Hitchhiker’s Guide to a Practical Automated
TFHE Parameter Setup for Custom Applications

Jakub Klemsa
EURECOM, Sophia-Antipolis, France

jakub.klemsaQeurecom.fr

1 Introduction

Lately, several authors work on practical applications of FHE [3| [8, [I0] using the TFHE scheme [3],
often with an integer ring as the desired native cleartext space [4} [7] Q]E It shows that for the
best performance of particular application, the TFHE parameters must be carefully selected with
respect to the bit-size of the cleartexts, as well as to the number of homomorphic additions before
bootstrapping is applied to refresh the noise. On top of that, the parameters must be derived with
respect to a chosen security level A\. To the best of our knowledge, not a single existing TFHE
library [6l [T} 12 T3] implements a configurable parameter derivation tool. Instead, they provide
a few hard-coded parameter sets, which are only useful/effective in a limited range of applications.

In this contribution, we outline an approach, how to generate a set of tailor-made TFHE para-
meters, and we present a practical (semi-)automatic tool that executes this process, with particular
respect to efficient resource utilization during the TFHE bootstrapping. Finally, we run our tool
on several setups and we compare resulting parameters with those hard-coded in existing libraries.
E.g., compared to the parameters by Zama in their Z/16Z demo [14], we achieved by 38% faster
bootstrapping time and by 57% smaller keying material, at a comparable security and noise level.

2 Towards TFHE Parameter Derivation

First, we formally introduce all input parameters, which reflect the needs of a particular application
using TFHE. Next, we summarize the limitations that are imposed on the TFHE parameters.
Finally, we outline an approach how to derive all the TFHE parameters, given the input parameters
and respecting the identified limitations, with a focus on the bootstrapping efficiency.

Input Parameters

Given a specific application, which aims at utilizing TFHE for homomorphic calculations over en-
crypted data, we need to gather the following requirements: (A) bit-security level denoted by A; (B)
cleartext space bit-precision denoted by 7; and (C) a parameterized bound on the number of ho-
momorphic addition/scalar multiplication operations before the sample gets bootstrapped, denoted
by 224, referred to as the quadratic weights. Let us discuss each input parameter in detail.

L Also ongoing discussion within the community.

mailto:jakub.klemsa@fel.cvut.cz

Security Level \. To estimate the bit-security of particular instance of TLWE/TRLWE, which
are the underlying ciphers of TFHE, we use the LWE FEstimator by Albrecht et al. [2] [].

Observation 1. At given security level A, the logarithm of the standard deviation of the LWE noise,
denoted by «, depends roughly linearly on the LWE dimension n with a factor denoted by s):

—logy(@) &~ sx - 1; (1)

cf. Figure[ll Due to the collision attack, the relation is limited to n > 2\. In addition, the precision
of the underlying torus implementation, denoted by T, changes the behavior for —log,(a) > 7.

5976
512
448
384
320
256
192
128
64

20 : T

—logy ()

10

0 956 512 768 1024 1280 1536 1792 2048

LWE dimension n

Figure 1: LWE bit-security A estimated by the LWE Estimator by Albrecht et al. [2,[1]. Interpolation
between grid points, not calculated for A < 64 bits. For A = 128 bits, s) ~ 0.0235. N.b., identified
values of A show to be lower than in [5 Fig. 9].

Cleartext Space Bit-Precision 7. Calculations with encrypted data using TFHE are limited
by the range of operations offered. First, it shows that the complexity of the TFHE bootstrapping
grows roughly exponentially with the cleartext bit-precision — practical bootstrapping times can
be achieved for up to about m = 7 bits only. Next, bootstrapping is on the one hand capable of
evaluating a custom Look-Up Table (LUT), on the other hand, the values can only be given for the
first half of the cleartexts — the rest is given implicitly by a negacyclic extension, i.e.,

LUT(2" ' +m) = —LUT(m), m € [0,27Y). (2)
Both limitations must be carefully considered before choosing the right cleartext precision 7.
Quadratic Weights 224. With each additive homomorphic operation, the noises add to each

other. For the noise variance of a weighted sum of independent TLWE samples c¢; with an equal
noise variance, denoted by Vj, it holds

Var(Err (Z wj - cl>) = Zw? -Var(Err(c;)), w; € Z. (3)

—]
1%

We denote the sum of squares of weights by 222, where A expresses the number of additional bits
of the standard deviation of the noise (due to the addition).

Parameter Restrictions

The overall goal is to limit the noise of a fresh(ly bootstrapped) sample, so that a limited number of
addition operations can be performed and the noise can be refreshed correctly during bootstrapping.
N.b., during bootstrapping, there occurs an additional rounding noise with a variance denoted by
Viound- With 27 values in the cleartext space, it follows that the maximum error shall be bounded
by 1/27+1. Using the rule of 3o, it follows that the maximum error variance shall be bounded as

1 n+1
W, where ‘/round = W (4)

The bound on V; depends on particular implementation, e.g., Bourse et al. [3] propose an im-
provement of one of the bootstrapping algorithms, which decreases the number of operations, but
it increases the noise. Therefore, we present the bound on Vg as it holds for the basic variant of
TFHE [5], with one generalization that is widely implemented in TFHE libraries — the configurable
base in the key switching algorithm:

228V, < 228 . onIN22O0 DV (N) + 222 - n(1 + N)27 200+ 4 924 Var (Err(u,v)) +

!
Vmax < 22A‘/0 + V;'ound <

(¥ (4) =0
+ 22A tN22(I§ 1)VK () 22A 9= Q(Ht—‘rl)N (5)
(%) (#)

where N is the TRLWE polynomial degree, n is the TLWE dimension, v is the base log of boot-
strapping keys (per [5], v = logy(By)), k is the base log of key switching keys (not considered in [5],
implemented in [6l [13]), l t is the level of bootstrapping keys, or key switching keys, respectively,
and Vgk, Vks is the error variance used in bootstrapping, or key switching keys, respectively. Note
that we assume that the bootstrapping LUT, represented by the sample (u,v), is public, hence it
contains zero noise.

Idea of Parameter Generation

To derive a good set of TFHE parameters, we need to (i) satisfy the bound (with the use of),
and (ii) check its quality in terms of the bootstrapping time.

For (i), the bound (/4] . can be viewed as an error budget, which gets consumed by individual error
terms V,.ouna and (¥)—(#). We suggest to proceed from the most restricted parameters: namely, we
first set nmin = 2, we loop N € {256,512,...,4096} (or more), and we derive nyax from V,ound
using the entire budget. We continue by setting the minimum on «t from (#) using the maximum
available error budget, then we loop « from 1 and ¢ from [Ftmin/i] until some fixed bound #;.x ~ 10
(note that ¢t would indeed overflow due to (), however from some point, there is no efficiency
gain). Next, we 100p 7 = Tmin - - . Nmax, Possibly with a step greater than oneﬂ Finally, we use the
remaining error budget (if any) to obtain 4 and [, analogically to x and ¢. This way, we obtain
thousands of parameter sets that satisfy the bound .

For (ii), to make a good choice of the parameters, we need some measure to compare them with
each other. Either we know our implementation of TFHE by heart and we can deduce an analytical
relation for the bootstrapping time, or we estimate the bootstrapping time using the sizes of the
bootstrapping and the key switching keys, which can be expressed respectively as follows (for [5]):

|(BK;)j—,| = 6niNT [bits], and |(KS;;)f i_1| = (n+ 1)tNT [bits]. (6)

2E.g., in Concrete [6], the noise stddev can only be an integer, hence we can deduce the step from .

Running a couple of benchmarks with selected TFHE implementation, we derive a heuristic relation
between key sizes and respective bootstrapping time.

The final selection can be made either completely automatically, or a human intervention may
be applied, e.g., if there is a huge efficiency gap for just a little security reduction.

3 Experimental Results

Finally, in Table we put forward experimental results for selected use cases: the binary TFHE [5],
which uses an equivalent of 2-bit cleartext space, selected parallel addition [9, Alg. IIa-F], which
employs 5-bit cleartexts, and two integer demos [14] by Zama, operating over Z/8Z and Z/16Z
with 5-bit and 6-bit cleartext space, respectively. Note that in the parallel addition scenario, we
originally used parameters with A = 112, hence the parameters cannot be directly compared.

Binary TFHE: 7 =2, 224 =2 Parallel addition: 7= =5, 224 = 20

Orig. param’s [I3] New param’s | Orig. param’s [] New param’s
Non: vl 1024,630; 7,3 1024,554: 8,2 | 1024,680: 7,3 2048,766 ; 21,1
k,t; log(askks)| 2,8; —25,—-15 3,3; —24,-13| 1,16; —29,—18 3,5; —48,—18
\: tps 127.1; 81.4ms 127.1; 52.1ms | 111.5; 103.0ms 131.2; 122.1ms
0 M| %] 16.1,14.7 73.6,72.5 78.3,75.2 90.2,86.9
7Z/8Z Demo: 7 = 5, 224 =2 Z/16Z Demo: 7 = 6, 224 =2

Orig. param’s [I4] New param’s |Orig. param’s [I4] New param’s

Non: vyl 1024,750; 7,3 1024,724; 6,3 | 2048,750; 7,3 2048,766; 21,1
kot log(apkks)| 2,7; —25,—18 2,8; —24,—17| 2,7; —52,—18 3,5; —48,—18

X tgs 128.2; 100.0ms 130.5; 98.9ms| 128.2; 199.6ms 131.2; 124.6 ms

N N [%)] 99.3,101.4 100.8,99.6 86.0,85.5 91.2,90.5

Table 1: Comparison of selected original and newly identified TFHE parameters. 500 bootstraps
with Concrete [6] on Intel Core i7-7800X were executed. n¢ and 7, stand for the usage of the
30max error budget as calculated by Concrete and as measured after decryption, respectively. Find
our experimental code at https://gitlab.eurecom.fr/fakub/tfhe-param-testing.

Discussion & Conclusion

We commented on and we also practically demonstrated the importance of careful TFHE parameter
generation, given a particular usage scenario. We defined three input parameters that describe the
scenario and we presented a tool that automates the parameter generation process. In the experi-
mental results, we showed that for the binary TFHE and for the Z/16Z demo, we can achieve by
36—-38% faster bootstrapping times, only for the Z/8Z demo, we did not achieve much improvement.

https://gitlab.eurecom.fr/fakub/tfhe-param-testing

Acknowledgements

This work was supported by the MESRI-BMBF French-German joint project UPCARE (ANR-20-
CYAL-0003-01).

References

1]

9]
[10]
11]
12)
13)

[14]

Martin R Albrecht, Benjamin R Curtis, Amit Deo, Alex Davidson, Rachel Player, Ea-
monn W Postlethwaite, Fernando Virdia, and Thomas Wunderer. LWE Estimator. https:
//bitbucket.org/malb/lwe-estimator, 2018.

Martin R Albrecht, Rachel Player, and Sam Scott. On the concrete hardness of learning with
errors. Journal of Mathematical Cryptology, 9(3):169-203, 2015.

Florian Bourse, Michele Minelli, Matthias Minihold, and Pascal Paillier. Fast homomorphic
evaluation of deep discretized neural networks. In Annual International Cryptology Conference,
pages 483-512. Springer, 2018.

Florian Bourse, Olivier Sanders, and Jacques Traoré. Improved secure integer comparison via
homomorphic encryption. In Cryptographers’ Track at the RSA Conference, pages 391-416.
Springer, 2020.

Tlaria Chillotti, Nicolas Gama, Mariya Georgieva, and Malika Izabachéne. TFHE: fast fully
homomorphic encryption over the torus. Journal of Cryptology, 33(1):34-91, 2020.

CONCRETE: Concrete Operates oN Ciphertexts Rapidly by Extending TfhE. https:
//concrete.zama.ai/l, 2021.

Antonio Guimaraes, Edson Borin, and Diego F Aranha. Revisiting the functional bootstrap in
tthe. TACR Transactions on Cryptographic Hardware and Embedded Systems, pages 229-253,
2021.

Malika Izabachéne, Renaud Sirdey, and Martin Zuber. Practical fully homomorphic encryption
for fully masked neural networks. In International Conference on Cryptology and Network
Security, pages 24-36. Springer, 2019.

Jakub Klemsa and Melek Onen. Parallel operations over tfhe-encrypted multi-digit integers.
Cryptology ePrint Archive, 2022.

Qian Lou and Lei Jiang. She: A fast and accurate deep neural network for encrypted data.
arXiv preprint arXiw:1906.00148, 2019.

NuCypher. A GPU implementation of fully homomorphic encryption on torus. https://
github.com/nucypher/nufhel 2022.

Palisade. PALISADE Lattice Cryptography Library. https://gitlab.com/palisade/
palisade-release, 2022.

TFHE: Fast Fully Homomorphic Encryption Library over the Torus. https://github.com/
tfhe/tfhe, 2016.

Zama. Demo Z/8Z. https://github.com/zama-ai/demo_z8z/, 2021.

https://bitbucket.org/malb/lwe-estimator
https://bitbucket.org/malb/lwe-estimator
https://concrete.zama.ai/
https://concrete.zama.ai/
https://github.com/nucypher/nufhe
https://github.com/nucypher/nufhe
https://gitlab.com/palisade/palisade-release
https://gitlab.com/palisade/palisade-release
https://github.com/tfhe/tfhe
https://github.com/tfhe/tfhe
https://github.com/zama-ai/demo_z8z/

	Introduction
	Towards TFHE Parameter Derivation
	Experimental Results

