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Abstract. Assume that Alice can do only classical probabilistic polynomial-
time computing while Bob can do quantum polynomial-time computing.
Alice and Bob communicate over only classical channels, and finally
Bob gets a state |x0⟩ + |x1⟩ with some bit strings x0 and x1. Is it pos-
sible that Alice can know {x0, x1} but Bob cannot? Such a task, called
remote state preparations, is indeed possible under some complexity as-
sumptions, and is bases of many quantum cryptographic primitives such
as proofs of quantumness, (classical-client) blind quantum computing,
(classical) verifications of quantum computing, and quantum money. A
typical technique to realize remote state preparations is to use 2-to-1
trapdoor collision resistant hash functions: Alice sends a 2-to-1 trap-
door collision resistant hash function f to Bob, and Bob evaluates it
coherently, i.e., Bob generates

∑
x

|x⟩|f(x)⟩. Bob measures the second
register to get the measurement result y, and sends y to Alice. Bob’s
post-measurement state is |x0⟩ + |x1⟩, where f(x0) = f(x1) = y. With
the trapdoor, Alice can learn {x0, x1} from y, but due to the collision
resistance, Bob cannot. This Alice’s advantage can be leveraged to realize
the quantum cryptographic primitives listed above. It seems that the
collision resistance is essential here. In this paper, surprisingly, we show
that the collision resistance is not necessary for a restricted case: we
show that (non-verifiable) remote state preparations of |x0⟩ + |x1⟩ secure
against classical probabilistic polynomial-time Bob can be constructed
from classically-secure (full-domain) trapdoor permutations. Trapdoor
permutations are not likely to imply the collision resistance, because
black-box reductions from collision-resistant hash functions to trapdoor
permutations are known to be impossible. As an application of our result,
we construct proofs of quantumness from classically-secure (full-domain)
trapdoor permutations.

1 Introduction

Let us consider a two-party interactive protocol between Alice and Bob.
Alice can do only classical probabilistic polynomial-time computing while
Bob can do quantum polynomial-time computing. Alice and Bob com-
municate over only classical channels. After the interaction, Alice finally
outputs a pair {x0, x1} of n-bit strings x0, x1 ∈ {0, 1}n. If Bob behaves



honestly, he finally outputs the n-qubit state |x0⟩+ |x1⟩.3 On the other
hand, no malicious Bob can learn {x0, x1}. Such a task, called remote
state preparations [DK16,CCKW19,GV19]4, is indeed possible under some
complexity assumptions, and is bases of many quantum cryptographic
primitives such as proofs of quantumness [BCM+21], (classical-client) blind
quantum computing [BFK09,CCKW19,BCC+20], (classical) verifications
of quantum computing [Mah18b,GV19], and quantum money [RS19]. In
fact, if Alice can generate a quantum state |x0⟩+ |x1⟩ and send it to Bob
over a quantum channel, Alice can enjoy several advantages over Bob. For
example, Bob cannot know the complete classical description of the state,
he cannot clone the state, and he has to disturb the state if he measures
it, etc. Such an inequivalence between Alice and Bob is clearly useful for
quantum cryptography. Remote state preparations somehow “simulate”
such situations, and can replace quantum channels with classical channels
for some applications.

A typical technique to realize remote state preparations is to use 2-to-1
trapdoor collision resistant hash functions [BCM+21]5: Alice sends a 2-to-1
trapdoor collision resistant hash function f to Bob, and Bob evaluates
it coherently, i.e., Bob generates

∑
x |x⟩|f(x)⟩. Bob measures the second

register to get the measurement result y, and sends y to Alice. Bob’s
post-measurement state is |x0⟩ + |x1⟩, where f(x0) = f(x1) = y. With
the trapdoor, Alice can learn {x0, x1} from y, but due to the collision
resistance, Bob cannot. This Alice’s advantage can be leveraged to realize
the quantum cryptographic primitives listed above.

3 For simplicity, in this paper, we often omit the normalization factors of quantum
states.

4 Generally speaking, remote state preparations are the task that a classical Alice
delegates preparations of quantum states to quantum Bob over a classical channel in
such a way that Bob cannot learn which states he is generating. [CCKW19] considered
remote state preparations of random single-qubit states for the applications to
classical-client blind quantum computing. In this paper, on the other hand, we focus
on remote state preparations of an equal-weight superposition |x0⟩ + |x1⟩ of two n-
qubit computational basis states. Moreover, note that there are also verifiable remote
state preparations [GV19] where Alice can check whether Bob has generated correct
states or not. Verifiability is not necessary for some applications such as classical-client
blind quantum computing, but seems to be necessary for some applications such as
classical verifications of quantum computing. In this paper, we do not consider the
verifiability.

5 A function f : X → Y is 2-to-1 if |{x ∈ X | f(x) = y}| = 2 for all y ∈ Y. A function
f is called a trapdoor collision resistant hash function if given f it is hard to find x
and x′ such that f(x) = f(x′), but it becomes easy if a trapdoor is available.
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1.1 Our Results

The collision resistance seems to be essential for remote state preparations
(and many other quantum cryptographic primitives over classical channels.)
In this paper, surprisingly, we show that the collision resistance is not
necessary for a restricted case. We show the following result.

Theorem 1.1. (Non-verifiable) remote state preparations of |x0⟩+ |x1⟩
secure against classical probabilistic polynomial-time Bob can be con-
structed from classically-secure (full-domain) trapdoor permutations.

Here, non-verifiable remote state preparations are remote state prepa-
rations that are blind but not verifiable, i.e., no malicious Bob can learn
which states he is generating, but Alice cannot verify whether Bob has gen-
erated correct states or not. (A formal definition is given in Definition 2.1.)
A classically-secure trapdoor permutation is a permutation f : X → X
such that inverting it is hard for classical probabilistic polynomial-time
adversaries, but it is easy if a trapdoor is available. Full-domain means
that X = {0, 1}n. (The formal definition is given in Definition 2.3.) A
proof of Theorem 1.1 is given in Sec. 3.

Trapdoor permutations are not likely to imply the collision resis-
tance, because black-box reductions from collision-resistant hash functions
to trapdoor permutations are known to be impossible [HHRS15,HY20].
Classically-secure full-domain trapdoor permutations can be instantiated
with the hardness of factoring [BM92,GR13].

We emphasize that our remote state preparations in Theorem 1.1
are proven to be secure against only classical Bob, which unfortunately
restricts the applications of our result. We do not know how to achieve
the quantum security. This is an important open problem. (For more
discussion, see Sec. 1.3.)

As an application of Theorem 1.1, we construct proofs of quantumness.

Theorem 1.2. Proofs of quantumness can be constructed from classically-
secure (full-domain) trapdoor permutations.

Its proof is given in Sec. 4. Proofs of quantumness are two-party
protocols between a probabilistic polynomial-time verifier and a prover. A
quantum polynomial-time prover can make the verifier accept with high
probability, but no probabilistic polynomial-time prover is accepted by
the verifier except for a negligible probability. (For a formal definition
of proofs of quantumness, see Definition 2.2.) The first construction of
proofs of quantumness [BCM+21] is based on trapdoor injective claw-free

3



functions with the special property called adaptive-hardcore-bit property.
Here, an injective claw-free means that given a pair (f0, f1) of injective
functions, it is hard to find (x0, x1) such that f0(x0) = f1(x1). The
adaptive-hardcore-bit property roughly means that given (f0, f1), it is
hard to find one xb of a claw (x0, x1) and d such that d · (x0 ⊕ x1) = 0 at
the same time. It is easy to see that injective claw-free functions imply
the collision resistance. 6 A recent paper [KMCVY22] has improved the
result of [BCM+21] by removing the necessity of the adaptive-hardcore-bit
property. However, it still uses 2-to-1 trapdoor collision resistant hash
functions. Our Theorem 1.2 removes the necessity of the collision resistance
of [KMCVY22].

1.2 Technical Overview

Our construction of remote state preparations from trapdoor permutations
(Theorem 1.1) is based on the statistically-hiding and computationally-
binding commitment scheme from one-way permutations [NOVY93], which
is explained as follows. Let f : {0, 1}n → {0, 1}n be a one-way permutation.

1. The sender of the commitment scheme chooses x ← {0, 1}n, and
computes y := f(x).

2. The receiver of the commitment scheme chooses hj ← 0j−11{0, 1}n−j

for each j = 1, 2, ..., n− 1.
3. The receiver and the sender repeat the following procedure for j =

1, 2, ..., n− 1:
(a) The receiver sends hj to the sender.
(b) The sender returns the value cj := hj · y to the receiver.7

4. The receiver and the sender finally obtain the system of linear equations
{hj · y = cj}n−1

j=1 that has two solutions y0, y1 ∈ {0, 1}n, where y0 is
the lexicographically smaller one. Let c ∈ {0, 1} be such that yc = y.
The sender sends b⊕ c to the receiver as the commitment of the bit
b ∈ {0, 1}.

5. The opening for the commitment is x and b.

It is shown in [NOVY93] that if a probabilistic polynomial-time sender
can find both x0 and x1 such that f(x0) = y0 and f(x1) = y1 with a

6 Let us define a function g by g(0x) := f0(x) and g(1x) := f1(x). Assume that a
collision (α, β) of g is easily found, i.e., g(α) = g(β). Then, due to the injectivity of
f0 and f1, the first bit of α and β should be different. Without loss of generality,
assume that α = 0x0 and β = 1x1. Then, (x0, x1) is a claw of (f0, f1).

7 For two bit strings a, b ∈ {0, 1}n, a · b is the bitwise inner product, i.e., a · b :=⊕n

j=1 ajbj .
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non-negligible probability, then a probabilistic polynomial-time adversary
that breaks the security of the one-way permutation f can be constructed,
which shows the (classical) computational binding of the scheme.

What happens if this NOVY’s interactive hashing is run coherently?
Namely, let us consider the following “quantum version” of the NOVY’s
interactive hashing:

1. A quantum polynomial-time Bob prepares
∑

x∈{0,1}n |x⟩.
2. A probabilistic polynomial-time Alice chooses hj ← 0j−11{0, 1}n−j for

each j = 1, 2, ..., n− 1.
3. Alice sends h1 to Bob.
4. Bob generates ∑

x∈{0,1}n

|x⟩|h1 · f(x)⟩,

measures the second register to get the measurement result c1 ∈ {0, 1},
and sends c1 to Alice. The post-measurement state is∑

x∈{0,1}n:h1·f(x)=c1

|x⟩.

5. Alice sends h2 to Bob.
6. Bob generates ∑

x∈{0,1}n:h1·f(x)=c1

|x⟩|h2 · f(x)⟩,

measures the second register to get the measurement result c2 ∈ {0, 1},
and sends c2 to Alice. The post-measurement state is∑

x∈{0,1}n:h1·f(x)=c1,h2·f(x)=c2

|x⟩.

7. If they repeat the above procedure for j = 3, 4, ..., n− 1, Bob finally
possesses the state |x0⟩ + |x1⟩, where f(x0) = y0, f(x1) = y1, and
(y0, y1) is the two solutions of {hj · y = cj}n−1

j=1 .

By the (classical) computational-binding of the NOVY’s commitment
scheme, no probabilistic polynomial-time Bob can learn both x0 and
x1 at the same time with non-negligible probability. If f is a trapdoor
permutation, Alice can compute both x0 and x1, and it is clear that the
existence of the trapdoor does not degrade the security against Bob.
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In this way, we can construct remote state preparations of |x0⟩ +
|x1⟩ secure against classical Bob from trapdoor permutations. Proofs
of quantumness can be constructed from it based on a similar idea of
[KMCVY22], which is a proof of Theorem 1.2: The verifier and the prover
first run remote state preparations of |x0⟩+ |x1⟩. Then, with probability
1/2, the verifier asks the prover to measure the state in the computational
basis. If the prover returns a correct x0 or x1, the verifier accepts. With
probability 1/2, the verifier chooses r ← {0, 1}n and sends it to the prover.
The prover generates the state |r · x0⟩|x0⟩ + |r · x1⟩|x1⟩, and measures
the second register in the Hadamard basis. If the measurement result is
d ∈ {0, 1}n, the post-measurement state is |r · x0⟩+ (−1)d·(x0⊕x1)|r · x1⟩,
i.e., one of the BB84 states. Then, runing the CHSH game on it leads to
proofs of quantumness: the quantum polynomial-time prover can output
the correct measurement result with high probability, but no probabilistic
polynomial-time prover can output the correct measurement result except
for a small probability.

1.3 Open Problems

Our novel idea of running the NOVY’s interactive hashing coherently will
have many other interesting applications. Let us summarize several open
problems.

Weakening assumptions. Our constructions of remote state prepara-
tions and proofs of quantumness are based on the full-domain trapdoor
permutations. One important open problem is whether the assumption
can be weakened or not.

First, can we remove the full-domain property? Though the factoring-
based constructions can be made full-domain [BM92,GR13], it is not true in
general. For example, the construction of trapdoor permutations based on
indistinguishability obfuscation (iO) [BPW16] is not full-domain. In many
applications of trapdoor permutations like oblivious transfers [EGL85]
and non-interactive zero-knowledge [FLS99], the full-domain property can
be weakened to a property called the doubly enhanced property [GR13].
Can we replace full-domain trapdoor permutations in our constructions
with (non-full-domain) doubly enhanced trapdoor permutations? If this
is possible, then we would obtain proofs of quantumness from iO and
one-way functions since the iO-based trapdoor permutation [BPW16]
satisfies the doubly enhanced property. (Or, it is an interesting open
problem whether remote state preparations or proofs of quantumness can
be directly constructed from iO (plus one-way functions).)
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Second, it is known that the NOVY’s commitment scheme with
one-way permutations can be improved to that with regular one-way
functions [HHK+05] or even any one-way functions [HNO+09].8 Can
we construct remote state preparations or proofs of quantumness from
trapdoor functions, not permutations? Known instantiations of trapdoor
permutations are only factoring-based ones (for full-domain cases) and
iO-based ones (for non-full-domain cases). However, trapdoor functions
have many instantiations from Diffie-Hellman assumptions [PW08,GH18],
learning with errors [PW08,GPV08], NTRU [HPS98], and coding theory
[McE78,Nie86], etc. A potential approach is to coherently run the variant
of the NOVY’s commitment based on regular one-way functions [HHK+05]
since trapdoor functions are automatically regular. However, in such a
construction, the state which the honest Bob gets after the interaction is
not a superposition of two computational-basis states, |x0⟩+ |x1⟩, but that
of many computational-basis states, i.e.,

∑
x∈S |x⟩ with |S| being polynomi-

ally or even exponentially large. We do not know how to construct proofs
of quantumness from such a superposition of many computational-basis
states.

Finally, can we remove even the trapdoor? Is it possible to construct
remote state preparations or proofs of quantumness from one-way func-
tions? A recent work [YZ22] constructs proofs of quantumness in the
quantum random oracle model. This demonstrates that trapdoors are not
inherent for proofs of quantumness. However, a standard-model instantia-
tion of their protocol based on standard assumptions is likely to require a
completely new idea.

Other applications. The other important open problem is whether we
can construct other quantum cryptographic primitives, such as (classical-
client) blind quantum computing and (classical) verifications of quantum
computing from trapdoor permutations (or even trapdoor/one-way func-
tions). For that goal, we have to show the quantum security of the NOVY’s
scheme. (Remember that our remote state preparations are known to be
secure against only classical Bob, because we do not show the security
of the NOVY’s scheme against quantum adversaries.) The security proof
of [NOVY93] makes heavy use of the rewinding technique, and therefore
showing the quantum security of NOVY’s scheme seems to be a challenging
open problem, which is of independent interest.

8 We say that a one-way functions is regular if the preimage sizes are equal for all
images.
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1.4 Related Works

Remote state preparations. The first construction of (non-verifiable) re-
mote state preparations of single-qubit states so called “QFactory” [CCKW19]
used certain 2-to-1 trapdoor collision resistant hash functions with some
homomorphic predicates, which can be constructed from the LWE assump-
tion. [GV19,Zha22,GMP22] constructed verifiable remote state prepara-
tions of single-qubit states that use the (noisy) trapdoor injective claw-free
functions of [BCM+18].

Proofs of quantumness. A simple way of achieving “proofs of quan-
tumness” is to ask the prover to solve (non-interactive) problems in NP
that can be solved in quantum polynomial-time but are believed to be
hard for probabilistic polynomial-time, such as factoring [Sho94], Pell’s
equation [Hal02], and matrix group membership [BBS09], etc. In this
paper, however, we do not consider such approaches.

The original construction [BCM+21] of proofs of quantumness required
the adaptive-hardcore-bit property. [BKVV20,KMCVY22] removed the
necessity of the adaptive-hardcore-bit property, but [BKVV20] used 2-
to-1 trapdoor injective claw-free functions and random oracles that can
be queried coherently, and [KMCVY22] used 2-to-1 trapdoor collision
resistant hash functions.

Publicly-verifiable proofs of quantumness were also studied. One-shot
signatures [AGKZ20] imply proofs of quantumness, but the known con-
struction of one-shot signatures is based on one-shot chameleon hash
functions, which satisfy the collision resistance. Moreover, the known con-
struction assumes classical oracles that can be queried coherently. [YZ22]
constructed publicly-verifiable non-interactive proofs of quantumness with
random oracles. Note that random oracles are collision-resistant.

Recently, [KLVY22] showed a general compiler to transform non-local
games to proofs of quantumness via quantum homomorphic encryptions
(QHE). Their assumption is only the existence of QHE for certain class
of quantum operations (such as controlled-Hadamard gates), which can
be instantiated with LWE [Mah18a]. Although homomorphic encryptions
generally imply the collision resistance [IKO05], it is not known whether
the restricted QHE used in [KLVY22] implies the collision resistance.

The idea of [KLVY22] is that the quantum prover generates a bipartite
state, and the classical verifier remotely measures one of the registers via
QHE so that the prover gets an unknown state of the other register. It
therefore can be also considered as (non-verifiable) remote state prepara-
tions via QHE. Remote state preparations via QHE were also introduced in
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[Shm21,Shm22] in the contexts of quantum money and quantum tokenized
signatures.

2 Preliminaries

We use the standard notations of quantum computing and cryptography.
We use λ as the security parameter. x← A means that an element x is
sampled uniformly at random from the set A. negl is a negligible function,
and poly is a polynomial. For an algorithm A, y ← A(x) means that the
algorithm A outputs y on input x. For two bit strings a, b ∈ {0, 1}n, a · b
is the bitwise inner product, i.e., a · b :=

⊕n
j=1 ajbj .

Non-verifiable remote state preparations of |x0⟩+ |x1⟩ secure against
probabilistic polynomial-time Bob are defined as follows.

Definition 2.1 (Remote State Preparations). Non-verifiable remote
state preparations of |x0⟩+|x1⟩ secure against probabilistic polynomial-time
Bob are two-party interactive protocols between probabilistic polynomial-
time Alice and quantum/probabilistic polynomial-time Bob over a classical
channel that satisfy the following two conditions.

Perfect correctness: If quantum polynomial-time Bob behaves honestly,
Alice outputs a pair {x0, x1} of two n-bit strings x0, x1 ∈ {0, 1}n and Bob
outputs the n-qubit state |x0⟩+ |x1⟩ with probability 1.

Classical security (blindness): For any probabilistic polynomial-time
malicious Bob that outputs a pair {α, β} of two n-bit strings α, β ∈ {0, 1}n,

Pr[{x0, x1} = {α, β} : {x0, x1} ← Alice, {α, β} ← Bob] ≤ negl(λ).

Remark 2.1. Our definition is different from previous ones [CCKW19,GV19]
in the following two points. First, they are interested in remotely generat-
ing single-qubit states while we consider remote generations of |x0⟩+ |x1⟩.
Second, [CCKW19,GV19] consider the security against quantum Bob,
while we consider the one against only classical Bob. It is an important
open problem whether we can show the quantum security.

Remark 2.2. Remote state preparations can have the verifiability [GV19],
which roughly means that Alice can check whether Bob has generated
correct states or not. Some applications, such as classical-client blind
quantum computing, do not require the verifiability, but it seems that
verifiability is necessary for some applications, such as classical verifications
of quantum computing. In this paper, we do not consider verifiability.
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Remark 2.3. We can consider non-perfect correctness, but in this paper
we consider only perfect correctness, because our construction satisfies it.
Moreover, it is reasonable to assume in the definition that Alice sometimes
outputs ⊥. However, for simplicity, we assume that Alice never outputs
⊥. In fact, our construction satisfies it.

Proofs of quantumness are defined as follows.

Definition 2.2 (Proofs of Quantumness). Proofs of quantumness
are two-party protocols between a probabilistic polynomial-time verifier V
and a quantum/probabilistic polynomial-time prover P over a classical
channel such that V finally outputs ⊤ or ⊥. We require that the following
two conditions, α-correctness and β-soundness, are satisfied for some α
and β such that α− β ≥ 1

poly(λ) .

α-correctness: There exists a quantum polynomial-time prover P such
that Pr [V → ⊤] ≥ α.

β-soundness: For any probabilistic polynomial-time prover P, Pr [V → ⊤] ≤
β.

Classically-secure full-domain trapdoor permutations are defined as
follows.

Definition 2.3 (Trapdoor Permutations). A family {fk}k∈Kλ
of

permutations is called a classically-secure full-domain trapdoor permutation
family if there is a tuple of algorithms (Gen, Eval, Inv) such that

– Gen(1λ)→ (td, k) : It is a probabilistic polynomial-time algorithm that,
on input the security parameter λ, outputs a trapdoor td and a key k.

– Eval(x, k)→ x′ : It is a classical polynomial-time deterministic algo-
rithm that, on input k and a bit string x ∈ {0, 1}n, outputs a bit string
x′ ∈ {0, 1}n.

– Inv(td, x′)→ x′′ : It is a classical polynomial-time deterministic algo-
rithm that, on input x′ and td, outputs a bit string x′′.

We require the following two types of correctness and the security.

Evaluation correctness: For any x ∈ {0, 1}n,

Pr[x′ = fk(x) : x′ ← Eval(x, k), (td, k)← Gen(1λ)] = 1.

Inversion correctness: For any x ∈ {0, 1}n,

Pr[x′′ = x : x′′ ← Inv(td, x′), x′ ← Eval(x, k), (td, k)← Gen(1λ)] = 1.
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Classical security: For any probabilistic polynomial-time adversary A,

Pr[x′′ = x : x′′ ← A(x′, k), x′ ← Eval(x, k), x← {0, 1}n, (td, k)← Gen(1λ)] ≤ negl(λ).

We use the following result from [NOVY93]. (They show it for one-way
permutations, not trapdoor permutations, but it is clear that the same
result holds for the trapdoor permutations.)

Theorem 2.1 ([NOVY93]). Let {fk}k∈Kλ
be a classically-secure full-

domain trapdoor permutation family. Let (Gen, Eval, Inv) be the associated
tuple of algorithms. Let us consider the following security game between a
probabilistic polynomial-time challenger C and a probabilistic polynomial-
time adversary A.

1. C runs (td, k)← Gen(1λ). C sends k to A.
2. C chooses hj ← 0j−11{0, 1}n−j for each j ∈ {1, 2, ..., n− 1}.
3. C and A repeat the following for j = 1, 2, ..., n− 1:

(a) C sends hj to A.
(b) A sends cj ∈ {0, 1} to C.

4. A sends α, β ∈ {0, 1}n to C.
5. There exist exactly two y0, y1 ∈ {0, 1}n such that hj · yb = cj for all

b ∈ {0, 1} and all j ∈ {1, 2, ..., n− 1}. C outputs ⊤ if fk(α) = y0 and
fk(β) = y1, or fk(α) = y1 and fk(β) = y0. Otherwise, C outputs ⊥.

Then, for any probabilistic polynomial-time adversary A, Pr[C → ⊤] ≤
negl(λ).

3 Proof of Theorem 1.1

In this section, we provide a proof of Theorem 1.1.

Proof of Theorem 1.1. Let {fk}k∈Kλ
be a classically-secure full-domain

trapdoor permutation family. Let (Gen, Eval, Inv) be the associated tuple
of algorithms. From them, we construct non-verifiable remote state prepa-
rations of |x0⟩+ |x1⟩ secure against probabilistic polynomial-time Bob as
follows.

1. Alice runs (td, k)← Gen(1λ). Alice sends k to Bob.
2. Alice chooses hj ← 0j−11{0, 1}n−j for each j ∈ {1, 2, ..., n− 1}.
3. Alice and Bob repeat the following for j = 1, 2, ..., n− 1:

(a) Alice sends hj to Bob.
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(b) Bob possesses the state
∑

x∈Xj−1 |x⟩, where

Xj :=
{

x ∈ {0, 1}n
∣∣∣ j∧

i=1
(hi · fk(x) = ci)

}
.

Bob generates ∑
x∈Xj−1

|x⟩|hj · fk(x)⟩,

measures the second register to get the measurement result cj ∈
{0, 1}, and sends cj to Alice. The post-measurement state of the
first register is ∑

x∈Xj

|x⟩.

4. Bob finally gets the state |x0⟩+ |x1⟩, where there are exactly two bit
strings y0, y1 ∈ {0, 1}n such that hj · yb = cj for all b ∈ {0, 1} and all
j ∈ {1, 2, ..., n− 1}, and fk(x0) = y0 and fk(x1) = y1. Bob outputs the
state.

5. From td, {hj}n−1
j=1 and {cj}n−1

j=1 , Alice computes {x0, x1} and outputs
it.

The perfect correctness is clear. The classical security is obtained from
Theorem 2.1.

4 Proof of Theorem 1.2

In this section, we show Theorem 1.2.

Proof of Theorem 1.2. Let us consider the following construction of proofs
of quantumness, which is similar to that of [KMCVY22].

1. The verifier V and the prover P run non-verifiable remote state prepa-
rations of |x0⟩+ |x1⟩ secure against probabilistic polynomial-time Bob
whose existence is guaranteed from the existence of classically-secure
full-domain trapdoor permutations due to Theorem 1.1. V gets a pair
{x0, x1} of n-bit strings x0, x1 ∈ {0, 1}n. Honest P gets the state
|x0⟩+ |x1⟩.

2. V chooses v1 ← {0, 1}. V chooses r ← {0, 1}n. V sends v1 and r to P.
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3. – If v1 = 0: P measures |x0⟩+ |x1⟩ in the computational basis to get
the measurement result x ∈ {0, 1}n. P sends x to V . If x ∈ {x0, x1},
V outputs ⊤ and terminates the protocol. Otherwise, V outputs ⊥
and aborts.

– If v1 = 1: P changes |x0⟩+ |x1⟩ into

|r · x0⟩|x0⟩+ |r · x1⟩|x1⟩,

measures its second register in the Hadamard basis to get the
measurement result d ∈ {0, 1}n, and sends d to V. The post-
measurement state of the first register is

|r · x0⟩+ (−1)d·(x0⊕x1)|r · x1⟩.

4. V chooses v2 ← {0, 1}. V sends v2 to P.
5. P measures the state in the basis{

cos π

8 |0⟩+ sin π

8 |1⟩, sin π

8 |0⟩ − cos π

8 |1⟩
}

if v2 = 0, and in the basis{
cos π

8 |0⟩ − sin π

8 |1⟩, sin π

8 |0⟩+ cos π

8 |1⟩
}

if v2 = 1. Let η ∈ {0, 1} be the measurement result. (For the measure-
ment in the basis {|ϕ⟩, |ϕ⊥⟩}, the result 0 corresponds to |ϕ⟩ and the
result 1 corresponds to |ϕ⊥⟩.) P sends η to V.

6. V outputs ⊤ if

(r · x0 = r · x1) ∧ (η = r · x0),

or

(r · x0 ̸= r · x1) ∧ (η = v2 ⊕ d · (x0 ⊕ x1)).

Otherwise, it outputs ⊥.

For the correctness, a straightforward calculation similarly to [KMCVY22]
shows that

Pr[V → ⊤] = 1
2 + 1

2 cos2 π

8 ≃ 0.925.

For the soundness, by almost the same argument as that in [KMCVY22],
we can show that for any probabilistic polynomial-time cheating prover,
we have

Pr[V → ⊤] ≤ 7
8 + negl(λ).

13



Note that 7
8 = 0.875 < 0.925. We include the full proof in Appendix A for

completeness.
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A Proof of Soundness

We give the omitted proof of the soundness of the proof of quantumness
protocol given in Section 4. Note that this is almost identical to that in
[KMCVY22].

Our goal is to prove that for any probabilistic polynomial-time cheating
prover,

Pr[V → ⊤] ≤ 7
8 + negl(λ). (1)

Toward contradiction, suppose that there is a probabilistic polynomial-time
cheating prover A and a polynomial poly such that

Pr[V → ⊤] ≥ 7
8 + 1

poly(λ)

for infinitely many λ. In the following, we focus on such λ. Let STA be
A’s state (including the transcript and its own randomness) right after
finishing the remote state preparation protocol run in Step 1 and {x0, x1}
be V’s output for the remote state preparation protocol. Then, by a
standard averaging argument, for 1

2poly(λ) -fraction of (STA, {x0, x1}), we
have

Pr[V → ⊤ | (STA, {x0, x1})] ≥
7
8 + 1

2poly(λ) , (2)

where Pr[V → ⊤ | (STA, {x0, x1})] denotes V’s acceptance probability
conditioned on a fixed (STA, {x0, x1}). We fix such (STA, {x0, x1}) until
Equation 7.

We define the following probabilities all of which are conditioned on
the fixed value of (STA, {x0, x1}):

p0: The probability that V returns ⊤ conditioned on v1 = 0.
p1: The probability that V returns ⊤ conditioned on v1 = 1.
p1,0: The probability that V returns ⊤ conditioned on v1 = 1 and v2 = 0.
p1,1: The probability that V returns ⊤ conditioned on v1 = 1 and v2 = 1.

Clearly, we have

Pr[V → ⊤|(STA, {x0, x1})] = p0 + p1
2 (3)

and

p1 = p1,0 + p1,1
2 . (4)

17



By Inequality 2, Equation 3, and a trivial inequality p0, p1 ≤ 1, we have

p0 ≥
3
4 + 1

poly(λ) (5)

and

p1 ≥
3
4 + 1

poly(λ) . (6)

Let B be a classical deterministic polynomial-time algorithm that
works as follows:

1. B takes STA and r ∈ {0, 1}n as input.
2. B runs Step 3 of A whose state is initialized to STA where B plays the

role of V with v1 = 1 and the given r. Let d ∈ {0, 1}n be the message
sent from A to V and ST′A be A’s state at this point.

3. B runs Step 5 of A whose state is initialized to ST′A where B plays the
role of V with v2 = 0. Let η1,0 be the message sent from A to V.

4. B runs Step 5 of A whose state is initialized to ST′A where B plays the
role of V withs v2 = 1. Let η1,1 be the message sent from A to V. We
note that this step is possible because A is classical and in particular
ST′A is classical and thus can be copied.

5. Output η1,0 ⊕ η1,1.

By the union bound, the probability that both (d, η1,0) and (d, η1,1) pass
the verification is at least

1− (1− p1,0)− (1− p1,1) = −1 + 2p1 ≥
1
2 + 1

poly(λ) ,

where the equation follows from Equation 4 and the inequality follows
from Inequality 6. When this occurs, for each v2 ∈ {0, 1}, we have

(r · x0 = r · x1) ∧ (η1,v2 = r · x0),

or

(r · x0 ̸= r · x1) ∧ (η1,v2 = v2 ⊕ d · (x0 ⊕ x1)).

(Remark that the same d is used for both cases of v2 = 0 and v2 = 1.)
This implies that

η1,0 ⊕ η1,1 = r · (x0 ⊕ x1).
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Therefore, we have

Pr
r←{0,1}n

[B(STA, r) = r · (x0 ⊕ x1)] ≥ 1
2 + 1

poly(λ) .

Thus, by the Goldreich-Levin theorem [GL89], there is a probabilistic
polynomial-time algorithm E such that

Pr[E(STA) = x0 ⊕ x1] ≥ 1
poly′(λ) (7)

for some polynomial poly′. (Remark that what we showed so far is that
the above hold for 1

2poly(λ) -fraction of (STA, {x0, x1}).)
Then, we construct a probabilistic polynomial-time algorithm C that

breaks the security of the remote state preparation protocol as follows:
1. C interacts with V in the same way as A does in Step 1 of the proof

of quantumness protocol. Let STA be A’s state after completing this
stage. Note that {x0, x1} is implicitly defined as an outcome of V for
the remote state preparation protocol.

2. C runs A for v1 = 0 and r ← {0, 1}n to get the response x′.
3. C runs E(STA) to get the output z.
4. C outputs {x′, x′ ⊕ z}.

For 1
2poly(λ) -fraction of (STA, {x0, x1}), by Inequalities 5 and 7, we have

Pr[x′ ∈ {x0, x1}|(STA, {x0, x1})] ≥
3
4 + 1

poly(λ)
and

Pr[z = x0 ⊕ x1|(STA, {x0, x1})] ≥
1

poly′(λ) .

Moreover, the two events x′ ∈ {x0, x1} and z = x0 ⊕ x1 are inde-
pendent once we fix (STA, {x0, x1}). Therefore, for 1

2poly(λ) -fraction of
(STA, {x0, x1}), we have

Pr[x′ ∈ {x0, x1} ∧ z = x0 ⊕ x1|(STA, {x0, x1})] ≥
3

4poly′(λ) .

Therefore, we have

Pr[C → {x0, x1}] ≥
3

8poly(λ)poly′(λ) .

This contradicts the security of the remote state preparation protocol
(Definition 2.1). Therefore, Equation 1 holds and the proof of soundness
is completed.
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