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Abstract. This note describes the implementation of the Castryck-Decru key recov-
ery attack on SIDH using the computer algebra system, SageMath. We describe in de-
tail alternate computation methods for the isogeny steps of the original attack ((2, 2)-
isogenies from a product of elliptic curves and from a Jacobian), using explicit for-
mulas to compute values of these isogenies at given points, motivated by both per-
formance considerations and working around SageMath limitations. A performance
analysis is provided, with focus given to the various algorithmic and SageMath spe-
cific improvements made during development, which in total accumulated in approx-
imately an eight-fold performance improvement compared with a naïve reimplemen-
tation of the proof of concept.

1 Introduction

Isogeny-based cryptography recently experienced a dramatic upheaval after Castryck and
Decru presented a heuristic polynomial time key recovery attack against the Supersingu-
lar Isogeny Diffie-Hellman protocol (SIDH) [CD22a]. Accompanying the preliminary ver-
sion of their paper, the authors additionally published an implementation of their attack
[CD22b], which claimed to break the SIKE NIST level one parameter set in only an hour
and the NIST level five parameters in less than one day running on a single core.

The publication of such a devastating attack1 against SIDH brought with it a torrent of
research interest and public attention. This was only amplified when days later, an indepen-
dently discovered attack [MM22] described a subexponential algorithm to solve the same
problem without assuming knowledge of the endomorphishm ring of the starting curve.
This paper was quickly followed by a paper [Rob22] describing an improvement which
would allow a similar attack to be performed in proven polynomial time by considering
isogenies in higher dimensions. An implementation of the Maino-Martindale attack has
been written for SageMath and will be made publicly available soon. Robert is currently
working on an implementation for the dimension eight attack.

The novel attack put forward by Castryck and Decru used (among other machinery) the
computation of (2, 2)-isogenies of abelian surfaces. Although this topic has a long history
of research from mathematicians, it has only recently gained interest in the cryptographic
community due to its constructive use in designing higher genus Diffie-Hellman protocols
[FT19] and hash functions [CDS19, CD21].

1The SIKE parameter sets for the SIDH protocol had for a decade been left unscathed by cryptanalysis. A
historical overview is presented in [Cos21].
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Because of the sophistication of the mathematical tools used in the cryptanalysis of
SIDH, for a large section of the cryptographic community, being able to run the attack on
their own hardware was essential to verify the paper’s claims. However, the proof of con-
cept code has been written using the computer algebra system Magma [BCP97]. Magma is
a very efficient and powerful piece of software, but it is difficult for many people to obtain
access to. Despite public availability of code which could run the attack over a lunch break,
the general public could not replicate the results themselves using only publicly available
software components.

Motivated by the appearance of such a beautiful attack and the desire to promote open-
source alternatives, a plan was made to reimplement the attack using SageMath [Sag22];
a free, open-source mathematics software system. This was not only a great opportunity
to learn precisely how the attack was constructed, but more importantly, sharing an im-
plementation which could be run by anyone would hopefully inspire other researchers to
experiment with the novel cryptanalytic machinery.

The purpose of this note is to describe the process of reimplementing an algorithm from
Magma to SageMath, with the hope that as a community we can work together to port addi-
tional Magma-only algorithms to SageMath in the future. We discuss problems we encoun-
tered along the way, along with our solutions. Hopefully, offering enough detail that our
work can be applied to similar problems in the future.

The current version of our implementation deviates from the original description of the
attack, and these deviations along with other SageMath specific optimisations have resulted
in significantly faster running times, with the difference being more pronounced for the
higher security parameter sets. Approximate running times are compared with those pub-
lished in [CD22a] in Table 1.

Approximate
Running Time $IKEp217 SIKEp434 SIKEp503 SIKEp610 SIKEp751

Proof of Concept
(Magma) 6 mins 1 hour 2h19m 8h15m 20h37m

This Note
(SageMath) 2 mins 10 mins 15 mins 25 mins 1-2 hours

Table 1: Comparison between running times of the original proof of concept [CD22b] and the current
version of our SageMath implementation [OPP+22]. Magma times were recorded with a Intel Xeon
CPU E5-2630v2 @ 2.60 GHz and SageMath times were achieved on an Intel Core i7-9750HCPU, both
running on a single core.

Implementation. For thosewanting to run the attack themselves, our implementation and
supporting documentation is provided at

https://github.com/jack4818/Castryck-Decru-SageMath
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Outline. The structure of this note is as follows. We first set notation and give a brief
overview of the SIDH protocol sufficient to understand the attack. A high-level description
of the Castryck-Decru attack is then offered, with focus given to the necessary conditions
required for the attack to be successful. This is followed by a description of the translation
process from Magma to SageMath, highlighting specifically when naïve usage of SageMath
was slow and how this was addressed in our implementation. In particular, slow perfor-
mance at one point in the algorithm inspired the derivation of compact explicit formulas
for computing (2, 2)-isogenies which are described in detail. The note finishes by giving an
overview of performance analysis of our code and a detail of the improvements which led
to an eight-fold improvement against our initial direct reimplementation. We include links
to various enhancements which have been made for future SageMath versions after various
slow algorithms were identified in the process of our work.

Acknowledgments. We would like to thank Lorenz Panny for both his assistance during the
implementation and also for his insightful comments and suggestions offered during the
writing of this note. Additionally, we thank Thomas Decru, Elena Bakos Lang, Chloe Mar-
tindale and Thomas Pornin for their comments on earlier drafts of this note. Finally, we
would like to thank the wider CryptoHack community. Much of the development of this
project was done in a chatroom with many people contributing ideas. In particular, we
thank Robin Jadoul and Unblvr who helped with profiling and writing patches which have
been included into the reimplementation.

2 Background

2.1 Supersingular Isogeny Diffie-Hellman

Supersingular Isogeny Diffie-Hellman (SIDH) was proposed in 2011 as a quantum-safe key
exchange mechanism [JdF11]. Over the past decade, it has gained a lot of cryptanalyic at-
tention, thanks in most part to its use in SIKE [ACC+20], a key encapsulation mechanism
which was submitted to the NIST Post-Quantum Cryptography Project. The inspiration for
the protocol comes from the following problem:

Problem 2.1 (ℓ-isogeny path). Given a prime p and two supersingular elliptic curves E1, E2

defined over the field Fp2 , find a path between E1 and E2 in the ℓ-isogeny graph.

This problem is (still) assumed to be cryptographically hard for both classical and quantum
algorithms for sufficiently large p, with the best-known-attacks having exponential com-
plexity. Additionally, to allow for efficient protocols, ℓ is usually taken to be small.

Let us first describe the protocol at a high-level. The SIDH key exchange can be un-
derstood in direct analogy to the more familiar Elliptic Curve Diffie-Hellman (ECDH) key
exchange which uses scalars as secrets and points on an elliptic curve as public keys. In
SIDH, the secrets are isogenies, which are rational maps from one elliptic curve to another;
in SIDH one considers isogenies between supersingular elliptic curves. Alice and Bob ex-
change tuples of datawhich contain the elliptic curvewhich the secret isogenymaps to, along
with two special points on this new curve. We can visualise this mapping between curves
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as a walk along a secret path on a graph known as a supersingular isogeny graph which has
isogenies as edges and (isomorphism classes of) supersingular elliptic curves as nodes.

The protocol is designed such that Alice and Bob take the protocol’s public parameters
and begin a walk through the graph on their respective secret paths. At the end of their walk,
they share information about where they have arrived on the graph. Alice and Bob then set
off through the graph on a path determined by their own secret and the other’s shared data.
When the protocol is completed successfully, Alice and Bob finish their walks and land on
the same node in the graph. Data is derived from this shared node which can then be passed
to a key derivation function for use in symmetric cryptography.

Public parameters. Let p = 2a3b − 1 be a prime. Let E0 be a fixed, starting supersingular
elliptic curve defined over the field2 Fp2 with order #E0 = (p+ 1)2. Finally, let (PA,QA) and
(PB ,QB) be generators of the torsion groups E0[2a] and E0[3b] respectively.

Key pair generation. Alice picks a random integer 0 ≤ xA < 2a and derives a degree 2a

isogeny ϕA whose kernel is the subgroup ⟨PA + [xA]QA⟩. The codomain of this isogeny
is denoted EA = ϕA(E0). Alice additionally computes the action of her isogeny on the
generators of E0[3b]. The key pair is comprised of the private key: xA and the public key
(EA, ϕA(PB), ϕA(QB)), which is sent to Bob. Bob performs a similar process.

Secret derivation. Alice receives Bob’s public key: (EB , ϕB(PA), ϕB(QA)). Using her se-
cret key, Alice computes a new degree 2a isogeny ϕ′A with kernel ϕA(ker(ϕB)) = ⟨ϕB(PA)+
[xA]ϕB(PA)⟩. The shared secret is the j-invariant of the codomain of this isogeny EAB =
ϕ′A(EB). Bob performs a similar process to derive a secret from EBA = ϕ′B(EA). As Alice
and Bob are on the same node, their curves are isomorphic and so the j-invariant is the same:
j(EAB) = j(EBA).

E0 EA

EB EAB

ϕA

ϕB ϕ′B

ϕ′A

Figure 1: The SIDH protocol

A keen reader will have noticed that Alice and Bob not only share where they are within
the graph, but in order for both parties to end on the same node, they additionally share the
action of their isogeny on the generators of the torsion groups. This “leakage” of additional
information has worried researchers since SIDHwas proposed. The concernwas that even if

2Whenever a > 1, we have p ≡ 3 (mod 4), allowing one to define the extension field Fp2 with the irreducible
polynomial x2 + 1 = 0.
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ℓ-isogeny path problem 2.1 was cryptographically hard, the SIDH protocol would be totally
broken if an efficient solution could be found to the following problem:3

Problem 2.2 (Supersingular isogeny with torsion). Let p = f ⋅NA ⋅NB − 1 be prime, and NA

andNB be smooth, coprime integers. Additionally, let E0, EA be supersingular elliptic curves
defined over the fieldFp2 , connected by some secret degree-NA isogeny ϕA ∶ E0 → EA. Given
the curves E0 and EA, together with the restriction of ϕA on the NB-torsion of E0, recover
an isogeny ϕ which matches these constraints. [KMP+20, Problem 1]

Indeed, by using the information leaked by the auxiliary points, “torsion-point” attacks
were found, which showed that problem 2.2 could be considered easy for certain classes
of parameter sets [Pet17, dQKL+20, KP22]. However, it wasn’t until the more recent work
of Castryck-Decru, Maino-Martindale and Robert that these attacks could be extended to
the parameter sets used by SIDH/SIKE [CD22a, MM22, Rob22]. Before jumping into the
mathematics of the attack, we offer a high-level overview and look at how secret data is
extracted from the image of the auxiliary points included in the data exchanged between
Alice and Bob.

2.2 Castryck-Decru attack

For this section, we focus on the Castryck-Decru attack as it is described in [CD22a] and
implemented in the Magma code [CD22b] and leave a discussion of the generalisations of
the attacks for the conclusions of the paper.

To recover Bob’s private key, the attack uses several properties of the SIDH protocol and
SIKE parameters. There are three key pieces of information used in the current implemen-
tation:

1. The exchanged data contains the image of the auxiliary points.

2. The secret isogeny ϕB has a fixed, known degree.

3. The starting curve E0 has a known endomorphism ring.

High-level description. TheCastryck-Decru attack recovers Bob’s secret integer xB ternary
digit by digit; it does not directly compute the secret isogeny itself. After xB has been recov-
ered, Bob’s isogeny ϕB and the shared secret j(EBA) can be recovered by following the SIDH
protocol.

The algorithm works by guessing a step along Bob’s unknown path and asking an oracle
whether the step was correct. If the oracle returns false, a different step can be guessed,
otherwise it continues down the chosen path and attempts to recover the next secret digit.
This strategy of guessing an isogeny step and consulting an oracle was known prior to this
attack. For example, this method is used in the active GPST attack [GPST16] where errors
which prevent the SIDH protocol completing successfully serve as the oracle.

3Problem 2.2 was first referred to as the Computational Supersingular Isogeny (CSSI) problem [JdF11, Prob-
lem 5.2], where the casting of the problem is much closer to the computational Diffie-Hellman problem. We follow
[KMP+20] to emphasise the knowledge of the auxiliary points along with the codomain of the secret isogeny.
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Walking down Bob’s secret path, there are only three possible steps to choose from (each
corresponding to one of the three ternary digits {0, 1, 2}). This means that for each taken
step, at most two calls to the oracle are needed. It is this fact which makes the attack so
efficient.

Thegenius of theCastryck-Decru attackwas creating a suitable oracle to validatewhether
the step taken is on the correct path using only public data. The oracle was named the glue-
and-split oracle, and before a slightly more formal discussion is given, we give a moderately
high-level overview.

Theoracle is given the collected public data togetherwith a cleverly constructed auxiliary
isogeny γ ∶ E0 → X0. From the supersingular elliptic curves (X0 , EB) a new object4 is
constructed from their product: X0 ×EB . The images of the auxiliary points PA,QA on both
EB[2a] and X0[2a] are needed. The former can be taken from Bob’s public key, while the
latter is computed directly from the action of γ. These points are lifted and represented as a
pair of points on the Jacobian of a hyperelliptic curve H, obtained by an isogeny (the gluing
map) X0 × EB → Jac(H)

This hyperelliptic curve and pair of new points aremapped through a chain of genus two
isogenies (known asRichelot isogenies). At the end of this chain, if the resulting hyperelliptic
curve can be decomposed back into a product of supersingular elliptic curves, then the curve
is said to split, and the oracle returns true and false otherwise. The reason that the oracle
is reliable is that only O(p2) of the O(p3) total hyperelliptic curves which can be reached
from this chain decompose into the product of elliptic curves. For cryptographically large
p, when a split is detected we can be confident that it is because our path is correct, and not
because we got (un)lucky and stumbled upon some other, randomproduct of elliptic curves.

One can then see that the whole attack hinges on the miraculous splitting of an abelian
surface after computing a chain of Richelot isogenies, but only when the correct step has
been taken. To understand why this is the case, we must understand the special auxiliary
isogeny γ, whose construction is guided by a theorem published by Ernst Kani in 1997.

Proposed countermeasures. At the time of writing, since the publication of [CD22a], two
proposals have been put on eprint which aim to circumvent the attack by obscuring the nec-
essary data. In [Mor22], the author suggests masking End(E0) and the degree of the secret
isogeny and in [Fou22] it is suggested to mask End(E0) and the auxiliary points. Aiming to
mask End(E0) alone is hopeless, thanks to the generalisations [MM22, Rob22] which de-
scribe subexponential and polynomial time attacks which do not require knowledge of the
starting curve’s endomorphism ring.

2.3 Kani’s theorem

Kani’s theorem [Kan97, Theorem 2.6] is a statement about the existence of a unique anti-
isometry between the torsion groups: ψ ∶ X[N] → E[N] for elliptic curves X and E when

4Precisely, this is a superspecial principally polarised abelian surface over Fp2 .
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considering a special configuration of elliptic curves and isogenies. The crux of theCastryck-
Decru attack relies on the existence of ψ, together with another genus two isogeny which
maps between two products of supersingular elliptic curves.

Let us first describe Kani’s theorem borrowing from the notation used previously. We as-
sume the existence of two isogenies ϕA ∶ E0 → EA and ϕB ∶ E0 → EB of (coprime) degree NA

and NB respectively. Furthermore, we consider two additional isogenies ϕ′A = ϕB(ker(ϕA))
and ϕ′B = ϕA(ker(ϕB)). This is precisely the scenario in SIDH when NA = 2a and NB = 2b .
In Kani’s language, the SIDH square drawn in Figure 1, is an isogeny diamond configuration.

Let us denote N = NA +NB . Kani’s theorem tells us that it is possible to build an explicit
(N ,N)-isogeny in two dimensions:

Φ ∶ EB × EA → E0 × EAB , ker(Φ) = ⟨(ϕB(PA), ϕA(PA)), (ϕB(QA), ϕA(QA))⟩ ,

where ψ ∶ EB[N] → EA[N] is the unique anti-isometry such that ψ(ϕB(x)) = ϕA(x).
We note here that Φ can be constructed from its kernel given the action of ϕA and ϕB on
the auxiliary points of E0. For more precise details on the proof of existence of Φ and the
uniqueness of ψ we refer to the original paper [Kan97].

Now let us repeat the above discussion, but changing the perspective to that which suits
the attack, with the additional condition that NA > NB .5 We consider a starting curve E0

and Bob’s curve EB which is the codomain of a secret degree NB-isogeny ϕB which we wish
to recover. Now consider an arbitrary auxiliary isogeny γ ∶ E0 → X0 of degree NA − NB . As
gcd(NA,NB) = 1, we additionally have gcd(NA − NB ,NB) = 1.

We can then construct a new isogeny diamond configuration:

E0 EB

X0 XB

ϕB

γ γ′

ϕ′B

and Kani’s theorem tells us that there is a unique anti-isometry ψ ∶ X0[NA] → EB[NA] and
a genus two (NA,NA)-isogeny which maps between two products of supersingular elliptic
curves

Φ ∶ X0 × EB → E0 × XB ,

with ker(Φ) = ⟨(γ(PA), ϕB(PA)), (γ(QA), ϕB(QA))⟩. For our computations, we will use
that NA = 2n , and so we can efficiently computeΦ as a chain of (2, 2)-isogenies of length n,
using its kernel determined by the auxiliary point information of the SIDH exchange.

The attack works by making a guess about the next digit of xB and using this in the con-
struction of γ. When the correct step is taken, the data forms an isogeny diamond configu-
ration and we can test for this by checking whether the codomain ofΦ splits. Depending on

5When this is not the case, we could switch our targets and recover Alice’s secret isogeny instead. However,
this is not preferred, as it requires computing a chain of (3, 3)-isogenies, which have significantly longer formulas.
Instead, we perform an initial guess and consider NB = 3b−β i such that the inequality NA > NB holds.
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the digit of xB that is being guessed, we have NA = 2a−α1 and NB = 3b−β1 for integers α1 , β1,
meaning the (2, 2)-isogeny chain will be of length n = a − α1.

2.4 Auxiliary isogenies

The last big hurdle in implementing the attack is to find an efficient way to compute the
auxiliary isogeny of degree x = NA − NB . Without any additional information, we can only
compute large degree isogenies using two methods:

1. When x = y2 is a perfect square, we can compute an isogeny of degree x by using the
scalar multiplication map [y].

2. When x is smooth, we can factor x and compute γ by composing a chain of isogenies
with degree equal to the factors of x.

However, it is unlikely that x will be smooth, and even less likely that x will be a perfect
square!

The insight in the Castryck-Decru attack is that the SIKE parameters pick a special start-
ing curve E0 ∶ y2 = x3 + 6x2 + x, for which the endomorphism ring End(E0) is known. In
particular, we have the endomorphism 2i which satisfies (2i)2 = [−4].

We can then construct an isogeny of degree x whenever we can represent the degree
in the form x = u2 + 4v2, which is possible if all prime factors of the form q = 4k + 3
have even exponent in x. When this condition is satisfied, we can construct the x-isogeny
γ = [u] + [v] ⋅ 2i. This step requires factoring integers of sizeO(2a), but can be performed
as a precomputation for the parameter sets considered.

Since the publication of the attack, there has already been work generalising the compu-
tation of the auxiliary isogeny. In a note [Wes22], it is shown that when End(E0) is known,
a degree x isogeny can always be computed in polynomial time removing a heuristic prop-
erty of the attack.6 In [Rob22] a provable polynomial time algorithm can compute γ even
without the knowledge of End(E0) by working in higher dimension and using the fact that
every integer x can be represented by the sum of four squares.

3 Translating the proof of concept fromMagma to SageMath

Cryptanalytic attacks which rely on advanced mathematics are often written using spe-
cialised mathematical software known as computer algebra systems (CAS). For cases when
the code needs to be optimised, the code is then usually translated to a more performant
language after a proof of concept is developed. However, more often than not, these pieces
of software are advanced enough to do what is needed. Two of the most used CAS in crypt-
analysis are:

6The second heuristic property from the 1/p failure when studying whether the hyperelliptic curve splits after
the (NA ,NA)-isogeny chain can also be removed as the secret isogeny ϕB can be directly recovered from Φ as
noticed in [MM22, Oud22, Wes22], removing the risk of proceeding with incorrect guesses.
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• Magma [BCP97]: a computer algebra software package maintained by the University
of Sydney. It is known for having expansive coverage, with efficient implementations
of computational algorithms from algebra, number theory and algebraic geometry.

• SageMath [Sag22]: a free, open source mathematics software system licensed under
the GPL. Its mission is to “Create a viable free open source alternative to Magma,
Maple, Mathematica and Matlab.” SageMath is built on top of Python, but many al-
gorithms come from other open-source packages and are accessed through wrappers
and interfaces, allowing high performance computation.

As Magma is proprietary software, many people active in the cryptographic research
community do not have the ability to run Magma files. In contrast, SageMath is accessi-
ble to anyone with a suitable computer7 and internet access (for download/updating only).
Because of this, it felt important to take the incredible work of Castryck and Decru and
translate it fromMagma to something more accessible.

3.1 Overview of code structure

Before detailing the translation process, we offer an overview of the proof of concept code
itself. The attack is split between four files:

• uvtable.m: a file containing a precomputed array of x , u, v values such that x =
u2 + 4v2. Used when generating the auxiliary isogenies of degree x.

• richelot_aux.m: a filewith helper functionswhich compute isogeny chains, and the
glue-and-split oracle computations. The bulk of this work is done by three functions:

○ FromProdToJac(): Given two elliptic curves and two pairs of points, glues the
curves and lifts the points to the Jacobian of the hyperelliptic curve.
○ FromJacToJac(): Computes one step in the chain of (2, 2)-isogenies using the
Richelot correspondance between hyperelliptic curves.
○ Does22ChainSplit(): Via FromProdToJac() and FromJacToJac() com-
putes the codomain of a (2a , 2a)−isogeny. Returns true if the codomain splits
to a product of elliptic curves and false otherwise.

• SIKE_challenge.m: loads the public data from the Microsoft $IKEp217 challenge
[Mic21] and runs the attack to recover Bob’s secret integer xB .

• SIKEp434.m generates random auxiliary points and public data using the SIKENIST
level 1 parameter set [ACC+20], runs the attack and recovers Bob’s secret integer xB .

Translating uvtable.m was a simple syntax modification. Both SIKEp434.m and
SIKE_challenge.m contained some more sophisticated code, but nothing which would

7SageMath is fairly large (the current recommendation for installation is a minimum of 6GB of free disk space),
with a recommendedminimumof 2GBofRAM. Installation is straightforward for Linux andMacOS. ForWindows
users, the recommendation is either to run SageMath within WSL2 or within the SageMath Docker.
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seem out of place in standard isogeny-based cryptography. Aside from syntax translation
of these files, we would need to compute Weil pairings, chains of elliptic curve isogenies,
various bases for torsion groups and the j-invariant for elliptic curves. From previous expe-
rience, we knew SageMath had efficient implementations for all these pieces.

The file which would take themost work was richelot_aux.m. In particular, the func-
tions FromProdToJac() and FromJacToJac() make up the bulk of the file and require
solving multivariate polynomials, computing the image of elliptic curve points on the Jaco-
bian of the glued hyperelliptic curve and the explicit computation of (2, 2)-isogenies using
the Richelot correspondence.

3.2 Syntax translation

Thebusywork of translating fromMagma to SageMathwas simply understanding and trans-
lating the syntax. Luckily, there is so much overlap between the two languages, files can be
copied verbatim and resulting syntax errors corrected.

Some changes, like variable declaration from a := 110; to a = 110were easy to fix up.
Additionally, many of the higher-levelmathematical objects such as EllipticCurve() and
PolynomialRing() had almost identical representations. In Figure 2, the first few lines of
SIKE_challenge.m are given, along with the corresponding SageMath translation, which
hopefully shows how similar the code is between the two systems.

// SIKE_challenge.m
a := 110;
b := 67;
p := 2^a*3^b - 1;
Fp2<I> := GF(p, 2);
assert I^2 eq -1;
R<x> := PolynomialRing(Fp2);
E := EllipticCurve(x^3 + 6*x^2 + x);

# SageMath Translation
a = 110
b = 67
p = 2^a*3^b - 1
Fp2.<i> = GF(p^2, modulus=x^2+1)
assert i^2 == -1
R.<x> = PolynomialRing(Fp2)
E = EllipticCurve(Fp2, [0,6,0,1,0])

Figure 2: Comparison of Magma and SageMath code showing the close similarity between how alge-
braic objects are constructed.

Occasionally, Magma code could look quite different, but usually from context it was
easy to see what the intentionwas. Two differences we encountered whichmay not be totally
obvious are:

• In Magma, the length of an array is denoted #my_array. In SageMath we have the
pythonic len(my_array).

• For two elements of a field Px,Py and an elliptic curve E, we represent the point P =
(Px , Py) by P := E ! [Px, Py]; inMagma, and P = E(Px,Py) in SageMath. The
same notation is used for setting elements of a polynomial ring.

There were also cases when the Magma code would use some algebraic object which
wasn’t immediately available in SageMath. One example of this was that Magma can work
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with multivariate function fields by calling FF<u, v, x, y> := FunctionField(Fp2,
4);. SageMath currently only supports univariate function fields. However, the solution
to this problem is to first define a multivariate polynomial ring and create the fraction field
from this:

# SageMath
FF_poly.<u, v, x, y> = PolynomialRing(Fp2, 4)
FF = FF_poly.fraction_field()

Mathematics aside, the difference which caused the most bugs during conversion was
very simple. Magma accesses elements in arrays using 1-index, and when looping through
a range, it is inclusive of the upper bound. In contrast, SageMath is 0-indexed and does not
include the upper bound. In this sense, Magma behaves in the “old-style” similar to Fortran
or Pascal, whereas (via Python) SageMath follows the 0-index convention started with C (or
rather its predecessor B). An example of this difference is given in Figure 3.

// Magma
my_array := [2,3,5,7,11];

for i in [1..5] do
print my_array[i];

end for;
// output: 2,3,5,7,11

# SageMath
my_array = [2,3,5,7,11]

for i in range(0,5):
print(my_array[i])

# output: 2,3,5,7,11

Figure 3: Example of the difference in indexing and upper-bounds in a range.

As a result of this difference, careless copy-pasting and tidying could easily introduce
off-by-one errors throughout the code. This is exactly what happened and correcting these
syntax typos was being performed all the way up to the code working!

3.3 Warning: falling back to very slow toy implementation

The first major difficulty came while reimplementing FromProdToJac(). At a high-level,
this function takes pairs of points (PX ,QX) and (P,Q) on two elliptic curves X and E and
lifts them to (PX , P) and (QX ,Q), which are points on the Jacobian of a hyperelliptic curve
obtained by applying the gluing map: X × E → Jac(H).

To perform the lifting of points, the Castryck-Decru attack derives five multivariate
equations in four variables. Although the lineswhich define these polynomials appear dense,
the similarity between Magma and SageMath meant it was easy to translate the first half of
the function. A simultaneous solution to these polynomials is computed, which is then
used to build a point on the Jacobian of the hyperelliptic curve. Details of this process are
described in [CD22a, Section 6.1].

The standardmethod to solve systems of equations like this is to first build an ideal from
the set of polynomials and then compute the ideal’s Gröbner basis. Magma comes with
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GrobnerBasis() and it is very efficient and works with a wide range of polynomial rings.
In the proof of concept, the function GrobnerBasis() is not directly called. Instead, a

scheme is created from an affine space and the set of equations. Calling theMagma function
Points(V) on the scheme finds the set of points, which are equivalently the set of solutions
to the polynomials. Points(V) computes this by (in part) calling GrobnerBasis(). A
snippet showing this code, together with a translation into SageMath is given in Figure 4.

// Magma snippet
A4<U0, U1, V0, V1> := AffineSpace(Fp2, 4);
V := Scheme(A4, [eq1, eq2, eq3, eq4, eq5]);

realsols := [];
for D in Points(V) do

Dseq := Eltseq(D);
if not 0 in Dseq then

realsols cat:= [Dseq];
end if;

end for;

# SageMath translation
A4.<U0, U1, V0, V1> = AffineSpace(Fp2, 4)
V = A4.subscheme([eq1, eq2, eq3, eq4, eq5])

realsols = []
for D in V.rational_points():

Dseq = list(D)
if not 0 in Dseq:

realsols.append(Dseq)

Figure 4: A snippet of Magma code and its SageMath direct translation which is used to derive solu-
tions to the set of five multivariate polynomials over the field Fp2 .

Despite the SageMath translation having an almost identical form, running the code we
are given the following warning:

verbose 0 (3848: multi_polynomial_ideal.py, groebner_basis) Warning:
falling back to very slow toy implementation.

The problem is that SageMath does not natively have a fast implementation to compute the
Gröbner basis of ideals in a multivariate polynomial ring. When the multivariate ring is
defined over finite fields, the Gröbner basis is usually computed using the external library
Singular [DGPS22]. Singular has implemented the Faugère’s F4 and F5 algorithms, which
are very fast, and the same as what Magma is said to use. Singular has been designed to
work well with prime order finite fields of large characteristic. However, when working with
fields of prime-power order, Singular can only handle fields with characteristic less than
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229. Msolve, another library available in SageMath for working multivariate polynomials
[BED21] also has these fast algorithms, but is restricted to only work with finite fields of
characteristic less than 231.

When the polynomial ring or base field are incompatible with external libraries, Sage-
Math falls back to a toy implementation of Buchberger’s algorithm. This was the first al-
gorithm proposed for computing Gröbner bases, but it is known to often require a large
amount of memory or generate polynomials much larger than the input, making it impos-
sible to terminate in a reasonable amount of time. The question then is how slow is very
slow for our configuration. When running the attack, FromProdToJac() would be called
for each oracle request and each call needed to lift two sets of points. This meant it would
be called a few hundred times for the easiest $IKEp217 challenge and a magnitude more for
the hardest parameter set.

After the code whirred for long enough, we stopped the execution and decided to run
the same attack but on a reduced, 64-bit prime p = 233 ⋅ 319 − 1 which we’ll refer to as the
SIKEp64 parameter set. Even with this reduced prime, the code could not find a solution
in the 30 minutes we let the code run for. It was obvious that this method was the wrong
avenue for our SageMath implementation.

3.4 Searching for efficient alternatives

SageMath is used by a lot of people in the cryptography community, and often people find
clever tricks to allow SageMath to be more performant. The hope was that if we reached
out to some friends with our current problem, someone may have solved something similar
before. Finding solutions to multivariate polynomials isn’t a particularly obscure problem!
Below are some suggestions which seemed hopeful but didn’t lead immediately to a solution:

• Lorenz Panny suggested toWeil restrict the equations by introducing 2 ⋅5+ 1 variables
allowing us to work in Fp rather than Fp2 .

○ This trick would mean that the toy implementation of Gröbner would not be
needed anymore as the polynomial ring would be defined over a prime order
field, but now the system of equations was so complicated, the code was still too
slow.

• Tony Shaska suggested that instead of computing the Gröbner bases, a faster method
could be to instead use resultants to remove variables from the equation one at a time
and then solve the equation in a univariate polynomial ring and work backwards.

○ This is a clever idea, but SageMath was still too inefficient. The only method
available to compute resultants for the polynomial ring over an extension field
was to compute the determinant of the Sylvester matrix, which was very slow
for our problem.

• Bryan Gillespie suggested to try and use the Macaulay2 [GS] interface to compute
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the Gröbner basis. This doesn’t come with SageMath by default, but is free and open-
source and can be included pretty easily. It’s also known for being pretty fast.

○ This solution may work, but the current SageMath interface doesn’t allow for
sending extension fields to Macaulay2 (it’s not even certain from the documen-
tation that Macaulay2 can do this, but the SageMath interface certainly can’t).
For this to have a chance at working, one would first have to rewrite the inter-
face.8

The solution came from one of the authors of this note, who saw a way to avoid the
problem of the slow Gröbner basis altogether with the following suggestion:

Are you trying to lift a pair (PX , P) to the Jacobian? I wonder if it’s easier to
lift (PX , 0) to a divisor on H, lift (0, P) to a divisor and add them? I may be
confused but it feels like it gives the answer without solving any equations.

This indeed worked, and the result is an efficient and clean piece of code which feels
natural to the context of the gluing and lifting. Avoiding solving complicated polynomials
simplified FromProdToJac() and the work carried over in a similar way in the compu-
tations in FromJacToJac(). Due to significant differences in the computations of these
algorithms (with respect to the Castryck-Decru attack), we describe them in detail in Sec-
tion 4.

3.5 Baby steps towards a working implementation

With the novel work which allowed efficient lifting and higher-genus isogenies, the Gröbner
obstaclewas removed andwefinished off the rest of the translation. We ran the attack against
SIKEp64 and got the following output:

Bridging last gap took: 0.1307520866394043
Bob's secret key revealed as: 15002860
In ternary, this is: [1, 1, 1, 1, 0, 0, 0, 2, 0, 0, 2, 0, 1, 0, 0, 1]
Altogether this took 43.73990249633789 seconds.

It worked! The attack successfully recovered Bob’s private key in less than a minute. It
was so exciting to see Wouter Castryck and Thomas Decru’s attack run in real time on our
own laptops.

However, a 64-bit prime wasn’t close to being secure from previously known attacks. So,
with confidence that the code was correct, the next test was to see whether the implemen-
tation was efficient enough to recover private keys on serious SIDH instances. However,
before detailing performance analysis and the improvements we made to speed up the at-
tack, we describe the compact, explicit formulas derived for our implementation.

8IfMacaulay2 can indeedworkwith extension fields, this could be a nice project for a reader looking to improve
SageMath.

14



4 Compact explicit formulas for dimension two isogenies

As described above, two types of isogenies need to be computed to perform the attack. In
this section, we first give a detailed discussion of the gluing of elliptic curves to recover the
Jacobian of a genus two hyperelliptic curve. This is followed by a description of efficient
formulas to compute Richelot isogenies between genus two Jacobians by quotienting out an
explicit (2, 2)-torsion subgroup.

4.1 Gluing elliptic curves

Thefirst step in the computation is a quotient of E1×E2 by a subgroupG = ⟨(P1 , P2), (Q1 ,Q2)⟩
generated by points of order two (corresponding to roots of the Weierstrass equations of E1

and E2).
Assuming reduced Weierstrass equations for E1 and E2:

y2 = (x − α1)(x − α2)(x − α3),
y2 = (x − β1)(x − β2)(x − β3),

the chosen subgroup is equivalent to the choice of a bijection between sets {α i} and {β i},
and we assume the numbering has been chosen to match this bijection.

The gluing construction is the definition and computation of an isogeny:

γ ∶ E1 × E2 → S ≃ Jac(H),

where ker γ = G and H is a genus two (hyperelliptic) curve defined explicitly. This con-
struction uses formulas from [HLP00] for hyperelliptic (genus two) double covers of elliptic
curves but abundant literature can be found in recent research.

Wewill take some time to explain how they can be derived fromhopefully simple consid-
erations. Then, the modified way of computing the isogeny itself for given points of E1 × E2

will be described.

4.1.1 Simple case

The construction is easiest to understand in the following symmetric case where α iβ i = κ.
Define curves:

E1 ∶ y2 = (x − α1)(x − α2)(x − α3),
E2 ∶ y2 = (x − β1)(x − β2)(x − β3),
H ∶ y2 = (x2 − α1)(x2 − α2)(x2 − α3).

Then there is a degree two map:

H → E1 ∶ (x , y)→ (x2 , y),

15



and the following identity holds on H:

( y
x3
)
2
= −κ−3α1α2α3 (

κ
x2
− β1)(

κ
x2
− β2)(

κ
x2
− β3) ,

meaning that we can define the second projection:

H → E2 ∶ (x , y)→ (κ/x2 , y/(Ax3)),

where A is a square root of −α1α2α3/κ3 (assumed to exist).

4.1.2 General case

In the general case, we want to determine two affine transformations:

E1 → E′1 ∶ x ↦ u1x + v1 ,
E2 → E′2 ∶ x ↦ u2x + v2 ,

such that the roots α i and β i map to α′i and β′i such that α′iβ′i = 1, where the previous
construction applies.

This can be obtained through a linear equation with matrix:

M =
⎛
⎜⎜
⎝

α1β1 α1 β1
α2β2 α2 β2
α3β3 α3 β3

⎞
⎟⎟
⎠
, M

⎛
⎜⎜
⎝

u1u2

u1v2
u2v1

⎞
⎟⎟
⎠
=
⎛
⎜⎜
⎝

1 − v1v2
1 − v1v2
1 − v1v2

⎞
⎟⎟
⎠
.

A slightly different solution can be obtained by defining:

⎛
⎜⎜
⎝

R
S
T

⎞
⎟⎟
⎠
=
⎛
⎜⎜
⎝

α1β1 α1 β1
α2β2 α2 β2
α3β3 α3 β3

⎞
⎟⎟
⎠

−1
⎛
⎜⎜
⎝

1
1
1

⎞
⎟⎟
⎠
, and D = detM .

Then for i = 1, 2, 3, (Rα i + T)(Rβ i + S) = R + ST . The interchange of α i and β i has effect
S ↔ T .

A computer algebra system can be used to factor and prove that:

R + ST = −(α1 − α2)(α2 − α3)(α3 − α1)(β1 − β2)(β2 − β3)(β3 − β1)
D2 .

If δα = (α1 −α2)(α2 −α3)(α3 −α1) (resp. δβ) are square roots of the discriminants, then we
have

R + ST = −
δαδβ
D2 .

This means that through simple translations α′i = α i + T/R and β′i = β i + S/R we obtain
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α′iβ′i = κ. The factorisation of R + ST gives a more precise identity:

−RD
δa
(α i + T/R)

RD
δβ
(β i + S/R) = 1.

In the following part, we assume that the additive transform has been performed and
that S = T = 0. Note that the determinant D is not invariant under additive transforms.
However, the quantities RD, δα and δβ are invariant under additive transforms. This is
because:

RD = det

RRRRRRRRRRRRRRR

1 α1 β1
1 α2 β2
1 α3 β3

RRRRRRRRRRRRRRR

.

Wenowassume S=T=0. Define s1 = −δα/(RD) (wewill see that itmatches the definition
of [HLP00]), let α′i = −α i/s1 and define curves:

E1 ∶ y2 = (x − α1)(x − α2)(x − α3),
E2 ∶ y2 = (x − β1)(x − β2)(x − β3),
H ∶ y2 = d(x2 − α′1)(x2 − α′2)(x2 − α′3),

where d is a suitable twist to be determined. This is because modifying roots by adding a
constant keeps elliptic curves isomorphic, but multiplying them by a non-square constant
transforms elliptic (or hyperelliptic) curves by a quadratic twist.

Then there is a degree two map:

H → E1 ∶ (x , y)→ (s1x2 , y
√

s31 /d),

because s1x2 − α1 = s1(x2 − α′1). We can choose d = s1 and the map becomes:

(x , y)↦ (s1x2 , s1 y),

Similarly there is a map, defining t1 = δβ/(RD) so that β i = t1/α′i :

H → E2 ∶ (x , y)→
⎛
⎝
t1
x2

,
y
x3

√
−β1β2β3

s1
⎞
⎠
,

because t1/x2 − β i = −β i/x2(x2 − α′i).
We now need to determine an explicit square root of −β1β2β3/s1 to make formulas us-

able. Again using the help of a computer algebra system we observe that:

−β1β2β3
s1

= ( δb
RD
)
2

= t21 .

This can be proved easily in the specific case where we assumed S = T = 0, α iβ i = s1 t1 so
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the matrix M is almost a Vandermonde matrix with rows (s1 t1 , s1 t1/β i , β i). In particular:

D = s21 t21 δβ/(β1β2β3),

yielding the following formula:

s1 t21
β1β2β3

= D
s1δβ

= D
δβ(−δα/(RD))

= − RD
2

δαδβ
= −1.

Now dropping the assumption that S = T = 0 we can recover the full formulas:

α′i =
α i + T/R

s1
,

H ∶ y2 = s1(x2 − α′1)(x2 − α′2)(x2 − α′3),
H → E1 ∶ (x , y)↦ (s1x2 − T/R, s1 y),
H → E2 ∶ (x , y)↦ (t1/x2 − S/R, t1 y/x3).

The formulas here are slightly different from [HLP00] because the choice of d creates
apparent symmetry breaking between α and β. However, the values of s1 and t1 in this
section were chosen to match [HLP00], and the full formulas are still very closely related,
only differing by a factor on the y coordinate, as shown below.

4.1.3 Comparison with Howe-Leprévost-Poonen formulas

If s1 and t1 are the factors defined in [HLP00] the following identities can be verified through
using a computer algebra system (notably by computing multivariate factorisation):

R + ST = R2s1 t1 .

And the other constants can be described compactly as:

AHLP = −δβRD, BHLP = δαRD,

s1 = −
δα
RD

, t1 =
δβ
RD

,

s2 = −T/R, t2 = −S/R.

4.1.4 Lifting divisors

The above construction defines a morphism H → E1 × E2 which defines an isogeny γ ∶
Jac(E1)⊕ Jac(E2)→ Jac(H) whose kernel is exactly the group G chosen at the beginning.

Castryck and Decru compute this isogeny by looking for a divisor η ∈ Jac(H) such that
γ̂(η) = (P1 , P2) for chosen points on E1 × E2 where γ̂ is the dual isogeny. Then γ(P1 , P2) =
γ ○ γ̂(η) = 2η.

The corresponding system of equations is non-trivial and the isogeny can actually be
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computed directly. Since γ is a morphism of groups, it is determined by γ1 ∶ Jac(E1) →
Jac(H) and γ2 ∶ Jac(E2) → Jac(H) which are easily seen to be the canonical morphism
pulling back divisors on E i to H through the projections defined above.

Using the formalism of Mumford coordinates, a point of Jac(H) is expected to be repre-
sented as a pair of points ofH through twopolynomials (a(x), y = b(x))where a has degree
two and b has degree one. Using the definition of the morphisms H → E1 and H → E2:

xE1 = s1x2H + s2 , xE2 = t1/x2H + t2 ,
yE1 = s1 yH , yE2 = t1 yH/x3H ,

we can see which equations (on H) are determined by points (x1 , y1) on E1 and (x2 , y2) on
E2:

(s1X2 + s2 − x1 = 0, s1Y − y1 = 0),
(t1 − X2(x2 − t2) = 0, t1Y − y2X3 = 0).

These equations are almost exactly reduced Mumford coordinates for the images of P1
and P2 in the Jacobian variety of H, the only required step being computing the remainder
of −y2X3/t1 modulo t1 − X2(x2 − t2) to obtain a degree one polynomial.

Then the image of point (P1 , P2) can be computed using the classical group law on the
Jacobian of H. In addition to avoiding computation of Gröbner bases, this method does not
involve extracting roots of polynomials, so it involves only a constant amount of basic field
operations.

4.2 Richelot isogenies

The following steps are Richelot isogenies where each kernel is a subgroup generated by a
pair of order two elements of the Jacobian. Formulas for these isogenies can be found (no-
tably) in [Smi05] and are used in [CD22a]. We note here that shortly after the announce-
ment of the Castryck-Decru attack, Kunzweiler published an efficient implementation of
(2n , 2n)-isogenies [Kun22]. Although originally designed to aid the performance of higher-
dimensional isogeny-based protocols, these algorithms also allowbetter performance for the
key recovery attack on SIDH. Towards the end this note, we comment on the inclusion of
Kunzweiler’s algorithm into our implementation.

The isogenies which we consider in this section have type:

Φ ∶ S ≃ Jac(H)→ S′ ≃ Jac(H′),

and the kernel of Φ can be represented as a group kerΦ = {0, P,Q , P + Q}.
The kernel must also be isotropic for the Weil pairing. Without entering into details,

we will only use a consequence which is that the domain curve H can be represented by an
equation:

H ∶ y2 = G1(x)G2(x)G3(x),

where G i are factors of the defining polynomials of the hyperelliptic curves, but also Mum-
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ford coordinates for P, Q and P + Q, defined over the base field.
Then Richelot formulas define new polynomials:

H i =
1

detG
(G′jGk −GkG′j),

where G is the matrix of coefficients:

⎛
⎜⎜
⎝

G1,0 G1,1 G1,2

G2,0 G2,1 G2,2

G3,0 G3,1 G3,2

⎞
⎟⎟
⎠
.

Sincewe know that in a 3×3matrixM, the coefficients ofM−1 are obtained by 2×2minors
±detM(i , j),(k , l)/detM we can actually derive a compact representation of the coefficients
of H i which avoids redundant computations:

⎛
⎜⎜
⎝

H1,2 H2,2 H3,2

H1,1 H2,1 H3,1

H1,0 H2,0 H3,0

⎞
⎟⎟
⎠
= diag(−1, 2,−1) ×

⎛
⎜⎜
⎝

G1,0 G1,1 G1,2

G2,0 G2,1 G2,2

G3,0 G3,1 G3,2

⎞
⎟⎟
⎠

−1

.

The Richelot isogeny is defined by the following correspondence:

G1(x)H1(x′) +G2(x)H2(x′) = 0,

yy′ = G1(x)H1(x′)(x − x′)

with target curve:
H′ ∶ y′2 = H1(x′)H2(x′)H3(x′).

To compute the image of a point defined by Mumford coordinates (a(x), y = b(x))
(representing a pair of points ofH) we are expected to compute the image of these equations,
through the correspondence, as equations on H′ (defining a 4-tuple of points), and apply
standard Cantor reduction to obtain reduced Mumford coordinates in Jac(H′).

This can be done by elimination of variables, but direct computation is also possible as
explained in the following sections.

4.2.1 Computation through a quadratic extension

Similarly to the case of gluing elliptic curves, we can easily compute Mumford coordinates
for the image of a point of H through the Richelot correspondence because a point (x , y)
defines a degree two equation for x′ and a degree three equation y′ = g(x) giving non-
reduced Mumford coordinates.

However, a k-point of the Jacobian Jac(H) is not necessarily represented by a pair of
k-points of H. Let D be a k-point of Jac(H) defined by Mumford coordinates (a(x), b(x))
whose coefficients are in k. Using a quadratic extension K/k we can compute the x coor-
dinates of a representative divisor for a point of Jac(H) (roots of a), map them to Jac(H′)
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and compute their sum through the addition group law. This is, however, computationally
suboptimal due to computation of square roots and polynomials in Fp4 .

4.2.2 Symbolic computation and explicit elimination

We can do the same computation using symbolic variables x1 and x2 for the roots of poly-
nomial a. Then the coefficients of a are related to symmetric functions S = x1 + x2 and
P = x1x2.

Bymapping the symbolic roots of a through the Richelot correspondence, we can obtain
a (non-reduced) representative of ϕ(D)whose equations are symmetric functions of x1 and
x2, thus can be expressed in terms of S and P.

For example, the first Mumford coordinate of D′ = ϕ(D) = ϕ(D1) + ϕ(D2) (where D1

and D2 are the symbolic elements of D) is defined by the union of two equations:

G1(x1)H1(x′) +G2(x1)H2(x′) = 0,

G1(x2)H1(x′) +G2(x2)H2(x′) = 0.

Note that since x1 and x2 are roots of a(x)which is of degree two, we can replace everywhere
G1 andG2 by their degree one remaindermodulo awhich greatly simplifies the computation.

This means that the first Mumford coordinate of the divisor D′ can be obtained as the
product of these equations:

G1(x1)G1(x2)H2
1 + (G1(x1)G2(x2) +G2(x2)G2(x1))H1H2 +G2(x1)G2(x2)H2

2 .

It is possible to precomputeH2
1 ,H2

2 andH1H2 so that the computation reduces to a linear
combination of these three polynomials, with coefficients computed from the firstMumford
coordinate a(x) of D.

The second Mumford coordinate can be computed by explicit elimination. Again, D′ is
defined by a union of two equations:

y1 y′ = G1(x1)H1(x′)(x1 − x′),
y2 y′ = G1(x2)H1(x′)(x2 − x′),

and the product reduces to a polynomial of degree one in y′ through equation y′2 = h′(x′).
Moreover y i = b(x i) and (x1 − x′)(x2 − x′) = a(x).

The product equation is:

0 = b(x1)b(x2)h′(x′)
− y′H′1(x′)(b(x1)G1(x2)(x2 − x′) + b(x2)G1(x1)(x1 − x′))
+G1(x1)G1(x2)H1(x′)2a(x′).

Again, we can use symmetric functions to eliminate x1 and x2 and replace them by co-
efficients of a(x), resulting in an explicit formula. The implementation can either compute
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this as a multivariate polynomial in (x′ , y′ , x1 , x2) and then select the coefficients of x i
1 x

j
2 to

be replaced by an expression x i
1 x

j
2 + x

j
1 x

i
2 = f i j(S , P), or we can expand the computation in

advance to leave only the explicit formula. Complete formulas can be found in Appendix
A as an actual implementation. Cantor’s reduction formulas can then be applied to obtain
normalised Mumford coordinates.

5 Performance analysis

In this section, we discuss the various performance improvements which were made during
the reimplementation of the Castryck-Decru attack. As well as algorithmic and mathemat-
ical improvements, we additionally mention parts of the code which were slow specifically
due to SageMath and how we were able to optimise around these limitations. We hope that
these points in particular will help with future SageMath implementations.

By far the largest performance issue was SageMath’s lack of a fast Gröbner basis algo-
rithm for large characteristic extension fields, previously discussed in Section 3. As we were
unable to have the algorithm terminate (even for our fabricated 64-bit parameter set) we can
consider this as an “infinite bottleneck”.

Although we were able to optimise our code by simply avoiding calls to the problematic
functions, having a fast implementation for solving multivariate polynomials over exten-
sion fields would still be a great addition to SageMath. We encourage anyone interested in
implementing this to have a go and to reach out if you wish to collaborate.

5.1 Breaking the Microsoft’s $IKEp217 challenge

Picking up where we left off, we had a working implementation of the attack with a running
time of less than one minute against the baby parameter set SIKEp64. The first true test of
our implementation was to break the Microsoft $IKE challenge [Mic21].

The proof of concept implementation stated that their attack took six minutes to recover
Bob’s private key. Running our implementation against the $IKEp217 parameter set, a single
call to the oracle was taking approximately 30 seconds, which suggested a total running time
in the order of hours.

This was significantly slower than we expected it should be. To try and track down the
issue, we ran the SIKEp64 attack again with standard Python profiling tools. As expected,
the majority of work done by the algorithm was being performed by FromJacToJac().
However, the profiling tool showed an incredible number of constructions of FiniteField,
which for our code would be elements of Fp2 .

Studying the Jacobian arithmetic, a dramatic performance issue was discovered with
how SageMath was working with points in the Jacobian of a hyperelliptic curve. When per-
forming arithmetic operations with points, the code would first invoke GF(p^k)(...) for
every coefficient of each of the point’s coordinates.

Aside from the performance issue of constructing thousands of objects, the construc-
tor of the FiniteField includes a primality test for every call. As the finite field Fp2 is
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constructed for every coefficient of every point for every arithmetic operation, we are per-
forming a primality test thousands of times. The larger the characteristic of the field, the
more expensive this construction becomes.

One option to fix this issue is to directly patch the SageMath source, ensuring that the
objects are cached after construction:

from sage.misc.cachefunc import cached_method

@cached_method
def vector_space(self, *args, **kwds):

# SNIP

Although this fixes the problem, one of the motivations for this project was to allow re-
searchers to easily run the attack themselves. Writing an attack which first asked the user to
patch the source code wasn’t attractive.

A gentler fix was to set the flag proof.arithmetic(False) in our code. This globally
tells SageMath to use (among many things) a much faster, probabilistic primality test. We’re
not worried about false positives this could (very rarely) introduce, as we are working with
a known, fixed prime. As an example of how dramatic this speed-up is, a primality test of a
1024 bit integer is more than 1000 times as fast with the flag set to false:

sage: p = random_prime(2^1024)
sage: time assert is_prime(p)
Wall time: 2.86 s
sage: proof.arithmetic(False)
sage: time assert is_prime(p)
Wall time: 2.11 ms

Setting this flag to false in our attack, we ran the code and found that we were able to
recover Bob’s private key from the $IKEp217 challenge in only 30 minutes. Although this
fix doesn’t address the redundant field constructions, it made the attack fast enough to finish
in a reasonable amount of time.

However, the best fix was found by Robin Jadoul in a conversation in the CryptoHack
chat [Cry22]. Robin found that we could implement a monkey patch9 which had the same
effect as the hard patch given above:

Fp2.<i> = GF(p^2, modulus=x^2+1)
type(Fp2).vector_space =

sage.misc.cachefunc.cached_method(type(Fp2).vector_space)

With the redundant constructions removed thanks to caching, we found that our attack
on the $IKEp217 challenge finished in only 15 minutes (approximately three times slower

9A monkey patch is a way to extend or modify the runtime code of dynamic languages such as Python.
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than the proof of concept) with an estimated performance speed up of 400-800% against
the unpatched code. Following the discussion of this patch, Lorenz Panny has submitted
an enhancement10 to SageMath to defer primality and irreducibility testing before caching,
which has been accepted and will be available from SageMath version 9.7.

Additionally, we ran the attack against the SIKEp434 parameter set, which finished in
only 90 minutes (approximately 1.5 times slower than the proof of concept). A summary of
these results are shown in Table 2, labelled as the “first draft”. Timings of attacks against the
higher parameter sets were delayed, as our profiling had shown other areas of improvements
which could be made before running more benchmarks.

5.2 Breaking SIKE over lunch with a laptop

We finish this section with a sparse covering of some additional improvements we made
to our implementation. When considered together, our modifications resulted in approxi-
mately an eight-fold performance improvement, with the $IKEp217 challenge being broken
in twominutes, the SIKEp434 parameters broken in tenminutes and the hardest parameter
set, SIKEp751, taking on average an hour and a half to crack (compared to theMagma proof
of concept finishing in 20 hours). A summary of these results are shown in Table 2.

Before continuing, we note that a lot of the performance benefits were gained in im-
proving the implementation of the genus two calculations. The code given in Appendix A
represents the code in a clean and clear form, but the code as implemented in the repository
has some additional performance tweaks. For a reader who is eager to see the whole process
of tweaking and improving the (2, 2)-isogenies, we suggest reading through the git history
of our project.

5.2.1 Improving SageMath performance

Beyond the performance improvements allowed by caching the vector_space and avoid-
ing primality checks, other patches and modifications allowed a performance boost by sim-
ply avoiding slow python constructions and redundant computations.

Due to Tate’s isogeny theorem, we know curves related by isogenies will have the same
number of Fp2 -rational points. SageMath has the method E.set_order() for an elliptic
curve E.We explicitly set the number of points to (p+1)2 when creating a new curve from the
codomain of an isogeny. This saves any time which would need to be spent computing the
curve’s order (for examplewhen generating a torsion basis). Additionally, we set the optional
parameter num_checks=0 to avoid any trial scalar multiplications which are performed as
a check against the order.

When constructing the Jacobian of the hyperelliptic curve, a call ismade todimension()
which computes the dimension of the curve (in doing this it makes a call to the same slow
toy algorithms discussed previously). As the dimension of the curve is always equal to one,
this check is redundant and can be removed in a monkey patch:

10https://trac.sagemath.org/ticket/34281
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from sage.schemes.projective.projective_subscheme import
AlgebraicScheme_subscheme_projective

AlgebraicScheme_subscheme_projective.dimension = lambda self: 1

Introducing this patch, we saw approximately a 20% improvement when first included. As
with the other patch, this has been submitted as an enhancement11 to SageMath by Lorenz
Panny and will be made available in SageMath version 9.7. Note that in the final version
of our code, we no longer directly call the Jacobian, so this patch was made redundant with
the speedier explicit formulas explained in Section 4.

In the computation of Richelot isogenies, many calls to .monic() are made, which
are generic and slow. By simply not calling this and working with non-monic Mumford
coordinates, we saw a 10% improvement.

5.2.2 Algorithmic improvements

In the proof of concept code, elliptic curve isogenies are built from the kernel polynomial
using Kohel’s formulas. By switching to using points in the kernel instead, we can use Vélu’s
formula instead, for a 10-15% speed-up.

As coded in Magma files, the chain of 3-isogenies has quadratic complexity. Following
the description in [JdF11], we used a quasilinear sparse strategy for computing the isogeny
chain implemented by Lorenz Panny. This code was already available and awaiting review as
an enhancement12 to be used by default for chains of isogenies where the degree is factored.

Additionally, each degree three isogeny computation can bemade faster by passing hints
to the function EllipticCurveIsogeny() to set the optional parameters: degree=3 and
check=False. These modifications of the elliptic curve isogeny computations offer an ap-
proximate 20% improvement.

In a similar way, the computation of the chain of Richelot isogenies can be made sub-
quadratic by precomputing certain powers. Implementing this yielded approximately a 10-
15% speedup.

5.2.3 Parallelisation

Allowing the code to run in parallel (where possible) was not an initial focus, as the goal was
to reimplement the attack as Castryck and Decru had described, which was designed to run
on a single core. However, there are parts in the algorithmwhich lend themselves to parallel
computations, and it was an interesting addition to the attack. Parallel compute is available
in our implementation and is accessed by including the --parallel argument.

One bottleneck of the algorithm is in guessing the first β1 digits all at once, a limitation
which comes from finding x = NA −NB such that the degree of the auxiliary isogeny can be
expressed as the sum of two squares. For the smaller parameter sets we have β1 = 2, which

11https://trac.sagemath.org/ticket/34284
12https://trac.sagemath.org/ticket/34239
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Approximate
Running Time $IKEp217 SIKEp434 SIKEp503 SIKEp610 SIKEp751

Proof of Concept
(Magma) 6 mins 1 hour 2h19m 8h15m 20h37m

First Draft
(SageMath) 15 mins 1.5 hours – – –

This Note
(SageMath) 2 mins 10 mins 15 mins 25 mins 1-2 hours

Direct Calculation
[Oud22] 9 secs 22 secs 2 mins 15 mins 1 hour

Table 2: Comparison between running times of the original proof of concept [CD22b] and our Sage-
Math implementation [OPP+22]. Also included are the approximate running times for the direct
method [Oud22] which recovers the secret isogeny after only the first digits are recovered. Magma
times were recordedwith a Intel XeonCPUE5-2630v2@ 2.60GHz and SageMath times were achieved
on an Intel Core i7-9750H CPU, both running on a single core.

only requires 32 = 9 guesses, but for the hardest parameter set we have β1 = 6, which means
in the worst-case scenario, more than half of the computation time is recovering six of the
249 unknown ternary digits.

Each guess for the first digits can be made in parallel, and so this part of the code can be
made approximately n-times faster when computed using n-cores. For SIKEp751, where
36 = 729 guesses are made in the worst case, parallel compute makes a significant difference.

For the remaining digits, the best we can hope for is a speed-up by computing both
oracle calls simultaneously. This means we halve the computation time for approximately
two-thirds of the digits, but doubles the amount of computations used for the remaining
third. Regardless of the number of cores available, only two are needed and we can hope for
a 66% increase in performance.

6 Conclusions and future work

In this note we have discussed the process of reimplementing the Castryck-Decru attack
into a form compatible with SageMath. The need to avoid calls to slow Gröbner basis func-
tions inspired the derivation of efficient, exact formulas for (2, 2)-isogenies, which yielded
significant performance enhancements. As our implementation currently stands, the code
runs 8 to 15 times faster than the original Magma proof of concept.

However, as previously mentioned, since the publication of [CD22a] there was another,
independently discovered attack by [MM22] which used similar machinery, but recovered
Bob’s secret isogeny directly from the kernel of the genus two (NA,NA)-isogeny. This attack
inspired a short note [Oud22] which described how the Castryck-Decru attack could be
modified to recover the secret isogeny as soon as the first call to the oracle returns true.
A similar extension was also shared in the note [Wes22] and the higher dimension, proven
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polynomial time attack in [Rob22].
The direct computation attack following [Oud22] has been implemented in the same

repository as this reimplementation and has resulted in a dramatic performance enhance-
ment. The full secret isogeny can now be recovered in a matter of seconds (even in the
highest parameter sets) once the first digits have been found. At the time of writing, this
direct computation recovers Bob’s key from the $IKEp217 challenge in only nine seconds,
$IKEp434 in twenty seconds and $IKEp751 in under an hour (note: here almost all of the
compute time is spent on the 36 guesses of the first six digits). A summary of these results
are shown in the last row of Table 2.

For this new direct computation, the bottleneck of the algorithm is to find the first β1
digits of the secret. In the original attack, only auxiliary isogenies with a degree represented
as the sum of two squares are considered. Bymodifying the degree of the auxiliary isogenies,
we can remove some of the slowdown by picking “tweak values” to lower the value of β1.
This was already suggested as an extension in [CD22a], and discussed in more detail in
[MM22, Rob22]. We defer further discussion of how tweaks are performed to the cited
references.

To give an example of the power of the direct computation on large characteristic, our
attack was extended to the SIKEp964 parameter set.13 As we can write x = 2a − 5 ⋅ 3b

as the sum of two squares, we have β1 = 0, and there is no need to make an initial guess.
This fact allows the protocol to be broken deterministically in only 30 seconds. Note that,
additionally, x′ = 2a−6 − 3b can be written as the sum of two squares, and so could also be
broken without any tweaks. Similarly, with tweaks to the auxiliary degree, the $IKEp217
challenge is broken in only two seconds. A future project is to further explore tweaks to the
auxiliary isogeny degree for other parameter sets.

For the SIKE parameters, where End(E0) is known, the attack described in [Wes22] can
be performed, and a degree x-isogeny can always be computed in polynomial time, meaning
no guesses are ever required. This can be done easily when the factorisation of the degree is
known, but the note further describes amethod which does not rely on factoring the degree.
We are unaware of a direct implementation of this attack at the time of writing this note.

Additionally, the attack can be generalised following [MM22] when End(E0) is un-
known, but this attack has sub-exponential complexity. However, [Rob22] shows that prov-
able polynomial time attacks are possible even for random starting curves by considering
attacks in dimension eight. The Maino-Martindale attack has a SageMath implementation
which will be made available soon. Robert is working on adapting the AVIsogenies library
[BCR] to allow for an efficient implementation of the dimension eight attack.

Another piece of work in progress is including the work of [Kun22] which describes
an efficient algorithm for the genus two (2n , 2n)-isogeny chain. Kunzweiler additionally
released Magma and SageMath implementations of her algorithm when the paper was pub-
lished, and has been busy porting her work into the implementation in a fork of our repos-
itory. From initial tests, it seems that including Kunzweiler’s algorithm offers an additional

13SIKEp964 is defined by a = 486, b = 301, but was retired in round one of the NIST Post-Quantum Cryptog-
raphy Project.
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20% performance boost, which is particularly helpful when guessing the first digits of Bob’s
secret.

As for the future of isogeny-based cryptography, many schemes remain secure after the
publication of these polynomial time torsion-point attacks, but it would be naïve not to
recognise the change in perception such a brilliant attack will have on the area. As is the
case when fantastic research is published, all that can happen next is more research. We
look forward to seeing how everything evolves over the coming months and years.
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A SageMath implementation of explicit formulas from Section 4

# Computation of elliptic curves gluing and image of (Pc,P) and (Qc,Q)
def FromProdToJac(C, E, P_c, Q_c, P, Q, a):

Fp2 = C.base()
Rx.<x> = PolynomialRing(Fp2)
# Isotropic torsion subgroup (P_c2, P2), (Q_c2, Q2)
P_c2 = 2^(a-1)*P_c
Q_c2 = 2^(a-1)*Q_c
P2 = 2^(a-1)*P
Q2 = 2^(a-1)*Q
# Corresponding roots
a1, a2, a3 = P_c2[0], Q_c2[0], (P_c2 + Q_c2)[0]
b1, b2, b3 = P2[0], Q2[0], (P2 + Q2)[0]
# Compute coefficients
M = Matrix(Fp2, [

[a1*b1, a1, b1],
[a2*b2, a2, b2],
[a3*b3, a3, b3]])

R, S, T = M.inverse() * vector(Fp2, [1,1,1])
RD = R * M.determinant()
da = (a1 - a2)*(a2 - a3)*(a3 - a1)
db = (b1 - b2)*(b2 - b3)*(b3 - b1)

s1, t1 = - da / RD, db / RD
s2, t2 = -T/R, -S/R

a1_t = (a1 - s2) / s1
a2_t = (a2 - s2) / s1
a3_t = (a3 - s2) / s1
h = s1 * (x^2 - a1_t) * (x^2 - a2_t) * (x^2 - a3_t)

H = HyperellipticCurve(h)
J = H.jacobian()

# We need the image of (P_c, P) and (Q_c, Q) in J
JPc = J([s1 * x^2 + s2 - P_c[0], Rx(P_c[1] / s1)])
JQc = J([s1 * x^2 + s2 - Q_c[0], Rx(Q_c[1] / s1)])

JP = J([(P[0] - t2) * x^2 - t1, P[1] * x^3 / t1])
JQ = J([(Q[0] - t2) * x^2 - t1, Q[1] * x^3 / t1])

imPcP = JP + JPc
imQcQ = JQ + JQc
return h, imPcP[0], imPcP[1], imQcQ[0], imQcQ[1]
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# A class for computation of Richelot correspondence
# with shared precomputed variables.
class RichelotCorr:

def __init__(self, G1, G2, H1, H2, hnew):
assert G1[2].is_one() and G2[2].is_one()
self.G1 = G1
self.G2 = G2
self.H1 = H1
self.H11 = H1*H1
self.H12 = H1*H2
self.H22 = H2*H2
self.hnew = hnew
self.x = hnew.parent().gen()

def map(self, D):
"Computes (non-monic) Mumford coordinates for the image of D"
U, V = D
if not U[2].is_one():

U = U / U[2]
# Sum and product of (xa, xb)
s, p = -U[1], U[0]
# Compute X coordinates (non reduced, degree 4)
g1red = self.G1 - U
g2red = self.G2 - U
assert g1red[2].is_zero() and g2red[2].is_zero()
g11, g10 = g1red[1], g1red[0]
g21, g20 = g2red[1], g2red[0]
Px = (g11*g11*p + g11*g10*s + g10*g10) * self.H11 \

+ (2*g11*g21*p + (g11*g20+g21*g10)*s + 2*g10*g20) * self.H12 \
+ (g21*g21*p + g21*g20*s + g20*g20) * self.H22

# Compute Y coordinates (non reduced, degree 3)
assert V[2].is_zero()
v1, v0 = V[1], V[0]
Py2 = v1*v1*p + v1*v0*s + v0*v0
Py1 = (2*v1*g11*p + v1*g10*s + v0*g11*s + 2*v0*g10)*self.x \
- (v1*g11*s*p + 2*v1*g10*p + v0*g11*(s*s-2*p) + v0*g10*s)

Py1 *= self.H1
Py0 = self.H11 * U * (g11*g11*p + g11*g10*s + g10*g10)

# Now reduce the divisor, and compute Cantor reduction.
_, Py1inv, _ = Py1.xgcd(Px)
Py = (- Py1inv * (Py2 * self.hnew + Py0)) % Px
assert Px.degree() == 4
assert Py.degree() == 3

Dx = ((self.hnew - Py ** 2) // Px)
Dy = (-Py) % Dx
return (Dx, Dy)
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