On Security Against Time Traveling
Adversaries

Licas Criostoir Meier
lucas@cronokirby.com

September 4, 2022

Abstract

If you had a time machine, what cryptography would you be able to break?

In this work, we investigate the notion of time travel, formally defining
models for adversaries equipped with a time machine, and exploring the
consequences for cryptography. We find that being able to rewind time
breaks some cryptographic schemes, and being able to freely move both
forwards and backwards in time breaks even more schemes.

We look at the impacts of time travel on encryption and signatures in
particular, finding that the IND-CCA and EUF-CMA security games are
broken, while IND-CPA and UUF-CMA remain secure.

1 Introduction

Classical cryptography tries to build schemes which are secure against adver-
saries equipped with a computer, so long as they’re bounded in the amount of
computation they can do. Post-quantum cryptography additionally provides ad-
versaries with a guantum computer. While this is enough to break many existing
schemes, it is nonetheless possible to design cryptography which can resist quan-
tum attacks.

If time machines were possible, could they help an adversary break certain cryp-
tographic schemes? Can we design cryptography which is secure even against
time traveling adversaries? We investigate these questions in this work.

We consider the “intuitive” notion of time travel that one might encounter in
various works of science fiction. An adversary has a time machine which al-
lows them to jump through time, rewinding time backwards, or skipping time
forwards. Crucially, the adversary is still bounded in the computation they can
do, including the amount of time travel. From their perspective, they still run in
polynomial time.

This capability allows the adversary to break certain schemes, because they’re
able to get around various checks made in security games. For example, in the
EUF-CMA game, the adversary has access to an oracle allowing them to sign any
message of their choice. The adversary wins by producing a forgery for a new

message, that hasn’t been signed by the oracle. Time travel enables an adversary
to trivially break this game by querying the oracle, then traveling backwards in
time, to a point where no messages have yet been signed, and then presenting
their signature as a valid forgery. Intuitively, this is akin to convincing someone
that they’ve signed a message by presenting them with a signature that they will
create in the future.

Beyond investigating concrete breakages of certain schemes, we also present a
fine grained analysis of different models of time travel. We consider several
variations of time travel, and show how they form a hierarchy, with some models
strictly more powerful than others. In particular, the ability to travel backwards
is more powerful than no time travel at all, and being able to travel both forwards
and backwards is even more powerful.

We also consider restrictions on which points in time the adversary can travel to,
and how deep they can travel in forked timelines, showing that these restrictions
are strictly weaker.

1.1 Relevance of Time Travel

Given that time machines are mainly a subject of science fiction, the notion of
time travel might seem irrelevant to cryptography in practice. We think that this
might not be the case.

One notion similar to that of time travel is “resettable encryption” [[Yil09]. In
this work, they consider a cryptographic system deployed on a virtual machine.
Because the adversary has the ability to reset the state of the virtual machine, the
system needs to satisfy a higher level of security, in order to withstand attacks
using this resetting functionality. From the perspective of the system, the adver-
sary effectively has the ability to time travel, by rewinding the state backwards in
time. Our models of time travel may thus be relevant to certain deployments of
cryptography on virtual machines, when the adversary has the ability to rewind
the state of that machine.

Other attacks against practical systems have been conducted by tricking devices
into rewinding their system clocks backwards in time. For example, an attack
by Iovino et al. [[VV2(Q] used this clock corruption in order to attack digital
contact tracing systems. From the perspective of the system under attack, clock
rewinding adversaries are effectively traveling backwards in time. Thus, our
exploration of time travel might be relevant to practical systems whose security
depends on a clock.

Finally, in the realm of probabilistic proofs, notions of rewinding are relevant
to security. For proofs of knowledge, the extractor is often given the ability to
rewind the prover, and uses this ability to extract a secret value from the prover.
From the perspective of the prover, the extractor is effectively traveling back in

2

time. For interactive oracle proofs [BSCS16], the notion of state-restoration
soundness is relevant when compiling a multi-round interactive protocol into a
non-interactive proof. Indeed, the protocol must remain sound even if a prover
has the ability to retry each round individually. We can model this by giving the
prover access to a time machine which allows them to jump backwards in time.
Thus, the crucial notion of state-restoration soundness coincides with notions of
time travel we explore in this work.

1.2 Overview

.]
In Section , we revisit the notion of standalone security, and define the notion of
abstract games, which allow us to encapsulate security games under a common
interface.

In Section @ we then use this notion to define various models of time travel as
transformations of abstract games. We compare these various models, showing
that they form a hierarchy, with some models strictly more powerful than oth-
ers.

In Section E] we consider the effects of restrictions on the positions where an
adversary can create forked timelines, and on the depth of each timeline, showing
that these restrictions create strictly weaker capabilities.

In Section , we investigate the effect of time travel on common cryptographic
schemes. We find that schemes whose security can be captured by a srate-
less game are unaffected by time travel, including IND-CPA security for en-
cryption, and UUF-CMA security for signatures. On the other hand, both the
IND-CCA and EUF-CMA games are broken, even in our weakest model of time
travel.

2 Defining Abstract Games

In this section, we develop a framework to abstract over essentially all security
games used to define the standalone security of cryptographic schemes.

We need such an abstraction in order to explore and compare different models
of time travel. By having an abstract game, we can more easily define what it
means to augment an adversary with the ability to travel through time, and we
can more easily compare the differences between models of time travel across
all games, rather than just for a particular cryptographic scheme.

2.1 State-Separable Proofs

But first, we need a basic notion of standalone security. For this, we lean on the
framework of state-separable proofs [BDLF' 18, Mei22].

The basic component of this framework is the package. A package P is defined
by its code. This code describes how to initialize the state of the package, and
what functions the package exports. This set of exported functions is denoted by
out(P). Each of these functions can accept input, produce output, and read and
write to the internal state of the package. Packages also have a set of imported
functions, denoted by in(P).

These imported functions are just “placeholders”, with no semantics. For them
to have meaning, the package needs to be linked with another package. If A and
B are packages such that in(A) C out(B), then we can define the composition
package A o B. The exports are those of A, with out(A o B) = out(A), and the
imports are those of B, with in(A o B) = in(B). This package is implemented
by merging the states of A and B, and replacing calls to the functions in in(A)
with the functionality defined in B.

A game G is a package with in(G) = .

An adversary A is a package with out(A) = {guess}. The function guess takes
no input, and returns a single bit b. This bit represents the adversary’s guess as
to which of two games they 're playing. Furthermore, if the function guess has a
time complexity polynomial in a security parameter A, we say that the adversary
is efficient. Most commonly, we assume that all adversaries are efficient, unless
we explicitly mark an adversary as unbounded.

By linking an adversary with a game, we get a package A o G with no imports,
and a single export guess. This allows us to define the advantage of an adversary
A in distinguishing two games G, G'1, via the formula:

€(AoGy) :=|P[l < guess() |b=0] — P[1 < guess() | b =1]|

Given a pair of games G, G;, we say that they are:

* equal, denoted by Gy = G4, when ¢(A o GG) = 0 for any adversary, even
unbounded.

* indistinguishable, denoted by Gy ~ G, when ¢(A o ;) is a negligible
function of A, for any efficient adversary (in \).

The security of a cryptographic scheme is captured by a pair of games GG;,. We
say that the scheme is secure if Gy =~ (.

For reductions, given game pairs G and Hbl, . ,Hév , and a function p, we
write:
Gy < p(H}, ..., H})

if for any efficient adversary A against (5}, there exists efficient adversaries
Bi,...,B, such that:

(Ao Gy) < ple(BioHY),... e(B,oH))

4

2.2 Abstract Games

In the formalism of state-separable proofs, each game can have a different inter-
face, and maintain a different kind of state. This is very useful, since it allows
us to capture various cryptographic schemes and notions of security. However,
in order to easily model the impacts of time travel on various games, we would
rather work with a single interface, capable of capturing the behavior of all of
these games.

The key observation here is that the state of a game is modified in only two
places:

1. When the state is initialized.
2. When an exported function is called.

We can also collapse all of the exported functions into a single function, by
including additional information in the input. For example, the input can in-
clude which sub-function is being called, along with the arguments to that sub-
function.

The data we need to describe a game thus consist of a set of states Y., an initial-

ization function init : () LN ., as well as input and output types X and Y,
along with a transition function next : X X X — Y x X.

Together, these data define the following game:

G(init,next)
s <— init()
O(z) :

S,y < next(s,x)

return y

Game 1: G(init, next)

Intuitively, the game uses init to randomly initialize the state, and then each sub-
sequent oracle call triggers some kind of randomized calculation which modifies
the state, and produces an output.

We can also implicitly parameterize the types and functions with a bit b, allowing
us to define the game pair G, (init, next), which is shorthand for G(init,, nexty).

This abstract game is simple, but still expressive enough to capture any kind of
game expressible in the state-separable formalism.

5

3 Models of Time Travel

In this section we investigate various models of time travel, and compare them
with each other, showing that they form a hierarchy of increasingly strong capa-
bilities.

The notion of time travel we explore is an intuitive one, inspired by science fic-
tion. The adversary is equipped with a time machine, which allows them to travel
forwards and backwards in time. However, the adversary must still be efficient.
From their point of view, they only perform a number of operations polynomial
in the security parameter), including time travel hops.

Some other models of time travel, like closed timelike curves, would allow, in
essence, for computation with unbounded time (but bounded space) by an adver-
sary [BruO3]. This is a much more powerful capability than we consider in this
work, and unbounded computation breaks essentially all cryptography beyond
information-theoretic schemes.

We also assume that time is discrete. Each interaction the adversary has with
a game advances time forward by one step, and time hops can only be made
between these discrete points in time. One potentially stronger capability would
be to allow an adversary to “partially” undo the effects of an interaction, by
rewinding an interaction before its completion. The reason we disallow this is
because we assume the adversary has no other channels to learn about the state of
the game beyond the information they get from querying its exported functions.
An adversary thus has no way of knowing where they need to time hop in order
to partially undo an interaction, so we can make the simplifying assumption that
all interactions are atomic, and time is discrete.

3.1 Rewinding Models

The first model of time travel we consider is that of rewinding, in which the
adversary is allowed to travel backwards in time.

3.1.1 Single Rewinds

We start by giving the adversary the ability to travel backwards by exactly one
time step.

We model this as a transformation between games. Given an abstract game G,
we define the game Rewind-1(Gy) as follows:

Rewind-1(Gy)

So < inity()

140

O(x) : Rewind() :
Sit1,Y < nexty(s;,) assert i >0
return y 141—1

Game 2: Rewind-1(G)

The interface is the same as that of G, except that we now have an additional
exported function: Rewind. Apart from this function, the behavior of the game
is the same. Each interaction with O advances the state. The difference is only in
the internal implementation. Instead of a single state s, we now have a sequence
of states sy, s1, . . ., as well as a position in this sequence, .

The Rewind function is the additional capability here, and allows the adversary
to move backwards by one step in time. This models a very limited time machine
which can only make small backwards movements in time.

Our first question is: does this limited model of time travel help the adversary? In
other words, is an adversary with this capability more powerful than an adversary
without it? One way of capturing this notion of power would be to demonstrate
a game &, which is secure, but where Rewind-1(&,) is broken.

Claim 3.1. There exists a game &, and adversary A such that &, is secure, yet
¢(AoRewind-1(&,)) = 1.

Consider the following game:

&
ko, kv - {0, 1}
queried < 0

Query(o) : Guess(ko, k1) :

assert queried = 0 assert /%0 =ko A /%1 =k

queried + 1 return b

return k,

In this game, we have two random keys ko, k1. The game lets the adversary learn
one key of their choice, but not the other. If the adversary manages to guess both
of the keys, then they learn the value of b.

Now, because k, has A bits, an adversary won’t be able to randomly guess its
value. This means that if the adversary only knows one of the keys, they won’t
be able to pass the assertion except with negligible probability. This means that
&, 1s secure.

On the other hand, Rewind-1(&,) is already broken. The following strategy will
always succeed:
ko < Query(0)

Rewind()
k1 < Query(1)
b < Guess(ko, k1)

return b

Even though the adversary prevents us from querying more than once, a single
rewinding step is enough to undo our query, and thus learn the other key.

3.1.2 Multiple Rewinds

Next, we consider the ability to travel backwards by multiple steps at once. Like
before, we model this with another transformation: Rewind-Many.

Rewind-Many(Gy)

Sp < initb()

1+ 0

O(z) : Rewind(j) :
Sit1,Y < nexty(s;,) assert i >=j
return y 11—

Game 3: Rewind-Many(G,)

The only difference with Rewind-1 is that now the adversary can specify a hop
distance 7, and move backwards by j steps, rather than by just a single step.

A natural question arises: is being able to jump backwards multiple steps at a
time more powerful?

No.

Claim 3.2. Rewind-Many is as strong as Rewind-1. In particular, for any abstract
game G, we have Rewind-Many(G,) < Rewind-1(Gy).

The reduction works by emulating a large jump with many tiny jumps.

We define a wrapper [':

Rewind(7) :
O(x) :)

assert 1 >=7
return super.O(z)
super.Rewind() j times

It then holds that:

Rewind-Many(G,) = I' o Rewind-1(Gp)

The only subtlety is that we need to guarantee that this emulation is efficient,
i.e. polynomial in A. Because the adversary for A against Rewind-Many(G,) is
efficient, we know that they make a number of queries to O polynomial in \. This
means that the largest ¢ they reach is also bounded, and thus so will the largest ;
they query. This means that the number of iterations we do in the emulation is
also bounded by a polynomial in A, so the reduction is efficient.

3.2 Forking Models

So far, we’ve considered a simple model of time travel in which the adversary
observes a linear sequence of states, but they’re allowed to rewind time, undoing

the most recent states.
oo & U

One shortcoming of this model is that the adversary has no ability to return to
previously seen states. For example, after reaching a state s, an adversary can
move backwards in time, but then loses the ability to move back to the state
S.

While they can travel backwards in time, they can’t travel forwards at will.

In this section, we augment the adversary with the ability to travel both forwards
and backwards in time. To do so, we consider a model in which the adversary
is allowed to fork the timeline, and then travel between these parallel timelines.
Instead of having a linear sequence of states, we now have a tree:

To model this technically, we introduce the notion of save points. By creating a
save point at particular point in time, an adversary is able to return to the state
of the game at that point in time. Each save point is thus a junction point in the

tree. By returning back to a save point, the adversary creates a new branch at
that junction:

3.2.1 A Stack of Save Points

In the first model we consider, an adversary is free to create save points any-
where, but can only jump to the most recently created save point. We denote this
capability by Fork-Stack:

Fork-Stack(Gp)

s < inity() Fork() :

stack <— ¢ stack.push(s)

S,y < nexty(s, z) assert —stack.empty
return y s < stack.pop()

Game 4: Fork-Stack(G,)

We maintain a stack of save points, which are just snapshots of the state of the
game, but we can only reload the most recent save point, consuming it. The
adversary also needs to proactively create save points if they want to be able to
rewind time.

How does Fork-Stack compare with Rewind-Many?
It turns out that they’re equivalent.

Claim 3.3. For all abstract games G, we have both Fork-Stack(G,) < Rewind-Many(Gy)
and Rewind-Many(G,) < Fork-Stack(G,).

Proof Idea:
Because we can only load the most recent save point, we can emulate these loads
using rewinding.

In the other direction, we need to emulate rewinding with forking. One tricky
aspect is that an adversary can rewind to any point without having to create a save
point there in advance. In particular, they can choose how they rewind based on
the results of interacting with the game. To accommodate this freedom, we can
simply always make a save point, allowing us to rewind by loading multiple times
in a row.

Proof:
First, we show that Fork-Stack(G,) < Rewind-Many(G,).

We define a wrapper I':
r
Fork() :
i+ 0 -
stack.push(7)
stack < ¢
Load() :
assert —stack.empty
O(x) : .
- i < stack.pop()
1+ 1+1 R
super.Rewind(i — 1)
return super.O(z) .
141

This wrapper satisfies:
Fork-Stack(G,) = I' o Rewind-Many(G,)

Basically, instead of keeping a stack of states, we can keep a stack of indices, and
the rewinding is enough to load previous states, because we can only ever load
the most recent state on the stack.

11

Next, we show that Rewind-Many(G;,) < Rewind-Many(G,).

In Claim , we showed that Rewind-Many(G,) < Rewind-1(Gy), so it suffices
to prove that Rewind-1(G,) < Fork-Stack(G,).

We define a wrapper I, which works by always creating a save point, and then
using those to implement rewinding.

r

O(z) : Rewind() :
super.Fork() super.Load()
return super.O(z)

We have:
Rewind-1(G,) = I o Fork-Stack(G,)

One subtlety is that in Rewind, we don’t perform any assertions, whereas we’d
usually check that ¢« > 0. This isn’t necessary because super.Load will check
that the stack isn’t empty, which performs this duty.

3.2.2 Arbitrary Save Points

In the Fork-Stack model, the adversary is limited to only loading the most re-
cently created save point. As we proved in Claim .3, this model gives no ad-
vantage over just being able to move backwards in time.

In order to capture the ability to move both backwards and forwards at will, we
can remove the restriction on which save points can be loaded. We now maintain
a list of save points, and these save points can loaded in any order and multiple
times, at will, without any restrictions.

More formally, we capture this notion with the Fork transformation:

12

Fork(Gy)

Fork() :
Sp <— inity() -

j—ij+1
1,7 <0

S < 84

Load(i') :

Si, Y < nexty(s;, x) L
assert ¢ <
return y » ,
141

Game 5: Fork(G,)

The essence is that the game now maintains multiple states s, s1, . . . in parallel.
At any point, the adversary is free to switch which state is currently being used, or
to create a parallel state from the current one. This captures the intuitive notion
of traveling at will between parallel timelines.

It turns out that this model of time travel is strictly stronger than the others we’ve
seen so far.

Claim 3.4. Fork is strictly stronger than Fork-Stack, assuming the existence of
secure pseudo-random functions.

In particular, given a secure PRF F', there exists a game &, and adversary .4 such
that Rewind-1(&,) is secure, yet €(A o Fork(&)) = 1.

Consider the following game:

13

&

Query(z) :
k&K assert queried =0
x4 L queried < 1
queried < 0 return F(k,Z)
Win(y) : Input() :
assert x # L assert queried =0

assert F(k,z)=1y queried < 1
return b e & x

return x

The idea is that we have a pseudo-random function, seeded with a random key
k. The adversary can either query the function on an input of their choice, or
attempt to win the game, by receiving a challenge input x, and then responding
with the evaluation of the PRF F' on that input. Crucially, they’re allowed to
perform a query, or to prepare the challenge input, but not both.

This game is insecure against forking, as demonstrated by the following strategy
for Fork(&,):
x < Input()

Fork()
Load(0)

y < Query(x)
Load(1)

b < Win(y)

return b

On the other hand, the game Rewind-1(&,) remains secure, provided that | X'| ™!
is negligible in A\. While the adversary can use rewinding to query multiple
times, they won’t know which input x they need to query. Except with negligible
probability, each new call to Input will yield a different value of x. Because the
adversary cannot predict the value of x, nor can they learn the output of F’ after
they know z, since F'is a secure PRF, they cannot win the game.

14

3.3 Summary

To summarize our findings, we have the following hierarchy of models of time
travel:

No-Time-Travel < Rewind-1 = Rewind-Many = Fork-Stack < Fork

So, even a bit of time travel helps, but then the next jump in capability only comes
with the ability to fork timelines and travel at will between them. In other words,
being able to jump backwards helps, and being able to jump forwards too helps
even more.

4 On Depth and Position Restrictions

In the models we’ve considered so far, there are limits on what time travel capa-
bilities the adversary has, but not in how they can use them. The adversary can
fork whenever they want, as many times as they want, and advance each forked
timeline at will.

In this section, we model these kinds of restriction on time travel, and compare
how they relate to each other.

4.1 Modeling Restrictions

The first kind of restriction is on the position where an adversary can fork. With-
out time travel, the sequence of states sg, s1, . .. is indexed by N. A natural re-
striction is to only allow the adversary to fork on a subset P C N of these states.
For example, the adversary may only be allowed to fork on the initial state s,
but not on any other state.

The second kind of restriction is on the depth of the forks. In our model, the
adversary is free to explore each fork to any depth. They can advance the state in
each fork arbitrarily. With this restriction, we instead only allow the adversary
to advance the state in a forked timeline d times.

More formally, given a set of positions P C N, and a depth d € N U {oo}, we
can define the following transformation Fork(P, d):

15

Fork(P, d)(Gy)

So < inity()

po < 0 Fork() :

Co < 00 assert p, € P
i,§ <0 j—Jj+1

Olx): 8, D> Cj = 8is Pi, d

assert ¢; >0

i+ ¢ —1 Load(d') :
pi<pit1 assert i < j
Si,y < nexty(s;,) i+

return y

Game 6: Fork(G)

This game is like Fork(G;), except with a few more restrictions.

First, we keep track of the position of each fork along the timeline, via p;. This
allows us to prevent forks unless the position p; is contained in the set of allowed
positions P.

In order to restrict the depth of each fork, each fork is associated with a counter
¢;, which decrements each time the state advances. The main timeline has its
counter ¢, set to oo, to allow arbitrary progression.

4.2 Comparing Restrictions

For certain parameters, Fork(P, d) is actually equivalent to not having access to
time travel. If P = (), or d = 0, then forking becomes impossible. This means
that Fork((), d) = Fork((), "), and similarly for d = 0.

In fact, an equivalent condition is that P contains no elements in poly(}\), i.e.
bounded by a polynomial in the security parameter \. For example, if P = {2},
then the set isn’t empty, but all of the indices contained therein are unreachable,
making time travel impossible.

At the other extreme, Fork(N, co) = Fork. If we can fork anywhere, and to
any depth, we recover the general model of forking defined previously. In fact,
it suffices that d ¢ poly()\). If the depth is larger than any polynomial in A,

16

then it’s impossible for the adversary to ever exhaust it, rendering it effectively
infinite. For P, if for all p € N/P, we have p ¢ poly()), then P is effectively
equivalent to N, since the forbidden positions aren’t reachable by an efficient
adversary.

It’s clear that as P and d grow larger, the adversary grows more powerful. In
particular, for all abstract games G, and parameters P, P’, d, d', we have:

o If P C P, then Fork(P, d)(Gy) < Fork(P',d)(Gs).
» If d < d', then Fork(P, d)(G,) < Fork(P,d")(Gy).

But, is it possible that certain parameter values are equivalent? If we increase
the size of the parameters, is that a strictly stronger capability?

It is. Increasing P and d yields a strictly stronger adversary.

Claim 4.1. Forall d > 0, if P’/ P # (), then there exists a game &, and adversary
A such that Fork(P, d)(&,) is secure, yet €(.A o Fork(P’, d)(&,)) = 1.

The basic idea of the proof is that we engineer a game which requires the adver-
sary to fork at a position in P’/ P, which demonstrates the separation.

Given p € P’/ P, we can construct the following game:

&

R A
ko,k‘l <— {0,1}
14+ —1

Query(o) : .
- Guess(ko, k1) :

141+ 1
if i#£p

return |

assert /%0 = ko A l%l =k

return b

return k,

In order to win the game, the adversary needs to learn both k(and k;. Because
of their size, this requires the adversary to make two queries, both at step p. This
requires the adversary to be able to fork at step p, which they are unable to do in
Fork(P, d)(&p).

n
Claim 4.2. For all P with min(P) € poly(A\ll, if @ > d, and d’ € poly()), then

This condition means that there exists an element in P bounded by a polynomial in A, so
that P isn’t effectively empty.

17

there exists a game &, and adversary A such that Fork(P, d)(&,) is secure, yet
e(AoFork(P,d')(&)) = 1.

The idea is to make a game which requires forking, and then advancing the state
a larger number of steps, which requires the ability to reach a depth of d’. We
can do this by requiring the adversary to guess two keys ko and k;. In order to
enforce a certain depth, we require the adversary to first choose their index o,
and then wait a certain number of steps before learning k,,.

Given p € P, we define the following game:

&

ko, by <& {0,1} Wait() :

€4 00 c<c—1

queried < 0 if c=0A0# L
Query(d) : return k,

assert queried =0 Guess(ko, k1) :

queried < 1 assert /%0 =ko A /%1 =k
c—d —1 return b
O+ 0

In order to learn k,, the adversary first commits to their choice of ¢ in Query,
and then they need to call Wait d’ — 1 times before learning the result.

A winning strategy against Fork(P, d’) would be:

Wait() p times
Fork()

Query(0)

ko < Wait() d’ times
Load(1)

Query(1)

ki < Wait() d’ times
Load(1)

b < Guess(ko, k1)

return b

Notably, this strategy requires a forking depth of at least d’, in order to be able to
make the queries to Wait. One subtlety is that we need to wait at the start of the

18

game in order to advance the state p times, at which point we’re allowed to fork,
since p € P.

On the other hand, since d < d', Fork(P, d)(&,) is secure. The adversary cannot
learn both kg and k; via Query and Wait, since they lack the depth in their fork.
Since both keys have length A, the adversary cannot guess either of them with
more than negligible probability either.

5 Effects of Time Travel on Common Schemes

In this section, we explore the impacts of time travel on various cryptographic
schemes.

First, we prove a general result, namely that for stateless games, time travel pro-
vides no advantage.

Then, we show a few more concrete results, in particular that while IND-CCA en-
cryption is broken against time travel, IND-CPA encryption remains secure. We
also investigate signatures, showing that the EUF-CMA game is broken against
time travel, but that UUF-CMA remains secure.

5.1 Stateless Schemes Remain Secure

So far, we’ve shown that two models of time travel, Rewind-1, and Fork provide
strictly stronger capabilities. The separation in both cases relied on the adversary
being able to “undo” certain checks made inside of the game.

However, if the state of the game remains static after initialization, then the ad-
versary gains no advantage through time travel, because the state never changes,
so time travel has no effect on this state.

More formally, given an abstract game G,(init, next), we say that the game is
stateless if for all inputs and states s, x, it holds that:

(§',+) < next(s,z) = s =s
In other words, no matter what initial state we have, and what input we pass to
the game, the state will never change.
Claim 5.1. For any stateless game G, time travel provides no advantage.
In particular, we have Fork(G,) < G,.

Since the state never changes, we can easily emulate the time jumps by doing
nothing. More formally, if we write down the Fork(G,) game explicitly, using

19

the fact that the state doesn’t change, we get the game I'°:

FO

Sp <— inity() Fork() :

i j 0 g+l
O(z) : Load(i') :

-,y — nexty(sg,) assert i <j
return y R

In I'°, the Fork and Load functions have no impact on the rest of the game,
allowing us to separate out G, to get:

1"1
Fork() :
FQ:@,j(—O Jj—J+1 G,
O(z) : Load(i') :
return super.O(z) assert i < j
i1

which ends our reduction.
[|

The security of many schemes can be formulated with a stateless game, so Claim
m is a very useful tool to quickly show security against time travel. We make
use of this tool frequently in the following sections.

5.2 On Encryption

One very common notion of security for encryption schemes is that of IND-CCA
security [NY90]. In the IND family of games, the adversary can present the
challenger with a message of their choice, receiving either the encryption of that
message, or a random message H We call this ciphertext a challenge. The differ-
ence between the variants IND, IND-CPA, and IND-CCA lies in what additional
oracles the adversary has access to.

2We use the “real or random” variant of IND, rather than the “left or right” variant, since the
former is easier to use with state-separable proofs.

20

In IND-CPA, the adversary has access to an oracle which lets them receive en-
cryptions of messages of their choice. In IND-CCA, the adversary additionally
has access to an oracle allowing them to decrypt ciphertexts of their choice. Cru-
cially, the adversary is not allowed to decrypt any challenge ciphertexts.

Both of these games are formally presented in the appendix, as Game @ and Game
, respectively.

This difference is what allows time travel to break the IND-CCA game. Because
the game keeps track of which challenge ciphertexts have been produced, disal-
lowing decryption queries to those ciphertexts, the adversary can use time travel
to make the game “forget” which challenges have been produced, and then use
the decryption oracle to win.

Claim 5.2. Given any encryption scheme & = (K, M,C, E, D), and message
m € M, there exists a an adversary 4, such that:

¢(A o Rewind-1(IND-CCA,(€))) = 1 — |[M(|m|)|*

where | M (|m])| denotes the number of messages with the same length as m.

The idea is quite simple: the adversary first obtains a challenge ciphertext (any
message works), and then makes the game forget that it produced this challenge,
allowing the adversary to then query the decryption oracle on the challenge, thus
learning information about the secret bit b.

More formally, consider the following strategy:

¢ < Challenge(m)
Rewind()
m < Dec(c)

return m # m

The adversary will be allowed to query Dec with ¢, because the set of challenge
ciphertexts is made empty by Rewind. Then, if b = 0, the adversary will return
0, since the ciphertext will be an encryption of m. Otherwise, if b = 1, the
adversary will only return O if the random message happens to equal m, which
happens with probability |M(|m|)| ™.

Crucially, our attack uses the fact that the IND-CCA game is stateful. IND-CPA,
on the other hand, remains secure, because the game is inherently stateless.

Claim 5.3. For any encryption scheme &, Fork(IND-CPA(E)) < IND-CPA(E).

21

Looking at the definition in Game ﬁ, it’s clear that the associated abstract game
is stateless. We can thus apply Claim P.1| to obtain our result.

5.3 On Signatures

Next, we consider the security of signatures. One common family of security
games for signatures is that of *UF-CMA [GMRS88§]. In this family, the adversary
has access to an oracle which can sign messages, and they attempt to create a
forged signature on a message. The difference between the games lies in which
messages the adversary needs to forge a signature for.

In UUF-CMA, the game chooses a random message m, and the adversary must
forge a signature for m. Naturally, the adversary is not allowed to use the signing
oracle on m.

In EUF-CMA, the adversary can forge a signature for any message of their choice,
so long as they didn’t use that message with the signing oracle.

Both of these games are formally presented in the appendix, as Game E and Game
, respectively.

In EUF-CMA, the game needs to keep track of which messages it has signed for
the adversary. This bookkeeping is what allows the game to be broken by time
travel. An adversary can sign a message of their choice, and then rewind time to
make the game forget that it ever signed that message.

Claim 5.4. Given any signature scheme S = (PK, SK, M, C, ¥, Gen, Sign, Verify),
and message m € M, there exists an adversary A such that:

¢(A o Rewind-1(EUF-CMA,(S))) = 1

The idea is that the adversary can obtain a signature for m via the oracle Sign,
and then rewind time to make the game forget that it signed this message, allow-
ing it to query Win.

More formally, the following strategy always succeeds:
o < Sign(m)
Rewind()

return Win(m,o)

By the correctness property for signatures, the o returned by Sign will success-
fully verify. Additionally, after Rewind|(), the set signed will be empty, allowing
the adversary to successfully query Win.

22

On the other hand, UUF-CMA remains secure. This is because the message m
that the adversary needs to sign is fixed after initializing the game, which means
that time travel doesn’t help, because no state is modified in the game.

Claim 5.5. For any signature scheme S, Fork(UUF-CMA (S)) < UUF-CMA(S).

Looking at the definition in Game Q, it’s clear that the associated abstract game
is stateless. We can thus apply Claim {.]| to obtain our result.

6 Further Work

In this section, we look at some unanswered questions and possible lines of im-
provement for this work.

While we’ve considered a handful of different models for time travel, along with
restrictions for these models, we expect that further work might develop more
powerful models, or more fine-grained restrictions.

Another interesting line of work would be to investigate which classes of game
make certain models of time travel equivalent. Similar to Claim . for stateless
games, it might be possible to show that certain classes of games make Fork and
Fork-Stack equivalent, for example.

In Claim @ we separated Fork from Fork-Stack, assuming the existence of
secure pseudo-random functions. One natural extension of this work would be
to find the weakest primitive necessary to separate the two transformations, or
even prove that a separation exists without any cryptographic assumptions.

In this work, we’ve considered standalone security, using games. Further work
might extend models of travel to work with simulation based security, or even
universally composable security [Can01]. Unfortunately, we expect that model-
ing time travel in a concurrent setting will prove substantially more difficult than
modeling it in the standalone setting. On the other hand, this model would more
likely match realistic deployments of time machines.

7 Conclusion

In this work, we investigated some impacts of time travel on cryptography.

We did this by first defining the notion of abstract games, allowing us to represent
all security games using a common interface. We then defined various models of
time travel as transformations over abstract games. We showed that these models
formed a hierarchy, with backwards time travel being more powerful than no time
travel, and the addition of forwards time travel being even more powerful.

23

We also looked at the concrete effects of our models of time travel on various
cryptographic schemes. We proved that for stateless games, time travel pro-
vides no advantage. This led us to conclude that the IND-CPA and UUF-CMA
games for encryption and signatures remained secure under time travel, and yet
IND-CCA and EUF-CMA were broken, even under the weakest model of time

travel.

References

[BDLFT18] Chris Brzuska, Antoine Delignat-Lavaud, Cedric Fournet, Konrad Ko-

[BruO3]

[BSCS16]

[Can01]

[GMRS8]

[IVV20]

[Mei22]

[NYO9O0]

[Yil09]

hbrok, and Markulf Kohlweiss. State separation for code-based game-
playing proofs. Cryptology ePrint Archive, Paper 2018/306,2018. https:
//eprint.iacr.org/2018/306.

Todd A. Brun. Computers with closed timelike curves can solve hard prob-
lems efficiently. Foundations of Physics Letters, 16(3):245-253, 2003.

Eli Ben-Sasson, Alessandro Chiesa, and Nicholas Spooner. Interactive
oracle proofs. Cryptology ePrint Archive, Paper 2016/116, 2016. https:
//eprint.iacr.org/2016/116.

Ran Canetti. Universally composable security: A new paradigm for cryp-
tographic protocols. In Proceedings 42nd IEEE Symposium on Founda-
tions of Computer Science, pages 136—145. IEEE, 2001.

Shafi Goldwasser, Silvio Micali, and Ronald L Rivest. A digital signature
scheme secure against adaptive chosen-message attacks. SIAM Journal on
Computing, 17:281-308, 1988.

Vincenzo lovino, Serge Vaudenay, and Martin Vuagnoux. On the effec-
tiveness of time travel to inject covid-19 alerts. Cryptology ePrint Archive,
Paper 2020/1393, 2020. https://eprint.iacr.org/2020/1393.

Licas Criostéir Meier. State-separable proofs for the curious
cryptographer. https://cronokirby.com/posts/2022/05/
state-separable-proofs-for-the-curious-cryptographer/,
2022.

Moni Naor and Moti Yung. Public-key cryptosystems provably secure
against chosen ciphertext attacks. In Proceedings of the 22nd annual ACM
symposium on Theory of Computing, pages 427-437, 1990.

Scott Yilek. Resettable public-key encryption: How to encrypt on a virtual
machine. Cryptology ePrint Archive, Paper 2009/474, 2009. https://
eprint.iacr.org/2009/474.

24

https://eprint.iacr.org/2018/306
https://eprint.iacr.org/2018/306
https://eprint.iacr.org/2016/116
https://eprint.iacr.org/2016/116
https://eprint.iacr.org/2020/1393
https://cronokirby.com/posts/2022/05/state-separable-proofs-for-the-curious-cryptographer/
https://cronokirby.com/posts/2022/05/state-separable-proofs-for-the-curious-cryptographer/
https://eprint.iacr.org/2009/474
https://eprint.iacr.org/2009/474

A Additional Game Definitions

A.1 Encryption

An encryption scheme £ consists of types K, M, C, along with functions F :

KxMECandD: KxC— M. By M(|m|) we denote the distribution of
messages with the same length as m.

The encryption scheme must satisfy a correctness property:
Vk e I, m e M. P[D(E(k,m)) =m] =1
Encrypting and then decrypting a message should return that same message.

The security of an encryption scheme can be captured by one of the following
two games:

IND-CPA,
k&K
Challenge(m): Enc(m):

mi & M(lmo|) return E(k,m)
¢+ E(k,my)

return c

Game 7: IND-CPA,

IND-CCA,
k&K

S« 10

Challenge(mg): Enc(m):

my & M(|mo|) return E(k,m)
c < E(k,my) Dec(c) :

S+ SU{c} assert c ¢ S
return c return D(k,c)

Game 8: IND-CCA,

25

A.2 Signatures

A signature scheme S consists of types PKC,SKC, M, C, 3, along with func-
tions:

Gen: () & SK x PK

Sign : SK x M)

Verify : PK x M x ¥ — {0,1}

For correctness, we require that all signatures produced with a given key will
successfully verify. More formally, for any message m, the following procedure
always succeeds:

(sk, pk) & Gen()
o < Sign(sk,m)
return Verify(pk,m, o)

We consider two notions of security for signature schemes: UUF-CMA and
EUF-CMA, with the former being weaker.

UUF-CMA,

(sk, pk) & Gen() Challenge()

m & M return m

Win(o) : Sign(m) :

assert Verify(pk,m, o) assert m#m
return b return Sign(sk,m)

Game 9: UUF-CMA,

26

EUF-CMA,
(sk, pk) & Gen()
signed < ()

Win(m, o) :
- Sign(m) :
assert m ¢ signed -
signed < signed U {m}
assert Verify(pk,m, o)
return Sign(sk,m)
return b

Game 10: EUF-CMA,

27

	Introduction
	Relevance of Time Travel
	Overview

	Defining Abstract Games
	State-Separable Proofs
	Abstract Games

	Models of Time Travel
	Rewinding Models
	Single Rewinds
	Multiple Rewinds

	Forking Models
	A Stack of Save Points
	Arbitrary Save Points

	Summary

	On Depth and Position Restrictions
	Modeling Restrictions
	Comparing Restrictions

	Effects of Time Travel on Common Schemes
	Stateless Schemes Remain Secure
	On Encryption
	On Signatures

	Further Work
	Conclusion
	Additional Game Definitions
	Encryption
	Signatures

