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Abstract. We say a public-key encryption is plaintext-extractable in
the random oracle model if there exists an algorithm that given access
to all inputs/outputs queries to the random oracles can simulate the
decryption oracle. We argue that plaintext-extractability is enough to
show the indistinguishably under chosen ciphertext attack (IND-CCA) of
OAEP+ transform (Shoup, Crypto 2001) when the underlying trapdoor
permutation is one-way.
We extend the result to the quantum random oracle model (QROM)
and show that OAEP+ is IND-CCA secure in QROM if the underlying
trapdoor permutation is quantum one-way.
Keywords. Post-quantum Security, OAEP+, Quantum Random Oracle
Model

1 Introduction

The OAEP transform was proposed by Bellare and Rogaway [4] to transfer a
trapdoor permutation into a public-key encryption scheme using two random
oracles. It was believed that the OAEP-cryptosystem is provable secure in the
random oracle model based on the one-wayness of trapdoor permutation, but
Shoup [14] showed it is an unjustified belief.

In [4], the technique to show the IND-CCA security is introducing a notion
of plaintext-awareness (PA1) that guarantees the existence of an algorithm Ext
that can simulate the decryption oracle given access to the inputs/outputs of the
random oracles. Then, given this extractor Ext, we may reduce the IND-CCA
security to the one-wayness of the underlying trapdoor permutation. A stronger
definition of plaintext-awareness (PA2) was introduced in the random oracle
model [1], in which, the adversary is able to eavesdrop some valid ciphertexts
(through an oracle EHpk) and the extractor, given access to these ciphertexts and
the random oracle queries made by the adversary (and not the random oracle
queries used by EHpk), should be able to decrypt any ciphertext outputted by
the adversary. In [1], it was shown that an encryption scheme that is PA2 and
IND-CPA secure, is IND-CCA secure.

However, Shoup [14] argued that PA1 might not be sufficient to show the
IND-CCA security of OAEP because the adversary might be able to turn the
challenge ciphertext c∗ into a new valid ciphertext for which Ext is not able
to decrypt (since Ext does not have access to the random oracles queries used



to obtain c∗). And it has not been proven that the OAEP transform is PA2.
Therefore, the IND-CCA security of OAEP under the one-wayness assumption
of the underlying permutation remains an open question. Shoup [14] even made
an argument that the existence of a IND-CCA security proof is unlikely under
the one-wayness assumption. Alternatively, Shoup [14] presented the OAEP+
transform along with a IND-CCA security proof based on the one-wayness of the
permutation.

The IND-CCA security of the OAEP transform was proven in [11], however,
based on a stronger assumption, namely, the partial-domain one-wayness of the
underlying permutation. This result is extended to the quantum random oracle
model [9, 15] under the quantum partial-domain one-wayness of the underlying
permutation. Since in the real world applications, a random oracle will be
substituted with a cryptographic hash function and the code of this hash function
is public, to claim the post-quantum security, one needs to prove the security in
the quantum random oracle model in which a quantum adversary is able to make
superposition queries to the random oracles. To date, the post-quantum security
of OAEP+ has not been investigated. In fact, this post-quantum security proof
is needed since the existence of a quantum partial-domain one-way trapdoor
permutation implies the existence of a quantum one-way trapdoor permutation
and not other way around. To use the result in [9,15], one needs a quantum-secure
trapdoor permutation with a stronger security requirement than the quantum
one-wayness.

Note that this has not been problematic so far since this does not affect
the instantiation of OAEP with the RSA function (RSA-OAEP) [4]. In more
details, since partial-domain one-wayness of the RSA function is equivalent
to its (full-domain) one-wayness, it follows that the security of RSA–OAEP
can actually be proven under the sole RSA assumption [11]. However, RSA
assumption does not hold in the post-quantum setting due to Shor’s quantum
algorithm [13]. And we are not aware of a quantum-hard assumption for which
these two security definitions (partial-domain one-wayness and one-wayness
assumptions) are equivalent. So we need a quantum partial-domain one-way
trapdoor permutation to use in the OAEP transform. In contrast, if the post-
quantum security of OAEP+ exists, we can use a quantum one-way trapdoor
permutation that is a weaker assumption.

In this paper, we fill this gap. We show that OAEP+ is secure in the quantum
random oracle model. Our proof technique is to define a notion of plaintext-
extractability, show that OAEP+ is plaintext-extractable and use it to prove
IND-CCA security in the quantum random oracle model.

OAEP+ Transform. We informally present how OAEP+ encrypts a message
m. Let G,H,H ′ be random oracles and f be a trapdoor permutation. To encrypt
m, it chooses a random element r and computes a ciphertext c as follows:

s = (G(r)⊕m)︸ ︷︷ ︸
[s]n

‖H ′(r,m)︸ ︷︷ ︸
[s]k1

, t = r ⊕H(s), c = f(s, t).

2



1.1 Our Contribution

We investigate the security of OAEP+ in the quantum random oracle model. We
define a notion of plaintext-extractability in the (quantum) random oracle model.
Our notion is different from PA1 since the adversary is given the possibility of
eavesdropping some valid ciphertexts (through an oracle EHpk) in contrast to PA1.
It is not PA2 either because the extractor Ext is given access to the inputs/outputs
of all queries to the random oracles (including random oracle queries used by
EHpk) in contrast to PA2.

We informally discuss why our plaintext-extractability notion is sufficient to
prove the IND-CCA security of OAEP+ under the one-wayness of the underlying
permutation. Our argument is classical but it would be extended to the quantum
random oracle model in Section 4.

We start with IND-CCA game (Game 0) in which the adversary given access
to the random oracles and decryption oracle outputs two messages m0,m1. The
challenger chooses a random bit b and encrypts mb and sends this challenge
ciphertext c∗ to the adversary. The adversary is allowed to make decryption
queries, except for the challenge ciphertext, and random oracle queries. Finally,
the adversary outputs a bit b′ and wins if b′ = b.

Then, we define a game (Game 1) in which the challenger instead of using the
secret key (f−1) to answer decryption queries, it uses the extractor algorithm Ext.
Note that in this game, the challenger simulates the decryption queries, therefore,
Ext has access to all queries to the random oracles. The indistinguishably of these
two games hold due to the plaintext-extractability of OAEP+.

We define another game (Game 2) in which the challenger aborts and return
a random bit if the adversary submits the randomness r∗ (that has been used to
compute c∗) as a query to either G or H ′. Obviously, the probability of the abort
event is negligible before the challenge query since r∗ has not been used yet. We
show that if r∗ is queried after the challenge query, this breaks the one-wayness
of the underlying permutation.

Let A be an adversary that distinguishes Game 1 and Game 2, that is, A
queries r∗ as a post-challenge query with a non-negligible probability. Now it
comes to the reduction adversary B. Note that the input of the adversary B is a
value c∗ that is an image of f on some random values s∗, t∗. In other words, c∗ is
generated without any queries to the random oracles. Therefore, the adversary B
chooses random oracles G,H and H ′, a random bit b, runs A and answers to its
decryption queries using Ext. Upon receiving the challenge query m0,m1 from A,
the adversary sends c∗ as the challenge query.

The adversary B guesses, randomly, the first query in which the randomness
r∗ (that is used to generate c∗) will be submitted to G or H ′. Therefore, the
adversary B can find r∗ with a non-negligible probability. It outputs s∗ :=
(G(r∗)⊕mb)‖H ′(r∗,mb) and t∗ := r∗ ⊕H(s∗) as the pre-image of f on c∗.

Back to Game 2, when r∗ is not submitted as a query to G and H ′, the
values of G(r∗) and H ′(r∗,mb) are distributed uniformly at random. Therefore,
the adversary is able to guess b only with a probability of 1/2 and this finishes
the proof.
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Difference with the implication PA2+IND-CPA =⇒ IND-CCA [1,
2]. Note that in the sketch above, the extractor algorithm knows all the random
oracle queries and in the reduction, the adversary B possess a value that is
obtained by computing f on some random values s∗, t∗ and without any random
oracle queries. Therefore, we do not need the strong security requirement PA2
to conclude the IND-CCA security. This is of course different when we want
to show IND-CCA security from IND-CPA and a plaintext-awareness notion.
In this general implication, the reduction adversary B attacking CPA security
gets its challenge ciphertext c∗ through an encryption oracle (the challenger of
CPA game) and the adversary B does not know the random oracle queries that
have been used to compute c∗. For this general implication, indeed, we need PA2
notion in which the extractor Ext is not given access to the random oracle queries
used to compute the challenge ciphertext c∗. However, in our case, c∗ is generated
without making any random oracle query. Note that both the actual decryption
algorithm and the extractor return ⊥ if c∗ is submitted as a decryption query.

2 Preliminaries

Notations. The notation x $←− X means that x is chosen uniformly at random
from the set X. For a natural number n, [n] means the set {1, · · · , n}. Pr[P : G]
is the probability that the predicate P holds true where free variables in P are
assigned according to the program in G. The function negl(η) is any non-negative
function that is smaller than the inverse of any non-negative polynomial p(η)
for sufficiently large η. For a function f , fx denotes the evaluation of f on the
input x, that is f(x). For a bit-string x of size more-than-equal k, [x]k are the
k least significant bits of x and [x]k are the k most significant bits of x. For
two bits b and b′, [b = b′] is 1 if b = b′ and it is 0 otherwise. QPT is a quantum
polynomial-time algorithm.

2.1 Quantum Computing

We present basics of quantum computing in this subsection. The interested reader
can refer to [12] for more information. For two vectors |Ψ〉 = (ψ1, ψ2, · · · , ψn) and
|Φ〉 = (φ1, φ2, · · · , φn) in Cn, the inner product is defined as 〈Ψ, Φ〉 =

∑
i ψ
∗
i φi

where ψ∗i is the complex conjugate of ψi. Norm of |Φ〉 is defined as ‖ |Φ〉 ‖ =√
〈Φ,Φ〉. The n-dimensional Hilbert space H is the complex vector space Cn

with the inner product defined above. A quantum system is a Hilbert space H and
a quantum state |ψ〉 is a vector |ψ〉 in H with norm 1. A unitary operation over
H is a transformation U such that UU† = U†U = I where U† is the Hermitian
transpose of U and I is the identity operator over H. Norm of an operator U is
‖U‖ = max|ψ〉 ‖U |ψ〉‖. The computational basis for H consists of logn vectors
|bi〉 of length logn with 1 in the position i and 0 elsewhere.

An orthogonal projection P over H is a linear transformation such that
P2 = P = P†. A measurement on a Hilbert space is defined with a family of
projectors that are pairwise orthogonal. An example of measurement is the
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computational basis measurement in which any projection is defined by a basis
vector. The output of computational measurement on a state |Ψ〉 is i with
probability ‖〈 bi, Ψ〉‖2 and the post measurement state is |bi〉. For a general
measurement {Pi}i, the output of this measurement on a state |Ψ〉 is i with
probability ‖Pi |Ψ〉 ‖2 and the post measurement state is Pi|Ψ〉

‖Pi|Ψ〉‖ .
For two operators U1 and U2, the commutator is [U1,U2] = U1U2 − U2U1.

For two quantum systems H1 and H2, the composition of them is defined by
the tensor product and it is H1 ⊗H2. For two unitary U1 and U2 defined over
H1 and H2 respectively, (U1 ⊗U2)(H1 ⊗H2) = U1(H1)⊗U2(H2). In this paper,
QFT over an n-qubits system is H⊗n.

If a system is in the state |Ψi〉 with the probability pi, we interpret this with
a quantum ensemble E = {(|Ψi〉 , pi)}i. Different outputs of a quantum algorithm
can be represented as a quantum ensemble. The density operator corresponding
with the ensemble E is ρ =

∑
i pi |Ψi〉〈Ψi| where |Ψi〉〈Ψi| is the operator acting as

|Ψi〉〈Ψi| : |Φ〉 → 〈Ψi, Φ〉 |Ψi〉. The trace distance of two density operators ρ1, ρ2 is
defined as TD(ρ1, ρ2) := 1

2 tr |ρ1−ρ2| where tr is the trace of a square matrix (the
sum of entries on the main diagonal) and |ρ1−ρ2| :=

√
(ρ1 − ρ2)†(ρ1 − ρ2). Note

that the trace distance of two pure states |Ψ〉 , |Φ〉 is defined as TD(|Ψ〉〈Ψ | , |Φ〉〈Φ|).
Any classical function f : X → Y can be implemented as a unitary operator

Uf in a quantum computer where Uf : |x, y〉 → |x, y ⊕ f(x)〉 and it is clear that
U†f = Uf . A quantum adversary has standard oracle access to a classical function
f if it can query the unitary Uf .

2.2 Definitions

We define a public-key encryption scheme, the IND-CCA security notion in the
quantum random oracle model and the quantum (partial-domain) one-wayness.

Definition 1. A scheme E with three polynomial-time (in the security parameter
η) algorithms Gen,Enc,Dec) is called a public-key encryption scheme if:

1. The key generation algorithm Gen is a probabilistic algorithm which on input
1η outputs a pair of keys, (pk, sk)← Gen(1η), called the public key and the
secret key for the encryption scheme, respectively.

2. The encryption algorithm Enc is a probabilistic algorithm which takes as input
a public key pk and a message m and outputs a ciphertext c← Encpk(m).

3. The decryption algorithm is a deterministic algorithm that takes as input
a secret key sk and a ciphertext c and returns the message m := Decsk(c).
It is required that the decryption algorithm returns the original message,
i.e., Decsk(Encpk(m)) = m, for every (pk, sk)← Gen(1η) and every m. The
algorithm Dec returns ⊥ if ciphertext c is not decryptable.

In the following, we define the IND-CCA security notion in the quantum
random oracle model. The IND-CCA security notion for a public-key encryption
scheme allows the adversary to make quantum random oracle queries but the
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challenge query and decryption queries are classical. We define Dec′ as:

Dec′(c)→
{
⊥ if c∗ is defined ∧ c = c∗

Decsk(c) otherwise
,

where c∗ is the challenge ciphertext and ⊥ is a value outside of the output space.
We say that a quantum algorithm A has quantum access to the random oracle
H if A can submit queries in superposition and the oracle H answers to these
queries by applying a unitary transformation that maps |x, y〉 to |x, y ⊕H(x)〉.
Definition 2 (IND-CCA in the quantum random oracle model). A
public-key encryption scheme Π = (Gen,Enc,Dec) is IND-CCA secure if for any
QPT adversary A

Pr
[
b = 1 : b← ExpCCA,qROA,E (η)

]
≤ 1/2 + negl(η),

where ExpCCA,qROA,E (η) game is define as:
ExpCCA,qROA,E (η) game:
Key Gen: The challenger runs Gen(1η) to obtain a pair of keys (pk, sk) and
chooses random oracles.

Query: The adversary A given the public key pk, the oracle access to Dec′ and
the quantum access to the random oracles, chooses two classical messages
m0,m1 of the same length and sends them to the challenger. The challenger
chooses a random bit b and responds with c∗ ← Encpk(mb).

Guess: The adversary A continues to query the decryption oracle and the random
oracles. Finally, the adversary A produces a bit b′. The output of the game is
[b = b′].

Definition 3 (Quantum one-way function). We say a permutation f :
{0, 1}n+k1 × {0, 1}k0 → {0, 1}m is quantum one-way if for any QPT adversary
A,

Pr
[
(s̃, t̃) = (s, t) : s $←− {0, 1}n+k1 , t

$←− {0, 1}k0 , (s̃, t̃)← A(f(s, t))
]
≤ negl(η).

Definition 4 (Quantum partial-domain one-way function). We say a per-
mutation f : {0, 1}n+k1 × {0, 1}k0 → {0, 1}m is quantum partial-domain one-way
if for any QPT adversary A,

Pr
[
s̃ = s : s $←− {0, 1}n+k1 , t

$←− {0, 1}k0 , s̃← A(f(s, t))
]
≤ negl(η).

We use the ‘gentle-measurement lemma’ [16] in the proof. Informally, it states
that if an output of a measurement is almost certain for a quantum state, the
measurement does not disturb the state much.
Lemma 1 (gentle-measurement lemma). Let M = {Pi}i is a measure-
ment. For any state |Ψ〉, if there exists an i such that ‖Pi |Ψ〉 ‖2 ≥ 1 − ε, then
TD(|Ψ〉 ,M |Ψ〉) ≤

√
ε+ ε.
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2.3 Compressed Standard Oracle

Generally, it is not possible to copy a quantum state due to no-cloning theorem and
destructive nature of quantum measurements. However, in a recent work, Zhandry
showed that for quantum queries to a random oracle, a sort of recording is possible.
Note that the conventional way to query a random oracle in superposition is to
choose a uniformly at random function H and answers to the query with the
unitary UH . However, one can consider another approach in which the oracle
starts with a private state that keeps a uniform superposition of all functions
and the query is answered as:

|x, y〉
∑
H

1√
|ΩH |

|H〉 →
∑
H

1√
|ΩH |

|x, y ⊕H(x)〉 |H〉 ,

where ΩH is the set of all functions H. Following the perspective above, Zhandry
[18] developed the CStO that its private register can be implemented efficiently,
symmetrically stores the inputs/outputs of the adversary’s queries in its private
register and it is perfectly indistinguishable from the standard oracle (StO).

Lemma 2 (Lemma 4 in [18]). CStO and StO are perfectly indistinguishable.

We import the representation of CStO from [8]. Let D = ⊗x∈XDx be the
oracle register. The state space of Dx is generated with vectors |y〉 for y ∈ Y ∪{⊥}.
Let FDx

be a unitary acting on Dx that maps |⊥〉 to QFT |0〉 and vice versa.
And for any vector orthogonal to |⊥〉 and QFT |0〉, F is identity. We define CStO
to be the following unitary acting on the input register, the output register and
the D register.

CStO =
∑
x

|x〉〈x| ⊗ FDxCNOTYDxFDx ,

where CNOTYDx
|y, yx〉 = |y ⊕ yx, yx〉 for y, yx ∈ Y and it is identity on |y,⊥〉.

The initial state of D register is ⊗x∈X |⊥〉.
In the following, we present preliminaries for Theorem 3.1 in [8]. For a fixed

relation R ⊂ X ×Y , ΓR is the maximum number of y’s that fulfill the relation
R where the maximum is taken over all x ∈ X:

ΓR = max
x∈X
|{y ∈ Y |(x, y) ∈ R}|.

We define a projector Πx
Dx

that checks if the register Dx contains a value y 6=⊥
such that (x, y) ∈ R:

Πx
Dx

:=
∑

y s.t. (x,y)∈R

|y〉〈y|Dx
.

Let Π̄x
Dx

= IDx
−Πx

Dx
. We define the measurement M to be the set of projectors

{Σx}x∈X∪{∅} where

Σx :=
⊗
x′<x

Π̄x′

Dx′
⊗Πx

Dx
for x ∈ X and Σ∅ := I−

∑
x

Σx. (1)
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Informally, the measurement M checks for the smallest x for which Dx contains
a value y 6=⊥ such that (x, y) ∈ R. If no register Dx contains a value y 6=⊥ such
that (x, y) ∈ R, the outcome of M is ∅. We define a purified measurement MDP

corresponding to M that XORs the outcome of the measurement to an ancillary
register:

MDP |φ, z〉DP →
∑

x∈X∪{∅}

Σx |φ〉D |z ⊕ x〉P .

The following lemma states that CStO and MDP almost commute if ΓR is small
proportional to the size of Y .

Lemma 3 (Theorem 3.1 in [8]). For any relation R and ΓR defined above,
the commutator [CStO,MDP ] is bounded as follows:

‖[CStO,MDP ]‖ ≤ 8 · 2−n/2
√

2ΓR.

3 Plaintext-extractability

We define “plaintext-extractable” notion below in the random oracle model and
quantum random oracle model. Our notion lies between plaintext-awareness
notions PA1 and PA2 1. Our notion is stronger than PA1 notion [4] because the
adversary is allowed to eavesdrop some ciphertexts in contrast to PA1 that the
adversary is not able to eavesdrop. Our notion is weaker than PA2 [1] because in
our notion the extractor has access to all random oracle queries, in contrast, in
PA2 notion the adversary does not know the random oracle queries that have
been used to generate the eavesdropped ciphertexts.

3.1 Random Oracle Model

The random oracle model [3] is a powerful model in which the security of
a cryptographic scheme is proven assuming the existence of a truly random
function that is accessible by all parties including the adversary.

Informally, we say a public-key encryption scheme is plaintext-extractable if
there exists an extractor algorithm Ext that given access to the list of all queries
to the random oracle can simulate the decryption oracle.

Let EHpk indicates an encryption oracle that upon receiving a query m0,m1
from the adversary, it chooses a random bit b, encrypts mb and sends the resulting
ciphertext to the adversary. All ciphertexts obtained from EHpk are stored in List
and for any c ∈ List, the decryption oracle DecHsk returns ⊥.

Definition 5. Let LH be the list of inputs/outputs of all queries to the random
oracle H and List be the list of ciphertexts obtained from EHpk . Let η be the security
parameter. We say a public-key encryption scheme ΠH = (Gen,Enc,Dec) is

1Recently, the classical plaintext-awareness notions PA0, PA1 and PA2 are adopted
to the post-quantum setting, however, in the standard model [10].
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plaintext-extractable in the random oracle model if there exists an algorithm Ext
such that for any polynomial-time distinguisher D, the following holds:

|Pr
[
DDecH

sk,List,H,E
H
pk (pk) = 1 : (pk, sk)← Gen(1η), H $←− ΩH

]
−

Pr
[
DExt(pk,LH ,List),H,EH

pk (pk) = 1 : (pk, sk)← Gen(1η), H $←− ΩH
]
| ≤ negl(η).

In the definition above, the random oracle H can consist of several random
oracles {Hi}i and is defined as H(i, x) := Hi(x). (This remark has been made
since OAEP+ uses three random oracles.)

Remark. The definition above can be generalized to any oracle EHpk that upon
receiving a queryM from the adversary, it randomly generates a message m (note
that m may depend on M), encrypts it and sends the resulting ciphertext to the
adversary. In more details, we say an encryption scheme is plaintext-extractable
if there exists an extractor that works for any EHpk defined above. (This generality
is not needed in our paper but it might be needed in other context. For instance
this generality is crucial to prove the implication PA2+IND-CPA =⇒ IND-CCA
in [2].)

3.2 Quantum Random Oracle Model

We define plaintext-extractibility in the quantum random oracle model [6] in
which queries to the random oracles are quantum (superposition of inputs). This
is necessary in the post-quantum setting since a quantum adversary attacking a
scheme based on a real hash function is necessarily able to evaluate that function
in superposition. Hence the random oracle model must reflect that ability if one
requests post-quantum security.

In the definition below, an oracle with quantum access is differentiated with
an underline (and an oracle without an underline is accessed classically).

Definition 6. Let DH be a database of CStOH . Let η be the security parameter.
We say a public-key encryption scheme ΠH is plaintext-extractable in the quantum
random oracle model if there exists an algorithm Ext such that for any QPT
distinguisher D, the following holds:

|Pr
[
DDecCStOH

sk,List,CStOH ,E
CStOH
pk (pk) = 1 : (pk, sk)← Gen(1η), H $←− ΩH

]
−

Pr
[
DExt(pk,DH ,List),CStOH ,E

CStOH
pk (pk) = 1 : (pk, sk)← Gen(1η), H $←− ΩH

]
| ≤ negl(η).

In the definition above, the random oracle H can consist of several random
oracles {Hi}i and H(i, x) := Hi(x). However, the first component of a quantum
query (the index i) is restricted to be a classical value. In other words, the
adversary is not allowed to query all oracles simultaneously by submitting∑
i,x αi,x |i, k〉. (This restriction is not limiting since in OAEP+, the adversary

is allowed to query the random oracles G,H,H ′ separately.)
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4 Security of OAEP+

We define OAEP+ transformation below.

Definition 7 (OAEP+). Let G : {0, 1}k0 → {0, 1}n, H : {0, 1}n+k1 →
{0, 1}k0 and H ′ : {0, 1}n+k0 → {0, 1}k1 be random oracles. The encryption
scheme OAEP+ = (Gen,Enc,Dec) is defined as:

1. Gen: Specifies an instance of the injective function f and its inverse f−1.
Therefore, the public key and secret key are f and f−1 respectively.

2. Enc: Given a message m ∈ {0, 1}n, the encryption algorithm computes

s := (G(r)⊕m)||H ′(r,m) and t := r ⊕H(s),

where r $←− {0, 1}k0 , and outputs the ciphertext c := f(s, t).
3. Dec: Given a ciphertext c, the decryption algorithm does the following: Com-

pute f−1(c) = (s, t), query the random oracle H on input s, query the random
oracle G on input t⊕H(s) and compute m′ := [s]n ⊕G(t⊕H(s)). Then, if
H ′(t⊕H(s),m′) = [s]k1 , it returns m′, otherwise, it returns ⊥.

Note that k0 and k1 depend on the security parameter n.

We prove that OAEP+ is IND-CCA secure in the quantum random oracle
model. First, we show that OAEP+ is plaintext-extractable and use it to show
the IND-CCA security.

To show the plaintext-extractability, the overall strategy is to start with a
game in which the adversary has access to the actual decryption oracle, define
some indistinguishable intermediate games and reach the last game for which
the challenger does not use the secret key for decryption.

In the following, the algorithm Decf−1 is the decryption algorithm of OAEP+
except for the challenge ciphertext c∗ that outputs ⊥. The number of queries to
the random oracles G,H,H ′ is shown by qG, qH , qH′ , respectively, and qD is the
number of decryption queries.

Theorem 1. OAEP+ is plaintext-extractable in the quantum random oracle
model.

Proof. Game 0. We start with Game 0 in which the quantum polynomial-time
distinguisher D has classical access to the decryption oracle Decf−1 , quantum
access to the random oracles G,H,H ′ and classical access to the encryption
oracle EG,H,H

′

f .

Game 1. We replace the random oracles G,H,H ′ with the compressed standard
oracles CStOG,CStOH ,CStOH′ , respectively. These changes are indistinguishable
for the adversary by Lemma 2. Let DG, DH and DH′ denote the databases of
these oracles.
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Game 2. We modify the decryption oracle Decf−1 to a decryption oracle Dec(1)
f−1

that works as follows. Let DH′ denotes the database of CStOH′ . We define the
relation RH′c to be the set of all ((r,m), H ′(r,m)) such that

[[f−1(c)]n+k1 ]k1 = H ′(r,m). (2)

Given the relation RH′c , the projectors Σ(r,m)
c for (r,m) ∈ {0, 1}n+k0 and Σ∅c are

defined similar to Equation (1). Now the measurement

MH′ = {Σ(r,m)
c }(r,m)∈{0,1}n+k0∪{∅}

checks if there exists a pair in DH′ satisfying the relation RH′c or not. If there is
more than one pair satisfying the relation RH′c , the smallest (r,m) will be the
output of MH′2. If there is no such a pair the output of MH′ is ∅. Let Mc

DH′ ,PH′

be the following purified measurement corresponding to MH′ :

Mc
DH′ ,PH′

|φ, z〉DH′PH′
→

∑
(r,m)∈{0,1}n+k0∪{∅}

Σ(r,m)
c |φ〉DH′

|z ⊕ (r,m)〉PH′
.

Note that Mc
DH′ ,PH′

is an involution, that is, Mc
DH′ ,PH′

Mc
DH′ ,PH′

= I. For
each decryption query on an input c, the decryption algorithm Dec(1)

f−1 first applies
the Mc

DH′ ,PH′
unitary with the PH′ register initiated with 0. Then it executes

Decf−1 . Finally it applies the Mc
DH′ ,PH′

again.

Dec(1)
f−1 = Mc

DH′ ,PH′
Decf−1 Mc

DH′ ,PH′
.

We show that Game 1 and Game 2 are indistinguishable. Note that we measure
the database DH′ and this measurement might be detectable to the adversary.
In order to undo this measurement we apply the measurement again, however,
after applying Decf−1 . Since Decf−1 queries H ′, the measurement on DH′ does
not commute with Decf−1 , trivially. Therefore, we use Lemma 3 to show that
these two almost commute and therefore this measurement is not detectable to
the adversary.

Recall that ΓRH′
c

is the maximum values of H ′(r,m) that satisfies the relation
(2) where the maximum is taken over inputs (r,m). Since [f−1(c)]n+k1 is a single
value given c, ΓRH′

c
= 1. By Lemma 3, Mc

DH′ ,PH′
almost commutes with Decf−1

and the adversary can distinguish these two games with a probability at most
qD2−k1/2+7/2.

Game 3. We modify the decryption oracle Dec(1)
f−1 to a decryption oracle Dec(2)

f−1

that works as follows. It first applies Mc
DH′ ,PH′

, if the register PH′ is empty, it
returns ⊥, otherwise, it executes Decf−1 . Finally it applies Mc

DH′ ,PH′
. To show

2Outputting the smallest (r, m) is a convention to have a correct definition of
the projector. Since a random oracle is quantum collision-resistance [17], only with a
negligible probability there will be more than one pair satisfying the relation (2).
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that these two games are indistinguishable, we show that when the register
PH′ is empty, the decryption oracle Dec(1)

f−1 (or Decf−1) returns ⊥ with a high
probability. Let assume the adversary submits a decryption query c for which
the register PH′ is empty, that is, there is no pair

(
(r,m), H ′(r,m)

)
in DH′ such

that the relation (2) holds. Let f−1(c) = (sc, tc). The decryption algorithm
Decf−1 checks if H ′

(
tc ⊕H(sc), [sc]n ⊕G(tc ⊕H(sc))

)
= [sc]k1 and this equal-

ity holds with a probability at most 1/2k1 because H ′ is a random oracle and(
tc ⊕H(sc), [sc]n ⊕G(tc ⊕H(sc))

)
has not been queried to H ′ by the adversary

since PH′ is empty. Overall, the adversary can distinguish these two games with
a probability at most qD/2k1 .

Game 4. Let DG denotes the database of CStOG. We modify the decryption
oracle Dec(2)

f−1 to a decryption oracle Dec(3)
f−1 that on the input c works as follows.

It first applies Mc
DH′ ,PH′

, if the register PH′ is empty, it returns ⊥. Otherwise if
the register PH′ contains a pair (r′,m′), it applies a purified measurement MG

on the database DG that returns 1 if there exists a pair (r′, Gr′) ∈ DG such that

[[f−1(c)]n+k1 ]n ⊕m′ = Gr′ (3)

and returns 0 otherwise. The output of this measurement is stored in the register
PG that starts with |0〉. Then it applies Decf−1 , MG and Mc

DH′ ,PH′
respectively.

(Note that MG is defined similar to Mc
DH′ ,PH′

in Game 2.)
In order to show that these two games are indistinguishable, we show that

Decf−1 and MG almost commutes. (Then MG will cancel out with its second ap-
plication.) By Lemma 3, these two games are indistinguishable with a probability
at most qD2−n+7/2.

Game 5. We modify the decryption oracle Dec(3)
f−1 to a decryption oracle Dec(4)

f−1

that on the input c works similar to Dec(3)
f−1 unless if the output of MG is 0, it

returns ⊥.

Dec(4)
f−1(c) =


⊥ if PH′ is empty
⊥ if PG contains 0
Decf−1(c) otherwise

.

In order to show that these two games are indistinguishable, we need to show that
the decryption algorithms Dec(3)

f−1 and Dec(4)
f−1 return the same output with a high

probability. If PG contains 1, both algorithms return Decf−1(c). We prove that
when PG contains 0, Decf−1(c) is ⊥ with a high probability. Let f−1(c) = (sc, tc).
Note that Decf−1 checks if

H ′
(
tc ⊕H(sc), [sc]n ⊕G(tc ⊕H(sc))

)
= [sc]k1

or not. We show that since PG is 0, the query
(
tc⊕H(sc), [sc]n⊕G(tc⊕H(sc))

)
will be submitted to H ′ only with a negligible probability. Note that when PG
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is 0 the value tc ⊕ H(sc) has not been queried to the random oracle G. This
means that the adversary has obtained the value G(tc⊕H(sc)) without querying
tc ⊕H(sc) to G. This holds with a probability 1/2n.

When
(
tc⊕H(sc), [sc]n⊕G(tc⊕H(sc))

)
has not been queried to H ′, Decf−1

returns ⊥ with a probability at least 1− 1/2k1 because H ′ is a random oracle.
Overall, the adversary can distinguish these two games with a negligible proba-
bility.

Game 6. Let DH denotes the database of CStOH . We modify the decryption
oracle Dec(4)

f−1 to a decryption oracle Dec(5)
f−1 that on the input c works as follows.

The decryption oracle Dec(5)
f−1 is similar to Dec(4)

f−1 except if the register PH′ is
not empty and PG is not zero it sets s′ = (Gr′ ⊕m′)||H ′(r′,m′). Then it applies a
purified measurement MH on the database DH that returns 1 if there exists a
pair (s′, Hs′) ∈ DH such that

Hs′ = [f−1(c)]k0 ⊕ r′. (4)

Otherwise it returns 0. The output of this measurement is stored in the register
PH that starts with |0〉. Note that the measurement MH is applied again after
Decf−1 . By Lemma 3, these two games are indistinguishable with a probabil-
ity at most qD2−k0+7/2. (Note thatMH is defined similar toMc

DH′ ,PH′
in Game 2.)

Game 7. We modify the decryption oracle Dec(5)
f−1 to a decryption oracle Dec(6)

f−1

that on the input c works similar to Dec(5)
f−1 unless if the output of MH is 0, it

returns ⊥.

Dec(6)
f−1(c) =


⊥ if PH′ is empty
⊥ if PG contains 0
⊥ if PH contains 0
Decf−1(c) otherwise

.

In order to show that these two games are indistinguishable, we need to show that
the decryption algorithms Dec(4)

f−1 and Dec(5)
f−1 return the same output with a high

probability. If PH contains 1, both algorithms return Decf−1(c). We prove that
when PH contains 0, Decf−1(c) is ⊥ with a high probability. Let f−1(c) = (sc, tc).
By the relations (2) and (3), we can write

sc = (Gr′ ⊕m′)||H ′(r′,m′) = s′.

Since PH is 0, sc has not been queried to the random oracle H and therefore
H(sc) remains a uniformly random value from the adversary’s perspective. This
means that the equality

H ′
(
tc ⊕H(sc), [sc]n ⊕G(tc ⊕H(sc))

)
= [sc]k1

holds with a probability at most 1/2k1 . Overall, the adversary is able to distin-
guish these two games with a probability at most qD/2k1 .
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Game 8. In this game, we change Dec(6)
f−1 to a decryption oracle Dec(7)

f that
does not use f−1 to decrypt. Note that the decryption oracle Dec(6)

f−1 uses
f−1 in the measurements Mc

DH′ ,PH′
,MG and MH . So instead of applying these

measurements, we search over all pairs in DH′ . Namely, for each pair (r′,m′) ∈
DH′ , the decryption oracle Dec(7)

f checks if (r′, Gr′) is in DG. If yes, it sets
s′ = (Gr′ ⊕m′)||H ′(r′,m′). Then it checks if (s′, Hs′) ∈ DH . If yes, Dec(7)

f checks
if c = f(s′, r′⊕Hs′). If the equality holds, it returns m′ and aborts. If there is no
pair (r′,m′) ∈ DH′ that make the decryption aborts, the output of Dec(4)

f will
be ⊥.

We show that these decryption algorithms Dec(6)
f−1 and Dec(7)

f are indistin-
guishable. It is clear that if PH′ is empty or one of PG or PH registers contain 0
for a ciphertext c, both decryption algorithms return ⊥. If for a ciphertext c, PH′
is not empty and PG and PH registers contain 1, this means that the relations
(2), (3) and (4) hold for f−1(c) = (sc, tc) and a pair ((r′,m′), H(r′,m′)) ∈ DH′ .
That is,

s′ = (Gr′ ⊕m′)‖H(r′,m′), [sc]k1 = H ′(r′,m′), [sc]n = m′ ⊕Gr′ and tc = Hs′ ⊕ r′.

It is clear that s′ = sc and r′ = tc ⊕H(sc). In this case, Dec(7)
f returns m′. On

the other hand, the decryption algorithm Decf−1 checks if

H ′
(
tc ⊕H(sc), [sc]n ⊕G(tc ⊕H(sc))

)
= [sc]k1

and if this equality holds, it returns [sc]n⊕G(tc⊕H(sc)). Now it is obvious that
Dec(6)

f−1 return m′ as well. This finishes the proof because Dec(7)
f does not use

f−1 to decrypt.

We use Dec(7)
f to prove the IND-CCA security of OAEP+ in the quantum

random oracle model. The overall strategy is to start with the IND-CCA game,
define some indistinguishable intermediate games and reach the last game for
which the adversary’s success probability is 1/2.

Theorem 2. If the underlying permutation is quantum one-way, then the OAEP+
scheme is IND-CCA secure in the quantum random oracle model.

Proof. We reduce an adversary that attacks in the IND-CCA sense to an
adversary B that inverts the permutation f . Note that in all games below,
CStOG,CStOH ,CStOH′ denote the compressed oracles corresponding the ran-
dom oracles G,H,H ′, respectively, b is a random bit chosen by the challenger,
m0,m1 are challenge messages submitted by the adversary, r∗ is a uniformly at
random element, c∗ is the challenge ciphertext that is computed as: c∗ = f(s∗, t∗)
where s∗ = (G(r∗)⊕mb)||H ′(r∗,mb) and t∗ = H(s∗)⊕ r∗.

Game 0: We start with IND-CCA game in the quantum random oracle model
in which the adversary A wins if it guesses the challenge bit b. Note that we use
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compressed oracles in this game.

Game 1: We replace the decryption algorithm Decf−1 with Dec(7)
f constructed

in Theorem 1.

Game 2: This is identical to Game 1, except the challenger measures all the
queries to CStOG and CStOH′ with the projective measurements

Mr∗ = {P1 = |r∗〉〈r∗| , P0 = I− |r∗〉〈r∗|}.

If the output of Mr∗ is 1, it aborts and returns a random bit.
Let qG1 and qH′1 be the total number of queries submitted to G and H ′ before

the challenge query. Let qG2 and qH′2 be the total number of queries submitted
to G and H ′ after the challenge query.

If there is no query to CStOG and CStOH′ with a non-negligible weight on
the state |r∗〉, we can use Lemma 1 (gentle-measurement lemma) to show that
these two games are indistinguishable. In more details, let ρi is the state of
the i-th query and let Mr∗(ρi) returns 1 with the probability εi. By the gentle-
measurement lemma, the trace distance between Mr∗(ρi) and ρi is at most√
εi + εi. So overall, these two games are distinguishable with the advantage of

at most 2(qG + qH′)
√

maxi{εi}. Therefore, if maxi{εi} is negligible, two games
are indistinguishable.

Since r∗ is a random value that has not been used before the challenge query
Mr∗(ρi) returns 1 with a probability at most 1/2k0 for any i ∈ [qG1 +qH′1]. So the
measurements before the challenge query are distinguishable with a probability
at most 2(qG1 + qH′1)

√
2−k0 that is negligible.

It is left to show that the measurements after the challenge query are in-
distinguishable. Let assume A makes a query to CStOG or CStOH′ after the
challenge query with a non-negligible weight on |r∗〉 with a probability ε. We
can construct an adversary B that breaks the quantum one-wayness of f . The
adversary B on input c∗

(
:= f(s∗, t∗) for uniformly random s∗, t∗

)
, runs A and

guesses randomly in which query r∗ will be submitted. The adversary B chooses
i from [qG2 + qH′2] uniformly at random and simulates the random oracle queries
and decryption oracle queries right until this query. Upon receiving the challenge
query from A, the adversary B sends c∗. We describe B in more details.

H-queries. For H-queries, the adversary B uses CStOH where H is a random
oracle.

Let Find be an operator that on inputs r, c∗,DH , checks if there exists a pair
(s,Hs) in DH such that c∗ = f(s, r ⊕Hs). If there exists such a pair it returns
(1, s). Otherwise, it returns (0, 0n+k1). Note that since f is a permutation, the
Find unitary either returns (0, 0n+k1) or returns (1, s∗).

G-queries. Let G̃ be a random oracle with the same domain and co-domain
as G. For each query to G, B first applies Find operator with an ancillary register
Qb′Qs of (1 + n+ k1) qubits initiated with zero. Then, if the query is conducted
before the challenge query or the Qb′ is set to 0, it forwards the query to CStOG̃,
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otherwise, it XORs mb ⊕ [s∗]n to the output register:

G : |r, y〉 |DH〉 →


∣∣r, y ⊕ G̃(r)

〉
if mb is not defined∣∣r, y ⊕ G̃(r)

〉
if Find(r, c∗,DH) = (0, 0n+k1)

|r, y ⊕ (mb ⊕ [s∗]n)〉 if Find(r, c∗,DH) = (1, s∗)
.

And finally it applies the Find operator again. Since f is a permutation, there
exists only one r such that c∗ = f(s∗, r ⊕Hs∗) and that is r∗. For any r 6= r∗

the oracle G and the random oracle G̃ are the same. Recall that the adversary
B guesses that a query with a non-negligible weight on |r∗〉 occurs in the i-th
query. (This holds with a non-negligible probability ε/(qG2 + qH′2).) Therefore,
the simulation of G-queries is indistinguishable from a random oracle G̃ right
before the i-th query.

H ′-queries. Let H̃ be a random oracle with the same domain and co-domain
as H ′. For each query |r,m〉, B first applies Find operator with an ancillary
register Qb′Qs of (1 + n+ k1) qubits initiated with zero. Then, if the query is
conducted before the challenge query or the Qb′ is set to 0 or m 6= mb, it forwards
the query to CStOH̃ , otherwise, it XORs [s∗]k0 to the output register:

H ′ : |r,m, y〉 |DH〉 →


∣∣r,m, y ⊕ H̃(r,m)

〉
if mb is not defined∣∣r,m, y ⊕ H̃(r,m)

〉
if Find(r, c∗,DH) = (0, 0n+k1)∣∣r,m, y ⊕ H̃(r,m)

〉
if Find(r, c∗,DH) = (1, s∗) ∧m 6= mb

|r,m, y ⊕ [s∗]k1〉 if Find(r, c∗,DH) = (1, s∗) ∧m = mb

.

Similar to above, the simulation of H ′-queries is indistinguishable from H̃ for
queries right before the i-th query.

The challenge query. Upon receiving m0 and m1 from A, the adversary B
returns c∗ as the challenge ciphertext. Note that the way we simulate G-queries
and H ′-queries, G(r∗) := mb⊕ [s∗]n, H ′(r∗,mb) = [s∗]k1 and c∗ = f(s∗, r∗⊕HS∗)
that is a perfect simulation of the challenge query.

Decryption queries. B uses the oracle Dec(7)
f on inputs DH , DG̃ and DH̃

for the decryption queries. Note that we reprogram G and H ′ only on the input r∗
for which c∗ = (s∗, r∗ ⊕Hs∗). Since Dec(4)

f on input c∗ does not use its database
and returns ⊥, the simulation of the decryption queries is perfect.

Output of B. The adversary B measures the i-th random oracle query to
CStOG or CStOH′ with Mr∗ . Then, the adversary searches over the database
DH to find a pair (s∗, Hs∗) such that c∗ = f(s∗, r∗ ⊕ Hs∗). If it finds such a
pair, it returns (s∗, r∗ ⊕Hs∗) as the inverse of f on c∗ and aborts. Otherwise,
it returns s∗ = (G̃(r∗) ⊕ mb)||H̃(r∗,mb) and r∗ ⊕ H(s∗) as the inverse of f
on the input c∗. Note that when there is no pair (s∗, Hs∗) in DH such that
c∗ = f(s∗, r∗ ⊕ Hs∗), that is Find(r∗, c∗,DH) = (0, 0n+k1), the G-queries and
H ′-queries are answered with the random oracle G̃ and H̃, respectively. Therefore,
the equation c∗ = f(x, r∗⊕H(x)) holds for x = (G̃(r∗)⊕mb)||H̃(r∗,mb). Overall,
the adversary B can break the one-wayness of f with a probability at least
ε/(qG2 + qH′2). Since f is quantum one-way, ε is negligible and this means Game
1 and Game 2 are indistinguishable.
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Now, it is clear that Game 2 returns 1 with the probability 1/2 because if one
of the measurements returns 1, the output of the game is a random bit. If none of
the measurements return 1, G(r∗) and H ′(r∗,mb) remain an uniformly random
value for A and consequently mb⊕G(r∗) is an uniformly random value for A. So
the probability that A guesses b is 1/2. Finally, since each two consecutive games
are indistinguishable, the probability that A guesses b in Game 0 is 1/2 + negl(n)
and this finishes the proof of the theorem.

5 Conclusion and Future Direction

In this paper, we show that a weaker notion than PA2 (our plaintext-extractability
notion) is sufficient to show the IND-CCA security when the reduction adversary
tries to invert an injective function. We show the IND-CCA security of OAEP+
in QROM by first showing that OAEP+ is plaintext-extractable in QROM.

We argue that OAEP+ might even satisfy a stronger notion of plaintext-
extractability, namely, the post-quantum PA2 introduced in [10]. Our high-level
argument is that since the random oracle H ′ is used to sew the randomness and
the message inside of the ciphertext, an adversary to attack PA2 might fail to
output a valid ciphertext for which its corresponding plaintext is unknown to
the adversary due to unpredictability of H ′. We leave detailed investigation of
this claim as a future work.

In addition, we leave investigating the security of OAEP+ with respect to a
quantum IND-CCA notion that allows quantum challenge queries [7] as a future
direction. (Note that the IND-qCCA scrutiny [5] of OAEP+ will follow with small
modification to our proof. The IND-qCCA is a notion with classical challenge
queries and quantum decryption queries.)

Acknowledgment. We would like to thank anonymous reviewers for their useful
comments and suggestions.

References

1. M. Bellare, A. Desai, D. Pointcheval, and P. Rogaway. Relations among notions of
security for public-key encryption schemes. In CRYPTO 1998, volume 1462, pages
26–45. Springer, 1998.

2. M. Bellare and A. Palacio. Towards plaintext-aware public-key encryption without
random oracles. In International Conference on the Theory and Application of
Cryptology and Information Security, pages 48–62. Springer, 2004.

3. M. Bellare and P. Rogaway. Random oracles are practical: A paradigm for designing
efficient protocols. In D. E. Denning, R. Pyle, R. Ganesan, R. S. Sandhu, and
V. Ashby, editors, CCS ’93, Proceedings of the 1st ACM Conference on Computer
and Communications Security, Fairfax, Virginia, USA, November 3-5, 1993., pages
62–73. ACM, 1993.

4. M. Bellare and P. Rogaway. Optimal asymmetric encryption. In A. D. Santis,
editor, Advances in Cryptology - EUROCRYPT ’94, Workshop on the Theory
and Application of Cryptographic Techniques, Perugia, Italy, May 9-12, 1994,

17



Proceedings, volume 950 of Lecture Notes in Computer Science, pages 92–111.
Springer, 1994.

5. Boneh and M. Zhandry. Secure signatures and chosen ciphertext security in a
quantum computing world. In R. Canetti and J. A. Garay, editors, Advances in
Cryptology - CRYPTO 2013 - 33rd Annual Cryptology Conference, Santa Barbara,
CA, USA, August 18-22, 2013. Proceedings, Part II, volume 8043 of Lecture Notes
in Computer Science, pages 361–379. Springer, 2013.

6. D. Boneh, Ö. Dagdelen, M. Fischlin, A. Lehmann, C. Schaffner, and M. Zhandry.
Random oracles in a quantum world. In D. H. Lee and X. Wang, editors, Advances in
Cryptology - ASIACRYPT 2011 - 17th International Conference on the Theory and
Application of Cryptology and Information Security, Seoul, South Korea, December
4-8, 2011. Proceedings, volume 7073 of Lecture Notes in Computer Science, pages
41–69. Springer, 2011.

7. C. Chevalier, E. Ebrahimi, and Q. H. Vu. On the security notions for encryption in
a quantum world. IACR Cryptol. ePrint Arch., 2020:237, 2020.

8. J. Don, S. Fehr, C. Majenz, and C. Schaffner. Online-extractability in the quantum
random-oracle model. In O. Dunkelman and S. Dziembowski, editors, Advances in
Cryptology - EUROCRYPT 2022 - 41st Annual International Conference on the
Theory and Applications of Cryptographic Techniques, Trondheim, Norway, May 30
- June 3, 2022, Proceedings, Part III, volume 13277 of Lecture Notes in Computer
Science, pages 677–706. Springer, 2022.

9. E. Ebrahimi. Post-quantum security of plain OAEP transform. In PKC 2022,
volume 13177, pages 34–51. Springer, 2022.

10. E. Ebrahimi and J. van Wier. Post-quantum plaintext-awareness. Cryptology
ePrint Archive, Paper 2022/937, 2022. https://eprint.iacr.org/2022/937.

11. E. Fujisaki, T. Okamoto, D. Pointcheval, and J. Stern. RSA-OAEP is secure under
the RSA assumption. J. Cryptology, 17(2):81–104, 2004.

12. M. A. Nielsen and I. L. Chuang. Quantum Computation and Quantum Information
(10th Anniversary edition). Cambridge University Press, 2016.

13. P. W. Shor. Polynomial-time algorithms for prime factorization and discrete
logarithms on a quantum computer. SIAM J. Comput., 26(5):1484–1509, 1997.

14. V. Shoup. OAEP reconsidered. In Advances in Cryptology - CRYPTO 2001,
21st Annual International Cryptology Conference, Santa Barbara, California, USA,
August 19-23, 2001, Proceedings, pages 239–259, 2001.

15. E. E. Targhi and D. Unruh. Post-quantum security of the fujisaki-okamoto and
OAEP transforms. In TCC 2016-B, volume 9986 of Lecture Notes in Computer
Science, pages 192–216, 2016.

16. A. J. Winter. Coding theorem and strong converse for quantum channels. IEEE
Trans. Inf. Theory, 45(7):2481–2485, 1999.

17. M. Zhandry. A note on the quantum collision and set equality problems. Quantum
Inf. Comput., 15(7&8):557–567, 2015.

18. M. Zhandry. How to record quantum queries, and applications to quantum indiffer-
entiability. In A. Boldyreva and D. Micciancio, editors, Advances in Cryptology -
CRYPTO 2019 - 39th Annual International Cryptology Conference, Santa Barbara,
CA, USA, August 18-22, 2019, Proceedings, Part II, volume 11693 of Lecture Notes
in Computer Science, pages 239–268. Springer, 2019.

18

https://eprint.iacr.org/2022/937

	Introduction
	Our Contribution

	Preliminaries
	Quantum Computing
	Definitions
	Compressed Standard Oracle

	Plaintext-extractability
	Random Oracle Model
	Quantum Random Oracle Model

	Security of OAEP+
	Conclusion and Future Direction

