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Abstract

This paper presents a new McEliece-type encryption scheme based on Gabidulin codes,
which uses linearized transformations to disguise the private key. When endowing this
scheme with the partial cyclic structure, we obtain a public key of the form GM−1, where
G is a partial circulant generator matrix of Gabidulin code and M as well as M−1 is a
circulant matrix of large rank weight, even as large as the code length. Another difference
from Loidreau’s proposal at PQCrypto 2017 is that both G and M are publicly known.
Recovering the private key can be reduced to deriving from M a linearized transformation
and two circulant matrices of small rank weight. This new scheme is shown to resist all
the known distinguisher-based attacks, such as the Overbeck attack and Coggia-Couvreur
attack, and also has a very small public key size. For instance, 2592 bytes are enough
for our proposal to achieve the security of 256 bits, which is 400 times smaller than
Classic McEliece that has been selected into the fourth round of the NIST Post-Quantum
Cryptography (PQC) standardization process.

Keywords Post-quantum cryptography · Code-based cryptography · Gabidulin
codes · Partial cyclic codes · Linearized transformations

1 Introduction

Over the past decades, post-quantum cryptosystems (PQCs) have been drawing more and
more attention from the cryptographic community. The most remarkable advantage of PQCs
over classical cryptosystems is their potential resistance against attacks from quantum com-
puters. In the area of PQC, cryptosystems based on coding theory are one of the most
promising candidates. Apart from resisting quantum attacks, these cryptosystems also have
faster encryption and decryption procedures. The first code-based cryptosystem was proposed
by McEliece [37] in 1978. However, this scheme has never been used in practice due to the
drawback of large key size. For instance, Classic McEliece [3] submitted to the NIST PQC
project [39] requires 255 kilobytes of public key for the 128-bit security. To overcome this
drawback, various improvements have been proposed one after another.

Gabidulin, Paramonov and Tretjakov (GPT) [19] proposed a rank-based encryption scheme
by using Gabidulin codes in the McEliece setting. Research results show that the complexity
of decoding general rank metric codes is much higher than that for Hamming metric codes.
Rank-based cryptosystem, therefore, have a more compact representation of public keys. Un-
fortunately, the GPT cryptosystem was broken by Gibson [25,26] and then by Overbeck [43].
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To resist these attacks, some reparations of GPT were proposed [17, 18, 20, 46]. However,
because of Gabidulin codes being highly structured, all these variants are still vulnerable to
structural attacks [28, 40, 44]. Specifically, Gabidulin codes contain a large subspace invari-
ant under the Frobenius transformation, which makes Gabidulin codes distinguishable from
general linear codes.

Faure and Loidreau [15] proposed a cryptosystem based on the p-polynomial reconstruction
problem, which can be seen as a rank metric counterpart of the Augot-Finiasz cryptosystem
[6]. The Faure-Loidreau cryptosystem is a scheme based on Gabidulin codes without hiding
the algebraic structure, whose public key is a Gabidulin codeword corrupted by a word of rank
weight beyond the error-correcting capability. This scheme remained secure until the work
in [21], where the authors proposed a polynomial-time key recovery attack. Two reparations
of this scheme designed to prevent this attack were proposed independently and differently
in [31,47]. Bombar and Couvreur [12] investigated the supercode decoding of Gabidulin codes
and deduced from this decoder a polynomial-time attack on these two reparations. Another
Gabidulin code-based cryptosystem with no hidden structure is the one proposed in [2] and
then submitted to the NIST standardization process [1], whose security relies on the difficulty
of decoding rank quasi-cyclic (RQC) codes. What differs from McEliece-type schemes is that
the ciphertext of RQC consists of two vectors. Apart from the algebraic attacks in [8,9], RQC
has never been severely attacked.

Loidreau [34] proposed a McEliece-type cryptosystem using Gabidulin codes, whose public
key is a matrix of the form GM−1. The right scrambler matrix is chosen such that M has a
small rank weight of λ. The public code then cannot be distinguished from random ones and
therefore, Loidreau’s proposal can prevent the Overbeck attack [44]. However, by operating
the dual of the public code Coggia and Couvreur [14] presented an effective distinguisher and
gave a practical key recovery attack for λ = 2. This attack was extended by Ghatak [24] to
the case of λ = 3 and then by Pham and Loidreau [45]. Let Hpub be a parity-check matrix of
the public code, then Hpub = HMT where H forms a parity-check matrix of Gabidulin code.
Although Loidreau [36] claimed that one can publish G without losing security, one cannot
derive H from Hpub because of M being kept secret. For this reason we still view this scheme
as one with hidden structure.

Lau and Tan [29] (LT18) proposed a scheme based on Gabidulin codes with hidden struc-
ture. The public key consists of two matrices G+ UT and U , where G is a generator matrix
of Gabidulin code and U is a partial circulant matrix, scrambled by a matrix T over the
base field. Recently Guo and Fu [27] showed that one can recover T in polynomial time and
completely break this scheme. By modifying the idea of LT18, Lau and Tan [30] (LT19) de-
signed another scheme based on the so-called partial cyclic Gabidulin codes, also with hidden
structure. The public key of LT19 consists of two vectors and therefore has a quite small size.
This scheme can prevent the Guo-Fu attack and remains secure until now for properly chosen
parameters.

Our contributions. Firstly, we introduce and investigate the properties of linearized
transformations over linear codes. Secondly, we propose a McEliece-type encryption scheme,
where linearized transformations are utilized to disguise the private key. The public matrix
in our proposal appears quite random and consequently, all the known distinguisher-based
attacks do not work any longer. Additionally, the use of the partial cyclic structure greatly
reduces the public key size.

Recently NIST has completed the third round of the PQC standardization process. Three
key-establishment mechanisms (KEMs) based on coding theory have been selected into the
fourth round, these algorithms are Classic McEliece [3] based on Goppa codes and HQC [38]
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as well as BIKE [4] based on quasi-cyclic moderate density parity check (QC-MDPC) codes.
In contrast to these NIST PQC submissions and Loidreau’s proposal, our scheme has the
following innovations and advantages:

• The use of linearized transformations enhances the security against structural attacks.
Before our work in the present paper, almost all the known approaches used to disguise
the private information are based on linear transformations, which have been shown to
fail in most cases.

• In the partial cyclic version, the algebraic structure of the underlying Gabidulin code
can be published without losing security. This enables our proposal to be the first
McEliece-type encryption scheme with no hidden structure.

• The use of the partial cyclic structure greatly shrinks the public key. However, one
cannot use this technique in Loidreau’s proposal, otherwise one can easily deduce an
equivalent private key from the public information.

• The advantage over HQC and BIKE is that the decryption algorithm in our proposal is
deterministic and therefore has no decryption failure that the former two ones confront.

The rest of this paper is arranged as follows. Section 2 introduces some notations and
preliminaries used throughout this paper. Section 3 presents the RSD problem in coding
theory and two types of generic attacks. In Section 4, we introduce the concept of linearized
transformations and investigate their properties over linear codes. Section 5 describes our
new proposal and gives some notes on the private key. Security analysis of the new proposal
will be given in Section 6. In Section 7, we suggest some parameters for three security levels
and compare the public key size with some other code-based cryptosystems. A few concluding
remarks will be made in Section 8.

2 Preliminaries

We now present some notations used throughout this paper, as well as basic concepts of linear
codes and rank metric codes. Then we introduce the so-called partial cyclic Gabidulin codes
and some related results.

2.1 Notations and basic concepts

Let Fq be the finite field with q elements, and Fqm an extension of Fq of degree m. We call
a ∈ Fmqm a basis vector of Fqm/Fq if the components of a are linearly independent over Fq. We
call α a polynomial element if (1, α, . . . , αm−1) forms a basis vector of Fqm/Fq, and α a normal

element if (α, αq, . . . , αq
m−1

) forms a basis vector respectively. Denote byMk,n(Fq) the space
of k × n matrices over Fq, and by GLn(Fq) the space of invertible matrices in Mn,n(Fq). Let
〈M〉q be the vector space spanned by the rows of M ∈Mk,n(Fq) over Fq.

An [n, k] linear code C over Fq is a k-dimensional subspace of Fnq . The dual code C⊥ of C is
the orthogonal space of C under the Euclidean inner product over Fnq . A matrix G ∈Mk,n(Fq)
is called a generator matrix of C if its rows form a basis of C. A generator matrix of C⊥ is
called a parity-check matrix of C.

The rank support of v ∈ Fnqm with respect to Fq, denoted by RSq(v), is the linear space
spanned by the components of v over Fq. The rank weight of v, denoted by rkq(v), is the
dimension of RSq(v) over Fq. The rank support ofM ∈Mk,n(Fqm), denoted by RSq(M), is the
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linear space spanned by the entries of M over Fq. The rank weight of M , denoted by rkq(M),
is the dimension of RSq(M) over Fq. For v ∈ Fuqm ,M ∈Mu,v(Fqm) and N ∈Mv,w(Fqm), it is
easy to see that rkq(vM) 6 rkq(v) · rkq(M) and rkq(MN) 6 rkq(M) · rkq(N).

For α ∈ Fqm and a positive integer l, we define α[l] = αq
l

to be the l-th Frobenius power

of α. For v = (v1, . . . , vn) ∈ Fnqm , let v[l] = (v
[l]
1 , . . . , v

[l]
n ). For M = (Mij) ∈ Mu,v(Fqm), let

M [l] = (M
[l]
ij ). For V ⊆ Fnqm , let V [i] = {v[i] : v ∈ V}. For M ∈ Mu,v(Fqm), N ∈ Mv,w(Fqm),

it is clear that (MN)[l] = M [l]N [l]. For M ∈ GLn(Fqm), clearly (M [l])−1 = (M−1)[l].

2.2 Gabidulin code

Gabidulin codes are actually a rank metric counterpart of Reed-Solomon codes, which can be
defined through the so-called Moore matrix as follows.

Definition 1 (Moore matrix). Let g = (g1, g2, . . . , gn) ∈ Fnqm , then the k × n Moore matrix
generated by g is a matrix of the form

Mrk(g) =


g1 g2 · · · gn

g
[1]
1 g

[1]
2 · · · g

[1]
n

...
...

...

g
[k−1]
1 g

[k−1]
2 · · · g

[k−1]
n

 .

Definition 2 (Gabidulin code). For positive integers k 6 n 6 m and g ∈ Fnqm with rkq(g) = n,
the [n, k] Gabidulin code Gabk(g) generated by g is defined to be a linear code that has
Mrk(g) as a generator matrix.

Remark 1. An [n, k] Gabidulin code Gabk(g) has minimum rank weight n − k + 1 [19] and
can therefore correct up to

⌊
n−k
2

⌋
rank errors in theory. Several efficient decoding algorithms

for Gabidulin code can be found in [16,33,48].

2.3 Partial cyclic code

Lau and Tan [30] used partial cyclic Gabidulin codes to reduce the public key size in rank-
based cryptography. Now we introduce this family of codes and present some related results.

Definition 3 (Circulant matrix). For a vector m ∈ Fnq , the circulant matrix generated by m
is a matrix M ∈ Mn,n(Fq) whose first row is m and i-th row is obtained by cyclically right
shifting its (i− 1)-th row for 2 6 i 6 n.

Definition 4 (Partial circulant matrix). For k 6 n and m ∈ Fnq , the k × n partial circulant
matrix PCk(m) generated by m is defined to be the first k rows of the circulant matrix
generated by m. Particularly, we denote by PCn(m) the circulant matrix generated by m.

Remark 2. Let PCn(Fq) be the space of n×n circulant matrices over Fq. Chalkley [13] proved
that PCn(Fq) forms a commutative ring under matrix addition and multiplication. It is easy
to see that, for a partial circulant matrix A ∈ PCk(Fq) and a circulant matrix B ∈ PCn(Fq),
AB forms a k × n partial circulant matrix.

Now we present a sufficient and necessary condition for a circulant matrix to be invertible,
then make an accurate estimation of the number of invertible circulant matrices over Fq.

Proposition 1. [41] For m = (m0, . . . ,mn−1) ∈ Fnq , let m(x) =
∑n−1

i=0 mix
i ∈ Fq[x]. A

sufficient and necessary condition for PCn(m) being invertible is gcd(m(x), xn − 1) = 1.
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Proposition 2. [32] For a monic f(x) ∈ Fq[x] of degree n, let g1(x), . . . , gr(x) ∈ Fq[x] be r
distinct monic irreducible factors of f(x), i.e. f(x) =

∏r
i=1 gi(x)ei for some positive integers

e1, . . . , er. Let di = deg(gi) for 1 6 i 6 r, then

Φq(f) = qn
r∏
i=1

(1− 1

qdi
), (1)

where Φq(f) denotes the number of monic polynomials coprime to f(x) of degree less than n.

The following corollary is drawn directly from Propositions 1 and 2.

Corollary 1. The number of invertible matrices in PCn(Fq) is Φq(x
n − 1).

Now we introduce the concept of partial cyclic codes.

Definition 5 (Partial cyclic codes). For k 6 n and a ∈ Fnq , let G = PCk(a) be a partial
circulant matrix generated by a, then C = 〈G〉q is called an [n, k] partial cyclic code.

Remark 3. Let g = (α[n−1], α[n−2], . . . , α) be a normal basis vector of Fqn/Fq and G = Mrk(g),
then G forms a k × n partial circulant matrix. We call G = 〈G〉qn an [n, k] partial cyclic
Gabidulin code generated by g.

3 RSD problem and generic attacks

Now we introduce the well-known RSD problem in coding theory which lays the foundation
of rank-based cryptography, as well as the best known generic attacks that will be useful to
estimate the practical security of our proposal later in this paper.

Definition 6 (Rank Syndrome Decoding (RSD) Problem). Given positive integers m,n, k and
t, let H be an (n− k)×n matrix over Fqm of full rank and s ∈ Fn−kqm . The RSD problem with

parameters (q,m, n, k, t) is to search for e ∈ Fnqm such that s = eHT and rkq(e) = t.

The RSD problem has been used for designing cryptosystems since the proposal of the
GPT cryptosystem in 1991. However, the hardness of this problem had never been proved
until the work in [23], where the authors gave a randomized reduction of the RSD problem
to an NP-complete decoding problem [10] in the Hamming metric.

Generic attacks on the RSD problem can be divided into two categories, namely the com-
binatorial attacks and algebraic attacks. The main idea of combinatorial attacks consists in
solving a multivariate linear system obtained from the parity-check equation, whose variables
are components of ei under a basis of the rank support of e over Fq. The complexity mainly
lies in enumerating t-dimensional subspaces of Fqm . The best known combinatorial attacks
up to now can be found in [5, 22,42], as summarized in Table 1.

The main idea of algebraic attacks consists in converting an RSD instance into a multi-
variate quadratic system and then solving this system with algebraic approaches, such as the
Gröbner basis techniques. Algebraic attacks are generally believed to be less efficient than
combinatorial approaches until the work in [8, 9], whose complexity and applicable condition
are summarized in Table 2, where ω = 2.81 is the linear algebra constant.

4 Linearized transformations

Note that Fqm can be viewed as an m-dimensional linear space over Fq. Let (α1, . . . , αm) and
(β1, . . . , βm) be two basis vectors of Fqm/Fq. For any α =

∑m
i=1 λiαi ∈ Fqm with λi ∈ Fq, we
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Attack Complexity

[42] O
(
min

{
m3t3q(t−1)(k+1), (k + t)3t3q(t−1)(m−t)

})
[22] O

(
(n− k)3m3q

min
{
tdmk

n e,(t−1)
⌈
m(k+1)

n

⌉})
[5] O

(
(n− k)3m3q

t
⌈
m(k+1)

n

⌉
−m
)

Table 1: Best known combinatorial attacks.

Attack Condition Complexity

[9]

m
(
n−k−1

t

)
>
(
n
t

)
− 1

O
(
m
(
n−p−k−1

t

)(
n−p
t

)ω−1)
, where

p = max{1 6 i 6 n : m
(
n−i−k−1

t

)
>
(
n−i
t

)
− 1}

[8] O
((

((m+n)t)t

t!

)ω)

[9]

m
(
n−k−1

t

)
<
(
n
t

)
− 1

O
(
qatm

(
n−k−1

t

)(
n−a
t

)ω−1)
, where

a = min{1 6 i 6 n : m
(
n−k−1

t

)
>
(
n−i
t

)
− 1}

O
(
Bb(k+t+1

t )+Cb(mk+1)(t+1)

Bb+Cb
A2
b

)
, where

Ab =
∑b

j=1

(
n
t

)(
mk+1
j

)
,

Bb =
∑b

j=1m
(
n−k−1

t

)(
mk+1
j

)
,

Cb =
∑b

j=1

∑j
i=1(−1)i+1

(
n
t+i

)(
m+i−1

i

)(
mk+1
j−i

)
,

b = min{0 < a < t+ 2 : Aa − 1 6 Ba + Ca}

[8] O
((

((m+n)t)t+1

(t+1)!

)ω)
Table 2: Best known algebraic attacks.

define a permutation of Fqm as

ψ(α) =

m∑
i=1

λiψ(αi) =

m∑
i=1

λiβi.

It is easy to see that ψ is Fq-linearized, namely

ψ(γ1α+ γ2β) = γ1ψ(α) + γ2ψ(β)

holds for any α, β ∈ Fqm and γ1, γ2 ∈ Fq. By LPm(Fq) we denote the space of all Fq-linearized
permutations of Fqm .

In the sequel we will do further study on this family of permutations. Firstly, we present
a basic fact about Fq-linearized permutations of Fqm .

Proposition 3. The total number of Fq-linearized permutations of Fqm is

|LPm(Fq)| =
m−1∏
i=0

(qm − qi).
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Let ψ ∈ LPm(Fq) be an Fq-linearized permutation of Fqm . For v = (v1, . . . , vn) ∈ Fnqm ,
let ψ(v) = (ψ(v1), . . . , ψ(vn)). For V ⊆ Fnqm , let ψ(V) = {ψ(v) : v ∈ V}. For M = (Mij) ∈
Mk,n(Fqm), let ψ(M) = (ψ(Mij)). In these cases, we call ψ a linearized transformation over
Fqm/Fq.

For v ∈ Fnqm and ψ ∈ LPm(Fq), a natural question is how the rank weight of v varies
under the action of ψ. For this reason, we introduce the following proposition.

Proposition 4. A linearized transformation over Fqm/Fq is an isometry in the rank metric.

Proof. For n 6 m, let v ∈ Fnqm with rkq(v) = n. If rkq(ψ(v)) < n, then there exists

b ∈ Fnq \{0} such that ψ(v)bT = ψ(vbT ) = 0. This implies that vbT = 0, which conflicts
with rkq(v) = n. More generally, suppose rkq(v) = r < n, then there exist Q ∈ GLn(Fq) and
v∗ ∈ Frqm with rkq(v

∗) = r such that v = (v∗|0)Q. It follows that ψ(v) = (ψ(v∗)|0)Q and
then rkq(ψ(v)) = rkq(ψ(v∗)) = rkq(v

∗) = rkq(v).

Remark 4. Let E be an extension field of Fqm , then a linearized transformation over E/Fqm
preserves the rank metric in En with respect to Fq.

For ψ ∈ LPm(Fq) and a linear code C ⊆ Fnqm , it is clear that ψ(C) is Fq-linear, but generally
no longer Fqm-linear. We call ψ fully linear if it preserves the Fqm-linearity of all linear codes
over Fqm . The following theorem provides a sufficient and necessary condition for ψ being
fully linear.

Theorem 7. Let ψ ∈ LPm(Fq) and a = (α1, . . . , αm) be a basis vector of Fqm/Fq. Let
A = ψ(aTa), then a sufficient and necessary condition for ψ being fully linear is Rank(A) = 1.

Proof. On the necessity aspect. Let C = 〈a〉qm and ai = ψ(αia) be the i-th row of A. Note
that ψ is fully linear, then ψ(C) is Fqm-linear. Let k = dimqm(ψ(C)), then (qm)k = |ψ(C)| =
|C| = qm and hence k = 1. This implies that Rank(A) = 1 because of ai being contained in
ψ(C).

On the sufficiency aspect. Let V = {
∑m

j=1 λjaj : λj ∈ Fq} and Vi = {µai : µ ∈ Fqm} for
any 1 6 i 6 m. Note that A has rank 1 over Fqm , then there exists µij ∈ F∗qm = Fqm\{0}
such that aj = µijai for any 1 6 i, j 6 m. It follows that V = {

∑m
j=1 λjµijai : λj ∈ Fq} and

furthermore V ⊆ Vi. Together with |V| = |Vi| = qm, we have V = Vi. Hence for any µ ∈ Fqm ,
there exist λi1, . . . , λim ∈ Fq such that µai =

∑m
j=1 λijaj .

Let C be an arbitrary linear code over Fqm . For any v ∈ ψ(C), there exists u ∈ C such
that v = ψ(u). Meanwhile, there exists M ∈Mm,n(Fq) such that u = aM . It follows that

ajM = ψ(αja)M = ψ(αjaM) = ψ(αju) ∈ ψ(C)

for any 1 6 j 6 m. Assume that
∑m

i=1 aiαi = 1 for ai ∈ Fq, then u = aM =
∑m

i=1 aiαiaM .
Hence

µv = µψ(u) = µψ(
m∑
i=1

aiαiaM) = µ
m∑
i=1

aiψ(αia)M =
m∑
i=1

aiµaiM.

Note that for any µ ∈ Fqm and 1 6 i 6 m, there exists λij ∈ Fq such that µai =
∑m

j=1 λijaj .
Hence

µv =
m∑
i=1

ai(
m∑
j=1

λijaj)M =

m∑
i=1

m∑
j=1

λijai(ajM) ∈ ψ(C)

because of ajM ∈ ψ(C) and ψ(C) being Fq-linear. Following this, we conclude that ψ(C) is
Fqm-linear and therefore ψ is fully linear over Fqm .
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Remark 5. Note that Rank(A) is independent of the basis vector. More generally, let b1, b2
be any two basis vectors of Fqm/Fq, then there exist Q1, Q2 ∈ GLm(Fq) such that b1 = aQ1

and b2 = aQ2. Let A′ = ψ(bT1 b2), then A′ = ψ((aQ1)
TaQ2) = ψ(QT1 a

TaQ2) = QT1AQ2,
which implies that Rank(A′) = Rank(A).

Note that a fully linear transformation over Fqm/Fq always preserves the Fqm-linearity of a
linear code over Fqm . However, for a specific linear code C ⊂ Fnqm , a linearized transformation
that preserves the Fqm-linearity of C is not necessarily fully linear. Specifically, we introduce
the following theorem.

Theorem 8. For positive integers k < n, let C ⊂ Fnqm be an [n, k] linear code. Let G = [Ik|A]
be the systematic generator matrix of C, where Ik is the k×k identity matrix and A = (Aij) ∈
Mk,n−k(Fqm). Let A = {Aij}k,n−ki,j=1 , then we have the following statements.

(1) If A ⊆ Fq, then any ψ ∈ LPm(Fq) is linear over C. Furthermore, we have ψ(C) = C;

(2) If there exists α ∈ A such that α is a polynomial element of Fqm/Fq, then any ψ ∈
LPm(Fq) linear over C must be fully linear.

Proof. (1) Let gi be the i-th row of G, then ψ(αgi) = ψ(α)gi for any α ∈ Fqm . For any
c ∈ C, there exists λ = (λ1, . . . , λk) ∈ Fkqm such that c = λG. Then we have

ψ(c) = ψ(λG) = ψ(
k∑
i=1

λigi) =
k∑
i=1

ψ(λigi) =
k∑
i=1

ψ(λi)gi ∈ C,

which suggests that ψ(C) ⊆ C. Together with |ψ(C)| = |C|, there will be ψ(C) = C.

(2) Without loss of generality, we consider the first row vector of G and assume that g1 =
(1, 0, . . . , 0, α, ?) ∈ Fnqm , where α ∈ Fqm is a polynomial element and “?” represents

some vector in Fn−k−1qm . Note that ψ is linear over C, or equivalently ψ(C) is an Fqm-
linear code. Apparently ψ(C) has ψ(G) as a generator matrix, which implies that there
exists λ = (λ1, . . . , λk) ∈ Fkqm such that ψ(βg1) = λψ(G) for any β ∈ Fqm . It is clear
that λ1 ∈ F∗qm and λi = 0 for 2 6 i 6 k, which means ψ(βg1) and ψ(g1) are linearly
dependent over Fqm . Then we can deduce that (ψ(β), ψ(αβ)) = λ1(ψ(1), ψ(α)) and

furthermore ψ(1)ψ(αβ) = ψ(α)ψ(β). Let γ = ψ(α)
ψ(1) , then

ψ(αβ) =
ψ(α)

ψ(1)
ψ(β) = γψ(β).

Note that a = (1, α, . . . , αm−1) ∈ Fmqm forms a basis vector of Fqm/Fq, then we have

ψ(αa) = (ψ(α), . . . , ψ(αm)) = (γψ(1), . . . , γψ(αm−1)) = γψ(a),

and furthermore ψ(αia) = γiψ(a) for 0 6 i 6 m − 1. By Theorem 7, we have that ψ
forms a fully linear transformation over Fqm .

The following corollary is derived immediately from Theorem 8.

Corollary 2. Let m be a prime and A be defined as in Theorem 8. If there exists α ∈ A
such that α /∈ Fq, then any Fq-linear transformation ψ over Fqm is fully linear as long as ψ
is linear over C.
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To describe exactly how much a linearized transformation disturbs the algebraic structure
of linear codes, we introduce the concept of nonlinearity as follows.

Definition 9. Let ψ ∈ LPm(Fq) and A ∈ Mm,m(Fqm) be a matrix as defined in Theorem 7.
The nonlinearity of ψ with extension degree m is defined as NLm(ψ) = r

m where r = Rank(A).

A permutation of Fqm leads to a polynomial of degree at most qm−1, which can be derived
from the Lagrange Interpolation Formula [32]. An Fq-linearized permutation ψ of Fqm leads
to a linearized polynomial Lψ(x) over Fqm/Fq, which has the form of

γ0x+ γ1x
[1] + · · ·+ γm−1x

[m−1] ∈ Fqm [x].

Let b be a basis vector of Fqm/Fq and B ∈Mm,m(Fqm) a Moore matrix generated by b. Note
that Lψ(b) = (γ0, . . . , γm−1)B = ψ(b), then (γ0, . . . , γm−1) = ψ(b)B−1.

The following proposition states a fact that one can figure out the nonlinearity of ψ directly
from the coefficients of Lψ(x). Here by wt(v) we denote the Hamming weight of v ∈ Fnqm ,
namely the number of nonzero components of v.

Proposition 5. For any ψ ∈ LPm(Fq), let Lψ(x) =
∑m−1

i=0 γix
[i] be the linearized permutation

polynomial associated to ψ. Let γ = (γ0, . . . , γm−1), then NLm(ψ) = w
m where w = wt(γ).

Proof. Let w = wt(γ), then there exist 0 6 j0 < · · · < jw−1 6 m − 1 such that γjv 6= 0. Let
a = (α0, . . . , αm−1) be a basis vector of Fqm/Fq, and set

A =


α0α0 α0α1 · · · α0αm−1
α1α0 α1α1 · · · α1αm−1

...
...

...
αm−1α0 αm−1α1 · · · αm−1αm−1

 =


α0a
α1a

...
αm−1a

 .

Let B = ψ(A), then

B = Lψ(A) = γj0A
[j0] + γj1A

[j1] + · · ·+ γjw−1A
[jw−1].

It is easy to see that Rank(B) 6 w because of Rank(A[jv ]) = 1 for any 0 6 v 6 w − 1. Let

Λ =


α
[j0]
0 α

[j1]
0 · · · α

[jw−1]
0

α
[j0]
1 α

[j1]
1 · · · α

[jw−1]
1

...
...

...

α
[j0]
m−1 α

[j1]
m−1 · · · α

[jw−1]
m−1

 .

It is clear that Rank(Λ) = w, then there exist 1 6 i0 < · · · < iw−1 6 m such that the
submatrix of Λ from the rows indexed by iu is invertible. Let Iu = {i0, . . . , iw−1}, then by
ΛIu we denote the submatrix of Λ indexed by Iu, and BIu the submatrix of B respectively.
Then

Λ−1Iu BIu = γj0Λ−1Iu


α
[j0]
i0
a[j0]

α
[j0]
i1
a[j0]

...

α
[j0]
iw−1

a[j0]

+ · · ·+ γjw−1Λ−1Iu


α
[jw−1]
i0

a[jw−1]

α
[jw−1]
i1

a[jw−1]

...

α
[jw−1]
iw−1

a[jw−1]

 =


γj0a

[j0]

γj1a
[j1]

...

γjw−1a
[jw−1]

 .

It follows that w = Rank(Λ−1Iu BIu) 6 Rank(B) 6 w, which leads to the conclusion immedi-
ately.
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Remark 6. It is easy to see that ψ is fully linear if and only if the linearized permutation
polynomial Lψ(x) induced by ψ has the form of Lψ(x) = γx[i] for some γ ∈ F∗qm and 0 6 i 6
m− 1.

5 Our proposal

This section first presents a formal description of the new proposal, then gives some notes on
the private key. It should be noted that the following description and notes are mainly aimed
at the partial cyclic version.

5.1 Description of our proposal

For a desired security level, choose a field Fq and positive integers m,n, k, l, λ1 and λ2 such
that n = lm. Let g = (α[n−1], α[n−2], . . . , α) be a normal basis vector of Fqn/Fq and G =
PCk(g) ∈Mk,n(Fqn). Let G = 〈G〉qn be an [n, k] partial cyclic Gabidulin code. Our proposal
consists of the following three procedures.

• Key generation

For i = 1, 2, randomly choose an Fq-linear space Vi ⊆ Fqn such that dimq(Vi) = λi.
Randomly choose mi ∈ Vni such that rkq(mi) = λi. Let Mi = PCn(mi) and check
whether Mi is invertible or not. If not, then rechoose mi. Randomly choose a linearized
transformation ψ over Fqn/Fqm such that NLl(ψ) 6= 1

l . Let g∗ = ψ(gM−11 )M−12 , then

PCk(g
∗) = ψ(GM−11 )M−12 . Let t =

⌊
n−k
2λ1λ2

⌋
, then the public key is published as (g∗, t),

and the private key is (m1,m2, ψ).

• Encryption

For a plaintext x ∈ Fkqm , randomly choose e ∈ Fnqn with rkq(e) = t. Then the ciphertext
corresponding to x is computed as

y = xPCk(g
∗) + e = xψ(GM−11 )M−12 + e.

• Decryption

For a ciphertext y ∈ Fnqn , compute

yM2 = xψ(GM−11 ) + eM2 = ψ(xGM−11 ) + eM2,

and
y′ = ψ−1(yM2)M1 = xG+ e′

where e′ = ψ−1(eM2)M1. Note that

rkq(e
′) 6 rkq(ψ

−1(eM2)) · λ1 = rkq(eM2) · λ1 6 rkq(e) · λ2 · λ1 6
⌊n− k

2

⌋
.

Applying the decoder of G to y′ will lead to the plaintext x.
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Remark 7. For the case where no partial cyclic structure is used, the only difference is that
it suffices to choose at random a generator matrix G of Gabidulin code and two matrices
Mi with rkq(Mi) = λi. On the other hand, the design of the new proposal involves three
finite fields, that is Fq ⊂ Fqm ⊂ Fqn . The reason why Fqm is chosen to define ψ consists
in two aspects. Specifically, if there is no such an intermediate field and ψ is defined over
Fqn/Fq, then the transformation will be Fq-linearized and the plaintext has to be chosen from
Fkq . Consequently, the practical security of this scheme will be bounded from above by O(qk)

and the transmission rate will be only k
n2 , which will greatly weaken the performance of the

proposed scheme.

5.2 Why not hide Gabidulin code

Now we explain why Gabidulin code is not used as part of the private key. Firstly, we introduce
the following proposition, which reveals the relationship between two normal basis vectors.

Proposition 6. Let α be a normal element of Fqn/Fq, then β ∈ Fqn is normal if and only if
there exists Q ∈ PCn(Fq) ∩GLn(Fq) such that

(β[n−1], β[n−2], . . . , β) = (α[n−1], α[n−2], . . . , α)Q.

Proof. The proof is trivial from a direct verification.

Let g′ ∈ Fnqn be an arbitrary normal basis vector of Fqn/Fq. By Proposition 6, there exists
a matrix Q ∈ PCn(Fq) ∩GLn(Fq) such that g′ = gQ. Let G′ = PCk(g

′), then G′ = GQ and

ψ(GM−11 )M−12 = ψ(G′Q−1M−11 )M−12 = ψ(G′M−11 )Q−1M−12 = ψ(G′M−11 )M ′2
−1
,

where M ′2 = M2Q ∈ PCn(Fqn) ∩ GLn(Fqn) satisfies wtR(M ′2) = λ2. Furthermore, it is clear
that anyone possessing the knowledge of ψ, g′,M1 and M ′2 can decrypt any ciphertext in
polynomial time. This implies that breaking this cryptosystem can be reduced to recovering
ψ,M1 and M ′2. Hence we conclude that it does not make a difference to keep the underlying
Gabidulin code secret.

5.3 On the choice of ψ

We first explain why the secret transformation ψ cannot be fully linear over Fqn , then inves-
tigate the equivalence between different linearized transformations.

5.3.1 Why ψ cannot be fully linear

If ψ is fully linear over Fqn/Fqm , then by Remark 6 there exist γ ∈ F∗qn and 0 6 j 6 l− 1 such
that

ψ(GM−11 ) = γ(GM−11 )[mj] = γG[mj](M−11 )[mj] = γG[mj](M
[mj]
1 )−1.

It follows that

ψ(GM−11 )M−12 = γG[mj](M
[mj]
1 )−1M−12 = G[mj](γ−1M2M

[mj]
1 )−1 = G′M ′

−1
,

where G′ = G[mj] and M ′ = γ−1M2M
[mj]
1 . It is clear that rkq(M

′) 6 λ1λ2 and G′ is a
Moore matrix generated by g′ = g[mj], a normal basis vector of Fqn/Fq. This scheme then
degenerates into an instance of Loidreau’s proposal. In this situation, one can easily obtain
g′ by exhausting j because of l being quite small and g being publicly known, as explained in
Section 5.2. By computing PCn(g∗)−1PCn(g′) one can recover M ′ and therefore completely
break this scheme.
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5.3.2 Equivalence of ψ

For any β ∈ F∗qn and ψ ∈ LPl(Fqm), it is clear that βψ is also a linearized transformation, where
βψ is defined by βψ(α) = β · ψ(α) for any α ∈ Fqn . Furthermore, let ψ′ = βψ,M ′2 = βM2,
then rkq(M

′
2) = rkq(M2) = λ2 and

ψ(GM−11 )M−12 = β−1ψ′(GM−11 )M−12 = ψ′(GM−11 )(βM2)
−1 = ψ′(GM1

−1)M ′2
−1
.

In terms of brute-force attack, ψ and ψ′ are said to be equivalent. For any two transformations
ψ1, ψ2 ∈ LPl(Fqm), we have either ψ1 = ψ2 or ψ1 ∩ ψ2 = ∅, where ψi = {βψi : β ∈ F∗qn}.

Now we count the nonequivalent linearized transformations. By Proposition 3, the number
of Fqm-linearized permutations of Fqn is

|LPl(Fqm)| =
l−1∏
i=0

(qn − qmi).

On the other hand, by Remark 6 the number of fully linear transformations over Fqn/Fqm is
l(qn − 1). Hence the number of nonequivalent linearized transformations is evaluated as

N (ψ) =
|LPl(Fqm)| − l(qn − 1)

qn − 1
=

l−1∏
i=1

(qn − qmi)− l.

5.4 On the choice of (m1,m2)

In this section, we first investigate how to choose (m1,m2) to avoid some structural weakness,
then investigate the equivalence of m1.

5.4.1 How to choose (m1,m2)

Note that neither m1 nor m2 should be taken over Fqm , otherwise the proposed scheme will
degenerate into a weak instance. This problem is investigated in the following two cases.

(1) If m1 ∈ Fnqm , then M1,M
−1
1 ∈ GLn(Fqm). It follows that

ψ(GM−11 )M−12 = ψ(G)M−11 M−12 = ψ(G)(M1M2)
−1 = ψ(G)M−1,

where M = M1M2 satisfies rkq(M) 6 λ1λ2. A direct verification shows that, if one
can recover ψ and M , then one can decrypt any ciphertext in polynomial time. Let
G′pub = PCn(g∗) and G′ = PCn(g), then it is clear that G′pub = ψ(G′)M−1. If one can

find ψ, then one can recover M by computing G′pub
−1ψ(G′). This implies that breaking

this cryptosystem can be reduced to finding the secret ψ.

(2) If m2 ∈ Fnqm , then M2,M
−1
2 ∈ GLn(Fqm). It follows that

ψ(GM−11 )M−12 = ψ(GM−11 M−12 ) = ψ(GM−1),

where M = M1M2 satisfies rkq(M) 6 λ1λ2. A direct verification shows that, one can
decrypt any ciphertext with the knowledge of ψ,G and M . If one can find ψ, then one
can recover GM−1 and hence M as explained above. This implies that breaking this
cryptosystem can be reduced to finding the secret ψ.
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5.4.2 Equivalence of m1

For Q ∈ PCn(Fq)∩GLn(Fq), let M ′1 = M1Q,M
′
2 = M2Q, then rkq(M

′
1) = rkq(M1), rkq(M

′
2) =

rkq(M2). It follows that

ψ(GM ′1
−1

)M−12 = ψ(GQ−1M−11 )M2
−1 = ψ(GM−11 )Q−1M−12 = ψ(GM1

−1)M ′2
−1
.

In terms of brute-force attack on m1, it does not make a difference to multiply m1 with a
matrix in PCn(Fq)∩GLn(Fq). Let m1 = {m1Q : Q ∈ PCn(Fq)∩GLn(Fq)}. In what follows,
we count the number of nonequivalent m1’s.

For a positive integer λ < n, let V ⊆ Fqn be an Fq-space of dimension λ. For a matrix

M ∈ PCn(V) ∩ GLn(V) with rkq(M) = λ, assume that M =
∑λ

j=1 αjAj , where αj ’s form a
basis of V over Fq and Aj ’s are nonzero matrices in PCn(Fq). Let A ∈Mλ,n(Fq) be a matrix
whose j-th row is the first row of Aj , then A has full rank. Denote by N (A) the number of
full-rank matrices in Mλ,n(Fq), and by N (V) the number of λ-dimensional Fq-subspaces of
Fqn . Then

N (A) =
λ−1∏
i=0

(qn − qi) and N (V) =
λ−1∏
j=0

qn − qj

qλ − qj
.

The number of matrices M ∈ PCn(Fqn) ∩GLn(Fqn) with rkq(M) = λ can be evaluated as

N (M) = N (V) · N (A) · ξ,

where

ξ =
|{M ∈ PCn(V) ∩GLn(V) : rkq(M) = λ}|

|{M ∈ PCn(V) : rkq(M) = λ}|
.

As for ξ, we have the following proposition (see Appendix A for the proof).

Proposition 7. If qλ − qλ−1 > 2n, then ξ > 1
2 .

Proposition 7 provides a sufficient condition for ξ > 1
2 . Actually, this inequality always

holds according to our extensive experiments in MAGMA [11], even when the sufficient condi-
tion is not satisfied. Hence we suppose ξ = 1

2 in practice. Finally, the number of nonequivalent
m1’s is evaluated as

N (m1) =
N (M1)

|PCn(Fq) ∩GLn(Fq)|
∼ q(2λ1−1)n.

6 Security analysis

Attacks in code-based cryptography can be divided into two categories, namely the structural
attacks and generic attacks. Structural attacks aim to recover the private key or an equivalent
private key from the published information, with which one can decrypt any ciphertext in
polynomial time. Generic attacks aim to recover the plaintext directly without knowing the
private key. In what follows, we investigate the security of the new cryptosystem from these
two aspects.

6.1 Structural attacks

This section mainly introduces some well-known structural attacks in rank-based cryptography
and explains why our scheme can prevent these attacks.
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6.1.1 Overbeck attack

The best known structural attacks on McEliece-type variants using Gabidulin codes are the
Overbeck attack [44] and some of its derivations [28,40]. All these attacks are based on the fact
that Gabidulin code contains a large subspace invariant under the Frobenius transformation.
To prevent these attacks, Loidreau [34] proposed a cryptosystem that can be seen as a rank
metric counterpart of the BBCRS cryptosystem [7] based on generalized Reed-Solomon (GRS)
codes. In Loidreau’s proposal, the secret code is disguised by right multiplying a matrix whose
inverse has a small rank weight. This method of hiding information about the private key,
as claimed by Loidreau, is able to resist the structural attacks mentioned above. A similar
technique is applied in our proposal, which we believe can as well prevent these attacks.

6.1.2 Coggia-Couvreur attack

Coggia and Couvreur [14] presented an effective distinguisher for the Loidreau cryptosystem,
and gave a practical key recovery attack for λ = 2 and the code rate being greater than 1/2.
Instead of operating the public code directly, the Coggia-Couvreur distinguisher considers the
dual of the public code. Specifically, let Gpub = GM−1 be the public matrix, where G is a
generator matrix of an [n, k] Gabidulin code G over FqN and M is taken over a λ-dimensional

Fq-subspace of FqN , where N > n. Let H be a parity-check matrix of G, then Hpub = HMT

forms a parity-check matrix of the public code Gpub = 〈Gpub〉qN . As for G⊥pub = 〈Hpub〉qN , the
Coggia-Couvreur distinguisher states that the following equality holds with high probability

dimqN (G⊥pub + G⊥pub
[1]

+ · · ·+ G⊥pub
[λ]

) = min{n, λ(n− k) + λ}.

However, for an [n, k] random linear code Crand over FqN , the following equality holds with
high probability

dimqN (C⊥rand + C⊥rand
[1]

+ · · ·+ C⊥rand
[λ]

) = min{n, (λ+ 1)(n− k)}.

Now we explain why our scheme can prevent the Coggia-Couvreur attack. For simplicity,
we consider the case of l = 2. Let L(x) = γ1x+ γ2x

[m] ∈ Fqn [x] be the linearized permutation
polynomial associated to ψ, then

Gpub = ψ(GM−11 )M−12 = (γ1GM
−1
1 + γ2G

[m](M−11 )[m])M−12 .

It is easy to see that there exists Q ∈ PCn(Fq) ∩GLn(Fq) such that G[m] = GQ, then

Gpub = G(γ1M
−1
1 + γ2Q(M−11 )[m])M−12 = GM−1,

where M = (γ1M
−1
1 + γ2Q(M−11 )[m])−1M2.

Although one can recover M directly by computing PCn(g∗)−1PCn(g), it does not mean
one can conduct decryption with the knowledge of G and M . This is because M appears
quite random and rkq(M) can be very large. For instance, we have run 1000 random tests for
q = 2,m = 50, n = 100 and λ1 = λ2 = 2. It turned out that rkq(M) > 86 holds in all these
tests. By the way, rkq(M

−1) > 90 holds in 1000 random tests. Consequently, rkq(eM) will be
far beyond the error correcting capability of Gabidulin code and the dual of Gpub = 〈Gpub〉qn
appears indistinguishable from random codes. Exactly, the following equality holds with high
probability according to our experiments,

dimqn(G⊥pub + G⊥pub
[1]

+ · · ·+ G⊥pub
[λ]

) = min{n, (λ+ 1)(n− k)}.
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This convinces us that our proposal can prevent the Coggia-Couvreur attack. It is easy to
see that the Coggia-Couvreur attack also does not work for the general case where no partial
cyclic structure is used.

6.1.3 Loidreau attack

In a talk [35] at CBCrypto 2021, Loidreau proposed an attack to recover a decoder of the
public code in the Loidreau cryptosystem with a complexity of O(((λn+(n−k)2)N)ωq(λ−1)N ).
With this decoder in hand, one can decrypt any ciphertext in polynomial time. Similar to the
Coggia-Couvreur attack, this attack also operates the dual of the public code. However, an
applicable condition for this attack is that the public matrix can be written as Gpub = GM−1,
where G is a generator matrix of Gabidulin code or its subcode and M has a small rank
weight. Obviously the public matrix in our proposal does not satisfy this condition according
to the analysis in Section 6.1.2, which implies that this attack does not work on our new
cryptosystem.

6.1.4 A brute-force attack

Now we consider a potential brute-force attack against the duple (ψ,m1). Notice that for
any ψ′ ∈ ψ,m′1 ∈ m1, there exists m′2 ∈ Fnqn with rkq(m

′
2) = λ2 such that Gpub =

ψ(GM1
−1)M−12 = ψ′(GM ′1

−1)M ′2
−1, where M ′1 = PCn(m′1),M

′
2 = PCn(m′2). Let G′pub =

PCn(g∗), G′ = PCn(g), then

G′pub = ψ(G′M−11 )M−12 = ψ′(G′M ′1
−1

)M ′2
−1
.

This implies that one can compute M ′2 = G′pub
−1ψ′(G′M ′1

−1). Furthermore, a direct veri-
fication shows that one can decrypt any ciphertext with the knowledge of ψ′,m′1,m

′
2 and

the public g. Apparently the complexity of this brute-force attack by exhausting (ψ,m1) is
O(N (ψ) · N (m1)).

6.2 Generic attacks

A legitimate message receiver can always recover the plaintext in polynomial time, while an
adversary without the private key has to deal with the underlying RSD problem presented
in Section 3. Attacks that aim to recover the plaintext directly by solving the RSD problem
are called generic attacks, the complexity of which only relates to the parameters of the
cryptosystem. In what follows, we will show how to establish a connection between our
proposal and the RSD problem.

Let Gpub = ψ(GM−11 )M−12 ∈ Mk,n(Fqn) be the public matrix, and Hpub ∈ Mn−k,n(Fqn)
a parity-check matrix of the public code Gpub = 〈Gpub〉qn . Let y = xGpub + e be the received
ciphertext, then the syndrome of y with respect to Hpub can be computed as s = yHT

pub =

eHT
pub. By Definition 6, one obtains an RSD instance of parameters (q, n, n, k, t). Solving this

RSD instance by the combinatorial attacks in Table 1 or the algebraic attacks in Table 2 will
lead to the error vector e, then one can recover the plaintext by solving the linear system
y − e = xGpub.

15



7 Parameters and public key size

In this section, we consider the practical security of our proposal against the generic attacks
presented in Section 3, as well as a brute-force attack against the duple (ψ,m1) in Section
6.1.4, with a complexity of O(N (ψ) · N (m1)). The public key consists of a vector in Fnqn ,
leading to a public key size of n2 log2(q) bits. In Table 3, we give some suggested parameters
for the security of at least 128 bits, 192 bits, and 256 bits. After that, we compare the public
key size with some other code-based cryptosystems in Table 5. It should be noted that, when
considering the algebraic attacks in [8,9], the original parameters suggested in [30] should be
updated. Specifically, the updated parameters and corresponding public key size are given in
Table 4. It is clear that our proposal has an obvious advantage over other variants in public
key representation.

Parameters
Public Key Size Security

q m n k l λ1 λ2

2 55 110 54 2 2 2 1513 139

2 60 120 64 2 2 2 1800 198

2 72 144 72 2 2 2 2592 258

Table 3: Parameters and public key size (in bytes).

Parameters
Public Key Size Security

q m n k λ1 λ2 r t

2 167 167 59 3 3 54 9 6973 129

2 194 194 86 3 3 54 9 9409 193

2 203 203 95 3 3 54 9 10303 265

Table 4: Updated parameters and public key size (in bytes) for LT19.

Instance
Security

128 192 256

Classic McEliece [3] 261120 524160 1044992

Loi17 [36] 34560 59136

LT19 [30] 6973 9409 10303

HQC [38] 2249 4522 7245

BIKE [4] 1541 3083 5122

RQC [1] 1834 2853 4090

Our proposal 1513 1800 2592

Table 5: Comparison on public key size (in bytes).
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8 Conclusion

This paper has introduced the so-called linearized transformations over linear codes and pre-
sented a new McEliece-type public key encryption scheme based on Gabidulin codes. The
innovation of this paper lies in using linearized transformations to hide the private key. Com-
bining the technique of Loidreau’s proposal, this new proposal can resist all the existing
distinguisher-based attacks. When equipped with the partial cyclic structure, this scheme
turns into one with no hidden structure and with a competitive public key size.
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A Proof of Proposition 7

Proof. For a λ-dimensional Fq-linear space V ⊆ Fqn , denote byMλ(V) the set of all matrices
with rank weight λ in PCn(V). Let U be the set of all singular matrices in Mλ(V), and
V = Mλ(V) ∩ GLn(V). In what follows, we will construct an injective mapping σ from
U to V . First, we divide U into a certain number of subsets. For a matrix M ∈ U , let
m = (m0,m1, . . . ,mn−1) ∈ Vn be the first row vector of M , namely M = PCn(m). Let
M = {N ∈ U : M − N is a scalar matrix}, a set of matrices in U whose first row resembles
M at the last n − 1 coordinates. Let x = (x,m1, . . . ,mn−1), and X = PCn(x). Denote by
f(x) ∈ Fqn [x] the determinant of X, then f(x) is a polynomial of degree n. In the meanwhile,
we have that |M | equals the number of roots of f(x) = 0 in V, which indicates that |M | 6 n.
Let m∗ = (m1, . . . ,mn−1), then it is easy to see that rkq(m

∗) > λ− 1. Now we establish the
mapping σ in the following two cases:

(1) rkq(m
∗) = λ− 1.

For a matrix M1 ∈ M , let m1 = (δ1,m
∗) be the first row vector of M1. Let W =

〈m1, . . . ,mn−1〉q, then dimq(W) = λ − 1. Because of qλ − qλ−1 > n, there exists
δ′1 ∈ V\W such that f(δ′1) 6= 0, where f(x) is defined as above. Let m′1 = (δ′1,m

∗),
then we have M ′1 = PCn(m′1) ∈ GLn(V), and rkq(m

′
1) = λ in the meanwhile. We define

σ(M1) = M ′1.

For 2 6 i 6 n and a matrix Mi ∈ M\{Mj}i−1j=1, if any, let mi = (δi,m
∗) be the first

row vector of Mi. Because of qλ− qλ−1− (i− 1) > n, there exists δ′i ∈ V\(W ∪{δ′j}
i−1
j=1)

such that f(δ′i) 6= 0. Let m′i = (δ′i,m
∗), then we have M ′i = PCn(m′i) ∈ GLn(V), and

rkq(m
′
i) = λ in the meanwhile. We define σ(Mi) = M ′i .
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(2) rkq(m
∗) = λ.

For a matrix M1 ∈ M , let m1 = (δ1,m
∗) be the first row vector of M1. Because of

qλ > n, there exists δ′1 ∈ V such that f(δ′1) 6= 0, where f(x) is defined as above. Let
m′1 = (δ′1,m

∗), then we have M ′1 = PCn(m′1) ∈ GLn(V), and rkq(m
′
1) = λ in the

meanwhile. We define σ(M1) = M ′1.

For 2 6 i 6 n and a matrix Mi ∈ M\{Mj}i−1j=1, if any, let mi = (δi,m
∗) be the first

row vector of Mi. Because of qλ − (i − 1) > n, there exists δ′i ∈ V\{δ′j}
i−1
j=1 such that

f(δ′i) 6= 0. Letm′i = (δ′i,m
∗), then we have M ′i = PCn(m′i) ∈ GLn(V), and rkq(m

′
i) = λ

in the meanwhile. We define σ(Mi) = M ′i .

It is easy to see that σ forms an injective mapping from U to V . Apparently σ(U) = {σ(M) :
M ∈ U} ⊆ V , which implies that |U | = |σ(U)| 6 |V |. Together with U ∩ V = ∅ and
Mλ(V) = U ∪ V , we have that

ξ =
∑

V⊆Fqn ,dimq(V)=λ

|V |
/ ∑
V⊆Fqn ,dimq(V)=λ

|Mλ(V)| > 1

2
.
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