
IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY 1

Fast Evaluation of S-boxes with Garbled Circuits
Erik Pohle, Aysajan Abidin, Bart Preneel

Abstract—Garbling schemes are vital primitives for privacy-
preserving protocols and secure two-party computation. This
paper presents a projective garbling scheme that assigns 2n

values to wires in a circuit comprising XOR and unary projection
gates. A generalization of FreeXOR allows the XOR of wires with
2n values to be very efficient. We then analyze the performance of
our scheme by evaluating substitution-permutation ciphers. Using
our proposal, we measure high-speed evaluation of the ciphers
with a moderately increased cost in garbling and bandwidth. The-
oretical analysis suggests that for evaluating the nine examined
ciphers, one can expect a 4- to 70-fold improvement in evaluation
performance with, at most, a 4-fold increase in garbling cost and,
at most, an 8-fold increase in communication cost compared to
state-of-the-art garbling schemes. In an offline/online setting, such
as secure function evaluation as a service, the circuit garbling
and communication to the evaluator can proceed before the input
phase. Thus, our scheme offers a fast online phase. Furthermore,
we present efficient Boolean circuits for the S-boxes of TWINE
and Midori64 ciphers. To our knowledge, our formulas give the
smallest number of AND gates for the S-boxes of these two
ciphers.

I. INTRODUCTION

Privacy-preserving protocols enable collaborative computa-
tion on sensitive data while protecting the privacy of the sensi-
tive data. Successful implementations in a two-party scenario
include privacy-preserving genome analysis [1], email spam
filtering [2], image processing [3] and machine learning [4].
The formalization of such two-party computation is called
Secure Function Evaluation (SFE). Here the two parties,
namely, Alice and Bob, want to compute a public function
f(x, y), where x is the input of Alice and y is the input
of Bob, without revealing their input to each other. Yao’s
garbled circuit protocol [5] has become a practical solution for
SFE. Moreover, garbling schemes (derived from the original
garbled circuit construction) have also been identified as a
useful cryptographic primitive. Most of the previous works
focus on projective garbling schemes that assign two values
to a wire, 0 and 1, such as the garbling scheme Half-Gates by
Zahur et al. [6] or the work by Rosulek and Roy [7].

This paper considers garbling schemes in the offline/online
setting. The offline phase performs function-dependent pre-
processing. Concretely, the garbler garbles the circuit com-
puting f and transmits the garbled gates to the evaluator but
withholds the wire labels for the input layer. Once the input
data of the garbler and the evaluator is available, the parties
engage to obtain the appropriate wire labels for their respective
inputs. Then, the evaluator evaluates the garbled circuit. The
offline phase can be performed ahead of time and even batched
to allow for optimal use of hardware and bandwidth if multiple

COSIC KU Leuven, Belgium.
This work is supported by the Flemish Government through FWO SBO

project MOZAIK S003321N.

function evaluations are expected. Hence, the online time, i.e.,
the time from having obtained the respective inputs to the
evaluated output of the garbled circuit, is essential in this
setting. This offline/online setting enables an efficient SFE as
a service where the SFE service providers agree on a set of
useful functions. The offline phase is run when the system is
under low load and pre-processing results are stored. This way,
the user of the service benefits from improved online times.

In this work, we examine a projective garbling scheme that
assigns 2n values to a wire. As a consequence, each wire in the
circuit carries the semantics of an n-bit string. We generalize
the encoding of FreeXOR by Kolesnikov and Schneider [8] to
obtain a scheme where bitwise-XOR between n-bit strings is
free. Our scheme allows fast evaluation of highly non-linear
functions with n input bits at a moderate additional garbling
and bandwidth cost in the offline phase. We demonstrate this
trade-off by implementing several symmetric-key primitives of
a certain structure (cf. Sect. VI). Further, the presented scheme
may exhibit useful trade-offs for programs with many small,
secret table lookups.

An Internet of Things (IoT) to Cloud scenario is a particular
application of our garbling scheme. In this context, the focus
is on encrypting data at the source, specifically on the IoT
devices, employing a Substitution-Permutation Network (SPN)
cipher and efficient distributed decryption in the Cloud prior
to privacy-preserving computation on the data. This approach
would facilitate end-to-end secure data collection and pro-
cessing. Our proposed garbling scheme aims to balance the
security demands of IoT-to-Cloud paradigms and the practical
constraints of resource-constrained IoT devices, ultimately
contributing to a more resilient and privacy-preserving IoT-
to-Cloud ecosystem.

While the new garbling scheme assumes semi-honest adver-
saries, i.e. neither the garbler nor the evaluator may deviate
from the protocol, several general approaches exist to make
a garbled circuit protocol secure in the presence of active
adversaries, which are allowed to deviate arbitrarily from the
protocol. Prominent examples are based on cut-and-choose [9],
[10], [11], [12], on zero-knowledge proofs [13], [14] and
authenticated garbling [15], [16], [17]. Moreover, semi-honest
garbling schemes can be compiled into actively secure three
party protocols in the honest majority setting [18].

1) Technical Overview.: The core ideas of the scheme are
summarized as follows. We encode an n-bit string with bits
x1, x2, . . . xn into a wire label as

W ⊕ x1R1 ⊕ x2R2 ⊕ · · · ⊕ xnRn ,

where W is a random label. We call Ri the wire label
offsets that are randomly chosen by the garbler but fixed
for all encodings in the circuit (see Definition 1 for details)
and if xi = 1, xiRi is Ri, otherwise it is the zero string.

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY 2

For n = 1, this is the encoding of FreeXOR. We define
two types of gates, XOR and projection gates. XOR gates
compute the bitwise-XOR of two n-bit strings, require little
garbling and evaluation work and are non-interactive, making
them practically free. A projection gate computes any n-bit
to m-bit function on a wire value by using Yao’s garbled
table lookup, i.e., encrypting output wire labels using the
respective input wire label as key. We apply standard garbled
row reduction [19] and point-and-permute techniques [20].
For a projection gate, the garbler’s work is 2n calls to the
encryption primitive, and 2n − 1 ciphertexts have to be sent
to the evaluator. However, the evaluator only makes a single
call to the encryption primitive, independent of the “size” n
of the projection gate. This makes the scheme attractive in the
pre-processed garbled circuit model since any non-linear n-bit
functionality is evaluated with one call to the cryptographic
primitive.

2) Contributions.: We present a projective garbling scheme
that assigns n-bit strings to each wire and in which XOR gates
are free. The specific encoding of an n-bit string in a label
allows seamless integration into existing garbling schemes that
assign two values per wire. Following the spirit of modular
proofs, we identify necessary properties of the cryptographic
primitive that is used to encrypt the truth table. Subsequently,
we obtain a generalization of tweakable circular correlation
robustness (TCCR, first defined by Choi et al. [21]), which
we call n-TCCR, for hash functions (denoted by H).

We apply the garbling scheme to compute a number of
selected symmetric-key primitives that follow the SPN ar-
chitecture. For these, we show a significant improvement
in evaluation work in the online phase over the state-of-
the-art schemes Half-Gates[6] and ThreeHalves [7] that is
traded off with moderate additional garbling work and/or
communication cost in the offline phase. Table I shows the
estimated evaluation improvement based on calls to H, which
is complemented by a practical implementation in Sect. VI that
shows that this evaluation improvement translates into practice
(see Table VII). We obtain evaluation times for, e.g., AES as
low as 0.016 ms.

Furthermore, to facilitate implementation, we give Boolean
circuits for the S-boxes of TWINE [22] and Midori64 [23],
which is also used in MANTIS [24] and CRAFT [25], using
only AND and XOR gates. To the best of our knowledge, our
Boolean circuits give the smallest number of AND gates for
these two ciphers, namely, 6 AND gates for TWINE’s 4-bit
S-box and 4 AND gates for the Midori64 Sb0 S-box. Details
can be found in Appendix A.

3) Organisation.: The rest of the paper is organized as
follows. In Sect. II, we review related work on garbling
schemes. Section III gives more details on previous work
which we build upon. We present our scheme in Sect. IV
and prove its security in Sect. V. A comparison of the state
of the art and our scheme for nine (lightweight) symmetric
primitives is given in Sect. VI. Finally, we conclude the paper
in Sect. VII.

Table I: Evaluation work improvement for selected symmet-
ric primitives over ZRE15 [6]. Garbling and communication
trade-off is listed in Table VI.

Primitive Evaluation Primitive Evaluation
Improvement Improvement

AES-128 [26] ×26.23 Piccolo-128 ×4.55
CRAFT [25] ×5.71 SKINNY-64-64 [24] ×7.11
Fides-80 [27] ×15.45 SKINNY-64-128 ×4.68
Fides-96 ×65.05 TWINE-80 [22] ×9.81
MANTIS [24] ×4.31 TWINE-128 ×9.05
Midori64 [23] ×5.33 WAGE [28] ×72.87
Piccolo-80 [29] ×4.71

Table II: Comparison of pre-processed lookup table (LUT)
approaches in MPC protocols. The depth of the circuit is
denoted by d. Total communication is denoted in kilobytes.

Scheme Round Total Comm. in kB
Complexity (4-bit LUT) (8-bit LUT)

OTTT [38] (from [33, Table IV]) O(d) ≈ 6 ≈ 262

MiniMAC AES [36] O(d) - ≈ 700

Dessouky et al. [33, Table IV] O(d) 0.039 0.288

This work O(1) 0.240 4.080

II. RELATED WORK

Recent improvements on Yao’s garbled circuit protocol
in the passive security setting focus on lowering bandwidth
requirements, e.g., [30], [31]. In the line of work [19], [20],
[8] leading to the state-of-the-art schemes Half-Gates [6] and
ThreeHalves [7], AND gates only require 2κ bits and ≈ 1.5κ
bits, respectively, where κ is a security parameter, to be sent,
while XOR gates are free. Recently, Acharya et al. [32]
propose an approach to garbling where the garbled gate is
no longer composed of ciphertexts from individual rows in
the truth table, focusing only on binary gates.

While computation with binary values is mainly expressed
in Boolean circuits with binary gates, gates with more inputs
than two or more outputs than one have been studied as well.
Dessouky et al. [33] define those gates as lookup tables and
show how they can be evaluated in the passive security case
in the Goldreich-Micali-Wigderson protocol [34]. Damgård
et al. [35], [36] design a table lookup for two-party secure
computation and Keller et al. [37] extend it to the multi-
party case based on secret-sharing. The basis for the afore-
mentioned constructions is the one-time truth-table protocol
OTTT by Ishai et al. [38]. Table II compares the (estimated)
communication cost of these approaches for a 4-bit and 8-bit
lookup table, respectively. AES as a function has been studied
explicitly by Durak and Guajardo [39], SKINNY and Photon
were studied by Abidin et al. [40]. However, both works are
in the arithmetic setting.

In the garbled circuit domain, Fairplay [41] and TASTY [42]
already compute larger gates. Huang et al. [43] focus on
an 8-bit to 8-bit AES S-box gate. But unlike our scheme,
these works consider multiple wires instead of multiple values
per wire. They also do not provide any security proof for
the larger gates. Computing a gate with multiple input wires

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY 3

Table III: Comparison of multi-input, multi-output gates in
garbling schemes. We note the cost for a n-to-m-bit gate.

Scheme Garbling Work Circuit Size Evaluation Work
(κ-bit strings)

Fairplay [41] 2n ·m · 2 SHA-1 2n ·m m · 2 SHA-1

TASTY [42] 2n ·m SHA-256 (2n − 1) ·m 1 SHA-256

Huang et al. [43] 2n ·m SHA-1 2n ·m 4 SHA-1

This work 2n AES-NI 2n − 1 1 AES-NI

Table IV: Notation.

κ Security parameter
v Bold letters denote vectors

{0, 1}l The set of bit-vectors of length l

Wβ
α The wire label of wire α that encodes the value β

A⊕ B Bitwise XOR for A,B ∈ {0, 1}l

A||B Bit-vector concatenation for A ∈ {0, 1}l, B ∈ {0, 1}l
′

{A,B}||C Bit-vector concatenation extended to sets, i.e., {A||C,B||C}
x′ ← x Assignment of value x to x′

x←$ {a, b, c, . . . } Uniform sampling from the set {a, b, c, . . . }

necessitates more generic hash function constructions that
operate on inputs longer than one block. Practical performance
improvements are due to the use of AES-NI instructions in
permutation-based constructions like [44], [45]. It is unclear
how these constructions extend to the multi-input case in the
context of garbled circuits. Our scheme uses a cryptographic
primitive with fixed-length input, enabling the use of AES-
NI instructions. An overview of garbling and evaluation work,
circuit size and the hash function construction for a generic n-
to-m-bit gate is given in Table III. Heath and Kolesnikov [46]
construct a garbling gadget that computes a one-hot outer-
product of two bit-vectors which can be used to select one
entry from a truth-table based on an index known by the
evaluator. However, their approach doesn’t generalize to secret
access to arbitrary truth-tables.

Since the work of Ball et al. [47] is conceptually very
close to ours, we discuss it in detail in Sect. III-A. The main
difference is that their scheme uses arithmetic circuits, where
addition modulo an integer is free, while our proposal sticks
to a bit representation where XOR is free.

III. BACKGROUND

We start with the arithmetic circuit scheme by Ball et al. [47]
in Sect. III-A and detail the security model by Bellare, Hoang
and Rogaway (BHR) [48] in Sect. III-B. Table IV lists the
notation used throughout the paper.

A. Garbled Circuits for Bounded Integers

Ball et al. [47] propose a scheme based on garbled circuits
that assigns integers x ∈ Zm to each wire in the circuit. In this
representation, addition (in Zm) is free in the same sense as
FreeXOR. We briefly describe their scheme as our scheme is
similar but represents n-bit strings per wire instead of numbers
in Zm.

The wire encoding of x ∈ Zm is W x
i = W 0

i + x ⊙
∆m , where W 0

i ,∆m ∈ Zλm
m , λm = ⌈ κ

logm⌉. Addition is
component-wise in the ring Zm. Here ⊙ denotes a scalar

multiplication. For each m, ∆m is a secret, random vector
known by the garbler.

The scheme mainly offers two types of gates, addition and
unary projection. For addition of wires a and b with output
wire c, let W 0

a ,W
0
b be the two input wire labels of zero, then

the garbler computes W 0
c = W 0

a+W 0
b as the output zero label.

The evaluator, given W x
a and W y

b for evaluation, computes

W x+y
c = W x

a +W y
b = W 0

a +W 0
b︸ ︷︷ ︸

W 0
c

+(x+ y)⊙∆m .

Addition incurs neither transmitted ciphertexts nor invocations
of the encryption primitive. Let ϕ : Zn 7→ Zm be an arbitrary
function. The projection gate Projϕ computes the operation
ϕ(x), x ∈ Zn, ϕ(x) ∈ Zm. Let G be the garbled table, then
the garbler fills G for every x ∈ Zn as follows:

G[x+r] = H(W 0
a+x⊙∆n)+W 0

c +ϕ(x)⊙∆m = H(W x
a)+Wϕ(x)

c ,

where r is the secret cyclic shift offset. We can reduce the
number of ciphertexts per projection gate to n−1 by applying
garbled row reduction. The zero label is obtained when r =
−x, W 0

c = −H(W−ra) − ϕ(−r) ⊙∆m, from the encryption
above. This, analogous to the binary case, fixes the ciphertext
of the first garbled row to 0λm .

Again, one element of the label can be used as a pointer
and replace the shift r during garbling if ∆n is chosen
appropriately. With this, the evaluator only has to decrypt the
ciphertext the pointer indicates.

B. Security Model by Bellare, Hoang and Rogaway

Bellare, Hoang and Rogaway [48] define a security model
for garbling schemes that formalizes the principle of circuit
garbling as a cryptographic primitive. Many recent garbling
schemes were proven secure in their model, e.g., [6], [49],
[50], [7]. As we will use the same model, we give a brief
overview.

A garbling scheme is a tuple of Garble, Encode, Eval and
Decode algorithms:
• Garble: Transforms the input circuit f into the tuple
(GC, e, d) where GC is the garbled circuit, e is the input
encoding information (e.g., all semantic labels for input
wires) and d is the decoding information.

• Encode: Encodes a given input x using the semantic
labels e and returns a garbled input X , e.g., the input
label with semantic x.

• Eval: Evaluates the garbled circuit GC using the input
wire labels {Wi}i∈Inputs and returns the output wire labels
{Wi}i∈Outputs.

• Decode: Decodes the output wire labels {Wi}i∈Outputs
using the decoding information d and returns the plaintext
output y ∈ {0, 1}m or ⊥ if the output wire labels are
invalid.

The garbling scheme must produce correct circuit evaluations
for any circuit f and inputs x ∈ {0, 1}n. Let GC, e, d be the
outputs of Garble(f), and Xi the output of Encode(xi, e) for
i ∈ Inputs then

Decode(Eval(GC, {Xi}i∈Inputs), d) = f(x) ,

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY 4

where f(x) denotes the circuit evaluation in the clear.
Bellare et al. define two notions of secrecy. In the privacy

notion, given (GC,X, d), a party cannot learn any information
besides what is revealed from the final output y and the side-
information function Φ. In our case, Φ = Φtopo* where only
the circuit topology and the XOR gates are revealed but the
function computed by projection gates remains hidden to the
evaluator1. The privacy property can be achieved by giving
a simulator S for the Garble function that only receives
the output y and Φ. In the code-based game in Fig. 1, the
garbling scheme is prv.sim secure if for every polynomial-
time adversary A there is a polynomial-time simulator S such
that Adv(prv.sim) is negligible, where

Adv(prv.sim) =

∣∣∣∣Pr[A wins prv.sim]− 1

2

∣∣∣∣ = ∣∣∣∣Pr[b = b′]− 1

2

∣∣∣∣ .
Intuitively, if the output of the simulator is indistinguishable
from the output of Garble and Encode on a circuit and input
chosen by the adversary, the scheme is prv.sim secure. In
the notion of obliviousness, the adversary does not learn the
decoding function. So given (GC,X), a party cannot learn any
information besides the side-information Φ. The advantage is
defined analogously to Adv(prv.sim).

function GARBLE(f, x)
b←$ {0, 1}
if b = 1 then
(GC, e, d)← Garble(f)
X ← Encode(x, e)

else
y ← f(x)
(GC,X, d)← S(1k, y,Φ(f))

return (GC,X, d)

(a) Game prv.simΦ,S .

function GARBLE(f, x)
b←$ {0, 1}
if b = 1 then
(GC, e, d)← Garble(f)
X ← Encode(x, e)

else

(GC,X)← S(1k,Φ(f))

return (GC,X)

(b) Game obv.simΦ,S .

Figure 1: For every circuit f and input x of the adversary’s
choice, the respective game function is called and the adver-
sary outputs a choice b′ given (GC,X, d) (resp. (GC,X)).
The adversary wins if b = b′.

IV. THE SCHEME

In Sect. IV-A, we first describe the notation for a circuit
comprising XOR gates and projection gates. Then, we detail
how the garbler encodes n-bit strings and transforms them
into wire labels. Next, in Sect. IV-B, we show how XOR
gates are garbled and evaluated, followed by a description of
how projection gates are garbled and evaluated. Section IV-C
describes higher-level gadgets that can be obtained from the
aforementioned gates. In Sect. IV-D, all concepts are pieced
together to describe the garbling, evaluation and decoding
function. We also describe how input is handled. The complete
garbling scheme Π is given in Fig. 2. We start with some
general notations. Let lsbn(W) be the n least significant bits2

of the bit-vector W ∈ {0, 1}k. With k we denote the wire
label length. We use a hash function H : {0, 1}k ×{0, 1}τ 7→

1In [48] Φtopo is defined as completely gate hiding, we therefore denote
the slightly weaker notion topo*.

2The exact location of the n bits in W is not important for the scheme as
long as it is consistently used by both parties.

{0, 1}k that accepts a k-bit input, a τ -bit tweak and outputs k
bits. Further properties of H are presented in Sect. V-A.

A. Circuit Definition

We define a circuit with p-bit input and q gates. The function
computed by the circuit is denoted by f . Let the wire index
be 1, . . . , p, p+1, . . . , p+q, where the input wires have index
1, . . . , p and the output wire of the i-th gate has index p+ i.
We denote the set of input wire indices as Inputs, and the set
of output wire indices as Outputs. We associate a bit-length
ℓ(i) to each wire i. Let n̄ denote the maximum bit-length of
wires used in f , then we use bit strings of length k = κ+ n̄
as wire labels. Let Gates be a topologically sorted list of
gates G1, . . . ,Gq . We distinguish two types of gates: XOR
and projection gates. XOR gates accept two wires of the same
bit-length n as input and output a wire with bit-length n. The
unary projection gate accepts one n-bit wire and outputs one
m-bit wire.

Definition 1 (Wire Label Offsets). For each bit-length n
(1 ≤ n ≤ n̄) that is used in f , a wire label offset is a
bit-vector of length k = κ + n with κ random bits and n
fixed bits. The garbler draws the matrix M ∈ {0, 1}κ×n at
random and appends fixed bits to each column-vector to form

Rn =

(
M
In

)
, where In ∈ {0, 1}n×n is the identity matrix.

The column vector Ri in Rn is the i-th wire label offset. We
denote the distribution from which Rn is sampled Rn, i.e.,
Rn ←$Rn.

The matrix Rn is used throughout the whole circuit for all
wires of bit-length n. We use the last n bits of the label to fix
distinct values to allow point-and-permute. The inner product
of x ·Rn is defined as x1R1 ⊕ . . .⊕ xnRn.

Definition 2 (Wire Label Encoding). The encoding W x
i of an

n-bit string x ∈ {0, 1}n on a wire with index i is defined as
W x

i = W 0n

i ⊕ x ·Rn.

Note, this yields a unique encoding for all x and R even
if the random part M is linearly dependent in the columns
because the lower n bits of x ·R are always unique due to In.

Intuitively, there are n distinct offsets R, one for each
encoded bit. The offset applied to a wire label that encodes x
is the linear combination of R values.

B. Gates

For an XOR gate with n-bit input wires a and b, and output
wire c, the garbler generates the output wire label W x

c ←
W 0n

a ⊕W 0n

b ⊕ x ·Rn where x ∈ {0, 1}n. No ciphertext is
sent.

To evaluate an XOR gate, let Wa and Wb be the wire labels
that the evaluator obtained as input labels for the XOR gate.
The output label is then computed as Wc ←Wa ⊕Wb.

A projection gate Projϕ computes the unary projection
ϕ : {0, 1}n 7→ {0, 1}m, a n-to-m-bit function. Let a be the
input wire index to the projection gate and c be the index
of the output wire, the garbler first draws the output wire
label for 0 at random: W 0m

c ←$ {0, 1}k and then generates

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY 5

1: function GENR(n̄)
2: for i ∈ {1, . . . , n̄} do
3: Ri ←$Ri

4: return R1, . . . ,Rn̄

5: function GARBLE(f)
6: R1, . . . ,Rn̄ ← GENR(n̄)
7: for i ∈ Inputs do
8: W 0ℓ(i)

i ←$ {0, 1}k

9: for Gi ∈ Gates do
10: if Gi = XOR then ▷ Gi with n-bit input wires a,b
11: W 0n

i ←W 0n

a ⊕W 0n

b

12: else ▷ Gi with n-bit input wire a
13: W 0m

i ←$ {0, 1}k ▷ and ϕ : {0, 1}n 7→ {0, 1}m
14: for x ∈ {0, 1}n do
15: GC[i, lsbn(W

x
a)]← H(W x

a , i)⊕W 0n

i ⊕ ϕ(x) ·Rn

16: d← {lsbℓ(i)(W
0ℓ(i)

i)}i∈Outputs

17: e← {W 0ℓ(i)

i }i∈Inputs,R1, . . . ,Rn̄

18: return GC, e, d

19: function ENCODE(e, {xi}i∈Inputs)
20: for i ∈ Inputs do
21: Xi ←W 0ℓ(i)

i ⊕ xi ·Rℓ(i)

22: return {Xi}i∈Inputs

23: function EVAL(GC, {Wi}i∈Inputs)
24: for Gi ∈ Gates do
25: if Gi = XOR then ▷ Gi with input wires a, b
26: Wi ←Wa ⊕Wb

27: else ▷ Gi with n-bit input wire a
28: Wi ← H(Wa, i)⊕GC[i, lsbn(Wa)]

29: return {Wi}i∈Outputs

30: function DECODE({Wi}i∈Outputs)
31: for i ∈ Outputs do
32: yi ← di ⊕ lsbℓ(i)(Wi)

33: return y

Figure 2: The new garbling scheme Π comprises a garble,
evaluation, encoding and decoding function.

2n ciphertexts for each x ∈ {0, 1}n and stores the result in
the garbled table at the position indicated by the pointer bits,
i.e., GC[c, lsbn(W

x
a)] ← H(W x

a , c) ⊕W
ϕ(x)
c . We apply the

row-reduction technique and reduce the number of ciphertexts
that need to be sent by one. Let a be the input wire index
to the projection gate Projϕ and c be the index of the output
wire. Then, the garbler chooses the output wire label for 0m

as

W 0m

c = H(W lsbn(W
0n

a)
a , c)⊕ ϕ(lsbn(W

0n

a)) ·Rn

and computes the remaining ciphertexts as described above.
Since the first ciphertext (where x = lsbn(W

0n

a)) is always
0k, it does not need to be sent. The number of rows sent to
the evaluator is therefore 2n − 1.

For evaluation, let Wa be the wire label that the evaluator
obtained as input to the projection gate. The output label Wc

is computed by

Wc ← GC[c, lsbn(Wa)]⊕H(Wa, c) ,

where the position of the ciphertext to evaluate is indicated by
the pointer bits of the input wire label. The first ciphertext is
set to 0: GC[c, 0n] = 0m.

C. Circuit Constructions

Below, we give useful gadgets comprised of XOR and
projection gates.
Wire Composition. We can compose an n-bit wire a with

an m-bit wire b resulting in a (n + m)-bit wire c.
The composition construction computes the functionality
f : {0, 1}n×{0, 1}m 7→ {0, 1}n+m defined by f(x, y) =
x||y. The composition is then Wc ← Projs(Wa) ⊕
Projs′(Wb), where s : {0, 1}n 7→ {0, 1}n+m is defined
as s(x) = x||0m and s′ : {0, 1}m 7→ {0, 1}n+m is
given as s′(y) = 0n||y. Wire composition costs 2n + 2m

ciphertexts to garble and two ciphertexts to evaluate.
Note that the construction is not limited to two arguments.
It is efficient to compose many wires together at once
instead of cascading or using a tree-based approach3. E.g.,
to compose four 1-bit wires a, b, c, d , we may use

Projsa(Wa)⊕Projsb(Wb)⊕Projsc(Wc)⊕Projsd(Wd) ,

where sa(x) = 000||x, sb(x) = 00||x||0, sc(x) =
0||x||00, sd = x||000. This costs 4 · 21 = 8 ciphertexts
(or 4 with row reduction) instead of 4 · 21 + 2 · 22 = 16
(resp. 10) ciphertexts.

Wire Decomposition. Likewise, we can decompose, i.e.,
split, a 2n-bit wire into two n-bit wires. Let Wa

be a 2n-bit wire, then the decomposition construc-
tion computes f : {0, 1}2n 7→ {0, 1}n defined as
f(x1|| . . . ||x2n) = x1|| . . . ||xn and f ′ : {0, 1}2n 7→
{0, 1}n as f ′(x1|| . . . ||x2n) = xn+1|| . . . ||x2n via two
projection gates. Note that this time, a tree-like decom-
position, e.g., from 4-bit to 2-bit to 1-bit, is more efficient
than constructing four projections from 4-bit to 1-bit. The
latter costs 4·24 = 64 ciphertexts (60 with row reduction)
while the former costs 2 · 24 + 4 · 22 = 48 (resp. 42)
ciphertexts.

Constants. In the garbling scheme, we can encode public
constants or constants known only to the garbler at no
cost. Let x ∈ {0, 1}n be the constant for the n-bit
wire a, then the garbler chooses W 0n

a ← x · Rn. This
fixes the label W x

a to 0k. No ciphertext is sent to the
evaluator. Likewise, the evaluator uses Wa = 0k for
further evaluation.

D. Garbling Scheme

We now describe the complete garbling scheme (see Fig. 2).
Garble. The garbler chooses n̄ matrices of offset values (see

Definition 1). For each input bit i, a wire label W 0
i is

chosen uniformly at random. The garbling process applies

3Following the example, the tree-based approach first composes a||b and
c||d resulting in 2-bit wires. Then ab||cd is composed.

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY 6

the operations for projection and XOR gates as described
in Sect. IV-B gate-by-gate in topological order. In the
end, the garbling routine outputs the ciphertexts, input
wire values, offsets and decoding information.

Encoding and Oblivious Transfer. The garbler encodes
their own input by picking the respective wire label. In
Yao’s protocol, the evaluator obtains the appropriate wire
labels that correspond to its input via oblivious transfer
(OT) [51]. Using OT extensions [38], [52] speeds this up
in practice. To obtain the correct label for an n-bit wire,
one could simply perform a 1-out-of-2n OT. Naor and
Pinkas [53] show how to reduce this to n 1-out-of-2 OTs
by introducing additional pseudorandom function (PRF)
evaluations. However, using the FreeXOR property of
our scheme, we can instead perform only n 1-out-of-2
OTs (as in a garbling scheme with 2 wire labels). For
each input bit bi at position i, the sender sends

W 0n

i if bi = 0 ,
W 0n

i ⊕ Ri if bi = 1 ,

where Ri is the i-th column vector in Rn. To obtain the
wire label for the n-bit wire, we XOR the obtained labels
together at no additional cost. Note that W 0n

i is a fresh
random wire label for each bit i of the input.

Evaluation and Decoding. Once the evaluator obtains the
garbled inputs, it computes the garbled output of each
gate accordingly (see Sect. IV-B). Having computed the
garbled output, the evaluator may either share the wire
labels with the garbler or directly use the decoding infor-
mation di = lsbn(W

0n

i) for output wire i ∈ Outputs
in the decoding function to obtain the output bits in
the clear. Let us briefly look at why this decoding
scheme is correct. Let i be an output wire. Since we
fixed lsbn(y · Rn) = y · In = y by construction of
the offset values, for any value y ∈ {0, 1}n, we have
lsbn(W

y
i) = lsbn(W

0n

i) ⊕ y. As di = lsbn(W
0n

i), the
decoding is correct

di⊕lsbn(W
x
i) = lsbn(W

0n

i)⊕lsbn(W
0n

i)⊕lsbn(y·Rn) = y .

V. SECURITY

Using the BHR security model (see Sect. III-B) we show
that if a hash function satisfies the properties of n-TCCR
security defined in Sect. V-A below, our scheme is prv.sim
(Sect. V-B) and obv.sim (Sect. V-C) secure. We sketch how to
achieve authenticity in Sect. V-D.

A. (n-)TCCR Security

We revisit the tweakable circular correlation robustness
(TCCR) definition by Guo et al. [44] adapted to our notation.

Definition 3 (TCCR Security [44]). A TCCR (tweakable
circular correlation robust) hash function H is a function
{0, 1}k × {0, 1}τ 7→ {0, 1}k that accepts a message m and a
tweak t. In the TCCR security game, the distinguisher DTCCR
is given one of the two oracles with signature {0, 1}k ×
{0, 1}τ × {0, 1} 7→ {0, 1}k

• (Real) OR(m, t, b) = H(m⊕R, t)⊕ bR

• (Ideal) Rand(m, t, b) is a random function.
with the goal to decide which is the oracle given to it. The
distinguisher doesn’t know the secret value R ∈ {0, 1}k, R←$

RTCCR and is only allowed to make legal queries. An illegal
query is (m, t, 1− b) if (m, t, b) has been queried before.
We define the advantage as

AdvRTCCR(DTCCR)

=

∣∣∣∣Pr[DRand
TCCR(1

κ) = 0]− Pr
R←RTCCR

[DOR

TCCR(1
κ) = 0]

∣∣∣∣ ,
where DO signifies that the distinguisher has access to oracle
O. We call H TCCR secure if AdvR(DTCCR) is negligible in
the security parameter κ.

Note that the advantage of DTCCR depends on the distribu-
tion of the secret value R. Next, we define n-TCCR security,
a generalized TCCR notion incorporating n secret offsets.

Definition 4 (n-TCCR Security). A n-TCCR hash function
H is a function {0, 1}k × {0, 1}τ 7→ {0, 1}k that accepts a
message m and a tweak t. In the n-TCCR security game, the
distinguisher Dn-TCCR is given one of the two oracles with
signature {0, 1}k × {0, 1}τ × {0, 1}n × {0, 1}n 7→ {0, 1}k

• (Real) OR(m, t,a,b) = H(m⊕ a ·R, t)⊕ b ·R
• (Ideal) Rand(m, t,a,b) is a random function

with the goal to decide which is the oracle given to it. We inter-
pret a,b ∈ {0, 1}n as binary vectors, R = (R1, . . . , Rn), R ∈
{0, 1}k×n ←$ Rn and Ri ∈ {0, 1}k, 1 ≤ i ≤ n. The
expression a·R = a1R1⊕· · ·⊕anRn is the linear combination
of offsets defined by a. The distinguisher doesn’t know the
secret value R and is only allowed to make legal queries. An
illegal query is a = 0 or (m, t,a,b′) if (m, t,a,b) has been
queried before for b ̸= b′.
We define the advantage as

AdvRn(Dn-TCCR)

=

∣∣∣∣Pr[DRand
n-TCCR(1

κ) = 0]− Pr
R←Rn

[DOR

n-TCCR(1
κ) = 0]

∣∣∣∣ .
We call H n-TCCR secure if AdvRn(Dn-TCCR) is negligible
in κ.

B. Privacy

The prv.sim definition states that given the garbled circuit
GC, all the labels of the garbled input X and the decoding
information d, no information is revealed about the input
except from what can be deduced from the output y.

Theorem 1. Given a n̄-TCCR secure hash function H and
n̄≪ κ, the garbling scheme Π is prv.sim secure.

Proof. We define a simulator S (see Fig. 3) and show through
a series of hybrids that the output of S is indistinguishable for
an adversary from the output of Garble. We require n̄ ≪ κ,
i.e., the largest bit length n̄ used in a wire in the circuit is
small compared to the security parameter κ, to ensure that
for any adversarially chosen circuit, both the garbling scheme
and the simulator run in polynomial time. When evaluating
a garbled circuit, let the assignment of active labels to the

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY 7

1: function S(f, y)
2: for i ∈ Inputs do
3: W 0ℓ(i)

i ←$ {0, 1}k

4: Xi ←W 0ℓ(i)

i

5: for Gi ∈ Gates do
6: if Gi = XOR then ▷ Gi with n-bit input wires a, b
7: W 0n

i ←W 0n

a ⊕W 0n

b

8: else ▷ Gi with n-bit input wire a and output
▷ size m of the function Gi realizes

9: W 0m

i ←$ {0, 1}k
10: GC[i, lsbn(W

0n

a)]← H(W 0n

a , i)⊕W 0m

i

11: for x ̸= 0n ∈ {0, 1}n do
12: GC[i, lsbn(W

0n

a)⊕ x]
← Randn(W

0n

a , i, x, 0m)⊕W 0m

i

13: for i ∈ Outputs do
14: di ← lsbn(W

0n

i)⊕ yi

15: return GC,X, d

Figure 3: Simulator S.

wires be called the active path, i.e., for input wires, the active
labels are retrieved via OT, for gate outputs, the active wires
are retrieved by decrypting the row denoted by the point-and-
permute bits.

The idea of the simulator is to produce a garbled circuit with
a fixed active path. The simulator chooses the wire labels such
that

• the garbled input X that is handed to the adversary
corresponds to 0p;

• the active label on each gate’s output wire that the
adversary obtains if they choose to evaluate the circuit
with X is W 0n (see Line 10 in Fig. 3).

The simulator adapts the decoding information s.t. if the
garbled output is W 0n , the expected output y is decoded.

S ≈ G1. Hybrid G1 (see Fig. 4) describes the simulator from
the perspective of the evaluator. Let x be the input that
the adversary chooses in the game. We view x as a black
box as it is unknown. Suppose we evaluated the circuit
on x in plaintext. We denote vi as the active value on
wire i. Instead of fixing the active path on labels W 0n ,
we fix it on W vi .
The output values GC, d and the outputs of S are
identically distributed as W 0n and W vi are both dis-
tributed uniformly at random. Further, the change of input
arguments,

Randn(W
0n

a , i, x, 0m) ≈ Rand(W va
a , i, va⊕x, ϕ(va⊕x)) ,

does not change the distribution since all inputs
(x, 0m), ∀x ∈ {0, 1}n ̸= 0n and (va⊕x, ϕ(va⊕x)), ∀x ∈
{0, 1}n ̸= va, respectively, are unique and therefore
amount to fresh randomness from the oracle, irrespective
of ϕ.

G1 ≈ G2. In hybrid G2, we replace Rand by the real con-
struction H(m ⊕ a · R, t) ⊕ b · R. This change is
indistinguishable for the adversary by the definition of

1: function EVALWIRES(f, x)
2: for i ∈ Inputs do
3: vi ← xi

4: for Gi ∈ Gates do
5: a, b← in(Gi)
6: if Gi = XOR then ▷ Gi with n-bit input wires a, b
7: vi ← va ⊕ vb
8: else ▷ Gi with n-bit input wire a
9: vi ← ϕ(va) ▷ and ϕ : {0, 1}n 7→ {0, 1}m

10: return v

11: function G1(f, x)
12: v ← EvalWires(f, x)
13: for i ∈ Inputs do

14: W
vi

i ←$ {0, 1}k

15: Xi ←W
vi

i

16: for Gi ∈ Gates do
17: if Gi = XOR then ▷ Gi with n-bit input wires a, b

18: W
vi

i ←W
va

a ⊕W
vb

b
19: else ▷ Gi with n-bit input wire a

20: W
vi

i ←$ {0, 1}k ▷ and ϕ : {0, 1}n 7→ {0, 1}m

21: GC[i, lsbn(W
va

a)]← H(W
va

a , i)⊕W
vi

i

22: for x ̸= va ∈ {0, 1}n do

23: GC[i, lsbn(W va
a)⊕ x]

24: ← Rand(W
va

a , i, va ⊕ x , ϕ(va ⊕ x))⊕W
vi

i

25: for i ∈ Outputs do

26: di ← lsbn(W
vi

i)⊕ yi

27: return GC,X, d

Figure 4: Hybrid G1. The simulator from the perspective of
the evaluator where x is a black box value. Values in a box
vi highlight the difference between S and G1.

the n-TCCR secure function H (see Definition 4)

Rand(W va
a , i, va ⊕ x, ϕ(va ⊕ x))

≈ H(W va
a ⊕ (va ⊕ x) ·R, i)⊕ ϕ(va ⊕ x) ·R .

G2 ≈ G3. In hybrid G3 (see Fig. 5), we no longer compute the
wire values vi explicitly from the black-box input x. We
fix an encoding for vi, namely vi = 0n.
For the input wires, note that xi = vi by definition of
EVALWIRES, so Xi ←W xi

i instead of W vi
i .

Further, the ciphertext indexing GC[i, ·] (Line 14 in
Fig. 5) is identical after the re-write. In G2,

lsbn(W
va
a)⊕ x = lsbn(W

0n

a)⊕ x ,

and in G3,

lsbn(W
x
a) = lsbn(W

0n

a)⊕lsbn(x·Rn) = lsbn(W
0n

a)⊕x

by definition of Rn. In the output of all gates Gi, we
now maintain the invariant with x ∈ {0, 1}n

W vi
i becomes W 0n

i ,

W vi
i ⊕ (vi ⊕ x) ·Rℓ(i) becomes W 0n

i ⊕ x ·Rℓ(i) .

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY 8

And for the decoding information, first note that for i ∈
Outputs vi = yi, thus in G2 (We denote ℓ(i) = n),

di ⊕ lsbn(W
vi
i) = lsbn(W

vi
i)⊕ lsbn(W

vi
i)⊕ yi = yi

and in G3:

di ⊕ lsbn(W
yi

i) = lsbn(W
0n

i)⊕ lsbn(W
yi

i)

= lsbn(W
0n

i)⊕ lsbn(W
0n

i)⊕ yi

= yi .

The decoding information in G2 and G3 yield correct re-
sults when used with their respective garbled inputs. dG2
and dG3 are both uniformly distributed as lsbℓ(i)(W

vi
i)

resp. lsbℓ(i)(W
0ℓ(i)

i) are distributed at random. So dG2
and dG3 remain indistinguishable.

We conclude the proof by noting that G3 and Garble yield
identical outputs in the prv.sim game. This can easily be seen
when the exceptional case for x = 0n (Line 21 in Fig. 5)
in the projection gates part is incorporated into the loop and
the computation of d is re-written, G3 is a description of the
Garble function.

1: function G3(f, x)
2: R1, . . . ,Rn̄ ← GenR(n̄)
3: for i ∈ Inputs do

4: W
0ℓ(i)

i ←$ {0, 1}k

5: Xi ←W
xi

i

6: for Gi ∈ Gates do
7: a, b← in(Gi)
8: if Gi = XOR then ▷ Gi with n-bit input wires a, b

9: W
0n

i ←W
0n

a ⊕W
0n

b
10: else ▷ Gi with n-bit input wire a

▷ and ϕ : {0, 1}n 7→ {0, 1}m

11: W
0n

i ←$ {0, 1}k

12: GC[i, lsbn(W
0n

a)]← H(W
0n

a , i)⊕W
ϕ(0n)

i

13: for x ̸= 0n ∈ {0, 1}n do
14: GC[i, lsbn(W

x
a)]

← H(W x
a , i)⊕ ϕ(x) ·Rn ⊕W

0m

i

15: for i ∈ Outputs do

16: di ← lsbn(W
0n

i)

17: return GC,X, d

Figure 5: Hybrid G3. We fix the encoding of W vi
i to W 0n

i .
Values in a box 0n highlight the difference between G2 and
G3.

C. Obliviousness

The notion of obv.sim expresses that the adversary cannot
learn any information given the garbled circuit GC and all
input wire labels X . Unlike the privacy notion, the adversary
does not have access to the decoding information d.

Theorem 2. Given a n̄-TCCR secure hash function H and
n̄≪ κ, the garbling scheme Π is obv.sim secure.

Proof. Let Sauth be S from Fig. 3 with the lines 13-14
removed. Then we note that the computation of GC and X
doesn’t depend on y, neither in Sauth nor in one of the hybrids
G1,G2,G3. We can thus use the same reasoning as for prv.sim
security, omitting parts that correspond to y or d.

D. Authenticity

Authenticity states that an adversary cannot forge wire
labels that are not obtained through evaluating the garbled
circuit. Clearly, the presented scheme does not satisfy this
property as any wire label is decoded to output bits. If
authenticity is desired, we modify the decoding information d
to list hashes of all output wire labels and associations to their
semantic meaning. As in [48], the decoding function checks
if the presented wire is indeed in the list d.

VI. EVALUATION OF SPN PRIMITIVES

In the following, we discuss how SPN primitives with a
specific structure can be implemented with our new garbling
scheme and how this improves over the state-of-the-art. Note
that we don’t intend to compare the performance of the primi-
tives among each other in MPC protocols. Instead, we focus on
how each primitive can be accelerated. Consequently, we will
not consider other traditional or MPC-friendly primitives. We
compare the state-of-the-art garbling schemes Half-Gates by
Zahur, Rosulek and Evans [6], which we abbreviate ZRE15, as
well as the work of Rosulek and Roy [7], abbreviated RR21.
Both schemes support free XOR gates and AND gates on wires
holding one bit.

In SPN-based primitives, a state is updated with a round
function consisting of a substitution layer, a permutation layer,
a round constant and/or (round) key addition layer. SPNs are
commonly used to construct block ciphers and pseudo-random
permutations used, e.g., in hash or MAC functions.

We show an efficient circuit representation with projection
gates for primitives that satisfy the following conditions for
state and round function parts.
• State. The state is (conceptually) split into n-bit cells.
• Substitution Layer. The substitution layer consists of S-

boxes that are applied to each cell.
• Permutation Layer. The permutation layer can be de-

scribed by a permutation on the cells and/or by a mixing
matrix which encodes a fixed matrix multiplication with
the state. In this paper, we focus on primitives with a
binary mixing matrix.

• Round Constant/(Round) Key Addition Layer. The
round constant or (round) key is XORed cell-wise.

With this structure, we set n̄ = n and implement a single cell
as n-bit wire. Each S-box in the substitution layer is replaced
with an n-bit projection gate computing the same functionality.
The permutation layer and the addition layer are expressible
with XOR gates only.

We identified nine SPN primitives in the literature that fulfill
the conditions. Since the studied primitives have at most 8-bit
cells, we set n̄ = 8.

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY 9

A. Implementation Details

For the projection gates implementation, we assume that the
input block is already setup in n-bit wires where n denotes
the cell size in bits. This doesn’t incur additional cost since
the input phase using OT can already share wire labels with
the desired wire label offset, as detailed in Sect. IV-D. For
the implementation using AND gates, only the S-box costs
AND gates in the data path of the primitive. We selected
implementations for the S-boxes with the lowest number of
AND gates since their cost dominates in Half-Gates and RR21.
Table V details the number of projection and AND gates for
each primitive.

For the 4-bit S-box used in TWINE-80 and TWINE-128 and
for the 4-bit S-box used in Midori64, MANTIS and CRAFT,
we found new circuits using the smallest number of AND gates
so far, reducing the number of AND gates for the TWINE S-
box from 7 to 6 and for the Midori64 S-box from 8 to 4.
We used the heuristic optimization tool LIGHTER by Jean et
al. [54] operating on a customized cost metric, for more details
see Appendix A.

For the key, we assume individual key bits to be available
in 1-bit wires as this eases key scheduling in many cases. Note
that the cost to transform the (round) key bits into n-bit wires
is taken into account. In scenarios where one party knows
the complete key, e.g., to offer blind symmetric encryption or
decryption where the encryption or decryption is performed
without learning the message and ciphertext, the key schedule
does not need to be computed within the garbling scheme.
Instead, if the garbler knows the key, they can compute the
key schedule separately and insert the round keys as secret
constants. Similarly, if the evaluator knows the key, they may
receive the wire labels for round keys via OT instead.

If the key is shared among the players using a linear secret-
sharing scheme, for instance as k = kG ⊕ kE where kG is
the garbler’s share and kE is the evaluator’s share, the key
schedule can be computed outside of the garbling scheme by
each player on their share instead for ciphers with a linear key
schedule, e.g., for Piccolo, Midori, SKINNY, MANTIS and
CRAFT. The resulting round key shares can then be treated
as input and are recombined using only linear operations
saving any gates specified in the key schedule column for the
cipher. However, the gate counts presented here compute the
entire key schedule of the primitive which is required in the
distributed encryption/decryption scenario.

B. Performance

The gate counts from Table V can be turned into calls to
H and sent ciphertexts. In ZRE15, each AND gate costs 4
calls to H for garbling, 2 ciphertexts are sent, and 2 calls to
H for evaluation. In RR21, each AND gate costs 6 calls to
H for garbling, 1.5 ciphertexts are sent, and 3 calls to H for
evaluation.

Table VI lists all studied primitives with the corresponding
trade-off in garbling and communication cost, and evaluation
improvement measured in the number of calls to H and in the
number of ciphertexts, respectively. We found three primitives
in five configurations in total where our scheme improves in

Table V: Detailed gate counts for setup, key schedule and
data path of the selected symmetric primitives. The top entry
denotes the number of AND gates while the bottom entry
denotes the number of projection gates.
† Gate counts obtained from Mandal et al. [55].

Primitive Setup Key Schedule Data Path

AES-128 [26] 1280 AND 5120 AND
128 1-bit + 49 8-bit 320 8-bit

CRAFT [25] 1920 AND
192 1-bit 480 4-bit

Fides-80 [27] 320 AND
160 1-bit 32 5-bit

Fides-96 1088 AND
192 1-bit 32 6-bit

MANTIS [24] 896 AND
192 1-bit 224 4-bit

Midori64 [23] 1024 AND
128 1-bit 256 4-bit

Piccolo-80 [29] 1600 AND
80 1-bit 600 4-bit

Piccolo-128 1984 AND
128 1-bit 744 4-bit

SKINNY-64-128 2304 AND
128 1-bit + 280 4-bit 576 4-bit

TWINE-80 [22] 432 AND 1728 AND
80 1-bit + 70 4-bit 288 4-bit

TWINE-128 630 AND 1728 AND
128 1-bit + 104 4-bit 288 4-bit

WAGE [28] 37745 AND†

259 1-bit 777 7-bit

Table VI: Estimated performance difference for selected sym-
metric ciphers. The notation ×x denotes an improvement by
factor x in the category with respect to the base scheme, i.e.,
x > 1 is an improvement, x < 1 is degradation.

Base Scheme Primitive Garble Send Eval

ZRE15 [6] AES-128 [26] ×0.28 ×0.14 ×26.23
RR21 [7] ×0.42 ×0.10 ×39.34

ZRE15 CRAFT [25] ×0.95 ×0.52 ×5.71
RR21 ×1.43 ×0.39 ×8.57

ZRE15 Fides-80 [27] ×1.23 ×0.64 ×15.45
RR21 ×1.84 ×0.48 ×23.18

ZRE15 Fides-96 ×2.10 ×1.07 ×50.26
RR21 ×3.15 ×0.81 ×75.39

ZRE15 MANTIS [24] ×0.90 ×0.50 ×4.31
RR21 ×1.35 ×0.38 ×6.46

ZRE15 Midori64 [23] ×0.94 ×0.52 ×5.33
RR21 ×1.41 ×0.39 ×8.00

ZRE15 Piccolo-80 [29] ×0.66 ×0.35 ×4.71
RR21 ×0.98 ×0.26 ×7.06

ZRE15 Piccolo-128 ×0.65 ×0.35 ×4.55
RR21 ×0.98 ×0.26 ×6.83

ZRE15 SKINNY-64-128 ×0.66 ×0.36 ×4.68
RR21 ×0.99 ×0.27 ×7.02

ZRE15 TWINE-80 [22] ×1.46 ×0.79 ×9.81
RR21 ×2.19 ×0.59 ×14.71

ZRE15 TWINE-128 ×1.44 ×0.78 ×9.05
RR21 ×2.16 ×0.59 ×13.58

ZRE15 WAGE [28] ×1.51 ×0.76 ×72.87
RR21 ×2.27 ×0.57 ×109.30

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY 10

Table VII: Performance benchmark results for some SPN-
ciphers comparing garbling and evaluation time as well as the
circuit size. All reported numbers are amortized from 500 (for
SKINNY-128-*) and 1000 parallel primitive calls averaged
over 10 repetitions.

Base Scheme Primitive Garble Circuit size Eval
in ms in KB in ms

ZRE15 [6]
AES-128 [26]

0.767 204.93 0.722
RR21 [7] 0.436 156.51 0.305
This work 0.928 1242.55 0.016

ZRE15
MANTIS7 [24]

0.093 32.84 0.070
RR21 0.083 30.96 0.077
This work 0.133 76.36 0.040

ZRE15
SKINNY-64-128

0.283 73.80 0.194
RR21 0.153 59.13 0.096
This work 0.289 139.30 0.026

ZRE15
SKINNY-64-192

0.343 81.99 0.246
RR21 0.166 67.11 0.118
This work 0.321 154.69 0.041

ZRE15
SKINNY-128-128

0.595 163.98 0.440
RR21 0.346 126.66 0.279
This work 2.281 2613.28 0.015

ZRE15
SKINNY-128-256

0.803 196.74 0.594
RR21 0.442 154.71 0.348
This work 2.563 3135.62 0.028

ZRE15
SKINNY-128-384

1.107 229.51 0.819
RR21 0.558 182.77 0.472
This work 2.841 3658.00 0.041

ZRE15
TWINE-128 [22]

0.202 75.52 0.168
RR21 0.136 60.40 0.081
This work 0.191 108.21 0.059

ZRE15
TWINE-80

0.187 68.80 0.153
RR21 0.128 53.99 0.074
This work 0.199 99.04 0.045

both garbling and evaluation cost over both reference garbling
schemes. In the remaining primitives and cases, projection
gates trade off higher garbling and communication cost for
faster evaluation performance. Note that for most primitives,
the evaluation improvement is much higher than the additional
communication cost. E.g., for Midori64, at a cost of slightly
more garbling work (≈ 6% more) and less than twice the
number of sent ciphertexts, we improve the evaluation work
by a factor of five. We detail the implementation approach
with projection gates for the ciphers in Appendix B.

Next, we experimentally compared the performance of four
primitives in nine configurations in ZRE15, RR21 and our
scheme. RR21 has been implemented by Hamacher et al. [56]
in the MOTION framework while ZRE15 and our scheme
have been implemented in MP-SPDZ [57]. Table VII lists
the garbling and evaluation time, and the circuit size. We
achieve a considerable speed-up in evaluation time of, e.g.,
factor 20 to 45 for AES. In general the expected trade-off
of faster evaluation and larger circuit size is immediate for
all implemented ciphers. However, we observed differences
in garbling and evaluation time between ZRE15 and RR21
executions of the same circuit which cannot be explained by
the differing number of hash function calls. We believe the
observations are due to the implementation in the two MPC
frameworks which have differing overhead.

Besides oblivious computation of SPN primitives, state-
ments where a prover proves knowledge of a key k to a

pair x, y s.t. AESk(x) = y are highly relevant. Garbling
schemes have been used to construct efficient interactive zero-
knowledge protocols that prove statements over “unstructured”
languages expressible in Boolean circuits [58], [59]. Using our
garbling scheme, proving statements involving SPN primitives
would be much faster since proving equates to evaluating the
garbled circuit. This is traded-off with a larger proof size.

VII. CONCLUSION

We presented a garbling scheme that encodes n-bit strings
per wire. It generalizes the idea of FreeXOR and integrates
seamlessly into state-of-the-art schemes with FreeXOR on
the 1-bit wire level. Projection gates can be used to convert
strings from n- to m-bit or to compute arbitrary n- to m-bit
functions, while XOR is free. We prove the scheme secure
under the assumption of a n-TCCR secure hash function, a
generalization of TCCR security.

For an important application in two-party secure function
evaluation, the evaluation of symmetric primitives, we show
that substitution-permutation network primitives with certain
structure can be efficiently implemented in our scheme. Com-
pared to AND gate-based circuits, we show a high-speed eval-
uation that is traded off with moderate additional garbling or
communication cost. In scenarios where the garbling scheme
runs in an offline/online setting, we shift the garbling work and
garbled circuit transfer to the evaluator into the pre-processing
phase and thus obtain a high-speed online phase. We obtained
a considerable performance improvement, a 4- to 72-times
faster online phase, for nine primitives in literature when
taking hash function calls as a metric. Implementation of some
ciphers shows that this evaluation performance improvement
translates into practical applications.

APPENDIX A
FORMULAS FOR S-BOXES OF TWINE AND MIDORI64

We use the heuristic optimization tool LIGHTER by Jean et
al. [54] operating on a customized cost metric. We restrict the
tool to use only NOT, AND and XOR gates with the associated
costs of 0.01, 1 and 0.01, respectively. These costs describe
our setting where NOT and XOR gates are practically free, i.e.,
very low cost, and AND gates are expensive, i.e., high cost4.
The tool then searches an implementation with low total cost
following a heuristic. This approach reduces the number of
AND gates for the TWINE S-box from 7 AND gates (algebraic
normal form) to 6 AND gates (see Fig. 6a). For the Midori64
S-box, the number of AND gates is reduced from 8 AND gates
(formula given in the specification [23]) to 4 AND gates (see
Fig. 6b).

APPENDIX B
IMPLEMENTATION OF SPN PRIMITIVES

In the following, we give a more detailed explanation of the
implementation from Tables V and VI for each primitive.

4Essentially, this implies that we prefer implementations using 99 NOT or
XOR gates in addition to x AND gates to an implementation using x + 1
AND gates.

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY 11

a← x2 ⊕ x3

b← x3 ⊕ (¬x0 ∧ x1)

c← ¬x0 ⊕ a⊕ (x1 ∧ a ∧ b)

d← a⊕ (b ∧ c)

e← b⊕ c

f ← c⊕ d

x′
3 ← x1 ⊕ e

x′
2 ← e⊕ (d ∧ x′

3)

x′
0 ← c⊕ (f ∧ x′

2)

x′
1 ← f ⊕ x′

3

(a) The 4-bit S-box of
TWINE [22] computed us-
ing 6 AND gates.

a← ¬(x0 ⊕ x2)

b← x0 ⊕ (a ∧ x3)

c← x1 ⊕ b

d← ¬x3 ⊕ (a ∧ b)

x′
0 ← b⊕ (c ∧ d)

e← d⊕ x′
0

x′
1 ← a⊕ d

x′
2 ← c⊕ e

x′
3 ← e⊕ (x′

0 ∧ x′
2)

(b) The 4-bit S-box Sb0 of
Midori64 computed using 4
AND gates.

Figure 6: Implementation formulas for the TWINE and Mi-
dori64 S-boxes. The input bits are x0 through x3, the output
bits are x′0 through x′3.

A. AES

The key schedule of AES-128 applies 4 S-boxes per round
to the state. All remaining key schedule operations can be
expressed using XOR gates. The AES S-box can be computed
with 32 AND gates, as described by Boyar and Peralta [60].
In the data path, 16 S-boxes are applied per round. The
ShiftRows, MixColumns and AddRoundKey steps can be
expressed with XOR gates. AES-128 defines 10 rounds.

For an implementation using projection gates, we first
compose the key into 8-bit wires. Then, the key schedule
can be computed by replacing the S-box with a single 8-
bit projection gate computing the same functionality. For the
data path, we replace S-boxes with 8-bit projection gates. The
mixing step in AES cannot be described with a binary matrix
alone but we re-write the MixColumns step as
2311

1231
1123
3112

 s0 s4 s8 s12

s1 s5 s9 s13
s2 s6 s10 s14
s3 s7 s11 s15

 =

0111
1011
1101
1110

 s0 s4 s8 s12

s1 s5 s9 s13
s2 s6 s10 s14
s3 s7 s11 s15

⊕
1100

0110
0011
1001

 f(s0) f(s4) f(s8) f(s12)

f(s1) f(s5) f(s9) f(s13)
f(s2) f(s6) f(s10) f(s14)
f(s3) f(s7) f(s11) f(s15)

where s0, . . . s15 are the 8-bit cells of the state and f(s) =
2s computes the finite field doubling in GF(28) defined for
AES. Therefore, we compute a round of AES with 2 ·16 8-bit
projection gates. This yields a correct result, since s⊕ f(s) =
3s in GF(28).

B. CRAFT

The key and tweak bits are first composed into 4-bit wires.
The remaining key schedule is linear w.r.t. 4-bit wires.

The data path is linear except for the 16 S-boxes that are
applied in each of the 30 rounds. CRAFT uses the Midori
Sb0 S-box which can be computed with 4 AND gates (see
Fig. 6b), or one 4-bit projection gate.

C. Fides

The internal state of Fides is a 4× 8 grid of 5-bit and 6-bit
cells for Fides-80 and Fides-96, respectively. We can compute
the 5-bit S-box with 10 AND gates (see Fig. 7), or one 5-
bit projection gate. The 6-bit S-box may be computed with
34 AND gates expressing each output bit in algebraic normal
form. This approach doesn’t aim to optimise the number of
AND gates used. However, we count common terms from
different output bits only once since they can be shared as
intermediate results. In our garbling scheme, the S-box is
expressed in one 6-bit projection gate.

a ← x0 ∧ x2

b ← x1 ∧ x4

c ← x2 ∧ x3

d ← x0 ∧ x4

e ← x2 ∧ x4

f ← x1 ∧ x2

x′0 ← ¬(x0 ⊕ x3 ⊕ b⊕ a)
x′1 ← x4 ⊕ c⊕ d⊕ e⊕ (x0 ∧ x1)
x′2 ← x3 ⊕ x4 ⊕ a⊕ d⊕ f ⊕ (x3 ∧ x4)
x′3 ← x1 ⊕ x4 ⊕ a⊕ c⊕ f ⊕ (x1 ∧ x3)
x′4 ← x1 ⊕ x2 ⊕ x3 ⊕ b⊕ e⊕ f ⊕ (x0 ∧ x3)

Figure 7: The 5-bit S-box of Fides [27] can be computed
with 10 AND gates. Input bits are x0, . . . , x4, output bits are
x′0, . . . , x

′
4.

D. MANTIS

The key k = k0||k1 is expanded as defined in [24]:

k0||(k0 >>> 1)⊕ (k0 >> 63)||k1 .

Afterwards we compose the required 4-bit wires for the
expanded key costing 192 1-bit projection gates. MANTIS
uses the Midori Sb0 S-box, which can be computed with 4
AND gates (see Fig. 6b), or one 4-bit projection gate.

E. Midori64

The key bits are first composed into 4-bit wires. The key
schedule can then be computed using XOR gates between the
4-bit wires.

In the data path, all steps except for the S-box can be
computed with XOR gates alone. The 4-bit S-box Sb0 can
be computed with 4 AND gates (see Fig. 6b), or one 4-bit
projection gate.

F. Piccolo

The key schedule for Piccolo-80 and Piccolo-128 can be
computed using only XOR gates after the key bits are com-
posed to 4-bit wires.

Piccolo’s data path applies the 16-bit function F two times
per round to half of the state. This function F is composed of
a parallel application of 4 4-bit S-boxes, followed by a mixing
matrix multiplication, followed by another parallel application
of 4 4-bit S-boxes.

F (s0, s1, s2, s3) = S

((
2311
1231
1123
3112

)
S

((
s0
s1
s2
s3

)))
,

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY 12

where the function S applies the 4-bit S-box S element-wise

S

((
s0
s1
s2
s3

))
=

(
S(s0)
S(s1)
S(s2)
S(s3)

)
.

The mixing matrix encodes multiplications with elements
in the finite field GF(24) with the irreducible polynomial
x4 + x + 1. Clearly, Piccolo doesn’t have the property of
a binary mixing matrix. However, we can still provide an
implementation with projection gates at additional cost.

We re-write the function F as

F ′(s0, s1, s2, s3) = S

((
0111
1011
1101
1110

)(
f(s0)
f(s1)
f(s2)
f(s3)

)
⊕

(
1100
0110
0011
1001

)(
g(s0)
g(s1)
g(s2)
g(s3)

))
where f(s) = S(s) and g(s) = 2S(s). Subsequently,
we compute f , g and the remaining S-box layer S via 4-
bit projection gates. Therefore, F ′ can be computed with
4+4+4 = 12 4-bit projection gates. This re-writing is correct
because f(s)⊕ g(s) = 3S(s) w.r.t GF(24).

G. SKINNY
The SKINNY cipher family comprises three tweakey sizes,

64, 128 and 192 bit, of which we include the size 128-bit
here. The key schedule for SKINNY-64-128 also includes the
application of a linear feedback shift register (LFSR) to 8 per
round. This LFSR is implemented with a 4-bit projection gate.

The SKINNY data path contains 16 4-bit S-boxes per round.
Each S-box is implemented with 4 AND gates using the
formula from [24], or one 4-bit projection gate.

H. TWINE
The key bits are first composed into 4-bit wires. The key

schedule is linear except for 2 and 3 S-box computations per
round for TWINE-80 and TWINE-128, respectively. In total,
the key schedule comprises 35 rounds with S-box computation
for both TWINE-80 and TWINE-128.

The data path is the same for TWINE-80 and TWINE-128
and contains 8 S-boxes per round in 36 rounds. The S-box
can be computed with 6 AND gates (see Fig. 6a), or one 4-bit
projection gate.

I. WAGE
The internal state of the WAGE permutation is represented

as 37 7-bit cells. We load the initial state by computing the
7-bit wire composition for all bits.

We write si to denote the i-th 7-bit cell and s′i to denote
the updated i-th 7-bit cell. The internal state is updated 111
times in the following procedure:

fb← WGP(s36)⊕ s31 ⊕ s30 ⊕ s26 ⊕ s24 ⊕ s19 ⊕ s13 ⊕ s12
⊕s8 ⊕ s6 ⊕ Dbl(s0)

s5 ← s5 ⊕ SB(s8)
s11 ← s11 ⊕ SB(s15)
s19 ← s19 ⊕WGP(s18)⊕ rc0
s24 ← s24 ⊕ SB(s27)
s30 ← s30 ⊕ SB(s34)
s′j ← sj+1, 0 ≤ j ≤ 35

s′36 ← fb .

The 7-bit functions WGP, Dbl and SB denote a Welch-Gong
permutation, finite field doubling and a lightweight 7-bit S-
box. All three are implemented using a 7-bit projection gate.
Further, rc0 is a round-dependent constant.

REFERENCES

[1] K. A. Jagadeesh, D. J. Wu, J. A. Birgmeier, D. Boneh, and G. Bejer-
ano, “Deriving genomic diagnoses without revealing patient genomes,”
Science, vol. 357, no. 6352, pp. 692–695, 2017.

[2] T. Gupta, H. Fingler, L. Alvisi, and M. Walfish, “Pretzel: Email
encryption and provider-supplied functions are compatible,” in Proceed-
ings of the Conference of the ACM Special Interest Group on Data
Communication, 2017, pp. 169–182.

[3] D. Chen, W. Chen, J. Chen, P. Zheng, and J. Huang, “Edge detection and
image segmentation on encrypted image with homomorphic encryption
and garbled circuit,” in 2018 IEEE International Conference on Multi-
media and Expo (ICME). IEEE, 2018, pp. 1–6.

[4] H.-J. Kim, H.-I. Kim, and J.-W. Chang, “A privacy-preserving kNN
classification algorithm using yao’s garbled circuit on cloud computing,”
in 2017 IEEE 10th International Conference on Cloud Computing
(CLOUD). IEEE, 2017, pp. 766–769.

[5] A. C.-C. Yao, “How to Generate and Exchange Secrets,” in Proceedings
of the 27th Annual Symposium on Foundations of Computer Science, ser.
SFCS ’86. USA: IEEE Computer Society, 1986, p. 162–167.

[6] S. Zahur, M. Rosulek, and D. Evans, “Two Halves Make a Whole,”
in Advances in Cryptology - EUROCRYPT 2015. Berlin, Heidelberg:
Springer, 2015, pp. 220–250.

[7] M. Rosulek and L. Roy, “Three Halves Make a Whole? Beating the Half-
Gates Lower Bound for Garbled Circuits,” in Advances in Cryptology –
CRYPTO 2021. Springer, 2021, pp. 94–124.

[8] V. Kolesnikov and T. Schneider, “Improved Garbled Circuit: Free XOR
Gates and Applications,” in Automata, Languages and Programming.
Berlin, Heidelberg: Springer, 2008, pp. 486–498.

[9] J. B. Nielsen and C. Orlandi, “LEGO for two-party secure computation,”
in Theory of Cryptography. Berlin, Heidelberg: Springer, 2009, pp.
368–386.

[10] Y. Lindell and B. Pinkas, “Secure two-party computation via cut-and-
choose oblivious transfer,” Journal of Cryptology, vol. 25, no. 4, pp.
680–722, 2012.

[11] Y. Huang, J. Katz, and D. Evans, “Efficient secure two-party compu-
tation using symmetric cut-and-choose,” in Advances in Cryptology –
CRYPTO 2013. Berlin, Heidelberg: Springer, 2013, pp. 18–35.

[12] Y. Huang, J. Katz, V. Kolesnikov, R. Kumaresan, and A. J. Malozemoff,
“Amortizing garbled circuits,” in Advances in Cryptology – CRYPTO
2014, J. A. Garay and R. Gennaro, Eds. Berlin, Heidelberg: Springer,
2014, pp. 458–475.

[13] S. Jarecki and V. Shmatikov, “Efficient Two-Party Secure Computation
on Committed Inputs,” in Advances in Cryptology - EUROCRYPT 2007.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2007, pp. 97–114.

[14] A. shelat and C. hao Shen, “Two-output secure computation with
malicious adversaries,” in Advances in Cryptology – EUROCRYPT 2011,
K. G. Paterson, Ed. Berlin, Heidelberg: Springer, 2011, pp. 386–405.

[15] X. Wang, S. Ranellucci, and J. Katz, “Authenticated Garbling and
Efficient Maliciously Secure Two-Party Computation,” in Proceedings of
the 2017 ACM SIGSAC Conference on Computer and Communications
Security, ser. CCS ’17. New York, NY, USA: Association for
Computing Machinery, 2017, p. 21–37.

[16] J. Katz, S. Ranellucci, M. Rosulek, and X. Wang, “Optimizing Authenti-
cated Garbling for Faster Secure Two-Party Computation,” in Advances
in Cryptology–CRYPTO 2018. Springer, 2018, pp. 365–391.

[17] S. Dittmer, Y. Ishai, S. Lu, and R. Ostrovsky, “Authenticated Garbling
from Simple Correlations,” in Advances in Cryptology - CRYPTO 2022,
ser. Lecture Notes in Computer Science, Y. Dodis and T. Shrimpton,
Eds., vol. 13510. Springer, 2022, pp. 57–87.

[18] P. Mohassel, M. Rosulek, and Y. Zhang, “Fast and secure three-party
computation: The garbled circuit approach,” in Proceedings of the 22nd
ACM SIGSAC Conference on Computer and Communications Security,
ser. CCS ’15. New York, NY, USA: Association for Computing
Machinery, 2015, p. 591–602.

[19] D. Beaver, S. Micali, and P. Rogaway, “The Round Complexity of
Secure Protocols,” in Proceedings of the Twenty-Second Annual ACM
Symposium on Theory of Computing, ser. STOC ’90. New York, NY,
USA: Association for Computing Machinery, 1990, p. 503–513.

[20] M. Naor, B. Pinkas, and R. Sumner, “Privacy Preserving Auctions and
Mechanism Design,” in Proceedings of the 1st ACM Conference on
Electronic Commerce, ser. EC ’99. New York, NY, USA: Association
for Computing Machinery, 1999, p. 129–139.

[21] S. G. Choi, J. Katz, R. Kumaresan, and H.-S. Zhou, “On the security
of the ”Free-XOR” technique,” in Theory of Cryptography, ser. Lecture
Notes in Computer Science, vol. 7194. Springer, 2012, pp. 39–53.

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY 13

[22] T. Suzaki, K. Minematsu, S. Morioka, and E. Kobayashi, “Twine:
A lightweight block cipher for multiple platforms,” in International
Conference on Selected Areas in Cryptography. Springer, 2012, pp.
339–354.

[23] S. Banik, A. Bogdanov, T. Isobe, K. Shibutani, H. Hiwatari, T. Ak-
ishita, and F. Regazzoni, “Midori: A block cipher for low energy,” in
ASIACRYPT (2). Springer, 2015, pp. 411–436.

[24] C. Beierle, J. Jean, S. Kölbl, G. Leander, A. Moradi, T. Peyrin, Y. Sasaki,
P. Sasdrich, and S. M. Sim, “The SKINNY Family of Block Ciphers
and Its Low-Latency Variant MANTIS,” in Advances in Cryptology –
CRYPTO 2016, M. Robshaw and J. Katz, Eds. Berlin, Heidelberg:
Springer, 2016, pp. 123–153.

[25] C. Beierle, G. Leander, A. Moradi, and S. Rasoolzadeh, “Craft:
lightweight tweakable block cipher with efficient protection against dfa
attacks,” IACR Transactions on Symmetric Cryptology, vol. 2019, no. 1,
pp. 5–45, 2019.

[26] National Institute of Standards and Technology, “Specification for the
ADVANCED ENCRYPTION STANDARD (AES),” Federal Information
Processing Standards Publications 197, 2001.

[27] B. Bilgin, A. Bogdanov, M. Knežević, F. Mendel, and Q. Wang,
“Fides: Lightweight authenticated cipher with side-channel resistance for
constrained hardware,” in International Conference on Cryptographic
Hardware and Embedded Systems. Springer, 2013, pp. 142–158.

[28] R. AlTawy, G. Gong, K. Mandal, and R. Rohit, “Wage: An authenticated
encryption with a twist,” IACR Transactions on Symmetric Cryptology,
pp. 132–159, 2020.

[29] K. Shibutani, T. Isobe, H. Hiwatari, A. Mitsuda, T. Akishita, and
T. Shirai, “Piccolo: An ultra-lightweight blockcipher,” in International
workshop on cryptographic hardware and embedded systems. Springer,
2011, pp. 342–357.

[30] B. Pinkas, T. Schneider, N. Smart, and S. C. Williams, “Secure two-party
computation is practical,” in Advances in Cryptology – ASIACRYPT
2009, M. Matsui, Ed. Berlin, Heidelberg: Springer, 2009, pp. 250–
267.

[31] V. Kolesnikov, P. Mohassel, and M. Rosulek, “FleXOR: Flexible gar-
bling for XOR gates that beats Free-XOR,” in Advances in Cryptology
– CRYPTO 2014. Berlin, Heidelberg: Springer, 2014, pp. 440–457.

[32] A. Acharya, T. Ashur, E. Cohen, C. Hazay, and A. Yanai, “A New
Approach to Garbled Circuits,” in Applied Cryptography and Network
Security - 21st International Conference, ACNS 2023, ser. Lecture Notes
in Computer Science, M. Tibouchi and X. Wang, Eds., vol. 13906.
Springer, 2023, pp. 611–641.

[33] G. Dessouky, F. Koushanfar, A.-R. Sadeghi, T. Schneider, S. Zeitouni,
and M. Zohner, “Pushing the communication barrier in secure com-
putation using lookup tables.” in 24. Network and Distributed System
Security Symposium (NDSS’17). Internet Society, 2017.

[34] O. Goldreich, S. Micali, and A. Wigderson, “How to Play ANY Mental
Game,” in Proceedings of the Nineteenth Annual ACM Symposium on
Theory of Computing, ser. STOC ’87. New York, NY, USA: Association
for Computing Machinery, 1987, p. 218–229.

[35] I. Damgård, J. B. Nielsen, M. Nielsen, and S. Ranellucci, “The
TinyTable protocol for 2-party secure computation, or: Gate-scrambling
revisited,” in Advances in Cryptology – CRYPTO 2017, J. Katz and
H. Shacham, Eds. Springer, 2017, pp. 167–187.

[36] I. Damgård and R. Zakarias, “Fast Oblivious AES A Dedicated Ap-
plication of the MiniMac Protocol,” in Progress in Cryptology –
AFRICACRYPT 2016, D. Pointcheval, A. Nitaj, and T. Rachidi, Eds.
Cham: Springer, 2016, pp. 245–264.

[37] M. Keller, E. Orsini, D. Rotaru, P. Scholl, E. Soria-Vazquez, and
S. Vivek, “Faster Secure Multi-party Computation of AES and DES
Using Lookup Tables,” in Applied Cryptography and Network Security.
Springer, 2017.

[38] Y. Ishai, E. Kushilevitz, S. Meldgaard, C. Orlandi, and A. Paskin-
Cherniavsky, “On the power of correlated randomness in secure com-
putation,” in Theory of Cryptography Conference. Springer, 2013, pp.
600–620.

[39] F. B. Durak and J. Guajardo, “Improving the Efficiency of AES Protocols
in Multi-Party Computation,” in Financial Cryptography and Data
Security, N. Borisov and C. Diaz, Eds. Berlin, Heidelberg: Springer,
2021, pp. 229–248.

[40] A. Abidin, E. Pohle, and B. Preneel, “Arithmetic Circuit Implementa-
tions of S-boxes for SKINNY and PHOTON in MPC,” in To appear
in Computer Security – ESORICS 2023: 28th European Symposium on
Research in Computer Security, 2023.

[41] D. Malkhi, N. Nisan, B. Pinkas, Y. Sella et al., “Fairplay – Secure
Two-Party Computation System,” in Proceedings of the 13th USENIX
Security Symposium, vol. 4. San Diego, CA, USA, 2004.

[42] W. Henecka, S. Kögl, A.-R. Sadeghi, T. Schneider, and I. Wehrenberg,
“TASTY: Tool for Automating Secure Two-Party Computations,” in
Proceedings of the 17th ACM Conference on Computer and Commu-
nications Security, ser. CCS ’10. New York, NY, USA: Association
for Computing Machinery, 2010, p. 451–462.

[43] Y. Huang, D. Evans, J. Katz, and L. Malka, “Faster secure two-party
computation using garbled circuits.” in USENIX Security Symposium,
vol. 201, 2011, pp. 331–335.

[44] C. Guo, J. Katz, X. Wang, and Y. Yu, “Efficient and secure multiparty
computation from fixed-key block ciphers,” in 2020 IEEE Symposium
on Security and Privacy (SP). IEEE, 2020, pp. 825–841.

[45] Y. L. Chen and S. Tessaro, “Better security-efficiency trade-offs in
permutation-based two-party computation,” in Advances in Cryptology
– ASIACRYPT 2021, M. Tibouchi and H. Wang, Eds. Cham: Springer,
2021, pp. 275–304.

[46] D. Heath and V. Kolesnikov, “One hot garbling,” in Proceedings of
the 2021 ACM SIGSAC Conference on Computer and Communications
Security, ser. CCS ’21. New York, NY, USA: Association for
Computing Machinery, 2021, p. 574–593.

[47] M. Ball, T. Malkin, and M. Rosulek, “Garbling gadgets for boolean
and arithmetic circuits,” in Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security, ser. CCS ’16.
New York, NY, USA: Association for Computing Machinery, 2016, p.
565–577.

[48] M. Bellare, V. T. Hoang, and P. Rogaway, “Foundations of garbled
circuits,” in Proceedings of the 2012 ACM Conference on Computer
and Communications Security, ser. CCS ’12. New York, NY, USA:
Association for Computing Machinery, 2012, p. 784–796.

[49] C. Kempka, R. Kikuchi, and K. Suzuki, “How to circumvent the two-
ciphertext lower bound for linear garbling schemes,” in Advances in
Cryptology – ASIACRYPT 2016, J. H. Cheon and T. Takagi, Eds. Berlin,
Heidelberg: Springer, 2016, pp. 967–997.

[50] C. Guo, J. Katz, X. Wang, C. Weng, and Y. Yu, “Better concrete security
for half-gates garbling (in the multi-instance setting),” in Advances in
Cryptology – CRYPTO 2020. Springer, 2020, pp. 793–822.

[51] M. O. Rabin, “How To Exchange Secrets with Oblivious Transfer,”
Cryptology ePrint Archive, Report 2005/187, 2005. [Online]. Available:
https://eprint.iacr.org/2005/187

[52] G. Asharov, Y. Lindell, T. Schneider, and M. Zohner, “More Efficient
Oblivious Transfer and Extensions for Faster Secure Computation,”
in Proceedings of the 2013 ACM SIGSAC Conference on Computer
& Communications Security, ser. CCS ’13. New York, NY, USA:
Association for Computing Machinery, 2013, p. 535–548.

[53] M. Naor and B. Pinkas, “Oblivious Transfer and Polynomial Evaluation,”
in Proceedings of the Thirty-First Annual ACM Symposium on Theory
of Computing, May 1-4, 1999, Atlanta, Georgia, USA, J. S. Vitter, L. L.
Larmore, and F. T. Leighton, Eds. ACM, 1999, pp. 245–254.

[54] J. Jean, T. Peyrin, S. M. Sim, and J. Tourteaux, “Optimizing implemen-
tations of lightweight building blocks,” IACR Trans. Symmetric Cryptol.,
vol. 2017, Issue 4, pp. 130–168, 2017.

[55] K. Mandal and G. Gong, “Can LWC and PEC be
Friends?: Evaluating Lightweight Ciphers in Privacy-enhancing
Cryptography,” in Fourth Lightweight Cryptography Workshop.
NIST, 2020. [Online]. Available: https://csrc.nist.gov/Events/2020/
lightweight-cryptography-workshop-2020

[56] K. Hamacher, T. Kussel, T. Schneider, and O. Tkachenko, “PEA:
Practical Private Epistasis Analysis Using MPC,” in Computer Security–
ESORICS 2022: 27th European Symposium on Research in Computer
Security, Copenhagen, Denmark, September 26–30, 2022, Proceedings,
Part III. Springer, 2022, pp. 320–339.

[57] M. Keller, “MP-SPDZ: A Versatile Framework for Multi-Party Com-
putation,” in Proceedings of the 2020 ACM SIGSAC Conference on
Computer and Communications Security, 2020.

[58] M. Jawurek, F. Kerschbaum, and C. Orlandi, “Zero-knowledge using
garbled circuits: How to prove non-algebraic statements efficiently,”
in Proceedings of the 2013 ACM SIGSAC Conference on Computer
& Communications Security, ser. CCS ’13. New York, NY, USA:
Association for Computing Machinery, 2013, p. 955–966.

[59] T. K. Frederiksen, J. B. Nielsen, and C. Orlandi, “Privacy-Free Garbled
Circuits with Applications to Efficient Zero-Knowledge,” in Advances
in Cryptology - EUROCRYPT 2015, E. Oswald and M. Fischlin, Eds.
Berlin, Heidelberg: Springer, 2015, pp. 191–219.

[60] J. Boyar and R. Peralta, “A new combinational logic minimization
technique with applications to cryptology,” in International Symposium
on Experimental Algorithms. Springer, 2010, pp. 178–189.

https://eprint.iacr.org/2005/187
https://csrc.nist.gov/Events/2020/lightweight-cryptography-workshop-2020
https://csrc.nist.gov/Events/2020/lightweight-cryptography-workshop-2020

	Introduction
	Related Work
	Background
	Garbled Circuits for Bounded Integers
	Security Model by Bellare, Hoang and Rogaway

	The Scheme
	Circuit Definition
	Gates
	Circuit Constructions
	Garbling Scheme

	Security
	(n-)TCCR Security
	Privacy
	Obliviousness
	Authenticity

	Evaluation of SPN Primitives
	Implementation Details
	Performance

	Conclusion
	Appendix A: Formulas for S-Boxes of TWINE and Midori64
	Appendix B: Implementation of SPN Primitives
	AES
	CRAFT
	Fides
	MANTIS
	Midori64
	Piccolo
	SKINNY
	TWINE
	WAGE

	References

