
Notes on Reusable Garbling?

Yupu Hu1, Siyue Dong1, Baocang Wang1, and Jun Liu1

State Key Laboratory of Integrated Services Networks, Xidian University, Xi’an 710071, China

yphu@mail.xidian.edu.cn; 359442088@qq.com; bcwang@xidian.edu.cn; jliu6@stu.xidian.edu.cn

Abstract. Garbling is a cryptographic primitive which has many applications. It is mainly

used for scenes of limited authority, such as multi-party computation (MPC), attribute-

based encryption (ABE), functional encryption (FE), indistinguishability obfuscation (IO),

etc. Garbling schemes before 2013 are of one-time garbling. Goldwasser et al and Agrawal

presented a reusable garbling scheme, which made use of a symmetric encryption scheme

and an FE scheme as the components.

In this paper we discuss the validity and the efficiency of reusable garbling scheme. We

present the following three notes on the scheme.

(1) Reusable garbling scheme does not provide new applications, and it is still a one-time

garbling scheme.

(2) Even reusable garbling scheme is taken as a one-time garbling scheme, sometimes it

is not usable. More detailedly, it can only be used for Basic Scene 2, and cannot be used for

Basic Scene 1. For example, it cannot be used for MPC.

(3) Even reusable garbling scheme is taken as a one-time garbling scheme used for Basic

Scene 2, there is no evidence to show that its efficiency is better than a former one-time

garbling scheme.

Keywords: garbling · functional encryption (FE) · fully homomorphic encryption (FHE) ·

attribute-based encryption (ABE)

1 Preliminaries: reusable garbling and our work

Garbling is a cryptographic primitive which has many applications, and is mainly

used for scenes of limited authority. Garbling is firstly used for multi-party com-

putation (MPC) [1, 2]. Then it is used for attribute-based encryption (ABE) and

functional encryption (FE) [3, 4]. It is interesting that garbling and FE are usually

? Supported by National Natural Science Foundations of China (61972457, U19B2021); Key Research

and Development Program of Shaanxi (2020ZDLGY08-04); Innovation Scientists and Technicians Troop

Construction Projects of Henan Province.

2 Y. Hu et al.

the ground structure of each other. Garbling is also used for indistinguishability ob-

fuscation (IO) [5–7]. Notice that garbling and obfuscation have similar functionality,

but the latter is defined as more powerful.

1.1 Two basic scenes of garbling

All applications of garbling are based on the following two basic scenes, and are

combinations or modifications of these two basic scenes.

Basic Scene 1 Alice knows Boolean circuit f , while Bob knows the value of

Boolean variable x. Alice encodes f into f , and encodes each value of X, the range

of the variable (More detailedly, for each entry Xi of the range X = (X1, · · · , Xn),

respectively encodes 0 and 1 into Xi,0 and Xi,1. Thus the range X is encoded into

X =
(
X1,0, X1,1, · · · , Xn,0, Xn,1

)
). Then Alice sends f to Bob, and sends X to Bob

by “one-out-two oblivious transfer” (More detailedly, for two codes Xi,0 and Xi,1 of

each entry Xi, Bob can choose to receive only one code). Bob chooses partial codes

x from X according to the value of x. Then, “correctness” means that Bob can

correctly compute f(x) from
(
x, f

)
; “privacy”means that (1) Alice knows nothing

about x, and (2) Bob knows nothing about f except the value of f(x).

Basic Scene 2 Alice knows Boolean circuit f and the value of Boolean variable

x. Alice encodes f into f , and encodes x into x. Alice sends
(
x, f

)
to Bob. Then,

“correctness” means that Bob can correctly compute f(x) from
(
x, f

)
; “privacy”

means that Bob knows nothing about (x, f) except the value of f(x).

We have following three notes on above two basic scenes.

Note 1 “One-out-two oblivious transfer” in Basic Scene 1 is easy to be realized.

Note 2 Basic Scene 1 is just the ground structure of multi-party computation.

Here we take the example of two users U1 and U2, suppose U1 knows x1, U2 knows x2,

both U1 and U2 know the Boolean circuit C(·, ·). They want to compute C(x1, x2),

while U1 hopes to hide x1, U2 hopes to hide x2. Then, firstly take f(·) = C(x1, ·),

U1 and U2 take the roles of “Alice” and “Bob” in Basic Scene 1 respectively, so that

U2 computes f(x2) = C(x1, x2). Secondly take f(·) = C(·, x2), U1 and U2 exchange

the roles, so that U1 computes f(x1) = C(x1, x2). By taking Basic Scene 1 twice,

Notes on Reusable Garbling 3

both U1 and U2 obtain C(x1, x2) (correctness), U1 does not know x2 while U2 does

not know x1 (privacy).

Note 3 Basic Scene 2 cannot be the ground structure of multi-party compu-

tation. In Basic Scene 2, the knowledge of one side contains that of another side,

which does not satisfy the scene assumption of multi-party computation.

1.2 Reusable garbling

Garbling schemes before 2013 are of one-time garbling [1, 2, 8, 9]. That is, encoding

once (for Basic Scene 1 or Basic Scene 2) can only compute the combination f(x)

of one circuit f and one value of x, otherwise the privacy cannot be satisfied. Gold-

wasser et al [3] and Agrawal [4] presented a reusable garbling scheme, which made

use of a symmetric encryption scheme and a functional encryption scheme as the

components. From literal understanding, “reusable garbling” seems to be that en-

coding once can be repeatedly used to compute the combination f(x) of one circuit

f and any values of x.

1.3 Our work

In this paper we discuss the validity and the efficiency of reusable garbling scheme.

We present the following three notes on the scheme.

(1) Reusable garbling scheme does not provide new applications, therefore it is

still a one-time garbling scheme.

(2) Even reusable garbling scheme is taken as a one-time garbling scheme, some-

times it is not usable. More detailedly, it can only be used for Basic Scene 2, and

cannot be used for Basic Scene 1. For example, it cannot be used for multi-party

computation (MPC).

(3) Even reusable garbling scheme is taken as a one-time garbling scheme used

for Basic Scene 2, there is no evidence to show that its efficiency is better than a

former one-time garbling scheme [9].

In the following, we explain more details of our work.

4 Y. Hu et al.

To show the note (1), we point our that reusable garbling scheme only satisfies

a weaker standard: encoding of f can be repeatedly used to compute f(x) for dif-

ferent values of x, but encoding of variable (range or value) can only be used once,

otherwise privacy cannot be satisfied. More than this, encoding of the variable is not

independent of f , but rather needs information of f (For example, k0, see subsection

3.1).

To show the note (2), we point out that in reusable garbling scheme, either the

knowledge of Alice contains that of Bob, or just opposite, which does not satisfy the

scene assumption of Basic Scene 1.

To show the note (3), we look into lower structure and ground structure of

reusable garbling scheme (We pointed [11] that lower/ground structure of Agrawal [4]

is invalid, so that in this paper we only look into lower/ground structure of Gold-

wasser et al [3]). Based on this, we compare reusable garbling scheme and an existing

one-time garbling scheme [9]. We show that, if the former does not use “bootstrap-

ping” and “modular switching” operations of fully homomorphic encryption tech-

nique, the computation complexity of the former is far larger than that of the latter;

if the former uses “bootstrapping” or “modular switching” operations, the compar-

ison is very complicated, but there is no evidence that the former has a smaller

computation complexity than the latter.

We also consider a modified reusable garbling scheme, which replaces the FE

scheme with “multi-input FE” [12]. After such modification, the scheme can achieve

truly reusable garbling. However, multi-input FE takes IO as its ground structure.

2 BHR12: a major one-time garbling scheme [9]

2.1 General expression of Boolean circuit

We know a polynomial-time-computable Boolean circuit cannot be expressed by

Algebraic Normal Form, because the number of terms may be super-polynomially

large. The most reasonable expression may be describing {two input bits, Boolean

operation, one output bit} of each step, according to the computing sequence. Sup-

Notes on Reusable Garbling 5

pose the set of Boolean operations is {+,×}, where “ + ” is bit-exclusive-or, “ × ”

is bit-and. Then n-dimensional Boolean circuit f(x) is expressed as the follow.

· Input: x = (x1, x2, · · · , xn), xn+1. Where xn+1 = 1 is constant.

· Computation: For i = n + 2, n + 3, · · · , N , sequentially let xi ← xa(i)Oixb(i),

where a(i) ∈ {1, 2, · · · , i− 1}, b(i) ∈ {1, 2, · · · , i− 1}, a(i) < b(i), Oi ∈ {+,×}.

· Output: xN (xN = f(x))

We call

(1) {(x1, x2, · · · , xn), xn+1, (xi, a(i), b(i), Oi), i = n+ 2, n+ 3, · · · , N} the general

expression of Boolean circuit f(x).

(2) N the circuit size of f .

(3) {(a(i), b(i)), i = n+ 2, n+ 3, · · · , N} the circuit topology of f .

(4) {Oi, i = n+ 2, n+ 3, · · · , N} the Boolean operation sequence of f .

2.2 BHR12 garbling scheme for Basic Scene 1

Take two public probability distributions X0 and X1, which are completely distin-

guishable. Take a public symmetric encryption algorithm E (·, ·), where the two po-

sitions are sequentially plaintext position and secret key position. The corresponding

decryption algorithm is D (·, ·), where the two positions are sequentially ciphertext

position and secret key position.

Encoding stage (Alice) Step 1 (Random definition): For each i = 1, 2, · · · , N−1,

randomly choose j ∈ {0, 1}, and define Xi,0 = Xj, Xi,1 = X1−j(mod 2). Define XN,0 =

X0, XN,1 = X1.

Step 2 (Sampling): For each i = 1, 2, · · · , N, j ∈ {0, 1}, sample xi,j ← Xi,j.

Step 3 (Encoding the variable range): Let X = (x1,0, x1,1, · · · , xn,0, xn,1, xn+1,1).

Then X is encoding of the variable range.

Step 4 (Encoding the circuit f): For i = n+2, · · · , N , (xa(i), xb(i)) ∈ {(0, 0), (0, 1),

(1, 0), (1, 1)}, if xa(i)Oixb(i) = u, let

yi,xa(i),xb(i) = E
(
xi,u,

(
xa(i),xa(i) , xb(i),xb(i)

))
.

6 Y. Hu et al.

Then for each i = n+2, · · · , N , there is a quartet of ciphertexts {yi,0,0, yi,0,1, yi,1,0, yi,1,1}.

Take a random sort of the quartet, to obtain {yi,0,0, yi,0,1, yi,1,0, yi,1,1} (The purpose

of doing so is making Bob unable to obtain the information of any middle variable).

Let f = {(yi,0,0, yi,0,1, yi,1,0, yi,1,1) , i = n+ 2, · · ·N}. Then f is the encoding of the

circuit f .

Transmission stage (Alice → Bob) Alice sends f to Bob, and sends X to Bob

by “one-out-two oblivious transfer” (That is, for each i = 1, · · · , n, Bob can and

only can choose one from {xi,0, xi,1}. Of course Bob can receive xn+1,1). Besides,

Alice does not know Bob’s choice.

Computation stage (Bob) First, notice that Bob knows the circuit topology of

f . More detailedly, Bob knows a circuit class (universal circuit) which includes f ,

but does not know f . Bob obtains a part of codes of X according his x, and decrypts

sequentially according to the topology of f . It is easy to see that, for each i = n +

2, · · · , N , Bob can only obtain one group from four groups {
(
xa(i),0, xb(i),0

)
,
(
xa(i),0, xb(i),1

)
,(

xa(i),1, xb(i),0
)
,
(
xa(i),1, xb(i),1

)
}, so that he can only decrypt one value from two val-

ues {xi,0, xi,1}. Finally Bob decrypts one value from two values {xN,0, xN,1}. If the

value is from X0, f(x) = 0; if the value is from X1, f(x) = 1.

2.3 BHR12 garbling scheme for Basic Scene 2 [9]

The unique difference of BHR12 scheme for Basic Scene 2 and for Basic Scene 1 is

that Alice does not send X to Bob by “one-out-two oblivious transfer”, but rather

chooses directly x from X according to x, and sends {x, f} to Bob. That means that

the knowledge of Alice is {x, f} and that of Bob is only f(x).

3 Reusable garbling scheme [3, 4]

In this section we review reusable garbling scheme. We first state its structure,

which means “reusable garbling” = “functional encryption” + “symmetric encryp-

tion”. Then we state a lower structure, which means “functional encryption” =

Notes on Reusable Garbling 7

“attribute-based encryption” + “fully homomorphic encryption” + “one-time gar-

bling”. Finally we state a ground structure, which means “one-time garbling” =

“BHR12 scheme”. By combining all statements, we know that “reusable garbing”

= ABE + FHE + BHR12 + “symmetric encryption”.

3.1 The structure

Take a public symmetric E(·, ·), where the two positions are sequentially plaintext

position and secret key position, and corresponding decryption algorithm is D(·, ·).

Take a functional encryption algorithm E ′(·, ·), where the two positions are sequen-

tially plaintext position and encryption key position. If encryption key is K, function

is g, then corresponding decryption key is denoted by S(K, g), and decryption will

obtain the function value g(m) of plaintext m, corresponding decryption algorithm

is denoted by D′(·, ·). The structure has three stages: encoding, transmission, and

computation.

Encoding stage (1) For Boolean function f , take a fixed symmetric key k0, and

compute f ∗ = E(f, k0). That is, take f as a bit string, and encrypt it by using

symmetric key k0.

(2) Take f ∗∗(x, k) = (D(f ∗, k)) (x). That is, f ∗∗(x, k) is a circuit as the follow:

firstly compute D(f ∗, k) to obtain bit string F , then take F as a Boolean function

F (x) of the variable x. (It is easy to see that, if k = k0, f
∗∗(x, k) = f ∗∗(x, k0) = f(x),

while if k 6= k0, f
∗∗(x, k) and f(x) are independent of each other)

(3) Take a fixed encryption key K0 of functional encryption algorithm, and com-

pute corresponding decryption key S(K0, f
∗∗). Denote S = S(K0, f

∗∗).

(4) (Encoding the circuit f) Denote f = (f ∗, S), f is encoding of original circuit

f . Such f can be repeatedly used for computing f(x) of different values of x, so that

f is “reusable”.

(5) (Encoding the variable range or value) For x, compute x = E ′ ((x, k0), K0),

x is the encoding of variable value x.

8 Y. Hu et al.

Transmission stage Send (x, f) to Bob. (The scene may be modified to such:

Alice produces f , Bob produces x, Alice sends f to Bob)

Computation stage Bob obtains (x̄, f̄) = (x̄, f ∗, S) = (x̄, f ∗, S(K0, f
∗∗)). He com-

putes

D′(x̄, S) = D′ (x̄, S (K0, f
∗∗))

= f ∗∗ (x, k0)

= f(x).

It may be said that the computation of Bob does not use f ∗, so that f ∗ needn’t

be sent to Bob. The fact is that functional decryption needs both the decryption

key and the function. In other words, Bob’s computation needs both S and f ∗∗, and

knowing f ∗ means knowing f ∗∗.

3.2 A lower structure: about FE

Goldwasser et al [3] and Agrawal [4] respectively designed functional encryption

schemes for the structure of reusable garbling. Because we point out [11] the inva-

lidity of the functional encryption scheme of Agrawal [4], here we only review the

scheme of Goldwasser et al [3]. This functional encryption scheme has such structure:

“attribute-based encryption (ABE)” + “fully homomorphic encryption (FHE)” +

“one-time garbing”. Where the ABE is not original scheme, but the generalized ver-

sion ABE2. More detailedly, the ciphertext is not “decryptable if and only if the

function value of the label equals to 1”, but “a half is decryptable if the function

value equals to 1, and another half is decryptable if the function value equals to 0”.

The task of generalizing ABE to ABE2 is easy.

The key generation stage of FE has following six steps.

(1) Take an FHE scheme, where {FHE encryption key, corresponding decryption

key} are taken as variable parameters.

(2) For f ∗∗ (see Encoding stage of subsection 3.1), construct f ∗∗∗, the homo-

morphic function responding to f ∗∗ for FHE scheme. Now f ∗∗∗ is the function of

FHE ciphertext.

Notes on Reusable Garbling 9

(3) Express f ∗∗∗ in terms of entries, f ∗∗∗ = {f ∗∗∗1 , · · · , f ∗∗∗λ }, where each f ∗∗∗i is a

Boolean function of FHE ciphertext, λ is the number of entries (we know λ = dlog2qe,

where q is the module of FHE scheme).

(4) Take λ ABE2 schemes which are respectively denoted by ABE2,1, · · · ,ABE2,λ.

All encryption keys of these ABE2 schemes are taken as fixed parameters, and form

K0 (see Encoding stage of subsection 3.1).

(5) For each ABE2,i, i = 1, · · · , λ, generate decryption key ki according to Boolean

function f ∗∗∗i . More detailedly, the functionality of ki is as follows. Suppose the plain-

text of ABE2,i is {p0, p1}. Decryption by ki can only obtain p1 if f ∗∗∗i (label) = 1,

and can only obtain p0 if f ∗∗∗i (label) = 0.

(6) {(f ∗∗∗i , ki) , i = 1, · · · , λ} are taken as fixed parameters, and form S = S(K0, f
∗∗)

(see Encoding stage of subsection 3.1).

The encryption stage of FE has following six steps.

(1) Take (x, k0) as FE plaintext (see Encoding stage of subsection 3.1).

(2) Generate {FHE encryption key, corresponding decryption key}, and encrypt

(x, k0) to a FHE ciphertext ψ. Then ψ is taken as the label (attribute) to be attached

to each ABE2 ciphertext.

(3) Compute f ∗∗∗(ψ) = (f ∗∗∗1 (ψ), · · · , f ∗∗∗λ (ψ)). (We know that FHE decryption

circuit containing decryption key can decrypt f ∗∗∗(ψ) to obtain f ∗∗(x, k0) = f(x).

However, FHE decryption circuit containing decryption key should be hidden, that

is, FE decrypter shouldn’t know FHE decryption key, otherwise the FE scheme is

not secure). Denote ψ∗ = {ψ∗1, · · · , ψ∗λ} = f ∗∗∗(ψ).

(4) Suppose FHE decryption circuit containing decryption key is fhe.dec(·), we

know it is only the function of ψ∗ = {ψ∗1, · · · , ψ∗λ}. Take a one-time garbling of

the circuit fhe.dec, that is, take encoding fhe.dec of the circuit fhe.dec, and take

encoding
{
ψ∗1,0, ψ

∗
1,1, · · · , ψ∗λ,0, ψ∗λ,1

}
of the range of ψ∗.

(5) For i = 1, · · · , λ, encrypt
(
ψi,0, ψi,1

)
to obtain ABE2,i ciphertext ci, with

attached public label (ψ, FHE encryption key).

(6) Take
{

(c1, · · · , cλ) , ψ, fhe.dec
}

as the FE ciphertext.

The decryption stage of FE has following two steps.

10 Y. Hu et al.

(1) (Decryption of ABE2) For i = 1, · · · , λ, decrypt ci to obtain ABE2,i plaintext.

More detailedly, obtain ψ∗i,1 if ψ∗i = 1 and ψ∗i,0 if ψ∗i = 0. Denote the decrypted value

by ψ∗i .

(2) (Computation of one-time garbling) Compute

fhe.dec
(
ψ∗1, · · · , ψ∗λ

)
= fhe.dec(ψ∗1, · · · , ψ∗λ)

= f ∗∗(x, k0)

= f(x).

3.3 A ground structure: about one-time garbling

BHR12 scheme [9] is a good candidate of one-time garbling for the FE scheme in

subsection 3.2. BHR12 scheme does not restrict the function, as long as it is poly-

nomial time computable, while other candidates restrict the depth of the function.

Another benefit of BHR12 scheme is that it only uses symmetric encryption with-

out special cryptographic tools, while other candidates need branching program or

randomized matrix or something else.

4 Analysis of the validity of reusable garbling scheme

4.1 Analysis of reusability

Encoding f of circuit f can be repeatedly used for computing f(x) of different values

of x. But there is only encoding x of single value x, rather than encoding of variable

range. That is, before each computation, encoding of a new value is needed. More

than this, encoding of the variable value is not independent of f , but rather needs

some information of f (For example, k0, see subsection 3.1). The conclusion is that

“encoding” as whole entity is not reusable, so that reusable garbling scheme does

not provide new applications.

4.2 Analysis of scenes

We look into the structure (see subsection 3.1). Suppose Alice encodes the circuit

f , so that Alice knows f .

Notes on Reusable Garbling 11

If Alice encodes a variable value x, Alice knows x. In this case the knowledge of

Alice is {x, f}, while that of Bob is only f(x).

If Bob encodes a variable value x, he needs to know not only x but also k0. On

the other hand, Bob certainly knows f ∗ (because f ∗ is a part of f), so that Bob

immediately obtain f : f = D(f ∗, k0). In this case the knowledge of Alice is only f ,

while that of Bob is {x, f}.

From all of the above, the knowledge of one side always contains that of another

side, which does not satisfy the knowledge distribution of Basic Scene 1. Therefore,

even reusable garbling scheme is taken as a one-time garbling scheme, at least it

cannot be used for MPC.

5 Analysis of the efficiency of reusable garbling scheme

In this section reusable garbling scheme is taken as a one-time garbling scheme used

for Basic Scene 2 (see section 1), and we compare it with BHR12 scheme [9].

Suppose the length of x is n, the length of f (as a bit-string) is n′, the circuit

size of f (as a Boolean circuit) is N . Suppose reusable garbling scheme and BHR12

scheme use same symmetric encryption scheme {E(·, ·), D(·, ·)}. Suppose the circuit

size of E(·, ·) is N ′ (Notice that E(·, ·) is a multi-output Boolean circuit, and it is easy

to generalize the concept of circuit size from single-output Boolean circuit to multi-

output Boolean circuit). According to present situation of symmetric encryption

technique, D(·, ·) has a circuit size a little larger than N ′. Suppose the number of

ABE2 schemes for reusable garbling scheme is λ, and we know λ= dlog2qe, q is the

module of FHE scheme.

5.1 Computation complexity of BHR12 garbling scheme

In the encoding stage of BHR12 scheme, major computations are 4(N−n−1) times

using symmetric encryption algorithm E(·, ·). Other computations are 2N −1 times

of sampling and N − n− 1 times of random sort of quartet.

12 Y. Hu et al.

In the computation stage of BHR12 scheme, the computations are 4(N − n− 1)

times using symmetric decryption algorithm D(·, ·), where N − n − 1 times are

successful decryption, while other 3(N − n− 1) times are decryption failure.

5.2 Our two observations

The first observation is that, if reusable garbling scheme does not use “bootstrap-

ping” and “modular switching” operations of FHE technique, generally we have

λ > 4N . The reason is the follow.

Because the circuit size of f is N and that of D(·, ·) a little larger than N ′, the

circuit size of f ∗∗ is a little larger than N + N ′. In other words, f ∗∗ is sequentially

about N + N ′ Boolean operations. As a homomorphic function of f ∗∗, f ∗∗∗ should

be sequentially about N+N ′ modular q operations, and {f ∗∗, f ∗∗∗} should have cor-

responding operation types: a bit-exclusive-or corresponds to a modular-q-addition,

while a bit-and corresponds to a modular-q-multiplication. Now we consider noise

size accumulation of such N +N ′ modular q operations. Suppose initial noise size is

averagely e. According to the security of FHE scheme, generally e should be polyno-

mially large, so that log2e ≥ 8 is reasonable. Another reasonable assumption is that,

from such N +N ′ modular q operations, about half are multiplications, another half

are additions. Modular-q-addition operation will make the noise size larger, but the

effect is limited, so we ignore it. Modular-q-multiplication makes the noise size which

is about the product of original two noise sizes. N+N ′

2
modular-q-multiplication oper-

ations will make the noise size which is about e
N+N′

2 . On the other hand, a condition

for correct decryption is that the module is larger than the double of the noise size,

therefore q > 2 · e
N+N′

2 . Finally we have

λ = dlog2qe ≥
N +N ′

2
· log2e ≥ 4(N +N ′) > 4N .

The second observation is that, if the reusable garbling scheme does not use

“bootstrapping” and “modular switching” operations, the computation complexity

of {ABE2 encryption, ABE2 decryption} is larger than that of (E(·, ·), D(·, ·)). The

reason is the follow.

Notes on Reusable Garbling 13

Notice

(1) f ∗∗∗ = {f ∗∗∗1 , · · · , f ∗∗∗λ }.

(2) A Boolean operation of f ∗∗ corresponds to a modular q operation of f ∗∗∗.

(3) For each i = 1, · · · , λ, a modular q operation of f ∗∗∗ corresponds to far more

than one Boolean operation of f ∗∗∗i . In other words, the circuit size of each f ∗∗∗i is

far larger than that of f ∗∗, which is a little large than N +N ′.

(4) On the other hand, according to present situation of KP-ABE [13, 14], for

each Boolean operation O of f ∗∗∗i , ABE2,i decryption algorithm has a corresponding

group of operations O′, where the computation complexity of O′ is far larger than

that of O. We call O′ the quasi-homomorphic operation of O.

From all of the above, {ABE2 encryption, ABE2 decryption} has the computation

complexity far larger than 2(N + N ′), while {E(·, ·), D(·, ·)} has the computation

complexity a little larger than 2N ′.

5.3 Comparison: neither “bootstrapping” nor “modular switching”

Major computation of BHR12 scheme are {E(·, ·), D(·, ·)} about 4N times. Major

computation of reusable garbling scheme are {ABE2 encryption, ABE2 decryption}

λ times, an FHE, and a one-time garbling. According to our two observations (see

subsection 5.2), computation complexity of reusable garbling scheme is far larger

than that of BHR12 scheme.

5.4 Comparison: with “bootstrapping” or “modular switching”

If reusable garbling scheme uses “bootstrapping” or “modular switching” operations

of FHE technique, homomorphic function is f ∗∗∗∗ = {f ∗∗∗∗1 , · · · , f ∗∗∗∗λ′ } rather than

f ∗∗∗ = {f ∗∗∗1 , · · · , f ∗∗∗λ }, where λ′ = dlog2q
′e, q′ is a smaller module (That is, q′ < q).

In this case, {ABE2 encryption, ABE2 decryption} is for {f ∗∗∗∗i′ , i′ = 1, · · · , λ′} rather

than for {f ∗∗∗i , i = 1, · · · , λ}. f ∗∗∗∗ has less entries than f ∗∗∗, therefore uses ABE2

less times. But f ∗∗∗∗ has entries of larger circuit sizes, therefore each time of using

ABE2 has larger computation complexity.

14 Y. Hu et al.

From all of the above, the comparison is very complicated, but there is no evi-

dence that BHR12 scheme has a larger computation complexity than reusable gar-

bling scheme with “bootstrapping” or “Modular switching” operations.

6 About a modified scheme

Goldwasser et al [12] presented multi-input FE scheme. If such scheme replaces the

FE scheme in the structure of reusable garbling (see subsection 3.1), the modified

reusable garbling scheme can not only be used for Basic Scene 1, but also achieve

stronger reusability of IO. More detailedly, by the feature of “dispersed encryption

and centralized decryption”, in the encryption stage of FE (subsection 3.1, step(5)

of Encoding stage), x = {E ′(x,K0), E
′(k0, K0)} rather than x = E ′ ((x, k0), K0);

in the decryption stage of FE (subsection 3.1, Computation stage), D′(x, S) =

D′ ((E ′(x,K0), E
′(k0, K0)) , S) = f(x).

After such modification, the task of computing E ′(x,K0) is assigned to Bob, and

computing E ′(k0, K0) to Alice. Then all contents Alice submits are reusable, and

Bob can repeatedly compute for any times without contacting Alice each time.

However, such modified FE takes IO as its ground structure. If IO exists, itself is

a powerful reusable garbling, and there is no need for using it to construct another

reusable garbling system. Construction of reusable garbling [3, 4] avoids IO for the

purpose of avoiding huge size and obscure security.

References

1. Yao, A, C.: Protocols for secure computations (extended abstract)[C]. In: Proceedings of the 23rd

Annual Symposium on Foundations of Computer Science (SFCS 1982). IEEE, 1982: 160-164. [DOI:

10.1109/SFCS.1982.38]

2. Yao, A, C.: How to generate and exchange secrets (extended abstract)[C]. In: Proceedings of the 27th

Annual Symposium on Foundations of Computer Science (SFCS 1986). IEEE, 1986: 162-167. [DOI:

10.1109/SFCS.1986.25]

3. Goldwasser, S., Kalai, Y., Popa, R, A., et al.: Reusable garbled circuits and succinct functional en-

cryption[C]. In: Proceedings of the forty-fifth annual ACM symposium on Theory of computing. ACM,

2013: 555-564. [DOI: 10.1145/2488608.2488678]

Notes on Reusable Garbling 15

4. Agrawal, S.: Stronger security for reusable garbled circuits, general definitions and attacks. In:

Katz, J., Shacham, H. (eds.) CRYPTO 2017. LNCS, vol. 10401, pp. 3-35. Springer, Cham (2017).

https://doi.org/10.1007/978-3-319-63688-7 1

5. Gentry, C., Gorbunov, S., Halevi, S., et al.: How to compress (reusable) garbled circuits[J]. IACR

Cryptology ePrint Archive, 2013: 2013/687.

6. Lin, H, J.: Indistinguishability obfuscation from constant-degree graded encoding schemes[C]. In: Ad-

vances in Cryptology-EUROCRYPT 2016. Springer Berlin Heidelberg, 2016: 28-57. [DOI: 10.1007/978-

3-662-49890-3 2]

7. Lin, H, J.: Indistinguishability obfuscation from SXDH on 5-linear maps and locality-5 PRGs[C]. In:

Advances in Cryptology-CRYPTO 2017. Springer Berlin Heidelberg, 2017: 599-629. [DOI: 10.1007/978-

3-319-63688-7 20]

8. Ishai, Y., Kushilevitz, E.: Randomizing polynomials: A new representation with applications to round-

efficient secure computation[C]. In: Proceedings of the 41st Annual Symposium on Foundations of

Computer Science (SFCS 2000). IEEE, 2000: 294-304. [DOI: 10.1109/SFCS.2000.892118]

9. Bellare, M., Hoang, V.T., Rogaway, P.: Foundations of garbled circuits. In: Yu, T., Danezis, G., Gligor,

V.D. (eds.) ACM CCS 2012, pp. 784–796. ACM Press, October 2012 [DOI: 10.1145/2382196.2382279]

10. Hu, Y, P., Liu, J., WANG, B, C.: Efficiency Analysis and Simplified Scheme of Reusable Garbling.

Journal of Cryptologic Research, 2022, 9(1): 106-112.

11. Hu, Y, P., Liu, J., WANG, B, C., et al.: P/poly Invalidity of the Agr17 Functional Encryption Scheme.

Cryptology ePrint Archive, Paper 2021/1442.https://eprint.iacr.org/2021/1442

12. Goldwasser, S., Gordon, S, D., Goyal, V., et al.: Multi-input Functional Encryption. In: Advances in

Cryptology-EUROCRYPT 2014. Springer Berlin Heidelberg, 2014: 578-602. [DOI: 10.1007/978-3-642-

55220-5 32]

13. Gorbunov, S., Vaikuntanathan, V., Wee, H.: Attribute based encryption for circuits. In: STOC 2013.

pp. 545–554. ACM (2013). https://doi.org/ [DOI: 10.1145/2488608.2488677]

14. Boneh, D., Gentry, C., Gorbunov, S., Halevi, S., Nikolaenko, V., Segev, G., Vaikuntanathan, V.,

Vinayagamurthy, D.: Fully Key-Homomorphic Encryption, Arithmetic Circuit ABE and Compact

Garbled Circuits. In: Nguyen, P.Q., Oswald, E. (eds) Advances in Cryptology – EUROCRYPT 2014.

EUROCRYPT 2014. Lecture Notes in Computer Science, vol 8441. Springer, Berlin, Heidelberg. [DOI:

10.1007/978-3-642-55220-5 30]

