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Abstract. A hash-and-sign signature based on a preimage-sampleable
function (Gentry et al., STOC 2008) is secure in the quantum random
oracle model if the preimage-sampleable function is collision-resistant
(Boneh et al., ASIACRYPT 2011) or one-way (Zhandry, CRYPTO 2012).
However, trapdoor functions in code-based and multivariate-quadratic-
based signatures are not preimage-sampleable functions; for example,
underlying trapdoor functions of the Courtois-Finiasz-Sendrier, Unbal-
anced Oil and Vinegar (UOV), and Hidden Field Equations (HFE) sig-
natures are not surjections. Thus, such signature schemes adopt proba-
bilistic hash-and-sign with retry. While Sakumoto et al. in PQCRYPTO
2011 showed the security of this paradigm in the classical random oracle
model, their proof contains an error. Also, there is currently no known
security proof for the probabilistic hash-and-sign with retry in the quan-
tum random oracle model. We correct the proof in the random oracle
model and give the first security proof in the quantum random oracle
model for the probabilistic hash-and-sign with retry, assuming that the
underlying trapdoor function is non-invertible, that is, it is hard to find
a preimage of a given random value in the range. Our reduction from the
non-invertibility assumption is tighter than the existing ones that apply
only to signature schemes based on preimage-sampleable functions. We
apply the security proof to code-based and multivariate-quadratic-based
signatures. Additionally, we extend the proof into the multi-key setting
and propose a generic method that provides security reduction without
any security loss in the number of keys.
keywords: Post-quantum cryptography, digital signature, hash-and-sign,
quantum random oracle model, preimage sampleable function.

1 Introduction

Hash-and-Sign Signature in the Random Oracle Model (ROM): A digital signa-
ture is an essential and versatile primitive since it supports non-repudiation and
authentication; if a document is signed, the signer indeed signed it and cannot
repudiate the signature. The standard security notion of the digital signature
? Part of the work done while at NTT Corporation.
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is existential unforgeability against chosen-message attack (EUF-CMA) [31].
Roughly speaking, a signature scheme is said to be EUF-CMA-secure if no ef-
ficient adversary can forge a signature even if the adversary can access a signing
oracle, which captures non-repudiation and authentication. Hash-and-sign [5, 6]
is a widely adopted paradigm for constructing practical signatures, along with
Fiat-Shamir [28], in the ROM [5]. This paper focuses on hash-and-sign.

A hash-and-sign signature scheme is realized by a hard-to-invert function
F : X → Y, its trapdoor I : Y → X , and a hash function H : {0, 1}∗ → Y modeled
as a random oracle. To sign on a message m, a signer first computes y = H(r,m),
where r is a random string, computes x = I(y), and outputs σ = (r, x) as
a signature. A verifier verifies the signature σ with the verification key F by
checking if H(r,m) = F(x) or not. We refer to this construction as probabilistic
hash-and-sign; if r is an empty string, then deterministic hash-and-sign. The
security properties of the trapdoor function are outlined as follows.

Non-invertibility (INV): It is hard to find a preimage of a challenge y that is
uniformly chosen [34].

One-wayness (OW): It is hard to find a preimage of a challenge y = F(x) for x
chosen from some distribution on X [5].

Collision-resistance (CR): It is hard to find a collision pair of F.

A prime example is a deterministic hash-and-sign using a trapdoor permutation
such as RSA, which is EUF-CMA-secure in the ROM, assuming the OW of the
trapdoor permutation [5]. Gentry, Peikert, and Vaikuntanathan proposed deter-
ministic/probabilistic hash-and-sign based on a preimage-sampleable function
(PSF) [30], which is a trapdoor function with additional conditions, e.g., surjec-
tion. Gentry et al. showed a tight reduction from the CR assumption of PSF to
the strong EUF-CMA (sEUF-CMA) security of the deterministic/probabilis-
tic hash-and-sign, and they constructed a collision-resistant PSF from lattices.
Unfortunately, it is hard to build PSFs in code-based and multivariate-quadratic-
based (MQ-based) cryptography; for example, F is not a surjection. In this case,
the trapdoor I fails to invert y whose preimage does not exist. For such trapdoor
functions, we employ the probabilistic hash-and-sign with retry, where a signer
takes randomness r until r allows inversion of y = H(r,m). The Courtois-Finiasz-
Sendrier (CFS) signature [19] in code-based cryptography and the Unbalanced
Oil and Vinegar (UOV) [39] and Hidden Field Equations (HFE) signatures [49]
in MQ-based cryptography use this paradigm. Sakumoto et al. [53] gave a secu-
rity proof of the probabilistic hash-and-sign with retry in the ROM. However,
their proof has a flaw in the simulation of the random oracle, which is pointed
out by Chatterjee et al. [18].

Hash-and-Sign Signature in Quantum Random Oracle Model (QROM): Large-
scale quantum computers will be able to break widely deployed public-key cryp-
tography such as RSA and ECDSA because of Shor’s algorithm [56]. Con-
sequently, there has been a growing interest in post-quantum cryptography
(PQC). Recently NIST selected PQC candidates of public-key encryption/key-
encapsulation mechanism (KEM) and digital signature for standardization [48].
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Table 1: Summary of the security proofs for hash-and-sign in the QROM. DHaS,
PHaS, and PHaSwR denote deterministic hash-and-sign, probabilistic hash-and-
sign, and probabilistic hash-and-sign with retry. ε denotes the adversary’s advan-
tage in the game of the underlying assumption. q denotes the number of queries
to the signing and random oracles.

Name DHaS PHaS PHaSwR Assumption Security Bound

[14] X X – CR O(εcr)
[61] X X – OW/INV O(q2

√
εow/inv)

ext. of [59] X X – OW/INV O(q4εow/inv)
[17] – X – EUF-NMA O(εnma)

Ours - X X INV O(q2εinv)

Furthermore, NIST initiated an additional call for PQC digital signatures [47]. In
the context of PQC, it is essential for signature schemes to provide EUF-CMA
security in the QROM [14] since it models real-world quantum adversaries hav-
ing offline access to the hash function. Unfortunately, schemes that are secure
in the ROM are not always secure in the QROM, as demonstrated by separation
results, including a signature scheme, by Yamakawa and Zhandry [60].

Table 1 summarizes studies on the EUF-CMA security of hash-and-sign sig-
natures in the QROM. Boneh et al. [14] showed a tight reduction from the CR
assumption of PSF using the history-free reduction. Zhandry [61] gave a reduc-
tion from the OW/INV assumptions3, using a technique called semi-constant
distribution4. Unfortunately, the semi-constant distribution technique incurs a
square-root loss in the success probability. Yamakawa and Zhandry [59] gave the
lifting theorem that shows that any search-type game is hard in the QROM if
the game is hard in the ROM. They used the lifting theorem to show that an
EUF-NMA-secure signature in the ROM is EUF-NMA-secure in the QROM,
where NMA stands for No-Message Attack. By extending the results of [59],
we obtain a reduction from the OW/INV assumptions of PSF. Chailloux and
Debris-Alazard [17] gave a security proof of the probabilistic hash-and-sign based
on non-PSF trapdoor functions. Also, Grilo, Hövelmanns, Hülsing, and Ma-
jenz [32] gave a reduction from the EUF-RMA security of a signature scheme for
fixed-length messages, where RMA stands for Random-Message Attack5. How-
ever, there is no known reduction to the EUF-RMA security of the underlying
signature from the OW/INV assumptions of trapdoor functions. Regarding the
probabilistic hash-and-sign with retry, there is no valid proof even in the ROM.

3 For PSF, tight reductions exist both from OW to INV and from INV to OW.
4 Zhandry [61] proved the EUF-CMA security by assuming that the trapdoor per-

mutation is one-way. The security proof applies to a case where the PSF is either
one-way or non-invertible.

5 A signer chooses r, computes m′ = H(r,m), and signs on m′ by using a signing
algorithm of the signature scheme for fixed-length messages, and outputs (r, σ).
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Naturally, there is no proof in the QROM, which has an impact on the security
evaluation of code-based and MQ-based signatures. Our central question is:

Q1. Is there an EUF-CMA security proof for the probabilistic hash-and-sign
with retry? How tight is the security proof?

Provable Security in Multi-key Setting: The EUF-CMA security is sometimes
insufficient to ensure the security of the digital signature in the real world since
exploiting one of many users may be sufficient for a real-world adversary to
intrude into a system. We must consider the EUF-CMA security in the multi-
key setting, the M-EUF-CMA security in short. The adversary, given multiple
verification keys, tries to forge a valid signature for one of the verification keys.
If the adversary can gain an advantage by targeting multiple keys (multi-key
attack), the M-EUF-CMA security degrades with the number of keys (or users).
NIST mentioned resistance to multi-key attacks as a “desirable property” in
their call for proposals [46] of the PQC standardization project. We can ensure
resistance against multi-key attacks if there is no security loss in the number of
keys. Thus, our additional question is:

Q2. Is there an M-EUF-CMA security proof for hash-and-sign without any
security loss in the number of keys?

The technique of including an entire verification key as part of the input
for the hash function is known as key prefixing, which enables one to separate
the domain of the hash function for each verification key. Schnorr signature
adopts key prefixing to show a tight reduction in the multi-key setting [44].
Similarly, Duman et al. [25] proposed a technique called prefix hashing for the
Fujisaki-Okamoto transform of KEM. Prefix hashing is a technique in which the
hash function includes only a small unpredictable portion of a verification key,
resulting in a smaller increase in execution time compared to the key prefixing.

1.1 Contributions

Security Proof of Probabilistic Hash-and-Sign with Retry in the QROM: We affir-
matively answer Q1. We correct the existing proof of [53] in the ROM and estab-
lish a security proof in the QROM (main theorem) based on the corrected ROM
proof. Additionally, the main theorem applies to the probabilistic hash-and-sign
without retry. Furthermore, we show that a signature scheme is sEUF-CMA-
secure if the underlying trapdoor function is an injection. Our reduction is tighter
than the existing ones that apply to the probabilistic hash-and-sign without retry
only [61, 17, 59]. Fig. 1 shows a diagram of the reduction. The main theorem
comprises two reductions; EUF-NMA⇒ EUF-CMA and INV⇒ EUF-NMA,
where X⇒ Y inidicates a reduction from X to Y. The main theorem has a se-
curity bound (2qqro + 1)2εinv, where qqro is a bound on the number of random
oracle queries and εinv is an advantage of breaking the INV.
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ours

EUF-NMA
[59]

(ROM)
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[61]

ours

[6, 30, 53]

CR [14]

Fig. 1: A diagram illustrating reductions of hash-and-sign in the QROM. Red ar-
rows represent our results, while solid, double, and dotted arrows represent tight
reductions, reductions with linear or quadratic loss, and non-tight reductions.

Proof Idea: We provide a technical overview of the main theorem. To prove
EUF-NMA⇒ EUF-CMA, we assume that the following two values are statis-
tically or computationally indistinguishable:

– x obtained after retrying y until y becomes invertible by the trapdoor I.
– x obtained by a simulator that does not use the trapdoor I.

The proof by Sakumoto et al. [53] simulates the signing oracle by programming
H such that H(r,m) outputs F(x) for (r, x) chosen without using I. Since we do
not assume that F(x) is uniform, the output of H may become biased. Therefore,
their proof is flawed, and the following two additional steps are required.

First, we adapively reprogram the random function. Given a message m, the
signing oracle repeatedly reprograms H such that H(r,m) = y holds for randomly
chosen (r, y) ∈ R×Y, and this reprogramming continues until the trapdoor I can
provide a preimage x ∈ X of y (F(x) = y). In the ROM, this reprogramming is
feasible as long as r chosen in the signing oracle has not been queried in advance.
In the QROM, we employ the tight adaptive reprogramming technique [32].

Next, we cancel the reprogramming during retries, specifically, reprogram-
ming for (r, y) such that I(y) fails to invert, to make the simulation feasible
based on the aforementioned assumption. We utilize the fact that r is chosen
independently of the queried m in the signing oracle, which allows us to choose
r used for reprogramming during retries at the beginning of the game. We de-
fine a set of such prechosen r as S. Then, we puncture H on S [1], that is, a
modification of H such that the adversary cannot make a query for H on S. In
the ROM, this punctuation is feasible as long as the adversary does not make
queries for H on S. In the QROM, we utilize the semi-classical One-way to Hid-
ing lemma [1]. As a result, we can cancel the reprogramming, as the adversary
cannot distinguish whether H is reprogrammed during retries or not. After the
cancelation, the EUF-NMA adversary can simulate the signing oracle.

Regarding INV ⇒ EUF-NMA, the INV adversary gives his challenge y to
the EUF-NMA adversary and outputs x∗ that is included in the final output
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(m∗, r∗, x∗) of the EUF-NMA adversary. In the ROM, the INV adversary ran-
domly selects one query to H and returns his challenge y as in [53]. In the QROM,
we use the measure-and-reprogram technique developed by Don et al. [23], in-
curring a security loss of (2qqro + 1)2. As far as we know, this usage is new in
the context of the probabilistic hash-and-sign.

Applications: Applying the main theorem, we enhance the EUF-CMA security
of Wave [2] and give the first proof for the sEUF-CMA security of the mod-
ified CFS signature [20] as well as the EUF-CMA security of Rainbow [22],
GeMSS [16], MAYO [10], QR-UOV [29], and PROV [26] in the QROM. To the
best of our knowledge, the main theorem encompasses all existing hash-and-
sign signatures such that reductions of INV⇒ (s)EUF-CMA are known in the
ROM. NIST has recently announced additional candidates for post-quantum sig-
natures. NIST has the intention of standardizing schemes that are not based on
structured lattices [47]. The main theorem has wide application in code-based
and MQ-based cryptography, promising candidates for this call. The additional
candidates include Wave, MAYO, QR-UOV, and PROV. Notably, QR-UOV and
PROV have utilized the main theorem in their specifications [29, 26].

Security Proof in Multi-Key Setting: We introduce a generic method for estab-
lishing a reduction from the property of trapdoor functions in the single-instance
setting to the security of the hash-and-sign with prefix hashing in the multi-key
setting. The core idea behind this generic method is to apply pairs of randomly
generated transformations {Lj ,Rj}j to a single verification key F′. Here, F′ be-
longs to another trapdoor function, assumed to be non-invertible. This process
effectively simulates multiple verification keys through {Lj ◦F′ ◦Rj}j . Assuming
the indistinguishability between {Lj◦F′◦Rj}j and real verification keys {Fj}j , we
show a reduction of INV⇒M-EUF-CMA with a security bound (2qqro+1)2εinv
and a tight reduction of CR ⇒ M-sEUF-CMA. Since there is no security loss
in the number of keys, we can affirmatively answer Q2. Furthermore, we apply
the generic method to some hash-and-sign signatures. In these applications, we
introduce some computational problems that can computationally ensure the
indistinguishability between {Lj ◦ F ◦Rj}j and {Fj}j . However, establishing the
hardness of these computational problems remains an open problem as they have
not been extensively studied.

Concurrent Work: Liu, Jiang, and Zhao [41] show the EUF-CMA security of
the deterministic/probabilistic hash-and-sign based on trapdoor permutations
in the QROM by using the measure-and-reprogram technique by Don et al. [23].
Their security bound is (2(qqro+ qsign+1)+1)2εinv, where qsign is a bound on the
number of signing queries. They also give an analysis for (H)IBE in the QROM.
Our work has two advantages over their work on hash-and-sign. First, our work
has wider applications since it has generality in its application to probabilis-
tic hash-and-sign with/without retry, in contrast to the restriction of [41] to
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the deterministic/probabilistic hash-and-sign6 and allows the usage of non-PSF
trapdoor functions, generalization of trapdoor permutations. Second, the main
theorem has the bound (2qqro + 1)2εinv, which does not include qsign.

Two papers [21, 3] recently pointed out a subtle flaw in the security proofs
of Fiat-Shamir with aborts [42] in the QROM [37, 32]. The flaw stems from the
bias introduced by the simulation with abort, which we treat in EUF-NMA⇒
EUF-CMA carefully. We note that the games in the corrected proof in [3] are
defined in the same spirit as our proof of EUF-NMA⇒ EUF-CMA while the
proof techniques and the details are different. Leveraging its structural resem-
blance to the probabilistic hash-and-sign with retry, we present an alternative
security proof for the Fiat-Shamir with aborts by employing the same techniques
used in the main theorem of this paper.

Organization: Section 2 gives notations, definitions, and so on. Section 3 reviews
the existing security proofs in the (Q)ROM. Section 4 presents the main theorem
and discusses applications. In Section 5, we describe the generic method applied
in the multi-key setting. Appendix A demonstrates a flaw in the security proof
of concurrent work [41]. Appendix B presents security proofs of hash-and-sign
signatures reviewed in Appendix C. Appendices D and E show missing proofs
for the theorem in the multi-key setting. Appendix F shows applications of the
generic method in the multi-key setting. Appendix G provides a security proof
for the Fiat-Shamir with aborts, employing the same techniques as the main
theorem.

2 Preliminaries

2.1 Notations and Terminology

For n ∈ N, we let [n] := {1, . . . , n}. We write any symbol for sets in calligraphic
font. For a finite set X , |X | is the cardinality of X and U(X ) is the uniform
distribution over X . By x ←$ X and x ← DX , we denote the sampling of an
element from U(X ) and DX (distribution on X ). We denote a set of functions
having a domain X and a range Y by YX .

We write any symbol for functions in sans-serif font and adversaries in cal-
ligraphic font. Let F be a function, and A be an adversary. We denote by
y ← FH(x) and y ← AH(x) (resp., y ← F|H〉(x) and y ← A|H〉(x)) probabilistic
computations of F and A on input x with a classical (resp., quantum) oracle
access to a function H. If F and A are deterministic, we write y := FH(x) and
y := AH(x). For a random function H, we denote by Hx∗ 7→y∗ a function such
that Hx∗ 7→y∗

(x) = H(x) for x 6= x∗ and Hx∗ 7→y∗
(x∗) = y∗. The notation GA⇒y

denotes an event in which a game G played by A returns y.
We denote 1 if the Boolean statement is true > and 0 if the statement is false

⊥. A binary operation a
?
= b outputs > if a = b and outputs ⊥ otherwise.

6 Although the deterministic hash-and-sign is not in our scope, it can be transformed
into the probabilistic one with a small tweak.



8 H. Kosuge and K. Xagawa

Game: EUF-CMA
1 Q := ∅
2 (vk , sk)← Sig.KeyGen(1λ)

3 (m∗, σ∗)← ASign
cma(vk)

4 if m∗ ∈ Q then
5 return 0
6 return Sig.Verify(vk ,m∗, σ∗)

Sign(mi)

1 σi←Sig.Sign(sk ,mi)
2 Q := Q ∪ {mi}
3 return σi

Game: EUF-NMA

1 (vk , sk)← Sig.KeyGen(1λ)
2 (m∗, σ∗)← Anma(vk)
3 return Sig.Verify(vk ,m∗, σ∗)

Fig. 2: EUF-CMA and EUF-NMA games

2.2 Digital Signature and Trapdoor Function

Definition 1 (Digital Signature). A digital signature scheme Sig consists of
three algorithms:

Sig.KeyGen(1λ): This algorithm takes the security parameter 1λ as input and
outputs a verification key vk and a signing key sk .

Sig.Sign(sk ,m): This algorithm takes a signing key sk and a message m as input
and outputs a signature σ.

Sig.Vrfy(vk ,m, σ): This algorithm takes a verification key vk , a message m, and
a signature σ as input, and outputs > (acceptance) or ⊥ (rejection).

We say Sig is correct if, for all (vk , sk) ← Sig.KeyGen(1λ) and for all m ∈ M,
Pr[Sig.Vrfy(vk ,m, Sig.Sign(sk ,m)) = ⊥] is negligible.

Definition 2 (Security of Signature). Let Sig be a signature scheme. Us-
ing games given in Fig. 2, we define advantage functions of adversaries playing
EUF-CMA (Existential UnForgeability against Chosen-Message Attack) and
EUF-NMA (No-Message Attack) games against Sig as AdvEUF-CMA

Sig (Acma) =

Pr
[
EUF-CMAAcma⇒1

]
and AdvEUF-NMA

Sig (Anma) = Pr
[
EUF-NMAAnma⇒1

]
, re-

spectively. Also, we define an advantage function for an sEUF-CMA (strong
EUF-CMA) game as AdvsEUF-CMA

Sig (Acma) = Pr
[
sEUF-CMAAcma⇒1

]
, where the

sEUF-CMA game is identical to the EUF-CMA game except that Line 4 of
the game is changed as “ if (m∗, σ∗) ∈ Q then” and Line 2 of the signing
oracle is changed as “Q := Q ∪ {(mi, σi)}”. We say Sig is EUF-CMA-secure,
sEUF-CMA-secure, or EUF-NMA-secure if its corresponding advantage is neg-
ligible for any efficient adversary in the security parameter.

Definition 3 (Trapdoor Function). A trapdoor function T consists of three
algorithms:

Gen(1λ): This algorithm takes the security parameter 1λ as input and outputs
a function F with a trapdoor I of F.

F(x): This algorithm takes x ∈ X and deterministically outputs F(x) ∈ Y.
I(y): This algorithm takes y∈Y and outputs x∈X , s.t., F(x)=y, or outputs ⊥.
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Game: INV

1 (F, I)← Gen(1λ)
2 y ←$ Y
3 x∗ ← Binv(F, y)

4 return F(x∗)
?
= y

Game: OW

1 (F, I)← Gen(1λ)
2 x← DX
3 y := F(x)
4 x∗ ← Bow(F, y)

5 return F(x∗)
?
= y

Game: CR

1 (F, I)← Gen(1λ)
2 (x∗

1 , x
∗
2)← Bcr(F)

3 return F(x∗
1)

?
= F(x∗

2)

Fig. 3: INV (non-INVertibility), OW (One-Wayness), and CR (Collision-
Resistance) games

Definition 4 (Security of Trapdoor Function). Let T be a trapdoor func-
tion. Using games given in Fig. 3, we define advantage functions of adversaries
playing the INV (non-INVertibility) 7, OW (One-Wayness), and CR (Collision-
Resistance) games against T as AdvINV

T (Binv) = Pr
[
INVBinv⇒1

]
, AdvOW

T (Bow) =
Pr

[
OWBow⇒1

]
, and AdvCR

T (Bcr) = Pr
[
CRBcr⇒1

]
, respectively. We say T is

non-invertible, one-way, or collision-resistant if its corresponding advantage is
negligible in the security parameter for any efficient adversary.

2.3 Preimage-Sampleable Function

In the ROM, hash-and-sign is EUF-CMA-secure when instantiated with a
preimage-sampleable function (PSF) [30]. We first define its weakened version.
Definition 5 (Weak Preimage-Sampleable Function (WPSF)). A WPSF
T is a trapdoor function that is equipped with an additional function SampDom(F),
which takes as input F ∈ YX and outputs some x ∈ X .
We then review PSF:
Definition 6 (Preimage-Sampleable Function (PSF) [30]). A WPSF T
is said to be a PSF if it satisfies three conditions for any (F, I)← Gen(1λ):
Condition 1: F(x) is uniform over Y for x← SampDom(F).
Condition 2: x ← I(y) follows a distribution of x ← SampDom(F) given

F(x) = y.
Condition 3: I(y) outputs x satisfying F(x) = y for any y ∈ Y.

If T is collision-resistant PSF, it satisfies the above conditions plus the following:
Condition 4: For any y ∈ Y, the conditional min-entropy of x← SampDom(F)

given F(x) = y is at least ω(log(λ)).

In the proof of EUF-CMA security, a trapdoor function may not be a PSF,
but it must be a WPSF that satisfies a relaxed version of Condition 2 that
ensures indistinguishability between x← SampDom(F) and x← I(y). To define
this relaxed condition, we introduce a game shown in Fig. 4.
7 In general, non-invertibility of trapdoor functions is called one-wayness [30, 53, 17].

We make a distinction between them depending on the way to choose challenges
(INV follows [34] and OW follows [5]).
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Game: PSb

1 (F, I)← Gen(1λ)

2 b∗ ← DSampleb
ps (F)

3 return b∗

Sample0()

1 repeat
2 yi ←$ Y
3 xi ← I(yi)
4 until xi 6= ⊥
5 return xi

Sample1()

1 xi ← SampDom(F)
2 return xi

Fig. 4: PS (Preimage Sampling) game

Game: M-EUF-CMA
1 Q := ∅
2 for j ∈ [qkey] do
3 (vkj , skj)← Sig.KeyGen(1λ)

4 (j∗,m∗, σ∗)← ASign
cmam({vkj}j∈[qkey])

5 if (j∗,m∗) ∈ Q then
6 return 0
7 return Sig.Verify(vkj∗ ,m∗, σ∗)

a

Sign(j,mi)

1 σi ← Sig.Sign(skj ,mi)
2 Q := Q ∪ {(j,mi)}
3 return σi

Fig. 5: M-EUF-CMA (Multi-key EUF-CMA) game

Definition 7 (Preimage Sampling (PS) Game). Let T be a WPSF. Using
a game defined in Fig. 4, we define an advantage function of an adversary playing
the PS game against T as AdvPS

T (Dps) =
∣∣Pr[PS0Dps⇒1

]
− Pr

[
PS1
Dps⇒1

]∣∣. We
say T is preimage-simulatable if its advantage is negligible for any efficient
adversary.

2.4 Security Games in Multi-key/Multi-instance Settings

Definition 8 (Security of Signature in Multi-key Setting [38]). Let Sig
be a signature scheme. Using a game given in Fig. 5, we define advantage func-
tions of adversaries playing the M-EUF-CMA and M-sEUF-CMA (Multi-
key EUF-CMA/sEUF-CMA) games against Sig as AdvM-EUF-CMA

Sig (Acmam) =

Pr
[
M-EUF-CMAAcmam⇒1

]
and AdvM-sEUF-CMA

Sig (Acmam)=Pr
[
M-sEUF-CMAAcmam⇒1

]
,

where the M-sEUF-CMA game is identical to the M-EUF-CMA game except
that Line 5 of the game is changed as “ if (j∗,m∗, σ∗) ∈ Q then” and Line 2
of the signing oracle is changed as “Q := Q ∪ {(j,mi, σi)}”. We say Sig is
M-EUF-CMA-secure or M-sEUF-CMA-secure if its corresponding advantage
is negligible for any efficient adversary in the security parameter.

Definition 9 (INV, CR, and PS in Multi-instance Setting). Let T be a
trapdoor function or WPSF. Using games given in Fig. 6, we define advantage
functions of adversaries playing the M-INV, M-CR, and M-PS (Multi-instance
non-invertibility, collision resistance, and preimage sampling) games against T
as AdvM-INV

T (Binvm) = Pr
[
M-INVBinvm⇒1

]
, AdvM-CR

T (Bcrm) = Pr
[
M-CRBcrm⇒1

]
,

and AdvM-PS
T (Dpsm) =

∣∣Pr[M-PS0
Dpsm⇒1

]
− Pr

[
M-PS1

Dpsm⇒1
]∣∣, respectively. We
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Game: M-INV
1 for j ∈ [qinst] do
2 (Fj , Ij)←$ Gen(1λ)
3 yj ←$ Y
4 (j∗, x∗)← Binvm({(Fj , yj)}j∈[qinst])

5 return Fj∗(x∗)
?
= yj∗

Game: M-CR
1 for j ∈ [qinst] do
2 (Fj , Ij)←$ Gen(1λ);
3 (j∗, x∗

1 , x
∗
2)← Bcrm({Fj}j∈[qinst])

4 return Fj∗(x∗
1)

?
= Fj∗(x∗

2)

Game: M-PSb

1 for j ∈ [qinst] do
2 (Fj , Ij)←$ Gen(1λ)

3 b∗ ← DSampleb
psm ({Fj}j∈[qinst])

4 return b∗

a

Sample0(j)

1 repeat
2 yi ←$ Y
3 xi ← Ij(yi)
4 until xi 6= ⊥
5 return xi

a

Sample1(j)

1 xi←SampDom(Fj)
2 return xi

Fig. 6: M-INV, M-CR, and M-PS (Multi-instance INV, CR, and PS) games

HaS[T,H].KeyGen(1λ)

1 (F, I)← Gen(1λ)
2 return (F, I)

HaS[T,H].Sign(I,m)

1 repeat
2 r ←$ R
3 x← I(H(r,m))
4 until x 6= ⊥
5 return (r, x)

HaS[T,H].Vrfy(F,m, (r, x))

1 return F(x)
?
= H(r,m)

Fig. 7: Algorithms of the probabilistic hash-and-sign with retry

say T is multi-instance non-invertible, multi-instance collision-resistant, or multi-
instance preimage-simulatable if its corresponding advantage is negligible in the
security parameter for any efficient adversary.

2.5 Hash-and-Sign Paradigm

Fig. 7 shows algorithms of the probabilistic hash-and-sign with retry, and HaS[T,H]
is a signature scheme using a trapdoor function T and a hash function H.
If HaS[T,H].Sign outputs a signature without retry, HaS[T,H] instantiates the
probabilistic hash-and-sign. If r is empty, HaS[T,H] instantiates the determinis-
tic hash-and-sign.

2.6 Quantum Random Oracle Model (QROM)

In the ROM, a hash function H : R×M→ Y is modeled as a random function
H ←$ YR×M. The random function is under the control of the challenger, and
the adversary makes queries to the random oracle (random oracle queries) to
compute the hash values. In the ROM, the challenger can choose y ←$ Y and
program H := H(r,m) 7→y for queried (r,m) on-the-fly instead of choosing H ←$

YR×M at the beginning (lazy sampling technique).
In the QROM, the adversary makes queries to H in a superposition of many

different values, e.g.,
∑

(r,m) αr,m |r,m〉 |y〉. The challenger computes H and gives
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Game: ARb

1 H0 ←$ YR×M

2 H1 := H0

3 b∗ ← D|Hb〉,Repro
ar ()

4 return b∗

Repro(mi)

1 ri ← DR
2 yi ←$ Y
3 H1 := H

(ri,mi) 7→yi

1
4 return ri

Fig. 8: AR (Adaptive Reprogramming) game

a superposition of the results to the adversary,
∑

(r,m) αr,m |r,m〉 |y ⊕ H(r,m)〉.
Due to the nature of superposition queries in the QROM, traditional proof tech-
niques like lazy sampling used in the ROM cannot be directly applied in the
QROM. However, some works enable one to adaptively reprogram H in the se-
curity game [58, 35, 23, 32]. Among the works, we use the tight adaptive repro-
gramming technique [32] and the measure-and-reprogram technique [23]. Also,
we use the semi-classical O2H technique [1].

2.7 Proof Techniques in QROM

We introduce three techniques employed in proving the main theorem.

Tight Adaptive Reprogramming Technique [32]: Fig. 8 shows a game called AR
(Adaptive Reprogramming) game, in which the adversary Dar attempts to dis-
tinguish H0 (no reprogramming) from H1 (reprogrammed by Repro). For i-th
reprogramming query, the challenger reprograms H1 for ri ← DR and yi ←$ Y,
and gives ri to Dar. Let ε be a bound on the maximum probability of r ← DR,
that is, maxr̂∈R Pr[r = r̂ : r ← DR] ≤ ε. A distinguishing advantage of the AR
game is defined by AdvAR

H (Dar) =
∣∣Pr[AR0

Dar⇒1
]
− Pr

[
AR1
Dar⇒1

]∣∣.
Lemma 1 (Tight Adaptive Reprogramming Technique [32, Proposi-
tion 2]). For any quantum AR adversary Dar issuing at most qrep classical
reprogramming queries and qqro (quantum) random oracle queries to Hb, the
distinguishing advantage of the AR game is bounded by

AdvAR
H (Dar) ≤

3

2
qrep
√
qqroε.

Especially, if DR is the uniform distribution U(R), then ε is equal to 1
|R| .

Measure-and-Reprogram Technique [23]: Let A be a quantum adversary playing
a search-type game making qqro quantum queries to H ←$ YR×M. A two-stage
algorithm S comprises S1 and S2, and it operates with black-box access to A as
follows:

1. Choose (i, b)←$ ([qqro]× {0, 1}) ∪ {(qqro + 1, 0)}.
2. Run A with H until i-th query.
3. Measure i-th query and output (r,m) as the output of S1.
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4. Given a random θ, reprogram H′ = H(r,m)7→θ.
5. If i = qqro + 1, then go to Step 8.
6. Answer i-th query with H (if b = 0) or H′ (if b = 1).
7. Run A with H′ until the end.
8. Output A’s output z (possibly quantum) as the output of S2.

Then, the following lemma holds for S and A:

Lemma 2 (Measure-and-Reprogram Technique [23, Theorem 2]). For
any quantum adversary A issuing at most qqro (quantum) random oracle queries
to H←$ YR×M, there exists a two-stage algorithm S given uniformly chosen θ
such that for any (r̂, m̂) ∈ R×M and any predicate V,

Pr
[
(r,m) = (r̂, m̂) ∧ V(r,m, θ, z) : (r,m)← SA1 (), z ← SA2 (θ)

]
≥ 1

(2qqro + 1)2
Pr

[
(r,m) = (r̂, m̂) ∧ V(r,m,H(r,m), z) : (r,m, z)← A|H〉()

]
.

Semi-classical O2H Technique [1]: We define punctured oracle following [12].

Definition 10 (Punctured Oracle [12, Definition 1]). Let S ⊂ R ×M
be a set. Let fS : R ×M → {0, 1} be a predicate that returns 1 if and only if
(r,m) ∈ S. Punctured oracle H\S (H punctured by S) of H ∈ YR×M runs
as follows: on input (r,m), computes whether (r,m) ∈ S in an auxilliary qubit
|fS(r,m)〉, measures |fS(r,m)〉, runs H(r,m), and returns the result. Let FIND
be an event that any of measurements of |fS(r,m)〉 returns 1.

The answer from the oracle H\S depends on the measurement results. Let us con-
sider a query

∑
(r,m) αr,m |r,m〉 |y〉. H\S computes

∑
(r,m) αr,m |r,m〉 |y〉 |fS(r,m)〉

and measures the third register. If the result is 0, then the query is transformed to∑
(r,m) 6∈S αr,m |r,m〉 |y〉 |0〉 and H\S returns

∑
(r,m)6∈S αr,m |r,m〉 |y ⊕ H(r,m)〉

to the adversary. If the results is 1 (and thus, FIND = > holds), H\S returns∑
(r,m)∈S αr,m |r,m〉 |y ⊕ H(r,m)〉 to the adversary. Thus, if FIND = ⊥, then

the adversary cannot obtain any information on H(r,m) for (r,m) ∈ S. Hence,
we have the following:

Lemma 3 (Indistinguishability of Punctured Oracles [1, Lemma 1]).
Let H0,H1 : R×M→ Y and S ⊂ R×M, and z be a bitstring. (S, H0, H1, and
z are taken from arbitrary joint distribution satisfying H0(r,m) = H1(r,m) for
any (r,m) 6∈ S.) For any quantum adversary A and any event E,

Pr
[
E ∧ FIND = ⊥ : b← A|H0\S〉(z)

]
= Pr

[
E ∧ FIND = ⊥ : b← A|H1\S〉(z)

]
.

The following lemma provides a bound on the advantage gap between the original
game and a game with a punctured oracle by considering the probability of
FIND = >.
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Lemma 4 (Semi-classical O2H Technique [1, Theorem 1]). Let H : R×
M → Y and S ⊂ R ×M, and z be a bitstring. (S, H, and z are taken from
arbitrary joint distribution.) For any quantum adversary A issuing at most qqro
(quantum) random oracle queries to H,∣∣∣Pr[1← A|H〉(z)]− Pr

[
1← A|H\S〉(z) ∧ FIND = ⊥

]∣∣∣
≤

√
(qqro + 1)Pr

[
FIND = > : b← A|H\S〉(z)

]
.

Furthermore, the following provides a bound on Pr
[
FIND = > : b← A|H\S〉(z)

]
.

Lemma 5 (Search in Semi-classical Oracle [1, Theorem 2 and Corol-
lary 1]). Let A be a quantum adversary issuing at most qqro (quantum) random
oracle queries to H. Let B|H〉(z) be an algorithm that runs as follows: Picks
i ←$ [qqro], runs A|H〉(z) until just before i-th query, measures a query input
register in the computational basis, and outputs the measurement outcome as
(r,m). Then,

Pr
[
FIND = > : b← A|H\S〉(z)

]
≤ 4qqro Pr

[
(r,m) ∈ S : (r,m)← B|H〉(z)

]
.

In particular, if for each (r,m) ∈ S, Pr[(r,m) ∈ S] ≤ ε (conditioned on z, on
other oracles A has access to, and on other outputs of H), then

Pr
[
FIND = > : b← A|H\S〉(z)

]
≤ 4qqroε.

3 Existing Security Proofs

We review the existing security proofs, including our own, and summarize them
in Table 2.

Security Proof in the ROM [6, 30, 53]: Let Tpsf be a PSF. A reduction of
INV ⇒ EUF-CMA of HaS[Tpsf ,H] in the ROM is given by the lazy sampling
and programming. The INV adversary Binv, given a challenge (F, y), simulates
the EUF-CMA game played by an adversary Acma as follows: For a random
oracle query (r,m), Binv returns F(x) for x← SampDom(F) and stores (r,m, x)
in a database D. If (r,m, x) ∈ D with some x, then Binv gives F(x) to Acma.
For a signing query m, Binv chooses (r, x) by r ←$ R and x← SampDom(F). If
(r,m, ∗) 6∈ D, Binv returns (r, x) and stores (r,m, x) in D; otherwise Binv returns
stored (r, x). From Condition 1 of PSF (F(x) is uniform), Binv can use F(x) as an
output of the random function. Also from Conditions 2 and 3, Binv can simulate
an honestly generated signature xi ← I(H(ri,mi)) by xi ← SampDom(F). To win
the INV game, Binv gives his query y to Acma in one of (qsign + qro + 1) queries
to H. If Acma outputs a valid signature (m∗, r∗, x∗) and H(r∗,m∗) = y holds,
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Table 2: Summary of the existing and our security proofs. In “Conditions of
PSF”, X indicates this condition of PSF (see Definition 6) is necessary, and
X1/X2 indicate that Condition 2 is relaxed as “A bound δ on average of
δF,I is negligible” and “εps = AdvPS

Twpsf
(Dps) is negligible”. In “Target scheme”,

d/p/pr stand for the deterministic hash-and-sign, probabilistic hash-and-sign,
and probabilistic hash-and-sign with retry.

Security Conditions Target
proof Security Bound Assumption of PSF scheme

1 2 3 4

[14] 1

1−2−ω(log(λ)) εcr CR X X X X d/p

[61] 2
√(

qsign +
8
3
(qsign + qqro + 1)4

)
εow/inv OW/INV X X X – d/p

ext. of [59] 4qsign(qqro + 1)(2qqro + 1)2εow/inv OW/INV X X X – d/p

[41] (2(qqro + qsign + 1) + 1)2εow/inv OW/INV X X X – d/p

[17] 1
2

(
εnma +

8π√
3
q

3
2
qro

√
δ + qsign

(
δ +

qsign
|R|

))
EUF-NMA – X1 X – p

ours
(2qqro + 1)2εinv + εps +

3
2
q′sign

√
q′sign+qqro+1

|R|

+2(qqro + 2)
√

q′sign−qsign
|R|

INV – X2 – – p/pr

ours
εnma + εps +

3
2
q′sign

√
q′sign+qqro+1

|R|

+2(qqro + 2)
√

q′sign−qsign
|R|

EUF-NMA – X2 – – p/pr

ours (2qqro + 1)2εow/inv +
3
2
qsign

√
qsign+qqro+1

|R| OW/INV X X X – p

Binv can win the INV game by outputting x∗. Since H(r∗,m∗) = y holds with
1

qsign+qro+1 , we have AdvEUF-CMA
HaS[Tpsf ,H]

(Acmac) ≤ (qsign + qro + 1)AdvINV
Tpsf

(Binv), where
Acmac is an adversary who makes only classical queries8.

Sakumoto et al. [53] extended the above proof to the probabilistic hash-and-
sign with retry assuming non-PSF trapdoor functions. For a random oracle query
(r,m), Binv returns y ←$ Y and saves (r,m, y) in the database D′. For a signing
query mi, Binv takes ri ←$ R and xi ← SampDom(F). If (ri, ∗, ∗) ∈ D′, Binv
aborts the game; otherwise, Binv stores (ri,mi,F(xi)) in D′ and outputs (ri, xi).
There is an issue in the programming F(x) instead of y ←$ Y. Since we do not
assume Condition 1 of PSF, F(x) is not necessarily uniform. Therefore, the
output of H becomes biased, and their security proof is flawed.

8 AdvINV
Tpsf

(Binv) = AdvOW
Tpsf

(Bow) holds (DX is defined as SampDom(F) in the OW game
(see Fig. 3)) since the OW adversary can simulate the INV game by giving a uniform
y = F(x) to the INV adversary, and vice versa.
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Security Proof by Semi-constant Distribution [61]: Zhandry showed the reduc-
tion from the OW assumption of trapdoor permutation in the QROM using a
technique called semi-constant distribution, which leads to a reduction from the
INV assumption of PSF. Binv simulates the EUF-CMA game by generating sig-
natures without the trapdoor as the above security proof in the ROM. Instead of
adaptively programming H, Binv replaces H as H′ = F(DetSampDom(F, H̃(r,m))),
where DetSampDom is a deterministic function of SampDom and H̃←$ WR×M
is a random function to output randomness for DetSampDom [14]. From Con-
dition 1, H′ is indistinguishable from H.

The INV adversary Binv programs H′ that outputs y with probability ε (semi-
constant distribution). In the signing oracle, if H′(ri,mi) outputs y, Binv aborts
this game. A bound on the statistical distance between the random function
and the programmed one with the semi-constant distribution is 8

3 (qsign + qqro +
1)4ε2 [61, Corollary 4.3]. When Acma wins the EUF-CMA game, Binv can win
the INV game with probability (1− ε)qsignε ≈ ε− qsignε

2. Minimizing the bound
1
εAdvINV

Tpsf
+
(
qsign +

8
3 (qsign + qqro + 1)4

)
ε gives [61, Theorem 5.3]

AdvEUF-CMA
HaS[Tpsf ,H](Acma) ≤ 2

√(
qsign +

8

3
(qsign + qqro + 1)

4

)
AdvINV

Tpsf
(Binv).

Application of Lifting Theorem [59]: Yamakawa and Zhandry gave the lifting
theorem for search-type games. As an application of the lifting theorem, they
showed AdvEUF-NMA

Sig (Anma) ≤ (2qqro + 1)2AdvEUF-NMA
Sig (Anmac), where Anmac is

an EUF-NMA adversary making classical queries to H [59, Corollary 4.10].
For a hash-and-sign signature HaS[Tpsf ,H], they showed AdvEUF-CMA

HaS[Tpsf ,H](Acma) ≤
4qsignAdvEUF-NMA

HaS[Tpsf ,H]
(Anma) [59, Theorem 4.11]. Extending the results of [59] using

the security proof in the ROM, we have a bound:

AdvEUF-CMA
HaS[Tpsf ,H](Acma) ≤ 4qsign(qqro + 1)(2qqro + 1)2AdvINV

Tpsf
(Binv).

Reduction from EUF-NMA for WPSF [17]: The security proofs mentioned
above hold only if the underlying trapdoor function is PSF. To relax the condi-
tions on trapdoor functions, Chailloux and Debris-Alazard gave EUF-NMA⇒
EUF-CMA for the probabilistic hash-and-sign9. The authors assumed a WPSF
with Condition 3 and a weaker version of Condition 2, that is, there is a
bound δ on the average of statistical distance δF,I = ∆(SampDom(F), I(U(Y)))
over all (F, I)← Gen(1λ). Let Twpsf be a WPSF. The EUF-NMA adversaryAnma

replaces the random function H by H′, which outputs H(r,m) with probability
1
2 and F(DetSampDom(F, w)) with probability 1

2 . A bound on the advantage of

9 The authors of [17] defined a problem called claw with random function problem;
however, its definition is identical to EUF-NMA game for hash-and-sign.
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distinguishing H from H′ is 8π√
3
q
3/2
qro

√
δ. The authors gave [17, Theorem 2]

AdvEUF-CMA
HaS[Twpsf ,H](Acma)≤

1

2

(
AdvEUF-NMA

HaS[Twpsf ,H]
(Anma)+

8π√
3
q

3
2
qro

√
δ+qsign

(
δ +

qsign
|R|

))
.

(1)

Reduction from Collision-resistance [14]: Boneh et al. [14] gave a reduction from
the CR of a PSF Tpsf to the sEUF-CMA security of HaS[Tpsf ,H]. The CR adver-
sary Bcr given F simulates the sEUF-CMA game for Acma. For a random func-
tion H̃ ←$ WR×M, Bcr replaces H as H′(r,m) = F(DetSampDom(F, H̃(r,m))),
where H and H′ are indistinguishable from Condition 1. Also, Bcr simulates
the signing oracle using Conditions 2 and 3. If Acma wins, then F(x∗) =

H′(r∗,m∗) = F(x′) holds for x′ = DetSampDom(F, H̃(r∗,m∗)). When x∗ 6= x′,
Bcr can obtain a collision pair (x∗, x′). Since x∗ 6= x′ holds with probability
1− 2−ω(log(λ)) (see Condition 4),

AdvsEUF-CMA
HaS[Tpsf ,H]

(Acma) ≤
1

1− 2−ω(log(λ))
AdvCR

Tpsf
(Bcr). (2)

Concurrent Work [41]: Liu, Jiang, and Zhao [41] showed OW⇒ EUF-CMA for
the deterministic/probabilistic hash-and-sign based on trapdoor permutations
in the QROM. Their reduction can be extended to INV⇒ EUF-CMA for the
deterministic/probabilistic hash-and-sign based on PSFs. As in [18, 14, 61], the
random function H is replaced as H′ = F(DetSampDom(F, H̃(m))) to answer the
signing queries without using the trapdoor. From Condition 1, this modification
does not incur any security loss. Then, their reduction uses the measure-and-
reprogram technique [23, Theorem 2] (see Lemma 2 in Section 2.7) as in our
security proof. Their reduction has a security bound that includes qsign in the
multiplicative loss:10

AdvEUF-CMA
HaS[Tpsf ,H](Acma) ≤ (2(qqro + qsign + 1) + 1)2AdvINV

Tpsf
(Ainv). (3)

4 New Security Proof

The main theorem is as follows:
Theorem 1 (INV ⇒ EUF-CMA (Main Theorem)). For any quantum
EUF-CMA adversary Acma of HaS[Twpsf ,H] issuing at most qsign classical queries
to the signing oracle and qqro (quantum) random oracle queries to H←$ YR×M,
there exist an INV adversary Binv of Twpsf and a PS adversary Dps of Twpsf

issuing qsign sampling queries such that

AdvEUF-CMA
HaS[Twpsf ,H]

(Acma) ≤ (2qqro + 1)2AdvINV
Twpsf

(Binv) + AdvPS
Twpsf

(Dps)

+
3

2
q′sign

√
q′sign + qqro + 1

|R|
+ 2(qqro + 2)

√
q′sign − qsign
|R|

, (4)

10 In the latest version of [41], a term qsign has been removed from Eq. (3); however, we
have identified a flaw in the proof (see Appendix A).
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where q′sign is a bound on the total number of queries to H in all the signing
queries, and the running times of Binv and Dps are about that of Acma.

If Acma makes only classical random oracle queries qro times, then

AdvEUF-CMA
HaS[Twpsf ,H]

(Acma) ≤ (qro + 1)AdvINV
Twpsf

(Binv) + AdvPS
Twpsf

(Dps)

+ q′sign
q′sign + qro + 1

|R|
+ (qro + 1)

q′sign − qsign
|R|

.

Proof. In the beginning, we show that we can set q′sign as q′sign = c
ρ qsign for

some constant c > 1, where ρ = Pr[x 6= ⊥ : y ←$ Y, x← I(y)]. In q′sign trials,
at least qsign signatures are generated if the number of successful trials (where
I(H(r,m)) outputs a preimage) is qsign or more. Let S be a random variable for
the number of successful trials. E(S) = ρq′sign = cqsign holds. From the Chernoff
bound, we have Pr[S ≤ (1− γ)E(S)] ≤ e−

1
2γ

2E(S). Substituting γ =
E(S)−qsign+1

E(S) ,
the LHS becomes Pr[S ≤ qsign − 1] that is a probability that we cannot generate
qsign signatures with q′sign trials. Since we set q′sign = c

ρ qsign, the exponent of the

RHS becomes − ((c−1)qsign+1)2

2cqsign
≥ − c−1

2c qsign and the bound on Pr[S ≤ qsign − 1]

becomes negligible for qsign = ω(log(λ)).
In the upcoming proof, we will explain the proofs in parallel for both the

ROM and QROM. For the figures, we will use notations assuming the QROM.

EUF-NMA ⇒ EUF-CMA: Figs. 9 and 10 show the games and simulations
described below. Without loss of generality, we assume that Acma makes a query
(r∗,m∗) (the final ouput) to H. Then, the total number of queries to H is qro +1
(classical) or qqro + 1 (quantum).

Game G0 (EUF-CMA game): This is the original EUF-CMA game and
Pr

[
G0
Acma⇒1

]
= AdvEUF-CMA

HaS[Twpsf ,H]
(Acma) holds.

Game G1 (adaptive reprogramming of H): The signing oracle SignH uniformly
chooses yi and reprograms H := H(ri,mi) 7→yi until I(yi) does not output ⊥
(see Lines 3 to 5 in SignH for G1). Considering the number of retries, H is
reprogrammed for at most q′sign times.
ROM: When the signing oracle has not chosen the same ri in Line 2 of
SignH more than twice, and the chosen ri has not been queried to H in ad-
vance, there is no difference in the advantages between G0 and G1. Therefore,∣∣Pr[G0

Acma⇒1
]
− Pr

[
G1
Acma⇒1

]∣∣ ≤ q′sign
q′sign+qro+1
|R| holds.

QROM: The AR adversary Dar can simulate G0/G1 (the top row of Fig. 10).
If Dar plays AR0, Dar simulates G0; otherwise it simulates G1. From Lemma 1,
we have

∣∣Pr[G0
Acma⇒1

]
− Pr

[
G1
Acma⇒1

]∣∣ ≤ AdvAR
H (Dar) ≤ 3

2q
′
sign

√
q′sign+qqro+1
|R| .

Game G2 (pre-choosing r for unsuccessful trials): In the beginning, the chal-
lenger chooses r ←$ R for q′sign − qsign times and keeps them in a sequence
S (elements of S are ordered and may be duplicated.). In the signing oracle,
ri = S[ctr] is used for reprogramming if I(yi) outputs ⊥ for yi ←$ Y (see
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Game: G0-G1

1 Q := ∅
2 H←$ YR×M

3 (F, I)← Gen(1λ)

4 (m∗, r∗, x∗)← ASign,|H〉
cma (F)

5 if m∗ ∈ Q then
6 return 0

7 return F(x∗)
?
= H(r∗,m∗)

SignH(mi) for G0

1 repeat
2 ri ←$ R
3 xi ← I(H(ri,mi))
4 until xi 6= ⊥
5 Q := Q ∪ {mi}
6 return (ri, xi)

SignH(mi) for G1

1 repeat
2 ri ←$ R
3 yi ←$ Y
4 xi ← I(yi)

5 H := H(ri,mi) 7→yi

6 until xi 6= ⊥
7 Q := Q ∪ {mi}
8 return (ri, xi)

Game: G2

1 Q := ∅
2 H←$ YR×M

3 ctr := 0
4 S := ∅
5 for j ∈ [q′sign − qsign] do
6 r ←$ R
7 S := S ∪ {r}
8 (F, I)← Gen(1λ)

9 (m∗, r∗, x∗)← ASign,|H〉
cma (F)

10 if m∗ ∈ Q then
11 return 0

12 return F(x∗)
?
= H(r∗,m∗)

SignH(mi) for G2

1 repeat
2 yi ←$ Y
3 xi ← I(yi)
4 if xi = ⊥ then
5 ctr := ctr + 1
6 ri := S[ctr]
7 else
8 ri ←$ R
9 H := H(ri,mi) 7→yi

10 until xi 6= ⊥
11 Q := Q ∪ {mi}
12 return (ri, xi)

Game: G3-G5

1 Q := ∅
2 H←$ YR×M

3 FIND := ⊥
4 ctr := 0
5 S := ∅
6 for j ∈ [q′sign − qsign] do
7 r ←$ R
8 S := S ∪ {r}
9 S′ := {(r,m) : r ∈ S,m ∈ M}

10 (F, I)← Gen(1λ)

11 (m∗, r∗, x∗)← ASign,|H\S′〉
cma (F)

12 if m∗ ∈ Q∨FIND = > then
13 return 0

14 return F(x∗)
?
= H(r∗,m∗)

SignH(mi) for G3

1 repeat
2 yi ←$ Y
3 xi ← I(yi)
4 if xi = ⊥ then
5 ctr := ctr + 1
6 ri := S[ctr]
7 else
8 ri ←$ R
9 H := H(ri,mi) 7→yi

10 until xi 6= ⊥
11 Q := Q ∪ {mi}
12 return (ri, xi)

SignH(mi) for G4

1 repeat
2 yi ←$ Y
3 xi ← I(yi)
4 until xi 6= ⊥
5 ri ←$ R
6 H := H(ri,mi) 7→yi

7 Q := Q ∪ {mi}
8 return (ri, xi)

SignH(mi) for G5

1 xi ← SampDom(F)
2 ri ← R
3 H := H(ri,mi) 7→F(xi)

4 Q := Q ∪ {mi}
5 return (ri, xi)

Fig. 9: Games for EUF-NMA ⇒ EUF-CMA. The modifications from the pre-
vious game are highlighted in red text.

Lines 6 and 9 of SignH for G2), where S[j] is j-th element of S and ctr is a
counter that increments just before using S[ctr].
ROM and QROM: In G1, the challenger can choose ri in the beginning since
ri is chosen independently of mi queried by Acma. Also, ri is always uni-
formly chosen whatever I(yi) outputs. Therefore, the challenger can use ri
chosen in the beginning only when I(y) outputs ⊥. Hence, Pr

[
G1
Acma⇒1

]
=

Pr
[
G2
Acma⇒1

]
holds.
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D|Hb〉
ar () simulates G0/G1

1 Q := ∅
2 (F, I)← Gen(1λ)

3 (m∗, r∗, x∗)← ASign,|Hb〉
cma (F)

4 if m∗ ∈ Q then
5 return 0

6 return F(x∗)
?
= Hb(r

∗,m∗)

SignHb,Repro(mi)

1 repeat
2 ri ← Repro(mi)
3 xi ← I(Hb(ri,mi))
4 until xi 6= ⊥
5 Q := Q ∪ {mi}
6 return (ri, xi)

DSampleb
ps (F) simulates G4/G5

1 Q := ∅
2 H←$ YR×M

3 FIND := ⊥
4 S := ∅
5 for j ∈ [q′sign − qsign] do
6 r ←$ R
7 S := S ∪ {r}
8 S′ := {(r,m) : r ∈ S,m ∈ M}
9 (m∗, r∗, x∗)← ASign,|H\S′〉

cma (F)
10 if m∗ ∈ Q ∨ FIND = > then
11 return 0

12 return F(x∗)
?
= H(r∗,m∗)

SignH,Sampleb(mi)

1 xi ← Sampleb()
2 ri ←$ R
3 H := H(ri,mi) 7→F(xi)

4 Q := Q ∪ {mi}
5 return (ri, xi)

A|H〉
nma(F) simulates G5

1 Q := ∅
2 H′ := H
3 FIND := ⊥
4 S := ∅
5 for j ∈ [q′sign − qsign] do
6 r ←$ R
7 S := S ∪ {r}
8 S′ := {(r,m) : r ∈ S,m ∈ M}
9 (m∗, r∗, x∗)← ASign,|H′\S′〉

cma (F)
10 if m∗ ∈ Q ∨ FIND = > then
11 return 0

12 return F(x∗)
?
= H′(r∗,m∗)

SignH
′
(mi)

1 xi ← SampDom(F)
2 ri ←$ R
3 H′ := H′(ri,mi) 7→F(xi)

4 Q := Q ∪ {mi}
5 return (ri, xi)

Fig. 10: Simulations for EUF-NMA⇒ EUF-CMA

Game G3 (puncturing H): Let S ′ = {(r,m) : r ∈ S,m ∈ M} be a set induced
by S. Instead of H, Acma makes queries to H\S ′ (H punctured by S ′). Also,
G3 outputs 0 if FIND = > (see the definitions of H\S ′ and FIND in Defini-
tion 10).
ROM: Since H\S ′ is purely classical, FIND becomes > with at most (qro +

1)
q′sign−qsign
|R| ; therefore,

∣∣Pr[G2
Acma⇒1

]
− Pr

[
G3
Acma⇒1

]∣∣ ≤ (qro+1)
q′sign−qsign
|R| holds.

QROM: We use Lemma 4 to bound
∣∣Pr[G2

Acma⇒1
]
− Pr

[
G3
Acma⇒1

]∣∣. Suppose
that Pr

[
G2
Acma⇒1

]
= Pr

[
1← ASign,|H〉

cma (F)
]
. Since G3 uses H\S ′ and outputs 0

if FIND = >, we have Pr
[
G3
Acma⇒1

]
= Pr

[
1← ASign,

∣∣H\S′〉
cma (F) ∧ FIND = ⊥

]
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Game: G′
4

1 Q := ∅
2 H←$ YR×M

3 S := ∅
4 for j ∈ [q′sign] do
5 r ←$ R
6 S := S ∪ {r}
7 S′ = {(r,m) : r ∈ S,m ∈ M}
8 (F, I)← Gen(1λ)

9 (r′,m′)← BSign,|H〉
cma (F)

10 return (r′,m′)
?
∈ S′

SignH(mi) for G′
4

1 repeat
2 yi ←$ Y
3 xi ← I(yi)
4 until xi 6= ⊥
5 ri ←$ R
6 H := H(ri,mi) 7→yi

7 Q := Q ∪ {mi}
8 return (ri, xi)

Fig. 11: A game G′4 used in the application of Lemma 5

and Pr
[
FIND = > : G3

Acma⇒b
]
= Pr

[
FIND = > : b← ASign,

∣∣H\S′〉
cma (F)

]
. Then,

∣∣Pr[G2
Acma⇒1

]
−Pr

[
G3
Acma⇒1

]∣∣≤√
(qqro + 2)Pr

[
FIND=> : G3

Acma⇒b
]
, (5)

by Lemma 4. We will show a bound on Eq. (5) after defining G4.
Game G4 (reprogramming only for successful trials): The signing oracle repro-

grams H := H(ri,mi)7→yi only for ri ← R, yi ←$ Y, and xi ← I(yi) satisfying
xi 6= ⊥. Notice that Acma makes queries to the punctured oracle H\S ′.
ROM: Since Acma cannot distinguish whether H is reprogrammed for (r,m) ∈
S ′ if FIND = ⊥, Pr

[
G3
Acma⇒1

]
= Pr

[
G4
Acma⇒1

]
holds.

QROM: If the measurements of |fS′(r,m)〉 are 0 for all queries (FIND = ⊥),
then Acma’s queries never contain any (r,m) ∈ S ′ and Acma cannot obtain
H(r,m) for (r,m) ∈ S ′. Hence, if FIND = ⊥, then Acma cannot distinguish
whether H is reprogrammed at (r,m) ∈ S ′ in G3 or not in G4 and we have

Pr
[
FIND = ⊥ : G3

Acma⇒b
]
= Pr

[
FIND = ⊥ : G4

Acma⇒b
]

(6)

(as Lemma 3). Especially, if G3 or G4 outputs 1, then FIND should be ⊥
(Line 12 of G3-G5). Thus, Pr

[
G3
Acma⇒1

]
= Pr

[
G4
Acma⇒1

]
holds. Moreover,

Pr
[
FIND=> : G3

Acma⇒b
]
= Pr

[
FIND=> : G4

Acma⇒b
]

holds from Eq. (6).
Let G′4 be a game given in Fig. 11 (identical to G4 except that Bcma out-

puts (r′,m′) and H is not punctured). Choosing j ←$ [qqro + 1], Bcma runs
Acma playing G4. Just before Acma makes j-th query to H, Bcma measures
a query input register of Acma and outputs the measurement outcome as
(r′,m′). Since the oracles of G′4 reveal no information on S, Bcma has no infor-
mation on S; therefore, Pr

[
G′4
Bcma⇒1

]
≤ Pr[r′ ∈ S] ≤ q′sign−qsign

|R| holds. Hence,

Pr
[
FIND = > : G4

Acma⇒b
]
≤ 4(qqro + 1)

q′sign−qsign
|R| holds from Lemma 5 and an

upper bound on Eq. (5) is 2(qqro + 2)
√

q′sign−qsign
|R| .

Game G5 (simulating the signing oracle by SampDom): The signing oracle gen-
erates signatures by ri ←$ R and xi ← SampDom(F).
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ROM and QROM: The PS adversary Dps can simulate G4/G5 as in the sec-
ond row of Fig. 10. If Dps plays PS0, the procedures of the original and sim-
ulated G4 are identical. If Dps plays PS1, he simulates G5. Thus, we have∣∣Pr[G4

Acma⇒1
]
− Pr

[
G5
Acma⇒1

]∣∣ ≤ AdvPS
Twpsf

(Dps).

We show that the EUF-NMA adversary Anma can simulate G5 as in the bottom
row of Fig. 10. In the simulation, Acma makes queries to H′\S ′, where H′ outputs
whatever H outputs except for {(ri,mi)}i∈[qsign]. Since m∗ 6∈ Q holds if Acma wins,
H′(r∗,m∗) = H(r∗,m∗) holds for (m∗, r∗, x∗) that Acma returns. Therefore, Anma

wins his game if Acma wins the EUF-CMA game. Hence, Anma can perfectly
simulate G5 with the same number of queries and almost the same running time
as Acma, and Pr

[
G5
Acma⇒1

]
≤ AdvEUF-NMA

HaS[Twpsf ,H](Anma) holds. We finally stress that
the number of queries Anma made to H is qqro rather than qqro + qsign since Anma

never queries to its random oracle in the simulation of the signature.
Summing up, we have

AdvEUF-CMA
HaS[Twpsf ,H]

(Acma) ≤ AdvEUF-NMA
HaS[Twpsf ,H]

(Anma) + AdvPS
Twpsf

(Dps)

+
3

2
q′sign

√
q′sign + qqro + 1

|R|
+ 2(qqro + 2)

√
q′sign − qsign
|R|

. (7)

INV⇒ EUF-NMA: We use different techniques for the ROM and the QROM.
ROM: Given a challenge y, the INV adversary Binv randomly picks one of queries
to H and reprograms H and H(r,m)7→y. IfAnma wins his game with (m∗, r∗, x∗) and
H(r∗,m∗) = y holds, Binv can win the INV game with x∗. Since H(r∗,m∗) = y
holds with probability 1

qro+1 , AdvEUF-NMA
HaS[Twpsf ,H](Anma) ≤ (qro + 1)AdvINV

Twpsf
(Binv).

QROM: We use Lemma 2. Let S be a two-stage algorithm that consists of S1
and S2 and runs Anma in the EUF-NMA game as follows:

1. Choose (i, b)←$ ([qqro]× {0, 1}) ∪ {(qqro + 1, 0)}.
2. Run Anma with H until i-th query.
3. Measure i-th query and output (r,m) as the output of S1.
4. Given a random θ, reprogram H′ = H(r,m)7→θ.
5. If i = qqro + 1, then go to Step 8.
6. Answer i-th query with H (if b = 0) or H′ (if b = 1).
7. Run Anma with H′ until the end.
8. Output Anma’s output (m∗, r∗, x∗) as the output of S2.

The INV adversary Binv runs S. Since y is uniform in the INV game, Binv can
set the input for S2 as θ := y. When the predicate is F(x)

?
= H(r,m), we have

Pr
[
(r,m) = (r̂, m̂) ∧ F(x) = y : (r,m)← SAnma

1 (), (m, r, x)← SAnma
2 (y)

]
≥ 1

(2qqro + 1)2
Pr

[
(r,m) = (r̂, m̂) ∧ F(x) = H(r,m) : (m, r, x)← A|H〉nma(F)

]
,
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for any (r̂, m̂) ∈ R×M from Lemma 2. By summing over all (r̂, m̂) ∈ R×M,

Pr
[
F(x) = y : (r,m)← SAnma

1 (), (m, r, x)← SAnma
2 (y)

]
≥ 1

(2qqro + 1)2
Pr

[
F(x) = H(r,m) : (m, r, x)← A|H〉nma(F)

]
. (8)

Notice that the probability in the RHS of Eq. (8) is the EUF-NMA advan-
tage. Also, AdvINV

Twpsf
(Binv) ≥ Pr

[
F(x) = y : (r,m)← SAnma

1 (), (m, r, x)← SAnma
2 (y)

]
holds since Binv runs S. Hence, we have

AdvEUF-NMA
HaS[Twpsf ,H]

(Anma) ≤ (2qqro + 1)2AdvINV
Twpsf

(Binv). (9)

From Eqs. (7) and (9), we have Eq. (4). ut

Theorem 1 has the following two advantages:

Advantage 1 (Wide applications): Our reduction gives security proofs for code-
based and MQ-based hash-and-sign signatures. Relaxation of Condition 2 is
necessary for such applications. The existing security proofs replace the random
function H with H′ all at once, requiring statistical indistinguishability between
H and H′. On the other hand, our proof adaptively reprograms H in each signing
query. This approach enables us to provide the security proof under a weaker
assumption compared to the one required by PSF, namely, a trapdoor function is
WPSF and preimage-simulatable. When considering the PS advantage, the use
of computational indistinguishability leads to further relaxation of requirements
for the trapdoor function.

Advantage 2 (Tighter proof): Our reduction is tighter than the existing ones [61,
59]. While we cannot guarantee the optimality of our reduction, we can infer
from several observations that a multiplicative loss of (2qqro +1)2 appears to be
unavoidable in the generic (black-box) reduction. The reduction incurs a loss of
the number of queries to H, even in the ROM (see Section 3). Second, the security
loss of a generic reduction from ROM to QROM using the lifting theorem [59]
is at least (2qqro + 1)2. Third, in the Fiat-Shamir paradigm, a generic reduction
from arbitrary ID schemes incurs the same security loss (see Remark 4).

We give some remarks on Theorem 1.

Remark 1. If HaS[Twpsf ,H] adopts the probabilistic hash-and-sign, then q′sign =
qsign holds and the last term of Eq. (4) becomes 0.

Remark 2. We have a tight reduction in EUF-NMA ⇒ EUF-CMA with the
security bound of Eq. (7). Comparing this bound with the one presented in [17]
(refer to Eq. (1) in Section 3), we observe that our requirement for Twpsf is
weaker, and there are no square-root terms associated with Condition 2.
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Remark 3. When the underlying trapdoor function is PSF (or trapdoor permu-
tation), we have:

AdvEUF-CMA
HaS[Tpsf ,H](Acma) ≤ (2qqro + 1)2AdvINV

Tpsf
(Binv) +

3

2
qsign

√
qsign + qqro + 1

|R|
.

As HaS[Tpsf ,H].Sign produces a signature without retry (Condition 3), q′sign =
qsign holds. In the PS game, the outputs of I and SampDom(F) are equivalent
due to Condition 2, resulting in AdvPS

Tpsf
(Dps) = 0. This bound is tighter than

existing ones for HaS[Tpsf ,H] (see Table 2).

Remark 4. Grilo et al. showed a tight reduction of EUF-NMA ⇒ EUF-CMA
in the Fiat-Shamir paradigm, assuming that the underlying ID scheme is honest
verifier zero-knowledge (HVZK) [32, Theorem 3]. Also, Don et al. gave a generic
reduction in the Fiat-Shamir transform of arbitrary ID schemes with a security
loss (2qqro + 1)2 [24, Theorem 8]. The above reductions use the tight adaptive
reprogramming technique and the measure-and-reprogram technique.

4.1 Extension to sEUF-CMA Security

If F is injective, HaS[Twpsf ,H] is sEUF-CMA secure.

Corollary 1 (INV ⇒ sEUF-CMA). Suppose that F of Twpsf is an injection.
For any quantum sEUF-CMA adversary Acma of HaS[Twpsf ,H] issuing at most
qsign classical queries to the signing oracle and qqro (quantum) random oracle
queries to H ←$ YR×M, there exist an INV adversary Binv of Twpsf and a PS
adversary Dps of Twpsf issuing qsign sampling queries such that

AdvsEUF-CMA
HaS[Twpsf ,H]

(Acma) ≤ (2qqro + 1)2AdvINV
Twpsf

(Binv) + AdvPS
Twpsf

(Dps)

+
3

2
q′sign

√
q′sign + qqro + 1

|R|
+ 2(qqro + 2)

√
q′sign − qsign
|R|

, (10)

where q′sign is a bound on the total number of queries to H in all the signing
queries, and the running times of Binv and Dps are about that of Acma.

Proof. The sEUF-CMA game outputs 0 if (m∗, r∗, x∗) ∈ Q′. Due to the injec-
tion of F, if (m∗, r∗) = (mi, ri), it implies x∗ = xi. Therefore, we can rephrase
the condition for outputting 0 as follows: the game outputs 0 if (m∗, r∗) ∈ Q′,
where Q′ = {(mi, ri)}i∈[qsign]. With this reinterpretation, we demonstrate that
the same bound as Eq. (7) holds for EUF-NMA⇒ sEUF-CMA.

In Corollary 1, we can use the same games as defined in Theorem 1, and
the bound on

∣∣Pr[G0
Acma⇒1

]
− Pr

[
G5
Acma⇒1

]∣∣ remains unchanged. In the sim-
ulation of G5 (see the bottom row of Fig. 10), Acma uses H′\S ′ reprogrammed
on {(ri,mi)}i∈[qsign] instead of the original H. By (m∗, r∗) 6∈ Q′, H′(r∗,m∗) =
H(r∗,m∗) holds and Anma can win his game if F(x∗) = H′(r∗,m∗). Therefore,
Pr

[
G5
Acma⇒1

]
≤ AdvEUF-NMA

HaS[Twpsf ,H](Anma) holds. Hence, Eq. (7) holds. ut
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4.2 Applications of New Security Proof

By applying Theorem 1, we can establish security proofs for Wave [2], the orig-
inal/modified UOV signatures [39, 53], the modified HFE signature [53], and
MAYO [10]. Additionally, by utilizing Corollary 1, we can provide a security
proof for the modified CFS signature [20]. Essentially, it is sufficient to directly
apply Theorem 1 or Corollary 1; however, we need to derive bounds on the PS
advantage, denoted by εps. We briefly explain ideas behind bounding εps (see the
complete proofs in Appendix B).

Modified CFS signature: An invertible subset of Y, that is, Y ′ = {y : I(y) 6= ⊥},
is a set of decodable syndromes of a Goppa code and the domain X of F is a set
of corresponding errors. Given the relationship between X and Y ′, there exists
a one-to-one correspondence between x ∈ X and y ∈ Y ′, and consequently,
F is an injection (Corollary 1 is applied). Therefore, a preimage generated
after retries is uniform over X , and thus, SampDom(F), that is, x←$ X , can
perfectly simulate the preimage. Hence, εps = 0 holds.

Wave: Wave adopts the probabilistic hash-and-sign (Eq. (7) is applied.) and
its trapdoor function is average trapdoor PSF (ATPSF) [17] that is a special
case of WPSF satisfying:
1. There is a bound δ on the average of δF,I over all (F, I) ← Gen(1λ),

where δF,I = ∆(SampDom(F), I(U(Y))) is a statistical distance between
SampDom(F) and I(y) for y ←$ Y (relaxed Condition 2).

2. I(y) outputs x satisfying F(x) = y for any y ∈ Y (Condition 3).
Applying the union bound over qsign signing queries, we have εps ≤ qsignδ.

Original UOV signature: Since there is no known statistical bound on εps, we
must assume the computational hardness of the PS game.

Modified UOV/HFE signatures: Since a preimage generated after retries follows
a uniform distribution as shown in [53], x← SampDom(F), that is, x←$ X ,
can perfectly simulate the preimage; therefore, we have εps = 0.

MAYO: MAYO adopts the probabilistic hash-and-sign (Eq. (7) is applied.) and
its trapdoor I iteratively retries a part of x called vinegar variables until a
specific condition is met. If I consistently outputs x without needing to retry
the vinegar variables, then SampDom(F) (x←$ X ) can perfectly simulate the
preimage, and εps = 0 holds. Let τ be a bound on the probability of I retrying
the vinegar variables. MAYO’s parameter sets ensure that 1 − qsignτ > 1

2
holds, where the expected qsign aligns with the security levels [10].

QR-UOV [29], PROV [26], and GeMSS [16] are provable secure since they follow
the modified UOV/HFE signatures. If Rainbow [22] makes the same modification
as the modified UOV signature, the scheme can be provably secure.

4.3 Extenstion to Security Proof of Fiat-Shamir with Aborts

The Fiat-Shamir with aborts paradigm [42] shares a similar structure with the
probabilistic hash-and-sign with retry. Concurrent works by Devevey et al. [21]
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and Barbosa et al. [3] demonstrate reductions of EUF-NMA ⇒ EUF-CMA
for the Fiat-Shamir with aborts. Devevey et al. rely on the strong HVZK as-
sumption [21, Definition 6], which allows for statistical simulation of protocol
outputs even in cases of failure. Their proof uses the tight adaptive reprogram-
ming technique to alter the signing oracle such that the EUF-NMA adversary
can simulate using the statistical HVZK. In contrast, Barbosa et al. assume a
weaker assumption called accepting HVZK assumption, which assumes that pro-
tocol outputs can be statistically simulated if the protocol does not fail [3, Defi-
nition 1]. This assumption closely aligns with the idea that a trapdoor function is
statistically preimage-simulatable (see Definition 7). Essentially, their approach
aligns with ours, involving the adaptive reprogramming followed by canceling
the reprogramming during retries.

Given the structural similarity to the probabilistic hash-and-sign with retry,
it is natural to explore the possibility of establishing a security proof for the
Fiat-Shamir with aborts using the same techniques as presented in Theorem 1.
In Appendix G, we present an alternative tight reduction of EUF-NMA ⇒
EUF-CMA for the Fiat-Shamir with aborts. The security bound, assuming the
accepting HVZK, is almost identical to that of Barbosa et al. [3, Theorem 2].

5 Security Proof of Hash-and-Sign with Prefix Hashing
in Multi-key Setting

In prefix hashing, the hash function H includes a small unpredictable portion of
the verification key. Let H : U×R×M→ Y be a hash function and HaSph[T,H,E]
be a signature scheme adopting the probabilistic hash-and-sign with retry and
prefix hashing, where E : YX → U is a deterministic function to extract a small
unpredictable part of F into a key ID u ∈ U . We assume that E(F) is uniform
over U for (F, I) ← Gen(1λ)11. For a message m, HaSph[T,H,E].Sign repeats
r ←$ R and x ← I(H(E(F), r,m)) until x 6= ⊥ holds, and outputs (r, x). For
a verification key F, a message m, and a signature (r, x), HaSph[T,H,E].Vrfy

verifies by F(x)
?
= H(E(F), r,m).

We show that M-INV ⇒ M-EUF-CMA and M-CR ⇒ M-sEUF-CMA
hold without any security loss in the number of keys qkey (see Lemma 8 in Ap-
pendix D and Lemma 9 in Appendix E). We note that there exist trivial reduc-
tions: AdvM-INV

T (Binvm) ≤ qkeyAdvINV
T (Binv) and AdvM-CR

T (Bcrm) ≤ qkeyAdvCR
T (Bcr).

To address this issue, we propose a generic method to show reductions from INV
or CR by assuming the hardness of the computational problem on keys’ distri-
butions.

Let {Fj}j∈[qkey] be verification keys generated by Gen of a trapdoor fucntion
T. Given a verification key F′ : X ′ → Y ′ generated by Gen′ of another trapdoor
function T′, we simulate {Fj}j∈[qkey] by {Lj ◦F′◦Rj}j∈[qkey], where Lj : Y ′ → Y and
Rj : X → X ′. Let DL and DR be some distributions of Lj and Rj . We note that
11 If unpredictable parts do not exist or are computationally expensive to include in

H, a fixed nonce can be used instead (the nonce is put in the verification key).
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Game: STb

1 (F′, I′)← Gen′(1λ)

2 b∗ ← DNewKeyb
st ()

3 return b∗

a

NewKey0()

1 (Fj , Ij)← Gen(1λ)
2 return Fj

a

NewKey1()

1 Lj ← DL

2 Rj ← DR

3 Fj := Lj ◦ F′ ◦ Rj

4 return Fj

Fig. 12: ST (Sandwich Transformation) game

the domains and ranges of F′ and Fj ’s may differ. We define a new game to give
a bound on the distinguishing advantage of {Fj}j∈[qkey] and {Lj ◦ F′ ◦Rj}j∈[qkey].

Definition 11 (ST (Sandwich Transformation) Game). Let T and T′ be
trapdoor functions. Using a game given in Fig. 12, we define an advantage func-
tion of an adversary Dst playing the ST game against T and T′as AdvST

T,T′ (Dst) =∣∣Pr[ST0
Dst⇒1

]
− Pr

[
ST1
Dst⇒1

]∣∣.
We have the following reductions assuming some conditions on Lj and Rj

(see the proofs in Appendices D and E.).

Lemma 6 (INV + ST ⇒ M-EUF-CMA). Let T′ be a trapdoor function
with F′ : X ′ → Y. Suppose that Lj : Y → Y and Rj : X → X ′ are used to simulate
Fj by Lj ◦ F′ ◦ Rj in the ST game, where Lj is a bijection.

For any quantum M-EUF-CMA adversary Acmam of HaSph[Twpsf ,H,E] with
qkey keys and issuing at most qsign classical queries to the signing oracle and
qqro (quantum) random oracle queries to H ←$ YU×R×M, there exist an INV
adversary Binv of T′, an M-PS adversary Dpsm of Twpsf with qkey instances and
issuing qsign sampling queries, and an ST adversary Dst of (Twpsf ,T

′) issuing
qkey new key queries such that

AdvM-EUF-CMA
HaSph[Twpsf ,H,E]

(Acmam) ≤ (2qqro + 1)2AdvINV
T′ (Binv) + AdvM-PS

Twpsf
(Dpsm)

+ AdvST
Twpsf ,T′(Dst) +

3

2
q′sign

√
q′sign + qqro + 1

|R|

+ 2(qqro + 2)

√
q′sign − qsign
|R|

+
q2key
|U|

, (11)

where q′sign is a bound on the total number of queries to H in all the signing
queries and the running times of Binv, Dpsm , and Dst are about that of Acmam .

Lemma 7 (CR + ST ⇒ M-sEUF-CMA). Let T′ be a trapdoor function
with F′ : X ′ → Y. Suppose that Lj : Y ′ → Y and Rj : X → X ′ are used to simulate
Fj by Lj ◦ F′ ◦ Rj in the ST game, where Lj and Rj are injections.

For any quantum M-sEUF-CMA adversary Acmam of HaSph[Tpsf ,H,E] with
qkey keys and issuing at most qsign classical queries to the signing oracle and qqro
(quantum) random oracle queries to H←$ YU×R×M, there exist a CR adversary
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Bcr of T′ and an ST adversary Dst of (Tpsf ,T
′) issuing qkey new key queries such

that

AdvM-sEUF-CMA
HaSph[Tpsf ,H,E]

(Acmam) ≤
1

1−2−ω(log(λ))

(
AdvCR

T′ (Bcr)+AdvST
Tpsf ,T′(Dst)

)
+

q2key
|U|

,

where the running times of Bcr and Dst are about that of Acmam .

In Appendix F, we apply the generic method to some frameworks of hash-
and-sign signatures in lattice-based, code-based, and MQ-based cryptography.
To bound the ST advantage, we introduce multi-instance variants of established
computational problems in code-based and MQ-based cryptography, that is, per-
mutation/linear equivalence [51] and morphism of polynomials [50].

Open problems: There are two open problems for the generic method. First,
the computational problems used for bounding the ST advantage have not been
studied deeply; therefore, future studies are necessary to guarantee the hardness
of the problems. Second, we currently fail to use the generic method to show the
M-EUF-CMA security under adaptive corruptions of signing keys. Solving this
issue is the second open problem.

References

1. Ambainis, A., Hamburg, M., Unruh, D.: Quantum security proofs using semi-
classical oracles. In: Boldyreva and Micciancio [13], pp. 269–295. https://-
doi.org/10.1007/978-3-030-26951-7_10 5, 12, 13, 14

2. Banegas, G., Carrier, K., Chailloux, A., Couvreur, A., Debris-Alazard, T., Gaborit,
P., Karpman, P., Loyer, J., Niederhagen, R., Sendrier, N., et al.: Wave. Tech.
rep., National Institute of Standards and Technology (2023), available at https:
//wave-sign.org/wave_documentation.pdf 6, 25, 35, 39

3. Barbosa, M., Barthe, G., Doczkal, C., Don, J., Fehr, S., Grégoire, B., Huang,
Y.H., Hülsing, A., Lee, Y., Wu, X.: Fixing and mechanizing the security proof of
fiat-shamir with aborts and dilithium. In: Handschuh and Lysyanskaya [33], pp.
358–389. https://doi.org/10.1007/978-3-031-38554-4_12 7, 26, 50, 53

4. Barenghi, A., Biasse, J.F., Persichetti, E., Santini, P.: On the computational hard-
ness of the code equivalence problem in cryptography. Advances in Mathematics of
Communications 17(1), 23–55 (Feb 2023). https://doi.org/10.3934/amc.2022064,
/article/id/62fa202b4cedfd0007b8b288 48

5. Bellare, M., Rogaway, P.: Random oracles are practical: A paradigm for design-
ing efficient protocols. In: Denning, D.E., Pyle, R., Ganesan, R., Sandhu, R.S.,
Ashby, V. (eds.) ACM CCS 93. pp. 62–73. ACM Press (Nov 1993). https://-
doi.org/10.1145/168588.168596 2, 9

6. Bellare, M., Rogaway, P.: The exact security of digital signatures: How to sign
with RSA and Rabin. In: Maurer [43], pp. 399–416. https://doi.org/10.1007/3-
540-68339-9_34 2, 5, 14

7. Belsley, E.D.: Rates of convergence of Markov chains related to association schemes.
Harvard University (May 1993) 41

https://doi.org/10.1007/978-3-030-26951-7_10
https://doi.org/10.1007/978-3-030-26951-7_10
https://wave-sign.org/wave_documentation.pdf
https://wave-sign.org/wave_documentation.pdf
https://doi.org/10.1007/978-3-031-38554-4_12
https://doi.org/10.3934/amc.2022064
/article/id/62fa202b4cedfd0007b8b288
https://doi.org/10.1145/168588.168596
https://doi.org/10.1145/168588.168596
https://doi.org/10.1007/3-540-68339-9_34
https://doi.org/10.1007/3-540-68339-9_34


Probabilistic Hash-and-Sign with Retry in the QROM 29

8. Beullens, W.: Not enough LESS: An improved algorithm for solving code equiv-
alence problems over Fq. In: Dunkelman, O., Jr., M.J.J., O’Flynn, C. (eds.) SAC
2020. LNCS, vol. 12804, pp. 387–403. Springer, Heidelberg (Oct 2020). https://-
doi.org/10.1007/978-3-030-81652-0_15 48

9. Beullens, W.: Improved cryptanalysis of UOV and Rainbow. In: Canteaut, A.,
Standaert, F.X. (eds.) EUROCRYPT 2021, Part I. LNCS, vol. 12696, pp. 348–373.
Springer, Heidelberg (Oct 2021). https://doi.org/10.1007/978-3-030-77870-5_13
42

10. Beullens, W., Campos, F., Celi, S., Hess, B., Kannwischer, M.: MAYO. Tech.
rep., National Institute of Standards and Technology (2023), available at https:
//pqmayo.org/assets/specs/mayo.pdf 6, 25, 35, 38, 42, 43

11. Beullens, W., Chen, M.S., Ding, J., Gong, B., Kannwischer, M.J., Patarin,
J., Peng, B.Y., Schmidt, D., Shih, Cheng-Jhih Tao, C., Yang, B.Y.:
UOV. Tech. rep., National Institute of Standards and Technology (2023),
available at https://csrc.nist.gov/csrc/media/Projects/pqc-dig-sig/documents/
round-1/spec-files/UOV-spec-web.pdf 36, 40

12. Bindel, N., Hamburg, M., Hövelmanns, K., Hülsing, A., Persichetti, E.: Tighter
proofs of CCA security in the quantum random oracle model. In: Hofheinz, D.,
Rosen, A. (eds.) TCC 2019, Part II. LNCS, vol. 11892, pp. 61–90. Springer, Hei-
delberg (Dec 2019). https://doi.org/10.1007/978-3-030-36033-7_3 13

13. Boldyreva, A., Micciancio, D. (eds.): CRYPTO 2019, Part II, LNCS, vol. 11693.
Springer, Heidelberg (Aug 2019) 28, 30

14. Boneh, D., Dagdelen, Ö., Fischlin, M., Lehmann, A., Schaffner, C., Zhandry,
M.: Random oracles in a quantum world. In: Lee, D.H., Wang, X. (eds.) ASI-
ACRYPT 2011. LNCS, vol. 7073, pp. 41–69. Springer, Heidelberg (Dec 2011).
https://doi.org/10.1007/978-3-642-25385-0_3 3, 5, 15, 16, 17, 46

15. Bouillaguet, C., Fouque, P.A., Véber, A.: Graph-theoretic algorithms for the “iso-
morphism of polynomials” problem. In: Johansson, T., Nguyen, P.Q. (eds.) EU-
ROCRYPT 2013. LNCS, vol. 7881, pp. 211–227. Springer, Heidelberg (May 2013).
https://doi.org/10.1007/978-3-642-38348-9_13 49

16. Casanova, A., Faugère, J.C., Macario-Rat, G., Patarin, J., Perret, L., Ryck-
eghem, J.: GeMSS. Tech. rep., National Institute of Standards and Technology
(2020), available at https://csrc.nist.gov/projects/post-quantum-cryptography/
post-quantum-cryptography-standardization/round-3-submissions 6, 25, 38

17. Chailloux, A., Debris-Alazard, T.: Tight and optimal reductions for signatures
based on average trapdoor preimage sampleable functions and applications to code-
based signatures. In: Kiayias, A., Kohlweiss, M., Wallden, P., Zikas, V. (eds.)
PKC 2020, Part II. LNCS, vol. 12111, pp. 453–479. Springer, Heidelberg (May
2020). https://doi.org/10.1007/978-3-030-45388-6_16 3, 4, 5, 9, 15, 16, 17, 23, 25,
35, 40

18. Chatterjee, S., Das, M.P.L., Pandit, T.: Revisiting the security of salted UOV
signature. In: Isobe, T., Sarkar, S. (eds.) Progress in Cryptology – INDOCRYPT
2022. LNCS, vol. 13774, pp. 697–719. Springer, Heidelberg (Jan 2022) 2, 17

19. Courtois, N., Finiasz, M., Sendrier, N.: How to achieve a McEliece-based digital
signature scheme. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp.
157–174. Springer, Heidelberg (Dec 2001). https://doi.org/10.1007/3-540-45682-
1_10 2, 39

20. Dallot, L.: Towards a concrete security proof of Courtois, Finiasz and Sendrier
signature scheme. In: WEWoRC 2007. LNCS, vol. 4945, pp. 65–77. Springer, Hei-
delberg (Jul 2007) 6, 25, 34, 39

https://doi.org/10.1007/978-3-030-81652-0_15
https://doi.org/10.1007/978-3-030-81652-0_15
https://doi.org/10.1007/978-3-030-77870-5_13
https://pqmayo.org/assets/specs/mayo.pdf
https://pqmayo.org/assets/specs/mayo.pdf
https://csrc.nist.gov/csrc/media/Projects/pqc-dig-sig/documents/round-1/spec-files/UOV-spec-web.pdf
https://csrc.nist.gov/csrc/media/Projects/pqc-dig-sig/documents/round-1/spec-files/UOV-spec-web.pdf
https://doi.org/10.1007/978-3-030-36033-7_3
https://doi.org/10.1007/978-3-642-25385-0_3
https://doi.org/10.1007/978-3-642-38348-9_13
https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-3-submissions
https://doi.org/10.1007/978-3-030-45388-6_16
https://doi.org/10.1007/3-540-45682-1_10
https://doi.org/10.1007/3-540-45682-1_10


30 H. Kosuge and K. Xagawa

21. Devevey, J., Fallahpour, P., Passelègue, A., Stehlé, D.: A detailed analysis of fiat-
shamir with aborts. In: Handschuh and Lysyanskaya [33], pp. 327–357. https://-
doi.org/10.1007/978-3-031-38554-4_11 7, 25, 26

22. Ding, J., Chen, M.S., Petzoldt, A., Schmidt, D., Yang, B.Y., Kannwischer, M.J.,
Patarin, J.: Rainbow. Tech. rep., National Institute of Standards and Technology
(2020), available at https://csrc.nist.gov/projects/post-quantum-cryptography/
post-quantum-cryptography-standardization/round-3-submissions 6, 25, 37

23. Don, J., Fehr, S., Majenz, C.: The measure-and-reprogram technique 2.0:
Multi-round fiat-shamir and more. In: Micciancio, D., Ristenpart, T. (eds.)
CRYPTO 2020, Part III. LNCS, vol. 12172, pp. 602–631. Springer, Heidelberg
(Aug 2020). https://doi.org/10.1007/978-3-030-56877-1_21 6, 12, 13, 17

24. Don, J., Fehr, S., Majenz, C., Schaffner, C.: Security of the Fiat-Shamir transfor-
mation in the quantum random-oracle model. In: Boldyreva and Micciancio [13],
pp. 356–383. https://doi.org/10.1007/978-3-030-26951-7_13 24

25. Duman, J., Hövelmanns, K., Kiltz, E., Lyubashevsky, V., Seiler, G.: Faster lattice-
based KEMs via a generic fujisaki-okamoto transform using prefix hashing. In:
Vigna, G., Shi, E. (eds.) ACM CCS 2021. pp. 2722–2737. ACM Press (Nov 2021).
https://doi.org/10.1145/3460120.3484819 4

26. Faugere, J.C., Fouque, P.A., Macario-Rat, G., Minaud, B., Patarin, J.:
PROV. Tech. rep., National Institute of Standards and Technology (2023),
available at https://csrc.nist.gov/csrc/media/Projects/pqc-dig-sig/documents/
round-1/spec-files/prov-spec-web.pdf 6, 25, 37

27. Faugère, J.C., Perret, L.: Polynomial equivalence problems: Algorithmic
and theoretical aspects. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS,
vol. 4004, pp. 30–47. Springer, Heidelberg (May / Jun 2006). https://-
doi.org/10.1007/11761679_3 49

28. Fiat, A., Shamir, A.: How to prove yourself: Practical solutions to identification
and signature problems. In: Odlyzko, A.M. (ed.) CRYPTO’86. LNCS, vol. 263, pp.
186–194. Springer, Heidelberg (Aug 1987). https://doi.org/10.1007/3-540-47721-
7_12 2

29. Furue, H., Ikematsu, Y., Hoshino, F., Kiyomura, Y., Saito, T., Takagi, T.: QR-
UOV. Tech. rep., National Institute of Standards and Technology (2023), available
at http://info.isl.ntt.co.jp/crypt/qruov/files/NISTPQC_QRUOV.pdf 6, 25, 37

30. Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and new
cryptographic constructions. In: Ladner, R.E., Dwork, C. (eds.) 40th ACM STOC.
pp. 197–206. ACM Press (May 2008). https://doi.org/10.1145/1374376.1374407 2,
5, 9, 14, 43, 47, 48

31. Goldwasser, S., Micali, S., Rivest, R.L.: A digital signature scheme secure against
adaptive chosen-message attacks. SIAM J. Comput. 17(2), 281–308 (1988).
https://doi.org/10.1137/0217017, https://doi.org/10.1137/0217017 2

32. Grilo, A.B., Hövelmanns, K., Hülsing, A., Majenz, C.: Tight adaptive repro-
gramming in the QROM. In: Tibouchi, M., Wang, H. (eds.) ASIACRYPT 2021,
Part I. LNCS, vol. 13090, pp. 637–667. Springer, Heidelberg (Dec 2021). https://-
doi.org/10.1007/978-3-030-92062-3_22 3, 5, 7, 12, 24, 33

33. Handschuh, H., Lysyanskaya, A. (eds.): CRYPTO 2023, Part V, LNCS, vol. 14085.
Springer, Heidelberg (Aug 2023) 28, 30

34. Hosoyamada, A., Yasuda, K.: Building quantum-one-way functions from block ci-
phers: Davies-Meyer and Merkle-Damgård constructions. In: Peyrin, T., Galbraith,
S. (eds.) ASIACRYPT 2018, Part I. LNCS, vol. 11272, pp. 275–304. Springer, Hei-
delberg (Dec 2018). https://doi.org/10.1007/978-3-030-03326-2_10 2, 9

https://doi.org/10.1007/978-3-031-38554-4_11
https://doi.org/10.1007/978-3-031-38554-4_11
https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-3-submissions
https://doi.org/10.1007/978-3-030-56877-1_21
https://doi.org/10.1007/978-3-030-26951-7_13
https://doi.org/10.1145/3460120.3484819
https://csrc.nist.gov/csrc/media/Projects/pqc-dig-sig/documents/round-1/spec-files/prov-spec-web.pdf
https://csrc.nist.gov/csrc/media/Projects/pqc-dig-sig/documents/round-1/spec-files/prov-spec-web.pdf
https://doi.org/10.1007/11761679_3
https://doi.org/10.1007/11761679_3
https://doi.org/10.1007/3-540-47721-7_12
https://doi.org/10.1007/3-540-47721-7_12
http://info.isl.ntt.co.jp/crypt/qruov/files/NISTPQC_QRUOV.pdf
https://doi.org/10.1145/1374376.1374407
https://doi.org/10.1137/0217017
https://doi.org/10.1137/0217017
https://doi.org/10.1007/978-3-030-92062-3_22
https://doi.org/10.1007/978-3-030-92062-3_22
https://doi.org/10.1007/978-3-030-03326-2_10


Probabilistic Hash-and-Sign with Retry in the QROM 31

35. Hülsing, A., Rijneveld, J., Song, F.: Mitigating multi-target attacks in hash-
based signatures. In: Cheng, C.M., Chung, K.M., Persiano, G., Yang, B.Y. (eds.)
PKC 2016, Part I. LNCS, vol. 9614, pp. 387–416. Springer, Heidelberg (Mar 2016).
https://doi.org/10.1007/978-3-662-49384-7_15 12

36. Ikematsu, Y., Nakamura, S., Santoso, B., Yasuda, T.: Security analysis on an
ElGamal-like multivariate encryption scheme based on isomorphism of polynomi-
als. In: Yu, Y., Yung, M. (eds.) Information Security and Cryptology – Inscrypt
2021. LNCS, vol. 13007, pp. 235–250. Springer, Heidelberg (Oct 2021) 49

37. Kiltz, E., Lyubashevsky, V., Schaffner, C.: A concrete treatment of Fiat-Shamir
signatures in the quantum random-oracle model. In: Nielsen, J.B., Rijmen, V. (eds.)
EUROCRYPT 2018, Part III. LNCS, vol. 10822, pp. 552–586. Springer, Heidelberg
(Apr / May 2018). https://doi.org/10.1007/978-3-319-78372-7_18 7

38. Kiltz, E., Masny, D., Pan, J.: Optimal security proofs for signatures from
identification schemes. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016,
Part II. LNCS, vol. 9815, pp. 33–61. Springer, Heidelberg (Aug 2016). https://-
doi.org/10.1007/978-3-662-53008-5_2 10

39. Kipnis, A., Patarin, J., Goubin, L.: Unbalanced Oil and Vinegar signature schemes.
In: Stern, J. (ed.) EUROCRYPT’99. LNCS, vol. 1592, pp. 206–222. Springer, Hei-
delberg (May 1999). https://doi.org/10.1007/3-540-48910-X_15 2, 25, 35, 40

40. Leon, J.: Computing automorphism groups of error-correcting codes. IEEE Trans-
actions on Information Theory 28(3), 496–511 (May 1982), https://ieeexplore.ieee.
org/document/1056498 48

41. Liu, Y., Jiang, H., Zhao, Y.: Tighter post-quantum proof for plain FDH, PFDH and
GPV-IBE. Cryptology ePrint Archive, Report 2022/1441 (2022), https://eprint.
iacr.org/2022/1441 6, 7, 15, 17, 32

42. Lyubashevsky, V.: Fiat-Shamir with aborts: Applications to lattice and factoring-
based signatures. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912,
pp. 598–616. Springer, Heidelberg (Dec 2009). https://doi.org/10.1007/978-3-642-
10366-7_35 7, 25

43. Maurer, U.M. (ed.): EUROCRYPT’96, LNCS, vol. 1070. Springer, Heidelberg
(May 1996) 28, 31

44. Menezes, A., Smart, N.: Security of signature schemes in a multi-user setting. De-
signs, Codes and Cryptography 33(3), 261–274 (Nov 2004), https://link.springer.
com/article/10.1023/B:DESI.0000036250.18062.3f 4

45. Morozov, K., Roy, P.S., Steinwandt, R., Xu, R.: On the security of
the Courtois-Finiasz-Sendrier signature. Open Mathematics 16(1), 161–167
(Mar 2018). https://doi.org/doi:10.1515/math-2018-0011, https://doi.org/10.
1515/math-2018-0011 34

46. NIST: Submission requirements and evaluation criteria for the post-
quantum cryptography standardization process (Jan 2017), https://csrc.
nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/
call-for-proposals-final-dec-2016.pdf 4

47. NIST: Call for additional digital signature schemes for the post-quantum cryp-
tography standardization process (Sep 2022), https://csrc.nist.gov/csrc/media/
Projects/pqc-dig-sig/documents/call-for-proposals-dig-sig-sept-2022.pdf 3, 6

48. NIST: Status report on the third round of the nist post-quantum cryptogra-
phy standardization process (Sep 2022), https://csrc.nist.gov/publications/detail/
nistir/8413/final 2

49. Patarin, J.: Hidden fields equations (HFE) and isomorphisms of polynomials (IP):
Two new families of asymmetric algorithms. In: Maurer [43], pp. 33–48. https://-
doi.org/10.1007/3-540-68339-9_4 2, 35

https://doi.org/10.1007/978-3-662-49384-7_15
https://doi.org/10.1007/978-3-319-78372-7_18
https://doi.org/10.1007/978-3-662-53008-5_2
https://doi.org/10.1007/978-3-662-53008-5_2
https://doi.org/10.1007/3-540-48910-X_15
https://ieeexplore.ieee.org/document/1056498
https://ieeexplore.ieee.org/document/1056498
https://eprint.iacr.org/2022/1441
https://eprint.iacr.org/2022/1441
https://doi.org/10.1007/978-3-642-10366-7_35
https://doi.org/10.1007/978-3-642-10366-7_35
https://link.springer.com/article/10.1023/B:DESI.0000036250.18062.3f
https://link.springer.com/article/10.1023/B:DESI.0000036250.18062.3f
https://doi.org/doi:10.1515/math-2018-0011
https://doi.org/10.1515/math-2018-0011
https://doi.org/10.1515/math-2018-0011
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/call-for-proposals-final-dec-2016.pdf
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/call-for-proposals-final-dec-2016.pdf
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/call-for-proposals-final-dec-2016.pdf
https://csrc.nist.gov/csrc/media/Projects/pqc-dig-sig/documents/call-for-proposals-dig-sig-sept-2022.pdf
https://csrc.nist.gov/csrc/media/Projects/pqc-dig-sig/documents/call-for-proposals-dig-sig-sept-2022.pdf
https://csrc.nist.gov/publications/detail/nistir/8413/final
https://csrc.nist.gov/publications/detail/nistir/8413/final
https://doi.org/10.1007/3-540-68339-9_4
https://doi.org/10.1007/3-540-68339-9_4


32 H. Kosuge and K. Xagawa

50. Patarin, J., Goubin, L., Courtois, N.: Improved algorithms for isomorphisms of
polynomials. In: Nyberg, K. (ed.) EUROCRYPT’98. LNCS, vol. 1403, pp. 184–200.
Springer, Heidelberg (May / Jun 1998). https://doi.org/10.1007/BFb0054126 28,
49

51. Petrank, E., Roth, R.M.: Is code equivalence easy to decide? IEEE Transactions
on Information Theory 43(5), 1602–1604 (Sep 1997), https://ieeexplore.ieee.org/
document/623157 28, 48

52. Prest, T., Fouque, P.A., Hoffstein, J., Kirchner, P., Lyubashevsky, V., Pornin, T.,
Ricosset, T., Seiler, G., Whyte, W., Zhang, Z.: FALCON. Tech. rep., National
Institute of Standards and Technology (2022), available at https://csrc.nist.gov/
Projects/post-quantum-cryptography/selected-algorithms-2022 47

53. Sakumoto, K., Shirai, T., Hiwatari, H.: On provable security of UOV and HFE sig-
nature schemes against chosen-message attack. In: Yang, B.Y. (ed.) Post-Quantum
Cryptography - 4th International Workshop, PQCrypto 2011. pp. 68–82. Springer,
Heidelberg (Nov / Dec 2011). https://doi.org/10.1007/978-3-642-25405-5_5 2, 4,
5, 6, 9, 14, 15, 25, 36, 37, 38, 40, 41

54. Sendrier, N.: Finding the permutation between equivalent linear codes: The
support splitting algorithm. IEEE Transactions on Information Theory 46(4),
1193–1203 (2000) 48

55. Sendrier, N., Simos, D.E.: The hardness of code equivalence over and its application
to code-based cryptography. In: Gaborit, P. (ed.) Post-Quantum Cryptography -
5th International Workshop, PQCrypto 2013. pp. 203–216. Springer, Heidelberg
(Jun 2013). https://doi.org/10.1007/978-3-642-38616-9_14 48

56. Shor, P.W.: Algorithms for quantum computation: Discrete logarithms and fac-
toring. In: 35th FOCS. pp. 124–134. IEEE Computer Society Press (Nov 1994).
https://doi.org/10.1109/SFCS.1994.365700 2

57. Szepieniec, A., Preneel, B.: Block-anti-circulant unbalanced Oil and Vinegar. In:
Paterson, K.G., Stebila, D. (eds.) SAC 2019. LNCS, vol. 11959, pp. 574–588.
Springer, Heidelberg (Aug 2019). https://doi.org/10.1007/978-3-030-38471-5_23
49

58. Unruh, D.: Quantum position verification in the random oracle model. In: Garay,
J.A., Gennaro, R. (eds.) CRYPTO 2014, Part II. LNCS, vol. 8617, pp. 1–18.
Springer, Heidelberg (Aug 2014). https://doi.org/10.1007/978-3-662-44381-1_1 12

59. Yamakawa, T., Zhandry, M.: Classical vs quantum random oracles. In: Can-
teaut, A., Standaert, F.X. (eds.) EUROCRYPT 2021, Part II. LNCS, vol. 12697,
pp. 568–597. Springer, Heidelberg (Oct 2021). https://doi.org/10.1007/978-3-030-
77886-6_20 3, 4, 5, 15, 16, 23

60. Yamakawa, T., Zhandry, M.: Verifiable quantum advantage without structure. In:
63rd FOCS. pp. 69–74. IEEE Computer Society Press (Oct / Nov 2022). https://-
doi.org/10.1109/FOCS54457.2022.00014 3

61. Zhandry, M.: Secure identity-based encryption in the quantum random oracle
model. Cryptology ePrint Archive, Report 2012/076 (2012), https://eprint.iacr.
org/2012/076 3, 4, 5, 15, 16, 17, 23

A Issue with Security Proof of [41]

We have identified a flaw in the proof of OW⇒ EUF-CMA presented in The-
orem 2 of the latest version published on January 28, 2023 [41]. Let HaS[Ttdp,H]
be a signature scheme adopting the deterministic hash-and-sign, where Ttdp is a

https://doi.org/10.1007/BFb0054126
https://ieeexplore.ieee.org/document/623157
https://ieeexplore.ieee.org/document/623157
https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022
https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022
https://doi.org/10.1007/978-3-642-25405-5_5
https://doi.org/10.1007/978-3-642-38616-9_14
https://doi.org/10.1109/SFCS.1994.365700
https://doi.org/10.1007/978-3-030-38471-5_23
https://doi.org/10.1007/978-3-662-44381-1_1
https://doi.org/10.1007/978-3-030-77886-6_20
https://doi.org/10.1007/978-3-030-77886-6_20
https://doi.org/10.1109/FOCS54457.2022.00014
https://doi.org/10.1109/FOCS54457.2022.00014
https://eprint.iacr.org/2012/076
https://eprint.iacr.org/2012/076


Probabilistic Hash-and-Sign with Retry in the QROM 33

trapdoor permutation and H ∈ YM. In the security proof, the random function
H is replaced by H = F(H̃(m)), where H̃←$ XM, and the signing oracle returns
H̃(m). The security proof relies on the measure-and-reprogram technique [32] and
involves a two-stage algorithm S composed of S1 and S2, which interacts with
Acma in the modified EUF-CMA game. The algorithm S behaves as follows:

1. Choose (i, b)←$ ([q]× {0, 1}) ∪ {(q + 1, 0)}.
2. Run Acma with H̃ until i-th query.
3. Measure i-th query and output m as the output of S1.
4. Given a random θ, reprogram H̃′ = H̃m 7→θ.
5. If i = q + 1, then go to Step 8.
6. Answer i-th query with H̃ (if b = 0) or H̃′ (if b = 1).
7. Run Acma with H̃′ until the end.
8. Output Acma’s output (m∗, x∗) as the output of S2.

The authors argue that the following inequality holds from Lemma 2.

Pr
[
x = θ : m← SAcma

1 (), (m,x)← SAcma
2 (θ)

]
≥ 1

(2q + 1)2
Pr

[
x = H̃(m) : (m,x)← A|H〉cma(F)

]
. (12)

In the original version published on October 22, 2022, the index i is chosen from
all the queries to H̃ (q = qqro + qsign), while in the latest version, it is chosen
only from queries to H̃ outside the signing oracle (q = qqro). The latter implies
that, within the signing oracle, query inputs for H̃ are not measured and H̃ is
not reprogrammed.

If we carefully examine the proof of the measure-and-reprogram technique [32,
Theorem 2], we find issues with the latest version’s approach. In the proof, the
measure-and-reprogram technique relies on the assumption that when applying
1 − |m〉〈m| (where 1 is the identity operator) onto the query input register at
the i-th query, the quantum states in the following two cases are identical:

– Answers the i-th query by H̃ and responds to subsequent queries by H̃′.
– Answers the i-th query by H̃′ and responds to subsequent queries by H̃′.

If i indicates the index of queries to H̃ outside the signing oracle, either H̃ (in the
first case) or H̃′ (in the second case) is queried in the signing oracle between the
i-th and (i+1)-th queries. Due to this difference in the signing oracle’s behavior,
the quantum states are not necessarily identical. The authors claim that queries
to H̃ within the signing oracle can be disregarded based on the observation that
when Acma does not output 0, it implies that the observed m has not been
queried for the signing oracle. However, they need to clearly demonstrate how
this fact affects the above assumption and Eq. (12).
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B Security Proofs of Hash-and-sign Signatures by
Theorem 1 and Corollary 1

This section shows the applications of Theorem 1 and Corollary 1 to some code-
based and MQ-based hash-and-sign signatures.

B.1 Code-based Cryptography

Application to the Modified CSF Signature: Dallot [20] proposed a modification
to the CFS signature, that is, the adaption of the probabilistic hash-and-sign
with retry. For the details of the (modified) CFS signature, see Appendix C.1.
Let Tcfs = (Gencfs,Fcfs, Icfs) be the underlying trapdoor function of the modified
CFS signature and Xn,≤t = {x ∈ Fn

2 : 0 < hw(x) ≤ t} be a domain of Fcfs,
where hw(x) denotes a Hamming weight of x. Fcfs = UH0P (Fcfs : Xn,≤t →
Fn−k
2 ) consists of a parity-check matrix of an (n, k)-binary Goppa code H0 ∈

F(n−k)×n
2 , an invertible matrix U ∈ F(n−k)×(n−k)

2 , and a permutation matrix
P ∈ Fn×n

2 . Since we assume that the (n, k)-binary Goppa code can decode up to
t errors, one-to-one correspondence exists between Xn,≤t and Ydec = {y ∈ Fn−k

2 :
y(U−1)T is decodable}. Therefore, Fcfs : Xn,≤t → Fn−k

2 is an injection. Using the
fact, Morozov et al. gave a reduction of INV⇒ sEUF-CMA in the ROM [45,
Theorem 3.1]. We show that the modified CFS signature is sEUF-CMA-secure
in the QROM, assuming that Tcfs is non-invertible.

Proposition 1 (INV ⇒ sEUF-CMA (Modified CFS Signature)). For
any quantum sEUF-CMA adversary Acma of HaS[Tcfs,H] issuing at most qsign
classical queries to the signing oracle and qqro (quantum) random oracle queries
to H←$ YR×M, there exists an INV adversary Binv of Tcfs such that

AdvsEUF-CMA
HaS[Tcfs,H] (Acma) ≤ (2qqro + 1)2AdvINV

Tcfs
(Binv) +

3

2
q′sign

√
q′sign + qqro + 1

|R|

+ 2(qqro + 2)

√
q′sign − qsign
|R|

,

where q′sign is a bound on the total number of queries to H in all the signing
queries and the running time of Binv is about that of Acma.

Proof. When we define SampDom(Fcfs) as x ←$ Xn,≤t, Tcfs becomes WPSF.
Since Fcfs is an injection, we can apply Corollary 1 to the modified CFS signature.
In the PS game, we show that SampDom(Fcfs) in Sample1 can perfectly simulate
xi output by Sample0. From the one-to-one correspondence between Xn,≤t and
Ydec, x← Icfs(y) for y ←$ Ydec follows U(Xn,≤t). Also, Sample0 outputs xi after
retrying yi ←$ Fn−k

2 until Icfs(yi) 6= ⊥ holds; therefore yi is uniformly chosen
from Ydec. Hence, the distribution of xi output by Sample0 is equivalent to that
of xi ← SampDom(Fcfs) and, thus, AdvPS

Tcfs
(Dps) = 0 holds. ut
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Application to Wave: Wave is a practical and unbroken hash-and-sign signa-
ture [2]. See Appendix C.2 for the details. Wave adopts the probabilistic hash-
and-sign (without retry) and Wave’s trapdoor function Twave = (Genwave,Fwave, Iwave)
is ATPSF [17] (see Section 4.2). We show that Wave is EUF-CMA-secure using
one of the conditions of ATPSF.

Proposition 2 (INV⇒EUF-CMA (Wave)). For any quantum EUF-CMA
adversary Acma of HaS[Twave,H] issuing at most qsign classical queries to the
signing oracle and qqro (quantum) random oracle queries to H←$ YR×M, there
exists an INV adversary Binv of Twave such that

AdvEUF-CMA
HaS[Twave,H](Acma)≤(2qqro +1)2AdvINV

Twave
(Binv)+qsignδ+

3

2
qsign

√
qsign + qqro + 1

|R|
,

where the running time of Binv is about that of Acma.

Proof. Since Twave is ATPSF [17] that is a special case of WPSF, we can apply
Theorem 1 to Wave. From the first condition of ATPSF, there is a bound δ on the
expectation of δF,I = ∆(SampDom(Fwave), Iwave(U(Y))); therefore, AdvPS

Twave
(Dps) ≤

qsignδ holds from the union bound. ut

Compared with the existing reduction using Eq. (1) [17], the factor of δ is
not a square root in our reduction. Also, its security can be proved on the basis
of hardness assumption of the syndrome decoding since there is a tight reduction
from the syndrome decoding to the INV of Twave [17, Proposition 8].

B.2 Multivariate-quadratic-based Cryptography

Many schemes based on the UOV [39] and HFE [49] signatures have been pro-
posed. Sakumoto et al. proposed modifications of the schemes adopting the prob-
abilistic hash-and-sign with retry. We prove that the original/modified UOV sig-
natures and the modified HFE signature are EUF-CMA-secure in the QROM
if their trapdoor functions are non-invertible. Also, we prove the EUF-CMA
security of MAYO [10].

Application to the Original UOV Signature: We briefly review the Original UOV
scheme. For the details, see Appendix C.3. Let Tuov = (Genuov,Fuov, Iuov) be a
trapdoor function used in the original UOV signature. Fuov = P ◦ S (Fuov : Fn

q →
Fo
q) consists of a multivariate quadratic map P : Fn

q → Fo
q and an invertible affine

map S : Fn
q → Fn

q . Variables in P are called vinegar variables zv ∈ Fv
q and oil

variables zo ∈ Fo
q, where n = v+o. By design of P, P(zv, ·) becomes a set of linear

functions on oil variables zo by fixing zv. Iuov chooses zv ←$ Fv
q and obtains zo

after retrying zv until {zo : P(zv, zo) = H(r,m)} 6= ∅ holds (or P(zv, zo) has
full-rank). See Fig. 13 for the signing algorithm and Iuov.

We show the EUF-CMA security of the original UOV signature in the
QROM if it adopts the probabilistic hash-and-sign.
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HaS[Tuov,H].Sign(Iuov,m)

1 r ←$ R
2 x← Iuov(H(r,m))
3 return (r, x)

Iuov(y)

1 repeat
2 zv ←$ Fv

q

3 until {zo : P(zv, zo) = y} 6= ∅
4 zo ←$ {zo : P(zv, zo) = y}
5 x := S−1(zv‖zo)
6 return x

Fig. 13: Signature generation algorithm of the original UOV signature

Proposition 3 (INV ⇒ EUF-CMA (Original UOV Signature)). For
any quantum EUF-CMA adversary Acma of HaS[Tuov,H] issuing at most qsign
classical queries to the signing oracle and qqro (quantum) random oracle queries
to H←$ YR×M, there exist an INV adversary Binv of Tuov and a PS adversary
Dps of Tuov issuing qsign sampling queries such that

AdvEUF-CMA
HaS[Tuov,H](Acma) ≤ (2qqro + 1)2AdvINV

Tuov
(Binv) + AdvPS

Tuov
(Dps)

+
3

2
qsign

√
qsign + qqro + 1

|R|
,

where the running times of Binv and Dps are about that of Acma.

Proof. Defining SampDom(Fuov) as x←$ Fn
q , Tuov becomes WPSF; therefore, we

can apply Theorem 1. ut

If Tuov is preimage-simulatable (AdvPS
Tuov

(Dps) is negligible), the original UOV
signature is provable secure. However, we must consider the computational in-
distinguishability of x ← Iuov(y) for y ←$ Fo

q (b = 0) and x ←$ Fn
q (b = 1) in

the PS game since the former x is not uniform. Note that we can apply Propo-
sition 3 to the UOV signature scheme recently submitted to the NIST PQC
standardization [11]12.

Application to the Modified UOV Signature: Sakumoto et al. [53] proposed the
modified UOV signature to solve the problem of the original one, that is, the
non-uniformity of x ← Iuov(y). For the details, see Appendix C.3. Let Tmuov =
(Genmuov,Fmuov, Imuov) be a trapdoor function used in the modified UOV signa-
ture (Genmuov = Genuov and Fmuov = Fuov) and Fig. 14 depicts HaS[Tmuov,H].Sign
and Imuov. The modified UOV signature retries r instead of zv and Imuov is divided
into two functions; I1muov and I2muov. I1muov chooses zv ←$ Fv

q and I2muov finds zo after
retrying r until {zo : P(zv, zo) = H(r,m)} 6= ∅ holds. Considering the difference
in the signing procedure, we show the EUF-CMA security of the modified UOV
signature in the QROM.

12 The UOV signature scheme [11] retries the vinegar variable zv until P(zv, ·) becomes
full rank. As a consequence of retrying zv, zv is not uniform.
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HaS[Tmuov,H].Sign(Imuov,m)

1 zv ← I1muov()
2 repeat
3 r ←$ R
4 x← I2muov(z

v,H(r,m))
5 until x 6= ⊥
6 return (r, x)

I1muov()

1 zv ←$ Fv
q

2 return zv

I2muov(z
v, y)

1 if {zo : P(zv, zo) = y} = ∅ then
2 return ⊥
3 zo ←$ {zo : P(zv, zo) = y}
4 x := S−1(zv‖zo)
5 return x

Fig. 14: Signature generation algorithm of the modified UOV signature

Proposition 4 (INV ⇒ EUF-CMA (Modified UOV Signature)). For
any quantum EUF-CMA adversary Acma of HaS[Tmuov,H] issuing at most qsign
classical queries to the signing oracle and qqro (quantum) random oracle queries
to H←$ YR×M, there exists an INV adversary Binv of Tmuov such that

AdvEUF-CMA
HaS[Tmuov,H](Acma) ≤ (2qqro + 1)2AdvINV

Tmuov
(Binv) +

3

2
q′sign

√
q′sign + qqro + 1

|R|

+ 2(qqro + 2)

√
q′sign − qsign
|R|

,

where q′sign is a bound on the total number of queries to H in all the signing
queries and the running time of Binv is about that of Acma.

Proof. Defining SampDom(Fmuov) as x←$ Fn
q , Tmuov becomes WPSF. Consider-

ing the signing procedure of the modified UOV signature, we modify the signing
oracles of G0-G4 in the proof of Theorem 1 and Sample0 of the PS game by adding
zv ← I1muov() in the beginning and replacing xi ← I(yi) with xi ← I2muov(z

v, yi).
Then, Dps playing the modified PS game can simulate G4 (b = 0) and G5 (b = 1).
Hence, we can apply Theorem 1 to the modified UOV signature. In Sample0
of the PS game, xi ← I2muov(z

v, y) for zv ← I1muov() after retrying y follows
U(Fn

q ) form [53, Theorem 1] (we show the proof sketch in Appendix C.3); there-
fore, xi ← SampDom(Fmuov) in Sample1 is indistinguishable form xi output by
Sample0. Hence, AdvPS

Tmuov
(Dps) = 0 holds. ut

We can apply Proposition 4 to QR-UOV [29] and PROV [26] without mod-
ification. For Rainbow [22], it requires the same modification as the modified
UOV signature.

Application to the Modified HFE Signature: The modified HFE signature pro-
posed by Sakumoto et al. [53] is designed for the same purpose as the modified
UOV signature. For the details, see Appendix C.4. Let Tmhfe = (Genmhfe,Fmhfe, Imhfe)
be a trapdoor function used in the modified HFE scheme. We show that the
modified HFE signature is EUF-CMA secure.

Proposition 5 (INV ⇒ EUF-CMA (Modified HFE Signature)). For
any quantum EUF-CMA adversary Acma of HaS[Tmhfe,H] issuing at most qsign
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classical queries to the signing oracle and qqro (quantum) random oracle queries
to H←$ YR×M, there exists an INV adversary Binv of Tmhfe such that

AdvEUF-CMA
HaS[Tmhfe,H](Acma) ≤ (2qqro + 1)2AdvINV

Tmhfe
(Binv) +

3

2
q′sign

√
q′sign + qqro + 1

|R|

+ 2(qqro + 2)

√
q′sign − qsign
|R|

,

where q′sign is a bound on the total number of queries to H in all the signing
queries and the running time of Binv is about that of Acma.

Proof. Since Fmhfe has a domain Fn
q , we can define SampDom(Fmhfe) as x←$ Fn

q .
Then, Tmhfe becomes WPSF and we can apply Theorem 1 to the modified HFE
scheme. The authors of [53] showed that x← Imhfe(y) after retrying y is uniformly
distributed over Fn

q (we show the proof sketch in Appendix C.4). Therefore, in
the PS game, xi ← SampDom(Fmhfe) in Sample1 is indistingushable from xi

output by Sample0, and thus, AdvPS
Tmhfe

(Dps) = 0 holds. ut

We can apply Proposition 5 to GeMSS [16].

Application to MAYO: MAYO, proposed by Beullens [10], is a signature scheme
that adopts the probabilistic hash-and-sign and its trapdoor function is based on
UOV. For the details, see Appendix C.5. Let Tmayo = (Genmayo,Fmayo, Imayo) be a
trapdoor function used in MAYO. Imayo finds a preimage x = xv + xo of y for a
multivariate quadratic map P∗ : Fkn

q → Fm
q . Once xv is uniformly chosen from

(Fn−o
q ×{0o})k ⊂ Fkn

q , where 0o denotes a vector of o 0s, P∗(xv+xo) = y becomes
a linear system of equations for xo. Imayo outputs a preimage after retrying xv

until P∗(xv + xo) has full rank. If Imayo outputs x without needing to retry xv,
x is uniformly distributed over Fkn

q . Let τ be a bound on the probability that
P∗(xv + xo) does not have full rank for a random xv. MAYO is EUF-CMA-
secure in the ROM [10, Theorem 1] assuming that qsignτ < 1

2 . Under the same
assumption, we show the EUF-CMA security of MAYO in the QROM.

Proposition 6 (INV⇒EUF-CMA(MAYO)). For any quantum EUF-CMA
adversary Acma of HaS[Tmayo,H] issuing at most qsign classical queries to the sign-
ing oracle and qqro (quantum) random oracle queries to H←$ YR×M, there exists
an INV adversary Binv of Tmayo such that

AdvEUF-CMA
HaS[Tmayo,H](Acma) ≤

(2qqro + 1)2

1− qsignτ
AdvINV

Tmayo
(Binv) +

3

2
qsign

√
qsign + qqro + 1

|R|
,

where the running time of Binv is about that of Acma.

Proof. We apply Theorem 1 with defining an intermediate game G′1. G′1 is iden-
tical to G1 except that G′1 aborts and outputs 0 whenever Imayo retries xv.
The probability that G′1 does not abort while qsign signing queries is at least
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1 − qsignτ . Therefore, Pr
[
G1
Acma⇒1

]
≤ 1

1−qsignτ Pr
[
G′1
Acma⇒1

]
holds. We define

SampDom(Fmayo) as x ←$ Fkn
q . The adversary of G5 perfectly simulates the

signing oracle in the case that G′1 does not abort by using his oracle since
x ← Imayo(y) follows U(Fkn

q ). Therefore, the view of the adversary is iden-
tical in the simulated one with the case that G′1 does not abort, and thus
Pr

[
G′1
Acma⇒1

]
≤ Pr

[
G5
Acma⇒1

]
holds. Since the EUF-NMA adversary can sim-

ulate G5, Pr
[
G5
Acma⇒1

]
≤ AdvEUF-NMA

HaS[Tmayo,H](Anma) holds, which yields the claimed
bound. ut

C Review of Hash-and-sign Signatures

C.1 Modified CFS Signature [20]

The modified CFS signature adopts the probabilistic hash-and-sign with retry.
Let Tcfs = (Gencfs,Fcfs, Icfs) be a trapdoor function used in the modified CFS
signature. We assume that an (n, k)-binary Goppa code can decode up to t

errors. Gencfs generates a parity-check matrix H0 ∈ F(n−k)×n
2 of the (n, k)-binary

Goppa code, an invertible matrix U ∈ F(n−k)×(n−k)
2 , and a permutation matrix

P ∈ Fn×n
2 , and outputs H = UH0P ∈ F(n−k)×n

2 as Fcfs and (U,H0, P ) as Icfs.
On input x ∈ Xn,≤t = {x ∈ Fn

2 : 0 < hw(x) ≤ t}, the function Fcfs computes
a syndrome y := xHT ∈ Fn−k

2 . On input y ∈ Fn−k
2 , the trapdoor Icfs composed

of (U,H0, P ) computes an error vector as follows: It decodes y(U−1)T using
H0 to obtain x′, and outputs an error vector x = x′(P−1)T ; if y(U−1)T is not
decodable, it outputs ⊥. Since the (n, k)-binary Goppa code can decode up to
t errors, which is our assumption, there is a one-to-one correspondence between
Xn,≤t and Ydec = {y ∈ Fn−k

2 : y(U−1)T is decodable}. Therefore, Fcfs is injective
and Icfs(y) outputs a preimage for y ←$ Fn−k

2 with probability |Ydec|
|Fn−k

2 |
=
|Xn,≤t|
|Fn−k

2 |
.

As shown in [19], |Xn,≤t|
|Fn−k

2 |
≈ 1

t! holds and we can take q′sign = ct!qsign for some
constant c > 1 in Proposition 1.

We show that a preimage x output by HaS[Tcfs,H].Sign follows U(Xn,≤t).
Initially, x ← Icfs(y) for y ←$ Ydec follows U(Xn,≤t) from the one-to-one cor-
respondence between Xn,≤t and Ydec. Subsequently, HaS[Tcfs,H].Sign outputs x
after retrying y ←$ Fn−k

2 until Icfs(y) 6= ⊥ holds; therefore the chosen y follows
U(Ydec). Hence, x output by HaS[Tcfs,H].Sign follows U(Xn,≤t).

C.2 Wave [2]

Wave adopts the probabilistic hash-and-sign. Let Twave = (Genwave,Fwave, Iwave)

be a trapdoor function used in Wave and H ∈ F(n−k)×n
q be a parity-check matrix

for an (n, k)-code over Fq. Xn,t = {x ∈ Fn
q : hw(x) = t} denotes a set of

vectors x ∈ Fn
q whose Hamming weight is exactly t, where t is chosen such

that Fwave : Xn,t → Fn−k
q is a surjection. Genwave outputs a parity-check matrix

H ∈ F(n−k)×n
q for an (n, k)-code over Fq as Fwave and parity-check matrices of
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generalized (U,U + V )-codes as Iwave. On input x ∈ Xn,t, the function Fwave

computes a syndrome y := xHT ∈ Fn−k
q . On input y ∈ Fn−k

q , the trapdoor Iwave
outputs an element of Xn,t. Since a description of Iwave is out of the scope of this
paper, we omit the description.

Twave satisfies the conditions of ATPSF [17, Definition 2] and we can take a
statistical bound on the distinguishing advantage of honestly generated signa-
tures and simulated ones.

C.3 Original/Modified UOV Signature [39, 53]

Let Tuov = (Genuov,Fuov, Iuov) (resp., Tmuov = (Genmuov,Fmuov, Imuov)) be a trap-
door function used in the original (resp., modified) UOV signature. Note that
Genuov = Genmuov and Fuov = Fmuov. Genuov generates an invertible affine map
S : Fn

q → Fn
q and a multivariate quadratic map P : Fn

q → Fo
q defined as P =

(p1, p2, . . . , po), where

pk(z
v, zo) =

∑
i∈[v+o]

∑
j∈[v]

αk
i,jzizj ,

and outputs P◦S as Fuov and (P,S) as Iuov. Variables in P are called vinegar vari-
ables zv = (z1, z2, . . . , zv) ∈ Fv

q and oil variables zo = (zv+1, zv+2, . . . , zv+o) ∈
Fo
q, where n = v + o. On input y ∈ Fo

q, Iuov chooses zv ←$ Fv
q and out-

puts x = S−1(zv‖zo) by solving a linear equation system P(zv, ·) = y. There
is possibly no solution. In the original UOV signature, Iuov retries zv until
{zo : P(zv, zo) = y} 6= ∅ holds or P(zv, ·) has full rank [11] (see Fig. 13). Since
x← Iuov(y) for y ←$ Fo

q is not uniformly distributed, we must assume the com-
putational indistinguishability of x ← Iuov(y) for y ←$ Fo

q and x ←$ Fn
q for the

provable security.
The modified UOV signature adopts the probabilistic hash-and-sign with

retry and does not retake the vinegar variables zv. The signing procedure of
the modified UOV signature (see Fig. 14) is different from the other signature
schemes adopting the probabilistic hash-and-sign with retry. HaS[Tmuov,H] using
I1muov and I2muov generates a signature as follows: I1muov chooses vinegar variables
zv uniformly at random. Fixing zv, P becomes a set of linear functions on oil
variables zo. I2muov finds a preimage of P◦S by solving a linear equation system and
taking the inverse of S. If there is no solution, I2muov outputs ⊥ and HaS[Tmuov,H]
retries r and executes I2muov again without retrying zv. Sakumoto et al. showed
that preimages generated by HaS[Tmuov,H].Sign are uniformly distributed over
Fn
q . For completeness, we give the proof sketch.

In the beginning, zv is uniformly chosen, that is, zv follows U(Fv
q). By fixing

zv, P(zv, ·) becomes a set of linear functions containing o× o matrix whose rank
is determined by choice of zv if solutions exist. When the rank is i, P(zv, ·)
becomes a qo−i-to-1 mapping for each element in the range Fo

q. There are only
qi possible outputs of H satisfying {zo : P(zv, zo) = H(r,m)} 6= ∅. When H is a
random function, one of the qi outputs is uniformly chosen after some retries.
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Once the output is fixed, one of qo−i solutions is uniformly chosen. In this way,
zo follows U(Fo

q) and thus x = S−1(zv‖zo) follows U(Fn
q ).

In Proposition 4, we cannot take q′sign as in the other schemes since the
probability that Imuov(z

v, y) outputs ⊥ varies depending on zv. We set q′sign =
qretryqsign, where qretry is a bound on the number of queries to H in each signing
query. Let Xi be a random variable for the number of queries to H in i-th queries
and X =

∑qsign
i=1 Xi. We have

Pr[Xi > qretry] =

o∑
j=1

pj(1− qj−o)qretry ,

where pj is a probability that P(zv, ·) has rank j for zv ←$ Fv
q . It is known

that a random o × o matrix over Fq has rank o − a for a ∈ {0, 1, . . . , o} with a
probability [7]:

1

qa2 ·
∏o

k=1(1− q−k)
∏o

k=a+1(1− q−k)∏o−a
k=1(1− q−k)

∏a
k=1(1− q−k)

. (13)

When we assume that P(zv, ·) becomes a random o × o matrix for any zv,
pj follows Eq. (13). Since X > q′sign implies ∃i,Xi > qretry, Pr[X > q′sign] ≤
qsign Pr[Xi > qretry] holds. To determine an appropriate value for q′sign = qretryqsign
in the security bound, we need to take qretry such that qsign Pr[Xi > qretry] is neg-
ligible for the security parameter.

C.4 Modified HFE Signature [53]

The modified HFE signature adopts the probabilistic hash-and-sign with retry.
Let Tmhfe = (Genmhfe,Fmhfe, Imhfe) be a trapdoor function used in the modified
HFE signature and φ : K → Fn

q be a standard linear isomorphism φ(a0 + a1x+
· · · + an−1x

n−1) = (a0, a1, . . . , an−1), where K = Fq[x]/g(x) for an irreducible
polynomial g(x) of degree n. Genmhfe generates invertible affine maps (S,S′) over
Fn
q and a central map P : K → K defined as

P(X) =
∑

(i,j)∈[n]×[n]
s.t. qi−1+qj−1<d

αi,jX
qi−1+qj−1

+
∑
i∈[n]

s.t. qi−1<d

βiX
qi−1

,

where αi,j , βi ∈ K, and outputs S′ ◦φ ◦P ◦φ−1 ◦S as Fmhfe and (P,S,S′) as Imhfe.
On input y ∈ Fn−m

q , Imhfe computes a preimage x ∈ Fn
q as in Fig. 15.

As in the modified UOV signature, the authors of [53] showed that preimages
generated by HaS[Tmhfe,H].Sign are uniformly distributed over Fn

q . We give the
proof sketch.

When H is a random function, each z ∈ Fn
q is chosen with probability 1

qn .
With probability |{z

′:P(z′)=z}|
N , Imhfe chooses z′ out of |{z′ : P(z′) = z}| elements,
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Imhfe(y)

1 y′ ←$ Fm
q

2 z := φ−1(S′−1(y‖y′))
3 i←$ [N ]

4 if 1 ≤ i ≤
∣∣{z′ : P(z′) = z}

∣∣ then
5 return ⊥
6 z′ ←$ {z′ : P(z′) = z}
7 x := S−1(φ(z′))
8 return x

Fig. 15: Trapdoor of the modified HFE signature

where N is set as d in general. Therefore, for any x ∈ Fn
q , HaS[Tmhfe,H].Sign

outputs x with probability

1

qn
· |{z

′ : P(z′) = z}|
N

· 1

|{z′ : P(z′) = z}|
=

1

qnN
.

Hence, preimages output by HaS[Tmhfe,H].Sign are uniformly distributed over
Fn
q . Also, Imhfe does not output ⊥ with probability

∑
x∈Fn

q

1
qnN = 1

N , and we can
take q′sign = cNqsign for some constant c > 1 in Proposition 5.

C.5 MAYO [10]

MAYO adopts the probabilistic hash-and-sign. Let Tmayo = (Genmayo,Fmayo, Imayo)
be a trapdoor function used in MAYO. Genmayo generates a multivariate quadratic
map P : Fn

q → Fm
q with a subspace O ⊂ Fn

q of dimension o called oil space such
that P(x) = 0 for any x ∈ O, and outputs P as Fmayo and a basis of O as Imayo

13.
Let P(x) = (p1(x), . . . , pm(x)), where pi(x) : Fn

q → Fq is a multivariate quadratic
polynomial. The polar form of p(x) is defined as

p′(x, y) := p(x+ y)− p(x)− p(y),

which is bilinear. We define the polar form of multivariate quadratic map P(x)
to be P′(x, y) = (p′1(x, y), . . . , p

′
m(x, y)).

Let I = {(i, j) ∈ [k] × [k] : i < j} and {Eij}(i,j)∈I be a set of invertible
matrices such that E = {Ei,j} is nonsingular. We set {Eij}(i,j)∈I as a system
parameter. On input x = (x1, . . . , xk) ∈ Fkn

q , Fmayo computes y = P∗(x) =∑
i∈[k] Ei,iP(xi) +

∑
(i,j)∈I Ei,jP

′(xi, xj). In MAYO, P∗ : Fkn
q → Fm

q is conjec-
tured to be non-invertible. Therefore, the INV game of Tmayo is defined as:
given (P, {Eij}(i,j)∈I , y), find x∗ = (x∗1, . . . , x

∗
k) satisfying

∑
i∈[k] Ei,iP(x

∗
i ) +∑

(i,j)∈I Ei,jP
′(x∗i , x

∗
j ) [10, Definition 2]. On input y ∈ Fm

q , Imayo computes x as
in Fig. 16. Let x, xo and xv be vectors over Fkn

q . Imayo finds a preimage x = xv+xo

of y for P∗. In the beginning, xv is uniformly chosen from (Fn−o
q ×{0o})k ⊂ Fkn

q ,
13 The notation of UOV in MAYO follows [9] which is a generalization of the traditional

description of Appendix C.3.
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Imayo(y)

1 P∗(x1, . . . , xk) :=
∑

i∈[k] Ei,iP(xi) +
∑

(i,j)∈I Ei,jP
′(xi, xj)

2 repeat
3 xv ←$ (Fn−o

q × 0o)k

4 until P∗(xv + xo) has full rank
5 xo ← {xo : P∗(xv + xo) = y}
6 x = xv + xo

7 return x

Fig. 16: Trapdoor of MAYO

where 0o denotes a vector of o 0s. Fixing xv, P∗(xv + xo) = y becomes a linear
system of equations for xo ∈ Ok. If P∗(xv + xo) has full rank, Imayo outputs
xv + xo by solving P∗(xv + xo) = y. Otherwise, Imayo retries xv. The probability
that P∗(xv + xo) does not have full rank is bounded by τ = qk−n+o+qm−ko

q−1 [10,
Lemma 1].

A preimage x← Imayo(y) is uniform over Fkn
q if Imayo does not retry xv in the

signature generation [10, Lemma 2]. Since this property is necessary for applying
Theorem 1, we show the proof sketch.

First, xv is uniformly chosen from (Fn−o
q × {0o})k if Imayo does not retry xv.

Next, xo is uniformly chosen from Ok since P∗(xv + xo) has full rank. Hence,
the output x = xv + xo follows U(Fkn

q ) since (Fn−o
q × {0o}) +O = Fn

q holds.

C.6 GPV Framework [30]

Signature schemes based on the GPV framework adopt the deterministic or prob-
abilistic hash-and-sign. Let Tgpv = (Gengpv,Fgpv, Igpv) be a trapdoor function used
in the GPV framework. Gengpv outputs a full-rank matrix A ∈ Zn×m

q generating
a q-ary lattice Λ as Fgpv and a matrix B generating Λ⊥q that is orthogonal to
Λ modulo q as Igpv. The function Fgpv computes y = xAT for a short vector
x ∈ {x ∈ Zm : ‖x‖ ≤ s

√
m}, where s is a Gaussian parameter. The trapdoor

Igpv outputs a short vector x for y ∈ Fn
q using B. Tgpv is a collision-resistant PSF

(see Definition 6) whose security is based on the hardness of the short integer
solution (SIS) problem [30, Theorem 4.9].

D Proof of Lemma 6

First, we extend Theorem 1 to prove the following lemma:

Lemma 8 (M-INV ⇒ M-EUF-CMA). For any quantum M-EUF-CMA
adversary Acmam of HaSph[Twpsf ,H,E] with qkey keys and issuing at most qsign
classical queries to the signing oracle and qqro (quantum) random oracle queries
to H←$ YU×R×M, there exist an M-INV Binvm of Twpsf with qkey instances and
an M-PS adversary Dpsm of Twpsf with qkey instances and issuing qsign sampling
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Game: M-EUF-NMA
1 for j ∈ [qkey] do
2 (vkj , skj)← Sig.KeyGen(1λ)
3 (j∗,m∗, σ∗)← Anmam({vkj}j∈[qkey])

4 return Sig.Verify(vkj∗ ,m∗, σ∗)

Fig. 17: M-EUF-NMA (Multi-key EUF-NMA) game

queries such that

AdvM-EUF-CMA
HaSph[Twpsf ,H,E]

(Acmam) ≤ (2qqro + 1)2AdvM-INV
Twpsf

(Binvm) + AdvM-PS
Twpsf

(Dpsm)

+
3

2
q′sign

√
q′sign + qqro + 1

|R|
+ 2(qqro + 2)

√
q′sign − qsign
|R|

+
q2key
|U|

, (14)

where q′sign is a bound on the total number of queries to H in all the signing
queries and the running times of Binvm and Dpsm are about that of Acmam .

Proof. We prove two reductions; M-EUF-NMA⇒M-EUF-CMA and M-INV⇒
M-EUF-CMA, where M-EUF-NMA stands for multi-key EUF-NMA. We
define an advantage function of the M-EUF-NMA game given in Fig. 17 as
AdvM-EUF-NMA

Sig (Anmam) = Pr
[
M-EUF-NMAAnmam⇒1

]
. Without loss of generality,

we assume that adversaries make random oracle queries while fixing key ID u to
be one of the qkey verification keys.

M-EUF-NMA⇒M-EUF-CMA:

Game G0 (M-EUF-CMA game): This is the original M-EUF-CMA game and
Pr

[
G0
Acmam⇒1

]
= AdvM-EUF-CMA

HaSph[Twpsf ,H,E]
(Acmam) holds.

Game G1 (adaptive reprogramming and puncturing of H): In the same manner
as G4 of Theorem 1, the challenger chooses r ←$ R for q′sign − qsign times and
keeps them in a sequence S, punctures H by S ′ = {u ∈ U , r ∈ S,m ∈
M}, and outputs 0 if FIND = >. Also, the signing oracle reprograms H :=
H(E(Fj),ri,mi)7→yi after repeating ri ← R and yi ←$ Y until Ij(yi) does not
output ⊥. In Theorem 1, we can derive the bounds on the advantage gaps
of G0/G1, G1/G2, and G3/G4 by analyzing the number of queries to H, the
number of times H is reprogrammed, and the number of punctured points of
H. Since these numbers are the same in both the single-key and multi-key
settings, we have∣∣Pr[G0

Acmam⇒1
]
− Pr

[
G1
Acmam⇒1

]∣∣
≤ 3

2
q′sign

√
q′sign + qqro + 1

|R|
+ 2(qqro + 2)

√
q′sign − qsign
|R|

.

Game G2 (simulating the signing oracle by SampDom): The signing oracle
reprograms H := H(E(Fj),ri,mi) 7→Fj(xi) for ri ← R and xi ← SampDom(Fj),
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and outputs (ri, xi). Since the M-PS adversary can simulate G1/G2, we have∣∣Pr[G1
Acmam⇒1

]
− Pr

[
G2
Acmam⇒1

]∣∣ ≤ AdvM-PS
Twpsf

(Dpsm).
Since the M-EUF-NMA adversary Anmam can simulate G2 by SampDom,

Pr
[
G2
Acmam⇒1

]
≤ AdvM-EUF-NMA

HaSph[Twpsf ,H,E]
(Anmam) holds.

As above, we have

AdvM-EUF-CMA
HaSph[Twpsf ,H,E]

(Acmam) ≤ AdvM-EUF-NMA
HaSph[Twpsf ,H,E]

(Anmam) + AdvM-PS
Twpsf

(Dpsm)

+
3

2
q′sign

√
q′sign + qqro + 1

|R|
+ 2(qqro + 2)

√
q′sign − qsign
|R|

. (15)

M-INV⇒M-EUF-NMA:

Game G3 (M-EUF-NMA game): This is the original M-EUF-NMA game and
Pr

[
G3
Anmam⇒1

]
= AdvM-EUF-NMA

HaSph[Twpsf ,H,E](Anmam) holds.
Game G4 (abort with the collision on key IDs): When a collision on the key

IDs is detected, G4 aborts and outputs 0. From the collision probability of
uniformly chosen key IDs,

∣∣Pr[G3
Anmam⇒1

]
− Pr

[
G4
Anmam⇒1

]∣∣ ≤ q2key
|U| .

We use Lemma 2 to show a reduction from the M-INV assumption of Twpsf .
The M-INV adversary Binvm given {(Fj , yj)}j∈[qkey] runs a two-stage algorithm S
that runs Anmam playing G4. In the second stage, the input θ of S2 is chosen from
{yj}j∈[qkey]. A two-stage algorithm S composed of S1 and S2 operates as follows:

1. Choose (i, b)←$ ([qqro]× {0, 1}) ∪ {(qqro + 1, 0)}.
2. Run Anmam with H until i-th query.
3. Measure i-th query and output (u, r,m) as the output of S1.
4. Given a random θ, reprogram H′ = H(u,r,m)7→θ.
5. If i = qqro + 1, then go to Step 8.
6. Answer i-th query with H (if b = 0) or H′ (if b = 1).
7. Run Anmam with H′ until the end.
8. Output Anmam ’s output (j∗,m∗, r∗, x∗) as the output of S2.

Since there is no collision on key IDs, Binvm can understand the target key of the
observed random oracle query. If u = E(Fj), Binvm sets θ = yj , reprograms H as
H′ := H(u,r,m) 7→yj , and uses Fj(x)

?
=H(u, r,m) as the predicate. From Lemma 2,

we have the following for any ĵ ∈ [qkey]:

Pr
[
j = ĵ ∧ Fj(x) = yj : (E(Fj), r,m)← SA1 () , (j,m, r, x)← SA2 (yj)

]
≥ 1

(2qqro+1)2
Pr

[
j = ĵ ∧ Fj(x)=H

(
E(Fj), r,m

)
: (j,m, r, x)←A|H〉nmam

(
{Fj}j∈[qkey]

)]
By summing over all ĵ ∈ [qkey], we have AdvM-INV

Twpsf
(Binvm) ≥ 1

(2qqro+1)2 Pr
[
G4
Anmam⇒1

]
.

We obtain Eq. (14) by combining the two reductions. ut
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Then, we extend the proof of M-INV ⇒ M-EUF-NMA in Lemma 8 by
introducing a new game G5. In G5, the verification keys {Fj}j∈[qkey] are replaced
with {Lj ◦F′ ◦Rj}, where F′ : X ′ → Y is generated by Gen′ of the trapdoor func-
tion T′. The ST adversary Dst can simulate G4/G5 by setting the verification keys
based on the outcomes of querying NewKeyb. When Dst plays ST0, we simulate
G4; otherwise, we simulate G5. This leads to

∣∣Pr[G4
Anmam⇒1

]
− Pr

[
G5
Anmam⇒1

]∣∣ ≤
AdvST

Twpsf ,T′(Dst).
To apply Lemma 2, we assume that the INV adversary Binv against T′ em-

ploys a two-stage algorithm S within G5. As with Lemma 8, Binv possesses knowl-
edge of the target key for the observed query. When the observed value targets
the j-th verification key, Binv sets Lj(y) as the input to S2. Because Lj is bijec-
tive, Lj(y) for y ←$ Y follows a uniform distribution. When Anmam submits x
for Fj , Binv returns Rj(x). If Lj(F(Rj(x))) = Lj(y) holds, since Lj is a bijection,
we conclude that F(Rj(x)) = y. In summary, Binv can win the INV game by
submitting Rj(x), yielding AdvINV

T′ (Binv) ≥ 1
(2qqro+1)2 Pr

[
G5
Anmam⇒1

]
. Therefore,

we have:

AdvM-EUF-NMA
HaSph[Twpsf ,H,E]

(Acmam) ≤ (2qqro + 1)2AdvINV
T′ (Binv) + AdvST

Twpsf ,T′(Dst) +
q2key
|U|

.

(16)
By combining Eq. (15) and Eq. (16), we arrive at Eq. (11). ut

E Proof of Lemma 7

First, we show a reduction of M-CR⇒M-sEUF-CMA extending the single-key
version of [14, Theorem 2].

Lemma 9 (M-CR ⇒ M-EUF-CMA). For any quantum M-sEUF-CMA
adversary Acmam of HaSph[Tpsf ,H,E] with qkey keys and issuing at most qsign
classical queries to the signing oracle and qqro (quantum) random oracle queries
to H ←$ YU×R×M, there exist an M-CR Bcrm of Tpsf with qkey instances such
that

AdvM-sEUF-CMA
HaS[Tpsf ,H]

(Acma) ≤
1

1− 2−ω(log(λ))
AdvM-CR

Tpsf
(Bcrm) +

q2key
|U|

, (17)

where the running times of Bcrm and Dst are about that of Acmam .

Proof. We define a sequence of games as follows:

Game G0 (M-sEUF-CMA game): This is the original M-sEUF-CMA game
and Pr

[
G0
Acmam⇒1

]
= AdvM-sEUF-CMA

HaSph[Tpsf ,H,E](Acmam) holds.
Game G1 (abort with collision on key IDs): When a collision of the key IDs is de-

tected, G1 aborts and outputs 0. We have
∣∣Pr[G0

Anmam⇒1
]
− Pr

[
G1
Anmam⇒1

]∣∣ ≤
q2key
|U| .
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Game G2 (replacing H with H′): This game replaces H with H′ satisfying

H′
(
E
(
Fj

)
, r,m

)
= Fj

(
DetSampDom

(
Fj , H̃

(
E
(
Fj

)
, r,m

)))
,

where DetSampDom is a deterministic function of SampDom and H̃ : U×R×
M→W is another random function to output randomness for DetSampDom.
Since E(Fj) 6= E(Fj′) for any j, j′ ∈ [qkey], we can uniquely identify Fj based
on E(Fj). Therefore, it is feasible to program H′. From Condition 1 of PSF,
Fj(x) is uniform for x← SampDom(Fj). Therefore, H and H′ follow the same
distribution and Pr

[
G1
Anmam⇒1

]
= Pr

[
G2
Anmam⇒1

]
holds.

The M-CR adversary Bcrm can simulate G2. From Conditions 2 and 3, the
M-CR adversary Bcrm can simulate the signing oracle. When responding to the
i-th signing query mi for the j-th verification key Fj , Bcrm returns (ri, xi), where
ri ←$ R and xi := DetSampDom

(
Fj , H̃

(
E
(
Fj

)
, ri,mi

))
. If the M-sEUF-CMA

adversary Acmam wins the game by submitting (j∗,m∗, r∗, x∗), Fj∗(x
∗) = Fj∗(x

′)

holds, where x′ = DetSampDom(Fj∗ , H̃(E(Fj∗), r
∗,m∗))). From Condition 4,

x∗ 6= x′ holds with probability 1− 2−ω(log(λ)), and we thus have Eq. (17). ut

Then, we show a reduction of CR⇒M-CR. We define a sequence of games
as follows:

Game G0 (M-CR game): This is the original M-CR game and Pr
[
G0
Bcrm⇒1

]
=

AdvM-CR
Tpsf

(Bcrm) holds.
Game G1 (replacing verification keys): We replace Fj with Lj ◦F′◦Rj . Since the

ST adversary can simulate G0/G1, we have
∣∣Pr[G0

Bcrm⇒1
]
− Pr

[
G1
Bcrm⇒1

]∣∣ ≤
AdvST

Tpsf ,T′(Dst).

The CR adversary Bcr simulates G1 as follows: Given F′, Bcr gives {Lj ◦ F′ ◦
Rj}j∈[qkey] to Bcrm . When Bcrm submits (j∗, x∗1, x∗2), Bcr outputs (Rj∗(x

∗
1),Rj∗(x

∗
2)).

Suppose that Lj∗(F(Rj∗(x
∗
1))) = Lj∗(F(Rj∗(x

∗
2))) holds. Since Lj∗ and Rj∗ are

injective, F(Rj∗(x
∗
1)) = F(Rj∗(x

∗
2)) holds and x∗1 6= x∗2 implies Rj∗(x

∗
1) 6= Rj∗(x

∗
2).

Therefore, Bcr can win the CR game and can perfectly simulate G4. Therefore,
we have

AdvM-CR
Tpsf

(Bcrm) ≤ AdvCR
T′ (Bcr) + AdvST

Tpsf ,T′(Dst). (18)

Combining Eq. (18) with Eq. (17), we obtain the security bound of Lemma 7. ut

F Applications of Generic Method in Multi-key Setting

In this section, we explore the applications of the generic method presented
in Lemma 7 for lattice-based cryptography and Lemma 6 for code-based and
MQ-based cryptography. Rather than focusing on specific schemes such as FAL-
CON [52], our paper applies the generic method to frameworks of the schemes,
such as the GPV framework [30]. We leave the applicability to the specific
schemes for future works.
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Lattice-based Cryptography: We apply the generic method to the GPV frame-
work (see Appendix C.6) [30]. For Lemma 7, we design simulation of verification
keys by {LjARj}j∈[qkey] where Lj is an n × n invertible matrix over Fq and Rj

is an m×m signed permutation matrix. In the GPV framework, the domain of
the trapdoor function is a set of short vectors {x ∈ Zm : |x| ≤ s

√
m}, where s

is a Gaussian parameter. Accordingly, we define Rj as an orthogonal matrix to
ensure ‖x‖ = ‖xRT

j ‖, and any integer orthogonal matrices are signed permuta-
tion matrices, characterized by non-zero entries ±1. Then, the ST advantage is
bounded by an advantage of the following problem.

Definition 12 (Multi-instance Signed Permutation Equivalence).
Given matrices {Gj}j∈[qkey] (Gj ∈ Fn×m

q ), do there exist a matrix G ∈ Fn×m
q ,

n × n invertible matrices {Lj}j∈[qkey] over Fq, and m × m signed permutation
matrices {Rj}j∈[qkey] over Fq such that Gj = LjGRj?

This problem is a variant of the well-studied problem called code equivalence
in code-based cryptography [51]. The code equivalence is defined as: Given a
pair of matrices (G,G′), do there exist an invertible matrix L and an isometric
matrix R such that G′ = LGR? There are variations of this problem in terms
of R. When R is a permutation matrix (resp., generalized permutation matrix),
this problem is called permutation equivalence (resp., linear equivalence)[55].

In lattice-based cryptography, there is a closely related problem called lat-
tice isomorphism, that is, given a pair of lattice bases (B,B′), do there exist a
unimodular matrix L and an orthogonal matrix R such that B′ = LBR? The
conditions on L and R are required to keep the geometry of lattices; however, it
is not necessary for our purpose.

Any variants of the code equivalence listed above are in the complexity class
coAM and not conjectured to be NP-hard [51]. Also, there are some algorithms
for the permutation equivalence and linear equivalence. In the general case,
Leon’s algorithm solves the problems by enumerating all the codewords with
Hamming weight w for some w [40], and Beullens [8] recently improved this al-
gorithm. The complexity of this approach grows exponentially with w, and we
cannot solve the problems with low w [4]. There is a special case where we can
easily solve the permutation equivalence with the Support Splitting Algorithm
(SSA) proposed by Sendrier [54]. The SSA runs in O(m3 +m2qh ln(m)), where
h is a dimension of the hull space of a code, that is, the intersection between the
code and its dual code [4]. Therefore, the SSA can efficiently solve the permu-
tation equivalence if the dimension of the hull space is low. Note that the SSA
does not apply to the case with an empty hull.

Code-based Cryptography: We apply the generic method to a trapdoor function
using a parity-check matrix H ∈ Fn×m

q as in the modified CFS signature and
Wave (see Appendices C.1 and C.2). For Lemma 6, we simulate verification keys
by {LjHRj}j∈[qkey], where Lj is an m×m invertible matrix over Fq and Rj is an
n×n generalized permutation matrix over Fq. In the modified CFS signature and
Wave, the domain of the trapdoor function is a set of vectors whose Hamming
weight is either a constant or bounded by a constant. To ensure this, we define
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Rj as a generalized permutation matrix that preserves the Hamming weights of
vectors. Then, the ST advantage is bounded by an advantage of the following
problem.

Definition 13 (Multi-instance Linear Equivalence). Given matrices
{Gj}j∈[qkey] (Gj ∈ Fn×m

q ), do there exist a matrix G ∈ Fn×m
q , n × n invert-

ible matrices {Lj}j∈[qkey] over Fq, and m ×m generalized permutation matrices
{Rj}j∈[qkey] over Fq such that Gj = LjGRj?

As mentioned in the previous paragraph, some algorithms exist for the (single-
instance) linear equivalence.

Multivariate-quadratic-based Cryptography: We assume a trapdoor function of
the original/modified UOV signature or the modified HFE signature. Let F : Fn′

q →
Fm
q and Fj : Fn

q → Fm
q be a multivariate quadratic map (n′ ≥ n). For Lemma 6,

we simulate verification keys by {Lj ◦ F ◦ Rj}j∈[qkey], where Lj is an invertible
affine map over Fq and Rj is an affine map over Fq. Then, the ST advantage is
bounded by an advantage of the following game.

Definition 14 (Multi-instance Decision Morphism of Polynomials).
Given multivariate quadratic maps {Fj}j∈[qkey], do there exist a multivariate
quadratic map F and affine maps {Lj}j∈[qkey] and {Rj}j∈[qkey] over Fq such that
Fj = Lj ◦ F ◦ Rj?

The (single-instance) decision morphism of polynomials, that is, given a pair of
multivariate quadratic maps (F,F′), do there exist affine maps L and R such
that F′ = L ◦ F ◦ R?, is proven NP-complete [50]. If L and R are invertible affine
maps, this problem is called decision isomorphism of polynomials that is in the
complexity class coAM and not conjectured to be NP-hard [50]. For signature
schemes with some structures in their verification key, only invertible R may
preserve the structures, e.g., only block-anti-circulant matrices can maintain a
structure of BAC-UOV [57]; therefore, we need to use invertible R as in the
decision isomorphism of polynomials for such signature schemes.

A search version of the isomorphism of polynomials has been well-studied.
Bouillaguet, Fouque, and Véber [15] studied and surveyed the algorithms for
the isomorphism of polynomials. Their algorithms run in O(qn) · poly(n, q),
O(q2n/3) · poly(n, q), or O(qn/2) · poly(n, q) assuming that n = m. The Gröbner-
based algorithm proposed by Faugère and Perret [27] can efficiently solve random
instances of an inhomogeneous version of the problem. We also note that if L
and R are very structured, then the problems become easier (see, e.g., [36]).

G Security Proof of Fiat-Shamir with Aborts

We define a 3-round public-coin identification scheme with aborts.

Definition 15 (3-round Public-coin Identification Scheme with Aborts).
A 3-round public-coin identification scheme with aborts, denoted as ID, consists
of four algorithms:
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Game: A-HVZKb

1 (pk , sk)← Gen(1λ)

2 b∗ ← DSampleb
zk (pk)

3 return b∗

Sample0()

1 repeat
2 (wi, sti)← P1(sk)
3 ci ←$ C
4 zi ← P2(sk , wi, ci, sti)
5 until zi 6= ⊥
6 return (wi, ci, zi)

Sample1()

1 (wi, ci, zi)← Sim(pk)
2 return (wi, ci, zi)

Fig. 18: Accepting HVZK Game

FSwA[ID,H].KeyGen(1λ)

1 (pk , sk)← Gen(1λ)
2 return (pk , sk)

FSwA[ID,H].Sign(sk ,m)

1 repeat
2 (w, st)← P1(sk)
3 c := H(w,m)
4 z ← P2(sk , w, c, st)
5 until z 6= ⊥
6 return (w, z)

FSwA[ID,H].V(pk ,m, (w, z))

1 c := H(w,m)
2 return V(pk , w, c, z)

Fig. 19: Algorithms of the Fiat-Shamir with aborts

Gen(1λ): This algorithm takes the security parameter 1λ as input and outputs
a public key pk and a secret key sk .

P1(sk): This algorithm takes a secret key sk as input and outputs a commitment
w ∈ W and a state st.

P2(sk , w, c, st): This algorithm takes a secret key sk , a commitment w ∈ W, a
randomly chosen challenge c ←$ C, and a state st as input and outputs a
response z ∈ Z or outputs ⊥.

V(pk , w, c, z): This algorithm takes a public key pk , a commitment w ∈ W, a
challenge c ∈ C, and a response z ∈ Z (a transcript) as inputs and outputs
> (acceptance) or ⊥ (rejection).

Let Sim denote a simulator for ID, which takes a public key pk as its input
and yields a transcript in the form of (w, c, z) as its output. To establish the
indistinguishability between a transcript generated honestly and one generated
through simulation, we introduce an accepting HVZK game.

Definition 16 (Accepting HVZK (A-HVZK) Game [3, Definition 1]).
Let ID be a 3-round public-coin identification scheme with aborts. Using a game
defined in Fig. 18, we define an advantage function of an adversary playing
the A-HVZK game against ID as AdvA-HVZK

ID (Dzk) =
∣∣Pr[A-HVZK0

Dzk⇒1
]
−

Pr
[
A-HVZK1

Dzk⇒1
]∣∣. We say ID is accepting HVZK if its advantage is negligible

for any efficient adversary.

We can construct a signature scheme, denoted as FSwA[ID,H], from ID as
depicted in Fig. 19. The security reduction for this scheme can be provided using
the same techniques as presented in Theorem 1.

Theorem 2 (EUF-NMA ⇒ EUF-CMA). For any quantum EUF-CMA
adversary Acma of FSwA[ID,H] issuing at most qsign classical queries to the signing
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oracle and qqro (quantum) random oracle queries to H ←$ CW×M, there exist
an EUF-NMA adversary Anma of FSwA[ID,H] issuing qqro (quantum) random
oracle queries to H and an A-HVZK adversary Dzk of ID issuing qsign sampling
queries such that

AdvEUF-CMA
FSwA[ID,H](Acma) ≤ AdvEUF-NMA

FSwA[ID,H](Anma) + AdvA-HVZK
ID (Dzk)

+
3

2
q′sign

√
(q′sign + qqro + 1) ε+ 4(qqro + 2)

√
(q′sign − qsign) ε, (19)

where q′sign is a bound on the total number of queries to H in all the signing
queries, maxŵ∈W Pr[w = ŵ : (w, st)← P1(sk)] ≤ ε holds except with negligible
probability, and the running times of Anma and Dzk are about that of Acma.

Proof. As in Theorem 1, we can set q′sign = c
ρ qsign for some constant c > 1, where

ρ = Pr[z 6= ⊥ : (w, st)← P1(sk), c←$ C, z ← P2(sk , w, c, st)]. To show Eq. (19),
we use a sequence of games defined in Fig. 20.

Game G0 (EUF-CMA game): This is the original EUF-CMA game and
Pr

[
G0
Acma⇒1

]
= AdvEUF-CMA

FSwA[ID,H](Acma) holds.
Game G1 (adaptive reprogramming of H): The signing oracle SignH adap-

tively reprograms H. This reprogramming occurs as H := H(wi,mi)7→ci , where
(wi, sti)← P1(sk) and ci ← C, and this process repeats until P2(sk , wi, ci, sti)
no longer outputs ⊥. The AR adversary Dar can simulate the games G0 and
G1. When Dar playes AR0, it simulates G0; othereise, it simulates G1. Accord-
ing to Lemma 1, the difference between Pr

[
G0
Acma⇒1

]
and Pr

[
G1
Acma⇒1

]
can

be bounded as follows:∣∣Pr[G0
Acma⇒1

]
− Pr

[
G1
Acma⇒1

]∣∣ ≤ AdvAR
H (Dar) ≤

3

2
q′sign

√
(q′sign + qqro + 1)ε.

Game G2 (pre-generating transcripts): At the start, the challenger pre-generates
qsign accepting transcripts for ID along with non-accepting ones. An accepting
transcript is stored as (wi, ci, zi), and non-accepting transcripts (excluding
responses) are stored in Si. During the i-th signing query, the signing ora-
cle reprograms H as H(w,mi)7→c for (w, c) ∈ Si as well as for (wi, ci). This
pre-generation of transcripts is feasible since they are chosen independently
of queried messages mi from Acma in G1, ensuring that Pr

[
G1
Acma⇒1

]
=

Pr
[
G2
Acma⇒1

]
.

Game G3 (puncturing H): Let S = {w : (w, ∗) ∈
⋃

i Si} and S ′ = {(w,m) :
w ∈ S,m ∈ M}. We define a punctured oracle H\S ′ and an event FIND
as in Definition 10. In G3, Acma makes queries to H\S ′, and G3 outputs
0 if FIND = >. Assume that Pr

[
G2
Acma⇒1

]
= Pr

[
1← ASign,|H〉

cma (F)
]
. Since

G3 differs from G2 in two aspects: the use of H\S ′ and the output of 0

when FIND = >, Pr
[
G3
Acma⇒1

]
= Pr

[
1← ASign,

∣∣H\S′〉
cma (F) ∧ FIND = ⊥

]
and
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Game: G0-G1

1 Q := ∅
2 H←$ CW×M

3 (pk , sk)← Gen(1λ)

4 (m∗, w∗, z∗)← ASign,|H〉
cma (pk)

5 if m∗ ∈ Q then
6 return 0
7 c∗ := H(w∗,m∗)
8 return V(pk , w∗, c∗, z∗)

SignH(mi) for G0

1 repeat
2 (wi, sti)←$ P1(sk)
3 ci := H(wi,mi)
4 zi←P2(sk , wi, ci, sti)
5 until zi 6= ⊥
6 Q := Q ∪ {mi}
7 return (wi, zi)

SignH(mi) for G1

1 repeat
2 (wi, sti)←$ P1(sk)
3 ci ←$ C
4 zi←P2(sk , wi, ci, sti)

5 H := H(wi,mi) 7→ci

6 until zi 6= ⊥
7 Q := Q ∪ {mi}
8 return (wi, zi)

Game: G2

1 Q := ∅
2 H←$ CW×M

3 (pk , sk)← Gen(1λ)
4 for i ∈ [qsign] do
5 Si := ∅
6 repeat
7 (w, st)← P1(sk)
8 c← C
9 z ← P2(sk , w, c, st)

10 if z = ⊥ then
11 Si := Si∪{(w, c)}
12 else
13 (wi, ci, zi) :=(w, c, z)
14 until z 6= ⊥
15 (m∗, w∗, x∗)←ASign,|H〉

cma (pk)
16 if m∗ ∈ Q then
17 return 0
18 c∗ := H(w∗,m∗)
19 return V(pk , w∗, c∗, z∗)

Game: G3-G4

1 Q := ∅
2 H←$ CW×M

3 (pk , sk)← Gen(1λ)
4 S = ∅
5 for i ∈ [qsign] do
6 Si := ∅
7 repeat
8 (w, st)← P1(sk)
9 c← C

10 z ← P2(sk , w, c, st)
11 if z = ⊥ then
12 Si := Si ∪ {(w, c)}
13 S := S ∪ {w}
14 else
15 (wi, ci, zi) :=(w, c, z)
16 until z 6= ⊥
17 S′ = {(w,m) : w ∈ S,m ∈ M}
18 FIND = ⊥
19 (m∗, w∗, x∗)← ASign,|H\S′〉

cma (pk)
20 if m∗ ∈ Q∨FIND = > then
21 return 0
22 c∗ := H(w∗,m∗)
23 return V(pk , w∗, c∗, z∗)

SignH(mi) for G2-G3

1 for (w, c) ∈ Si do
2 H := H(w,mi)7→c

3 H := H(wi,mi) 7→ci

4 Q := Q ∪ {mi}
5 return (wi, zi)

SignH(mi) for G4

1 H := H(wi,mi) 7→ci

2 Q := Q ∪ {mi}
3 return (wi, zi)

Game: G5

1 Q := ∅
2 H←$ CW×M

3 (pk , sk)← Gen(1λ)
4 for i ∈ [qsign] do
5 repeat
6 (w, st)← P1(sk)
7 c← C
8 z ← P2(sk , w, c, st)
9 until z 6= ⊥

10 (wi, ci, zi) :=(w, c, z)

11 (m∗, w∗, x∗)← ASign,|H〉
cma (pk)

12 if m∗ ∈ Q then
13 return 0
14 c∗ := H(w∗,m∗)
15 return V(pk , w∗, c∗, z∗)

Game: G6

1 Q := ∅
2 H←$ CW×M

3 (pk , sk)← Gen(1λ)
4 for i ∈ [qsign] do
5 (wi, ci, zi)← Sim(pk)

6 (m∗, w∗, x∗)← ASign,|H〉
cma (pk)

7 if m∗ ∈ Q then
8 return 0
9 c∗ := H(w∗,m∗)

10 return V(pk , w∗, c∗, z∗)

SignH(mi) for G5-G6

1 H := H(wi,mi) 7→ci

2 Q := Q ∪ {mi}
3 return (wi, zi)

Fig. 20: Games for EUF-NMA⇒ EUF-CMA for Fiat-Shamir with aborts. The
modifications from the previous game are highlighted in red text.
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Pr
[
FIND = > : G3

Acma⇒b
]
= Pr

[
FIND = > : b← ASign,

∣∣H\S′〉
cma (F)

]
hold. Ap-

plying Lemma 4,∣∣Pr[G2
Acma⇒1

]
− Pr

[
G3
Acma⇒1

]∣∣ ≤√
(qqro + 2)Pr

[
FIND = > : G3

Acma⇒b
]
.

(20)

We will show a bound on Eq. (20) after defining G4.
Game G4 (reprogramming only for successful trials): The signing oracle repro-

grams H := H(wi,mi)7→ci only for accepting transcripts. It’s important to note
that Acma makes queries to the punctured oracle H\S ′. If FIND = ⊥, then
Acma cannot obtain H(w,m) for (w,m) ∈ S ′. Therefore, if FIND = ⊥, Acma

cannot distinguish whether H is reprogrammed at (w,m) ∈ S ′ in G3 or not in
G4. From Lemma 3, we have

Pr
[
FIND = ⊥ : G3

Acma⇒b
]
= Pr

[
FIND = ⊥ : G4

Acma⇒b
]
. (21)

Especially, if G3 or G4 outputs 1, then FIND must be ⊥. Therefore, we con-
clude that Pr

[
G3
Acma⇒1

]
= Pr

[
G4
Acma⇒1

]
. Also, Pr

[
FIND=> : G3

Acma⇒b
]
=

Pr
[
FIND=> : G4

Acma⇒b
]

holds from Eq. (21).
We show a bound on Eq. (20). Let G′4 be a modified G4 played by Bcma.

Bcma outputs (w′,m′) and wins the game if (w′,m′) ∈ S ′. Choosing j ←$

[qqro + 1], Bcma runs Acma playing G4. Just before Acma makes j-th query to
H, Bcma measures a query input register of Acma and outputs the measure-
ment outcome as (w′,m′). The oracles of G′4 reveal no information on S and
S ′. If we assume that maxŵ∈W Pr[w = ŵ : (w, st)← P1(sk)] ≤ ε holds, then
Pr

[
G′4
Bcma⇒1

]
≤ Pr[w′ ∈ S] ≤ (q′sign − qsign)ε holds. From Lemma 5, we have

Pr
[
FIND = > : G4

Acma⇒b
]
≤ 4(qqro + 1)(q′sign − qsign)ε.

Hence, an upper bound on Eq. (20) is 2(qqro + 2)
√
(q′sign − qsign)ε.

Game G5 (Canceling the punctuation on H): The challenger no longer punctures
H, and we remove the unused Si, S, and S ′ from the game. By applying
Lemma 4, we obtain the same bound as Eq. (20):∣∣Pr[G4

Acma⇒1
]
− Pr

[
G5
Acma⇒1

]∣∣ ≤ 2(qqro + 2)
√
(q′sign − qsign)ε.

Game G6 (simulating the signing oracle by Sim): The challenger generates
(wi, ci, zi)← Sim(pk) for i ∈ [qsign]. The A-HVZK adversary Dzk can simulate
G5 and G6. If Dzk plays A-HVZK0, the procedures of the original and simulated
G5 are identical. If Dzk plays A-HVZK1, he obviously simulates G6. Therefore,
we have: ∣∣Pr[G5

Acma⇒1
]
− Pr

[
G6
Acma⇒1

]∣∣ ≤ AdvA-HVZK
ID (Dps).

Since G6 can be simulated without using sk , the EUF-NMA adversary Anma can
simulate G6. Summing up, we have Eq. (19) for EUF-NMA⇒ EUF-CMA. ut

Notice that Theorem 2 does not yield a worse bound than [3, Theorem 2],
except for a factor of 2 in the last term of Eq. (19).
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