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Abstract. The existence of finite maps from hyperelliptic curves to elliptic
curves has been studied for more than a century and their existence has been

related to isogenies between a product of elliptic curves and their Jacobian

surface [Kuh88,Kan97].
Such finite covers, sometimes named gluing maps have recently appeared

in cryptography in the context of genus 2 isogenies and more spectacularly,

in the work of Castryck and Decru about the cryptanalysis of SIKE [CD22].
Computation methods include the use of algebraic theta functions [CR15,LR]

or correspondences such as Richelot isogenies or degree 3 analogues [BHLS15,

BFT14,CD21,Kun22,Smi05].
This article aims at giving geometric meaning to the gluing morphism from

a product of elliptic curves E1 ×E2 to a genus 2 Jacobian when it is a degree

(3, 3) isogeny. An explicit universal family and an algorithm were previously
provided in [BHLS15] and a similar special case was studied in [Kuw11].

We provide an alternative construction of the universal family using con-

cepts from classical algebraic and projective geometry. The family of genus 2
curves which are triple covers of 2 elliptic curves with a level 3 structure arises

as a correspondence given by a polarity relation.
The construction does not provide closed formulas for the final curves equa-

tions and morphisms. However, an alternative algorithm based on the geomet-

ric construction is proposed for computation on finite fields. It relies only on
elementary operations without requiring polynomial roots and computes the

equation of the genus 2 curves and morphisms in all cases.

1. Introduction

The Hesse equations are a linear system of plane cubics defined by homogeneous
equations in P2:

Et : x
3 + y3 + z3 = 3txyz

They are classically known to provide a model for the universal family of elliptic
curves with a rational 3-level structure (the modular curve X (3)), with canonical
sections for the 3-torsion points at fixed coordinates [1 : −jk : 0], [0 : 1 : −jk],
[−jk : 0 : 1], where j is a cubic root of unity and k = 1, 2, 3.

The 9 torsion points are base points on this pencil and any other point in the
plane belongs to a unique member Eλ of the pencil. This identifies the total space
of the Hesse pencil with the blow-up of P2 at these 9 base points, which is a well
known elliptic surface.

The Hesse pencil has a large number of properties in projective geometry which
can be found in [AD09,Dol12,BM].

Using the traditional concepts of projective duality, we define a degree 3 cor-
respondence between two members of the Hesse pencil which is invariant under
diagonal action of (Z/3Z)2 acting by translation by order 3 points. The quotient
of this correspondence is generically a smooth genus 2 curve.
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Theorem 1. Let Ei : x
3 + y3 + z3 = 3tixyz (for i = 1, 2) be 2 smooth members

of the Hesse pencil and Γ be the isotropic subgroup of E1[3] × E2[3] consisting of
elements (x, x̄) which are conjugates for the map j 7→ j−1.

Then the quadratic equation x1x2 + y1y2 + z1z2 = 0 on P2×P2 defines a divisor
H̃ on E1 × E2 which descends to a principal polarisation on the abelian surface
E1 × E2/Γ.

The quotient H = H̃/Γ is a smooth genus 2 curve if and only if there is no
degree 2 isogeny ϕ : E1 → E2 such that ϕ(x) = x̄ for x ∈ E1[3].

A special case of genus 2 triple covering using a similar construction is presented
by M. Kuwata in [Kuw11].

Several special cases (singular covers, triple ramification) will also be illustrated
by equivalent geometric properties.

Following this construction we describe a projection from H to a rational nodal
curve in P1 × P1 allowing to compute explicit equations. Another way to obtain
explicit equations was described in [BHLS15].

Our results can be described as follows:

Theorem 2. The image of H through the sequence of maps Jac(H) ≃ E1×E2/Γ→
E1 × E2 → P1 × P1 defined by the dual isogeny and the quotient by hyperelliptic
involutions maps H to a rational curve H̄ι of degree (3, 3). The image of the
6 Weierstrass points of H coincides with the 2 triples of Weierstrass points in
E1 → P1 × {∞} and E2 → {∞} × P1.

It has generically 4 nodes whose coordinates are rational functions of t1 and t2
which are in canonical one-to-one correspondence with the 4 elements of (Γ\0)/±1.

These 10 points determine uniquely the equation of H̄ι.
The normalization of H̄ι contains 2 canonical rational points corresponding to

the ramification points of H → Ei. This determines an isomorphism P1 → H̄ and
an explicit hyperelliptic equation for H with degree 3 morphisms to E1 and E2.

This construction can be closely related to geometric considerations from [DL08].
In particular the double points of H̄ι are related to effective divisors representing
the kernel of the dual isogeny H → E1 × E2.

Section 2 provides an overview of the construction of the family of genus 2
triple covers and explains relations with properties already known in the literature
[Kuh88, BHLS15]. Section 3 examines the properties of these triple covers with
more detail in order to derive equations and computational aspects in section 4,
including an alternate construction algorithm (section 4.7).

Many computations were assisted by Sagemath [SAGE] and Singular [DGPS22].
The final implementation given in appendix uses Sagemath as software framework.

2. Projective geometry of Hesse cubics and polar conjugacy

In this section, the base field k has characteristic different from 2 and 3, and
points will designate geometric points (with coefficients in an algebraic closure),
and rational points will designate points with values in k. Most computational
aspects will target the specific case of finite fields but many formulas are also valid
over Q(j, t1, t2) and can be applied in a broader context.

In this section we briefly recall the definition of the Hesse pencil of cubics and
construct a universal family of common triple covers (with arithmetic genus 10)
for pairs of elliptic curves. This family is invariant under the action of (Z/3Z)2
acting globally by universal projective transformations on all fibres, the action
being equivalent to translation by 3-torsion elements.
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2.1. The Hesse pencil. The projective properties of the flex points of a plane
cubic are beautifully explained in the expository article [BM] and in [Dol12]. Fol-
lowing [Dol12] a flex point designates a point P of a smooth plane curve where the
tangent line TP intersects the curve at point P with multiplicity 3.

We are interested in the following theorem:

Theorem 2.1. Every plane cubic is projectively equivalent to a curve in Hesse
normal form where t3 ̸= 1.

x3 + y3 + z3 = 3txyz

Moreover, if the cubic is defined over a field k and possesses 9 rational flex points,
this projective equivalence can be realised over k.

A cubic defined by a Hesse equation has 9 flex points at coordinates [0 : 1 : ζi]
(up to cyclic permutation) where i ∈ {0, 1, 2} and ζ is a cubic root of unity.

Any flex point can be used as the origin of an elliptic curve structure where the
group law is the secant law. The projection from a flex point defines a degree 2
map E → P1 and the corresponding hyperelliptic involution.

The usual convention across this article will be to select point O = [1 : −1 : 0]
as the distinguished flex point, so that for any point P = [x : y : z] ∈ E the point
ι(P ) = [y : x : z] also belongs to E and O,P, ι(P ) are collinear.

In particular, the involution associated to O can be represented by the projective
map [x : y : z] 7→ [y : x : z]. The corresponding 3 ramification points are the
intersection of E with the polar line of O, ℓO = {x = y}.

This can be realized explicitly by using affine coordinates u = z/(x+y+ tz) and
v = (x− y)/(x+ y + tz). The equation of Et in these coordinates is:

3v2 = 4(t3 − 1)u3 − 9t2u2 + 6tu− 1

Throughout this article we assume that the equivalence between a Hessian equa-
tion and a level 3 structure is given by the choice of [1 : −1 : 0] as the group law
origin, and points [0 : 1 : −1] and [1 : −j : 0] as the basis of the 3-torsion subgroup.

This choice determines uniquely the projective transformation from an elliptic
curve with a distinguished symplectic basis of the 3-torsion subgroup (assumed to
be defined over k).

2.2. Properties of triple covers. LetH be a genus 2 curve with 2 complementary
elliptic degree 3 subcovers H → E1 and H → E2. Then H defines a degree 3
correspondence between E1 and E2 and the associated morphism E1 → Sym3 E2 →
JacE2 ≃ E2 is the zero map [Kuh88].

It is also known [Mir85] that any triple cover can be defined as a subscheme of
a P1-bundle ProjE where E is a rank 2 vector bundle on the base curve.

In the case of elliptic curves represented as plane cubics, the traditional definition
of the group law implies that the image of a point of E1 by the above correspondence
must be a degree 3 divisor on E2 equivalent to zero, so this divisor is defined by
a line in P2 (a secant of E2), which is a point in the dual projective plane (P2)∨.
A natural candidate for the P1-bundle containing H is thus a bundle of lines in P1

defined by a map E1 → (P2)∨.
Moreover, since the map H → E2 has degree 3, we expect each point of E2 to

appear in 3 such lines, so the map E1 → (P2)∨ would have degree 3. Any such map
is the composite of a group translation and a (linear) projective transformation, so
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a natural candidate to realise the triple cover is a diagram:

H� _

��

� � // L� _

��

� � // Q� _

��
E1 × E2

� � // E1 × P2 �
� // (P2)∨ × P2

where L is a bundle of lines (a P1-fibration over E1) which is the pullback of the
incidence variety Q = {(ℓ, P ) such that P ∈ ℓ} ⊂ (P2)∨×P2, seen as a tautological
P1-bundle, by E1 → (P2)∨.

Then H could be viewed as the fiberwise intersection of E1 × E2 with L which
is a degree 3 cover of E1.

The hyperelliptic involution ι : H → H defines a rational quotient Hι ≃ P1 and
commutes with the projection maps as in diagram:

E1 ⊂ P2

x1

��

H ⊂ E1 × E2
π1oo π2 //

xH

��

E2 ⊂ P2

x2

��
P1 P1

u1

oo
u2

// P1

All vertical arrows in the diagram are quotients by the hyperelliptic involution
(x coordinate). In particular, H is stable under involution (y1, y2)→ (−y1,−y2).

In particular, the rational functions u1 and u2 have degree 3, and the image of
H in P1 × P1 through (u1, u2) is a rational cubic of degree (3, 3).

We will need the following property proved in [Kuh88].

Theorem 2.2. Let {C1, . . . , C6} be the 6 Weierstrass points of H. Then up to
permutation, {C1, C2, C3} is the preimage of the zero point of E1 and {C4, C5, C6}
map to the 3 other Weierstrass points of E1, and conversely for the projection
H → E2.

In particular, there exists an equation for H : y2 = P (x)Q(x) where P and Q
have degree 3 such that the x-coordinates of the projection maps have denominator
P and Q. This will be revisited with more detail in the next sections.

2.3. The canonical duality of the projective plane. In appropriate coordi-
nates, the incidence variety

Q = {(P, ℓ) such that P ∈ ℓ} ⊂ P2 × (P2)∨

can be defined by a bilinear equation x1x2 + y1y2 + z1z2 = 0. The quadratic form
x2 + y2 + z2 can be used to identify P2 with the dual plane and define a polarity
relation where a point P = [a : b : c] is associated to the line ℓP : ax + by + cz =
0. Throughout this article ℓP will always denote the polar line of P w.r.t. that
particular quadratic form.

For this duality relation, the polar of a flex point P0 intersects Hesse cubics at the
3Weierstrass points of the projection from pole P0 (the polar line of [1 : −1 : 0] is the
line {x = y}), which conveniently coincides with the relation between Weierstrass
points of H, E1, E2 described in [Kuh88].

We therefore define the curve:

H̃ = {x1x2 + y1y2 + z1z2 = 0} ⊂ E1 × E2

This is a genus 10 curve with a free action of the group Γ = (Z/3Z)2 acting by
translation on both E1 and E2 via its generators:

γ1 :([x1 : y1 : z1], [x2 : y2 : z2]) 7→ ([z1 : x1 : y1], [z2 : x2 : y2])

γ2 :([x1 : y1 : z1], [x2 : y2 : z2]) 7→ ([x1 : jy1 : j2z1], [x2 : j2y2 : jz2])
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P : [a : b : c]

Figure 1. The polarity relation over R, where (P,Qi) ∈ H̃

The inverted roots of unity on the second factor are reminiscent of Kani’s prop-
erty: a genus 2 triple cover is determined by an anti-isometry over the 3-torsion
groups of E1 and E2.

The computation of genus can be done using the determination of ramification
points (see below) and the Riemann-Hurwitz formula.

We will be interested in the quotient on this curve by Γ, which is a genus 2 curve.

2.4. Tangents and ramification.

Theorem 2.3. Let (p1, p2) be a point of H̃. The differential of the map H̃ → Ei

can be identified with the linear equations of ℓp2 and ℓp1 .
In particular, the projection to Ei is ramified if and only if the polar line through

pi is tangent to Ei.

Proof. This is a consequence of the equation of H̃. The differential of x1x2+y1y2+
z1z2 is (x1, y1, z1) ·d(x2, y2, z2)+(x2, y2, z2) ·d(x1, y1, z1) where symbol · is the “dot
product” corresponding to the standard bilinear form.

In particular, the projection to E2 is ramified if and only if the tangent space
of E2 is orthogonal to (x1, y1, z1) for the standard bilinear form, which is the same
equation as the polar line ℓ1. □

This allows to determine the condition for the special triple covers in a geometric
way (special in the sense of [Sha04] refers to triple covers having a single triple
ramification point).

Lemma 2.4. A triple cover is special (i.e. the map H → E1 has a triple rami-
fication point) if and only if a Weierstrass point of E1 is conjugate to a tangent
through a flex point of E2, which is defined by equation t32 − 3t1t2 + 2 = 0.

Proof. A triple ramification point can only happen if for some point P ∈ E1 the
polar line ℓP intersects E2 with multiplicity 3, meaning that it meets E2 at a flex
point. By Γ-invariance we can assume that this flex point is [1 : −1 : 0].

The coordinates of the tangent line to that flex point in E2 are [x2 − t2yz :
y2−t2zx : z2−t2xy] = [1 : 1 : t2] which belongs to E1 if and only if t32−3t1t2+2 = 0.
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In this situation, since [1 : 1 : t2] lies on line {x = y} it is a Weierstrass point of
E1. □

The curve E2 is known as the Cayleyan curve of E1 and the construction of the
genus 2 triple cover in that case can be found in [Kuw11].

2.5. The singular case and isogenous elliptic curves. From Kani’s theorem
[Kan97], the quotient E1 × E2/Γ fails to be a genus 2 Jacobian if and only if the
isomorphism E1[3] ≃ E2[3] is induced by an isogeny of degree 2.

A geometric construction of such isogenies is provided in [Dol12, Section 3.2.2]
and can be summarised by the following property (relating the Hessian curve and
the Cayleyan curve of a given cubic):

Proposition 2.5. Let Et be a Hessian cubic curve, and let τ be an involution
corresponding to translation by a 2-torsion point.

Then the set of lines (P, τ(P )) is also a Hessian cubic curve Eu in the dual
projective plane, and the map f : P → (P, τ(P )) ∈ (P2)∨ is a degree 2 isogeny.

By definition, a line in the dual projective plane can be identified with its polar
point in P2. So for every point P ∈ Et, P and τ(P ) are conjugates to f(P ) ∈ Eu.

If H̃ is the triple cover of Et and Eu defined by the polarity relation, the latter
property implies the existence of a section Et → H̃ by P 7→ (P, f(P )), which would

be impossible if H̃ was a smooth curve of genus g > 1.

Proposition 2.6. Let ϕ : Eλ → Eµ be a degree 2 isogeny between curves in Hesse

form, and let H̃ be the set of conjugate points in Eλ×Eµ using the above construc-
tion.

Then H̃ is not irreducible and is the union of the graph of ϕ and the (translated)
graph of the dual isogeny.

Proof. From the dual construction above, we can identify ϕ with the map P 7→
ℓ(P, P + ϵ) where ϵ is the order 2 point in the kernel of ϕ.

According to the secant group law, since ϕ(P ) = ϕ(P + ϵ) = Q, the polar line
ℓQ goes through P , P + ϵ and −2P − ϵ.

This means that H̃ consists of pairs (P,Q) = (P, ϕ(P )), (P + ϵ,Q) = (P +
ϵ, ϕ(P + ϵ)) (belonging to the graph of ϕ) and (−2P − ϵ,Q) = (−ϕ∗(Q) − ϵ,Q)
(belonging to the translated graph of the dual isogeny ϕ∗).

In particular, H̃ is the union of 2 irreducible components isomorphic to Eλ and
Eµ.

These irreducible components meet when Q = ϕ(−ϕ∗(Q) − ϵ) = −2Q, that is,
exactly along the graph of ϕ restricted to the 3-torsion subgroup. □

This decomposition corresponds to the classically known fact that a Theta divisor
on a principally polarised abelian variety is reducible when the abelian variety
decomposes as a product. The union of 2 elliptic curves intersecting at 9 points has
arithmetic genus equal to 10, which is the same as the smooth case.

3. Geometry of the genus 2 triple cover

This section establishes several properties that will be used for explicit compu-
tations in 4.

The action of group Γ on P2 is generated by projective transformations:

[x : y : z] 7→ [y : z : x]

[x : y : z] 7→ [x : αy : α2z] for α ∈ µ3

This action has no fixed point on each smooth member Et of the Hesse pencil.
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Across this section we will use Halphen’s coordinates defining a degree 9 rational
map P2 → P2. This map is invariant under Γ and acts on each element of the Hesse
pencil as the isogeny [3] : P 7→ 3P , so the tripling map [3] realises a quotient
P2 → P2/Γ.

The Halphen coordinates correspond to the fact that the formula for computing
the triple of a point for the elliptic curve group law, choosing a given flex point as
origin (we have chosen [1 : −1 : 0]) are independent of the parameter t and defined
by universal polynomials:

X = x6y3 + y6z3 + z6x3 − 3x3y3z3

Y = x3y6 + y3z6 + z3x6 − 3x3y3z3

Z = xyz(x6 + y6 + z6 − x3y3 − y3z3 − z3x3)

3.1. The genus 2 triple cover as a quotient correspondence. We have es-
tablished that the polarity conjugacy relation defines a Γ-equivariant degree 3 cor-
respondence between a pair of elliptic curves in Hesse normal form.

As a consequence the quotient H̃ → H = H̃/Γ is an unramified map with genus
2 (2gH − 2 = (2gH̃ − 2)/9 = 2 and the following diagram commutes:

E1

[3]

��

H̃oo //

/Γ

��

E2

[3]

��
E1 Hoo // E2

The projections from H to Ei have degree 3. By Riemann-Hurwitz formula, the
map H → Ei has 2 ramification points which are exchanged by the hyperelliptic
involution (or in the special case, a triple ramification point which is a Weierstrass
point) [Kuh88].

Theorem 3.1. The embedding

H ≃ H̃/Γ ↪→ (E1 × E2)/Γ

is isomorphic to the embedding of H as a Theta divisor in its Jacobian.
In particular E1 × E2 → JacH is a (3, 3)-isogeny with kernel

Γ ≃ {(T1, T2) ∈ E1[3]× E2[3] such that T1 = T2 in P2}
It should be noted that whereas H̃ is embedded as a smooth curve in E1 × E2,

the projection maps from H to Ei do not define a smooth embedding H ⊂ E1×E2.
The map H → E1×E2 factors through (E1×E2)/Γ→ E1×E2 and the final image
of H has singularities. The following sections will show that it generically has 8
double points, which is consistent with the fact that a bilinear pairing generates a
polarity correspondence which is represented by a curve of arithmetic genus 10.

3.2. The polarity relation on quotient H. Using the same properties as the
first section, we can determine that the following property is true:

Proposition 3.2. The degree 3 correspondence E1 ← H → E2 defines a map
E1 → (P2)∨ which is induced by a projective transformation or equivalently by
polarity via a bilinear pairing.

This bilinear pairing bt1,t2 depends on the Hesse parameters t1 and t2 and is not
always symmetric.

Equivalent, this means that the image of H in E1 × E2 can be defined as the
zero locus of a section of O(1, 1).

Embeddings of an elliptic curve in a projective plane can differ by translations
by an elliptic curve element and by projective transformations.
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Here the fact that the zero element is mapped to the secant through the 3
associated Weierstrass points (which have a zero sum) is in favour of looking for a
purely projective transform.

We prove this proposition by constructively building the matrix. The coefficients
can be obtained through formal computation (see section 4.3). They were deter-
mined by interpolating rational functions through numerical simulations (over finite
fields) and checking that the composite equation bt1,t2(3P1, 3P2) = 0 on E1×E2 (a

bilinear combination of Halphen coordinates) belongs to the ideal defining H̃.
To avoid confusion when referring to the polarity relation defined by bilinear

form bt1,t2 the notation ℓ1P will be used (and ℓ2Q for the polar line w.r.t. bilinear

form bt2,t1).

3.3. Projection to P1 × P1. Since 2-torsion points are sent to themselves by the
tripling map [3], in the quotient representation the distinguished origin [1 : −1 : 0]
is still conjugate to the line {x = y} through the 3 Weierstrass points of either E1

or E2, even when considering the parametre-dependent bilinear relation bt1,t2 .
Since the tangent line at origin has dual coordinates [1 : 1 : t], we can define the

projection from the origin with formula z/(x + y + zt), which is invariant by the
involution [x : y : z] 7→ [y : x : z] and maps Ei to P1 (the origin is mapped to the
infinity point).

The 2 projections to P1 define a rational (hence regular) map from H to P1×P1

via E1 × E2. The 2 triples of Weierstrass points of E1 and E2 are mapped to the
2 lines at infinity in P1 × P1.

Since this projection realises the quotient by the hyperelliptic involution of H,
we expect the image of H to be a rational curve. Additionally, the ”horizontal” and
”vertical” pencils of lines lift to pencils of lines through the origin P0 = [1 : −1 : 0]
in P2. Each such line generically meets E1 (or E2) in 2 points outside P0, thus
defines 6 points in H (3 pairs of points exchanged by the hyperelliptic involution).
This implies that the image of H in P1 × P1 is expected to have degree (3,3).

A degree (3, 3) in P1 × P1 has generic genus 4 (2ga − 2 = C · (C + KP1×P1) =
(3, 3) · (1, 1) = 6). Since the image of H is a rational curve, we expect it to have 4
singular points, corresponding to generically 8 singular points in E1 × E2.

Each point of P1×P1 defines a birational map to P2 by blowing up that point and
contracting the horizontal and vertical lines through it (L2 = (L+E)2−2L·E−E2 =
−1). Choosing the point at infinity (∞,∞) recovers the birational map P1×P1 → P2

which coincides with the identity map on the open set corresponding to the affine
plane A2.

Thus if the 4 singular points are in general position, a standard quadratic trans-
formation centered at one of these points, followed by a quadratic transformation
based on the triangle formed by the 3 other points, will resolve all singularities and
establish a birational map from Hι to a conic (we will see that the scenario of a
triple point is also possible). This process is detailed in section 4.7.

The singular case. When H̃ becomes reducible as the union of the graph
of a 2-isogeny ϕ : E1 → E2 and its dual (see section 2.5) the graph of ϕ has
degrees (1, 2) with respect to the projections, and the graph of ϕ∗ has degree (2, 1).

These graphs are invariant by action of Γ so the final image of H̃ in P1 × P1 is
a union of conics of degrees (1, 2) and (2, 1) intersecting in 4 points. This can be
detected in the implementation by obtaining a degree 2 instead of 6 in the rational
parameterisation.

3.4. Twisted dual curves and double points. A specific situation arises when
H̃ contains pairs (P,Q) and (P,Q′) such that 3Q = 3Q′ (meaning that Q and Q′
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differ by a 3-torsion element). In that case, the corresponding points of H map to
the same pair (3P, 3Q) in E1 × E2.

In other words, while ℓP is a secant of E2, the line ℓ
1
3P is tangent to E2 at 3Q. By

Γ invariance, we observe that if H̃ contains (P,Q) and (P,Q+ T ), it also contains
(P − T,Q) thus the polar line ℓ23Q is tangent to E1 at point 3P .

Lemma 3.3. The locus of lines (Q,Q+T ) defines a singular sextic ET
2 in the dual

projective plane. When identified to a sextic in P2 via the x2 + y2 + z2 duality, it
intersects E1 in 18 points forming 2 Γ-orbits exchanged by the canonical involution.

Explicit equations for these twisted dual curves will be given in the last section.
Since ET

2 and E−T
2 have the same definition, we can define 4 such twisted duals.

Since pairs (P,Q) and (P,Q+ T ) are not in the same orbit for the action of Γ,
they do not define the same point of H, even though they map to the same point
(3P, 3Q) ∈ E1 × E2.

It results that each twisted dual curve defines a double point of the image of H
in P1 × P1. The coordinates of these double points are given by rational functions
of t1 and t2 and are computed in section 4.

The case of triple points. Under adequate conditions, it may happen that a
line ℓP contains Q, Q + T1 and Q + T2 where T2 and T1 are linearly independent
(the case T2 = −T1 implies that Q is a 3-torsion point, which has already been
studied). In this situation Q is necessarily a 9-torsion point.

This means that P belongs to the 3 twisted duals ET1
2 , ET2

2 and ET1−T2
2 , and

any point belonging to 2 twisted duals automatically belongs to the third one.
Similarly, the points (P,Q), (P,Q + T1), (P,Q + T2) do not define the samme

Γ-orbit and are 3 different points of H mapping to the same point (3P, 3Q) in
E1 × E2. This situation defines a triple point in the image of H in E1 × E2.

This triple point will also be visible in the image in P1 × P1.

3.5. A family of genus 2 coverings. Since the Hesse pencil is isomorphic to the
universal family of elliptic curves with a 3-level structure, the family:

P2

��

Qoo

��

// P2

��
S(3)

��

QH
oo //

��

S(3)

��
P1 P1 × P1oo // P1

where Q is the quadric defined by the polarity relation and the downward arrow
are quotients under the action of Γ, and S(3) is the blow-up of P2 along the 9 base
points of the Hesse pencil, define a universal family of triple coverings of elliptic
curves by a genus 2 curve (for any pair of elliptic curve with a choice of symplectic
3-torsion basis, the genus 2 triple cover is known to be unique up to isomorphism).

Over the open locus of P1 × P1 corresponding to pairs of smooth elliptic curves
(t ̸= ∞ and t3 ̸= 1), each fibre is either a smooth genus 2 curve, or a stable curve
isomorphic to the two elliptic curves joined by the origin E1 ⊔ E2.

Further properties of this family as an actual scheme-theoretic moduli space (in
particular as representing a sheaf in an appropriate topology) are not in scope of
this work.

In particular, the existence of this family does not imply that it is globally
isomorphic to a family of hyperelliptic curves defined by equations y2 = H(x), even
if it is true pointwise.
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4. Computing explicit equations of the triple cover

A base field of definition k is fixed for these computation, in order to distinguish
cases where the geometric situation (over k̄) can differ from the base field situation.

Most explicit equations in this section were obtained using software SageMath
[SAGE] and Singular [DGPS22] by writing equations on H̃ and descending to the
quotient in Halphen coordinates [X : Y : Z] by variable elimination.

In this section we will often have to determine point coordinates in Weierstrass
form U = Z/(X + Y + tZ) by finding a linear relation between X + Y and tZ.
When performing variable elimination via Grőbner basis computation the following
invariant polynomials (with fewer terms) turn out to be very useful:

A = xyz

B = x6y3 + y6z3 + z6x3

C = x3y6 + y3z6 + z3x6

X = B − 3A3

Y = C − 3A3

tZ = 9(t3 − 1)A3 − (B + C) if [x : y : z] ∈ Et

The usual procedure is then to perform a change of variables from (x, y, z) to
(A,B,C) and obtain a linear relation between A3 and B +C. An additional inter-
mediate step can use (xyz, x2y + y2z + z2x, xy2 + yz2 + zx2) if necessary.

4.1. Coordinates of the pair of ramification points. A projection H̃ → E1

is ramified over a point p iff the polar line (with respect to the standard bilinear
form) ℓp is tangent to E2 (see section 2.4). The set of ramification points is invariant
under the hyperelliptic involution and the action of Γ, and can be expressed as the
intersection of E1 and the dual variety E∨

2 which is the locus of tangent lines to E2,
viewed in (P2)∨ ≃ P2. The birational map [x : y : z] 7→ [x2−tyz : y2−tzx : z2−txy]
associates a point of Et to its tangent and maps Et → E∨

t .
The dual curve can be represented by a (singular) plane sextic and its equation

can be found in [AD09] or [Dol12, Section 3.2.3]:

E1 : x3 + y3 + z3 = 3t1xyz

E2 : x3 + y3 + z3 = 3t2xyz

E∨
2 : x6 + y6 + z6 + (4t32 − 2)(x3y3 + y3z3 + z3x3)

− 6t22xyz(x
3 + y3 + z3) + (12t2 − 3t42)x

2y2z2 = 0

Using intermediate coordinates as above, a computer-assisted computation finds
a low-degree member of the ideal of E1 ∩ E∨

2 :

A3(144t1t
4
2 + 216t21t

2
2 − 27t31 − 96t32 − 72t1t2 + 12) + (4− 32t32)(B + C) = 0

to obtain a linear equation in the quotient plane:

τ = t42 + 6t1t
2
2 + t21 − 4t2

(X + Y )(4t21t
3
2 − τ) = Z(τt1 − 4t31 + 4− 4t32)

for the ramification of H → E1.
This is enough to determine the first coordinate (in Weierstrass form) for the

image of ramification point of H → E1 in E1/ι as u1 = Z/(X + Y + t1Z).
To obtain the exact location of the ramification points of H → E1 (projected

to P1 × P1) we need to identify the second coordinate (in E2/ι). This amounts to
compute the preimage of E1∩E∨

2 via the map E2 → E∨
2 described earlier, followed
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by variable elimination to compute the image through Halphen coordinates. We
obtain the following equation in E2:

(X2 + Y2)(t
3
2 − t1t2) + Z2(2t1t

2
2 − 2t2) = 0

Exchanging t1 and t2 gives explicit coordinates for the image of the ramification
locus of H → E2 in P1 × P1.

4.2. Coordinates of double points. The double points of the rational sextic in
P1×P1 are the images of the intersection of E1 with the twisted duals of E2 defined
in section 3.4.

For γ ∈ Γ/±1 the twisted dual Eγ
2 is the curve in the dual projective plane whose

points are lines (P, P + γ) for P ∈ E2. By symmetry, Eγ
2 = E−γ

2 .
It is especially easy to understand Eγ0

2 where the group element γ0 acts through
[x : y : z] 7→ [x : jy : j2z]. In that case, the line (P, γ0(P )) has coordinates
[(j2 − j)yz : (1 − j2)zx : (j − j2)xy] so the locus of such lines is the same as
the image of E2 by the standard quadratic transformation [yz : zx : xy] based on
an inflection triangle (3 lines going through 9 flex points). There are four such
triangles.

The equations of the twisted duals can be computed by variable elimination or
by applying quadratic transformations:

Eγ0

2 : (xy)3 + (yz)3 + (zx)3 − 3t(x2y2z2) = 0

Eγ1

2 : x6 + y6 + z6 + (3jt− 1)(x3y3 + y3z3 + z3x3)

− 3j(jt+ 1)(x4yz + y4zx+ z4yx) + (3jxyz)2 = 0

Eγ2

2 : x6 + y6 + z6 + (3j2t− 1)(x3y3 + y3z3 + z3x3)

− 3j2(j2t+ 1)(x4yz + y4zx+ z4yx) + (3j2xyz)2 = 0

Eγ3

2 : x6 + y6 + z6 + (3t− 1)(x3y3 + y3z3 + z3x3)

− 3(t+ 1)(x4yz + y4zx+ z4yx) + (3xyz)2 = 0

where γ0 : [x : y : z] 7→ [x : jy : j2z], γ1 : [x : y : z] 7→ [z : jx : j2y], γ2 : [x : y : z] 7→
[z : j2x : jy], γ3 : [x : y : z] 7→ [z : x : y].

The pairs of special points above double points are located on lines:

L0 : (x+ y)(t21 − t2)− z(t1t2 − 1) = 0

L1 : (x+ y)(jt1t2 − j) + z(t12 − j2t1t2 − t2 + j2) = 0

L2 : (x+ y)(j2t1t2 − j2) + z(t21 − jt1t2 − t2 + j) = 0

L3 : (x+ y)(t1t2 − 1) + z(t21 − t1t2 − t2 + 1) = 0

This defines the first coordinate of double points in P1 × P1 as an element of
the base field k. Exchanging t1 and t2 and replacing j by j2 provides the second
coordinate of these double points.

Note that although these double points are themselves rational, it is not true in
general that the tangent lines to their branches (or equivalently, their preimages in
the normalized curve) are also rational.

4.3. Determination of the polar transformation. The polynomial coefficients
of the polarity relation defining H as a correspondence in E1×E2 were determined
by numerical simulations using the following process:

(1) choose a base field with large enough characteristic (e.g. F65537);
(2) generate random Hesse equation parametres;
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(3) for each (t1, t2) determine orthogonal pairs P ∈ E1 and its polar line ℓP
intersecting E2 at 3 rational points, and their image via the [3] tripling
morphism;

(4) once 4 projectively independent pairs (3P, ℓ3P ) are obtained, compute the
unique transformation matrix M(t1, t2) realising this polarity relation.

It turns out that the coefficients of M have degree ≤ 4 in each variable t1 and
t2 so the system can be overdetermined by generating enough relations.

Once candidate polynomials are found, it can be further confirmed by running the
same process on a larger field (for example F232−5) and verifying the result formally
by checking that the resulting equation bt1,t2(3P1, 3P2) = 0 lifts to a function on

P2 × P2 belonging to the ideal of H̃ (generated by the equations of E1, E2 and the
standard bilinear form). The final verification can be done on field Q(t1, t2).

The transformation matrix (which is the matrix of bilinear form bt1,t2) can be
computed explicitly:

M =

m00 m01 m02

m01 m00 m02

m20 m20 m22


m00 = 3t31t

3
2 − 3t21t

2
2 − 2t31 − 2t32 + 3t1t2 + 1

m01 = t31 + t32 − 3t21t
2
2 + 3t1t2 − 2

m02 = t41 − 3t31t
2
2 + 3t21t2 + t1t

3
2 − 2t1

m20 = t42 − 3t21t
3
2 + 3t1t

2
2 + t31t2 − 2t2

m22 = t41t2 + t1t
4
2 + 3t21t

2
2 − 3t31 − 3t32 − 2t1t2 + 3

detM = (t31 − 1)2(t32 − 1)2(t1t2 − 1)

× (t1 + t2 + 1)(t1 + j2t2 + j)(t1 + jt2 + j2) where j3 = 1

The coefficients were obtained by running numerical computations on a small
finite field, interpolating using rational functions of lowest degree, with a final
formal verification over Z[j].

When applying the projective transformations turning E1 and E2 in Weierstrass
form, the bilinear relation is even simpler, because the point at infinity must be
dual to the line {v = 0}, giving another equation of H.

Theorem 4.1. Let (u1, v1) and (u2, v2) be affine coordinates such that:

E1 : 3v21 = 4(t31 − 1)u3
1 − 9t21u

2
1 + 6t1u1 − 1

E2 : 3v22 = 4(t32 − 1)u3
2 − 9t22u

2
2 + 6t2u2 − 1

and define T = (t31 − 1)(t32 − 1).
Then the polarity relation defining H can be expressed as the polynomial:

3T (u1u2(t1t2 + 2)− t1u1 − t2u2 + v1v2) + T + 2(t1t2 − 1)3 = 0

in particular v1v2 is a regular function of u1, u2, t1 and t2.

Proof. The coordinates (ui, vi) can be deduced from projective coordinates [zi :
xi − yi : xi + yi + tizi] so the bilinear relation in these new coordinates is given by
matrix:

1

4

−t2 −t2 2
1 −1 0
1 1 0

·M ·
−t1 1 1
−t1 −1 1
2 0 0

 =
1

2

3(t1t2 + 2)T 0 −3t2T
0 3T 0

−3t1T 0 T + 2(t1t2 − 1)3


□
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4.4. Equation of the rational sextic. The image Hι of H in P1 × P1 can be
determined by variable elimination, but the previous properties provide enough
constraints to determine entirely its equation.

Lemma 4.2. Let [u1 : u′
1], [u2 : u′

2] be projective coordinates so that u1/u
′
1 =

z1/(x1 + y1 + t1z1) and u2/u
′
2 = z2/(x2 + y2 + t2z2) are affine coordinates for E1/ι

and E2/ι.
Then the specialisation of Hι to u′

1 = 0 is the cubic polynomial for the normalised
y2 = P2(x) equation of E2, and the specialisation of Hι to u′

2 = 0 is the cubic
polynomial for the normalised equation of E1 (y2 = P1(x)).

Proof. This follows directly from the fact that H contains the pairs (O1,W2,i) and
(W1,i, O2) for i = 1, 2, 3. □

The conventions chosen earlier imply that the basis of the 3-torsion is sent to
coordinates 1/(t− 1) and 0 respectively (the other 3-torsion points will have coor-
dinates j/(jt−1) and j2/(j2t−1)) which defines uniquely the normalised equation
of Ei.

In addition to that, the first coordinate of double points has been computed
earlier, so a linear relation (x+ y)λ+ zµ = 0 gives u1 = λ/(t1λ− µ):

u1(D0) =
t21 − t2
t31 − 1

u1(D1) =
jt1t2 − j

jt1(t1t2 − 1)− (t21 − j2t1t2 − t2 + j2)

u1(D2) =
j2(t1t2 − 1)

j2t1(t1t2 − 1)− (t21 − jt1t2 − t2 + j)

u1(D3) =
t1t2 − 1

t1(t1t2 − 1)− (t21 − t1t2 − t2 + 1)

The coordinate u2 is obtained by exchanging t1 and t2 in formulas.
These rational functions can be rewritten to show that they are fully regular on

the whole parameter space t1, t2 ∈ A1 \ µ3:

u1(D0) =
t21 − t2
t31 − 1

u1(D1) =
t1t2 − 1

(t1 − j2)(t1 − 1)(t2 − j2)

u1(D2) =
t1t2 − 1

(t1 − 1)(t1 − j)(t2 − j)

u1(D3) =
t1t2 − 1

(t1 − j)(t1 − j2)(t2 − 1)

Theorem 4.3. The equation of Hι can be normalised as

u3
1u

3
2 + u3

2(A1u
2
1u

′
1 +B1u1u

′2
1 + C1u

′3
1 )

+ u3
1(A2u

2
2u

′
2 +B2u2u

′2
2 + C2u

′3
2 )

+ u′
1u

′
2F (u1, u

′
1, u2, u

′
2)

where F is a homogeneous polynomial of degree (2, 2) and Pi = ci(X
3 + AiX

2 +
BiX + Ci). The nine coefficients of F are entirely determined by the constraint of
having double points (Di)i=0,1,2,3, or a triple point D0 and a double point D1.

Each double point defines 3 constraints by the vanishing of the equation poly-
nomial and its first order derivatives. A triple point defines 6 constraints, with the
additional vanishing of second order derivatives.
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4.5. Rational parameters for the rational sextic. The quotient of H by the
hyperelliptic involution (Hι) defines a correspondence between the u coordinates of
E1 and E2, represented by Weierstrass equations by the choice of the origin point.

As described earlier, its singularities can be resolved by a sequence of linear
transformations and quadratic birational transformations to a plane conic, which
is parameterised by rational functions by projection from any rational point. This
is where the ramification locus of H → Ei can be used.

Proposition 4.4. The ramification locus of morphism H → E1 (resp. H → E2)
defines a rational point of Hι. Its coordinates in P1 × P1 are:

u1 =
4t21t

3
2 − t21 − t42 − 6t1t

2
2 + 4t2

4(t31 − 1)(t32 − 1)

u2 =
t22 − t1

t32 − 3t1t2 + 2

Proof. Following the computation done in section 4.1, the pair of conjugate rami-
fication points of the map H → E1 satisfies a linear relation between x+ y and z,
allowing to compute the coordinate in Weierstrass form u1(R1) = z/(x+ y + t1z).

τ = t42 + 6t1t
2
2 + t21 − 4t2

(X + Y )(4t21t
3
2 − τ) = Z(τt1 − 4t31 + 4− 4t32)

(X + Y + t1Z)(4t21t
3
2 − τ) = Z(4t31t

3
2 − 4t31 + 4− 4t32)

Since Hι is defined by a degree (3,3) equation S(u1, u2) in P1 the fact that
S(u1(R1), u2) is a degree 3 polynomial in variable u2 with a multiple root u2(R1)
implies that this root is rational because S(u1(R1), u2) must be divisible by the
square of the minimal polynomial of u2(R1).

We actually know explicitly the second coordinate using formulas from 4.1:

(X2 + Y2)(t
3
2 − t1t2) + Z2(2t1t

2
2 − 2t2) = 0

(X2 + Y2 + t2Z2)(t
3
2 − t1t2) = Z2(2t2 − 2t1t

2
2 + t42 − t1t

2
2)

□

Note that the case u2 = ∞ is possible, corresponding to the special case where
H → E1 has a triple ramification point. It was shown already in lemma 2.4 that
this happens when t32 − t1t2 + 2 = 0.

In the triple point case, the first quadratic transformation can resolve the triple
point and leave only one node: the result is then a nodal plane cubic, which readily
admits a rational parameterisation.

In the singular case, the sextic equation defines a reducible curve which is a
union of conics and this calculation will return rational functions of degree 1 and
2.

4.6. Hyperelliptic equation of H. The previous calculations allow to fully de-
termine equations for the morphisms H/ι → Ei/ι between rational curves (the x
coordinates) but the lift to a double cover is possibly only defined up to a quadratic
twist. This apparent indeterminacy will be resolved by the existence of a square
root of P1(u1)P2(u2) in the coordinate ring of H → E1×E2, where Ei has equation
v2i = Pi(ui).

Lemma 4.5. There exists a point (u1, u2) on rational curve H̄ι ⊂ P1 × P1 such
that P1(u1)P2(u2) ̸= 0.
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Proof. The rationality of ramification points obtained in the previous section shows
that there is a birational morphism P1

k → H̄ι and since the curve is defined by a
degree (3, 3) equation in P1 × P1 there are at most 18 rational points such that
P1(u1)P2(u2) = 0. The lemma is thus true for any field containing more than 18
elements.

Since we assumed that k has characteristic more than 3 and contains a cubic
root of unity, the remaining cases are F7 and F13. In that case it is impossible
for either Pi to have 3 rational roots, as it would mean that Ei has both rational
2-torsion and 3-torsion thus at least 36 rational points exceeding the Hasse-Weil
bound. So there are at most 6 rational points such that P1(u1)P2(u2) = 0, proving
the lemma. □

Assuming the same conventions as before, we have determined explicit rational
functions of degree 3:

T 7→
(NX1(T )

DX1(T )
,
NX2(T )

DX2(T )

)
∈ Hι ⊂ P1 × P1

realising a birational map from P1 to Hι. Using the previous lemma, using an
appropriate change of rational parameter we can assume that T = ∞ defines a
point (u1,∞, u2,∞) such that P1(u1,∞)P2(u2,∞) ̸= 0.

Since the Weierstrass points of E1 and E2 lie on the two lines at infinity,
NX2 /DX2 maps the roots of DX1 to the coordinates of the Weierstrass points
of E2, and conversely. These 6 points of Hι are known to be the Weierstrass points
of H [Kuh88]. Additionally, neither u1,∞ nor u2,∞ are at infinity. This implies that
DX1 and DX2 have degree 3 and we can arrange for them to be monic polynomials.

Following equations given in [Kuh88, BHLS15], we are looking for an equation
y2H = αDX1(xH)DX2(xH) for some scalar constant α where xH is identified with
the rational parameter T .

Lemma 4.6. The polynomial P1(NX1 /DX1)DX
3
1 is a multiple of DX2 and the

quotient by DX2 admits a square root as a polynomial R1 up to a multiplicative
constant.

Proof. Through the rational parametrisation P1 → Hι we can geometrically inter-
pret the corresponding divisors.

The polynomial DX2 defines a divisor which is the intersection with line at
infinity P1 × {∞}, corresponding to Weierstrass points of E1.

The zeros of P1(NX1 /DX1) correspond to the T -coordinates of Weierstrass
points of E1, so P1(NX1 /DX1)DX

3
1 is a degree 9 effective divisor on P1 containing

divDX2.
The complement consists of 3 pairs of points which are the other preimages of

the Weierstrass points of E1 in Hι, and since they are exchanged by the action of
ι, they map to a point of multiplicity 2 (Hι is tangent to the line {x = x(W1,i)}),
implying that this divisor has a square root. □

Note that since

(x3 + ax2 + bx+ c)2 = x6 + 2ax5 + (2b+ a2)x4 + (2c+ 2ab)x3 + . . .

the square root of a monic degree 6 polynomial can be computed using only ele-
mentary field operations.

Denote by αi the nonzero field elements Pi(ui,∞). Then there exists a unique

monic polynomial R1 such that P1(NX1 /DX1)DX
3
1 = α1 DX2 R

2
1.

This allows to define a map:

(xH , yH) 7→
(NX1(xH)

DX1(xH)
, yHκ1

R1(xH)

DX1(xH)2

)
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satisfying the relation:(
yHκ1

R1(xH)

DX1(xH)2

)2

= αDX1(xH)DX2(xH)
κ2
1R1(xH)2

DX1(xH)4
= (ακ2

1/α1)P1

(NX1(xH)

DX1(xH)

)
meaning that this is a well-defined map H → E1 when ακ2

1 = α1.
To define the second projection, another constant κ2 is needed, and must satisfy

the equation ακ2
2 = α2. A solution to these constraints can be given by α = α1,

κ1 = 1 and κ2 =
√
α1α2/α1 for some choice of a square root of α1α2.

This square root can be determined using the final equation of 4.3, showing
that for any point (e1, e2) ∈ H̄ ⊂ E1 × E2 with coordinates (u1, v1), (u2, v2) in
Weierstrass form, the following identity holds:

v1v2 = t1u1 + t2u2 − u1u2(t1t2 + 2)− 1

3
− 2(t1t2 − 1)3

3(t31 − 1)(t32 − 1)
.

Moreover, v21v
2
2 = P1(u1)P2(u2), so using any point above (u1,∞, u2,∞) ∈ P1×P1,

the above polynomial function of u1,∞ and u2,∞ is a well-defined square root of
α1α2.

As a consequence, we can define the following final equations:

H : y2 = α1 DX1(x)DX2(x)

H → E1 : (x, y) 7→
(
NX1(x)

DX1(x)
, y

R1(x)

DX1(x)2

)
H → E2 : (x, y) 7→

(
NX2(x)

DX2(x)
,

α2√
α1α2

y
R2(x)

DX2(x)2

)
4.7. An algorithm to compute the triple cover from elliptic curves with
level structure. In the above calculations, we can observe that if the input elliptic
curves are given in Weierstrass form, the formulas depend on the Hesse pencil
parameters t1 and t2 but the actual triple cover can be given in hyperelliptic form
using solely the parameterisation of the sextic in P1 × P1. The sextic is entirely
determined by the location of the double points and computations can be done
without referring to the Hessian equations.

The algorithm can be summarised with the following steps:

(1) Compute Hesse pencil parameters from input data.
(2) Compute singularities of Hι ⊂ P1 × P1 using explicit formulas.
(3) Compute the sextic model of Hι from an overdetermined linear system.
(4) Compute a resolution of singularities as a chain of 2 quadratic transforma-

tions and deduce a rational parameterisation.
(5) Deduce full projection maps from the x-coordinate projections.

The algorithm only involves basic field operations (addition, subtraction, multi-
plication, division). All operations are well defined on fields Fq(j, t1, t2) orQ(j, t1, t2).
Since no square root or polynomial root is involved, this method is expected to have
lower asymptotic complexity than the one described in [BHLS15].

The operations are described as pseudocode here but a complete SageMath im-
plementation is given as appendix.

Step 1. Compute Hesse parameter and associated Weierstrass form. We mentioned
earlier that in normalised Weierstrass form, the basis of 3-torsion must be sent to
u(T1) = −1/(1 − t) and u(T2) = 0. Using the same conventions, T1 + T2 has
coordinates [0 : 1 : −j] in Hesse form and abscissa u(T1 + T2) = −j/(1 − jt) in
projection from the origin.
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In particular the quantity:

x(T1 + T2)− x(T2)

x(T1 + T2)− x(T1)
=

1− t

j + 2

is invariant by affine transformations.
Compute the affine transformation mapping 1/(1− t) and 1 to u(T1) and u(T2),

and returns the transformed equation y2 = P ′(x).
Normalize y to obtain the Weierstrass form of Hessian curve y2 = p3x

3 + p2x
2 +

p1x+ p0 where p1 + p2 = 1. This is done by ensuring that y(T1) = −1/(1− t).

function CurveParams(E: y2 = P (x), T1 ∈ E[3], T2 ∈ E[3], j ∈ µ3)
Assert WeilPairing(T1, T2) = j
x1, x2, x12 ← x(T1), x(T2), x(T1 + T2)
t← −(j + 2)(x12 − x2)/(x12 − x1)
a← (x2 − x1)(1/t− 1)
b← x2 − a
c← (t− 1)y(T1)
P ′ ← P (ax+ b)/c2

Assert 3t3P ′ = 4(1− t3)x3 + 3(t3 − 4)x2 + 12x− 4
return t, (x, y) 7→ (ax+ b, cy), P ′

end function

Step 2. Compute singularities coordinates. The singularities of the image of H in
P1 × P1 are entirely known by explicit formulas given above. They are 8 rational
functions of total degree 3 in t1 and t2.

If there is a triple point, 2 of these double points will be equal.

function DoubleCoords(j ∈ µ3, t1, t2)
u0 ← (t21 − t2)/(t

3
1 − 1)

u1 ← (t1t2 − 1)/(t1 − 1)(t1 − j2)(t2 − j2)
u2 ← (t1t2 − 1)/(t1 − j)(t1 − 1)(t2 − j)
u3 ← (t1t2 − 1)/(t1 − j2)(t1 − j)(t2 − 1)
return u0, u1, u2, u3

end function
function DoublePoints(j ∈ µ3, t1, t2)

u0, u1, u2, u3 ← DoubleCoords(j, t1, t2)
v0, v1, v2, v3 ← DoubleCoords(j2, t2, t1)
if any (ui, vi) = (uj , vj) for i ̸= j then

return triple point, double point
else

return (ui, vi) for i = 0, 1, 2, 3
end if

end function

Step 3. Compute a sextic equation for Hι. The normalised Weierstrass polynomials
and the coordinates of the 4 double points provide 3 × 4 + 6 = 18 constraints on
the 16 coefficients of polynomials of degree (3, 3).

If there is a triple point, the 3 second order derivatives give a total of 6+3×2+3 =
15 constraints only.

This is an overdetermined linear system: a matrix kernel computation provides
the equation in the general case. In the case of a triple point, the matrix is square.

function RationalSextic(P1, P2, Nodes = N0, . . . , N3 or N0 (triple), N1)
a3x

3 + a2x
2 + a1x+ a0 ← P1(x)

b3x
3 + b2x

2 + b1x+ b0 ← P2(x)
B(u, v)← a3b3u

3v3 + b3v
3(a2u

2 + a1u+ a0) + a3u
3(b2v

2 + b1v + b0)
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M ← Matrix(9, 12)
V ← Vector(12)
for k ← 0 . . . len(Nodes)− 1 do

for (i, j)← (0, 0) . . . (2, 2) do
m(u, v)← uivj

M [3i+ j][3k]← m(Nk)
M [3i+ j][3k + 1]← ∂m/∂u(Nk)
M [3i+ j][3k + 2]← ∂m/∂v(Nk)

end for
V [3k]← −B(Nk)
V [3k + 1]← −∂B/∂u(Nk)
V [3k + 2]← −∂B/∂v(Nk)

end for
if N0 is a triple point then

M [6][3k]← ∂m/∂u2(N0)
M [7][3k + 1]← ∂m/∂v2(N0)
M [8][3k + 2]← ∂m/∂u∂v(N0)
V [6]← −∂B/∂u2(Nk)
V [7]← −∂B/∂v2(N0)
V [8]← −∂B/∂u∂v(N0)

end if
Q← Solve(MQ = V)
return B +

∑
Q[3i+ j]uivj

end function

Step 4. Compute a rational parameterisation. The first quadratic transformation
uses the base triangle formed by the x and y axes through one of the singular points
(and the line at infinity), if the source is assumed to be compactified as P2. If the
source is viewed as P1 × P1 the operation consists in blowing up the singular point
and contracting the x and y lines through that point.

The second quadratic transformation has base triangle the remaining 3 singular
points.

The image of the curves through these transformations is a conic which is easily
rationally parameterised. This gives the two degree 3 rational functions N1/D1 and
N2/D2 defining the projections from Hι to Ei,ι.

Note that the standard quadratic transformation (x, y, z) 7→ (xy, yz, zx) does not
involve any operation on coefficients and can be computed only on each monomial.

A rational point on the final conic is given by the ramification point computed
explicitly earlier. The ramification point may coincide with a double point of the
sextic, but since its tangent direction is known, it defines non ambiguously a ra-
tional point on the conic. As shown earlier, the resulting parameterisation may be
unsuitable if the point at parameter T =∞ satisfies P1(u1)P2(u2) = 0. It is possi-
ble to avoid such a situation using at most 19 evaluations of the rational functions
and polynomials Pi.

If there is a triple point, after the first quadratic transformation the curve will
already be a rational nodal cubic instead of a 3-nodal quartic, and it can be readily
parameterised using the double point node as the origin.

The successive transformations are:

• S: the original sextic;
• S1: a translation of S so that N0 is the affine plane origin;
• Q: the image by a standard quadratic transformation;
• QT : a projective transformation of Q moving N1, N2, N3 to [1 : 0 : 0], [0 :
1 : 0], [0 : 0 : 1];
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• C: a smoooth conic obtained from QT by the standard quadratic transfor-
mation;
• CT : a translated conic so that a chosen rational point is the origin.

function RamificationPoint(t1, t2 ∈ k)
un ← 4t21t

3
2 − t21 − t42 − 6t1t

2
2 + 4t2

ud ← 4(t31 − 1)(t32 − 1)
v ← (t22 − t1)/(t

3
2 − 3t1t2 + 2)

return un/ud, v
end function
function RationalParams(Sextic, Nodes = N0, N1, N2, N3 or N0 (triple), N1)

S(x, y, z)← Homogenize(Sextic)
x0, y0 ← N0

S1(x, y, z)← S(x0z + x, y0z + y, z) ▷ Translate N0 to point (0, 0)
Q(x, y, z)← S1(yz, zx, xy) ▷ Apply quadratic transform
Q← Q/x3y3z2 ▷ Remove exceptional lines
if N0 is a triple point then

Q← Q/z ▷ Q is a cubic with node N1

ax2 + bxy + cy2 + kx3 + lx2y +mxy2 + ny3 ← C(xPC
+ x, yPC

+ y, 1)
xQ(T )← −(a+ bT + cT 2)/(k + lT +mT 2 + nT 3)
yQ(T )← TxQ(T )
(xQ(T ), yQ(T ))← (xPQ

+ xQ(T ), yPQ
+ yQ(T ))

xQ(T ), yQ(T ), zQ(T )← Homogenize(xQ(T ), yQ(T ))
else

M ← Matrix((x, y, z) 7→ xN1 + yN2 + zN3)
QT (x, y, z)← Q(M(x, y, z)) ▷ Move Ni to basis vectors
C(x, y, z)← QT (yz, zx, xy)/x

2y2z2 ▷ C is a conic
PC ← (S → C)(RamificationPoint(t1, t2))
ax2 + bxy + cy2 + dx+ ey ← C(xPC

+ x, yPC
+ y, 1) = 0

xC(T )← −(d+ eT )/(a+ bT + cT 2)
yC(T )← TxC(T )
(xC(T ), yC(T ))← (xPC

+ xC(T ), yPC
+ yC(T )) ▷ Then clear denominator

xC(T ), yC(T ), zC(T )← Homogenize(xC(T ), yC(T ))
(xQT

, yQT
, zQT

)← (yCzC , zCxC , xCyC)
(xQ, yQ, zQ)←M−1(xQT

, yQT
, zQT

)
end if
(xS1 , yS1 , zS1)← (yQzQ, zQxQ, xQyQ)
U1 ← x0 + xS1/zS1

U2 ← y0 + yS1
/zS1

if P1(U1(T =∞))P2(U2(T =∞)) = 0 then
Find a ∈ 1 . . . 20 such that P1(U1(a))P2(U2(a)) ̸= 0
Substitute T with a+ 1/T

end if
return U1, U2

end function

Step 5. Compute final morphisms. Using the rational functions above, and follow-
ing computations done in the previous section, we can define the main function of
the algorithm.

function TripleCover((E1, T11, T12), (E2, T21, T22))
j ← WeilPairing(T11, T12)
t1, f1, P1 ← CurveParams(E1, T11, T12, j)
t2, f2, P2 ← CurveParams(E2, T21, T22, j)
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Nodes ← DoublePoints(j, t1, t2)
S ← RationalSextic(P1, P2, Nodes)
NX1 /DX1,NX2 /DX2 ← RationalParams(S, Nodes)
u1 ← NX1(∞)/DX1(∞)
u2 ← NX2(∞)/DX2(∞)
a1, a2 ← P1(u1), P2(u2)

R1 ←
√

P1(NX1 /DX1)DX
3
1 /(a1 DX2) ▷ Square root of a monic polynomial

R2 ←
√

P2(NX2 /DX2)DX
3
2 /(a2 DX1) ▷ Square root of a monic polynomial

a← t1u1 + t2u2 − u1u2(t1t2 + 2)− 1/3− 2(t1t2 − 1)3/(t31 − 1)(t32 − 1)
H ← a1 DX1 DX2

p1 ←map (x, y) 7→ (f1(NX1(x)/DX1(x)), yR1(x)/DX1(x)
2)

p2 ←map (x, y) 7→ (f2(NX2(x)/DX2(x)), (a2/a)yR2(x)/DX2(x)
2)

return H, p1, p2
end function

Appendix: Sagemath implementation

The implementation was tested on the whole parameter space for Fq where q
mod 6 = 1 and q ≤ 200. It returns either the equation of a hyperelliptic curve and
2 morphisms to the input elliptic curves, or an error if the triple cover is found to
be singular.
Step 1: compute Hesse pencil parameter

def curve_params(E, j, T1, T2):

xT1 = T1[0]

xT2 = T2[0]

xT12 = (T1 + T2)[0]

t = (-j-2) * (xT12-xT2) / (xT12-xT1) + 1

a = (xT1 - xT2) * (t - 1)

b = xT2

a1, a2, a3, a4, a6 = E.a_invariants()

assert a1 == 0 and a3 == 0

x = E.base_field()["x"].gen()

P = (a*x+b)**3 + a2*(a*x+b)**2 + a4*(a*x+b) + a6

return t, P, a, b

Step 2: compute singularities coordinates

def double_coords(j, t1, t2):

j2 = j*j

d0 = (t1**2 - t2) / (t1**3 - 1)

num = t1*t2 - 1

den1 = (t1-1)*(t1-j2)*(t2-j2)

den2 = (t1-1)*(t1-j)*(t2-j)

den3 = (t2-1)*(t1-j)*(t1-j2)

return d0, num / den1, num / den2, num / den3

def double_points(j, t1, t2):

XD0, XD1, XD2, XD3 = double_coords(j, t1, t2)

YD0, YD1, YD2, YD3 = double_coords(j**2, t2, t1)

nodes = [(XD0, YD0), (XD1, YD1), (XD2, YD2), (XD3, YD3)]

if nodes[0] == nodes[1]:

return [nodes[0]] + [n for n in nodes if n != nodes[0]]

if nodes[2] == nodes[3]:

return [nodes[2]] + [n for n in nodes if n != nodes[2]]



PROJECTIVE GEOMETRY OF HESSIAN CURVES AND TRIPLE COVERS 21

return nodes

Step 3: equation of the plane rational sextic

def rational_sextic(P1, P2, nodes):

assert P1[3] == 1 and P2[3] == 1

K = P1.base_ring()

R = K["u", "v"]

u, v = R.gens()

# Information from lines at infinity

S_inf = u**3*v**3 \

+ (v**3 * (u**2*P1[2] + u*P1[1] + P1[0])) \

+ (u**3 * (v**2*P2[2] + v*P2[1] + P2[0]))

dS_du = derivative(S_inf, u)

dS_dv = derivative(S_inf, v)

rows = []

vals = []

degrees = [(i, j) for i in range(3) for j in range(3)]

for xN, yN in nodes:

rows.append([xN**i * yN**j for i, j in degrees])

vals.append(-K(S_inf(u=xN, v=yN)))

rows.append([i*xN**(i-1)*yN**j if i > 0 else 0 for i, j in degrees])

vals.append(-K(dS_du(u=xN, v=yN)))

rows.append([j*xN**i*yN**(j-1) if j > 0 else 0 for i, j in degrees])

vals.append(-K(dS_dv(u=xN, v=yN)))

if len(nodes) == 2: # triple point

dS_du2 = derivative(dS_du, u)

dS_duv = derivative(dS_du, v)

dS_dv2 = derivative(dS_dv, v)

xN, yN = nodes[0]

vals.append(-K(dS_du2(u=xN, v=yN)))

rows.append([2 * yN**j if i == 2 else 0 for i, j in degrees])

vals.append(-K(dS_dv2(u=xN, v=yN)))

rows.append([2 * xN**i if j == 2 else 0 for i, j in degrees])

vals.append(-K(dS_duv(u=xN, v=yN)))

rows.append([0, 0, 0, 0, 1, 2*yN, 0, 2*xN, 4*xN*yN])

M = Matrix(K, rows)

coef = M.solve_right(vector(K, vals))

S_rest = sum(c * u**i * v**j for c, (i, j) in zip(coef, degrees))

return S_inf + S_rest

Step 4: compute a rational parameterisation of the sextic

def ramif1_coords(S, t1, t2):

numx = 4*t1**2*t2**3 - t1**2 - t2**4 - 6*t1*t2**2 + 4*t2

denx = 4*(t1**3-1)*(t2**3-1)

deny = t2**3 - 3*t1*t2 + 2

x = numx / denx

return (x, (t2**2 - t1)/deny if deny != 0 else None)

def rational_params(S, nodes, ramif):

K = S.base_ring()

R = K["x", "y", "z"]

x, y, z = R.gens()

if ramif in nodes:

nodes = [ramif] + [n for n in nodes if n != ramif]
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x0, y0 = nodes[0]

S = S(x, y).homogenize(var=z)

S1 = S(x + x0*z, y + y0*z, z)

Q = div_monom(S1(y*z, z*x, x*y), x**3 * y**3 * z**2)

T = K["T"].gen() # Uniformizer

if len(nodes) == 2: # triple point

Q = div_monom(Q, z) # nodal cubic

x1, y1 = nodes[1]

qx1, qy1, qz1 = (y1-y0, x1-x0, (x1-x0)*(y1-y0))

QT = Q(qx1 * z + x, qy1 * z + y, qz1 * z)

num = QT[2,0,1] + QT[1,1,1]*T + QT[0,2,1]*T**2

den = QT[3,0,0] + QT[2,1,0]*T + QT[1,2,0]*T**2 + QT[0,3,0]*T**3

xQT, yQT, zQT = -num, -num*T, den

x_Q, y_Q, z_Q = qx1 * zQT + xQT, qy1 * zQT + yQT, qz1 * zQT

else:

(x1, y1), (x2, y2), (x3, y3) = nodes[1:4]

M = Matrix(K, [

[y1-y0, x1-x0, (x1-x0)*(y1-y0)],

[y2-y0, x2-x0, (x2-x0)*(y2-y0)],

[y3-y0, x3-x0, (x3-x0)*(y3-y0)],

]).transpose()

u, v, w = M * vector([x, y, z])

QT = Q(u, v, w)

C = div_monom(QT(y*z, z*x, y*x), (x*y*z) ** 2)

assert C.total_degree() == 2

if ramif == (x0, y0):

rat = (1, 0, 0) # vertical tangent

elif ramif[1] is None:

rat = (1/(ramif[0]-x0), 0, 1) # at infinity

else:

rat = (1/(ramif[0]-x0), 1/(ramif[1]-y0), 1)

rat = M.inverse() * vector(rat)

rat = (rat[2]/rat[0], rat[2]/rat[1])

CT = C(rat[0]*z + x, rat[1]*z + y, z)

# CT: ax^2+bxy+cy^2+dx+ey=0

num = CT[1,0,1] + CT[0,1,1]*T

den = CT[2,0,0] + CT[1,1,0]*T + CT[0,2,0]*T**2

x_CT, y_CT, z_CT = -num, -T*num, den

x_C, y_C, z_C = x_CT+rat[0]*z_CT, y_CT+rat[1]*z_CT, z_CT

x_QT, y_QT, z_QT = y_C*z_C, z_C*x_C, x_C*y_C

x_Q, y_Q, z_Q = M*vector([x_QT, y_QT, z_QT])

for a in range(20):

if a == 0:

if z_Q.degree() == 4:

xQinf, yQinf = x_Q[4]/z_Q[4], y_Q[4]/z_Q[4]

if Q(xQinf, 0, 1) != 0 and Q(0, yQinf, 1) != 0:

break

else:

a = K(a)

if z_Q(a) != 0:

xQa, yQa = x_Q(a) / z_Q(a), y_Q(a) / z_Q(a)

if Q(xQa, 0, 1) != 0 and Q(0, yQa, 1) != 0:

x_Q = x_Q(a + 1/T)

y_Q = y_Q(a + 1/T)
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z_Q = z_Q(a + 1/T)

break

x_S1, y_S1, z_S1 = y_Q*z_Q, z_Q*x_Q, x_Q*y_Q

X = x0 + x_S1 / z_S1

Y = y0 + y_S1 / z_S1

return X, Y

def div_monom(f, q):

R = f.parent()

res = 0

for c, m in zip(f.coefficients(), f.monomials()):

assert R.monomial_divides(q, m)

res += c * R.monomial_quotient(m, q)

return res

Step 5: compute final equations

def triple_cover(E1, T11, T12, E2, T21, T22):

K = E1.base_field()

j = T11.weil_pairing(T12, 3)

assert j == T21.weil_pairing(T22, 3)

t1, P1, a1, b1, c1 = curve_params(E1, j, T11, T12)

t2, P2, a2, b2, c2 = curve_params(E2, j, T21, T22)

nodes = double_points(j, t1, t2)

S = rational_sextic(P1.monic(), P2.monic(), nodes)

ramif = ramif1_coords(S, t1, t2)

X1, X2 = rational_params(S, nodes, ramif)

NumX1, DenX1 = X1.numerator(), X1.denominator()

NumX2, DenX2 = X2.numerator(), X2.denominator()

if max(pol.degree() for pol in [NumX1, DenX1, NumX2, DenX2]) <= 2:

return "H␣is␣singular", None, None

Z1 = (P1(NumX1 / DenX1) * DenX1**3).numerator() // DenX2

aZ1 = Z1.lc()

Y1 = Z1.monic().sqrt()

Z2 = (P2(NumX2 / DenX2) * DenX2**3).numerator() // DenX1

aZ2 = Z2.lc()

Y2 = Z2.monic().sqrt()

u1 = NumX1[3] / DenX1[3]

u2 = NumX2[3] / DenX2[3]

T = (t1**3-1)*(t2**3-1)

aZ12 = t1*u1+t2*u2-u1*u2*(t1*t2+2) - (1 + 2*(t1*t2-1)**3/T)/K(3)

assert aZ12**2 == aZ1*aZ2

def f1(x, y):

return (a1*NumX1(x)/DenX1(x)+b1, c1*Y1(x)/DenX1(x)**2 * y)

def f2(x, y):

return (a2*NumX2(x)/DenX2(x)+b2, c2*Y2(x)/DenX2(x)**2 * y * aZ2 / aZ12)

H = aZ1*DenX1*DenX2

return H, f1, f2

Sample program and output

from sage.all import GF, EllipticCurve

K = GF(4099)

R = K["x", "y"]

x, y = R.gens()

E1 = EllipticCurve(K, [-961, -1125])

T11, T12 = E1.abelian_group().torsion_subgroup(3).gens()
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E2 = EllipticCurve(K, [1044, 354])

T21, T22 = E2.abelian_group().torsion_subgroup(3).gens()

H, f1, f2 = triple_cover(

E1, T11.element(), T12.element(),

E2, T21.element(), T22.element())

print("H:", H)

# shows 2641*T^6+3151*T^5+2443*T^4+1911*T^3+3286*T^2+3446*T+3655

print("H->E1:", f1(x, y))

# shows

# (880*x^3 + 671*x^2 - 1915*x - 231)/(x^3 - 765*x^2 + 1818*x + 731)

# y*(x^3 - 1219*x^2 - 1118*x + 1170)/(x^3 - 765*x^2 + 1818*x + 731)^2

print("H->E2:", f2(x, y))

# shows

# (1625*x^3 - 496*x^2 - 172*x - 983)/(x^3 - 432*x^2 + 380*x + 149)

# y*(1937*x^3-1580*x^2-245*x-1525)/(405*(x^3 - 432*x^2 + 380*x + 149)^2)
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