
One-Wayness in Quantum Cryptography

Tomoyuki Morimae1 and Takashi Yamakawa2,3,1

1Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto, Japan
tomoyuki.morimae@yukawa.kyoto-u.ac.jp

2NTT Social Informatics Laboratories, Tokyo, Japan
takashi.yamakawa.ga@hco.ntt.co.jp

3NTT Research Center for Theoretical Quantum Information, Atsugi, Japan

Abstract

The existence of one-way functions is one of the most fundamental assumptions in classical cryptogra-
phy. In the quantum world, on the other hand, there are evidences that some cryptographic primitives can
exist even if one-way functions do not exist [Kretschmer, TQC 2021; Morimae and Yamakawa, CRYPTO
2022; Ananth, Qian, and Yuen, CRYPTO 2022]. We therefore have the following important open problem
in quantum cryptography: What is the most fundamental assumption in quantum cryptography? In
this direction, [Brakerski, Canetti, and Qian, ITCS 2023] recently defined a notion called EFI pairs,
which are pairs of efficiently generatable states that are statistically distinguishable but computationally
indistinguishable, and showed its equivalence with some cryptographic primitives including commitments,
oblivious transfer, and general multi-party computations. However, their work focuses on decision-type
primitives and does not cover search-type primitives like quantum money and digital signatures. In this
paper, we study properties of one-way state generators (OWSGs), which are a quantum analogue of
one-way functions proposed by Morimae and Yamakawa. We first revisit the definition of OWSGs and
generalize it by allowing mixed output states. Then we show the following results.

1. We define a weaker version of OWSGs, which we call weak OWSGs, and show that they are
equivalent to OWSGs. It is a quantum analogue of the amplification theorem for classical weak
one-way functions.

2. (Bounded-time-secure) quantum digital signatures with quantum public keys are equivalent to
OWSGs.

3. Private-key quantum money schemes (with pure money states) imply OWSGs.
4. Quantum pseudo one-time pad schemes imply both OWSGs and EFI pairs. For EFI pairs, single-copy

security suffices.
5. We introduce an incomparable variant of OWSGs, which we call secretly-verifiable and statistically-

invertible OWSGs, and show that they are equivalent to EFI pairs.

1

Contents

1 Introduction 4
1.1 Our Results . 5
1.2 Concurrent Work . 6
1.3 Open Problems . 6

2 Preliminaries 7
2.1 Basic Notations . 7
2.2 EFI Pairs . 8
2.3 Quantum Commitments . 8
2.4 PRSGs . 9

3 OWSGs 9
3.1 Definition of OWSGs . 9
3.2 Hardness Amplification for OWSGs . 10

4 QDSs 14
4.1 Definition of QDSs . 14
4.2 Extension to q-time Security . 15
4.3 Equivalence of OWSGs and QDSs . 17

5 Quantum Money 19
5.1 Definition of Private-key Quantum Money . 19
5.2 OWSGs from Quantum Money with Pure Money States . 19
5.3 OWSGs from Quantum Money with Symmetric Verifiability 22

6 QPOTP 24
6.1 Definition of QPOTP . 25
6.2 OWSGs from QPOTP . 25
6.3 EFI Pairs from Single-Copy-Secure QPOTP . 27

7 SV-SI-OWSGs 29
7.1 Definition of SV-SI-OWSGs . 29
7.2 Equivalence of SV-SI-OWSGs and EFI Pairs . 33

A PRSGs 40

B Verification Algorithm for Special Case 41

C OWSGs from PRSGs with Improved Parameters 42

D Impossibility of Statistically-Secure QDSs 43

E Quantum SKE and Quantum PKE 43
E.1 Quantum SKE . 44
E.2 Quantum PKE . 44

2

F Proof of Theorem 3.14 46

3

1 Introduction

One-way functions (OWFs) are functions that are easy to compute but hard to invert. The existence of
OWFs is one of the most fundamental assumptions in classical cryptography. OWFs are equivalent to
many cryptographic primitives, such as commitments, digital signatures, pseudorandom generators (PRGs),
symmetric-key encryption (SKE), and zero-knowledge, etc. Moreover, almost all other cryptographic
primitives, such as collision-resistant hashes, public-key encryption (PKE), oblivious transfer (OT), multi-
party computations (MPCs), etc., imply OWFs. In the quantum world, on the other hand, it seems that OWFs
are not necessarily the most fundamental element. In fact, recently, several quantum cryptographic primitives,
such as commitments, (one-time secure) digital signatures, quantum pseudo one-time pad (QPOTP)1, and
MPCs are constructed from pseudorandom states generators (PRSGs) [MY22, AQY22]. A PRSG [JLS18],
which is a quantum analogue of a PRG, is a QPT algorithm that outputs a quantum state whose polynomially-
many copies are computationally indistinguishable from the same number of copies of Haar random states.
Kretschmer [Kre21] showed that PRSGs exist even if BQP = QMA (relative to a quantum oracle), which
means that PRSGs (and all the above primitives that can be constructed from PRSGs) could exist even if all
quantum-secure (classical) cryptographic primitives including OWFs are broken.2 Kretschmer, Qian, Sinha,
and Tal [KQST23] also showed that 1-PRSGs (which are variants of PRSGs secure against adversaries that
get only a single copy of the state) exist even if NP = P. We therefore have the following important open
problem in quantum cryptography:

Question 1: What is the most fundamental assumption in quantum cryptography?

In classical cryptography, a pair of PPT algorithms whose output probability distributions are statistically
distinguishable but computationally indistinguishable is known to be fundamental. Goldreich [Gol90]
showed the equivalence of such a pair to PRGs, which also means the equivalence of such a pair to all
cryptographic primitives in Minicrypt [Imp95]. It is natural to consider its quantum analogue: a pair of QPT
algorithms whose output quantum states are statistically distinguishable but computationally indistinguishable.
In fact, such a pair was implicitly studied in quantum commitments [Yan22]. In the canonical form of
quantum commitments [YWLQ15], computationally hiding and statistically binding quantum commitments
are equivalent to such pairs. The importance of such a pair as an independent quantum cryptograpic primitive
was pointed out in [Yan22, BCQ22]. In particular, the authors of [BCQ22] explicitly defined it as EFI pairs,3
and showed that EFI pairs are implied by several quantum cryptographic primitives such as (semi-honest)
quantum OT, (semi-honest) quantum MPCs, and (honest-verifier) quantum computational zero-knowledge
proofs. It is therefore natural to ask the following question.

Question 2: Which other quantum cryptographic primitives imply EFI pairs?

PRSGs and EFI pairs are “decision type” primitives, which correspond to PRGs in classical cryptography.
An example of the other type of primitives, namely, “search type” one in classical cryptography, is OWFs.
Recently, a quantum analogue of OWFs, so called one-way states generators (OWSGs), are introduced [MY22].
A OWSG is a QPT algorithm that, on input a classical bit string (key) k, outputs a quantum state |ϕk⟩. As the
security, we require that it is hard to find k′ such that |⟨ϕk|ϕk′⟩|2 is non-negligible given polynomially many
copies of |ϕk⟩. The authors showed that OWSGs are implied by PRSGs, and that OWSGs imply (one-time

1QPOTP schemes are a one-time-secure SKE with quantum ciphertexts where the key length is shorter than the massage length.
(For the definition, see Definition 6.1.)

2If QMA = BQP, then NP ⊆ BQP. Because all quantum-secure classical cryptographic primitives are in NP, it means
that they are broken by QPT algorithms.

3It stands for efficiently samplable, statistically far but computationally indistinguishable pairs of distributions.

4

secure) quantum digital signatures with quantum public keys. In classical cryptography, OWFs are connected
to many cryptographic primitives. We are therefore interested in the following question.

Question 3: Which quantum cryptographic primitives are related to OWSGs?

In classical cryptography, PRGs (i.e., a decision-type primitive) and OWFs (i.e., a search-type primitive)
are equivalent. In quantum cryptography, on the other hand, we do not know whether OWSGs and EFI pairs
(or PRSGs) are equivalent or not. We therefore have the following open problem.

Question 4: Are OWSGs and EFI pairs (or PRSGs) equivalent?

1.1 Our Results

The study of quantum cryptography with complexity assumptions has became active only very recently, and
therefore we do not yet have enough knowledge to answer Question 1. However, as an important initial step
towards the ultimate goal, we give some answers to other questions above. Our results are summarized as
follows. (See also Fig. 1.)

1. We first revisit the definition of OWSGs. In the original definition in [MY22], output states of OWSGs
are assumed to be pure states. Moreover, the verification is done as follows: a bit string k′ from the
adversary is accepted if and only if the state |ϕk⟩⟨ϕk| is measured in the basis {|ϕk′⟩⟨ϕk′ |, I−|ϕk′⟩⟨ϕk′ |},
and the first result is obtained. (Note that in classical OWFs, the verification is implicit because it is
trivial: just computing f(x′) for x′ given by the adversary, and check whether it is equal to f(x) or
not. However, in the quantum case, we have to explicitly define the verification.) In this paper, to
capture more general settings, we generalize the definition of OWSGs by allowing outputs to be mixed
states. A non-trivial issue that arises from this modification is that there is no canonical way to verify
input-output pairs of OWSGs. To deal with this issue, we include such a verification algorithm as a part
of syntax of OWSGs. See Definition 3.1 for the formal definition.

2. We show an “amplification theorem” for OWSGs. That is, we define weak OWSGs (wOWSGs), which
only requires the adversary’s advantage to be 1−1/poly(λ) instead of negl(λ), and show that a parallel
repetition of wOWSGs gives OWSGs (Section 3.2). This is an analogue of the equivalence of weak
one-way functions and (strong) one-way functions in classical cryptography [Yao82].

3. We show that one-time-secure quantum digital signatures (QDSs) with quantum public keys are
equivalent to OWSGs (Section 4.3).4 Moreover, we can generically upgrade one-time-secure QDSs
into bounded-time-secure one (Section 4.2).5

4. We show that private-key quantum money schemes (with pure money states or with verification
algorithms that satisfy some symmetry) imply OWSGs (Section 5.2 and Section 5.3).

5. We show that QPOTP schemes imply OWSGs (Section 6.2). This in particular means that IND-CPA
secure quantum SKE or quantum PKE implies OWSGs (Appendix E).

6. We show that single-copy-secure QPOTP schemes imply EFI pairs (Section 6.3). Single-copy-security
means that the adversary receives only a single copy of the quantum ciphertext. This in particular
means that IND-CPA secure quantum SKE or quantum PKE implies EFI pairs (Appendix E).

4A construction of QDSs from OWSGs was already shown in [MY22], but in this paper, we generalize the definition of OWSGs,
and we give the proof in the new definition.

5We thank Or Sattath for asking if we can get (stateless) bounded-time QDSs.

5

7. We introduce an incomparable variant of OWSGs, which we call secretly-verifiable and statistically-
invertible OWSGs (SV-SI-OWSGs) (Section 7.1), and show that SV-SI-OWSGs are equivalent to EFI
pairs (Section 7.2).

We remark that we consider the generalized definition of OWSGs with mixed state outputs by default.
However, all the relationships between OWSGs and other primitives naturally extend to the pure state version
if we consider the corresponding pure state variants of the primitives.

PRSGs

QPOTP

AQY21

OWSGs

EFI

QDSs
Qcomm

Yan20

BCQ22

Qmoney

JLS18

SV-SI-OWSGs

1copy QPOTP

trivial

Figure 1: Summary of results. The dotted line means some restrictions: OWSGs are implied by quantum
money schemes with pure money states or with symmetric verification algorithms.

1.2 Concurrent Work

A concurrent work by Cao and Xue [CX22] also studies OWSGs. In particular, they also show the equivalence
between weak OWSGs and OWSGs. Though they consider OWSGs with pure state outputs as defined
in [MY22], it is likely that their proof extends to the mixed state version as well. Interestingly, the proof
strategies are different in our and their works. Their proof is based on the classical proof of the equivalence
between the weak one-way functions and one-way functions [Yao82, Gol01]. On the other hand, our proof is
based on the amplification theorem for weakly verifiable puzzles [CHS05]. Though their proof is simpler,
an advantage of our approach is that it captures more general settings. For example, our proof also works
for secretly-verifiable OWSGs (Definition 7.1). Their approach seems to rely on public verifiability in an
essential manner and not applicable to secretly-verifiable OWSGs.

Besides the equivalence between weak OWSGs and OWSGs, there is no other overlap between our and
their results.

1.3 Open Problems

The study of “quantum cryptography without one-way functions” has just started, and our understanding
is very limited. There are many open problems in this emerging field, but we believe the following open
problems are important, and some of them seem to be highly challenging.

1. What is the most fundamental assumption in quantum cryptography? It should be implied by many
primitives, and should imply many primitives. It should also be simple. Or, there is no such thing in
quantum cryptography?

6

2. OWSGs=EFI? Or at least can we show OWSGs→EFI6 or EFI→OWSGs? If they are incomparable, is
there any more fundamental primitive that is implied by both OWSGs and EFI pairs?

3. Do OWSGs imply private-key quantum money schemes? An adversary who can clone a quantum
money state ψk would not necessarily be able to find the secret key k.

4. Do EFI pairs imply single-copy-secure PRSGs?

5. Can we construct unbounded-poly many-time secure digital signatures without one-way functions?

6. Which other primitives can be constructed without one-way functions? For example, how about PKE,
NIZK, or proofs of quantumness?

7. PP ̸= BQP is necessary for the existence of PRSGs [Kre21]. What are the classical complexity
assumptions necessary for the existences of other primitives, such as OWSGs, private-key quantum
money schemes, and EFI pairs?7

2 Preliminaries

2.1 Basic Notations

We use the standard notations of quantum computing and cryptography. We use λ as the security parameter.
[n] means the set {1, 2, ..., n}. For any set S, x ← S means that an element x is sampled uniformly at
random from the set S. negl is a negligible function, and poly is a polynomial. PPT stands for (classical)
probabilistic polynomial-time and QPT stands for quantum polynomial-time. If we say that an adversary is
QPT, it implicitly means non-uniform QPT. A QPT unitary is a unitary operator that can be implemented in a
QPT quantum circuit.

For an algorithm A, y ← A(x) means that the algorithm A outputs y on input x. In particular, if x and y
are quantum states and A is a quantum algorithm, y ← A(x) means the following: a unitary U is applied on
x⊗ |0...0⟩⟨0...0|, and some qubits are traced out. Then, the state of remaining qubits is y. This, importantly,
means that the state y is uniquely decided by the state x. If A is a QPT algorithm, the unitary U is QPT and
the number of ancilla qubits |0...0⟩ is poly(λ). If x is a classical bit string, y is a quantum state, and A is a
quantum algorithm, y ← A(x) sometimes means the following: a unitary Ux that depends on x is applied on
|0...0⟩, and some qubits are traced out. The state of the remaining qubits is y. This picture is the same as the
most general one where x is given as input, but we sometime choose this picture if it is more convenient.
∥X∥1 := Tr

√
X†X is the trace norm. TrA(ρA,B) means that the subsystem (register) A of the state ρA,B

on two subsystems (registers) A and B is traced out. For simplicity, we sometimes write TrA,B(|ψ⟩A,B) to
mean TrA,B(|ψ⟩⟨ψ|A,B). I is the two-dimensional identity operator. For simplicity, we sometimes write
I⊗n as I if the dimension is clear from the context. For the notational simplicity, we sometimes write
|0...0⟩ just as |0⟩, when the number of zeros is clear from the context. For two pure states |ψ⟩ and |ϕ⟩, we
sometimes write ∥|ψ⟩⟨ψ| − |ϕ⟩⟨ϕ|∥1 as ∥|ψ⟩ − |ϕ⟩∥1 to simplify the notation. F (ρ, σ) := ∥√ρ

√
σ∥21 is the

fidelity between ρ and σ. We often use the well-known relation between the trace distance and the fidelity:
1−

√
F (ρ, σ) ≤ 1

2∥ρ− σ∥1 ≤
√

1− F (ρ, σ).

6OWSGs→EFI has recently been shown in [KT23] for pure-output OWSGs.
7Recently, there have been some progresses regarding this open problem. First, it was shown that PP ̸= BQP is necessary for

the existence of pure OWSGs [CGG+23]. Second, an evidence is given that single-copy PRSGs (and hence EFI pairs) could exist
even if P = ALL [LMW23].

7

2.2 EFI Pairs

The concept of EFI pairs was implicitly studied in [Yan22], and explicitly defined in [BCQ22].

Definition 2.1 (EFI pairs [BCQ22]). An EFI pair is an algorithm StateGen(b, 1λ) → ρb that, on input
b ∈ {0, 1} and the security parameter λ, outputs a quantum state ρb such that all of the following three
conditions are satisfied.

• It is a uniform QPT algorithm.

• ρ0 and ρ1 are computationally indistinguishable. In other words, for any QPT adversary A, |Pr[1←
A(1λ, ρ0)]− Pr[1← A(1λ, ρ1)]| ≤ negl(λ).

• ρ0 and ρ1 are statistically distinguishable, i.e., 1
2∥ρ0 − ρ1∥1 ≥ 1

poly(λ) .

Remark 2.2. Note that in the above definition, the statistical distinguishability is defined with only≥ 1/poly(λ)
advantage. However, if EFI pairs with the above definition exist, EFI pairs with ≥ 1 − negl(λ) statistical
distinguishability exist as well. In fact, we have only to define a new StateGen′ that runs StateGen n times
with sufficiently large n = poly(λ), and outputs ρ⊗nb . The ≥ 1 − negl(λ) statistical distinguishability for
StateGen′ is shown from the inequality [BCQ22],

1
2∥ρ

⊗n − σ⊗n∥1 ≥ 1− exp(−n∥ρ− σ∥1/4).

The computational indistinguishability for StateGen′ is shown by the standard hybrid argument.

2.3 Quantum Commitments

We define canonical quantum bit commitments [Yan22] as follows.

Definition 2.3 (Canonical quantum bit commitments [Yan22]). A canonical quantum bit commitment
scheme is a family {Q0(λ), Q1(λ)}λ∈N of QPT unitaries on two registers C (called the commitment register)
and R (called the reveal register). For simplicity, we often omit λ and simply write {Q0, Q1} to mean
{Q0(λ), Q1(λ)}λ∈N.

Remark 2.4. Canonical quantum bit commitments are used as follows. In the commit phase, to commit to a bit
b ∈ {0, 1}, the sender generates a state Qb |0⟩C,R and sends C to the receiver while keeping R. In the reveal
phase, the sender sends b and R to the receiver. The receiver projects the state on (C,R) onto Qb |0⟩C,R,
and accepts if it succeeds and otherwise rejects. (In other words, the receiver applies the unitary Q†b on the
registers C and R, and measure all qubits in the computational basis. If all result are zero, accept. Otherwise,
reject.)

Definition 2.5 (Hiding). We say that a canonical quantum bit commitment scheme {Q0, Q1} is computationally
(rep. statistically) hiding if TrR(Q0 |0⟩C,R) is computationally (resp. statistically) indistinguishable from
TrR(Q1 |0⟩C,R). We say that it is perfectly hiding if they are identical states.

Definition 2.6 (Binding). We say that a canonical quantum bit commitment scheme {Q0, Q1} is computation-
ally (rep. statistically) binding if for any QPT (resp. unbounded-time) unitary U over R and an additional
register Z and any polynomial-size state |τ⟩Z, it holds that∥∥∥(⟨0|Q†1)C,R(IC ⊗ UR,Z)((Q0 |0⟩)C,R |τ⟩Z)

∥∥∥ = negl(λ). (1)

8

We say that it is perfectly hiding if the LHS is 0 for all unbounded-time unitary U . 8

Remark 2.7. One may think that honest-binding defined above is too weak because it only considers honestly
generated commitments. However, somewhat surprisingly, [Yan22] proved that it is equivalent to another
binding notion called the sum-binding [DMS00].9 The sum-binding property requires that the sum of
probabilities that any (quantum polynomial-time, in the case of computational binding) malicious sender
can open a commitment to 0 and 1 is at most 1 + negl(λ). In addition, it has been shown that the honest-
binding property is sufficient for cryptographic applications including zero-knowledge proofs/arguments (of
knowledge), oblivious transfers, and multi-party computation [YWLQ15, FUYZ20, MY22, Yan21]. In this
paper, we refer to honest-binding if we simply write binding.

In this paper, we use the following result.

Theorem 2.8 (Converting flavors [Yan22, HMY23]). Let {Q0, Q1} be a canonical quantum bit commitment
scheme. Then there exists a canonical quantum bit commitment scheme {Q′0, Q′1}, and the following hold for
X, Y ∈ {computationally,statistically,perfectly}:

• If {Q0, Q1} is X hiding, then {Q′0, Q′1} is X binding.

• If {Q0, Q1} is Y binding, then {Q′0, Q′1} is Y hiding.

2.4 PRSGs

Although in this paper we do not use PRSGs, we provide its definition in Appendix A for the convenience of
readers.

3 OWSGs

In this section, we first define OWSGs (Section 3.1). We then define weak OWSGs and show that weak
OWSGs are equivalent to OWSGs (Section 3.2).

3.1 Definition of OWSGs

In this subsection, we define OWSGs. Note that the definition below is a generalization of the one given in
[MY22] in the following three points. First, in [MY22], the generated states are pure, but here they can be
mixed. Second, in [MY22], the secret key k is uniformly sampled at random, but now it is sampled by a
QPT algorithm. Third, in [MY22], the verification algorithm is the specific algorithm that accepts the alleged
key k′ with probability |⟨ϕk|ϕk′⟩|2, while here we consider a general verification algorithm. We think the
definition below is more general (and therefore more fundamental) than that in [MY22]. Hence hereafter we
choose the definition below as the definition of OWSGs.

Definition 3.1 (One-way states generators (OWSGs)). A one-way states generator (OWSG) is a set of
algorithms (KeyGen, StateGen,Ver) such that

8The above definition is asymmetric for 0 and 1, but it is easy to show that Equation (1) implies∥∥(⟨0|Q†0)C,R(IC ⊗ UR,Z)((Q1 |0⟩)C,R |τ⟩Z)
∥∥ = negl(λ)

for any U and |τ⟩.
9The term “sum-binding” is taken from [Unr16].

9

• KeyGen(1λ)→ k : It is a QPT algorithm that, on input the security parameter λ, outputs a classical
key k ∈ {0, 1}κ.

• StateGen(k)→ ϕk : It is a QPT algorithm that, on input k, outputs an m-qubit quantum state ϕk.

• Ver(k′, ϕk)→ ⊤/⊥ : It is a QPT algorithm that, on input ϕk and a bit string k′, outputs ⊤ or ⊥.

We require the following correctness and security.

Correctness:

Pr[⊤ ← Ver(k, ϕk) : k ← KeyGen(1λ), ϕk ← StateGen(k)] ≥ 1− negl(λ).

Security: For any QPT adversary A and any polynomial t10,

Pr[⊤ ← Ver(k′, ϕk) : k ← KeyGen(1λ), ϕk ← StateGen(k), k′ ← A(1λ, ϕ⊗tk)] ≤ negl(λ).

Remark 3.2. In Appendix B, we show that if all ϕk are pure and Pr[⊤ ← Ver(k, ϕk)] ≥ 1− negl(λ) for all k,
restricting Ver to the following specific algorithm (used in [MY22]) does not lose the generality: On input
k′ and ϕk, measure ϕk with the basis {|ϕk′⟩⟨ϕk′ |, I − |ϕk′⟩⟨ϕk′ |}. If the first result is obtained output ⊤.
Otherwise, output ⊥.
Remark 3.3. If ϕk is pure, StateGen runs as follows. Apply a QPT unitary U on |k⟩|0...0⟩ to generate
|ϕk⟩ ⊗ |ηk⟩, and output |ϕk⟩. In this case, the existence of the “junk state” |ηk⟩ is essential, because
otherwise it is not secure against a QPT adversary who does the application of U † and the computational-basis
measurement.
Remark 3.4. OWSGs are constructed from PRSGs [MY22]. In [MY22], OWSGs are constructed from PRSGs
with m ≥ cκ for c > 1. (Here, κ is the key-length (i.e., the input length of StateGen), and m is the output
length of StateGen (i.e., the number of qubits of ϕk).) It can be improved to the construction of OWSGs from
PRSGs with m ≥ log κ.11 (For a proof, see Appendix C.)
Remark 3.5. Note that statistically-secure OWSGs do not exist. In other words, there exists an unbounded
algorithm A that can break the security of OWSGs as follows:

1. Given ϕ⊗tk with a certain polynomial t as input, run the shadow tomography algorithm [Aar19] to find
k′ such that Pr[Ver(k′, ϕk)→ ⊤] ≥ 1− 1

poly(λ) . If there exists such k′, such k′ can be found with only
a certain polynomial t. If there is no such k′, choose k′ uniformly at ramdom.

2. Output k′.

3.2 Hardness Amplification for OWSGs

In this subsection, we define a weaker variant called weak one-way states generators (wOWSGs), and show
that they are equivalent to OWSGs.

wOWSGs are defined as follows.
Definition 3.6 (Weak one-way states generators (wOWSGs)). A weak one-way states generator (wOWSG)
is a tuple of algorithms (KeyGen, StateGen,Ver) defined similarly to OWSGs except that the security is
replaced with the following weak security.

10StateGen is actually run t times to generate t copies of ϕk, but for simplicity, we just write ϕk ← StateGen(k) only once. This
simplification will often be used in this paper.

11We thank Luowen Qian for pointing out the fact to us.

10

Weak Security: There exists a polynomial p such that for any QPT adversary A and any polynomial t,

Pr[⊤ ← Ver(k′, ϕk) : k ← KeyGen(1λ), ϕk ← StateGen(k), k′ ← A(1λ, ϕ⊗tk)] ≤ 1− 1
p
.

We prove that the existence of wOWSGs imply the existence of OWSGs. This is an analogue of Yao’s
amplification theorem for OWFs in the classical setting [Yao82, Gol01].

Theorem 3.7. OWSGs exist if and only if wOWSGs exist.

We observe that the classical proof for OWFs does not extend to OWSGs at least in a straightforward
manner. The reason is that the classical proof uses the (obvious) fact that one can deterministically check
if a given pair (x, y) satisfies f(x) = y for a OWF f but we do not have such a deterministic verification
algorithm for OWSGs.12 On the other hand, we observe that the proof of a more general hardness amplification
theorem for weakly verifiable puzzles shown by Canetti, Halevi, and Steiner [CHS05] extends to the quantum
setting with minor tweak. Thus we choose to show the quantum analogue of [CHS05], which is more general
than [Yao82]. We note that Radian and Sattath [RS19] observed that the proof of [CHS05] extends to the
post-quantum setting where the adversary is quantum with essentially the same proof, but what we show is
stronger than that since we consider quantum puzzles and answers.

Remark 3.8. We can also consider an even weaker variant of OWSGs where the correctness bound can be
much smaller than 1 and we only require there is an inverse polynomial gap between the correctness and
security bounds. Unfortunately, we do not know how to prove the equivalence between such a further weaker
variant of weak OWSGs and standard OWSGs. To prove this, we will need a quantum analogue of the results
of [ĲK09, HS11], which are generalization of [CHS05].

First, we define a quantum analogue of weakly verifiable puzzles.

Definition 3.9 (Weakly verifiable quantum puzzles). A weakly verifiable quantum puzzle is a tuple of
algorithms (CheckGen,PuzzleGen,Ver) as follows.

• CheckGen(1λ)→ k : It is a QPT algorithm that, on input the security parameter λ, outputs a classical
string k, which we call a “check key”.

• PuzzleGen(k)→ puz : It is a QPT algorithm that, on input k, outputs a quantum state puz, which we
call a “puzzle”.

• Ver(ans, k)→ ⊤/⊥ : It is a QPT algorithm that, on input k and a quantum state ans, which we call an
“answer”, outputs ⊤ or ⊥.

Remark 3.10. Besides that puz and ans are quantum, another difference from the classical version [CHS05] is
that the generation algorithm is divided into CheckGen that generates k and PuzzleGen that generates puz.
We define it in this way because we want to consider poly-copy hardness, i.e., the hardness to find a valid
answer even given polynomially many copies of the puzzle. If we use a single generation algorithm Gen that
generates k and puz simultaneously like [CHS05], it is unclear how to define such a poly-copy hardness.

Remark 3.11. Later, we will see that OWSGs can be seen as weakly verifiable quantum puzzles: CheckGen
corresponds to KeyGen of OWSGs, PuzzleGen corresponds to StateGen of OWSGs, and Ver of weakly
verifiable quantum puzzles corresponds to Ver of OWSGs. Moreover, ans corresponds to k′ of OWSGs,

12We remark that the concurrent work by Cao and Xue [CX22] avoids this issue by appropriately modifying the proof strategy.

11

which is the output of the adversary, i.e., k′ ← A(ϕ⊗tk). Because k′ is a classical bit string, it is enough for
our purpose to consider only classical ans, but here we assume ans is quantum to give a more general result.
Ver of weakly verifiable quantum puzzles takes k, while Ver of OWSGs takes ϕk. This discrepancy can be
easily solved by considering that Ver of weakly verifiable quantum puzzles first generates ϕk from k and then
runs Ver of OWSGs.

Definition 3.12. We say that an adversaryA (t, ϵ)-solves a weakly verifiable quantum puzzle (CheckGen,PuzzleGen,Ver)
if

Pr[⊤ ← Ver(ans, k) : k ← CheckGen(1λ), puz← PuzzleGen(k), ans← A(puz⊗t)] ≥ ϵ.

Definition 3.13 (Parallel repetition). For a weakly verifiable quantum puzzle (CheckGen,PuzzleGen,Ver)
and a positive integer n, we define its n-repetition (CheckGenn,PuzzleGenn,Vern) as follows.

• CheckGenn(1λ)→ (k1, . . . , kn) : Run ki ← CheckGen(1λ) for i ∈ [n] and output (k1, . . . , kn).

• PuzzleGenn(k1, . . . , kn) → (puz1, . . . , puzn) : Run puzi ← PuzzleGen(ki) for i ∈ [n] and output
(puz1, . . . , puzn).

• Vern((ans1, . . . , ansn), (k1 . . . , kn))→ ⊤/⊥ : Run Ver(ansi, ki) for i ∈ [n] and output ⊤ if and only
if all the execution of Ver outputs ⊤.

Theorem 3.14. Let n, q, t be polynomials and δ ∈ (0, 1) be an inverse polynomial in λ. If there exists a
QPT adversary A that (t, δn)-solves (CheckGenn,PuzzleGenn,Vern), then there exists a polynomial t′ and
a QPT adversary A′ that (t′, δ(1− 1

q))-solves (CheckGen,PuzzleGen,Ver).13

Proof of Theorem 3.14 (sketch). Since the proof is similar to that in the classical case ([CHS05, Lemma 1]),
we only explain how to modify it. See Appendix F for the full proof.

First, let us recall the proof overview in the classical case where puz and ans are classical. The construction
of A′ can be divided into the “preprocessing phase” and “online phase”. In the preprocessing phase, A′
finds a “good” prefix prefixv−1 = (puz1, . . . , puzv−1) for some v ∈ [n]. (The actual definition of goodness
does not matter in this proof sketch.14) In the online phase, given a puzzle puz as an instance, A′ repeats the
following:

• A′ runs (ans1, . . . , ansn)← A(puz1, . . . , puzv−1, puz, puzv+1, . . . , puzn) where prefixv−1 = (puz1, . . . , puzv−1)
is the “good” prefix found in the preprocessing phase, puz is the given instance, and (puzv+1, . . . , puzn)
is generated by A′ itself along with the corresponding check key (kv+1, . . . , kn).

• A′ runs Ver(ansi, ki) for i ∈ {v + 1, . . . , n} and outputs ansv if Ver(ansi, ki) outputs ⊤ for all
i ∈ {v+ 1, . . . , n}. (Note that this is possible becauseA′ generates ki for i ∈ {v+ 1, . . . , n} by itself.)
Otherwise, it continues running the loop.

If A′ does not halt after running the loop sufficiently many times, it aborts. They show that

• The probability that A′ fails to find a good prefix is at most δ
6q , and

13q is a parameter chosen freely that affects the time complexity and the success probability of A′, but here we do not write the
time complexity of A′ explicitly, because we are not interested in it as long as it is QPT.

14For the readers who want to find the correspondence with the proof in [CHS05], we say that prefixv−1 is good if it satisfies
Equations (1) and (2) of [CHS05].

12

• For any “good” prefix, A′ solves the puzzle with probability at least δ(1− 5
6q).

Combining the above, we can conclude that the overall probability thatA′ solves the puzzle is at least δ(1− 1
q).

When we generalize this proof to the quantum setting where puz and ans are quantum, there is an issue
that A′ cannot reuse the “good” prefix in the online phase since it consists of quantum puzzles, which
cannot be copied.15 To resolve this problem, we observe that we can regard k as a classical description of
puz← PuzzleGen(k). Then our idea is to define a prefix to be a sequence of check keys k instead of puzzles
puz.16 Since k is classical and in particular can be reused many times, the above issue is resolved. Another
issue is that the online phase ofA′ has to runAmany times where it embeds the problem instance puz into the
input ofA, but puz is quantum and thus cannot be copied. To resolve this issue, we simply provide sufficiently
many copies of puz to A′.17 Due to this modification, Theorem 3.14 does not preserve the number of copies,
i.e., t′ should be much larger than t, but we still have t′ = t · poly(λ) since A′ runs A only polynoimally
many times.

With the above differences in mind, it is straightforward to extend the proof of [CHS05, Lemma 1] to
prove Theorem 3.14.

Remark 3.15. We remark that the above proof does not work if k is quantum and potentially entangled with
puz. (In such a setting, we can only consider single-copy hardness.) A generalization to such a setting
would resolve the open problem about the amplification for computational binding of canonical quantum bit
commitments asked by Yan [Yan20, Section 12, Problem 5]. In the above proof, it is crucial that we have a
classical description of puz as k, and we do not know how to extend it to the case where k is quantum.

We are ready to prove Theorem 3.7.

Proof of Theorem 3.7. The “only if” direction is trivial since any OWSG is also wOWSG. In the following,
we show the “if” direction, i.e., OWSGs exist if wOWSGs exist. Let (KeyGen,StateGen,Ver) be a wOWSG.
Then there exists a polynomial p such that for any QPT adversary A′ and any polynomial t′,

Pr[⊤ ← Ver(k′, ϕk) : k ← KeyGen(1λ), ϕk ← StateGen(k), k′ ← A′(1λ, ϕ⊗t′k)] ≤ 1− 1
p
.

Then we construct a OWSG (KeyGenn, StateGenn,Vern) as follows, where n = poly(λ) is chosen in such a
way that (1− 1

2p)n = 2−Ω(λ). (For example, we can set n = pλ.)

• KeyGenn(1λ)→ (k1, . . . , kn) : Run ki ← KeyGenn(1λ) for i ∈ [n] and output (k1, . . . , kn).

• StateGenn((k1, . . . , kn)) → (ϕk1 , . . . , ϕkn) : Run ϕki ← StateGen(ki) for i ∈ [n] and output
(ϕk1 , . . . , ϕkn).

• Vern((k′1, . . . , k′n), (ϕk1 , . . . , ϕkn))→ ⊤/⊥ : Run Ver(k′i, ϕki) for i ∈ [n] and output ⊤ if and only if
Ver(k′i, ϕki) outputs ⊤ for all i ∈ [n].

15Actually, a similar problem already occurs when searching for a “good” prefix in the preprocessing phase.
16We remark that this does not work in the original formulation of (classical) weakly verifiable puzzle in [CHS05] because k and

puz are generated simultaneously by a single generation algorithm. For this idea to work, it is important that we divide the generation
algorithm in to CheckGen that generates k and PuzzleGen that generates puz from k as noted in Remark 3.10.

17If A is a non-uniform adversary with quantum advice, A′ also needs to take sufficiently many copies of the advice of A as its
own advice.

13

It is clear that (KeyGenn,StateGenn,Vern) satisfies correctness. Let us next show the security. Toward
contradiction, suppose that (KeyGenn, StateGenn,Vern) is not secure. Then there exists a QPT adversary A
and a polynomial t such that

Pr

⊤ ← Vern((k′1, . . . , k′n), (ϕk1 , . . . , ϕkn)) :
(k1, . . . , kn)← KeyGenn(1λ),
(ϕk1 , . . . , ϕkn)← StateGenn(k1, . . . , kn),
(k′1, . . . , k′n)← A(1λ, ϕ⊗tk1

, . . . , ϕ⊗tkn)


is non-negligible, which, in particular, is larger than (1− 1

2p)n = 2−Ω(λ) for infinitely many λ. Since OWSGs
can be seen as a weakly verifiable quantum puzzle as noted in Remark 3.11, by setting q := 2p and δ := 1− 1

2p
in Theorem 3.14, there is a QPT algorithm A′ and a polynomial t′ such that

Pr[⊤ ← Ver(k′, ϕk) : k ← KeyGen(1λ), ϕk ← StateGen(k), k′ ← A′(1λ, ϕ⊗t′k)]

≥ δ
(

1− 1
q

)
=
(

1− 1
2p

)(
1− 1

2p

)
> 1− 1

p

for infinitely many λ. This contradicts the assumption. Therefore (KeyGenn, StateGenn,Vern) is a
OWSG.

4 QDSs

In this section, we first define QDSs (Section 4.1), and show that one-time-secure QDSs can be extended
to q-time-secure ones (Section 4.2). We then show that one-time-secure QDSs are equivalent to OWSGs
(Section 4.3).

4.1 Definition of QDSs

Quantum digital signatures are defined as follows.

Definition 4.1 (Quantum digital signatures (QDSs) [MY22]). A quantum digital signature (QDS) scheme
is a set of algorithms (SKGen,PKGen, Sign,Ver) such that

• SKGen(1λ)→ sk : It is a QPT algorithm that, on input the security parameter λ, outputs a classical
secret key sk.

• PKGen(sk)→ pk : It is a QPT algorithm that, on input sk, outputs a quantum public key pk.

• Sign(sk,m) → σ : It is a QPT algorithm that, on input sk and a message m, outputs a classical
signature σ.

• Ver(pk,m, σ)→ ⊤/⊥ : It is a QPT algorithm that, on input pk, m, and σ, outputs ⊤/⊥.

We require the correctness and the security as follows.

Correctness: For any m,

Pr

⊤ ← Ver(pk,m, σ) :
sk← SKGen(1λ),
pk← PKGen(sk),
σ ← Sign(sk,m)

 ≥ 1− negl(λ).

14

q-time security: Let us consider the following security game, Exp, between a challenger C and a QPT
adversary A:

1. C runs sk← SKGen(1λ).

2. C runs pk← PKGen(sk) t times, and sends pk⊗t to A.

3. For i = 1 to q, do:

(a) A sends a message m(i) to C.
(b) C runs σ(i) ← Sign(sk,m(i)), and sends σ(i) to A.

4. A sends σ′ and m′ to C.

5. C runs pk← PKGen(sk) and v ← Ver(pk,m′, σ′). If m′ /∈ {m(1), . . . ,m(q)} and v = ⊤, the output
of the game is 1. Otherwise, the output of the game is 0.

For any QPT adversary A and any polynomial t, Pr[Exp = 1] ≤ negl(λ).

Remark 4.2. By using the shadow tomography, we can show that statistically-secure QDSs do not exist. For a
proof, see Appendix D.

4.2 Extension to q-time Security

Theorem 4.3. If one-time-secure QDSs exist, then q-time-secure QDSs exist for any polynomial q.

Proof of Theorem 4.3. The proof is similar to the one-time to q-time conversion for attribute-based encryption
in [ISV+17].18

Let (1DS.SKGen, 1DS.PKGen, 1DS.Sign, 1DS.Ver) be a one-time-secure QDS scheme. For a polynomial
q, we construct a q-time-secure QDS scheme (qDS.SKGen, qDS.PKGen, qDS.Sign, qDS.Ver) as follows.

• qDS.SKGen(1λ) → sk : Run ska,b ← 1DS.SKGen(1λ) for a ∈ [λ] and b ∈ [q2] and output sk :=
(ska,b)a∈[λ],b∈[q2].

• qDS.PKGen(sk) → pk : Parse sk = (ska,b)a∈[λ],b∈[q2], run pka,b ← 1DS.PKGen(ska,b) for a ∈ [λ]
and b ∈ [q2] and output pk :=

⊗
a∈[λ],b∈[q2] pka,b.

• qDS.Sign(sk,m) → σ : Parse sk = (ska,b)a∈[λ],b∈[q2], choose ba ← [q2] for a ∈ [λ], run σa ←
1DS.Sign(ska,ba ,m) for a ∈ [λ], and output σ = (ba, σa)a∈[λ].

• qDS.Ver(pk,m, σ)→ ⊤/⊥ : Parse pk =
⊗

a∈[λ],b∈[q2] pka,b andσ = (ba, σa)a∈[λ], run 1DS.Ver(pka,ba ,m, σa)
for a ∈ [λ], and output ⊤ if and only if all execution of 1DS.Ver output ⊤.

We show that the above scheme satisfies q-time security. Let A be an adversary against q-time security of
the above scheme. In the q-time security Exp as defined in Definition 4.1, let σ(i) = (b(i)

a , σ
(i)
a)a∈[λ] be the

i-th signature generated by C and σ′ = (b′a, σ′a)a∈[λ] be A’s final output. Let Good be the event that there is
a ∈ [λ] such that b(i)

a is distinct for all i ∈ [q]. Then we can show that Pr[Good] = 1− negl(λ) similarly to

18We also note that the proof works also for the classical setting.

15

[ISV+17, Lemma 1]. Specifically, this is shown as follows. For each a ∈ [λ], let Bada be the event that b(i)
a is

not distinct for i ∈ [q]. Then by a simple combinatorial argument, we can see that

Pr[Bada] = 1−
(
q2(q2 − 1) · · · (q2 − q + 1)

(q2)q

)

≤ 1−
(

1− q − 1
q2

)q
.

for each a ∈ [λ]. Thus, we have

Pr[Good] = 1−
∏
a∈[λ]

Pr[Bada]

≥ 1−
(

1−
(

1− q − 1
q2

)q)λ
= 1−

(
1−

(
1− 1

q
+ 1
q2

)q)λ
≥ 1− (1− e−1)λ

= 1− negl(λ).

Conditioned on Good occurs and A wins (i.e., Exp returns 1), if we uniformly choose a∗ ← [λ] and
b∗ ← [q2], then the probability that b(i)

a∗ is distinct for all i ∈ [q] and b∗ = b′a∗ is at least 1
q2λ . Thus, by randomly

guessing a∗ ← [λ] and b∗ ← [q2] and embedding a problem instance of 1QDS into the corresponding position,
we can reduce the q-time security of qQDS to the one-time security of 1QDS. That is, we can construct an
adversary B against the one-time security of 1QDS as follows:

B(pk⊗t): Choosea∗ ← [λ] and b∗ ← [q2], generate ska,b ← 1DS.SKGen(1λ) and run pka,b ← 1DS.PKGen(ska,b)
times to get pk⊗ta,b for (a, b) ∈ ([λ] × [q2]) \ {(a∗, b∗)}, set pk⊗ta∗,b∗ := pk⊗t, and sends pk⊗t :=⊗

a∈[λ],b∈[q2] pk⊗ta,b to A. When A sends m(i) for i ∈ [q], choose b
(i)
a for a ∈ [λ], generates

σa ← 1DS.Sign(sk
a,b

(i)
a
,m) for a ∈ [q] \ {a∗} and σa∗ in one of the following way:

• If b(i)
a∗ = b∗ and B has never sent m to the external challenger, send m to the external challenger

and let σ(i)
a∗ be the returned signature;

• If b(i)
a∗ = b∗ and B has sent m to the external challenger before, immediately abort;

• If b(i)
a∗ ̸= b∗, generate σa∗ ← 1DS.Sign(sk

a∗,b
(i)
a∗
,m). Note that this is possible without the help

of the external challenger since B generated sk(i)
a,b by itself for (a, b) ̸= (a∗, b∗).

Return σ(i) := (b(i)
a , σ

(i)
a)a∈[λ] to A. When A sends σ′ = (b′a, σ′a)a∈[λ], send σ′a∗ to the external

challenger if b′a∗ = b∗ and otherwise abort.

As already discussed, Good occurs with probability 1− negl(λ) and conditioned on that Good occurs, the
probability that B wins is at least 1

q2λ times the probability that A wins. Since q is polynomial, the reduction
loss is polynomial and thus qDS is q-time secure if qDS is one-time secure.

16

4.3 Equivalence of OWSGs and QDSs

Theorem 4.4. OWSGs exist if and only if one-time-secure QDSs exist.

Remark 4.5. By using the equivalence between OWSGs and wOWSGs (Theorem 3.7), the result that one-time-
secure QDSs imply OWSGs can be improved to a stronger result (with a similar proof) that one-time-secure
QDSs with weak security imply OWSGs. Here, the weak security of QDSs means that there exists a
polynomial p such that for any QPT adversary A and any polynomial t, Pr[Exp = 1] ≤ 1− 1

p .

Proof of Theorem 4.4. Let us first show that one-time-secure QDSs imply OWSGs. Let (DS.SKGen,DS.PKGen,
DS.Sign,DS.Ver) be a one-time-secure QDS scheme for a single-bit message. From it, we construct a OWSG
as follows.

• KeyGen(1λ)→ k : Run sk← DS.SKGen(1λ). Output k := sk.

• StateGen(k)→ ϕk : Parse k = sk. Run pk← DS.PKGen(sk). Output ϕk := pk.

• Ver(k′, ϕk)→ ⊤/⊥ : Parse ϕk = pk. Run σ ← DS.Sign(k′, 1). Run v ← DS.Ver(pk, 1, σ). Output
v.

Correctness is clear. Let us show the security. Assume that it is not secure. It means that there exists a QPT
adversary A and a polynomial t such that

Pr

⊤ ← DS.Ver(pk, 1, σ) :

sk← DS.SKGen(1λ)
pk← DS.PKGen(sk)

sk′ ← A(pk⊗t)
σ ← DS.Sign(sk′, 1)

 ≥ 1
poly(λ) .

From such A, let us construct a QPT adversary B that breaks the security of the QDS as follows: On input
pk⊗t, it runs sk′ ← A(pk⊗t). It then runs σ ← DS.Sign(sk′, 1), and outputs (1, σ). It is clear that the
probability that σ is accepted as a valid signature of the message 1 is equal to the left-hand-side of the above
inequality. Hence the security of the QDS is broken by B.

Let us next give a proof that OWSGs imply QDSs. The construction is a “quantum version"
of the Lamport signatures [Lam79], and is similar to that given in [MY22]. Let (OWSG.KeyGen,
OWSG.StateGen,OWSG.Ver) be a OWSG. From it, we construct a one-time-secure QDS for a single-
bit message as follows.

• SKGen(1λ) → sk: Run k0 ← OWSG.KeyGen(1λ). Run k1 ← OWSG.KeyGen(1λ). Output
sk := (sk0, sk1), where skb := kb for b ∈ {0, 1}.

• PKGen(sk)→ pk: Parse sk = (sk0, sk1), where skb = kb for b ∈ {0, 1}. Runϕkb ← OWSG.StateGen(kb)
for each b ∈ {0, 1}. Output pk := (pk0, pk1), where pkb := ϕkb for b ∈ {0, 1}.

• Sign(sk,m)→ σ: Parse sk = (sk0, sk1), where skb = kb for b ∈ {0, 1}. Output σ := skm.

• Ver(pk,m, σ) → ⊤/⊥: Parse pk = (pk0, pk1), where pkb = ϕkb for b ∈ {0, 1}. Run v ←
OWSG.Ver(σ, ϕkm). Output v.

It is clear that this construction satisfies correctness. Let us next show the security. Let us consider the
following security game between the challenger C and a QPT adversary A:

17

1. C runs k0 ← OWSG.KeyGen(1λ). C runs k1 ← OWSG.KeyGen(1λ).

2. C runs ϕkb ← OWSG.StateGen(kb) t+ 1 times for b ∈ {0, 1}. C sends (ϕ⊗tk0
, ϕ⊗tk1

) to A.

3. A sends m ∈ {0, 1} to C.

4. C sends km to A.

5. A sends σ to C.

6. C runs v ← OWSG.Ver(σ, ϕkm⊕1). If the result is ⊤, C outputs 1. Otherwise, C outputs 0.

Assume that our construction is not one-time secure, which means that Pr[C → 1] is non-negligible for a
QPT A and a polynomial t. Then, we can construct a QPT adversary B that breaks the security of the OWSG
as follows. (Here, C′ is the challenger of the security game of the OWSG.)

1. C′ runs k ← OWSG.KeyGen(1λ). C′ runs ϕk ← OWSG.StateGen(k) t+ 1 times. C′ sends ϕ⊗tk to B.

2. B chooses r ← {0, 1}. B runs k′ ← OWSG.KeyGen(1λ). B runs ϕk′ ← OWSG.StateGen(k′) t times.
If r = 0, B sends (ϕ⊗tk , ϕ

⊗t
k′) to A. If r = 1, B sends (ϕ⊗tk′ , ϕ

⊗t
k) to A.

3. A sends m ∈ {0, 1} to B.

4. If r = m, B aborts. If r ̸= m, B sends k′ to A.

5. A sends σ to B.

6. B sends σ to C′.

7. C′ runs v ← OWSG.Ver(σ, ϕk). If v = ⊤, C′ outputs 1. Otherwise, C′ outputs 0.

By a straightforward calculation, which is given below,

Pr[C′ → 1] = 1
2 Pr[C → 1]. (2)

Therefore, if Pr[C → 1] is non-negligible, Pr[C′ → 1] is also non-negligible, which means that B breaks the
security of the OWSG.

Let us show Eq. (2). For simplicity, we write Pr[k] to mean Pr[k ← OWSG.KeyGen(1λ)]. Then,

Pr[C′ → 1]

=
∑
k,k′,σ

Pr[k] Pr[k′]12 Pr[1← A(ϕ⊗tk , ϕ
⊗t
k′)] Pr[σ ← A(k′)] Pr[⊤ ← OWSG.Ver(σ, ϕk)]

+
∑
k,k′,σ

Pr[k] Pr[k′]12 Pr[0← A(ϕ⊗tk′ , ϕ
⊗t
k)] Pr[σ ← A(k′)] Pr[⊤ ← OWSG.Ver(σ, ϕk)]

=
∑
k,k′,σ

Pr[k] Pr[k′]12 Pr[1← A(ϕ⊗tk , ϕ
⊗t
k′)] Pr[σ ← A(k′)] Pr[⊤ ← OWSG.Ver(σ, ϕk)]

+
∑
k,k′,σ

Pr[k] Pr[k′]12 Pr[0← A(ϕ⊗tk , ϕ
⊗t
k′)] Pr[σ ← A(k)] Pr[⊤ ← OWSG.Ver(σ, ϕk′)]

= 1
2 Pr[C → 1].

18

5 Quantum Money

In this section, we first define private-key quantum money schemes (Section 5.1). We then construct OWSGs
from quantum money schemes with pure money states (Section 5.2). We also show that OWSGs can be
constructed from quantum money schemes where the verification algorithms satisfy a certain symmetric
property (Section 5.3).

5.1 Definition of Private-key Quantum Money

Private-key quantum money schemes are defined as follows.

Definition 5.1 (Private-key quantum money [JLS18, AC12]). A private-key quantum money scheme is a set
of algorithms (KeyGen,Mint,Ver) such that

• KeyGen(1λ)→ k : It is a QPT algorithm that, on input the security parameter λ, outputs a classical
secret key k.

• Mint(k)→ $k : It is a QPT algorithm that, on input k, outputs an m-qubit quantum state $k.

• Ver(k, ρ)→ ⊤/⊥ : It is a QPT algorithm that, on input k and a quantum state ρ, outputs ⊤/⊥.

We require the following correctness and security.

Correctness:

Pr[⊤ ← Ver(k, $k) : k ← KeyGen(1λ), $k ← Mint(k)] ≥ 1− negl(λ).

Security: For any QPT adversary A and any polynomial t,

Pr[Count(k, ξ) ≥ t+ 1 : k ← KeyGen(1λ), $k ← Mint(k), ξ ← A(1λ, $⊗tk)] ≤ negl(λ),

where ξ is a quantum state on ℓ registers, R1, ..., Rℓ, each of which is of m qubits, and Count is the
following QPT algorithm: on input ξ, it runs ⊤/⊥ ← Ver(k, ξj) for each j ∈ [1, 2, ..., ℓ], where ξj :=
TrR1,...,Rj−1,Rj+1,...,Rℓ(ξ), and outputs the total number of ⊤.

Remark 5.2. Private-key quantum money schemes are constructed from PRSGs [JLS18].

Remark 5.3. As is shown in [Aar19], private-key quantum money schemes are broken by an unbounded
adversary, and therefore statistically-secure private-key quantum money schemes do not exist. (The idea
is as follows: the unbounded adversary first finds all {ki}i such that Ver(ki, $k) is large with the shadow
tomography, and then searches a state ρ by the brute-force such that Ver(ki, ρ) is close to Ver(ki, $k) FOR
ALL i. Finally, the adversary outputs many copies of ρ.)

5.2 OWSGs from Quantum Money with Pure Money States

Theorem 5.4. If private-key quantum money schemes with pure quantum money states exist, then OWSGs
exist.

Remark 5.5. For example, the private-key quantum money scheme of [JLS18] has pure quantum money states.

19

Remark 5.6. By using the equivalence between OWSGs and wOWSGs (Theorem 3.7), this result can be
improved to a stronger result (with a similar proof) that private-key quantum money schemes with pure
quantum money states and with weak security imply OWSGs. Here, the weak security means that there exists
a polynomial p such that for any QPT adversary A and any polynomial t,

Pr[Count(k, ξ) ≥ t+ 1 : k ← KeyGen(1λ), $k ← Mint(k), ξ ← A(1λ, $⊗tk)] ≤ 1− 1
p
.

Proof of Theorem 5.4. Let (QM.KeyGen,QM.Mint,QM.Ver) be a private-key quantum money scheme with
pure money states. From it, we construct a OWSG as follows.

• KeyGen(1λ)→ k : Run k ← QM.KeyGen(1λ). Output k.

• StateGen(k)→ ϕk : Run |$k⟩ ← QM.Mint(k). Output ϕk := |$k⟩⟨$k|.

• Ver(k′, ϕk) → ⊤/⊥ : Parse ϕk = |$k⟩⟨$k|. Measure |$k⟩ with the basis {|$k′⟩⟨$k′ |, I − |$k′⟩⟨$k′ |},
and output⊤ if the first result is obtained. Output⊥ if the second result is obtained. (This measurement
is done in the following way: generate U(|k′⟩|0...0⟩) = |$k′⟩|ηk′⟩, and discard the first register. Then
apply U † on |$k⟩|ηk′⟩, and measure all qubits in the computationl basis. If the result is k′0...0, accept.
Otherwise, reject.)

The correctness is clear. Let us show the security. Assume that it is not secure. Then, there exists a QPT
adversary A, a polynomial t, and a polynomial p such that∑

k,k′

Pr[k ← QM.KeyGen(1λ)] Pr[k′ ← A(|$k⟩⊗t)]|⟨$k|$k′⟩|2 ≥
1
p
.

Define the set

S :=
{

(k, k′)
∣∣∣ |⟨$k|$k′⟩|2 ≥ 1

2p
}
.

Then, we have ∑
(k,k′)∈S

Pr[k ← QM.KeyGen(1λ)] Pr[k′ ← A(|$k⟩⊗t)] >
1
2p.

This is shown as follows.
1
p
≤

∑
k,k′

Pr[k ← QM.KeyGen(1λ)] Pr[k′ ← A(|$k⟩⊗t)]|⟨$k|$k′⟩|2

=
∑

(k,k′)∈S
Pr[k ← QM.KeyGen(1λ)] Pr[k′ ← A(|$k⟩⊗t)]|⟨$k|$k′⟩|2

+
∑

(k,k′)/∈S
Pr[k ← QM.KeyGen(1λ)] Pr[k′ ← A(|$k⟩⊗t)]|⟨$k|$k′⟩|2

<
∑

(k,k′)∈S
Pr[k ← QM.KeyGen(1λ)] Pr[k′ ← A(|$k⟩⊗t)] + 1

2p.

Let us also define

T :=
{
k
∣∣∣ Pr[⊤ ← QM.Ver(k, |$k⟩)] ≥ 1− 1

8p
}
.

20

Then, ∑
k∈T

Pr[k ← QM.KeyGen(1λ)] > 1− negl(λ).

This is shown as follows.

1− negl(λ) ≤
∑
k

Pr[k ← QM.KeyGen(1λ)] Pr[⊤ ← QM.Ver(k, |$k⟩)]

=
∑
k∈T

Pr[k ← QM.KeyGen(1λ)] Pr[⊤ ← QM.Ver(k, |$k⟩)]

+
∑
k/∈T

Pr[k ← QM.KeyGen(1λ)] Pr[⊤ ← QM.Ver(k, |$k⟩)]

<
∑
k∈T

Pr[k ← QM.KeyGen(1λ)]

+
(
1− 1

8p
)(

1−
∑
k∈T

Pr[k ← QM.KeyGen(1λ)]
)
.

Here, the first inequality is from the correctness of the quantum money scheme.
Let us fix (k, k′) such that (k, k′) ∈ S and k ∈ T . The probability of having such (k, k′) is, from the

union bound,∑
(k,k′)∈S∧k∈T

Pr[k ← QM.KeyGen(1λ)] Pr[k′ ← A(|$k⟩⊗t)] >
1
2p + 1− negl(λ)− 1

= 1
2p − negl(λ).

From the A, we construct a QPT adversary B that breaks the security of the private-key quantum money
scheme as follows: On input |$k⟩⊗t, it runs k′ ← A(|$k⟩⊗t). It then runs |$k′⟩ ← QM.Mint(k′) ℓ times,
where ℓ is a polynomial specified later, and outputs ξ := |$k′⟩⊗ℓ. Let us show that thus defined B breaks the
security of the private-key quantum money scheme. Let vj be the bit that is 1 if the output of QM.Ver(k, ξj)
is ⊤, and is 0 otherwise. Then, for any (k, k′) such that (k, k′) ∈ S and k ∈ T ,

Pr[vj = 1] = Pr[⊤ ← QM.Ver(k, ξj)]
= Pr[⊤ ← QM.Ver(k, |$k′⟩)]

≥ Pr[⊤ ← QM.Ver(k, |$k⟩)]−
√

1− 1
2p

≥ 1− 1
8p −

√
1− 1

2p

≥ 1
8p

for each j ∈ [1, 2, ..., ℓ]. Here, in the first inequality, we have used the fact that Pr[1← D(|$k⟩)]− Pr[1←
D(|$k′⟩)] ≤

√
1− 1

2p for any algorithmD. This is because |⟨$k|$k′⟩|2 ≥ 1
2p for any (k, k′) ∈ S.19 Moreover,

19Due to the relation between the fidelity and the trace distance, we have 1
2∥|$k⟩⟨$k| − |$k′⟩⟨$k′ |∥1 ≤

√
1− |⟨$k|$k′⟩|2, which

means that ⟨$k|Π|$k⟩ − ⟨$k′ |Π|$k′⟩ ≤
√

1− |⟨$k|$k′⟩|2 for any POVM element Π.

21

in the second inequality, we have used the fact that Pr[⊤ ← QM.Ver(k, |$k⟩)] ≥ 1 − 1
8p for any k ∈ T .

Finally, in the last inequality, we have used the Bernoulli’s inequality.20
Let us take ℓ ≥ max(16p(t+ 1), 162p3). Then, for any (k, k′) such that (k, k′) ∈ S and k ∈ T ,

Pr[Count(k, |$k′⟩⊗ℓ) ≥ t+ 1] = Pr
[ℓ∑
j=1

vj ≥ t+ 1
]

≥ Pr
[ℓ∑
j=1

vj ≥
ℓ

16p
]

= Pr
[ℓ∑
j=1

vj ≥
ℓ

8p −
ℓ

16p
]

≥ Pr
[ℓ∑
j=1

vj ≥ E(
ℓ∑

j=1
vj)−

ℓ

16p
]

≥ 1− 2 exp
[
− 2ℓ

162p2

]
≥ 1− 2e−2p.

Here, in the third inequality, we have used Hoeffding’s inequality. The probability that B breaks the security
of the quantum money scheme is therefore∑

k,k′

Pr[k ← QM.KeyGen(1λ)] Pr[k′ ← A(|$k⟩⊗t)] Pr[Count(k, |$k′⟩⊗ℓ) ≥ t+ 1]

≥
∑

(k,k′)∈S∧k∈T
Pr[k ← QM.KeyGen(1λ)] Pr[k′ ← A(|$k⟩⊗t)] Pr[Count(k, |$k′⟩⊗ℓ) ≥ t+ 1]

≥ (1− 2e−2p)
∑

(k,k′)∈S∧k∈T
Pr[k ← QM.KeyGen(1λ)] Pr[k′ ← A(|$k⟩⊗t)]

≥ (1− 2e−2p)
(1

2p − negl(λ)
)
,

which is non-negligible. The B therefore breaks the security of the private-key quantum money scheme.

5.3 OWSGs from Quantum Money with Symmetric Verifiability

We consider the following restriction for quantum money.

Definition 5.7 (Symmetric-verifiability). We say that a private-key quantum money scheme satisfies the
symmetric-verifiability if Pr[⊤ ← Ver(k, $k′)] = Pr[⊤ ← Ver(k′, $k)] for all k ̸= k′.

Remark 5.8. For example, if all money states are pure, and Ver(α, ρ) is the following algorithm, the symmetric-
verifiability is satisfied: Measure ρ with the basis {|$α⟩⟨$α|, I − |$α⟩⟨$α|}. If the first result is obtained,
output ⊤. Otherwise, output ⊥.

Theorem 5.9. If private-key quantum money schemes with symmetric-verifiability exist, then OWSGs exist.
20(1 + x)r ≤ 1 + rx for any real r and x such that 0 ≤ r ≤ 1 and x ≥ −1.

22

Remark 5.10. By using the equivalence between OWSGs and wOWSGs (Theorem 3.7), this result can
be improved to a stronger result (with a similar proof) that private-key quantum money schemes with
symmetric-verifiability and with weak security imply OWSGs. Here, the weak security means that there
exists a polynomial p such that for any QPT adversary A and any polynomial t,

Pr[Count(k, ξ) ≥ t+ 1 : k ← KeyGen(1λ), $k ← Mint(k), ξ ← A(1λ, $⊗tk)] ≤ 1− 1
p
.

Proof of Theorem 5.9. Let (QM.KeyGen,QM.Mint,QM.Ver) be a private-key quantum money scheme with
the symmetric verifiability. From it, we construct a OWSG as follows.

• KeyGen(1λ)→ k : Run k ← QM.KeyGen(1λ). Output k.

• StateGen(k)→ ϕk : Run $k ← QM.Mint(k). Output ϕk := $k.

• Ver(k′, ϕk)→ ⊤/⊥ : Parse ϕk = $k. Run v ← QM.Ver(k′, $k). Output v.

The correctness is clear. Let us show the security. Assume that it is not secure. Then, there exists a QPT
adversary A, a polynomial t, and a polynomial p such that

∑
k,k′

Pr[k ← QM.KeyGen(1λ)] Pr[k′ ← A($⊗tk)] Pr[⊤ ← QM.Ver(k′, $k)] ≥
1
p
.

Define the set

S :=
{

(k, k′)
∣∣∣ Pr[⊤ ← QM.Ver(k′, $k)] ≥

1
2p
}
.

Then, we have ∑
(k,k′)∈S

Pr[k ← QM.KeyGen(1λ)] Pr[k′ ← A($⊗tk)] > 1
2p.

This is shown as follows.

1
p
≤

∑
k,k′

Pr[k ← QM.KeyGen(1λ)] Pr[k′ ← A($⊗tk)] Pr[⊤ ← QM.Ver(k′, $k)]

=
∑

(k,k′)∈S
Pr[k ← QM.KeyGen(1λ)] Pr[k′ ← A($⊗tk)] Pr[⊤ ← QM.Ver(k′, $k)]

+
∑

(k,k′)/∈S
Pr[k ← QM.KeyGen(1λ)] Pr[k′ ← A($⊗tk)] Pr[⊤ ← QM.Ver(k′, $k)]

<
∑

(k,k′)∈S
Pr[k ← QM.KeyGen(1λ)] Pr[k′ ← A($⊗tk)] + 1

2p.

From the A, we construct a QPT adversary B that breaks the security of the private-key quantum money
scheme as follows: On input $⊗tk , it runs k′ ← A($⊗tk). It then runs $k′ ← QM.Mint(k′) ℓ times, where ℓ is
a polynomial specified later, and outputs ξ := $⊗ℓk′ . Let us show that thus defined B breaks the security of the

23

private-key quantum money scheme. Let vj be the bit that is 1 if the output of QM.Ver(k, ξj) is ⊤, and is 0
otherwise. Then, for any (k, k′) ∈ S,

Pr[vj = 1] = Pr[⊤ ← QM.Ver(k, ξj)]
= Pr[⊤ ← QM.Ver(k, $k′)]
= Pr[⊤ ← QM.Ver(k′, $k)]

≥ 1
2p

for each j ∈ [1, 2, ..., ℓ]. Let us take ℓ ≥ max(4p(t+ 1), 16p3). Then, for any (k, k′) ∈ S,

Pr[Count(k, $⊗ℓk′) ≥ t+ 1] = Pr
[ℓ∑
j=1

vj ≥ t+ 1
]

≥ Pr
[ℓ∑
j=1

vj ≥
ℓ

4p
]

= Pr
[ℓ∑
j=1

vj ≥
ℓ

2p −
ℓ

4p
]

≥ Pr
[ℓ∑
j=1

vj ≥ E(
ℓ∑

j=1
vj)−

ℓ

4p
]

≥ 1− 2 exp
[
− 2ℓ

16p2

]
≥ 1− 2e−2p.

The probability that the B breaks the security of the quantum money scheme is therefore∑
k,k′

Pr[k ← QM.KeyGen(1λ)] Pr[k′ ← A($⊗tk)] Pr[Count(k, $⊗ℓk′) ≥ t+ 1]

≥
∑

(k,k′)∈S
Pr[k ← QM.KeyGen(1λ)] Pr[k′ ← A($⊗tk)] Pr[Count(k, $⊗ℓk′) ≥ t+ 1]

≥ (1− 2e−2p)
∑

(k,k′)∈S
Pr[k ← QM.KeyGen(1λ)] Pr[k′ ← A($⊗tk)]

≥ (1− 2e−2p) 1
2p,

which is non-negligible. The B therefore breaks the security of the private-key quantum money scheme.

6 QPOTP

In this section, we first define (IND-based) QPOTP schemes (Section 6.1). We then show that QPOTP schemes
imply OWSGs (Section 6.2), and that single-copy-secure QPOTP schemes imply EFI pairs (Section 6.3).

24

6.1 Definition of QPOTP

Quantum pseudo one-time pad schemes are defined as follows.

Definition 6.1 ((IND-based) quantum pseudo one-time pad (QPOTP)). An (IND-based) quantum pseudo
one-time pad (QPOTP) scheme with the key length κ and the plaintext length ℓ (ℓ > κ) is a set of algorithms
(KeyGen,Enc,Dec) such that

• KeyGen(1λ)→ sk : It is a QPT algorithm that, on input the security parameter λ, outputs a classical
secret key sk ∈ {0, 1}κ.

• Enc(sk, x)→ ct : It is a QPT algorithm that, on input sk and a classical plaintext message x ∈ {0, 1}ℓ,
outputs an ℓn-qubit quantum ciphertext ct.

• Dec(sk, ct)→ x′ : It is a QPT algorithm that, on input sk and ct, outputs x′ ∈ {0, 1}ℓ.

We require the following correctness and security.

Correctness: For any x ∈ {0, 1}ℓ,

Pr[x← Dec(sk, ct) : sk← KeyGen(1λ), ct← Enc(sk, x)] ≥ 1− negl(λ).

Security: For any x0, x1 ∈ {0, 1}ℓ, any QPT adversary A, and any polynomial t,

|Pr[1← A(ct⊗t0) : sk← KeyGen(1λ), ct0 ← Enc(sk, x0)]
−Pr[1← A(ct⊗t1) : sk← KeyGen(1λ), ct1 ← Enc(sk, x1)]| ≤ negl(λ).

Definition 6.2. We say that a QPOTP scheme is single-copy-secure if the security holds only for t = 1.

Remark 6.3. Note that the above definition of QPOTP is different from that of [AQY22] in the following
two points. First, we consider a general secret key generation QPT algorithm, while they consider uniform
sampling of the secret key. Second, we consider the IND-based version of the security, while the security
definition of [AQY22] is as follows: For any x ∈ {0, 1}ℓ, any QPT adversary A, and any polynomial t,

|Pr[1← A(ct⊗t) : sk← {0, 1}κ, ct← Enc(sk, x)]
−Pr[1← A((|ψ1⟩ ⊗ ...⊗ |ψℓ⟩)⊗t) : |ψ1⟩, ..., |ψℓ⟩ ← µn]| ≤ negl(λ),

where |ψ⟩ ← µn means the Haar random sampling of n-qubit states. It is clear that the security definition
of [AQY22] implies our IND-based security, and therefore if QPOTP schemes of [AQY22] exist, those of
Definition 6.1 exist. Since our results are constructions of OWSGs and EFI pairs from QPOTP, the above
modification only makes our results stronger.

Remark 6.4. QPOTP is constructed from PRSGs [AQY22].

6.2 OWSGs from QPOTP

Theorem 6.5. If QPOTP schemes with κ < ℓ exist, then OWSGs exist.

25

Proof of Theorem 6.5. Let (OTP.KeyGen,OTP.Enc,OTP.Dec) be a QPOTP scheme with κ < ℓ. From it,
we construct a wOWSG as follows.21 (From Theorem 3.7, it is enough for the existence of OWSGs.)

• KeyGen(1λ)→ k : Run sk← OTP.KeyGen(1λ). Choose x← {0, 1}ℓ. Output k := (sk, x).

• StateGen(k)→ ϕk : Parse k = (sk, x). Run ctsk,x ← OTP.Enc(sk, x). Output ϕk := ctsk,x ⊗ |x⟩⟨x|.

• Ver(k′, ϕk)→ ⊤/⊥ : Parsek′ = (sk′, x′). Parseϕk = ctsk,x⊗|x⟩⟨x|. Runx′′ ← OTP.Dec(sk′, ctsk,x).
If x′′ = x′ = x, output ⊤. Otherwise, output ⊥.

The correctness is clear. Let us show the security. Assume that it is not secure. It means that for any
polynomial p there exist a QPT adversary A and a polynomial t such that

Pr

x′ = x′′ = x :

sk← OTP.KeyGen(1λ),
x← {0, 1}ℓ,
ctsk,x ← OTP.Enc(sk, x),
(sk′, x′)← A(ct⊗tsk,x ⊗ |x⟩⟨x|⊗t)
x′′ ← OTP.Dec(sk′, ctsk,x)

 ≥ 1− 1
p
. (3)

From this A, we construct a QPT adversary B that breaks the security of the QPOTP scheme as follows. Let
b ∈ {0, 1} be the parameter of the following security game.

1. B chooses x0, x1 ← {0, 1}ℓ, and sends them to the challenger C.

2. C runs sk← OTP.KeyGen(1λ).

3. C runs ctsk,xb ← OTP.Enc(sk, xb) t+ 1 times.

4. C sends ct⊗t+1
sk,xb to B.

5. B runs (sk′, x′)← A(ct⊗tsk,xb ⊗ |x0⟩⟨x0|⊗t).

6. B runs x′′ ← OTP.Dec(sk′, ctk,xb). If x′ = x′′ = x0, B outputs b′ = 0. Otherwise, it outputs b′ = 1.

It is clear that Pr[b′ = 0|b = 0] is equivalent to the left-hand-side of Eq. (3). On the other hand,

Pr[b′ = 0|b = 1]

= 1
22ℓ

∑
x0,x1,sk,sk′

Pr[sk← OTP.KeyGen(1λ)] Pr[sk′ ← A(ct⊗tsk,x1
⊗ |x0⟩⟨x0|⊗t)]

×Pr[x0 ← OTP.Dec(sk′, ctsk,x1)]

≤ 1
22ℓ

∑
x0,x1,sk,sk′

Pr[sk← OTP.KeyGen(1λ)] Pr[x0 ← OTP.Dec(sk′, ctsk,x1)]

= 1
22ℓ

∑
x1,sk,sk′

Pr[sk← OTP.KeyGen(1λ)]
∑
x0

Pr[x0 ← OTP.Dec(sk′, ctsk,x1)]

= 1
22ℓ

∑
x1,sk,sk′

Pr[sk← OTP.KeyGen(1λ)]

= 2κ

2ℓ ≤
1
2 .

21A similar proof idea was given in Lemma 4.6 of [GGKT05]. However, the direct application of the proof will not work, because
ciphertexts (and therefore output states of OWSGs) are quantum and the verification of "preimages" is done by the additional
verification algorithm.

26

Therefore |Pr[b′ = 0|b = 0] − Pr[b′ = 0|b = 1]| is non-negligible, which means that the B breaks the
security of the QPOTP.

6.3 EFI Pairs from Single-Copy-Secure QPOTP

We will use the following result, which is (implicitly) shown in [LC19].22

Theorem 6.6 ([LC19]). Let KeyGen(1λ)→ k be an algorithm that, on input the security parameter λ, outputs
a classical secret key k ∈ {0, 1}κ. Let {Enck,Deck}k be quantum operations. Assume that the following is
satisfied: For any ρA,B,

1
2

∥∥∥∑
k

Pr[k](DeckA ⊗ IB)(EnckA ⊗ IB)(ρA,B)− ρA,B
∥∥∥

1
≤ negl(λ), (4)

where Pr[k] := Pr[k ← KeyGen(1λ)]. Let us define

ρ0 :=
∑
k

Pr[k](EnckA ⊗ IB)|Ψ⟩⟨Ψ|A,B,

ρ1 :=
∑
k

Pr[k](EnckA ⊗ IB)
(
|0n⟩⟨0n|A ⊗

I⊗n

2n B

)
,

where |Ψ⟩A,B is the maximally entangled state over n-qubit registers A and B. If 1
2∥ρ0 − ρ1∥1 ≤ negl(λ),

then κ ≥ 2n+ log(1− negl(λ)).

Theorem 6.7. If single-copy-secure QPOTP schemes with κ < ℓ exist then EFI pairs exist.

Proof of Theorem 6.7. Let (OTP.KeyGen,OTP.Enc,OTP.Dec) be a single-copy-secure QPOTP scheme
with κ < ℓ. From it, we construct an EFI pair StateGen(1λ, b)→ ρb as a QPT algorithm that outputs

ρ0 := 1
22n

∑
sk,x,z

Pr[sk]ctsk,(x,z) ⊗
[
(XxZz ⊗ I)|Ψ⟩⟨Ψ|(XxZz ⊗ I)

]
,

ρ1 := 1
22n

∑
sk,x,z

Pr[sk]ctsk,(x,z) ⊗
[
(XxZz ⊗ I)

(
|0n⟩⟨0n| ⊗ I⊗n

2n
)
|(XxZz ⊗ I)

]
,

where Pr[sk] := Pr[sk ← OTP.KeyGen(1λ)], ctsk,(x,z) ← OTP.Enc(sk, (x, z)), x, z ∈ {0, 1}n, Xx :=⊗n
i=1X

xi
i , Zz :=

⊗n
i=1 Z

zi
i , 2n = ℓ and |Ψ⟩ is the maximally-entangled state on two n-qubit registers. It is

clear that ρ0 and ρ1 can be generated in QPT in a natural way.
First let us show the computational indistinguishability of ρ0 and ρ1. Let us define

ρ′0 := 1
22n

∑
sk,x,z

Pr[sk]ctsk,(0n,0n) ⊗
[
(XxZz ⊗ I)|Ψ⟩⟨Ψ|(XxZz ⊗ I)

]
,

ρ′1 := 1
22n

∑
sk,x,z

Pr[sk]ctsk,(0n,0n) ⊗
[
(XxZz ⊗ I)

(
|0n⟩⟨0n| ⊗ I⊗n

2n
)
(XxZz ⊗ I)

]
.

22See Theorem 4 of [LC19]. ρ0 and ρ1 correspond to ρMC and σMC , respectively. Moreover, Take ϵ = γ = negl(λ).

27

Then, for any QPT adversary A, from the security of the QPOTP scheme,

|Pr[1← A(ρ0)]− Pr[1← A(ρ′0)]|

≤ 1
22n

∑
x,z

∣∣∣Pr
[
1← A

(∑
sk

Pr[sk]ctsk,(x,z) ⊗
[
(XxZz ⊗ I)|Ψ⟩⟨Ψ|(XxZz ⊗ I)

])]
−Pr

[
1← A

(∑
sk

Pr[sk]ctsk,(0n,0n) ⊗
[
(XxZz ⊗ I)|Ψ⟩⟨Ψ|(XxZz ⊗ I)

])]∣∣∣
≤ negl(λ),

and

|Pr[1← A(ρ1)]− Pr[1← A(ρ′1)]| ≤ negl(λ)

in a similar way. Moreover, ρ′0 = ρ′1, because

ρ′0 =
∑
sk

Pr[sk]ctsk,(0n,0n) ⊗
1

22n

∑
x,z

[
(XxZz ⊗ I)|Ψ⟩⟨Ψ|(XxZz ⊗ I)

]
,

=
∑
sk

Pr[sk]ctsk,(0n,0n) ⊗
I⊗n

2n ⊗
I⊗n

2n ,

ρ′1 =
∑
sk

Pr[sk]ctsk,(0n,0n) ⊗
1

22n

∑
x,z

[
(XxZz ⊗ I)

(
|0n⟩⟨0n| ⊗ I⊗n

2n
)
(XxZz ⊗ I)

]
=

∑
sk

Pr[sk]ctsk,(0n,0n) ⊗
I⊗n

2n ⊗
I⊗n

2n .

Hence we have

|Pr[1← A(ρ0)]− Pr[1← A(ρ1)]| ≤ negl(λ)

for any QPT adversary A.
Next let us show the statistical distinguishability of ρ0 and ρ1. From the QPOTP, construct KeyGen and

Enck,Deck of Theorem 6.6 as follows.

• KeyGen(1λ)→ k : Run sk← OTP.KeyGen(1λ). Output k := sk.

• Enck(ρA,B) = ρ′A′,B : Parse k = sk. Choose x, z ← {0, 1}n. Run ctsk,(x,z) ← OTP.Enc(sk, (x, z)).
Output

ρ′A′,B := 1
22n

∑
x,z

ctsk,(x,z) ⊗
(
[(XxZz)A ⊗ IB]ρA,B[(XxZz)A ⊗ IB]

)
.

• Deck(ρ′A′,B) = ρA,B : Parse k = sk. Parse

ρ′A′,B = 1
22n

∑
x,z

ctsk,(x,z) ⊗
(
[(XxZz)A ⊗ IB]ρA,B[(XxZz)A ⊗ IB]

)
.

Run (x, z) ← OTP.Dec(sk, ctsk,(x,z)). Obtain ρA,B by correcting the Pauli one-time pad. Output
ρA,B.

It satisfies Eq. (4). Assume that 1
2∥ρ0−ρ1∥1 ≤ negl(λ). Then, from Theorem 6.6, κ ≥ 2n+log(1−negl(λ)),

which means κ ≥ ℓ+ log(1− negl(λ)), but it contradicts the assumption of κ < ℓ. Therefore, the statistical
distinguishability of ρ0 and ρ1 is shown.

28

7 SV-SI-OWSGs

In this section, we define SV-SI-OWSGs (Section 7.1), and show that SV-SI-OWSGs are equivalent to EFI
pairs (Section 7.2). In Section 7.1, before defining SV-SI-OWSGs, we first define SV-OWSGs for a didactic
purpose. We will point out that SV-OWSGs seem to need a more constraint so that they become equivalent to
EFI. We then define SV-SI-OWSGs.

7.1 Definition of SV-SI-OWSGs

We first define secretly-verifiable OWSGs (SV-OWSGs) as follows.

Definition 7.1 (Secretly-verifiable OWSGs (SV-OWSGs)). A secretly-verifiable OWSG (SV-OWSG) is a set
of algorithms (KeyGen,StateGen,Ver) as follows.

• KeyGen(1λ) → k : It is a QPT algorithm that, on input the security parameter λ, outputs a key
k ∈ {0, 1}κ.

• StateGen(k)→ ϕk : It is a QPT algorithm that, on input k, outputs an m-qubit state ϕk.

• Ver(k′, k)→ ⊤/⊥ : It is a QPT algorithm that, on input k and k′, outputs ⊤/⊥.

We require the following two properties.

Correctness:

Pr[⊤ ← Ver(k, k) : k ← KeyGen(1λ)] ≥ 1− negl(λ).

Security: For any QPT adversary A and any polynomial t,

Pr[⊤ ← Ver(k′, k) : k ← KeyGen(1λ), ϕk ← StateGen(k), k′ ← A(ϕ⊗tk)] ≤ negl(λ).

The following lemma shows that, without loss of generality, Ver can be replaced with the algorithm of
just checking whether k = k′ or not.

Lemma 7.2. Let (KeyGen,StateGen,Ver) be a SV-OWSG. Then, the following SV-OWSG (KeyGen′, StateGen′,Ver′)
exists.

• KeyGen′ and StateGen′ are the same as KeyGen and StateGen, respectively.

• Ver′(k′, k)→ ⊤/⊥ : On input k and k′, output ⊤ if k = k′. Otherwise, output ⊥.

Proof. The correctness of (KeyGen′, StateGen′,Ver′) is clear. Let us show the security. Assume that it is
not secure. Then there exist a QPT adversary A, a polynomial t, and a polynomial p such that

∑
k

Pr[k ← KeyGen(1λ)] Pr[k ← A(ϕ⊗tk)] ≥ 1
p
.

Define the set

S :=
{
k
∣∣∣ Pr[k ← A(ϕ⊗tk)] ≥ 1

2p
}
.

29

Then, we have ∑
k∈S

Pr[k ← KeyGen(1λ)] > 1
2p.

This is because

1
p
≤

∑
k

Pr[k ← KeyGen(1λ)] Pr[k ← A(ϕ⊗tk)]

=
∑
k∈S

Pr[k ← KeyGen(1λ)] Pr[k ← A(ϕ⊗tk)]

+
∑
k/∈S

Pr[k ← KeyGen(1λ)] Pr[k ← A(ϕ⊗tk)]

<
∑
k∈S

Pr[k ← KeyGen(1λ)] + 1
2p.

Also define the set

T :=
{
k
∣∣∣ Pr[⊤ ← Ver(k, k)] ≥ 1− 1

p

}
.

Then, we have ∑
k∈T

Pr[k ← KeyGen(1λ)] > 1− negl(λ).

This is because

1− negl(λ) ≤
∑
k

Pr[k ← KeyGen(1λ)] Pr[⊤ ← Ver(k, k)]

=
∑
k∈T

Pr[k ← KeyGen(1λ)] Pr[⊤ ← Ver(k, k)]

+
∑
k/∈T

Pr[k ← KeyGen(1λ)] Pr[⊤ ← Ver(k, k)]

<
∑
k∈T

Pr[k ← KeyGen(1λ)]

+
(
1− 1

p

)(
1−

∑
k∈T

Pr[k ← KeyGen(1λ)]
)
.

Here, the first inequality is from the correctness of (KeyGen, StateGen,Ver). From the union bound, we have

∑
k∈S∩T

Pr[k ← KeyGen(1λ)] > 1
2p − negl(λ).

From theA, we construct a QPT adversary that breaks the security of (KeyGen,StateGen,Ver) as follows:

30

On input ϕ⊗tk , run k′ ← A(ϕ⊗tk). Output k′. Then, the probability that B breaks the security is∑
k,k′

Pr[k ← KeyGen(1λ)] Pr[k′ ← A(ϕ⊗tk)] Pr[⊤ ← Ver(k′, k)]

≥
∑
k

Pr[k ← KeyGen(1λ)] Pr[k ← A(ϕ⊗tk)] Pr[⊤ ← Ver(k, k)]

≥
∑

k∈S∩T
Pr[k ← KeyGen(1λ)] Pr[k ← A(ϕ⊗tk)] Pr[⊤ ← Ver(k, k)]

≥ 1
2p
(
1− 1

p

)(1
2p − negl(λ)

)
,

which is non-negligible. Therefore B breaks the security of (KeyGen, StateGen,Ver).

Note that statistically-secure SV-OWSGs are easy to realize. For example, consider the following
construction:

• KeyGen(1λ) : Sample k ← {0, 1}λ.

• StateGen(k) : Output I⊗m2m .

• Ver(k′, k) : Output ⊤ if k′ = k. Otherwise, output ⊥.

We therefore need a constraint to have a meaningful primitive. We define secretly-verifiable and statistically-
invertible OWSGs (SV-SI-OWSGs) as follows. Introducing the statistical invertibility allows us to avoid
trivial constructions with the statistical security.

Definition 7.3 (Secretly-verifiable and statistically-invertible OWSGs (SV-SI-OWSGs)). A secretly-
verifiable and statistically-invertible OWSG (SV-SI-OWSG) is a set of algorithms (KeyGen, StateGen) as
follows.

• KeyGen(1λ) → k : It is a QPT algorithm that, on input the security parameter λ, outputs a key
k ∈ {0, 1}κ.

• StateGen(k)→ ϕk : It is a QPT algorithm that, on input k, outputs an m-qubit state ϕk.

We require the following two properties.

Statistical invertibility: There exists a polynomial p such that, for any k and k′ (k ̸= k′), 1
2∥ϕk−ϕk′∥1 ≥

1
p .

Computational non-invertibility: For any QPT adversary A and any polynomial t,

Pr[k ← A(ϕ⊗tk) : k ← KeyGen(1λ), ϕk ← StateGen(k)] ≤ negl(λ).

The following lemma shows that the statistical invertibility with advantage 1
poly(λ) can be amplified to

1− 2−q for any polynomial q.

Lemma 7.4. If a SV-SI-OWSG exists then a SV-SI-OWSG with statistical invertibility larger than 1− 2−q
with any polynomial q exists.

Proof. Let (KeyGen,StateGen) be a SV-SI-OWSG with statistical invertibility larger than 1
p , where p is a

polynomial. From it, we construct a new SV-SI-OWSG (KeyGen′,StateGen′) as follows:

31

• KeyGen′(1λ)→ k: Run k ← KeyGen(1λ), and output k.

• StateGen′(k)→ ϕ′k : Run ϕk ← StateGen(k) 2pq times, and output ϕ′k := ϕ⊗2pq
k .

First, for any k and k′ (k ̸= k′),

1
2∥ϕ

′
k − ϕ′k′∥1 = 1

2∥ϕ
⊗2pq
k − ϕ⊗2pq

k′ ∥1
≥ 1− exp(−2qp∥ϕk − ϕk′∥1/4)
≥ 1− exp(−q)
≥ 1− 2−q,

which shows the statistical invertibility of (KeyGen′,StateGen′) with the advantage larger than 1 − 2−q.
Second, from the computational non-invertibility of (KeyGen,StateGen),

Pr[k ← A(ϕ′⊗tk) : k ← KeyGen′(1λ), ϕ′k ← StateGen′(k)]
= Pr[k ← A(ϕ⊗2pqt

k) : k ← KeyGen(1λ), ϕk ← StateGen(k)]
≤ negl(λ)

for any QPT adversary A and any polynomial t, which shows the computational non-invertibility of
(KeyGen′,StateGen′).

The following lemma shows that the statistical invertibility is equivalent to the existence of a (unbounded)
adversary that can find the correct k given many copies of ϕk except for a negligible error.

Lemma 7.5. The statistical invertibility is satisfied if and only if the following is satisfied: There exists a (not
necessarily QPT) POVM measurement {Πk}k∈{0,1}κ and a polynomial t such that Tr(Πkϕ

⊗t
k) ≥ 1− negl(λ)

and Tr(Πk′ϕ
⊗t
k) ≤ negl(λ) for all k and k′ (k ̸= k′).

Proof. First, we show the if part. Assume that there exists a POVM measurement {Πk}k∈{0,1}κ and a
polynomial t such that Tr(Πkϕ

⊗t
k) ≥ 1− negl(λ) and Tr(Πk′ϕ

⊗t
k) ≤ negl(λ) for all k and k′ (k ̸= k′). Then,

t

2∥ϕk − ϕk
′∥1 ≥ 1

2∥ϕ
⊗t
k − ϕ

⊗t
k′ ∥1

≥ Tr(Πkϕ
⊗t
k)− Tr(Πkϕ

⊗t
k′)

≥ 1− negl(λ)− negl(λ)
= 1− negl(λ),

which means

1
2∥ϕk − ϕk

′∥1 ≥
1
t
− negl(λ) ≥ 1

2t .

Next, we show the only if part. Assume that the statistical invertibility is satisfied. Then, there exists a
polynomial p such that 1

2∥ϕk − ϕk′∥1 ≥
1
p for all k and k′ (k ̸= k′). Let t := 12pκ. Then,

1
2∥ϕ

⊗t
k − ϕ

⊗t
k′ ∥1 ≥ 1− e−t

∥ϕk−ϕk′ ∥1
4 ≥ 1− e−6κ ≥ 1− 2−6κ,

32

which means F (ϕ⊗tk , ϕ
⊗t
k′) ≤ 2−6κ+1. From Theorem 7.6 below,

max
k

(1− Tr(µkϕ⊗tk)) ≤
∑
k ̸=k′

√
F (ϕ⊗tk , ϕ

⊗t
k′) ≤ 2−3κ+1(22κ − 2κ) ≤ 2−κ+1,

which means Tr(µkϕ⊗tk) ≥ 1− 2−κ+1 and Tr(µk′ϕ⊗tk) ≤ 2−κ+1 for any k and k′ (k′ ̸= k).

Theorem 7.6 ([Mon19]). Let {ρi}i be a set of states. Define the POVM measurement {µi}i with µi :=
Σ−1/2ρiΣ−1/2, where Σ :=

∑
i ρi, and the inverse is taken on the support of Σ. Then, maxi(1− Tr(µiρi)) ≤∑

i ̸=j

√
F (ρi, ρj).

7.2 Equivalence of SV-SI-OWSGs and EFI Pairs

Theorem 7.7. SV-SI-OWSGs exist if and only if EFI pairs exist.

This Theorem is shown by combining the following two theorems.

Theorem 7.8. If EFI pairs exist then SV-SI-OWSGs exist.

Theorem 7.9. If SV-SI-OWSGs exist then EFI pairs exist.

Proof of Theorem 7.8. We show that if EFI pairs exist then SV-SI-OWSGs exist. Let EFI.StateGen(1λ, b)→
ρb be an EFI pair. As is explained in Remark 2.2, we can assume without loss of generality that 1

2∥ρ0−ρ1∥1 ≥
1− negl(λ), which means F (ρ0, ρ1) ≤ negl(λ). From the EFI pair, we construct a SV-SI-OWSG as follows.

• KeyGen(1λ)→ k : Choose k ← {0, 1}κ, and output k.

• StateGen(k)→ ϕk : Run EFI.StateGen(1λ, ki)→ ρki for each i ∈ [κ]. Output ϕk :=
⊗κ

i=1 ρki .

The statistical invertibility is easily shown as follows. If k ̸= k′, there exists a j ∈ [κ] such that kj ̸= k′j .
Then,

F (ϕk, ϕk′) =
κ∏
i=1

F (ρki , ρk′i) ≤ F (ρkj , ρk′j) ≤ negl(λ),

which means 1
2∥ϕk − ϕk′∥1 ≥ 1− negl(λ). This shows the statistical invertibility.

Let us next show the computational non-invertibility. From the standard hybrid argument, and the
computational indistinguishability of ρ0 and ρ1, we have∣∣∣ 1

2κ
∑

k∈{0,1}κ
Pr[k ← A(ϕ⊗tk)]− 1

2κ
∑

k∈{0,1}κ
Pr[k ← A(ϕ⊗t0κ)]

∣∣∣ ≤ negl(λ) (5)

for any QPT adversary A and any polynomial t. (It will be shown later.) Hence

Pr[k ← A(ϕ⊗tk) : k ← KeyGen(1λ), ϕk ← StateGen(k)]

= 1
2κ

∑
k∈{0,1}κ

Pr[k ← A(ϕ⊗tk)]

≤ 1
2κ

∑
k∈{0,1}κ

Pr[k ← A(ϕ⊗t0κ)] + negl(λ)

= 1
2κ + negl(λ),

33

which shows the computational non-invertibility.
Let us show Eq. (5). For each z ∈ {0, 1}κt, define Φz :=

⊗κt
i=1 ρzi . Let z, z′ ∈ {0, 1}κt be two bit strings

such that, for a single j ∈ [κt], zj = 0, z′j = 1, and zi = z′i for all i ̸= j. (In other words, z and z′ are the
same except for the jth bit.) Then, we can show that∣∣∣ 1

2κ
∑

k∈{0,1}κ
Pr[k ← A(Φz)]−

1
2κ

∑
k∈{0,1}κ

Pr[k ← A(Φz′)]
∣∣∣ ≤ negl(λ) (6)

for any QPT adversary A. In fact, assume that∣∣∣ 1
2κ
∑
k

Pr[k ← A(Φz)]−
1
2κ
∑
k

Pr[k ← A(Φz′)]
∣∣∣ ≥ 1

poly(λ)

for a QPT adversaryA. Then, from thisA, we can construct a QPT adversary B that breaks the security of the
EFI pair as follows: On input ρb, choose k ← {0, 1}κ, and run k′ ← A((

⊗j−1
i=1 ρzi)⊗ ρb ⊗ (

⊗κt
i=j+1 ρzi)).

If k′ = k, output b′ = 1. If k′ ̸= k, output b′ = 0. Because

Pr[b′ = 1|b = 0] = 1
2κ
∑
k

Pr[k ← A(Φz)],

Pr[b′ = 1|b = 1] = 1
2κ
∑
k

Pr[k ← A(Φz′)],

we have

|Pr[b′ = 1|b = 0]− Pr[b′ = 1|b = 1]| ≥ 1
poly(λ) ,

which means that the B breaks the security of the EFI pair. From the standard hybrid argument and Eq. (6),
we have Eq. (5).

Proof of Theorem 7.9. We show that if SV-SI-OWSGs exist then EFI pairs exist. Let (OWSG.KeyGen,OWSG.StateGen)
be a SV-SI-OWSG. Without loss of generality, we can assume that OWSG.KeyGen is the following algorithm:
first apply a QPT unitary U on |0...0⟩ to generate

U |0...0⟩ =
∑
k

√
Pr[k ← OWSG.KeyGen(1λ)]|k⟩|µk⟩,

and trace out the second register, where {|µk⟩}k are some normalized states. Moreover, without loss of
generality, we can also assume that OWSG.StateGen is the following algorithm: first apply a QPT unitary Vk
that depends on k on |0...0⟩ to generate Vk|0...0⟩ = |ψk⟩A,B, and trace out the register A.

From the SV-SI-OWSG, we want to construct an EFI pair. For that goal, we construct a statistically-
hiding and computationally-binding canonical quantum bit commitment scheme from SV-SI-OWSG. Due to
Theorem 2.8 (the equivalence between different flavors of commitments), we then have a statistically-binding
and computationally-hiding canonical quantum bit commitment scheme, which is equivalent to an EFI pair.
From the SV-SI-OWSG, we construct a statistically-hiding and computationally-binding canonical quantum
bit commitment scheme {Q0, Q1} as follows.

Q0|0⟩C,R :=
∑
k

√
Pr[k](|k⟩|µk⟩)C1 |ψk⟩⊗tC2,R2

|0⟩R3 ,

Q1|0⟩C,R :=
∑
k

√
Pr[k](|k⟩|µk⟩)C1 |ψk⟩⊗tC2,R2

|k⟩R3 ,

34

where Pr[k] := Pr[k ← OWSG.KeyGen(1λ)], C2 is the combination of all “A registers” of |ψk⟩, R2 is the
combination of all “B registers” of |ψk⟩, C := (C1,C2) and R := (R2,R3). Moreover, t is a polynomial
specified later. It is clear that such {Q0, Q1} is implemented in QPT in a natural way.

Let us first show the computational binding of {Q0, Q1}. Assume that it is not computationally binding.
Then, there exists a QPT unitary U , an ancilla state |τ⟩, and a polynomial p such that

∥(⟨0|Q†1)C,RUR,Z(Q0|0⟩C,R ⊗ |τ⟩Z)∥ ≥ 1
p
.

Then,

1
p2 ≤ ∥(⟨0|Q†1)C,RUR,Z(Q0|0⟩C,R ⊗ |τ⟩Z)∥2

=
∥∥∥(∑

k′

√
Pr[k′]⟨k′, µk′ |C1⟨ψk′ |⊗tC2,R2

⟨k′|R3

)
×
(∑

k

√
Pr[k]|k, µk⟩C1UR,Z|ψk⟩⊗tC2,R2

|0⟩R3 |τ⟩Z
)∥∥∥2

=
∥∥∥∑

k

Pr[k]⟨ψk|⊗tC2,R2
⟨k|R3UR,Z|ψk⟩⊗tC2,R2

|0⟩R3 |τ⟩Z
∥∥∥2

≤
(∑

k

Pr[k]
∥∥∥⟨ψk|⊗tC2,R2

⟨k|R3UR,Z|ψk⟩⊗tC2,R2
|0⟩R3 |τ⟩Z

∥∥∥)2

≤
∑
k

Pr[k]
∥∥∥⟨ψk|⊗tC2,R2

⟨k|R3UR,Z|ψk⟩⊗tC2,R2
|0⟩R3 |τ⟩Z

∥∥∥2

≤
∑
k

Pr[k]
∥∥∥⟨k|R3UR,Z|ψk⟩⊗tC2,R2

|0⟩R3 |τ⟩Z
∥∥∥2
. (7)

In the third inequality, we have used Jensen’s inequality.23 From this U , we construct a QPT adversary B
that breaks the computational non-invertibility of the SV-SI-OWSG as follows: On input the R2 register
of |ψk⟩⊗tC2,R2

, apply UR,Z on |ψk⟩⊗tC2,R2
|0⟩R3 |τ⟩Z, and measure the R3 register in the computational basis.

Output the result. Then, the probability that B correctly outputs k is equal to Eq. (7). Therefore, B breaks the
computational non-invertibility of the SV-SI-OWSG.

Let us next show the statistical hiding of {Q0, Q1}. In the following, we construct a (not necessarily QPT)
unitary WR,Z such that

∥WR,ZQ0|0⟩C,R|0⟩Z −Q1|0⟩C,R|0⟩Z∥1 ≤ negl(λ). (8)

Then, we have

∥TrR(Q0|0⟩C,R)− TrR(Q1|0⟩C,R)∥1
= ∥TrR,Z(Q0|0⟩C,R|0⟩Z)− TrR,Z(Q1|0⟩C,R|0⟩Z)∥1
= ∥TrR,Z(WR,ZQ0|0⟩C,R|0⟩Z)− TrR,Z(Q1|0⟩C,R|0⟩Z)∥1
≤ ∥WR,ZQ0|0⟩C,R|0⟩Z −Q1|0⟩C,R|0⟩Z∥1
≤ negl(λ),

23For a real convex function f , f(
∑

i
pixi) ≤

∑
i
pif(xi).

35

which shows the statistical hiding of {Q0, Q1}.
Now we explain how to construct WR,Z. From Lemma 7.5, there exists a (not necessarily QPT) POVM

measurement {Πk}k and a polynomial t such that Tr(Πkϕ
⊗t
k) ≥ 1− negl(λ) and Tr(Πk′ϕ

⊗t
k) ≤ negl(λ) for

all k and k′ (k ̸= k′). Let UR2,Z be a unitary operator that implements the POVM measurement {Πk}k in the
following way

UR2,Z|ψk⟩⊗tC2,R2
|0...0⟩Z =

√
1− ϵk|k⟩|junkk⟩+

∑
k′:k′ ̸=k

√
ϵk′ |k′⟩|junkk′⟩,

where Z is the ancilla register, {ϵi}i are real numbers such that 1− ϵk ≥ 1− negl(λ) and ϵk′ ≤ negl(λ) for
all k′ ̸= k, and {|junki⟩}i are “junk” states that are normalized. Measuring the first register of the state
realizes the POVM. Let VR,Z be the following unitary:24

1. Apply UR2,Z on |ψk⟩⊗tC2,R2
|0...0⟩Z|0⟩R3 :

UR2,Z|ψk⟩⊗tC2,R2
|0...0⟩Z|0⟩R3 =

[√
1− ϵk|k⟩|junkk⟩

+
∑

k′:k′ ̸=k

√
ϵk′ |k′⟩|junkk′⟩

]
|0⟩R3 .

2. Copy the content of the first register to the register R3:
√

1− ϵk|k⟩|junkk⟩|k⟩R3 +
∑

k′:k′ ̸=k

√
ϵk′ |k′⟩|junkk′⟩|k′⟩R3 .

Define WR,Z := U †R2,ZVR,Z.
Let us show that thus constructed WR,Z satisfies Eq. (8).(

(⟨0|Q†1)C,R⟨0|Z
)(
WR,ZQ0|0⟩C,R|0⟩Z

)
=

(
(⟨0|Q†1)C,R⟨0|Z

)(
U †R2,ZVR,ZQ0|0⟩C,R|0⟩Z

)
=

(
(⟨0|Q†1)C,R⟨0|ZU †R2,Z

)(
VR,ZQ0|0⟩C,R|0⟩Z

)
=

(∑
k

√
Pr[k](⟨k|⟨µk|)C1

[√
1− ϵk⟨k|⟨junkk|⟨k|R3 +

∑
k′ ̸=k

√
ϵk′⟨k′|⟨junkk′ |⟨k|R3

])
×
(∑

k

√
Pr[k](|k⟩|µk⟩)C1

[√
1− ϵk|k⟩|junkk⟩|k⟩R3 +

∑
k′ ̸=k

√
ϵk′ |k′⟩|junkk′⟩|k′⟩R3

])
=

∑
k

Pr[k](1− ϵk)

≥ 1− negl(λ).

Acknowledgements. TM is supported by JST CREST JPMJCR23I3, JST Moonshot R&D JPMJMS2061-
5-1-1, JST FOREST, MEXT QLEAP, the Grant-in-Aid for Scientific Research (B) No.JP19H04066, the
Grant-in Aid for Transformative Research Areas (A) 21H05183, and the Grant-in-Aid for Scientific Research
(A) No.22H00522.

24For simplicity, we define VR,Z by explaining how it acts on |ψk⟩⊗tC2,R2
|0...0⟩Z|0⟩R3 , but it is clear from the explanation how

VR,Z is defined.

36

References

[Aar19] Scott Aaronson. Shadow tomography of quantum states. SIAM J. Comput., 49(5):STOC18–368,
2019. (Cited on page 10, 19.)

[AC12] Scott Aaronson and Paul Christiano. Quantum money from hidden subspaces. In Howard J.
Karloff and Toniann Pitassi, editors, 44th ACM STOC, pages 41–60. ACM Press, May 2012.
(Cited on page 19.)

[AGM21] Gorjan Alagic, Tommaso Gagliardoni, and Christian Majenz. Can you sign a quantum state?
Quantum, 5:603, dec 2021. (Cited on page 46.)

[AGQY22] Prabhanjan Ananth, Aditya Gulati, Luowen Qian, and Henry Yuen. Pseudorandom (function-like)
quantum state generators: New definitions and applications. TCC, 2022. (Cited on page 40.)

[AQY22] Prabhanjan Ananth, Luowen Qian, and Henry Yuen. Cryptography from pseudorandom quantum
states. In Yevgeniy Dodis and Thomas Shrimpton, editors, CRYPTO 2022, Part I, volume 13507
of LNCS, pages 208–236. Springer, Heidelberg, August 2022. (Cited on page 4, 25.)

[BCQ22] Zvika Brakerski, Ran Canetti, and Luowen Qian. On the computational hardness needed for
quantum cryptography. Cryptology ePrint Archive, Paper 2022/1181, 2022. (Cited on page 4, 8.)

[BS19] Zvika Brakerski and Omri Shmueli. (Pseudo) random quantum states with binary phase. In
Dennis Hofheinz and Alon Rosen, editors, TCC 2019, Part I, volume 11891 of LNCS, pages
229–250. Springer, Heidelberg, December 2019. (Cited on page 40.)

[BS20] Zvika Brakerski and Omri Shmueli. Scalable pseudorandom quantum states. In Daniele
Micciancio and Thomas Ristenpart, editors, CRYPTO 2020, Part II, volume 12171 of LNCS,
pages 417–440. Springer, Heidelberg, August 2020. (Cited on page 40.)

[CGG+23] Bruno Cavalar, Eli Goldin, Matthew Gray, Peter Hall, Yanyi Liu, and Angelos Pelecanos. On the
computational hardness of quantum one-wayness. arXiv:2312.08363, 2023. (Cited on page 7,
42.)

[CHS05] Ran Canetti, Shai Halevi, and Michael Steiner. Hardness amplification of weakly verifiable
puzzles. In Joe Kilian, editor, TCC 2005, volume 3378 of LNCS, pages 17–33. Springer,
Heidelberg, February 2005. (Cited on page 6, 11, 12, 13, 46, 47.)

[CX22] Shujiao Cao and Rui Xue. On constructing one-way quantum state generators, and more.
Cryptology ePrint Archive, Paper 2022/1323, 2022. (Cited on page 6, 11.)

[DMS00] Paul Dumais, Dominic Mayers, and Louis Salvail. Perfectly concealing quantum bit commitment
from any quantum one-way permutation. In Bart Preneel, editor, EUROCRYPT 2000, volume
1807 of LNCS, pages 300–315. Springer, Heidelberg, May 2000. (Cited on page 9.)

[FUYZ20] Junbin Fang, Dominique Unruh, Jun Yan, and Dehua Zhou. How to base security on the
perfect/statistical binding property of quantum bit commitment? Cryptology ePrint Archive,
Report 2020/621, 2020. https://ia.cr/2020/621. (Cited on page 9.)

37

https://ia.cr/2020/621

[GGKT05] Rosario Gennaro, Yael Gertner, Jonathan Katz, and Luca Trevisan. Bounds on the efficiency of
generic cryptographic constructions. SIAM J. COMPUT. Vol. 35, No. 1, pp. 217–246, 2005.
(Cited on page 26.)

[Gol90] Oded Goldreich. A note on computational indistinguishability. Information Processing Letters
34.6 (1990), pp.277–281., 1990. (Cited on page 4.)

[Gol01] Oded Goldreich. The Foundations of Cryptography - Volume 1: Basic Techniques. Cambridge
University Press, 2001. (Cited on page 6, 11.)

[HMY23] Minki Hhan, Tomoyuki Morimae, and Takashi Yamakawa. From the hardness of detecting
superpositions to cryptography: Quantum public key encryption and commitments. In Carmit
Hazay and Martĳn Stam, editors, EUROCRYPT 2023, Part I, volume 14004 of LNCS, pages
639–667. Springer, Heidelberg, April 2023. (Cited on page 9, 46.)

[HS11] Thomas Holenstein and Grant Schoenebeck. General hardness amplification of predicates and
puzzles (extended abstract). In Yuval Ishai, editor, TCC 2011, volume 6597 of LNCS, pages
19–36. Springer, Heidelberg, March 2011. (Cited on page 11.)

[ĲK09] Russell Impagliazzo, Ragesh Jaiswal, and Valentine Kabanets. Chernoff-type direct product
theorems. Journal of Cryptology, 22(1):75–92, January 2009. (Cited on page 11.)

[Imp95] Russell Impagliazzo. A personal view of average-case complexity. In Proceedings of the Tenth
Annual Structure in Complexity Theory Conference, Minneapolis, Minnesota, USA, June 19-22,
1995, pages 134–147. IEEE Computer Society, 1995. (Cited on page 4.)

[IR90] Russell Impagliazzo and Steven Rudich. Limits on the provable consequences of one-way
permutations. In Shafi Goldwasser, editor, CRYPTO’88, volume 403 of LNCS, pages 8–26.
Springer, Heidelberg, August 1990. (Cited on page 46.)

[ISV+17] Gene Itkis, Emily Shen, Mayank Varia, David Wilson, and Arkady Yerukhimovich. Bounded-
collusion attribute-based encryption from minimal assumptions. In Serge Fehr, editor, PKC 2017,
Part II, volume 10175 of LNCS, pages 67–87. Springer, Heidelberg, March 2017. (Cited on
page 15, 16.)

[JLS18] Zhengfeng Ji, Yi-Kai Liu, and Fang Song. Pseudorandom quantum states. In Hovav Shacham
and Alexandra Boldyreva, editors, CRYPTO 2018, Part III, volume 10993 of LNCS, pages
126–152. Springer, Heidelberg, August 2018. (Cited on page 4, 19, 40.)

[KKNY12] Akinori Kawachi, Takeshi Koshiba, Harumichi Nishimura, and Tomoyuki Yamakami. Computa-
tional indistinguishability between quantum states and its cryptographic application. Journal of
Cryptology, 25(3):528–555, July 2012. (Cited on page 43, 44, 46.)

[KQST23] William Kretschmer, Luowen Qian, Makrand Sinha, and Avishay Tal. Quantum cryptography in
algorithmica. STOC, 2023. (Cited on page 4.)

[Kre21] W. Kretschmer. Quantum pseudorandomness and classical complexity. TQC 2021, 2021. (Cited
on page 4, 7, 40.)

38

[KT23] Dakshita Khurana and Kabir Tomer. Commitments from quantum one-wayness. Cryptology
ePrint Archive, Paper 2023/1620, 2023. https://eprint.iacr.org/2023/1620. (Cited on
page 7.)

[Lam79] Leslie Lamport. Constructing digital signatures from a one-way function. Technical Report
SRI-CSL-98, 1979., 1979. (Cited on page 17.)

[LC19] Ching-Yi Lai and Kai-Min Chung. Quantum encryption and generalized quantum shannon
impossibility. Designs, Codes and Cryptography volume 87, pages 1961–1972 (2019), 2019.
(Cited on page 27.)

[LMW23] Alex Lombardi, Fermi Ma, and John Wright. A one-query lower bound for unitary synthesis
and breaking quantum cryptography. Cryptology ePrint Archive, Paper 2023/1602, 2023.
https://eprint.iacr.org/2023/1602. (Cited on page 7.)

[Mon19] Ashley Montanaro. Pretty simple bounds on quantum state discrimination. arXiv:1908.08312,
2019. (Cited on page 33.)

[MY22] Tomoyuki Morimae and Takashi Yamakawa. Quantum commitments and signatures without
one-way functions. In Yevgeniy Dodis and Thomas Shrimpton, editors, CRYPTO 2022, Part I,
volume 13507 of LNCS, pages 269–295. Springer, Heidelberg, August 2022. (Cited on page 4, 5,
6, 9, 10, 14, 17.)

[RS19] Roy Radian and Or Sattath. Semi-quantum money. arXiv/1908.08889, 2019. (Cited on page 11.)

[Unr16] Dominique Unruh. Computationally binding quantum commitments. In Marc Fischlin and
Jean-Sébastien Coron, editors, EUROCRYPT 2016, Part II, volume 9666 of LNCS, pages
497–527. Springer, Heidelberg, May 2016. (Cited on page 9.)

[Yan20] Jun Yan. General properties of quantum bit commitments. Cryptology ePrint Archive, Paper
2020/1488, 2020. (Cited on page 13.)

[Yan21] Jun Yan. Quantum computationally predicate-binding commitments with application in quantum
zero-knowledge arguments for NP. In Mehdi Tibouchi and Huaxiong Wang, editors, ASI-
ACRYPT 2021, Part I, volume 13090 of LNCS, pages 575–605. Springer, Heidelberg, December
2021. (Cited on page 9.)

[Yan22] Jun Yan. General properties of quantum bit commitments (extended abstract). In Shweta Agrawal
and Dongdai Lin, editors, ASIACRYPT 2022, Part IV, volume 13794 of LNCS, pages 628–657.
Springer, Heidelberg, December 2022. (Cited on page 4, 8, 9.)

[Yao82] Andrew Chi-Chih Yao. Theory and applications of trapdoor functions (extended abstract). In
23rd FOCS, pages 80–91. IEEE Computer Society Press, November 1982. (Cited on page 5, 6,
11.)

[YWLQ15] Jun Yan, Jian Weng, Dongdai Lin, and Yujuan Quan. Quantum bit commmitment with application
in quantum zero-knowledge proof (extended abstract). In Khaled M. Elbassioni and Kazuhisa
Makino, editors, ISAAC 2015, volume 9472 of Lecture Notes in Computer Science, pages
555–565. Springer, 2015. (Cited on page 4, 9.)

39

https://eprint.iacr.org/2023/1620
https://eprint.iacr.org/2023/1602

A PRSGs

PRSGs are defined as follows.

Definition A.1 (Pseudorandom quantum states generators (PRSGs) [JLS18]). A pseudorandom quantum
states generator (PRSG) is a set of algorithms (KeyGen, StateGen) as follows.

• KeyGen(1λ)→ k : It is a QPT algorithm that, on input the security parameter λ, outputs a classical
key k.

• StateGen(k)→ |ϕk⟩ : It is a QPT algorithm that, on input k, outputs an m-qubit quantum state |ϕk⟩.

We require the following security: For any polynomial t and any QPT adversary A,

| Pr
k←KeyGen(1λ)

[1← A(|ϕk⟩⊗t)]− Pr
|ψ⟩←µm

[1← A(|ψ⟩⊗t)]| ≤ negl(λ),

where µm is the Haar measure on m-qubit states.

Remark A.2. In the original definition of PRSGs [JLS18], the classical key k is uniformly sampled at random.
We use a more general definition where k is sampled by a QPT algorithm, which was introduced in [BS19].

Remark A.3. Note that in the above definition, the outputs of StateGen are assumed to be pure. It could be
possible to consider mixed states, but anyway the states have to be negligibly close to pure states (except for a
negligible fraction of k).25 We therefore, for simplicity, assume that the outputs of StateGen are pure. In that
case, StateGen runs as follows: apply a QPT unitary U on |k⟩|0...0⟩ to generate U(|k⟩|0...0⟩) = |ϕk⟩ ⊗ |ηk⟩,
and output |ϕk⟩. Note that the existance of the “junk” register |ηk⟩ is essential, because otherwise it is not
secure.26 (The simplest example of the junk register |ηk⟩would be |ηk⟩ = |k⟩, i.e., U(|k⟩|0...0⟩) = |k⟩⊗|ϕk⟩.
In that case, it is often convenient to consider that StateGen applies a QPT unitary Uk that depends on k on
the state |0...0⟩, and outputs |ϕk⟩ := Uk|0...0⟩.)

Remark A.4. PRSGs can be constructed from (quantum-secure) one-way functions [JLS18, BS19, BS20].

Remark A.5. [BS20] showed that PRSGs with m = c log λ for some 0 < c < 1 can be constructed with the
statistical security. On the other hand, [AGQY22], showed that PRSGs withm ≥ log λ require computational
assumptions. [AGQY22] also pointed out that the result of [Kre21] can be refined to show that the existence
of PRSGs with m = (1 + ϵ) log λ for all ϵ > 0 implies BQP ̸= PP.

25Consider the case t = 2, and consider a QPT adversary A that, given ϕ⊗2
k or |ψ⟩⊗2, runs the SWAP test on them. Then,∣∣∣ 1

2λ
∑
k

Pr[1← A(ϕ⊗2
k)]− E|ψ⟩←µm Pr[1← A(|ψ⟩⊗2)]

∣∣∣ =
∣∣∣ 1
2λ
∑
k

1 + Tr(ϕ2
k)

2 − 1 + 1
2

∣∣∣
= 1

2

∣∣∣ 1
2λ
∑
k

Tr(ϕ2
k)− 1

∣∣∣,
which has to be negligible. Therefore, Tr(ϕ2

k) is negligibly close to 1 (except for a negligible fraction of k).
26Consider a QPT adversary who applies U† on each copy of the received states, and measures them in the computational basis. If

the same k is obtained many times, the adversary concludes that the states are copies of pseudorandom states.

40

B Verification Algorithm for Special Case

Lemma B.1. Let (KeyGen, StateGen,Ver) be a OWSG that satisfies the following.

• All ϕk are pure.

• Pr[⊤ ← Ver(k, ϕk)] ≥ 1− negl(λ) for all k.

Then, the following OWSG (KeyGen′, StateGen′,Ver′) exists.

• KeyGen′, StateGen′ are the same as KeyGen and StateGen, respectively.

• Ver′(k′, ϕk) is the following algorithm. Measure ϕk with the basis {|ϕk′⟩⟨ϕk′ |, I − |ϕk′⟩⟨ϕk′ |}, and
output ⊤ if the first result is obtained. Otherwise, output ⊥.

Proof. The correctness of (KeyGen′, StateGen′,Ver′) is clear. Let us show the security. Assume that it is
not secure. Then, there exists a QPT adversary A, a polynomial t, and a polynomial p, such that

∑
k,k′

Pr[k ← KeyGen(1λ)] Pr[k′ ← A(|ϕk⟩⊗t)]|⟨ϕk|ϕk′⟩|2 ≥
1
p
.

If we define

S :=
{

(k, k′)
∣∣∣ |⟨ϕk|ϕk′⟩|2 ≥ 1

2p
}
,

we have ∑
(k,k′)∈S

Pr[k ← KeyGen(1λ)] Pr[k′ ← A(|ϕk⟩⊗t)] ≥
1
2p.

From the A, we construct a QPT adversary B that breaks the security of the original OWSG as follows: On
input |ϕk⟩⊗t, run k′ ← A(|ϕk⟩⊗t), and output k′. Then the probability that B breaks the original OWSG is∑

k,k′

Pr[k ← KeyGen(1λ)] Pr[k′ ← A(|ϕk⟩⊗t)] Pr[⊤ ← Ver(k′, |ϕk⟩)]

≥
∑

(k,k′)∈S
Pr[k ← KeyGen(1λ)] Pr[k′ ← A(|ϕk⟩⊗t)] Pr[⊤ ← Ver(k′, |ϕk⟩)]

≥
∑

(k,k′)∈S
Pr[k ← KeyGen(1λ)] Pr[k′ ← A(|ϕk⟩⊗t)]

(
Pr[⊤ ← Ver(k′, |ϕk′⟩)]−

√
1− 1

2p
)

≥ 1
2p
(
1− negl(λ)−

(
1− 1

4p
))
,

which is non-negligible. Therefore the B breaks the security of the original OWSG. Here, in the second
inequality, we have used the fact that for any (k, k′) ∈ S, |⟨ϕk|ϕk′⟩|2 ≥ 1

2p , which means that Tr(Π|ϕk⟩⟨ϕk|)−
Tr(Π|ϕk′⟩⟨ϕk′ |) ≤

√
1− 1

2p for any POVM element Π. In the last inequality, we have used Bernoulli’s
inequality, (1 + x)r ≤ 1 + rx for any 0 ≤ r ≤ 1 and x ≥ −1.

41

C OWSGs from PRSGs with Improved Parameters

The following result was pointed out by Luowen Qian. Also, a concurrent paper [CGG+23] shows similar
results.

Theorem C.1. If PRSGs with m ≥ log κ exist, then OWSGs exist.

Proof of Theorem C.1. Let PRSG.KeyGen(1λ) and PRSG.StateGen(k) → |ξk⟩ be a PRSG, where |ξk⟩ is
an m-qubit state. From it, we construct a OWSG as follows.

• KeyGen(1λ)→ k : Run k ← PRSG.KeyGen(1λ).

• StateGen(k) → |ϕk⟩ : Run |ξk⟩ ← PRSG.StateGen(k) r times, where r is a polynomial specified
later. Output |ϕk⟩ := |ξk⟩⊗r.

• Ver(k′, |ϕk⟩)→ ⊤/⊥ : Parse |ϕk⟩ = |ξk⟩⊗r. Measure |ϕk⟩ with the basis {|ϕk′⟩⟨ϕk′ |, I − |ϕk′⟩⟨ϕk′ |}.
If the first result is obtained, output ⊤. Otherwise, output ⊥.

Its correctness is clear. Let us show the security. Assume that it is not secure. Then, there exists a QPT
adversary A, a polynomial t, and a polynomial p, such that∑

k,k′

Pr[k ← PRSG.KeyGen(1λ)] Pr[k′ ← A(|ϕk⟩⊗t)]|⟨ϕk|ϕk′⟩|2 ≥
1
p
. (9)

From this A, we construct a QPT adversary B that breaks the security of the PRSG as follows. Let b ∈ {0, 1}
be the parameter of the following security game.

1. The challenger C of the security game of the PRSG sends ρ⊗rt+r to B. Here, ρ is chosen as follows. If
b = 0, C runs k ← PRSG.KeyGen(1λ), runs |ξk⟩ ← PRSG.StateGen(k), and set ρ = |ξk⟩. If b = 1,
ρ is an m-qubit Haar random state |ψ⟩.

2. B runs k′ ← A(ρ⊗rt). B measures ρ⊗r with the basis {|ξk′⟩⟨ξk′ |⊗r, I−|ξk′⟩⟨ξk′ |⊗r}. If the first result
is obtained, B outputs b′ = 0. Otherwise, it outputs b′ = 1.

Then, Pr[b′ = 0 | b = 0] is equivalent to the left-hand-side of Eq. (9), and therefore non-negligible. On the
other hand,

Pr[b′ = 0 | b = 1] = E|ψ⟩←µm
∑
k′

Pr[k′ ← A(|ψ⟩⊗rt)]|⟨ξk′ |ψ⟩|2r

≤ E|ψ⟩←µm
∑
k′

|⟨ξk′ |ψ⟩|2r

=
∑
k′

⟨ξk′ |⊗r
(
E|ψ⟩←µm |ψ⟩⟨ψ|

⊗r
)
|ξk′⟩⊗r

=
∑
k′

⟨ξk′ |⊗r
Π2m,r
sym

Tr(Π2m,r
sym)

|ξk′⟩⊗r

≤
∑
k′

1
Tr(Π2m,r

sym)
≤ 2κ2−rmr!
≤ negl(λ),

42

where E|ψ⟩←µm is the expectation value overm-qubit Haar random, Π2m,r
sym is the projector onto the symmetric

subspace of (C2m)⊗r. In the third inequality, we have used the fact that Tr(ΠN,t
sym) ≥ Nt

t! . In the last inequality,
we have taken m ≥ log κ and r = κ, and used Stirling’s approximation. The B therefore breaks the security
of the PRSG.

D Impossibility of Statistically-Secure QDSs

In this appendix, we show the following:

Theorem D.1. Statistically-secure QDSs do not exist.

Proof. Let us consider the following unbounded adversary A:

1. Given pk⊗t with a certain polynomial t, run the shadow tomography algorithm to find σ such that
Pr[⊤ ← Ver(pk,m, σ)] ≥ 1− 1

p(λ) , where m is any fixed bit string, and p is any fixed polynomial. If
there is no such σ, choose a bit string σ uniformly at random.

2. Output m and σ.

We show that the probability that such A win the security game is non-negligible. First, define the set

G :=
{

sk :
∑
σ

Pr[σ ← Sign(sk,m)] Pr[⊤ ← Ver(pk,m, σ)] ≥ 1− 1
p

}
. (10)

Then, from the correctness,

1− negl(λ) ≤
∑
sk

Pr[sk← SKGen(1λ)]
∑
σ

Pr[σ ← Sign(sk,m)] Pr[⊤ ← Ver(pk,m, σ)] (11)

=
∑

sk∈G
Pr[sk← SKGen(1λ)]

∑
σ

Pr[σ ← Sign(sk,m)] Pr[⊤ ← Ver(pk,m, σ)] (12)

+
∑

sk/∈G
Pr[sk← SKGen(1λ)]

∑
σ

Pr[σ ← Sign(sk,m)] Pr[⊤ ← Ver(pk,m, σ)] (13)

≤
∑

sk∈G
Pr[sk← SKGen(1λ)] + 1− 1

p
, (14)

which means ∑
sk∈G

Pr[sk← SKGen(1λ)] ≥ 1
p
− negl(λ). (15)

For each sk ∈ G, there exists σsk such that Pr[⊤ ← Ver(pk,m, σsk)] ≥ 1− 1
p , because otherwise it contradicts

Equation (10). Therefore, for each sk ∈ G, A can find σ such that Pr[⊤ ← Ver(pk,m, σ)] ≥ 1 − 1
p , and

because of Equation (15), the probability that A wins is non-negligible.

E Quantum SKE and Quantum PKE

In this section, we define quantum SKE (with classical keys and quantum ciphertexts) and its IND-CPA
security. Then we show that IND-CPA secure quantum SKE implies QPOTP. By Theorems 6.5 and 6.7, this
means that it implies both OWSGs and EFI pairs. We also observe that IND-CPA secure quantum SKE as
defined here is equivalent to quantum PKE defined in [KKNY12].

43

E.1 Quantum SKE

We define quantum SKE as SKE with classical keys and quantum ciphertexts.

Definition E.1 (Quantum SKE). A quantum SKE scheme is a tuple of algorithms (KeyGen,Enc,Dec) such
that

• KeyGen(1λ)→ sk : It is a QPT algorithm that, on input the security parameter λ, outputs a classical
secret key sk.

• Enc(sk, x)→ ct : It is a QPT algorithm that, on input a key sk and a message x ∈ {0, 1}ℓ, outputs a
quantum ciphertext ct.

• Dec(sk, ct)→ x′ : It is a QPT algorithm that, on input sk and ct, outputs x′ ∈ {0, 1}ℓ.

Correctness: For any x ∈ {0, 1}ℓ,

Pr[x← Dec(sk, ct) : sk← KeyGen(1λ), ct← Enc(sk, x)] ≥ 1− negl(λ).

IND-CPA Security: For any QPT adversary A = (A1,A2),

|Pr[1← AEnc(sk,·)
2 (st, ct∗) : sk← KeyGen(1λ), (x0, x1, st)← AEnc(sk,·)

1 (1λ), ct∗ ← Enc(sk, x0)]
−Pr[1← AEnc(sk,·)

2 (st, ct∗) : sk← KeyGen(1λ), (x0, x1, st)← AEnc(sk,·)
1 (1λ), ct∗ ← Enc(sk, x1)]|

≤ negl(λ)

where Enc(sk, ·) is a classically-accessible oracle that takes x as input and returns ct← Enc(sk, x).

Remark E.2. In the above definition, we only give a single-copy of ct∗ to A2. However, by a standard hybrid
argument, we can show that the above security implies the security against A2 that obtains t copies of ct∗ for
any polynomial t.

Theorem E.3. If there exists IND-CPA secure QSKE, there exists QPOTP.

Proof (sketch). By a standard hybrid argument, IND-CPA security implies the multi-instance security, where
the adversary is given unbounded-polynomially many ciphertexts. Thus, by taking the message length to be
much larger than the secret key length and encrypting the massage by using the IND-CPA secure QSKE in a
bit-by-bit manner, we can obtain QPOTP.

Combined with Theorems 6.5 and 6.7 we obtain the following theorem.

Theorem E.4. If there exists IND-CPA secure QSKE, there exist OWSGs and EFI pairs.

E.2 Quantum PKE

We define quantum PKE (with quantum public keys and quantum ciphertexts) following [KKNY12].

Definition E.5 (Quantum PKE [KKNY12]). A quantum PKE scheme is a tuple of algorithms (SKGen,PKGen,Enc,Dec)
such that

• SKGen(1λ)→ sk : It is a QPT algorithm that, on input the security parameter λ, outputs a classical
secret key sk.

44

• PKGen(sk)→ pk : It is a QPT algorithm that, on input a secret key sk, outputs a quantum public key
pk.

• Enc(pk, x) → ct : It is a QPT algorithm that, on input a public key pk and a message x ∈ {0, 1}ℓ,
outputs a quantum ciphertext ct.

• Dec(sk, ct)→ x′ : It is a QPT algorithm that, on input sk and ct, outputs x′ ∈ {0, 1}ℓ.

Correctness: For any x ∈ {0, 1}ℓ,

Pr[x← Dec(sk, ct) : sk← SKGen(1λ), pk← PKGen(sk), ct← Enc(pk, x)] ≥ 1− negl(λ).

IND-CPA Security: For any QPT adversary A = (A1,A2), and any polynomial t,∣∣∣∣∣∣∣∣∣Pr

1← A2(st, ct∗) :

sk← SKGen(1λ),
pk← PKGen(sk),
(x0, x1, st)← A1(pk⊗t),
ct∗ ← Enc(pk, x0)



− Pr

1← A2(st, ct∗) :

sk← SKGen(1λ),
pk← PKGen(sk),
(x0, x1, st)← A1(pk⊗t),
ct∗ ← Enc(pk, x1)


∣∣∣∣∣∣∣∣∣ ≤ negl(λ).

IND-CPA QPKE implies IND-CPA QSKE in a trivial manner similarly to the classical setting. On the
other hand, we prove that the other direction also holds, which means that the existence of IND-CPA QSKE
and QPKE are equivalent.

Theorem E.6. There exists IND-CPA secure QPKE if and only if there exists IND-CPA secure QSKE.

Proof (sketch.) IND-CPA QPKE trivially implies IND-CPA QSKE by considering the combination of SKGen
and PKGen of QPKE as KeyGen of QSKE. We prove the other direction. Let (QSKE.KeyGen,QSKE.Enc,QSKE.Dec)
be an IND-CPA secure QSKE with one-bit messages. We construct a QPKE scheme (QPKE.PKGen,QPKE.SKGen,QPKE.Enc,QPKE.Dec)
with one-bit messages as follows. (Note that the message space of IND-CPA secure QPKE schemes can be
extended to arbitrarily many bits by bit-wise encryption.)

• QPKE.SKGen(1λ) : Run sk← QSKE.KeyGen(1λ) and outputs sk.

• QPKE.PKGen(sk) : Run ct0 ← QSKE.Enc(sk, 0) and ct1 ← QSKE.Enc(sk, 1) and outputs pk :=
(ct0, ct1).

• QPKE.Enc(pk, x) : On input pk = (ct0, ct1) and x ∈ {0, 1}, output ct = ctx.

• QPKE.Dec(sk, ct) : Output QSKE.Dec(sk, ct).

The correctness of QPKE immediately follows from that of QSKE. Noting that we can simulate arbitrarily
many copies of pk = (ct0, ct1) by querying 0 and 1 to the encryption oracle SKE.Enc(sk, ·) many times,
there is a straightforward reduction from the IND-CPA security of QPKE to that of QSKE.

45

Remark E.7. One may think that this theorem is surprisingly strong because it is unlikely that SKE implies
PKE in the classical setting [IR90]. However, we would like to point out that QPKE as defined in [KKNY12]
is not as useful as classical PKE because public keys are quantum. Their security model assumes that public
keys are delivered to senders without being forged. This itself is the same as classical PKE, but the crucial
difference is that forgery of public keys can be prevented by additionally using digital signatures in the
classical setting, but that is not possible for QPKE because we cannot sign on quantum messages [AGM21].
In fact, the assumption that the adversary cannot forge public keys mean that it also cannot eavesdrop it
because eavesdropping may change the state of the public key. Thus, their security model essentially assumes
a secure channel to send public keys to the sender. If there is such a secure channel, we could simply send a
key for SKE through that channel. Thus, this theorem should not be understood as a new useful feasibility
result on PKE. We remark that the construction does not work if we consider QPKE with classical public
keys [HMY23]. We conjecture that it is impossible to construct QPKE with classical public keys from QSKE
under a certain class of black-box constructions.

F Proof of Theorem 3.14

In this section, we prove Theorem 3.14. We remark that the following proof is almost identical to that of
[CHS05, Lemma 1] except for the modification explained in the proof sketch in Section 3.2.

Proof of Theorem 3.14. We prepare several definitions. We write puz⊗t ← PuzzleGen⊗t(k) to mean
that we run puz ← PuzzleGen(k) t times to generate puz⊗t. For k⃗ = (k1, . . . , ki) and k, we define
k⃗ ◦ k := (k1, . . . , ki, k). We set t′ := ⌈6q ln(6q)

δn ⌉ · t. The construction of A′ is given in Figure 2. Note that t′

copies of puz are indeed sufficient forA′ since it feeds t copies of puz toA at mostL = ⌈6q ln(6q)
δn−v+1 ⌉ ≤ ⌈6q ln(6q)

δn ⌉
times. We analyze A′ below.

For a sequence k⃗ = (k1, . . . , ki) of i ≤ n− 1 check keys, we define

rsp(k⃗) := Pr

 ∀j ∈ {i+ 1, . . . , n}
Ver(ansj , kj) = ⊤ :

(ki+1, . . . , kn)← CheckGenn−i(1λ)
puz⊗tj ← PuzzleGen⊗t(kj) for j ∈ [n]
(ans1, . . . , ansn)← A(puz⊗t1 , . . . , puz⊗tn)

 .
For a sequence k⃗ = (k1, . . . , ki−1) of i− 1 ≤ n− 2 check keys, we define a subset Exti(k⃗) of check keys as
follows:

Exti(k⃗) :=
{
k : rsp(k⃗ ◦ k) ≥ δn−i

(
1 + 1

6q

)}
.

Let prefix = (k1, . . . , kv−1) be the prefix at the end of preprocessing phase. Let prefixi be the random
variable defined to be (k1, . . . , ki) if i ≤ v − 1 and otherwise ⊥. For convenience, we assign to prefix0 a
special symbol Λ that is different from ⊥. For i ∈ [n− 1], let Wrongi be the event that prefixi−1 ̸= ⊥ and
one of the following holds:

1. prefixi ̸= ⊥ and rsp(prefixi) < δn−i
(
1− 1

6q

)
.

2. prefixi = ⊥ and Pr[k ∈ Exti(prefixi−1) : k ← CheckGen(1λ)] ≥ δn−i+1

6q .

By the Chernoff bound, we can show that

Pr[Wrongi] ≤
δ

6qn (16)

46

for all i ∈ [n− 1]. We omit the proof since it is exactly the same as the proof of [CHS05, Claim 2].
We move onto the analysis of the online phase. We say that A′ succeeds if its answer passes the

verification.27 We prove that A′ succeeds with probability at least δ
(
1− 5

6q

)
unless Wrongi occurs for some

i ∈ [n− 1]. If this is proven, it finishes the proof of Theorem 3.14 since the probability that Wrongi occurs
for some i ∈ [n− 1] is at most δ

6q by the union bound and Equation (16).
Suppose that the preprocessing phase generates prefix prefixv−1 = (k1, . . . , kv−1) of length v − 1.
When v = n, we have prefixi ̸= ⊥ for all i ∈ [n− 1]. Thus, if we assume that Wrongn−1 does not occur,

we have

rsp(prefixn−1) ≥ δ
(

1− 1
6q

)
.

This directly means that the probability that A’ succeeds is at least δ
(
1− 1

6q

)
≥ δ

(
1− 5

6q

)
.

In the following, we consider the case where v ≤ n − 1. In this case, we have prefixi ̸= ⊥ for all
i ∈ [v − 1] and prefixv = ⊥. Then if we assume that neither of Wrongv−1 or Wrongv occurs, we have

rsp(prefixv−1) ≥ δn−v+1
(

1− 1
6q

)
(17)

and

Pr[k ∈ E : k ← CheckGen(1λ)] < δn−v+1

6q (18)

where we define E := Extv(prefixv−1) for convenience. In the following, we fix prefixv−1 = (k1, . . . , kv−1)
that satisfies Equations (17) and (18) and show that A’ succeeds with probability at least δ

(
1− 5

6q

)
for any

such fixed prefix. As explained above, this suffices for completing the proof of Theorem 3.14.
For any check key k, we define

w(k) := Pr[CheckGen(1λ) = k],

s(k) := Pr

 ∀j ∈ {v, . . . , n}Ver(ansj , kj) = ⊤ :

kv := k
(kv+1, . . . , kn)← CheckGenn−v(1λ)
puz⊗tj ← PuzzleGen⊗t(kj) for j ∈ [n]
(ans1, . . . , ansn)← A(puz⊗t1 , . . . , puz⊗tn)



a(k) := Pr

 ∀j ∈ {v + 1, . . . , n}
Ver(ansj , kj) = ⊤ :

kv := k
(kv+1, . . . , kn)← CheckGenn−v(1λ)
puz⊗tj ← PuzzleGen⊗t(kj) for j ∈ [n]
(ans1, . . . , ansn)← A(puz⊗t1 , . . . , puz⊗tn)

 .
Note that prefixv−1 = (k1, . . . , kv−1) is fixed and hardwired in the above definitions. By the definitions of
w(k), s(k), and rsp(prefixv−1) and Equation (17), we have

∑
k

w(k)s(k) = rsp(prefixv−1) ≥ δn−v+1
(

1− 1
6q

)
. (19)

27Note that the success or failure ofA′ is not determined by the execution ofA′ itself. It is determined after running the verification
algorithm to verify the answer output by A′. This is because we consider non-deterministic verification algorithm unlike [CHS05].
Thus, whenever we refer to the success of A’, we implicitly run the verification algorithm on its output.

47

By the definition of E and a(k), for any k /∈ E, we have

a(k) ≤ δn−v
(

1 + 1
6q

)
. (20)

By the definitions of s(k) and a(k), we have

Pr[Ver(A′(puz⊗t′), k) = ⊤|A′(puz⊗t′) does not abort] = s(k)
a(k) . (21)

We let

B :=
{
k : s(k) < δn−v+1

6q

}
. (22)

The for any k /∈ B, we have

Pr[A′(puz⊗t′) aborts : puz⊗t′ ← PuzzleGen⊗t′(k)] <
(

1− δn−v+1

6q

)⌈ 6q ln(6q)
δn−v+1 ⌉

<
1
6q . (23)

Next, we have ∑
k∈B∪E

w(k)s(k) ≤
∑
k∈B

w(k)s(k) +
∑
k∈E

w(k)s(k)

≤
∑
k∈B

w(k)δ
n−v+1

6q +
∑
k∈E

w(k)

≤ δn−v+1

6q + δn−v+1

6q = δn−v+1

3q

where the second inequality follows from Equation (22) and the third inequality follows from Equation (18).
Combined with Equation (19), we have

∑
k/∈B∪E

w(k)s(k) ≥ δn−v+1
(

1− 1
2q

)
. (24)

48

Then we have the following where puz← PuzzleGen(k) whenever puz appears:

Pr
k

[A′(puz⊗t′) succeeds]

=
∑
k

w(k) Pr[Ver(A′(puz⊗t′), k) = ⊤]

≥
∑

k/∈B∪E
w(k) Pr[A′(puz⊗t′) does not abort] Pr[Ver(A′(puz⊗t′), k) = ⊤|A′(puz⊗t′) does not abort]

≥
∑

k/∈B∪E
w(k)

(
1− 1

6q

)
s(k)
a(k)

≥
∑

k/∈B∪E
w(k)

(
1− 1

6q

)
s(k)

δn−v
(
1 + 1

6q

)
=

1− 1
6q

δn−v
(
1 + 1

6q

) ∑
k/∈B∪E

w(k)s(k)

≥
1− 1

6q

δn−v
(
1 + 1

6q

)δn−v+1
(

1− 1
2q

)

> δ

(
1− 5

6q

)
where the second inequality follows from Equations (21) and (23), the third inequality follows from
Equation (20), and the fourth inequality follows from Equation (24). As already explained, the above lower
bound on the success probability suffices for completing the proof of Theorem 3.14.

49

The Adversary A′(puz⊗t
′
)

Preprocessing Phase
1. Initialize prefix to be an empty vector.
2. For i = 1 to n− 1, do the following:

(a) Run k∗ ← Extend(prefix, i).
(b) If k∗ = ⊥, set v ← i and go to Online Phase.
(c) Update prefix ← prefix ◦ k∗.

3. Set v ← n and go to Online Phase.
Online Phase

1. If v = n, do the following:

(a) Parse prefix = (k1, . . . , kn−1).
(b) Run puz⊗ti ← PuzzleGen⊗t(ki) for i ∈ [n− 1].
(c) Run (ans1, . . . , ansn)← A(puz⊗t1 , . . . , puz⊗tn−1, puz⊗t).
(d) Output ansn.

2. Otherwise, repeat the following L = ⌈ 6q ln(6q)
δn−v+1 ⌉ times.

(a) Parse prefix = (k1, . . . , kv−1).
(b) Run puz⊗ti ← PuzzleGen⊗t(ki) for i ∈ [v − 1].
(c) For i = v + 1 to n, do the following:

i. Run ki ← CheckGen(1λ)
ii. Run puz⊗ti ← PuzzleGen⊗t(ki).

(d) Run (ans1, . . . , ansn)← A(puz⊗t1 , . . . , puz⊗tv−1, puz⊗t, puz⊗tv+1, . . . , puz⊗tn).
(e) Run di ← Ver(ansi, ki) for i ∈ {v + 1. . . . , n}.
(f) Output ansv if di = ⊤ for all i ∈ {v + 1. . . . , n}.

If none of the above repetitions outputs ansv , then abort.
The Subroutine Extend(prefix, i)

1. Repeat the following Ni = ⌈ 6q
δn−i+1 ln(18qn

δ
)⌉ times:

(a) Run k∗ ← CheckGen(1λ).
(b) Run µ̄k∗ ← Estimate(prefix ◦ k∗, i)
(c) If µ̄k∗ ≥ δn−i, output k∗.

2. Output ⊥.
The Subroutine Estimate(prefix, i)

1. Parse prefix = (k1, . . . , ki).
2. Initialize count← 0.
3. Repeat the following Mi = ⌈ 84q2

δn−i ln(18qnNi
δ

)⌉ times:

(a) Run puz⊗tj ← PuzzleGen⊗t(kj) for j ∈ [i].
(b) For j = i+ 1 to n, do the following:

i. Run kj ← CheckGen(1λ).
ii. Run puz⊗tj ← PuzzleGen⊗t(kj).

(c) Run (ans1, . . . , ansn)← A(puz⊗t1 , . . . , puz⊗tn).
(d) If Ver(ansj , kj) = ⊤ for all j ∈ {i+ 1, . . . , n}, increment count← count + 1.

4. Output count
Mi

.

Figure 2: The Adversary A′ for (CheckGen,PuzzleGen,Ver)

50

	Introduction
	Our Results
	Concurrent Work
	Open Problems

	Preliminaries
	Basic Notations
	EFI Pairs
	Quantum Commitments
	PRSGs

	OWSGs
	Definition of OWSGs
	Hardness Amplification for OWSGs

	QDSs
	Definition of QDSs
	Extension to q-time Security
	Equivalence of OWSGs and QDSs

	Quantum Money
	Definition of Private-key Quantum Money
	OWSGs from Quantum Money with Pure Money States
	OWSGs from Quantum Money with Symmetric Verifiability

	QPOTP
	Definition of QPOTP
	OWSGs from QPOTP
	EFI Pairs from Single-Copy-Secure QPOTP

	SV-SI-OWSGs
	Definition of SV-SI-OWSGs
	Equivalence of SV-SI-OWSGs and EFI Pairs

	PRSGs
	Verification Algorithm for Special Case
	OWSGs from PRSGs with Improved Parameters
	Impossibility of Statistically-Secure QDSs
	Quantum SKE and Quantum PKE
	Quantum SKE
	Quantum PKE

	Proof of thm:amplifyqpuzzle

