are not part

of, their witness is invalid.

Together, the main result of this section is Proposition R.16, showing that verification works correctly. The only remaining step for

Proposition R.16 is arguing that the elliptic curve arithmetic of the zero-knowledge proofs is correct.

R.2 Proofs
Our first Proposition is essentially the proof that the batch updates of [VB20] work correctly.

Proposition R.1. If an honest user with an ID of 𝑦𝑢 begins
GET_UPDATE(old_epoch, new_epoch, ∗) starting with a valid witness
(old_epoch, 𝑥,𝐶, 𝑅𝑚) such that 𝑦𝑢 was not deleted from the accumulator between epoch old_epoch and new_epoch, and the user obtains
all of its values of𝑊𝑠 and 𝐷𝑠 from honest server players, then it will exit with D andW such that no element ot D is 0 and such that
PROCESS_UPDATE(W,D,𝐶) is a valid witness for new_epoch.

Proof. We start by considering what the honest servers will send, via UPD_HELP. The elements 𝑦1, . . . , 𝑦𝑑 are numbered so that 𝑦1 was

deleted first; thus, 𝑦1, . . . , 𝑦𝑘 are the first 𝑘 elements deleted. Similarly, the accumulator values are labelled𝑉1, . . . ,𝑉𝑑 . Ultimately, UPD_HELP
returns tuples of (𝐷,𝑊 ) which are the necessary components for a batch update of 𝑘 elements, so applying this repeatedly will give the full

update.

How we will show this is to show that the first two elements 𝐷 and𝑊 of D andW (respectively) will make 𝐷−1 (𝐶 −𝑊 ) a valid witness

for the accumulator𝑉𝑘 . Repeating this argument shows that after the next iteration, the user has a valid witness for𝑉
2𝑘 , until finally the user

has a valid witness for 𝑉𝑑 .

The polynomial 𝑑 (𝑥) computed in Line 5 of UPD_HELP has 𝑦1, . . . , 𝑦𝑘 elements as its roots. Similar,𝑤𝑠 (𝑥) (Line 6) has the first 𝑠 − 1 of
these elements as its roots.

The shares that the user sends to each server are such that 𝑦_shares[ 𝑗] are shares of 𝑦 𝑗𝑢 . This means for all ℓ , we have for the first value

returned, (using [[·]] to denote a share of some value):

[[𝐷]] =
𝑘∑
𝑗=0

𝑑 [ 𝑗] [[𝑦 𝑗𝑢 ]] = [[𝑑 (𝑦𝑢 )]] mod 𝑞

This means when the user retrieves all their responses from honest server players, they can reconstruct 𝑑 (𝑦𝑢 ) as the first element of D,

since the secret-sharing scheme is affine. Here 𝑑 (𝑦𝑢 ) = 0 if and only if 𝑦𝑢 is a root, meaning 𝑦𝑢 ∈ {𝑦1, . . . , 𝑦𝑘 } contradicting our assumption

that 𝑦𝑢 was not deleted.
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Similarly, we have for all ℓ , the shares computed in UPD_HELP are

[[𝑊 [ℓ]]] =
𝑘−1∑
𝑠=0

©­«
𝑠∑
𝑗=0

𝑣𝑠 [ 𝑗] [[𝑦 𝑗𝑢 ]]
ª®¬𝑉𝑘−𝑠

=

𝑘−1∑
𝑠=0

𝑉𝑘−𝑠 [[𝑣𝑠 (𝑦𝑢 )]]

Then the user reconstructs the first element ofW as

∑𝑘−1
𝑠=0 𝑉𝑘−𝑠𝑣𝑠 (𝑦𝑢 ). This means

𝑊 =

𝑘−1∑
𝑠=0

𝑉𝑘−𝑠𝑣𝑠 (𝑦𝑢 )

=

𝑘−1∑
𝑠=0

𝑉𝑘−𝑠

𝑠∏
𝑡=1

(𝑦𝑡 − 𝑦𝑢 )︸                ︷︷                ︸
:=𝑈𝑘−𝑠

We notice that since 𝑉𝑠+1 = (𝑦𝑠+1 + 𝛼)−1𝑉𝑠 , we have that𝑈𝑠 = 𝑦𝑠+1+𝛼
𝑦𝑠−𝑦𝑢 𝑈𝑠+1. Further,

1

𝑦𝑢+𝛼𝑈1 =
1

𝑦1+𝛼𝐶 . This means

𝐶 −𝑊 =𝐶 −𝑈1 −𝑈2 − · · · −𝑈𝑘
=
𝑦1 − 𝑦𝑢
𝑦𝑢 + 𝛼

𝑈1 −𝑈2 − · · · −𝑈𝑘

=
(𝑦1 − 𝑦𝑢 ) (𝑦2 − 𝑦𝑢 )

𝑦𝑢 + 𝛼
𝑈2 − · · · −𝑈𝑘

.

.

.

=
𝑑 (𝑦𝑢 )
𝑦𝑢 + 𝛼

𝑈𝑑

Thus,
1

𝑑 (𝑦𝑢 ) (𝐶 −𝑊 ) =
1

𝑦𝑢+𝛼𝑈𝑘 , and since𝑈𝑘 = 𝑉𝑘 (the accumulator value after 𝑘 updates), the update succeeds. □

Honest users will only post BLAME if the update goes wrong, and this prompts the honest server players to check the required messages.

We show that this blame works correctly.

Proposition R.2. An honest server player will only be blamed from the BLAME function with probability 𝑂 ( 𝑇 2

2
2𝜆 ), where 𝑇 is the total

number of queries to the random oracle.

Proof. Since we have an honest majority, this can be shown by proving that no honest server player will blame another honest server

player.

Suppose an honest server begins BLAME, with arguments of sender and id such that id is the ID of an honest server player. If there is no

set of messages posted that form blames, the player will return immediately.

Suppose then that blames has a non-⊥ entry. This means there was some message from sender with 𝑘 elements of F𝑞 , which we will

denote as 𝑦 = 𝑦0, . . . , 𝑦𝑘−1. It also means there is a response from id with a label of wit, values of𝑊 and 𝐷 , and a string ℎ matching the

output of the random oracle on (𝑦, upd_end, upd_start).
The only point at which an honest server player will post such a message is during UPDS at Line 16. This means if player id (the server

player) is honest, they computed ℎ as RANDOM_ORACLE(𝑦, upd_end, upd_start). As we only consider messages posted by an honest

player, the value ℎ will always be an output of the random oracle. There is some chance that another message matches this value (say, the

adversary finds an ID 𝑦 that creates a collision) but the probability of this is only 𝑂 ( 𝑇 2

2
2𝜆 ). Thus, the values of𝑊 and 𝐷 that id posted are

exactly the output of UPD_HELP with the arguments 𝑉 , 𝑌 , 𝑦, 𝑑 , 𝑘 ,𝑚, and 𝑡 as computed in BLAME (since these are computed in exactly

the same way as UPDS computes them). This means the final check of𝑊𝑐ℎ𝑒𝑐𝑘 and 𝐷𝑐ℎ𝑒𝑐𝑘 against𝑊 and 𝐷 will pass, and id will not be

blamed. □

We then show a basic progress result, since it will be convenient to argue timing at the same time as correctness.

Proposition R.3. An honest user executing GET_UPDATE(𝑚,𝑛) will exit from the loop at Line 25 with at least 𝑡 non-⊥ values each of𝑊𝑠

and 𝐷𝑠 .

Proof. At Line 3 and Line 11 the user posts a function message to the public message board calling for Upd𝑠 and posts shares of 𝑦 to

all server players. Suppose this happens in round 𝑛. Since Upd𝑠 is a user function, it runs asynchronously. This means each honest server
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player will begin Upd𝑠 in round 𝑛 + 1. Since the user has already posted values matching 𝑦_shares, then in round 𝑛 + 1, the honest server
players will compute𝑊𝑠 and 𝐷𝑠 and post them privately to the user.

Since there are at least 𝑡 honest server players, this means at least 𝑡 messages satisfying the requirements for𝑊𝑠 and 𝐷𝑠 will be posted in

round 𝑛 + 1. That means that in round 𝑛 + 2, the user will find all of these messages. □

Now we show that corrupted server players must compute the update polynomial correctly or be blamed.

Proposition R.4. If an honest user returns from GET_UPDATE with 𝑑 = ⊥ or𝑊 = ⊥, then a corrupted server player will be blamed in 2
rounds.

Proof. Users only callGET_UPDATE from Line 6 of RETURN_UPDATE, and they immediately call BLAMEU if 𝑑 or𝑊 is⊥. Considering
BLAMEU, it obtains the same values of 𝑉 , 𝑌 , 𝑦_shares, 𝑑 , 𝑘 , and𝑚 which honest server players will pass to UPD_HELP. Since UPD_HELP
is deterministic, its outputs𝑊𝑐ℎ𝑒𝑐𝑘 and 𝐷𝑐ℎ𝑒𝑐𝑘 will precisely match the outputs that an honest server player would produce. Thus, calling

BLAMEU with id of an honest server player will return without calling any blame.

Since this is the only condition not to start the blame condition of BLAMEU, then if the user does not execute this branch, then all values

in𝑊𝑠 and 𝐷𝑠 must precisely fit the same polynomial, so neither 𝑑 nor𝑊 will be ⊥, contradicting the condition which started BLAMEU.
Since this is a contradiction, we know that at least one corrupted player 𝑖 sent values of𝑊 and 𝐷 which do not match what an honest server

player would have posted, and the user will enter the blame branch of BLAMEU for player 𝑖 .

Once the user does this, they reveal all messages between 𝑖 and the user for the period from when the user sent shares of 𝑦𝑢 to 𝑖 and to

when 𝑖 returned𝑊,𝐷 . In our formalism the control program posts these, though in practice this can be achieved by signing all messages and

having the user post the signed messages themselves. Since the function message of BLAME will be posted in the same round as these values,

the server players which begin the call to BLAME in the next round will find these messages when they run BLAME and they will produce a

non-empty array Y. Once they have found this, they will search for messages from 𝑖 to the user player with𝑊,𝐷,ℎ. As the messages the

user requests will be revealed in the same round (again, formally by the control program; in practice by the user with the servers’ signature),

if they find the messages with shares of 𝑦𝑢 , they will find the incorrect response from the corrupted server player. Since we know the values

𝑊 and 𝐷 that the corrupted server player 𝑖 returned do not match the output of UPD_HELP, all honest server players will post a BLAME
message towards player 𝑖 in this round and the accumulator will abort. □

We next argue that updates work correctly when users are not deleted. This is the normal case, though we will need to do a lot of work

later to show that updates work correctly in other cases.

Proposition R.5. If witness is a valid witness for epoch 𝑛 and a user begins RETURN_UPDATE(witness, 𝑛,𝑚) and their user ID 𝑦𝑢 was not
deleted between epoch 𝑛 and𝑚, then either they will return with a valid updated witness within 2 rounds or a corrupted server player will be
blamed and the accumulator will abort.

Proof. Once a user begins RETURN_UPDATE, they immediately begin

GET_UPDATE. As Proposition R.3 shows, within exactly 2 rounds they will return. After this there are three cases: D orW have one or

more ⊥ values, D has a zero value, or D has no zero values.

By Proposition R.4, if the first case occurs, a corrupted server player is blamed.

If this case does not occur, then for each reconstructed value, OPEN_SHARE reconstructed a polynomial 𝑝 from 𝑡 shares that matches all

other returned shares. Let 𝑝 be the “true” polynomial, i.e., the one that would be formed if all players were honest. Since 𝑝 and 𝑝 evaluate to

the same value on all honest server players IDs, and there are at least 𝑡 honest server players, then 𝑝 − 𝑝 has 𝑡 roots. Since it has degree at

most 𝑡 − 1, it must be the zero polynomial. Thus, all responses from all players match the output of honest players. Inspecting the logic of

UPD_HELP, this means the batch update polynomial was correctly evaluated: the user has D andW as defined in Proposition R.1.

The values of D contain a 0 if and only if 𝑦𝑢 was deleted, which by assumption did not occur. In the final case, where D is not zero for

any term, this means the user will have a valid updated witness by Proposition R.1. □

Proposition R.5 relies on the ability of the control program to reliably output the contents of the private message board, which in practice

will rely on digital signatures on all messages.

Proposition R.6. Assuming no server players are blamed,
RETURN_UPDATE will recurse at most once.

Proof. The only timeRETURN_UPDATE is called, the calling function ensures that new_epoch ≤ |accs|. A recursive call toRETURN_UPDATE
occurs only if GET_UPDATE returns D with a zero value.

Suppose that some value is 0. This induces a call to FIND_WITNESS at Line 19, which returns the latest available witness posted to

the accumulator with an epoch at most new_epoch, and then RETURN_UPDATE recurses only if the epoch 𝑛 of this witness is less than

new_epoch.
During the recursive call, it could only recurse again if some value of D again, but this implies that the user’s ID 𝑦𝑢 was deleted between

𝑛 and new_epoch. We can conclude that the user was not re-added between 𝑛 and new_epoch, or FIND_WITNESS would have returned
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the newer witness produced by this add. Thus, if D also contained a zero value in the recursive call, so that RETURN_UPDATE calls

FIND_WITNESS again, it will return ⊥, and RETURN_UPDATE will return immediately at Line 22.

□

We can now prove a maximum number of rounds for an update to complete. The timing will depend on the user, whether they need to

recurse (based on whether their ID was deleted and re-added) and whether they are waiting for a previous update. This doesn’t matter

for progress or correctness as long as we have a bound, but the distinction matters for anonymity, which we address in more detail in

Appendix X.

Proposition R.7. Assuming no server players are blamed, if an honest user player callsRETURN_UPDATE(witness, old_epoch, new_epoch)
with
witness.epoch = old_epoch and new_epoch ≤ |accs|, then they return in either 2 or 4 rounds.

Proof. First, they return in exactly 2 rounds from GET_UPDATE. If no value if D is 0, then by the assumption on old_epoch they will

skip the loop at Line 36 and immediately return. If some value of D is 0, the user calls FIND_WITNESS. From Proposition Q.2 they will

return in the same round, since the maximum round argument will be at most the highest round of a consensus accumulator, so they

will not need to wait for the honest server players to post their messages because they are already posted. If the user recursively calls

RETURN_UPDATE, then it takes another 2 rounds for GET_UPDATE and then they will again immediately return from FIND_WITNESS,
or return immediately if they take other branches of execution. □

Proposition R.8. If RETURN_UPDATE(∗, ∗, new_epoch) returns a witness, the epoch of the new witness equals new_epoch.

Proof. Clear by inspection of all return statements in RETURN_UPDATE. □

We now must handle the case of multiple simultaneous updates. First, multiple update requests in the same round are ignored: the user

chooses the latest one only. However, if they are requested to update again before the first update is finished, then this could de-anonymize

them if they waited for the first update to finish. We can avoid this because the batch update polynomials do not need the old witness; we

can save the results of the update and apply them to a new witness once a previous update finishes. To track this, we use next_witness to
refer to the maximum epoch of any requested update. We next show that this works correctly:

Proposition R.9. For the value ofnext_witness of an honest server player at any point in execution, either they have awitness (next_witness,𝐶, 𝑅𝑚)
or there is a function UPDATE(next_witness) in their private function queue.

Proof. Suppose there is no function UPDATE in the user’s private function queue. Since UPDATE is the only function that updates

next_witness, either no UPDATE has been called (in which case next_witness = 0 and the proposition holds) or previous calls have

finished. A previous call to UPDATE will only complete after setting next_witness to the round of the new player witness returned by

RETURN_UPDATE, proving the other case of the theorem statement. □

We next cover the case where a previous update is still executing when a new update begins. The main point is that the second update

can immediately use the results of the previous update, so there is almost no delay to the second update. The only way a delay can occur is if

the second update takes only 2 rounds for GET_UPDATE, but the first update started 1 round before and takes 4 rounds. Then the second

update completes as soon as the first update finishes, but this is 3 rounds after the second update starts. To formally summarize:

Proposition R.10. If𝑚 > next_witness, then UPDATE(𝑚) returns in either 2, 3, or 4 rounds, and when it returns, the epoch of witness
equals𝑚 (or a corrupted server player is blamed). If next_witness ≥ 𝑚, then UPDATE(𝑚) returns immediately without changing witness.

Proof. The logic of UPDATE makes the second half of the statement clear. For the first half, we prove by induction on 𝑛, the number of

calls to UPDATE.
For any 𝑛, if the epoch of witness equals next_witness when UPDATE is called, then they will also be equal when it passes these

arguments to

RETURN_UPDATE, and by Proposition R.7 and Proposition R.8, the result holds. This proves the base case, since next_witness always
matches the player’s current witness if no updates have been called, as well as proving the inductive case in certain instances (i.e., when only

one update is in progress at a time).

It remains to prove the statement when next_witness does not match the epoch of the player’s current witness during the 𝑛th update. In

this case, by Proposition R.9, there is a call to UPDATE(next_witness) in the private function queue. By assumption, next_witness < 𝑚.

Since calls to UPDATE in one round are sorted in reverse order of the epoch argument, that means the previous call could not have started

in the same round as the 𝑛th call, which has epoch argument𝑚.

Because the previous call did not immediately return, the inductive hypothesis implies that it finishes in 2 or 4 rounds of when it was called,

i.e., if the previous call was in round 𝑡𝑛−1, it returns in round 𝑡𝑛−1 + 2, 𝑡𝑛−1 + 3, or 𝑡𝑛−1 + 4. Once it returns, it updates the value of epoch for

witness to match the value of old_epoch given to RETURN_UPDATE during the 𝑛th call to UPDATE, and it updateswit_waits[old_epoch]
to equal this new witness.
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For the 𝑛th call, which is called in round 𝑡𝑛 , RETURN_UPDATE finishes the first call to GET_UPDATE in 2 rounds. We consider two

cases based on the value D returned:

• If all of D is non-zero, then (if it does not blame anyone) it will reach Line 36 of RETURN_UPDATE in round 𝑡𝑛 + 2, where it waits
for the new value of wit_waits[old_epoch]. We just showed that this will be updated by round 𝑡𝑛−1 + 4 at the latest, which we know

is less than 𝑡𝑛 + 4. Once it has this value, it returns with a witness. This gives the timing result for this case.

• If some value of D is 0, then RETURN_UPDATE will look for a new witness at Line 19. Whether it finds a valid new witness or not,

it ignores the previous update (as it should, since the user was deleted). By the same logic as Proposition R.7, it takes at most 2 more

rounds to finish recursing and return with a new witness.

Finally we show that the epoch of the new witness is updated: in both cases RETURN_UPDATE returns with a witness, and by

Proposition R.8, when RETURN_UPDATE returns the epoch of the witness it provides matches the argument of new_epoch, which is𝑚. □

Corollary R.11. RETURN_UPDATE returns in either 2, 3, or 4 rounds.

Proof. The case where it’s called from UPDATE is already covered, so we consider PROVE. As it also calls RETURN_UPDATE with the

value of next_witness for old_epoch, the logic of Proposition R.10 holds here as well. □

Having shown basic progress results for updates, we go on to prove correctness of the update. First we show that if a user is in the

accumulated set, their update must return a valid witness.

Proposition R.12. Let 𝑛 be an epoch with a consensus accumulator at some point in execution of the accumulator. If an honest user player
has an ID 𝑦𝑢 which is in S[𝑛], then the user will return from
RETURN_UPDATE(witness, old_epoch, 𝑛) with a valid witness, or a corrupted server player will be blamed and the accumulator will abort.

Proof. We prove the first statement by induction on 𝑛. The statement is vacuously true for 𝑛 = 0, as S[0] = ∅.
For larger 𝑛, there are several cases based on the validity and epoch of the existing witness and whether the user was deleted before

epoch 𝑛.

If witness is valid:

• If the user was not deleted between epoch old_epoch and 𝑛:
If witness.epoch = old_epoch, and the user’s ID is not deleted before epoch 𝑛, then they will end with a valid witness within 2 rounds

by Proposition R.5.

If witness.epoch ≠ old_epoch and the user’s ID is not deleted before epoch 𝑛, then the values of D returned from GET_UPDATE
will be non-zero or else a corrupted server player gets blamed (see the logic of Proposition R.1). Execution will skip to the loop

waiting for wit_waits. Since a user player only calls RETURN_UPDATE with old_epoch set to the value of next_witness from
the start of UPDATE or PROVE, then by Proposition R.9, old_epoch equals the value of new_epoch from some previous call to

RETURN_UPDATE.
By the inductive hypothesis, this previous call will return a valid witness (since we assume the user was not deleted and they are in

the accumulated set for epoch 𝑛). Inspecting UPDATE, it will update the array wit_waits. Since the previous call runs first, by the

ordering on private user functions, then the later call will run, find the updated witness in wit_waits, and update it correctly.

• If the user was deleted between epoch old_epoch and 𝑛: In this case the value of D returned by GET_UPDATE will be contain a

zero value (regardless of the value of witness.epoch, and they will call FIND_WITNESS. If the user’s ID is in S[𝑛], then this will

return with a valid witness from the latest addition of 𝑦𝑢 to the accumulator. We know that 𝑦𝑢 was not subsequently deleted, since

𝑦𝑢 ∈ S[𝑛]: FIND_WITNESS selects the latest available witness, so if 𝑦𝑢 were deleted again before epoch 𝑛 it would need to be

added again and this would create a later witness. The user may recurse RETURN_UPDATE, but by Proposition R.5 they will then

return within 2 rounds with a valid witness. If they do not recurse (meaning they were re-added in precisely epoch 𝑛), they return

immediately with a valid witness.

If witness is invalid: In this case RETURN_UPDATE was not called recursively (since it will only recursively call itself after finding a

valid witness with FIND_WITNESS), but was called directly from UPDATE or PROVE, both of which use witness as the argument. This

means at Line 16 of

RETURN_UPDATE, the user will follow the branch to recurse. Since their witness is invalid, then by contrapositive of the inductive case, this

means 𝑦𝑢 ∉ S[witness.epoch]. Thus, when they call FIND_WITNESS, we know they will find a valid witness for some epoch𝑚, because

𝑦𝑢 ∈ S[𝑛], so they must have been added. Similar arguments apply to show that they were not deleted between𝑚 and 𝑛, so Proposition R.5

shows the recursive call will return a valid up-to-date witness for epoch 𝑛.

□

We use this to show that users which should have valid witness do have a valid witness.

Corollary R.13. Suppose an honest user player with ID 𝑦 has a witness (epoch,𝐶, 𝑅𝑚) and 𝑦 ∈ S[epoch]. Then the user’s witness is valid.
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Proof. If epoch = 0, then the statement holds vacuously because S is empty. The two ways to modify the value of a user’s witness is by

callingWIT or UPDATE. Proposition Q.4 showsWIT will return a valid witness for some round. In UPDATE, it only modifies the witness

after calling

RETURN_UPDATE. Proposition R.10 shows that RETURN_UPDATE returns a witness for the epoch given as argument. The contrapositive

of Proposition R.12 means that if the value returned is not a valid witness, then 𝑦 ∉ S[epoch], which is what we need to prove. □

Taking all these proofs together, we’ve shown that if a user starts an update, they return with a witness within 4 rounds, and it is valid

if they are in the accumulated set. We have so far given no guarantees about what happens if they are not in the accumulated set, other

than stating that the user has some witness. For correctness, we need to ensure that users that are not in the accumulated set, they will not

pass a verification protocol. Thus, the next proposition shows that users have an invalid witness for any epoch in which they are not in the

accumulated set.

Proposition R.14. If an honest user calls

RETURN_UPDATE(witness, old_epoch, new_epoch)

and 𝑦 ∉ S[new_epoch], then RETURN_UPDATE will return an invalid witness.

Proof. We will proof by induction on new_epoch. At new_epoch = 0, 𝑦 is not in the accumulator, but their witness is (0,O,O). This is
invalid because 𝑒 (O, 𝑦𝑃 + 𝑄̃) = 1, and 𝑒 (𝑉 , 𝑃) ≠ 1 for any accumulator because of non-degeneracy and because 𝑒 (𝑃, 𝑃) ≠ 1.

If the adversary returns unexpected shares, then by the same logic as Proposition R.5, the reconstructed polynomial is inconsistent and

the user detects this and blames them.

Otherwise, for the inductive case, we proceed through two cases, based on whether the user was deleted or not between the epochs of the

update. There is no overall structure to this proof, just an exhaustive accounting of possible cases and sub-cases.

The user was not deleted between old_epoch and new_epoch: We distinguish two sub-cases:

• If the argument witness is invalid, then the user enters the branch at Line 16. If witness is valid, then we know the and calls

FIND_WITNESS, but they will find no witness since they cannot have been added to the accumulator in this interval if they were not

deleted. Thus, the user returns at Line 22 with an invalid witness.

• If the argument witness is valid, then the user must have been deleted between the epoch of this witness and new_epoch. Since we
assumed the user was not deleted between old_epoch and new_epoch, then the epoch of witness does not match old_epoch. The
user will return D with no zero values and enter the branch at Line 31. They will wait for wit_waits[old_epoch] to update, and it

will update with a witness for old_epoch, which must be invalid by induction.

If D = [𝐷1, . . . 𝐷𝑚] andW = [𝑊1, . . . ,𝑊𝑚] are computed as honest server players, we know, similar to the logic for Proposition R.3,

that they can produce a valid witness for 𝑦, given a valid witness 𝐶0 =
1

𝑦+𝛼𝑉 as a starting point, as follows:

1

𝐷𝑚

(
1

𝐷𝑚−1

(
. . .

1

𝐷1

(𝐶0 −𝑊1) · · · −𝑊𝑚−1

)
−𝑊𝑚

)
=

1

𝑦 + 𝛼𝑉
′

At this point no player has the value 𝐶0. We can multiply this out to get

1

𝐷
(𝐶0 −𝑊 ) =

1

𝑦 + 𝛼𝑉
′

for 𝐷 =
∏𝑚

𝑖=1 𝐷𝑖 and a more complicated formula for𝑊 . We can solve for𝑊 = 1

𝑦+𝛼𝑉 −
𝑑

𝑦+𝛼𝑉
′
. Since the formula

1

𝐷
(∗ −𝑊 ) is

equivalent to what the user actually calculates in PROCESS_UPDATE, this implies that the new witness the user calculates at Line 45

of RETURN_UPDATE is

𝐶 ′ =
1

𝑑
(𝐶 −𝑊 ) = 1

𝑑
(𝐶 − 1

𝑦 + 𝛼𝑉 ) +
1

𝑦 + 𝛼𝑉
′

This is valid if and only if it equals
1

𝑦+𝛼𝑉
′
, but this occurs if and only if 𝐶 = 1

𝑦+𝛼𝑉 , which implies that 𝐶 is a valid witness of the

accumulator value 𝑉 . By inductive hypothesis, this is a contradiction, so 𝐶 ′ must be an invalid witness.

The user was deleted between old_epoch and new_epoch: IfD is computed honestly, then in this case it has a zero value. This prompts the

user to enter the recursive branch at Line 16 and look for a new witness on the public message board. If no such witness exists, the user

returns O, which is invalid.

If a new witness exists, it means the user’s ID was re-added between old_round and new_round; however, the proposition hypothesis

implies they must have been re-deleted. When they call RETURN_UPDATE recursively, they will return D with a 0 value. They will then

follow the recursive branch at Line 16 again and call FIND_WITNESS again. This time it will not find a new witness, and thus it will return

O, an invalid witness. □

Proposition R.15. If an honest user player with ID 𝑦 has a witness for round 𝑛 such that 𝑦 ∉ S[𝑛], then the witness is not valid.
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Proof. When the user is initialized, they set their witness to O, which is invalid.

Once the user is added to the accumulator, the witness returned from WIT corresponds to the first round they were added, so 𝑦 is in the

accumulator at that point and the proposition holds vacuously. Any later witness is the output of RETURN_UPDATE, so by Proposition R.14,

the user will not have a valid witness for round 𝑛 if they update to such a round 𝑛. □

Finally, this all shows that verification works correctly.

Proposition R.16. If an honest player 𝑗 receives a message of type data that begins with “proof” from an honest user with id 𝑦𝑢 with epoch
such that there is a consensus accumulator for epoch, then in the next round player 𝑗 will call OBSERVER_CHECK_PROOF(∗, 𝑗, 𝑏, epoch)
such that 𝑏 = 1 if and only if 𝑦𝑢 ∈ S[epoch].

Proof. By Proposition R.12 and Corollary R.13, if 𝑦𝑢 ∈ S[epoch] then the witness will be valid. The user will compute all of the pairing

and elliptic curve arithmetic and post to the private message board of the verifier. Inspecting the elliptic curve for a valid witness shows that

it will always pass. The prover incorporates the verifier’s challenge into its proof, and the verifier loops over all messages, so it will find the

correct message and exit the loop.

Conversely, if 𝑦𝑢 ∉ S[epoch], then the user will not have a valid witness, by Proposition R.15. Then they will send ⊥ as a proof, which

always fails verification. □

S CORRECTNESS
S.1 Outline
In this section we show the first security property, correctness. At this point all that is left to show is that users are able to verify their

identity before the observer program times out.

The previous bounds on update times imply that if a consensus accumulator already exists, then the verification protocol completes

within only 5 rounds (Proposition S.1). However, if no consensus accumulator exists, the verifier will wait until it is posted. We need to show

that this wait is not too long.

We have most of the results on progress from Appendix N, but we need fixed bounds. For this we first show that honest players consistently

track Beaver triple indices (Proposition S.2) and thus Proposition S.3 that they need only one round to retrieve Beaver triples (since we

abstracted away triple generation, so the control program posts them), and Proposition S.4 that they need a bounded number of rounds to

retrieve shared random values.

This is all we need to show that all the core accumulator functions have bounded times, in Proposition S.5. This means, Corollary S.6, the

number of rounds to finish all queued changes – i.e., all calls to Add or Del that have not yet been executed – is at most the bound computed

by the observer function in OBSERVER_START_PROOF. Proposition S.7 shows that every verification challenge will be resolved before the

accumulator times out, by combining the last result with the basic structure of the verification protocol. This means – Proposition S.8 – that

the accumulator will not time out, at least with reasonable lower bounds on the observer program’s constants.

From our previous result Proposition R.16 that proofs result in the correct answer, these results bounding the time for progress are enough

to show Theorem S.9, that ALLOSAUR is correct.

S.2 Proofs
First we show that if a user is requested to prove their identity when a consensus accumulator exists, they do so within 5 rounds.

Proposition S.1. If an honest user player with pseudonym verifier receives a Ver-type function message in round 𝑡 with arguments 𝑖, epcoh
such that:

• this message is the only message received in round 𝑡 and is the first message to the pseudonym verifier,
• player 𝑖 is an honest user player with ID 𝑦𝑢 ,
• verifier ∉ C,
• there is a consensus accumulator for epoch,

then verifier will call OBSERVER_CHECK_PROOF(∗, ∗, 𝑛) with 𝑛 ≥ epoch within 5 rounds.

Proof. By assumption the verifier will pass the check at Line 2 and continue execution, because there is already a consensus accumulator.

They will then send a message to the prover, who will begin execution of PROVE in the next round. Once the prover starts, if epoch
is greater than next_witness, they will execute RETURN_UPDATE and by Corollary R.11 they will return with within 4 rounds with a

witness for the accumulator with index epoch, which prompts them to post a Ver𝑠 message to the private message board of the verifier. If

epoch < next_witness, they will post a Ver𝑠 message with a witness for the accumulator with index next_witness.
One round later, the verifier will start executing VER because it was posted in its private message queue. We showed that there is a value

of accs for this round number, so the verifier will execute all of the checks. Then the verifier will call OBSERVER_CHECK_PROOF in the

same round, using the epoch number in the Ver𝑣 message, which is at least as large as epoch. □
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However, a user may be requested to verify their identity for an accumulator for which a consensus accumulator does not yet exist. We

must show that the consensus accumulator will be posted within some bounded time.

For this, we first ensure that honest server players always have enough secret shares, based on when they ask for more secret shares.

They request new shares based on an internal count of random shares, so we show that this internal count is never larger than the actual

number of shares posted.

Proposition S.2. At all points, for any honest server player,

triple_share_counter ≤ triple_share_count.

Further, if triple_share_count = 𝑛 in some round, then by at most the next round, the public message board and the private message board of
each server player will contain messages with shares and commitments with ID values up to 𝑛 − 1.

Proof. For the first statement, by induction, it holds at the start of the accumulator (both variables are initialized to 0). In all subsequent

rounds,

triple_share_counter only increments at the end of GET_SHARED_TRIPLE, but it only reaches the end if it finds a posted share with ID

equal to

triple_share_counter, and such a value is only posted if triple_share_count is at least as high as that value.

For the second statement, the control program posts public and private messages with shares with ID triple_share_count before
incrementing that value. Thus, for any value of triple_share_count, public and private messages with all integer IDs less than that value

have been at least queued to be posted. Since a queued message is posted within one round, they will all appear on the public and private

message boards within at most one round. □

Proposition S.3. Honest server players return from GET_SHARED_TRIPLE() within at most 1 round.

Proof. The control program function for INPUT_TRIPLE always post messages publicly and privately with the same IDs, so in any

round, if the public data is available for a share with some ID, the private data is available as well. Thus, if a player returns from theWAIT, it
will return in the same round from PRIVATE_WAIT.

If there is already a satisfying message for the WAIT, the player will return in the same round that it called GET_SHARED_TRIPLE.
If there is not such a message in the player’s data_set, then the player will enter the first if branch before calling WAIT. This branch
tells the control program to post another random share; this will increment triple_share_count, so by Proposition S.2, this ensures that

triple_share_counter ≤ triple_share_count + 1.
Proposition S.2 also shows that by the next round, a share with ID equal to triple_share_counter will be posted on the public and private

message boards. Thus, the player will complete bothWAIT and PRIVATE_WAIT by the next round at the latest. □

Proposition S.4. Honest server players return from
GET_SHARED_RANDOM() within |C| ·WAIT_THRESHOLD + 1 rounds.

Proof. The structure of GET_SHARED_RANDOM is the same as any other WAIT loop, so by Proposition N.8, it will return in |C| ·
WAIT_THRESHOLD + 1 rounds. □

We now have the timings of all subroutines of the core accumulator functions. To finish:

Proposition S.5. If a corrupted player does not get blamed, then the maximum number of rounds to execute the following functions is given
by:

• OPEN: 2( |C|WAIT_THRESHOLD + 1)
• INVERT: 6( |C|WAIT_THRESHOLD + 1)
• DEL, if it does not execute the blame branch: 10|C|WAIT_THRESHOLD + 11
• ADD, if it does not execute the blame branch: 19|C|WAIT_THRESHOLD + 20

Proof. OPEN has 2WAIT loops, immediately giving the number of rounds with Proposition N.8; INVERT calls OPEN 3 times.

AFF_INV_ACC and AFF_INV_SIGN calls INVERT, OPEN,
GET_SHARED_RANDOM andGET_SHARED_TRIPLE once each, giving 9|C|WAIT_THRESHOLD+10 as the maximum number of rounds

each. POST_ACCUMULATOR has one moreWAIT loop. Since DEL calls

POST_ACCUMULATOR and AFF_INV_ACC, those are the only two functions containing calls toWAIT and this gives the result. Similarly

for ADD, but it may also call AFF_INV_SIGN during SIGN. □

For convenience, we thus define 𝑇𝑤𝑎𝑖𝑡 := (C|WAIT_THRESHOLD + 1), and then 𝑇𝑜𝑝𝑒𝑛 := 2𝑇𝑤𝑎𝑖𝑡 , 𝑇𝑖𝑛𝑣 = 6𝑇𝑤𝑎𝑖𝑡 , 𝑇𝑑𝑒𝑙 := 10𝑇𝑤𝑎𝑖𝑡 + 1, and
𝑇𝑎𝑑𝑑 := 19𝑇𝑤𝑎𝑖𝑡 + 1.
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Corollary S.6. Let 𝑇 and changes be defined as in

OBSERVER_START_PROOF

during some round 𝑛. Then if
time_per_change ≥ 𝑇𝑎𝑑𝑑 ,

all posted changes to the accumulator via ADD and DEL will be completed by round 𝑛 + changes · time_per_change.

Proof. Every time ADD or DEL is posted to the message board, the size of A increases. Every time one of these functions finishes, all

server players post an accumulator value which the control program adds to A. If the corrupted players do not also post an accumulator,

they will be blamed and the accumulator will abort, so we can assume they post some value. This means there are |servers| messages. If the

corrupted server players try to post extra accumulator values, they will not post enough values since there is at least one honest server

player. This all implies that the value of𝑇 computed at Line 16 will be exactly the index of the last accumulator that the honest server players

posted. Thus, changes precisely corresponds to the number of uncompleted changes to the accumulator.

Since each change requires a call to ADD or DEL, and these calls will occur immediately after one another, we use Proposition S.5 to

bound the total time for all of the calls. □

From now on, we assume that ver_time_limit ≥ 6

Proposition S.7. If the unique and first message to a pseudonym 𝑗 is a Ver message with arguments 𝑖 and epoch such that 𝑖 and 𝑗 are
pseudonyms of honest user players and epoch ≤ |A|, then before round time_limit (as calculated in OBSERVER_START_PROOF at Line 19),
player 𝑗 will call

OBSERVER_CHECK_PROOF(𝑖, ∗, ∗) .

Proof. The value time_limit is calculated as the difference between the length of A, which represents the total number of ADD or DEL
messages, and the current highest index of a consensus accumulator (denoted as 𝑇 ). By Corollary S.6, all these posted changes will be

completed within changes · time_per_change rounds. Since the round number is at most as large as A, one of these changes will post an

accumulator with a counter at least equal to the argument to Ver𝑢 .
Until that round, the verifier will loop in PROVE at Line 5. Once that accumulator is posted, they will exit the loop and then by

Proposition S.1 the verification will finish within at most another 6 rounds. This gives a total of 6 + changes · time_per_change, less than
time_limit computed in Line 19. □

Proposition S.8. If
ver_time_limit > 7 + 2time_per_change

and
time_per_change ≥ 17(C|WAIT_THRESHOLD + 1),

then the accumulator will not time out (i.e., run ACCUMULATOR_FAIL because round_num > round_limit) before blaming a corrupted
player.

Proof. First, OBSERVER_START_PROOF will not add a challenge (and hence no time limit added to the accumulator) if either the

prover 𝑖 or the verifier 𝑗 are corrupted. Thus we can assume they are both honest.

Proposition S.7 shows that for each challenge (𝑖, 𝑗, 𝑛, time_limit), player 𝑗 will call OBSERVER_CHECK_PROOF(𝑖, 𝑏, 𝑛) for player 𝑖 , valid
for an accumulator of index at least 𝑛 (by Proposition S.1), before time_limit. This means that challenge will be deleted before the time limit.

As the value round_limit as always the minimum time_limit over all non-deleted challenges, then round_limit will always increase before
that round is reached. □

Theorem S.9. The accumulator is correct.

Proof. The adversary wins the correctness game if the game outputs FAIL. There are three ways for this to occur: an honest player is

blamed, a verification between honest players gives the wrong answer, or the accumulator times out.

By assumption, there are not enough adversaries to exceed the blame threshold to blame an honest player unless some honest server

players also blame another honest player. The only times honest players will post blames are:

(1) during GEN when generating parameters

(2) during WAIT, if it times out

(3) during ADD, if:
• the sender posted the function request before GEN
• if a server does not post a label with a “witness” label
• during AFF_INV_ACC or AFF_INV_SIGN if the inversion is not computed correctly

the sender posted the function before GEN
(4) during POST_ACCUMULATOR, if a player posts something not matching the accumulator

(5) during BLAME
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Honest players will not blame each other in any of these instances because, respectively:

(1) Proposition O.8 states that honest players do not blame each other during GEN.
(2) Corollary N.7 states that honest players are not blamed during waits.

(3) Proposition O.4 states that ADD and DEL do not blame honest players.

(4) Proposition P.3 states that honest server players are not blamed when posting accumulators.

(5) Proposition R.2 shows that honest server players do not blame each other, except with negligible probability, during BLAME.
For verifications, Proposition R.16 shows that verifications between honest users will succeed if and only if the user is in the accumulated

set. As this is exactly what the observer program checks, it will not call ACCUMULATOR_FAIL during these calls.

By Proposition S.8, the accumulator will not fail by timing out. □

T SIMULATION
T.1 Outline
For our proofs of security, we will need to simulate the control program and all honest users. We will use several techniques many times, so

the following lemmas will be helpful.

Throughout, a simulator will refer to any program that is interacting with the adversarial program and simulates the behaviour of the

control program and honest users. We let 𝑘 = |C|, the number of corrupted server players.

First, the verification proofs are honest-verifier zero knowlege, thanks to Nguyen [Ngu05], so in Lemma T.1 we show that any simulator

can then reprogram the random oracle to simulate verification proofs at any time.

The next main task of simulation is in cases where we use an accumulator adversary to solve a hard group problem, where the secrets

of the accumulator are replaced by unknown aspects of the group problem. This becomes problematic because the accumulator requires

multi-party computation with those shared secrets, which the simulator would not have. To simulate this, we first make a hybrid argument

in Lemma T.2 that because the commitments used in OPEN are binding, we can always assume the adversary is the first player to open

its commitments. Because a simulator can reprogram the random oracle, they can open their own commitments to anything they want,

this gives us a powerful result (Lemma T.3) that a simulator can indistinguishably open any shared secret to any value it chooses, so long

as the result is otherwise indistinguishable to the adversary. For example, in Proposition T.5, we apply this to Beaver triples and shared

randomness, and show that a simulator can choose whichever valid Beaver triples or random value it wants. Notice that if it opens the

components of a Beaver triple to values that are not a valid Beaver triple, an adversary may (and in most cases, will) detect this change. This

final result relies on faking the commitments to these values, which requires the accumulator to instantly blame the adversary in any blame

branch. Lemma T.4 shows that such a hybrid is just as secure, since we previously showed (e.g., Theorem S.9) that only corrupt players are

blamed anyway.

T.2 Proofs
First, we show that we can simulate verification proofs.

Lemma T.1 ([Ngu05]). The verification protocol is honest verifier zero-knowledge. Specifically, a simulator can simulate 𝑣 proof messages
without using a valid witness, with probability at least 1 − 𝑣𝑇

2
2𝜆 , where 𝑇 is the number of random oracle queries.

Proof. To simulate proofs, the simulator will execute all functions as expected (e.g., by acting as control program, random oracle, honest

players, etc.), except for PROVE. As the simulator will know all pseudonyms and the accumulator structure, when a proof request is sent to

a pseudonym 𝑝 , the simulator knows whether user 𝑦 owning 𝑝 should have a valid witness or not. It then executes the updates honestly, as

necessary. If 𝑦 should not have a valid witness, the simulator sends a message with a proof of ⊥.
If 𝑦 should have a valid witness, the simulator generates uniformly random values for 𝑠0, . . . , 𝑠7 and for 𝑐 , then uniformly random 𝑈1, 𝑈2,

and 𝑅. It then computes simulate:

𝑇1 =𝑠1𝑋1 + 𝑠2𝑋2 + 𝑠3𝑌 − 𝑐𝑅
𝑇2 =𝑠4𝑋1 + 𝑠5𝑋2 + 𝑠6𝑌 − 𝑠7𝑅

Π1 =𝑒 (𝐾, 𝐾̃)𝑠0𝑒 (𝑈1𝐾̃)−𝑠7𝑒 (𝑌, 𝑄̃𝑚)𝑘1𝑒 (𝐾, 𝐾̃)𝑐𝑒 (𝑈1, 𝑄̃𝑚)−𝑐

Π2 =𝑒 (𝑈2, 𝑃)−𝑠7𝑒 (𝑌, 𝑃)𝑠5𝑒 (𝑌, 𝑄̃)𝑠2𝑒 (𝑉 , 𝑃)𝑐𝑒 (𝑈2, 𝑄̃)−𝑐

which produces the same distribution as real valid proofs. It thenmodifies the randomoracle to output 𝑐 on input (challenge,𝑉 ,𝑈1,𝑈2, 𝑅,𝑇1,𝑇2,Π1,Π2)
(where challenge was the argument of the proof challenge message), which is undetectable with probability at most

𝑇
2
2𝜆 .

By Proposition R.16, this matches what honest users should send, so it is an indistinguishable simulation, and the union bound over all

proof messages gives the result. □

We then argue that any adversary against the original accumulator definition implies an adversary against a slightly modified definition.

In this definition we want to force the adversary to open its shares first for any secret share.

For this new definition, we add a call to the following function after Line 6 of GAME_NEXT_ROUND:
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CHECK_REVEAL ():
1: // Loops over all public messages

2: 𝑖 ← 0

3: loop
4: // Get the next public message

5: 𝑚 ← MESSAGE_BOARD_PULL(𝑖)
6: if 𝑚 = ⊥ then
7: BREAK
8: end if
9: 𝑖 ← 𝑖 + 1
10: // Checks for any commitment message from a corrupt server

11: if 𝑚.type = DATA and𝑚.label = “open_commit and𝑚.sender ∈ C then
12: // Iterate through all messages again, looking for the matching opening

13: 𝑗 ← 0

14: found_reveal← FALSE
15: loop
16: 𝑚′ ← MESSAGE_BOARD_PULL( 𝑗)
17: if 𝑚′ = ⊥ then
18: BREAK
19: end if
20: if 𝑚′.type = DATA and𝑚′.label = “open_reveal” and

𝑚′.sender =𝑚.sender and
𝑚′.open_number =𝑚.open_number then

21: Let 𝑐 be the commitment from𝑚 and 𝑜 the opening from𝑚′

22: // If the open number matches, but the opening doesn’t, this fails

23: if OPEN_COMMIT(𝑜, 𝑐) == ⊥ then
24: ACCUMULATOR_ABORT(𝑚.sender)
25: else
26: // When a valid opening exists

27: found_reveal← TRUE
28: end if
29: end if
30: 𝑗 ← 𝑗 + 1
31: end loop
32: // If it exits the loop without setting found_reveal, it found nothing and should blame the adversary

33: if not found_reveal then
34: ACCUMULATOR_ABORT(𝑚.sender)
35: end if
36: end if
37: end loop

Program 75: Checks if the adversary has posted an opening to all of the commitments it has posted, and aborts (blaming
the adversary) if it cannot find one.

Denote this game as an adversary-first accumulator. We prove next that adversaries against the original accumulator are easily made

into adversary’s against the new accumulator, which follows readily from the binding property of the commitment scheme. Since our

commitment scheme is based on a random oracle, we give the advantage loss directly.

Lemma T.2. An adversaryA against the original accumulator that succeeds with probability 𝑝 implies an adversaryA ′ against an adversary-
first accumulator that succeeds with probability 𝑝 ′ ≥ 𝑝 −𝑂 (𝐶𝑇 2

2
2𝜆 ), where 𝑇 is the total number of random oracle queries of A and 𝐶 is the total

number of times it opens a shared value.

Proof. We describe A ′. With the following exceptions, it simply forwards messages between the adversary-first accumulator and A,

though it stores all inputs and outputs to the random oracle that the adversary provides. When A posts a message with label open_commit,
A ′ checks for an input (𝑥, 𝑟 ) to the random oracle with output that matches the commitment. If there is exactly one input, then A ′ sets
𝑜 = (𝑥, 𝑟 ) and posts a message of type open_reveal to the control program. Otherwise, A ′ aborts.
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If A posts open_commit with a commitment it produced from the random oracle, then A ′ will get a valid opening to send to the control

progam. If A posts a matching open_reveal, then A ′ will also faithfully forward this message to the control program. In this case, A ′ is a
valid adversary-first accumulator adversary, and it perfectly simulates the accumulator to A, so it has the same advantage. It remains to

show that this case occurs, i.e., that A does not cheat on its commitments.

We first note that the probability that A makes two queries with the same random oracle output (which would cause A ′ to abort) is

𝑂 ( 𝑇 2

2
2𝜆 ). If A does not use the output of the random oracle to produce its commitment, then A has only a

𝑇
2
2𝜆 probability of finding an

opening that will match its commitment. If the opening does not match,A would be blamed and the accumulator will abort, soA would not

succeed. There is also some chance that A made only 1 query that output the commitment, but will later post a different open_reveal which
also opens to the same commitment. Again, the probability of this is at most

𝑇
2
2𝜆 .

Thus, the probability of any of these cases is at most 𝑂 ( 𝑇 2

2
2𝜆 ) for each opening. □

This is a vital hybrid because it allows us a simulator to spoof the opening. Implicitly this relies on the hiding property of the commitment

scheme, where again we show the security directly based on our random oracle commitment construction.

Lemma T.3. Let A be an adversary-first accumulator adversary where the game makes at most 𝑇 calls to the random oracle. Let X be the set
of all values that could be produced by a call to OPEN that would be indistinguishable to the adversary from interaction with the true protocol.
Then with probability at least 1 − 𝑇

2
2𝜆 , a simulator can output messages so that the OPEN opens to any 𝑥 ∈ X.

Proof. To accomplish this, the simulator will record all calls to the random oracle made by the adversary. During OPEN it posts random

strings {𝑐𝑖1 , . . . , 𝑐𝑖𝑘 } as its commitments for the open_commit messages. The corrupted players will then post their own commitments, and

also post openings to the commitments to the control program.

Since these are all valid openings, after they are all posted the simulator can choose shares for its own openings that will combine with

the adversary’s shares to produce any value in X. To ensure these match the simulator’s commitments, it then selects random values 𝑟𝑖 and

sets the random oracle so that RANDOM_ORACLE(𝑥𝑖 𝑗 , 𝑟𝑖 𝑗 ) = 𝑐𝑖 𝑗 for 𝑗 = 1, . . . , 𝑘 . If (𝑥𝑖 𝑗 , 𝑟𝑖 𝑗 ) was given as input to the random oracle at any

previous point in the execution, we assume the simulation fails, but this will only happen with probability
𝑇
2
2𝜆 , since 𝑟 is chosen randomly.

Otherwise, this is undetectable because the outputs 𝑐𝑖 𝑗 were chosen randomly.

If none of the above failures happes, then the commitments and the randomness are randomly distributed, and hence this is a perfect

simulation. □

We then construct another hybrid, with the following change: As soon as an honest player posts a message of type BLAME (whether start,
end, or with a user), the adversary loses. We call this a blame-free accumulator. We need this hybrid because once a blame begins, honest

players will start to reveal their secret data. In many of the simulations we will need for security proofs, the simulator will not actually have

this secret data and so the simulation would become detectable. However, since we have previously shown that once a blame starts, the

adversary is always blamed, we would like to simply ignore anything that happens in the game about a blame starts and just immediately

blame the adversary. Thus, we prove the following lemma:

Lemma T.4. If A is an adversary against an adversary-first accumulator with advantage 𝜖 making 𝑇 random oracle queries, then there exists
an adversary A ′ with advantage 𝜖 ′ = 𝜖 − 4𝑇

2
2𝜆 against a blame-free adversary-first accumulator.

Proof. The propositions in previous sections show that when honest server players blame a player, they all blame the same player. By

Theorem N.6, they will all post the blames in the same round, so the adversary loses in the same round in either case if a blame is posted

with a corrupted player’s ID.

The only time BLAME messages are posted with start or end are during BLAME, AFF_INV_ACC, or AFF_INV_SIGN.
By Propositions Proposition O.9 and Proposition O.4, if an honest player enters the blame branch during the latter two functions, they

will blame a corrupted player. They will end up blaming the same corrupt player, so an adversary is guaranteed to eventually lose if this

happens. Since an adversary in the original game is not allowed to win while a (BLAME, start) message is posted, they cannot win between

when this message is posted and when the majority blames them, so they have the same advantage in a blame-free accumulator.

The only other time that an honest player might post a blame is during BLAME, called during a witness update. By Proposition R.2 this

will blame an adversarial player if any honest server player posts any blame; therefore, it does not affect the adversary’s chances of winning

if we abort as soon as one honest player posts a blame message. □

Even though the simulator can spoof OPEN, most values are detectable in the broader context of the accumulator. As an example, a

simulator could not open the values of a Beaver triple to (𝑎′, 𝑏 ′, 𝑐 ′) where 𝑎′𝑏 ′ ≠ 𝑐 ′ without being detected. Next, Proposition T.5 shows that

shared randomness and Beaver triples can be opened to any random, valid value. That is, in the original protocol, the Beaver triples and

randomness are created when they are committed to the public message board, and the actual values are out of the control of any player.

Here we show that the simulator can control the value, as long as it fits the expected distribution.

Proposition T.5. With probability at least 1 − 𝑁𝑅𝑇
2
2𝜆 (where 𝑁 is the number of server players, 𝑅 is the number of shared random values,

including those in Beaver triples, and 𝑇 is the number of random oracle calls the adversary makes), a blame-free adversary-first accumulator
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simulator can select random values for shared random values and Beaver triples in the same round that they are used, as long as they are
randomly selected and, as required, valid Beaver triples.

Proof. In a blame-free accumulator, the commitments to shared randomness and shared Beaver triples are never opened. The simulator

will replace the commitments to random values.

Suppose the simulator switches its shares of a random value 𝑥 to a different random value 𝑥 ′. If both 𝑥 and 𝑥 ′ are uniformly random (i.e.,

for a random secret share) then any computations involving the values of 𝑥 and 𝑥 ′ are statistically indistinguishable. For Beaver triples, the

same argument applies, but 𝑎′, 𝑏 ′, and 𝑐 ′ must be selected so that 𝑎′𝑏 ′ = 𝑐 ′. By lemma T.3, this is so far indistinguishable.

To see that the commitments are also indistinguishable, for each share𝑥 ′
𝑖
, the simulator can select randomvalues 𝑟 ′

𝑖
and setRANDOM_ORACLE(𝑥 ′

𝑖
, 𝑟 ′
𝑖
)

to match the random commitment to the share 𝑥 ′
𝑖
it produced earlier. With probability at most

𝑇
2
2𝜆 , (𝑥 ′𝑖 , 𝑟

′
𝑖
) was not queried to the random

oracle and so this is indistinguishable from an honest execution that initially committed to to 𝑥 ′
𝑖
. The probability that this fails for any of the

𝑁 − 𝑘 commitments to any of the 𝑅 shared random values is, by the union bound, at most
(𝑁−𝑘)𝑅𝑇

2
2𝜆 . □

U EXTRACTION
To show commitmentment soundness (Definition H.2), we need an extractor, and we need to define the functions Acc (which produces an

accumulator from values posted by all server players) and Ver(𝐴,𝑦,𝑤), which outputs whether a witness 𝑤 is valid for a given ID 𝑦 and

accumulator 𝐴. The function Acc simply takes an array of 𝑛 accumulator values, returns ⊥ if they are not all the same, and returns the first

value if it matches all the other values.

The function Ver(𝐴,𝑦,𝑤) computes the following, noting that 𝐴 = (𝑉 , 𝑄̃, 𝑄̃𝑚) and𝑤 = (𝑥, 𝑛,𝐶, 𝑅𝑚):

𝑒 (𝐶,𝑦𝑃 + 𝑄̃) =?𝑒 (𝑉 , 𝑃)
𝑒 (𝑅𝑚, 𝑦𝐾̃ + 𝑄̃𝑚) =?𝑒 (𝑥𝐾 + 𝐾0, 𝑄̃𝑚)

If both equations are true, it outputs 1; otherwise 0.

The only result in this section is Lemma U.1, which takes most of its structure from the soundness proof of the Nguyen accumulator and

its blind signatures (called an IAID protocol in [Ngu05]. The main difference (besides notation) is that we include a challenge string, sent by

the verifier, which prevents replay attacks and is missing from [Ngu05].

Lemma U.1. Suppose that during the accumulator game an adversaryA which makes at most𝑇 queries to the random oracle, with probability
𝑝 an honest player calls OBSERVER_CHECK_PROOF(𝜋, 1, 𝑛) where 𝜋 is a pseudonym belonging to an adversary. Then either there is an
extractor E that produces a user ID 𝑦 and a valid witness (𝑛, 𝑥,𝐶, 𝑅𝑚) for 𝑦 with probability at least 𝑝 ( 𝑝

𝑇
− 1

𝑞 ) − 𝜖 , or an algorithm to solve the
discrete logarithm problem with probability 𝜖

3
.

Proof. Inspending VER, we see that there must have been a message of type data beginning with “proof” posted one round before the

verifying player calls OBSERVER_CHECK_PROOF (let𝑚 be that round). That message must have data.proof ∈ 𝐺3

1
× (Z𝑞)8, i.e.,

(𝑈1,𝑈2, 𝑅, 𝑐, 𝑠1, . . . , 𝑠7) ← data.proof

Since this message came from the adversary, the extractor can read it in the adversary’s state, so the extractor then computes Π1,2 and𝑇1,2 as

in VER and checks all queries to the random oracle for an input of

(challenge,𝑉 ,𝑈1,𝑈2, 𝑅,𝑇1,𝑇2,Π1,Π2),

where the accumulator matching the epoch of the VER message is (𝑉 , 𝑄̃, 𝑄̃𝑚), and challenge matches a message from the verifier to the

adversary received one round before, i.e., round𝑚 − 2.
If such an input does not exist, then the value 𝑐 will be completely independent of the “proof”, and the probability that these checks will

pass is 1/𝑞2, so the extractor can select a random 𝑥,𝑦 ∈ Z𝑞 , 𝐶, 𝑅𝑚 ∈ 𝐺1 and this will be a valid witness with probability 1/𝑞2 ≥ 1

𝑇𝑞4
.

The probability of the adversary querying precisely that input before round𝑚 − 1 (when it received the challenge string) is 1/22𝜆 , so
we ignore that case. Instead we assume the adversary queried the proof to the random oracle in round𝑚 − 1. The extractor rewinds the
adversary to that round and supplies a different random oracle output 𝑐 ′ to the adversary.

Generally, the extractor will not be able to simulate the accumulator and honest players because it does not know their secret data.

However, the extractor is able to replay all of round𝑚 − 1 since all the honest players will only receive messages that the adversary posted

in round𝑚 − 2. This means even if the adversary modifies its execution in round𝑚 − 1 (including communication to the accumulator) based

on the random oracle output, it will not expect the accumulator to respond until round𝑚. Thus, the extractor can indistinguishably simulate

round𝑚 − 1.
An honest verifier will only accept a proof sent 1 round after it sends its challenge. Thus, for the adversary to expect to win, it must post

its proof in round𝑚 − 1„ and so the extractor will receive a new proof before it loses its ability to simulate the game.

By the forking Lemma [BN06], the probability that the adversary sends another verification message with a proof also starting with

(𝑈1,𝑈2, 𝑅, 𝑐
′, . . . ), which also verifies, is at least 𝑝 ( 𝑝

𝑇
− 1

𝑞 ).
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Since this second proof verifies, the values of𝑇 ′
1
,𝑇 ′

2
, Π′

1
, and Π′

2
computed in VER for the second proof must produce output such that the

random oracle on input (𝜋,𝑉 ,𝑈1,𝑈2, 𝑅,𝑇
′
1
,𝑇 ′

2
,Π′

1
,Π′

2
) gives the value 𝑐 ′ which the adversary sent as part of the proof. With all but negligible

probability, the random oracle will not produce 𝑐 ′ for any other input except the original input (𝑉 ,𝑈1,𝑈2, 𝑅,𝑇1,𝑇2,Π1,Π2), so that means

𝑇 ′
1
= 𝑇1, etc.

Then, given this second proof, we also have 𝑠 ′
1
, . . . , 𝑠 ′

7
. We follow the proof of Lemma 2 from Nguyen [Ngu05]. We set

𝑥 ←
𝑠0 − 𝑠 ′

0

𝑐 − 𝑐 ′

𝑦 ←
𝑠7 − 𝑠 ′

7

𝑐 − 𝑐 ′

𝑟𝑖 ←
𝑠𝑖 − 𝑠 ′𝑖
𝑐 − 𝑐 ′ , 𝑖 ∈ {1, 2, 3}

𝑅𝑚 ←𝑈1 − 𝑟1𝑍
𝐶 ←𝑈2 − 𝑟2𝑍

The extractor then checks that 𝑟𝑖 =
𝑠𝑖+3−𝑠′𝑖+3
𝑦 (𝑐−𝑐′) for 𝑖 ∈ {1, 2, 3} and aborts if this fails. We cover two cases:

All 𝑟𝑖 values pass the check. Then the extractor sets (𝑥, 𝑛,𝐶, 𝑅𝑚) as a witness for 𝑦. We now prove that this is a valid witness.

We see that

𝑒 (𝐶,𝑦𝑃 + 𝑄̃)𝑐−𝑐
′
=𝑒 (𝑈2, 𝑦𝑃 + 𝑄̃)𝑐−𝑐

′
𝑒 (𝑍,𝑦𝑃 + 𝑄̃)−𝑟2 (𝑐−𝑐

′)

=𝑒 (𝑈2, 𝑃)𝑦 (𝑐−𝑐
′)𝑒 (𝑈2, 𝑄̃)𝑐−𝑐

′
𝑒 (𝑍, 𝑃)−𝑟2𝑦 (𝑐−𝑐

′)𝑒 (𝑍, 𝑄̃)−𝑟2 (𝑐−𝑐
′)

By how we calculated 𝑦, we know 𝑦 (𝑐 − 𝑐 ′) = 𝑠7 − 𝑠 ′
7
and similarly 𝑟2 (𝑐 − 𝑐 ′) = 𝑠2 − 𝑠 ′

2
and 𝑟2𝑦 (𝑐 − 𝑐 ′) = 𝑠5 − 𝑠 ′

5
. This gives

=𝑒 (𝑈2, 𝑃)𝑠7−𝑠
′
7𝑒 (𝑈2, 𝑄̃)𝑐−𝑐

′
𝑒 (𝑍, 𝑃)−(𝑠5−𝑠

′
5
)𝑒 (𝑍, 𝑄̃)−(𝑠2−𝑠2)

′

As argued above, since both proofs validate, Π2 and Π′
2
, as calculated in VER, are equal, which implies:

𝑒 (𝑈2, 𝑃)−𝑠7𝑒 (𝑍, 𝑃)𝑠5𝑒 (𝑍, 𝑄̃)𝑠2𝑒 (𝑉 , 𝑃)𝑐𝑒 (𝑈2, 𝑄̃)−𝑐

=𝑒 (𝑈2, 𝑃)−𝑠
′
7𝑒 (𝑍, 𝑃)𝑠

′
5𝑒 (𝑍, 𝑄̃)𝑠

′
2𝑒 (𝑉 , 𝑃)𝑐

′
𝑒 (𝑈2, 𝑄̃)−𝑐

′

or equivalently,

𝑒 (𝑈2, 𝑃)𝑠7−𝑠
′
7𝑒 (𝑍, 𝑄̃)−(𝑠2−𝑠2)

′
𝑒 (𝑍, 𝑃) (𝑠5−𝑠

′
5
)𝑒 (𝑈2, 𝑄̃)𝑐−𝑐

′

=𝑒 (𝑉 , 𝑃)−(𝑐−𝑐
′)

The left-hand-side is equal to the right-hand-side of Appendix U, showings that

𝑒 (𝐶,𝑦𝑃 + 𝑄̃)𝑐−𝑐
′
=𝑒 (𝑉 , 𝑃)𝑐−𝑐

′

and since 𝑐 ≠ 𝑐 ′, 𝑒 (𝐶,𝑦𝑃 + 𝑄̃) = 𝑒 (𝑉 , 𝑃).
Next we show that the second relation holds. We must show that 𝑒 (𝑅𝑚, 𝑦𝐾̃ + 𝑄̃𝑚) = 𝑒 (𝐾 + 𝑥𝐾0, 𝐾̃). We raise the left-hand-side to the

power of 𝑐 − 𝑐 ′ and use 𝑅𝑚 = 𝑈1 − 𝑟1𝑍 to obtain:

𝑒 (𝑅𝑚, 𝑦𝐾̃ + 𝑄̃𝑚)𝑐−𝑐
′
=𝑒 (𝑈1 − 𝑟1𝑍, 𝐾̃)𝑦𝑒 (𝑈1 − 𝑟1𝑍, 𝑄̃𝑚)

=𝑒 (𝑈1, 𝐾̃)𝑦 (𝑐−𝑐
′)𝑒 (𝑍, 𝐾̃)−𝑟1𝑦 (𝑐−𝑐

′)𝑒 (𝑈1, 𝑄̃𝑚)𝑐−𝑐
′
𝑒 (𝑍, 𝑄̃𝑚)−𝑟1 (𝑐−𝑐

′)

Once again substituting 𝑦 (𝑐 − 𝑐 ′) = 𝑠7 − 𝑠 ′
7
, 𝑟1𝑦 (𝑐 − 𝑐 ′) = 𝑠4 − 𝑠 ′

4
and 𝑟1 (𝑐 − 𝑐 ′) = 𝑠1 − 𝑠 ′

1
:

𝑒 (𝑅𝑚, 𝑦𝐾̃ + 𝑄̃𝑚)𝑐−𝑐
′
= 𝑒 (𝑈1, 𝐾̃)𝑠7−𝑠

′
7𝑒 (𝑍, 𝐾̃)−(𝑠4−𝑠

′
4
)𝑒 (𝑈1, 𝑄̃𝑚)𝑐−𝑐

′
𝑒 (𝑍, 𝑄̃𝑚)−(𝑠1−𝑠1)

′

But since we know that Π1 = Π′
1
, we obtain

𝑒 (𝑈1, 𝐾̃)−(𝑠7−𝑠
′
7
)𝑒 (𝑍, 𝐾̃)𝑠4−𝑠

′
4𝑒 (𝑍, 𝑄̃𝑚)𝑠1−𝑠

′
1𝑒 (𝑈1, 𝑄̃𝑚)−(𝑐−𝑐

′)

= 𝑒 (𝐾0, 𝐾̃)−(𝑐−𝑐
′)𝑒 (𝐾, 𝐾̃)−(𝑠0−𝑠

′
0
)

which when substituted in the above gives

𝑒 (𝑅𝑚, 𝑦𝐾̃ + 𝑄̃𝑚)𝑐−𝑐
′
= 𝑒 (𝐾0, 𝐾̃)𝑐−𝑐

′
𝑒 (𝐾, 𝐾̃)𝑠0−𝑠

′
0

Raising both sides to 1/(𝑐 − 𝑐 ′), and noting that 𝑥 =
𝑠0−𝑠′

0

𝑐−𝑐′ , we obtain

𝑒 (𝑅𝑚, 𝑦𝐾̃ + 𝑄̃𝑚) = 𝑒 (𝐾0, 𝐾̃)𝑒 (𝐾, 𝐾̃)𝑥 = 𝑒 (𝐾0 + 𝑥𝐾, 𝐾̃) .
Thus, this is a valid witness.
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At least one 𝑟𝑖 value fails the check. The extractor computed 𝑟𝑖 =
𝑠𝑖−𝑠′𝑖
𝑐−𝑐′ for 𝑖 ∈ {1, 2, 3}. Define 𝑟 𝑗 =

𝑠 𝑗−𝑠′𝑗
𝑐−𝑐) for 𝑗 ∈ {4, 5, 6}. Here we assume

that there is some 𝑖 ∈ {1, 2, 3} such that 𝑟𝑖 ≠ 𝑦𝑟𝑖+3 mod 𝑞 (in the previous section, if that equality held for all 𝑖 , extraction worked).

Given two successful witness proofs, we have that 𝑇1 = 𝑇
′
1
and 𝑇2 = 𝑇

′
2
. This gives

𝑠1𝑋 + 𝑠2𝑌 + 𝑠3𝑍 − 𝑐𝑅 = 𝑠 ′
1
𝑋 + 𝑠 ′

2
𝑌 + 𝑠 ′

3
𝑍 − 𝑐 ′𝑅

Rearranging, dividing by 𝑐 − 𝑐 ′, and using the values of 𝑟1, 𝑟2, 𝑟3 gives

𝑅 = 𝑟1𝑋 + 𝑟2𝑌 + 𝑟3𝑍
Similar logic with 𝑇2 and 𝑇

′
2
gives

𝑠7 − 𝑠 ′
7

𝑐 − 𝑐 ′ 𝑅 = 𝑦𝑅 = 𝑟4𝑋 + 𝑟5𝑌 + 𝑟6𝑍

Suppose that 𝑋 =𝑚𝑥𝑃 , 𝑌 =𝑚𝑦𝑃 and 𝑍 =𝑚𝑧𝑃 . Together these equations give(
(𝑟4 − 𝑦𝑟1)𝑚𝑥 + (𝑟5 − 𝑦𝑟2)𝑚𝑦 + (𝑟6 − 𝑦𝑟3)𝑚𝑧

)
𝑃 = O

Since 𝑃 is a generator, this gives

(𝑟4 − 𝑦𝑟1)𝑚𝑥 + (𝑟5 − 𝑦𝑟2)𝑚𝑦 + (𝑟6 − 𝑦𝑟3)𝑚𝑧 ≡ 0 mod 𝑞

To use this to solve the discrete log problem in 𝐺1, we take a discrete log challenge (𝑃, 𝑅) and randomly select one of 𝑋 , 𝑌 , or 𝑍 to be 𝑅

(without loss of generality, assume we chose 𝑅 = 𝑥), and then we select random𝑚𝑦 and𝑚𝑧 and compute 𝑌 =𝑚𝑦𝑃 and 𝑍 =𝑚𝑧𝑃 . We then

simulate the control program and honest players of the accumulator, and run the extraction procedure. This is statistically indistinguishable

from an honest accumulator, since 𝑋 , 𝑌 , and 𝑍 are otherwise selected randomly in the public parameters.

At this point we know all variables in Appendix U except𝑚𝑥 , which is the discrete log of 𝑅 with respect to 𝑃 , and we can thus find it,

unless 𝑟4 − 𝑦𝑟1 = 0. If the adversary produces values such that 𝑟𝑖 − 𝑦𝑟𝑖−3 ≠ 0 for some 𝑖 , we have a 1

3
chance of guessing that value of 𝑖 and

solving the discrete log.

Summary. Let 𝜖 be the probability that, after the extractor obtains a valid witness, rewinds the adversary and obtains a second one, that

there exists some 𝑖 such that 𝑟𝑖 ≠ 𝑦𝑟𝑖+3 mod 𝑞.

If we use the adversary to extract a witness, the probability of success is then 𝑝 ( 𝑝
𝑇
− 1

𝑞 ) − 𝜖 .
If we use the adversary to solve the discrete log problem in 𝐺1, since the interaction with the adversary is indistinguishable from the

extraction case, the probability of 𝑟𝑖 ≠ 𝑦𝑟𝑖+3 mod 𝑞 for the 𝑖 we used as the discrete log challenge is
𝜖
3
. □

We remark here that a general extractor is incapable of replaying the accumulator because it does not know the accumulator’s secret

values, adding difficulties to a simpler rewinding-based proof. This is no accident: a naively constructed verification protocol is vulnerable to

replay attacks where an adversary simply forwards messages from honest users. Our solution to include a session-specific challenge and

require a fast response from the adversary is by no means the only possible solution. Other types of session-specific input to the proof (e.g.,

the adversary’s current pseudonym) would likely work, but would require a more difficult extraction proof.

V SOUNDNESS
V.1 Outline
We now show soundness. At its core, our construction is the same as [KB21], who prove it is non-adaptively secure. Our multi-party

definition inherently requires an adaptive security definition, so we must define a new hardness assumption, the 𝑛-Inversion Symmetric

Diffie-Helman problem (𝑛-ISDH), as follows:

Definition V.1. Let 𝐺1, 𝐺2, and 𝐺𝑇 be groups with a type-3 pairing from 𝐺1 ×𝐺2 to 𝐺𝑇 . Given 𝐺 , 𝜆𝐺,𝛾𝐺 ∈ 𝐺1, 𝐺̃, 𝜆𝐺̃ ∈ 𝐺2, and query

access to a function 𝑓 : (𝑦,𝑄) ↦→ 1

𝜆+𝑦𝑄 for 𝑄 ∈ 𝐺1, compute(
𝑘∏
𝑖=1

1

𝜆 + 𝑦𝑖
𝛾𝐺,𝑦1, . . . , 𝑦𝑘

)
such that at least one value of 𝑦 appears in the list 𝑦1, . . . , 𝑦𝑘 at least one more time than we queried it to 𝑓 .

We prove security in the general group model in Appendix C.

This group problem is clearly similar to the accumulator, and we will attempt to simulate an accumulator whose secret value 𝛼 (or 𝑠𝑚) is

the hidden 𝜆 of the group problem. We can see that query access to 𝑓 will allow us to simulate the affine inversions necessary for ADD and

SIGN. However, to use this power to simulate an accumulator, we will need to simulate the multi-party computation that would normally

produce the outputs of these functions. These computations are supposed to use the secret values directly, which we will not have if we are

simulating the accumulator using the group problem oracle. Hence, using the results of Appendix T, Lemma V.2 shows that we can use these

outputs to simulate all the affine inversions in the core accumulator functions. This result means we can use the group problem oracle to

simulate a full accumulator.
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Recall that the soundness definition, Definition H.2, requires that for all extractors, they should not be able to extract a witness for any ID

except those belonging to the adversary and which are in the accumulated set corresponding to the epoch of the witness. This ensures

adversaries cannot steal witnesses from honest users nor fake witnesses for IDs that should be revoked. We prove the two requirements

separately: Proposition V.3 uses the 𝑛-ISDH problem oracle to simulate additions and deletions to the accumulator, and shows that the

extracted witness must be in the accumulated set if the 𝑛-ISDH problem is hard. Then Lemma V.5 uses the 𝑛-ISDH problem oracle to

simulate the long-term signatures (computing the additions and deletions honestly), showing that the extracted witnesses must belong to the

adversary if 𝑛-ISDH and the discrete log problem are hard.

Finally, Theorem V.6 summarizes these results to show that ALLOSAUR is blind commitment sound.

Throughout this section, unless specified otherwise, we consider only adversary-first blame-free accumulators.

V.2 Proofs
Lemma V.2. Suppose during execution of an accumulator against an adversary-first blame-free adversaryA, the function AFF_INV_ACC(𝑦)

begins. If a simulator knows a value 𝑉 ′ such that 𝑒 (𝑉 ′, 𝑦𝑃 + 𝑄̃) = 𝑒 (𝑉 , 𝑃), then the simulator can simulate execution of the function so that it
outputs 𝑉 ′ with probability 1 − 4𝑁𝑇

2
2𝜆 . Similarly for AFF_INV_SIGN(𝑦, 𝑅).

Proof. Pairing non-degeneracy implies that 𝑉 ′ = 1

𝑦+𝛼𝑉 , where 𝛼 is defined such that 𝑄̃ = 𝛼𝑃 .

During AFF_INV_ACC(𝑦), the first call will be to INVERT, and as soon as the adversary posts its commitments to 𝜖 and 𝛿 , the simulator

can open these commitments because it is an adversary-first game, and obtain the adversary’s shares of 𝜖 and 𝛿 . Since the simulator knows

the values of ( [𝑎], [𝑏], [𝑐]) given to the adversary, they can compute the values the adversary should be using for [𝑥]𝑖 and [𝑟 ]𝑖 for each
corrupted player (e.g., [𝑥]𝑖 = [𝜖]𝑖 + [𝑎]𝑖 ). Here the values of [𝑥]𝑖 must be the adversary’s shares of 𝑦 + 𝛼 , or else the computation would not

proceed correctly and the blame branch would start and the adversary would lose.

The simulator picks a random 𝑧, and then can compute the adversary’s point [𝑉 ′]𝑖 = [𝑤]𝑖𝑉 = 𝑧−1 [𝑟 ]𝑖𝑉 . They can then select random

[𝑤]𝑖 for all simulated players except for some distinguished player 𝑖0, who creates their share of 𝑉 ′ by taking the value 𝑉 ′ that we assumed

the simulator knew and subtracting all the shares of other simulated players and the adversary. This means there is an “effective” share

[𝑤]𝑖0 , which is unknown to the simulator. Since, by construction,

∑
𝑖 [𝑤]𝑖𝑉 = 𝑉 ′, it remains true that

∑
𝑖 [𝑤]𝑖 = 1

𝑦+𝛼 . We can choose the

distinguished player at random from among the honest server players, since we will show how to simulate output from both the distinguished

player and other honest server players.

In turn, this defines effective shares [𝑟 ]𝑖 = 𝑧−1 [𝑤]𝑖 for each honest server player, where now [𝑟 ]𝑖0 is unknown to the simulator. The

simulator thus chooses random shares [𝛿]𝑖 and [𝜖]𝑖 ; these define shares [𝑏]𝑖 and [𝑎]𝑖 , where again [𝑏]𝑖0 = [𝑟 ]𝑖0−[𝜖]𝑖0 and [𝑎]𝑖0 = [𝑦+𝛼]𝑖0−[𝛿]𝑖0
are unknown to the simulator.

The simulator can then compute 𝜖 , 𝛿 , and thus all shares [𝑧]𝑖 for all non-distinguished simulated players and adversarial players. For the

share of the distinguished player, they will set [𝑧]𝑖0 to be the random value 𝑧, minus the shares of all other players.

At this point they resume execution and post the required shares for each honest server player. Since the honest server players’ shares of

[𝑎], [𝑏], [𝑐], and [𝑟 ] have changed, the simulator reprograms the random oracle so that the commitments to these values are valid; this is

indistinguishable with probability at least 1 − 4𝑁𝑇
2
2𝜆 (there are 4(𝑁 − 𝐾) commitments to honest shares and 𝑇 random oracle queries). If

the adversary’s shares of [𝑧] do not match what the simulator calculated, then it would not properly compute the inversion and would be

blamed, so we can ignore this case because it is a blame-free accumulator.

We will show that this is identical to an honest transcript with a valid Beaver triple. To do this, we show that there are values of [𝑐]𝑖 that
would produce the revealed shares of [𝑧]𝑖 , which form a valid Beaver triple with the effective shares of 𝑎 and 𝑏.

We first note that

∑
𝑖 [𝑎]𝑖 =

∑
𝑖 [𝑦 + 𝛼]𝑖 − 𝜖 = 𝑦 + 𝛼 − 𝜖 . Similarly,

∑
𝑖 [𝑏]𝑖 = 𝑟 − 𝛿 = 𝑧

𝑦+𝛼 − 𝛿 . This means

𝑎𝑏 = 𝑧 − 𝛿 (𝑦 + 𝛼) − 𝑧𝜖

𝑦 + 𝛼 + 𝜖𝛿

Then we see that: ∑
𝑖

[𝑐]𝑖 =
∑
𝑖

[𝑧]𝑖 − 𝜖
∑
𝑖

[𝑟 ]𝑖 − 𝛿
∑
𝑖

[𝑦 + 𝛼]𝑖 + 𝜖𝛿

=𝑧 − 𝑧 𝜖

𝑦 + 𝛼 − 𝛿 (𝑦 + 𝛼) + 𝜖𝛿

We thus see that this matches the transcript of a valid Beaver triple. In the normal protocol, there are 𝑞3 possible values for 𝑟 , 𝑎, 𝑏, and 𝑐 , and

for each variable there are 𝑞𝑘−1 possible collections of shares, which then precisely determines a unique transcript. This gives 𝑞3𝑘 possible

transcripts consistent with an honest interaction.

The simulated interaction produces entirely random shares of 𝜖 and 𝛿 , for which there are thus 𝑞𝑘 choices for each. It chooses 𝑧 randomly

(𝑞 choices), and then chooses 𝑞𝑘−1 shares of [𝑤]𝑖 randomly. Thus, there are also 𝑞3𝑘 possible values which correspond to the same transcript,

all chosen uniformly at random. If the commitments to these random values are never opened, then this is indistinguishable with high

probability by Proposition T.5, since the simulator has produced a transcript precisely matching a random 𝑟, 𝑎, 𝑏, 𝑐 .
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The final opened value will satisfy the relation for the accumulator. If the adversary expected it to enter the blame branch, the adversary

expects to be blamed and thus will lose; thus, we have simulated this correctly for an adversary that expects to win. □

Recall that blind commitment soundness Definition H.2 has two components: first, any adversary implies an extractor; second, for any

extractor, the extracted witnesses must belong to the adversary. We showed the first in Lemma U.1, so now we show that the extracted

witnesses must belong to the adversary.

For this we first show that any extracted witness must correspond to an ID which is in the accumulated set for the epoch of the extracted

witness.

Proposition V.3. For all adversaries against the accumulator’s commitment soundness that make at most 𝑇 queries to the random oracle,
𝐴 additions to the accumulator, then if an extractor produces a user ID 𝑦 and witness (𝑛, 𝑥,𝐶, 𝑅𝑚) such that 𝑦 ∉ S[𝑚] for any𝑚 ≥ 𝑛 with
probabliity 𝑝 , then there is an algorithm for the 𝐴-ISDH problem that succeeds with probability at least 𝑝 using at most 𝐴 queries to the 𝐴-ISDH
problem oracle.

Proof. Our goal will be to simulate the control program and honest players of the accumulator, as follows:

• Given the 𝑛-ISDH challenge 𝐺 , 𝜆𝐺 , 𝛾𝐺 , 𝐺̃ , 𝜆𝐺̃ , the simulator sets 𝑃 = 𝐺 , 𝑃 = 𝐺̃ as public parameters for the group.

• To simulate GEN, the simulator opens 𝑉 to 𝛾𝐺 and 𝑄̃ to 𝜆𝐺̃ . By Proposition T.5 this is simulatable.

• To simulate ADD(𝑦), the simulator queries the group function 𝑓 with the current accumulator value 𝑉 and the input 𝑦 to obtain 𝑉 ′.
Using Lemma V.2, they can simulate the remainder of AFF_INV_ACC.
• All other functions (and other subroutines of the previous functions) can be simulated honestly, since they do not use the secret value

𝛼 (which is now the secret 𝜆 of the 𝑛-ISDH problem).

This simulates the accumulator perfectly, so we wait until the adversary outputs ( 𝑗, 𝑖) to win the blind commitment soundness game. We

then pass the contents of the message board and the adversary to the extractor, and we assume with probability 𝑝 it outputs an ID 𝑦 and a

witness (𝑛, 𝑥,𝐶, 𝑅𝑚) such that 𝑦 ∉ S[𝑚] for any𝑚 ≥ 𝑛. The arguments that this simulation is indistinguishable to the adversary imply it is

also indistinguishable to the extractor, which is also PPT.

The set of queries to the group problem oracle is precisely the multiset of elements added to the accumulator. If an element was added,

deleted, then added again, it is queried twice.

Let D𝑛 andA𝑛 be the multisets of elements that have been deleted and added (respectively) to the accumulator with index 𝑛. If 𝑦 appears

𝑘 times in A𝑛 , then 𝑦 appears either 𝑘 − 1 or 𝑘 times in D𝑛 . It appears 𝑘 times if and only if 𝑦 ∉ S[𝑛], since in that case 𝑦 was deleted for

every time it was added.

If the 𝑛th accumulator is (𝑉 , 𝑄̃, 𝑄̃𝑚), we have

𝑉 =
©­«

∏
𝑦∈D𝑛

1

𝑦 + 𝛼
ª®¬ 𝛽𝑃 .

The extractor output a valid witness (𝑛, 𝑥,𝐶, 𝑅𝑚); let (𝑉 , 𝑄̃, 𝑄̃𝑚) = Acc(A[𝑛]), then
𝑒 (𝐶,𝑦𝑃 + 𝑄̃) = 𝑒 (𝑉 , 𝑃)

which by non-degeneracy of pairings tells us that 𝐶 = 1

𝑦+𝛼𝑉 .
We let 𝑦1, . . . , 𝑦𝑘 be the multi-set D𝑛 ∪ {𝑦}. Then our answer to the group problem is (𝐶,𝑦1, . . . , 𝑦𝑘 ). First we notice that we have

𝐶 =
1

𝑦 + 𝛼𝑉 =
1

𝑦 + 𝛼
∏

𝑦′∈D𝑛

1

𝑦′ + 𝛼 𝛽𝑃

as required. We must show that we have queried 𝑦 one less time than it appears in the list. By construction, we know that 𝑦 is not in S[𝑚]
for any𝑚 ≥ 𝑛. This means there were no calls to ADD(𝑦) since round 𝑛, and thus the number of queries to the group oracle with 𝑦 is the

total number of times that 𝑦 appears in A𝑛 , which must be exactly as many times as it appears in D𝑛 becauase 𝑦 ∉ S[𝑛]. Since it appears
one more time than this in Appendix V.2, we have solved the group problem. □

Importantly, we require that 𝑦 was not re-added to the accumulator. The accumulator does not change when elements are added, so a

witness valid at epoch 𝑛 will remain valid until some element is deleted.

We next show that if the extractor produces a valid witness for an ID that does not belong to the adversary, it also solves the hard group

problem. The proof is in some sense symmetric to Proposition V.3, using the extracted witness to solve 𝑛-ISDH for the long-term signature

part of the witness.

By the way we manage how users are added, there is some risk that an adversary will tell the observer program to create a user with ID 𝑦,

but then the adversary will post Add(𝑦) before the honest user can do so. Since the honest server players will only produce one signature for

each ID 𝑦, only the adversary will have that signature. Thus, we must regard such users as corrupt; we prove that the observer program

correctly identifies this case.

Proposition V.4. If the adversary sends the first Add message with argument 𝑦, then user_IDs[𝑦] will be a player ID belonging to the
adversary.
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Proof. The first Add message prompts the observer program to associate the sender with user_IDs[𝑦] (during the message board

commitment phase, which processes messages in the same order in which they are posted, at Line 19 of OBSERVER_UPDATE_IDEAL), and
no further messages will do this. Thus, this permanently sets the “owner” of ID 𝑦 to be the adversary. □

Lemma V.5. Under the same assumptions as Lemma U.1, if (with probability 𝑝) an extractor produces an ID 𝑦 and a valid witness (𝑛, 𝑥,𝐶, 𝑅𝑚)
such that
user_IDs[𝑦] ∉ C from an adversary that makes at most 𝑇 queries to the random oracle, then there is an algorithm that solves the 𝑛-ISDH
problem with probability at least 𝑝 − 𝑇

2
𝜆 − 𝜖 , or there is an algorithm that solves the discrete logarithm problem with probability 𝜖 .

Proof. Suppose that in the extraction game the extractor outputs a witness (𝑛, 𝑥,𝐶, 𝑅𝑚) for an ID 𝑦. Let 𝜖 be the probability that

𝑥𝐾 + 𝐾0 = O. We show how to solve the discrete log problem, or to solve the 𝑛-ISDH problem.

Discrete log solver. Let𝐺,𝐻 ∈ 𝐺1 be a discrete log challenge. We construct a simulator that behaves exactly as a true accumulator and

honest parties, except we set 𝐾 = 𝐺 and 𝐾0 = 𝐻 in the public parameters. As these parameters are chosen randomly, this is indistinguishable

to the adversary (and thus also to the extractor); therefore, there is a probability 𝜖 that at the end of the extraction game, the witness

(𝑛, 𝑥,𝐶, 𝑅𝑚) satisfies 𝑥𝐾 + 𝐾0 = O. We then output −𝑥 mod 𝑞 as the discrete log of 𝐻 with respect to 𝐺 , which is correct.

𝑛-ISDH solver. Given an 𝑛-ISDH challenge 𝐺 , 𝜆𝐺 , 𝛾𝐺 , 𝐺̃ , 𝜆𝐺̃ , the simulator sets 𝑃 = 𝐺 , 𝐾 = 𝛾𝐺 , and selects a random 𝑘0 to set 𝐾0 = 𝑘0𝐾 .

All other parameters are set randomly.

During GEN, all but one player, which we will call the distinguished player 𝑖0, is simulated as an honest player. The distinguished player

will not compute 𝑠 explitily, and instead will use Proposition T.5 to open 𝑄̃𝑚 to the value 𝜆𝐺̃ given by the group challenge. The simulator

computes 𝑉 and 𝑄̃ honestly.

If an honest user 𝑖 is requested to callWIT, the simulator selects 𝑥𝑖 randomly and sets 𝑅𝐼𝐷 = 𝑥𝑖 (𝑦𝑃 + 𝜆𝑃), where 𝜆𝑃 = 𝜆𝐺 comes from the

group problem. Since 𝑅𝐼𝐷 is distributed uniformly at random in the true protocol, this is (so far) indistinguishable. To simulate the proof

in the Add message thatWIT posts, the simulator follows the usual strategy of simulating Schnorr proofs: it chooses two random values

ℎ, 𝑠 ∈ F𝑞 and compute 𝑅 = 𝑠𝐾 +ℎ𝑅𝐼𝐷 . It then sends (ℎ, 𝑠, 𝑅) as the proof in the Add message, and sets the random oracle to output ℎ on input

(𝑅𝐼𝐷 , 𝑅), which is undetectable with probability
𝑇
2
2𝜆 . This produces an identical distribution as real proofs computing during WIT, since the

secret ID value is selected randomly.

Given this construction, we then set 𝑅𝑚 = 𝑥𝑖𝐺 = 𝑥𝑖𝑃 . This ensures that it is a valid signature, i.e.,

𝑒 (𝑅𝑚, 𝑦𝐾̃ + 𝑄̃𝑚) = 𝑒 (𝑃, 𝐾̃)𝑥𝑖 (𝑦+𝛼) = 𝑒 (𝑅𝐼𝐷 , 𝐾̃) .
Thus we can use this 𝑅𝑚 as the output of AFF_INV_SIGN(𝑦, 𝑅𝐼𝐷 ), called during SIGN(𝑦, proof). By Lemma V.2, we can then simulate this.

By Proposition V.4, we do not need to call SIGN if 𝑦 has already been added

If an honest user is requested to verify, we use Lemma T.1 to simulating the proof message.

To simulate SIGN(𝑦, proof) for other 𝑦 (which did not come from WIT), we will need to simulate AFF_INV_SIGN(𝑦, 𝑅𝐼𝐷 + 𝐾0). We will

query the group problem for 𝑓 (𝑦, 𝑅𝐼𝐷 + 𝐾0), using Lemma V.2 to set the opened value to equal the result of the query. The honest server

players will only call SIGN at most once for each 𝑦, and they will call it for the first message with a proof argument. By Proposition V.4, this

means that if the adversary posted this 𝑦, then user_IDs[𝑦] ∈ C, i.e, 𝑦 is considered corrupt.

All other aspects of the accumulator can be simulated honestly.

Having successfully simulated the accumulator, after the adversary outputs a valid result, we pass the adversary and the message board

transcript to the extractor, which produces 𝑦 and (𝑛, 𝑥,𝐶, 𝑅𝑚) with probability 𝑝 . As before, our indistinguishable simulation remains

indistinguishable to the extractor. The exracted witness is valid, meaning that 𝑒 (𝑅𝑚, 𝑦𝐾̃ + 𝑄̃𝑚) = 𝑒 (𝑥𝐾 + 𝐾0, 𝐾̃). In turn, this implies that

𝑅𝑚 = 1

𝑦+𝛼 (𝑥𝐾 + 𝐾0).
As this is indistinguishable to the adversary and extractor except with probability

𝑇
2
2𝜆 , we know that 𝑥𝐾 + 𝐾0 ≠ O with probability

𝑝 − 𝑇
2
2𝜆 − 𝜖 . If 𝑥𝐾 + 𝐾0 = O, we fail at the 𝑛-ISDH problem. Otherwise, since 𝐾 = 𝛽𝑃 and 𝐾0 = 𝑘0𝛽𝑃 , we have that 𝑥 ≠ −𝑘0 mod 𝑞 so we

can compute

(𝑥 + 𝑘0)−1𝑅𝑚 =
1

𝑦 + 𝛼 𝛽𝑃

We can define the “owner” of an ID 𝑦 via user_IDs, which is only set once for each 𝑦. If user_IDs[𝑦] ∉ C, this is equivalent to either

𝑦 having no owner or 𝑦 belonging to an honest user. This means 𝑦 was either not called to AFF_INV_SIGN at all (for no owner), or we

simulated AFF_INV_SIGN without calling the group problem oracle (for honest users). In either case, we did not query the group problem

for 𝑦, so we can return ((𝑥 + 𝑘0)−1𝑅𝑚, 𝑦) as a solution to the 𝑛-ISDH problem.

The probability that the extractor produces a witness for 𝑦 such that

user_IDs[𝑦] ∉ C was assumed to be 𝑝 . The probability that this is true and that 𝑥𝐾 + 𝐾0 ≠ O is at least 𝑝 − 𝜖 . The negligible losses from the

simulations give the final probability. □

Theorem V.6. Under hardness of the 𝑛-ISDH problem and the discrete logarithm problem in group 𝐺1, ALLOSAUR has blind commitment
soudness (Definition H.2.
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Proof. First consider an adversary-first, blame-free accumulator. Suppose an adversary wins the blind commitment soundness game

with probability 𝑝 , then Lemma U.1 implies that there is some𝜖 such that there is an extractor that produces a valid witness (𝑛, 𝑥,𝐶, 𝑅𝑚) for
an ID 𝑦 with probability at least 𝑝 ( 𝑝

𝑇
− 1

𝑞 ) − 𝜖 , where 𝑇 is the number of random oracle queries, and an algorithm to solve the discrete log

problem in 𝐺1 with probability 𝜖 . Assuming the discrete log problemis hard, then 𝜖 is negligible, so if 𝑝 is non-negligible, the extractor has

non-negligible chance of succeeding.

From there, Lemma V.5 shows that if an extractor has a probability 𝑝 of producing a valid witness (𝑘, 𝑥,𝐶, 𝑅𝑚) for an ID 𝑦 such that 𝑦 is

not corrupt, then there is some 𝜖 such that there is a discrete log solver that succeeds with probability 𝜖 and an 𝑛-ISDH solver that succeeds

with probability 𝑝 − 𝜖 − 𝑇
2
2𝜆 . If 𝑛-ISDH and discrete log are both hard, these probabilities must be negligible, so 𝑝 must also be negligible.

Next, suppose there exists an extractor with probability 𝑝 of producing a valid witness (𝑘, 𝑥,𝐶, 𝑅𝑚) for an ID 𝑦 such that 𝑦 ∈ S[𝑚] for
some𝑚 ≥ 𝑘 (i.e., there should be a valid witness for 𝑦 for that epoch). By Proposition V.3, this implies an algorithm to solve the 𝑛-ISDH

problem with probability 𝑝 − negl(𝜆), so 𝑝 must also be negligible.

Thus, an adversary-first, blame-free accumulator is blind commitment sound. By Lemma T.2 and Lemma T.4, this implies ALLOSAUR is

also blind commitment sound with only negligible loss. □

W MESSAGE INDISTINGUISHABILITY
For indistinguishability, we proceed in two steps: in this first section, we show that the actual content of private user messages is indistin-

guishable and thus we can define hybrids where this data is entirely removed, leaving only metadata. We then show that the metadata gives

precisely the anonymity loss that we specified in the protocol.

Our first hybrid is a no-verify accumulator, Definition W.1, where proof messages contain no data. We show that that this hybrid is no

more distinguishable than the original in Proposition W.2. The second hybrid is a no-update accumulator, Definition W.3, where users do not

send any shares for their updates and instead compute them locally using the public data of the accumulator. Proposition W.4 shows that

this is also no more distinguishable. Combining these two hybrids leaves no data except metadata.

DefinitionW.1. Ano-verify accumulator game proceeds identically to the original accumulator game, except thatOBSERVER_START_PROOF
and

OBSERVER_CHECK_PROOF are the empty function.

The no-verify version of ALLOSAUR is the same as the original, with the following exceptions:

(1) VER returns immediately after Line 15

(2) During PROVE, the value of proof is computed simply as 1 if the user has a valid witness, and 0 otherwise.

Obviously this no-verify accumulator is no longer sound, but it provides more user indistinguishability: there is no user-specific data in a

verification.

Proposition W.2. For every indistinguishability adversary against the original accumulator, there is an indistinguishability adversary
against the no-verify accumulator with an additive loss in advantage of 𝑣 (𝑇+𝑃 )

2
2𝜆 , where 𝑇 is the number of random oracle queries the original

adversary makes, 𝑣 is the number of verifications performed, and 𝑃 is the number of honest user player pseudonyms.

Proof. We construct a no-verify adversary A ′, which honestly forwards all messages between the original adversary A and an honest

execution of the no-update accumulator. However, A ′ must simulate any expected verify messages.

When a user sends a proof message with a proof of 1, A ′ simulates the verification proof using Lemma T.1 by simulating certain random

oracle queries from A, which is undetectable with probability at most
𝑣𝑇
2
2𝜆 , where 𝑣 is the number of positive verifications.

If the intercepted Ver𝑣 message had a proof of 0, A ′ simply sends ⊥ as the proof.

By Proposition R.16, this follows the same distribution as the proofs sent by valid users, so this is undetectable to the original adversary.

VER sends no messages after Line 6, so the messages will be indistinguishable, but the result of the verification might change be-

haviour. However, the only way in which a verification result can change execution of the accumulator is if it is incorrect and triggers

ACCUMULATOR_FAIL. By Theorem S.9, A cannot cause this with more than non-negligible probability. □

We next define a no-update accumulator.

Definition W.3. A no-update accumulator is identical to the original accumulator.

The no-update version of ALLOSAUR differs from the original in the following ways:

(1) During GET_UPDATE, users do not execute Line 11 (they do not post the shares of their secret).

(2) User players will use the data posted in the public message board to simulate the servers response in GET_UPDATE, and will wait

one round to do so.

Proposition W.4. For every indistinguishability adversary against a no-verify accumulator, there is an indistinguishability adversary against
the no-update no-verify accumulator with no loss in advantage.

Proof. Let A be a no-verify adversary. To construct a no-update no-verify adversary A ′, we have A ′ forward all messages as expected

between the real accumulator and A, though A ′ must simulate the update messages. The expected messages are formed by a 𝑡-out-of-𝑛
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secret sharing scheme, so since A controls fewer than 𝑡 servers, the shares they receive are uniformly random. Thus, A ′ can simply send

uniformly random elements to the adversary. Since it sees the number of epochs to update, it can compute the values of𝑚, 𝑘 , and 𝑑 as in

GET_UPDATE so we know precisely how many uniformly random elements to send.

This is only distinguishable from the expected messages ifA sends the incorrect data back to the user. In this caseA will be detected and

blamed by Proposition R.2 (if the user expects a valid witness) or by Proposition R.14 (if the user expects an invalid witness). If A ′ fails to
properly simulate in either case, there is no loss in advantage, since the original adversary A would fail. □

X METADATA INDISTINGUISHABILITY
X.1 Outline
The last section showed that the content of the messages is completely anonymous, and all that remains is metadata. By metadata, we mean

all extra information: which messages are sent to which other users, which public messages are sent, and any non-obfuscated data.

Recall that users use a single pseudonym for each user function they call (VER,WIT, UPDATE, or PROVE) and ignore unrelated messages

to the same pseudonym. An anonymity set is defined for each pseudonym, containing a set of user IDs. Informally it should represent all the

users who, if asked to perform one of these user functions, would respond in a particular way.

To capture this we first define notion of a message response pattern, which is intuitively exactly what it says: the pattern of messages

that a user will send in response to any messages they receive. These are indexed by pseudonyms, so we want to show that all users in the

anonymity set of some pseudonym would produce the same message response pattern as that pseudonym. Each of the user functions begins

after being sent an initial function message, so our first task is to prove that the message response patterns in response to each of the four

functions above will be the same for users in the same anonymity set.

Proposition X.2 shows this for VER, which is straightforward as verification neither uses nor modifies any internal user data except the

public accumulator value.

Other messages do depend on internal user data, and specifically on the epoch of the user’s latest witness, since if a user updates, they

will update from that epoch and must send the value of the epoch to the servers to get their update. First we show that the observer program

correctly tracks a user’s internal epoch in Proposition X.3. Then we show that user response patterns to proof requests are the same, under

different conditions. First, Proposition X.4, if there is no consensus accumulator for the epoch of a proof request a user will not respond at all.

All users receiving such a request vacuously send the same messages. The next case is that a user performing an update for their proof may

need to recurse during RETURN_UPDATE, so we characterize precisely when this happens in Proposition X.5: when the user is deleted but

also re-added to the accumulator between the initial and final epochs of the update.

The observer program assumes a recursive user is completely de-anonymized, so we only need to show that users which do not recurse,

and which had the same witness epoch to begin with, send the same update messages after being requested to prove Proposition X.6. We

then show that the observer program correctly identifies these different cases and assigns users in each case to distinct anonymity sets, and

thus if two users are in the same anonymity set, they respond in the same way to any proof requests Proposition X.7.

Next we need the same result for update requests. Again we show in Proposition X.8 that if users are not deleted and re-added, and hence

do not recurse, they send the same update messages. An added difficulty for updates is that they change the user’s internal state. One can

see the reason for our design decision to use ephemeral updates during the verification protocol. Our observer program thus restricts the

anonymity set for an update to only include users which received the exact same update request in the same round, and excludes users who

received multiple update requests to different pseudonyms. Proposition X.9 describes fully what users remain in the same anonymity set of

a pseudonym which received an update request. This characterization gives us Proposition X.10, stating that if a pseudonym receives an

update request, not only do users in its anonymity set respond in the exact same way to an update request, they also update to the same

epoch in that round.

For witness requests, there is little to prove because a pseudonym that receives a witness request will post a message Add(𝑦, proof)
containing the ID 𝑦 of the user owning that pseudonym. This fully de-anonymizes the pseudonym. It also changes the user’s state, so we

exclude any users who have not finished obtaining their first witness from all other anonymity sets.

This covers all type of function requests, so we can prove that any two users in the same anonymity set have pseudonyms that induce the

same message response pattern. Inuitively, this means an adversary sending to one of these pseudonyms can’t tell which user the pseudonym

belongs to, because all the users respond in exactly the same way.

To finish the proofs, we reduce to a hybrid in Proposition X.13 to rid ourselves of the edge case where an adversary guesses a pseudonym

before the pseudonym program selects it (pseudonyms are 2𝜆 bits long, so such a guess is nearly impossible).

Since pseudonyms are assigned randomly, this means that for every execution where two users are assigned a pair of psuedonyms, there

is an equally probable execution where the pseudonyms were swapped. By the construction of our anonymity sets, we know that users in

the same anonymity set respond in the same way to messages and they update their internal state in the same way. Thus, pseudonyms

can be swapped among users in the same anonymity set, and the resulting transcipt of interactions with the adversary is exactly the same.

Proposition X.14 formalizes and proves this concept.

Recall that the indistinguishability game, Definition H.3, requires an adversary to output two pseudonyms 𝑝1 and 𝑝2. The adversary wins

if 𝑝1 and 𝑝2 belong to the same user. Suppose the adversary did win. Since the adversary’s output depends only on the messages it receives
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and its internal state, then in another execution where 𝑝1 was assigned to a different user but the transcript was the same – which exists in

every case by the logic above – then in this execution the adversary will still output 𝑝1 and 𝑝2, but now they lose.

Counting all the possibilities shows that the adversary’s probability of winning depends only on the sizes of the anonymity sets and their

intersection, exactly the probability in Definition H.3 that the adversary must exceed. Hence, unrolling our hybrid reductions, Theorem X.15

shows that ALLOSAUR is indistinguishable.

X.2 Proofs
Throughout this section, unless otherwise specified, we assume we are working with a no-update, no-verify accumulator.

One of our main tools is to show that pseudonyms in the same anonymity set will respond in the same way to future messages. We use

the following definition:

Definition X.1. A message response pattern is a function taking as input a public message board, a pseudonym 𝑝 , and a private message

board for a pseudonym 𝑝 , which outputs a probability distribution 𝜒 on the space of possible sequences of messages, according to the

following rule: if an execution of the accumulator produces the message boards given as input (including the implicit round number), then

the probability that 𝑝 posts a sequence of messages (𝑚1, . . . ) in that round is given by 𝜒 , where the probability is taken over all executions

of the accumulator and that produce the message boards given as input.

What we capture here is that the pseudonym belonging to a user may change what messages it posts based on that other messages are

posted; however, if two pseudonyms respond in exactly the same way (equivalent to having the same message response pattern), they will

be indistinguishable.

Our proof strategy will be to show that users in the same anonymity set will have the same message response pattern. The actual statement

will be slightly more technical. To get there, we show how message response patterns will be the same for each function if users are in the

same anonymity set. We divide this by the type of message a user sends.

Verifier messages. The first proposition does not reference anonymity sets, since verifiers are completely anonymous in a verification

protocol.

Proposition X.2. The message response pattern of all pseudonyms 𝑝 belonging to honest user players, such that the first message sent to a
pseudonym 𝑝 is a function-type message with function Ver and arguments of a pseudonym 𝑗 and epoch 𝑛 in round 𝑡 , are the same.

Proof. We will explicitly construct the message response pattern of such a user. Any honest user receiving a Ver message as in the

proposition statement as the first message to pseudonym 𝑝 will enter the loop at Line 2 until the first round a consensus accumulator for the

epoch 𝑛 is posted (part of the public message board). Once such a message is posted, they will then send a Prove message to pseudonym 𝑗 ; 3

rounds after that message is posted, they send a random proof commitment. These are distributed uniformly at random. These are the only

messages they send.

Honest user players will not respond to any other type of message, since they ignore any subsequent requests to that pseudonym. Since

they only depend on the messages sent to 𝑝 and no user-specific data, the message response pattern is the same for all such users. □

Prover messages. We next want to make the same arguments for psuedonyms receiving a Prove message. However, such users will start

an update, and their message response pattern will depend on the epoch of their current most up-to-date witness. Thus, we must prove that

the observer correctly tracks this.

Proposition X.3. In round 𝑡 , during execution of RESTRICT_ANONYMITY until Line 85, the value of user_epochs[𝑦] equals the value of
next_witness at the beginning of UPDATE in round 𝑡 + 1. After Line 85, the value of user_epochs[𝑦] equals the value of next_witness during
PROVE in round 𝑡 + 1.

Proof. If there exists an honest user with ID 𝑦, it means there was no Add message posted before the first Wit message with argument 𝑦.

The firstWit message prompts the user to set next_witness = 0 and also

RESTRICT_ANONYMITY() sets user_epochs[𝑦] = 0 as well, at Line 35, in the round before this message was posted.

From there, the user will only update next_witness when the first consensus accumulator is posted that contains 𝑦, and it will update in

exactly that round. This is because the servers execute SIGN before posting the new accumulator, so the user will return from waiting for

the “signature” portion of their witness in Line 20 before they return with the other part of the witness. This is also the first round when

RESTRICT_ANONYMITY() will update user_epochs[𝑦] to this new value, in Line 7.

Once this happens, a user will update next_witness in each round to the maximum epoch argument passed in a call to UPDATE that

corresponds to a consensus accumulator. However, user functions are run by the loop at Line 29 of RUN_PLAYER_HONEST, which iterates

through a queue that sorts the functions. The ordering on functions ensures that it calls UPDATE first; thus, the user will not modify

next_witness until it returns from any update calls in that round. While this matches how RESTRICT_ANONYMITY will eventually update

user_epochs[𝑦], RESTRICT_ANONYMITY will not change user_epochs[𝑦] until Line 85.
Since PROVE runs after the UPDATE changes next_witness by the sorting of queued functions, it will find a value of next_witness that

was been increased according to any update requests in that round, which matches RESTRICT_ANONYMITY after Line 85. □
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The message response pattern for a proof first depends on whether there is a consensus accumulator, and then if the user was deleted and

re-added, and finally based on the user’s starting epoch. The next three proofs cover these cases, culminating in Proposition X.7.

Proposition X.4. Let 𝑝 and 𝑝 ′ be two pseudonyms belonging to users 𝑦 and 𝑦′ such that
• the first message to each pseudonym is a function message of type Prove from the same pseudonym 𝑗 with the same epoch 𝑛, sent in round
𝑡

• |A| < |servers| in round 𝑡 + 1
Then 𝑝 and 𝑝 ′ have the same message response pattern.

Proof. If |A| < |servers|, then a user receiving a Prove message will ignore it and not respond to any other messages to that pseudonym.

Thus, trivially, the message response pattern is the same: such a user will not send any messages from that pseudonym. □

Next we consider two users asked to prove, where they will perform the same update over epochs where neither was deleted and re-added.

We clarify the precise conditions for this to occur:

Proposition X.5. A user with ID 𝑦 calling RETURN_UPDATE(∗, 𝑛1, 𝑛2, ∗) will recurse if and only if there is some 𝑘 with 𝑛1 ≤ 𝑘 < 𝑛2 − 1
such that S[𝑘 + 1] \ S[𝑘] and 𝑘 is the maximum integer satisfying these properties.

Proof. We prove the “only if” first. Inspecting RETURN_UPDATE, it will only recurse if GET_UPDATE returns 𝑑 = 0 or it started with

an invalid witness, and the latest valid witness posted on the public message board has an epoch less than 𝑛2. When updating from epoch

𝑘 to 𝑘 + 1, honest server players will only call AFF_INV_ACC, which posts the new witness, during ADD(𝑦, ∗) if 𝑦 ∉ aux, equivalent to
𝑦 ∉ S[𝑘]. If they do, once they finish, 𝑦 ∈ S[𝑘 + 1].

For the converse, if 𝑦 ∈ S[𝑘 + 1] \ S[𝑘] for some 𝑛1 ≤ 𝑘 < 𝑛2 − 1 then 𝑦 ∉ S[𝑘]. Then either 𝑦 ∉ S[ 𝑗] for all 𝑛1 ≤ 𝑗 ≤ 𝑘 , in which case

the user’s starting witness was invalid and RETURN_UPDATE will call FIND_WITNESS, or 𝑦 was in some previous epoch but was deleted,

in which case GET_UPDATE returns the value 0 and similarly RETURN_UPDATE will call FIND_WITNESS.
By assumption, the honest server players added 𝑦 in epoch 𝑘 + 1, so they posted a witness for 𝑦 for epoch 𝑘 . FIND_WITNESS will find the

witness posted for the maximum such 𝑘 ; by assumption, 𝑘 < 𝑛2 − 1 so the obtained witness has epoch less than 𝑛2, so RETURN_UPDATE
must recurse. □

We will say that the epochs (𝑛1, 𝑛2) matching the conditions of Proposition X.5 are a recursive update for user 𝑦. Epochs which are a

recursive update for one 𝑦 may not be for other values 𝑦′.

Proposition X.6. Let 𝑝 and 𝑝 ′ be two pseudonyms belonging to users 𝑦 and 𝑦′ such that
• the first message to each pseudonym is a function message of type Prove from the same pseudonym 𝑗 with the same epoch 𝑛, sent in round
𝑡

• at the beginning of execution of RESTRICT_ANONYMITY in round 𝑡 , user_epochs[𝑦] = user_epochs[𝑦′]
• either both 𝑦 and 𝑦′ are in S[𝑛] or neither is
• The epochs ((user_epochs[𝑦], 𝑛) are not a recursive update for either 𝑦 or 𝑦′.

Then 𝑝 and 𝑝 ′ have the same message response pattern.

Proof. If |A[𝑛] | < |servers| in round 𝑡 +1, the message response pattern is the same by Proposition X.4. Thus, assume |A[𝑛] | = |servers|
in round 𝑡 + 1.

In this case, both users will begin execution of PROVE, skip the early return at Line 5. PROVE prompts users to post two kinds of

messages: update requests, and proofs.

Update messages. By assumption on user_epochs and Proposition X.3, next_witness is identical for the two users. Thus, if this is greater

then or equal to 𝑛, neither user will post any update messages. If it is less than 𝑛, both users will post Upd𝑠 messages in round 𝑡 + 1, with
epoch arguments of next_witness and 𝑛.

For possible remaining update messages, we assumed that the epochs are not a recursive update for either player. Thus, neither recurses

during

RETURN_UPDATE and they will only send one set of update messages. As this is a no-update accumulator, these messages are the same.

Proof messages. Exactly four rounds after receiving the Provemessage (sinceRETURN_UPDATE takes at most 4 rounds by Proposition R.10,

and PROVE waits 4 rounds after sending it), both users will be ready to respond to a proof challenge. If they receive a proof challenge, they

will respond one round later, with either a 1 or 0 depending on whether they are in S[𝑛] or not (by Proposition R.16). Since both users are

either in or out of the accumulator, they send the same message here. □

A final case is when a user is deleted and re-added (i.e., the given epochs are a recursive update). This is actually completely de-anonymizing.

If a user is given recursive update epochs, then their recursive update will proceed from the epoch they were added to the final epoch. Since

only one user is added in each epoch, the epoch uniquely identifies the user. Thus, there is no need to state anything about the message

response pattern; we do not need to show it is the same for any two users.

We can now summarize these propositions:
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Proposition X.7. Suppose 𝑝 is a pseudonym such that the first message to it is a function message of type Prove, and the only message sent
to 𝑝 in that round. Then for all users 𝑦 ∈ anon_sets[𝑝], if an unused pseudonym 𝑝 ′ of 𝑦 received the same message in the same round, then 𝑝 ′

would have the same response pattern.

Proof. Suppose the Prove message sent to 𝑝 was sent in round 𝑡 from verifier 𝑗 with epoch argument 𝑛.

If there is no consensus accumulator in round 𝑡 for epoch 𝑛, the message response pattern is empty for all users. Hence, the result holds

for this case.

If there is a consensus accumulator for epoch 𝑛, we show that all unused psuedonyms of all 𝑦 ∈ anon_sets[𝑝] satisfy (almost all) the

conditions of Proposition X.6. First, RESTRICT_ANONYMITY removes all pseudonyms that have already received a message or receive

more than one message in this round, so we know this is not true for any of the pseudonyms of these 𝑦. It sets anon_sets[𝑝] to a subset of

Y𝑢𝑝𝑑 , calculated in Line 95 to contain only 𝑦 with the user_epochs[𝑦] constant, satisfying the second condition. The set Y𝑑𝑒𝑙 , constructed
in Line 96, is precisely the users given recursive update epochs, and this is removed from anon_sets[𝑝], satisfying the last condition. If the

owner of 𝑝 is in Y𝑑𝑒𝑙 , their anonymity set is restricted to a singleton set, from which the result follows trivially.

This means the unused pseudonyms of all 𝑦 ∈ anon_sets[𝑝] almost satisfy the conditions of Proposition X.6, except perhaps they are not

all either in S[𝑛] or not. However, inspecting PROVE shows that the only difference in response pattern occurs in the proof messages sent

in response to challenge messages, but as soon as a proof message gets sent (and before the adversary can see it),RESTRICT_ANONYMITY
at Line 19 restricts the anonymity set to only users either in the accumulator or not, so after this point, for any 𝑦 still in the anonymity set,

its pseudonym has the same message response pattern of 𝑝 . □

Update messages. Now we show the same result for updates. This is similar to the proof case, since proofs send the same pattern of update

messages; however, proofs do not change any aspect of the user’s internal state, while updates do. This requires extra care.

The next proposition is an analogue of Proposition X.6.

Proposition X.8. Let 𝑝 and 𝑝 ′ be two pseudonyms belonging to users 𝑦 and 𝑦′ such that

• the first message to each pseudonym is of a function message of type Upd𝑢 with the same epoch 𝑛, sent in round 𝑡
• at the beginning of execution of RESTRICT_ANONYMITY in round 𝑡 , user_epochs[𝑦] = user_epochs[𝑦′]
• the epochs (user_epochs[𝑦], 𝑛) are not recursive update epochs for either 𝑦 or 𝑦′

Then 𝑝 and 𝑝 ′ have the same message response pattern.

Proof. In this case both users will begin execution of UPDATE. If there is no consensus accumulator, then 𝑝 and 𝑝 ′ both have empty,

and thus equal, message response patterns.

By assumption on user_epochs and Proposition X.3, next_witness is identical for the two users. Thus, if this is greater then or equal to 𝑛,

neither user will post any update messages. If it is less than 𝑛, both users will post Upd𝑠 messages in round 𝑡 + 1, with epoch arguments of

next_witness and 𝑛.
By the third assumption, neither user recurses, so each will only send one set of update messages. As this is a no-update accumulator,

these update messages are the same. Neither pseudonym will respond to any other messages. □

To summarize the behaviour of RESTRICT_ANONYMITY, the following proposition characterizes anonymity sets after update messages:

Proposition X.9. If the first and only message sent to a pseudonym 𝑝 in round 𝑡 is an Upd function message, if the anonymity set for 𝑝
contains more than one ID, then it is restricted to users 𝑦 such that:

• 𝑦 possesses a pseudonym 𝑝 ′ such that 𝑝 ′ received only one message in round 𝑡 , which was the first message to 𝑝 ′

• the only Upd function message sent to any pseudonym of 𝑦 was sent to 𝑝 ′

• user_epochs[𝑦] is constant for all 𝑦 in the anonymity set
• the epoch of the Upd function message (denote it by 𝑛) is constant for all 𝑦 in the anonymity set
• (user_epochs[𝑦], 𝑛) are not recursive update epochs for 𝑦

Proof. For the first point, pseudonyms receiving multiple messages in round 𝑡 or which had previously received messages are removed

from the set of messages.

Second, if multiple update messages are sent, then the message (and user) are moved toMY𝑑𝑢𝑝 , where the anonymity sets are restricted

to singleton sets.

Third, if the epochs are , then at Line 66, the anonymity set of the pseudonym of the message sent to 𝑦 is restricted to a singleton set.

Otherwise, the anonymity set is restricted to all other 𝑦 ∈ MY𝑖 .

Third, the partitioning of messages at Line 56 ensures all𝑚 ∈ MY𝑖 have the same epoch argument.

Fourth, the partition at Line 57 ensures that all starting user epochs are the same for 𝑦 ∈ MY𝑖 , which contains the anonymity set.

Finally, the set Y𝑑𝑒𝑙,𝑖 constructed in Line 59 contains all 𝑦 ∈ MY𝑖 for which the epochs are recursive update epochs. Users in this set get

a singleton anonymity set, and for any remaining users the set Y𝑑𝑒𝑙,𝑖 is removed from the anonymity set of their pseudonym, giving the last

result. □
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What we show now is that not only do updating pseudonyms have the same response pattern, they also update to the same epoch in the

same round. This ensures that the changes to internal state are the same across users in the same anonymity set.

Proposition X.10. Suppose 𝑝 is a pseudonym such that the first message to it is a function message of type Upd𝑢 , and this is the only message
sent to 𝑝 in that round. Then either:

(1) 𝑝 has an empty response pattern
(2) all users 𝑦 ∈ anon_sets[𝑝] own a pseudonym 𝑝 ′ which received an identical update function message in the same round and for which 𝑝 ′

has the same response pattern.

Proof. Suppose the Upd𝑢 message sent to 𝑝 was sent in round 𝑡 with epoch argument 𝑛.

If there is no consensus accumulator in round 𝑡 for epoch 𝑛, the message response pattern for 𝑝 is empty.

If anon_sets[𝑝] contains only one ID, then the result holds trivially.

From there we use Proposition X.9, whose conclusions imply the premises of Proposition X.8, showing that they will have the same

response pattern.

If 𝑦 does not have an empty response pattern, then it will start an update in round 𝑡 . If 𝑦′ ∈ anon_sets[𝑝], then by Proposition X.9, 𝑦′ also
received an update message with the same epoch as 𝑦 received. Neither of them received a second message to those pseudonyms, neither

received another update message in that round, and both had the same starting value of user_epochs (and hence of next_witness). Thus,
they will both start UPDATE to the same epoch. □

Witness issuance messages. The final type of message is aWit message, but these are trivially de-anonymizing since a user executingWIT
will post an Add message that includes their ID 𝑦 as an argument. These do modify state, which is why we remove all users that do not yet

have a valid witness from the anonymity sets of other messages.

Summary. Thus, we have all the components necessary to show indistinguishability of message response patterns.

Proposition X.11. For any pseudonym 𝑝 , let 𝑡 be the first round when any messages are send to 𝑝 and let𝑚 be the set of all messages sent in
round 𝑡 . For any user 𝑦 ∈ anon_sets[𝑝], if any unused pseudonym 𝑝’ of 𝑦 received the same messages𝑚 in round 𝑡 , then 𝑝 ′ would have the same
response pattern.

Proof. First, notice that anon_sets[𝑝] is always restricted to honest users.

If𝑚 contains more than one message, this creates an empty response pattern for any user.

If𝑚 contains only one message, then if it is not of type Prove, Ver, Upd𝑢 , orWit, any user receiving this message will ignore it, again

creating an empty response pattern.

For the case of Prove, Ver, and Upd𝑢 , Propositions Proposition X.2, Proposition X.6, and Proposition X.8, respectively, prove the result.

For Wit, the loop in Line 30 restricts the anonymity set for the receipient to a unique 𝑦, so the result holds trivially. □

A slightly annoying case we need to deal with is the probability that an adversary will guess a pseudonym. Thus we define a new hybrid:

Definition X.12. A no-guess accumulator is an accumulator in which the control program checks the destination pseudonym of every

message that is posted. If the destination pseudonym belongs to a user player, but it was not given as output by GAME_DEANONYMIZE
before the round in which it was posted, the control program aborts on the ID of the sender of the message and the accumulator game ends.

Proposition X.13. Any adversary against a no-verify no-update accumulator implies an adversary against a no-guess, no-verify, no-update
accumulator, with at most a 𝑃𝑀

2
2𝜆 loss in advantage, where 𝑃 is the total number of pseudonyms used and𝑀 is the total number of messages sent.

Proof. We will use the no-verify no-update adversary directly against the no-guess no-verify no-update accumulator.

Inspecting the logic of how honest user players obtain pseudonyms, all of their pseudonyms are outputs of GAME_DEANONYMIZE.
Thus, the only way to trigger the new abort condition is if a message is sent to a pseudonym and later that same pseudonym is assigned to a

player. Since pseudonyms are chosen randomly, the probability of a new pseudonym matching an existing message is
𝑀
2
2𝜆 . Taking the union

bound over all pseudonyms produced gives the result. □

The next proposition is almost enough for our security definition. We show that when the pseudonym program assigns two pseudonyms,

if the same users are in the anonymity set of each one, then the pseudonyms could be swapped without the adversary noticing. That is, since

pseudonyms are assigned randomly, there is an equally probably execution where the pseudonyms were assigned to different users, and we

show that as long as the users are in the same anonymity set, the adversary’s view of each execution is exactly the same.

Proposition X.14. At any point in execution of a no-guess, no-update, no-verify accumulator, except during RESTRICT_ANONYMITY, if 𝑦
owns pseudonym 𝑝 and 𝑦′ ∈ anon_sets[𝑝], then there is an equally probable execution of the accumulator such that 𝑝 was assigned to 𝑦′ (taken
over the randomness of the control programs and honest users) that produces the same transcript of interactions with the adversary.
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Proof. Consider a user 𝑦 with pseudonym 𝑝 and some 𝑦′ ∈ anon_sets[𝑝]. Consider the call to GAME_DEANONYMIZE when 𝑝 was

assigned, which occurred before 𝑝 received any messages since this is a no-guess accumulator. The argument to GAME_DEANONYMIZE
included both 𝑦 and 𝑦′, so suppose 𝑦′ was given pseudonym 𝑝 ′.

We now consider an execution where the randomness of the accumulator and honest parties is different such that user 𝑦 is given 𝑝 ′ and
user 𝑦′ is given 𝑝 . This is identical from the adversary’s view when GAME_DEANONYMIZE returns, since the pseudonyms are sorted

before being returned. Then user 𝑦′ will receive the first message sent to pseudonym 𝑝 , and by Proposition X.11, pseudonym 𝑝 will respond

in the same way in this execution as in the last execution.

If the message was Wit, then 𝑦 = 𝑦′ because the anonymity set has only one element; if the message was Prove or Ver, the user does not
modify any global variables, so execution for the two players will proceed indistinguishably.

If the adversary sends Upd𝑢 to pseudonym 𝑝 , then by Proposition X.9, 𝑦′ was also sent an update to the same epoch since they are in

the same anonymity set. By assumption anon_sets[𝑝] has at least 2 elements, so no other update message was sent to 𝑦 or 𝑦′ in the same

round, so both will respond the same way. Thus, any future interaction is also indistinguishable: both users will respond to update and proof

requests in the same way, since they both updated to the same epoch. □

Now recall our formal definition of indistinguishability, Definition H.3. An adversary outputs two pseudonyms 𝑝1 and 𝑝2, and they win if

these two pseudonyms belong to the same user.

Theorem X.15. ALLOSAUR is indistinguishable.

Proof. First we argue that the no-guess, no-update, no-verify hybrid is indistinguishable. Suppose an indistinguishability adversary

outputs two pseudonyms 𝑝1 and 𝑝2; let 𝐴𝑖 = anon_sets[𝑝𝑖 ]. We fix the adversary’s randomness, and vary the accumulator’s randomness but

condition on all executions where the transcript of interactions was identical with this one. Since the input to the adversary is identical, then

the adversary outputs 𝑝1 and 𝑝2 in all of them.

By Proposition X.14, for each 𝑦 ∈ 𝐴𝑖 , there is an equally probable execution with the same transcript where 𝑝𝑖 belonged to 𝑦. We will

label sets of executions by (𝑦1, 𝑦2), the IDs of which users had pseudonym 𝑝1 and 𝑝2. As these are equally probable, the probability of each

pair (𝑦1, 𝑦2) is 1

|𝐴1 | · |𝐴2 | .
However, the adversary only wins in executions where 𝑦1 = 𝑦2. The number of such executions is only |𝐴1 ∩𝐴2 |. Thus, the probability of

the adversary winning is
|𝐴1∩𝐴2 |
|𝐴1 | · |𝐴2 | , exactly what is needed. Since this does not depend on the transcript, only the size of the anonymity sets

of the adversary’s answer, we can sum over all executions with the same size anonymity sets and prove perfect indistinguishability.

Finally, we use Proposition W.2, Proposition W.4, and Proposition X.13 to add only a negligible increase in the adversary’s advantage, thus

showing that ALLOSAUR is indistinguishable. □

Y ANONYMITY
Our definition of indistinguishability is somewhat insufficient, since we leave it up to the protocol to specify the anonymity function. A

simple way to produce an “indistinguishable” accumulator is to make the anonymity set of each message equal a singleton set containing the

message’s sender. Such an accumulator is completely non-anonymous, however!

Thus, we will now show some conditions in which our protocol offers actual anonymity. We cannot guarantee much more than this, since

there are expected patterns of behaviour where anonymity is degraded (for example, if all but one user ID is deleted from the accumulator).

We say that a user is “established” in round 𝑡 if their ID has been added to the accumulator at some previous point, and a function message

of type Upd𝑢 with epoch argument 𝑛 was posted to that user at least 5 rounds previous, there exists a consensus accumulator for epoch 𝑛,

and 𝑛 is greater than the last epoch in which they were added or deleted from the accumulator.

We restrict the messages the adversary sends in the following ways, for some parameter 𝑗 :

• The adversary does not send more than one function message to any pseudonym

• If an adversary sends at least one established user ID 𝑦 in its call to

GAME_DEANONYMIZE, they must send the IDs of least 𝑗 − 1 other established users in that call.

• There must be at least 𝑗 users added to the accumulator before the first Upd𝑢 message is sent. After that, there must be at least 𝑗

established users if any Upd𝑢 or Ver𝑢 message is sent.

• If one Upd𝑢 message is sent in round 𝑡 with argument 𝑛 to pseudonym 𝑝 , then in round 𝑡 exactly one pseudonym for every user must

also receive an Upd𝑢 message with argument 𝑛 in round 𝑡 .

• If one Ver message is sent in round 𝑡 with epoch 𝑛 to verifier 𝑖 with pseudonym 𝑝 , then (a) 𝑝 must be the output of a call to

GAME_DEANONYMIZE with at least 𝑗 established users, such that either all users are in S[𝑛] or none are; (b) 𝑖 must receive one

Ver𝑢 message in round 𝑡 for each pseudonym 𝑝 ′ returned by GAME_DEANONYMIZE, all with epoch 𝑛.

• If the adversary sends a Prove message in round 𝑡 with epoch 𝑛 to pseudonym 𝑝 , then (a) (a) 𝑝 must be the output of a call to

GAME_DEANONYMIZE with at least 𝑗 established users, such that either all users are in S[𝑛] or none are; (b) each pseudonym

returned by this call to GAME_DEANONYMIZE must receive an identical Prove message from the same adversarial pseudonym in

round 𝑡 .
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• If a user is deleted from the accumulator in epoch 𝑛, then at least 𝑗 − 1 other users must be deleted before the epoch of the next Upd𝑢
message.

We refer to this as an “established-anonymous” adversary.

To ensure that these requirements are not too restrictive, we prove that such adversaries exist and that they can interact in such a way

that they create established users.

Proposition Y.1. An established-anonymous adversary exists, such that at some point in execution, there is at least one established user.

Proof. The adversary first creates 𝑗 users with calls to WIT. From that point on, whenever the adversary wants to send an update

request, it sends the IDs of all users to GAME_DEANONYMIZE. It then sends an identical Upd𝑢 message to each pseudonym it receives in

return in that round. This satisfis the requirements on update messages, as long as it does not un-establish the first 𝑗 users. This ensures

there is at least one established user.

The adversary can track which users are established because it knows when users were added, and all users receive updates at the same

time.

When the adversary wants to send Ver or Prove messages, it selects an epoch 𝑛 selects a subset of at least 𝑗 established users, for which

either all of them are in S[𝑛] or none of them are, and sends their IDs to GAME_DEANONYMIZE. It receives a set of pseudonyms 𝑃 in

return. For Ver messages, it then picks any other subset of users and sends their IDs to GAME_DEANONYMIZE. It picks one or more IDs

from what is returned, and for each one, it picks an epoch number 𝑛 and sends one Ver message for each 𝑝 ∈ 𝑃 , all with epoch 𝑛. For Prove
messages, it sends one Prove message to each 𝑝 ∈ 𝑃 , all with epoch number 𝑛.

The adversary can add users at will. If it deletes users, it will always ensure that it can remove at least 𝑗 users while still leaving 𝑗

established users in the accumulated set. It will not make any update requests until the the users are deleted. □

Proposition Y.2. Against an established-anonymous adversary, at the beginning of each round, all established users have the same value of
next_witness.

Proof. The value of next_witness is set to the maximum epoch argument of Upd𝑢 every time an established user receives such a message.

Thus, once a player is established, they remain in sync, because all users receive the same update messages in the same round. A player is

only established after their first update message once they are added to the accumulator, and this will update next_witness to match the

update epoch of all the other established users. □

Proposition Y.3. Against an established-anonymous adversary, any update request to an established user does not have recursive update
epochs.

Proof. By definition, an established user has previously had an update request to some epoch 𝑛 which is greater than the last epoch

when the user was added to or deleted from the accumulated set. By Proposition R.10 this means they have a witness for epoch 𝑛, so any

update to 𝑛′ has update epochs (𝑛, 𝑛′), which are not recursive update epochs. □

Proposition Y.4. Against an established-anonymous adversary, all messages from established users have anonymity sets of size at least 𝑗 .

Proof. First we consider update messages from established users. To begin, they come from pseudonyms 𝑝 that were returned by

GAME_DEANONYMIZE called on the set of all users, so the anonymity set of 𝑝 at that point has size at least 𝑗 . An established-anonymous

adversary sends only one function message to 𝑝 , so we consider the different cases.

ForWit messages, if the user has already received aWit message, they will ignore any futureWit messages and post nothing. If they have

not received aWit message, they are not an established user.

For an Upd message to an established user’s pseudonym 𝑝 , we step through all restrictions of update message anonymity sets in

RESTRICT_ANONYMITY. Established-anonymous adversaries do not send to the same pseudonym twice, and send only one update

message to each user in a round (if they send any), meaningMY𝑢𝑝𝑑 contains a message to each honest user. Further, since the adversary

sends the same epoch argument,MY =MY𝑢𝑝𝑑 during the only iteration of the loop at Line 56.

No established user gets recursive update epochs by Proposition Y.3, established users must have a valid witness of epoch greater than

0, and by Proposition Y.2 they start with the same epoch. Thus in Line 71, all established users are in anon_sets[𝑝]. We required that the

adversary only send Upd messages when there are at least 𝑗 established users, giving the result for 𝑝 .

If an established user sends a Provemessage, the anonymity set of this pseudonym contains all the IDs given to GAME_DEANONYMIZE,
as Prove messages sent by honest users do not restrict their anonymity set at all.

Users only send proof messages in response to Prove messages, which was sent by either a corrupt or honest player. The requirements

on the adversary ensure that if an established user’s pseudonym 𝑝 receives such a message, 𝑝 was returned by GAME_DEANONYMIZE
with an argument of at least 𝑗 established players, so the anonymity set starts with at least 𝑗 established players. Again checking how the

anonymity set is restricted, it is first restricted to all users that have had some valid witness at Line 91, but all established users have had valid

witnesses at some point. Then Line 95 restricts to users that start with the same witness epoch, but Proposition Y.2 shows all established

users have the same epoch. Finally, by Proposition Y.3, established users do not recurse, so the anonymity set is set in Line 101. Thus, it

contains all established users given by GAME_DEANONYMIZE, of which there are at least 𝑗 .
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When these same established users send a proof message, their anonymity set is restricted to all users that are either in the accumulator

or not for that epoch. By assumption, this is true for all these established users, so the anonymity set does not change in size. □

We emphasize here that in our definition of anonymity sets, anonymity can “heal”. This means that if a user loses anonymity in one

round – meaning an adversary can associate specific messages to that user – they can regain anonymity in later rounds, such that future

messages can no longer be associated to them. Even though being added to or deleted from the accumulator can drastically reduce user

anonymity, the anonymity is quickly regained as the accumulator progresses.

In our established-anonymous accumulator, one can see that if an established user is deleted, they are no longer established, but after they

are re-added and an update is called, they become established again.
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