
High-Speed and Unified ECC Processor for
Generic Weierstrass Curves over GF(p) on

FPGA

Asep Muhamad Awaludin1, Harashta Tatimma Larasati1,2, and Howon Kim1

1 School of Computer Science and Engineering, Pusan National University, Busan,
Republic of Korea

2 School of Electrical Engineering and Informatics, Institut Teknologi Bandung,
Bandung, Indonesia

http://infosec.pusan.ac.kr

{asep.muhamad11,harashta,howonkim}@pusan.ac.kr

Abstract. In this paper, we present a high-speed, unified elliptic curve
cryptography (ECC) processor for arbitraryWeierstrass curves overGF (p),
which to the best of our knowledge, outperforms other similar works in
terms of execution time. Our approach employs the combination of the
schoolbook long and Karatsuba multiplication algorithm for the ellip-
tic curve point multiplication (ECPM) to achieve better parallelization
while retaining low complexity. In the hardware implementation, the sub-
stantial gain in speed is also contributed by our n-bit pipelined Mont-
gomery Modular Multiplier (pMMM), which is constructed from our n-
bit pipelined multiplier-accumulators that utilizes digital signal processor
(DSP) primitives as digit multipliers. Additionally, we also introduce our
unified, pipelined modular adder-subtractor (pMAS) for the underlying
field arithmetic, and leverage a more efficient yet compact scheduling of
the Montgomery ladder algorithm. The implementation for 256-bit mod-
ulus size on the 7-series FPGA: Virtex-7, Kintex-7, and XC7Z020 yields
0.139, 0.138, and 0.206 ms of execution time, respectively. Furthermore,
since our pMMM module is generic for any curve in Weierstrass form, we
support multi-curve parameters, resulting in a unified ECC architecture.
Lastly, our method also works in constant time, making it suitable for
applications requiring high speed and SCA-resistant characteristics.

Keywords: elliptic curves cryptography (ECC) · high speed implemen-
tation · unified · Montgomery multiplication · field-programmable gate
array (FPGA)

1 Introduction

The advances in technology have resulted in the emergence of various applica-
tions, such as 5G and blockchain-based services [1,2]. In most cases, acquiring
high speed and low latency without compromising security aspects has become of
great importance. Hence, elliptic curve-based cryptography (ECC) has become
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prominent in modern cryptography compared to the Rivest–Shamir–Adleman
(RSA) due to its smaller key size for an equivalent security level [3]. Several
protocols based on ECC are the Elliptic Curve Diffie–Hellman (ECDH) for the
key agreement, as well as Elliptic Curve Digital Signature Algorithm (ECDSA),
which is used extensively in the current digital signature schemes.

Among the existing ECC protocols, the use of the Weierstrass curve remains
prevalent. In fact, this curve has still been widely adopted in the current imple-
mentations, ranging from blockchain-based applications to 5G services. For in-
stance, Bitcoin, Ethereum, and Zcash employ the secp256k1 curve for their signa-
ture verification [4] while public-key schemes based on SM2 remain the standard
for use in electronic authentication systems, key management, and e-commercial
applications within China [5,6]. Additionally, Transport Layer Security (TLS)
as the favored protocol for securing 5G communications, employs ECDH in its
handshake process [7].

Since improving the performance of ECC is essential, several methods have
been proposed to speed up the computation of the protocol. One of the tech-
niques is by utilizing special primes (also known as generalized Mersenne primes),
as recommended by the National Institute of Standards and Technology (NIST)
[8], which greatly simplifies the modular reduction operation. Another approach
is by employing efficiently-computable endomorphisms [9] to accelerate elliptic
curve point multiplication (ECPM) in the curves with special properties (e.g.,
secp256k1), such as by using the Gallant–Lambert–Vanstone (GLV) method [10].

However, these schemes are specific to each modulus and curve’s domain
parameters. Even though a very fast computation can be achieved, it comes with
a huge trade-off in flexibility for the hardware implementation. This drawback is
undesirable because in real-life use, we may need to employ more than one curve
to facilitate different purposes. For instance, a web server may require multiple
curves to comply with different security requirements among various platforms.
Furthermore, recent applications of ECC have explored a nonstandard prime
field that does not make use of a specific prime structure [11], such as the post-
quantum supersingular isogeny-based key exchange (SIKE) algorithm [12] and
bilinear pairing [13].

To maintain hardware implementation flexibility, several methods in litera-
ture have proposed to accelerate ECC computation for generic curves rather than
a special curve, including [11,14,15,16,17,18,19,20]. In 2013, Ma et al. [16] pro-
posed a generic ECC processor, which leverages the combination of a quotient-
pipelining Montgomery multiplication with a parallel array design. Their tech-
nique, implemented on Virtex-5, yields a speed of 0.380 ms, which can be consid-
ered the fastest among other proposals. Other works on a more recent platform
(e.g., Xilinx 7-series) can be found in [11,14,15]. Specifically, Asif et al. [14]
utilized a residue number system (RNS) based ECC processor whereas Ba-
jard et al. [15] leveraged a Montgomery Cox-Rower architecture, which gives
a relatively lower speed of 0.730 and 0.612, respectively.

Recently, Roy et al. [11] proposed a fast implementation of ECC multiplica-
tion that works for arbitrary Montgomery curves using DSP cores on modern
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FPGA. Their proposed modular multiplier gives a competitive result: around
0.343 ms for the low area, and 0.39 ms for the single-core implementation, making
their paper the state-of-the-art ECC processor for generic Montgomery curves.
Additionally, the authors also provide the extension to the generic Weierstrass
curve, which yields a slightly lower speed of 0.459 ms. However, their technique
has dependent iterative variables, making further optimizations (e.g., pipelining
method) infeasible. Using their approach, multiple cores will need to be used
when dealing with simultaneous execution of several multiplications.

Since the performance of an ECC processor mostly depends on the under-
lying modular multiplication operation, especially when the point operation is
optimized using a Jacobian coordinate to avoid modular inversion during lad-
der operation, an efficient multiplication technique will significantly increase the
speed of the processor. The support for pipelining and parallelization, for ex-
ample, may give a considerable speed increase in the hardware implementation.
To date, one of the most favorable methods for multiplication is the Karatsuba–
Ofman multiplication [21] since it offers a relatively low complexity. However, it
would be very difficult to employ parallelization due to its recursive approach
when dealing with higher bit length. On the other hand, the näıve way to perform
multiplication is the schoolbook long multiplication, which scales quadratically
in terms of complexity. Nevertheless, all digit multiplications can be executed in
parallel, which can be efficiently implemented in the high-performance hardware
by adopting a divide-and-conquer method.

In our study, we find that combining these two methods for our multiplication
enables us to perform better parallelization, which in turn brings a substantial
gain in speed for the FPGA implementation. Furthermore, we design our ECC
architecture to support pipelining for achieving an even higher speed. In par-
ticular, the speed-up is mainly contributed by our n-bit pipelined Montgomery
Modular Multiplier (referred to as pMMM), which is built upon n-bit pipelined
multiplier-accumulators utilizing DSP primitives as digit multipliers. To sup-
port the high-speed use, we modify the modular adder-subtractor in [11] to sup-
port pipelining, which here is referred to as pipelined Modular Adder-Subtractor
(pMAS). Additionally, we adapt the Montgomery ladder algorithm recently pre-
sented by Hamburg [22], which to date, provides the most efficient computation.
Moreover, we managed to employ a more efficient scheduling compared to the
original approach, in which we eliminate the use of an additional temporary reg-
ister. Tested in the 7-series FPGA (i.e., Virtex-7, Kintex-7, and XC7Z020), our
method yields the latency of 0.139, 0.138, and 0.206 ms, respectively, which to the
best of our knowledge, is the fastest in literature for generic curves. In fact, even
when compared to the methods that use special prime forms (e.g., [23,24,25,26],
which take 0.054, 0.101, 0.400, and 0.620 ms, respectively), our approach is still
considerably competitive.

Apart from speed, another advantage of our approach is that it can work
for arbitrary prime modulus. Hence, multi-curve parameters can be provided
in a single, unified ECC processor. This will be very beneficial in the real-life
cases, as previously discussed. Lastly, we also aim to minimize the risk of side-
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channel attacks (SCA), in which adversaries may extract secret key information
without breaking the primitives by analyzing the variations of timing (i.e., tim-
ing attack), power consumption (i.e., differential power analysis attack (DPA)),
and electromagnetic emission (i.e., EM attack)) of the cryptographic device [27].
Our architecture performs all the underlying operations invariant for any key
value, executing the ECPM in a fully constant manner. This includes utilizing
Fermat’s little theorem for the field inversion operation instead of extended Eu-
clidean as the more commonly used algorithm. Thus, SCA-resistant property
can be preserved [28].

The contributions of this paper can be summarized as follows:

1. We propose a high-speed, unified ECC processor that is generic for arbitrary
prime modulus on Weierstrass curves. To the best of our knowledge, in terms
of generic implementation, it is the fastest among the existing literature.

2. For the underlying architecture, we propose a novel and fast pipelined Mont-
gomery Modular Multiplier (pMMM), which is constructed from an n-bit
pipelined multiplier-accumulator. The speed-up comes from combining two
existing multiplication algorithms: schoolbook long and Karatsuba–Ofman
multiplications, enabling parallelization of digit multiplications while pre-
serving low complexity. Moreover, to further optimize the process, we utilize
DSP cores as digit multipliers, resulting in a higher speed multiplier com-
pared to other existing methods.

3. To balance the speed of our fast pMMM, we also propose a unified and
pipelined Modular Adder-Subtractor (pMAS) for the underlying field arith-
metic operations. In particular, we modify the modular adder-subtractor
in [11] to support pipelining, and employ an adjustable radix. The proposed
design offers better flexibility in adjusting the performance of the ECC pro-
cessor.

4. Additionally, we propose a more efficient and compact scheduling of the
Montgomery ladder for the algorithm for ECPM in [22], in which our imple-
mentation does not require any additional temporary register as opposed to
one additional register in the original algorithm. As a result, it only needs
97 clock cycles to perform ladder operation per bit scalar (for 256-bit size).

5. Since our ECC processor and the underlying field multiplier (i.e., pMMM)
are generic for arbitrary prime modulus, we can support multi-curve param-
eters in a single ECC processor, forming a unified ECC architecture.

6. Lastly, our architecture performs the ECPM in constant time by employing
a time-invariant algorithm for each module, including using Fermat’s little
theorem to carry out field inversion, making the algorithm secure against
side-channel attacks.

The remainder of this paper is organized as follows. We provide several pre-
liminaries in Section 2 before moving on to the detail of our proposed ECC
architecture in Section 3. In Section 4, we present our result of hardware imple-
mentation and the discussions regarding its comparison to the existing methods.
Lastly, Section 5 concludes the paper.
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2 Preliminaries

2.1 Hamburg’s Formula for ECPM with Montgomery Ladder

An elliptic curve over a prime field GF(p) is defined by the coordinates (x, y)
that satisfies the short Weierstrass equation as follows:

y2 = x3 + ax2 + b (mod p) (1)

where a and b satisfy 4a3 + 27b2 ̸= 0 to avoid singularity on the curve.

The Montgomery ladder [29] is a general algorithm for computing the power
or scalar multiple of points, which is considered resistant against side-channel
attacks due to its constant-time operation. Let k be a scalar and P = (xP , yP )
be a point in an elliptic curve E. An elliptic curve point multiplication (ECPM)
Q = kP is the repeated addition of point P (i.e., P +P +P + ...+P ) for k-times.
This operation can be performed using the Montgomery ladder, which generally
consists of point addition and point doubling operations. In 2020, Hamburg [22]
proposed an improved Montgomery ladder formula for ECPM that reduces the
number of arithmetic operations in the ladder algorithm to as low as eleven
multiplications and eight additions. This formula allows four multiplications and
three additions to be performed in parallel. To date, this algorithm is considered
as the state-of-the-art for the Weierstrass curve.

Let Equation (2) be the initial state of the Montgomery ladder for an elliptic
curve in the short Weierstrass equation as previously shown in Equation (1).

P = (xP , yP ), Q := (xQ, yQ), R := P +Q := (xR, yR) (2)

A single step of the ladder operation calculates:

P = (xP , yP ), S := Q+R = (xS , yS), T := 2R = (xT , yT ) (3)

The ladder operation from Equations (2) and (3) can be calculated using
Algorithm 1. Before performing ladder operation, the input P = (xP , yP ) is en-
coded into Hamburg’s ladder state (XQP , XRP , G, YQ, YR), here referred to
as the ladder setup. Accordingly, at the final step, the ladder state is decoded
back to Q = (xQ, yQ), which is the ECPM result in the affine coordinate. Conse-
quently, the complete Montgomery ladder algorithm for ECPM with Hamburg’s
formula is given in Algorithm 2. Note that since the initial state of the ladder
calculates (Q,R)← (P0, 2P0), which requires the most significant bit (MSB) of
input scalar k to be 1, the input scalar is rewritten by adding a multiple of q.

Ladder Setup. Essentially, the ladder setup calculates R = 2P0, which is the
point doubling operation. To eliminate the costly field inversions in the ladder
operation, Jacobian projective coordinates are generally used; in our case, we use
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Algorithm 1 Hamburg’s Montgomery Ladder Formula [22].

Input: (XQP , XRP , YQ, YR, G)
Output: (XSP , XTP , YS , YT , G

′)

1: X ′
QP = XQP .G

2: X ′
RP = XRP .G

3: L = YQ.YR

4: H = Y 2
R

5: J = X ′
RP − L

6: M = J +X ′
RP −H

7: XSP = H.L

8: V = H.(X ′
QP − L)

9: XTS = X ′
RP .J + V

10: XTP = XTS +XSP

11: YS = (J.L+ V ).H
12: YT = M.XTS + YS

13: G′ = X2
TS

Algorithm 2 Montgomery Ladder.

Input: k, q ≤ 2n, P ∈ E(Fp)
Rewrite k ← 2n + (k − 2n mod q)
Output: Q = kP

1: (XQP , XRP , YQ, YR, G)← LADDER SETUP (xP , yP )
2: for i = n− 1 to 0 do
3: if ki then
4: (XQP , XRP , YQ, YR, G)← LADDER UPDATE(XQP , XRP , YQ, YR, G)
5: else
6: (XRP , XQP , YR, YQ, G)← LADDER UPDATE(XRP , XQP , YR, YQ, G)

7: (xQ, yQ)← LADDER FINISH(XRP , XQP , YR, YQ, G)
8: return (xQ, yQ)

Z = 2yP , giving the ladder setup formulas as presented in Equations (4)–(7).

M =
3x2

P + a

2yP
Z = 3x2

P + a (4)

XRP = (xR − xP )Z
2 = M2 − 3xPZ

2 (5)

YR = 2MXRP + YP (6)

G = (xR − xQ)
2Z4 = X2

RP (7)

Note that since Q = P , then XQP = (xQ − xP )Z
2 = 0 and YQ = YP =

2yPZ
3 = Z4.

Ladder Final. In order to complete the ladder operation, the final xQ and yQ
must be recovered from the ladder state, as shown in Equations (8)–(10).

YP = YR −MXRP (8)

1

Z
=

2yP (M
2 −XQP −XRP )

3xPYP
(9)
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By calculating 1/Z from Equation (9), we obtain Equation (10).

(xQ, yQ) =

(
XQP

Z2
+ xP ,

YQ

2Z3

)
(10)

2.2 Montgomery Modular Multiplication

Montgomery modular multiplication [30] is an efficient method for modular mul-
tiplication proposed by Peter L. Montgomery in 1985, which operates without
any trial divisions by transforming the number into a special form such that
the dividend is always a multiple of the divisor. Let R > P with gcd(R,P ) = 1.
The Montgomery multiplication calculates ABR−1 mod P with 0 ≤ AB < RP .
Algorithm 3 shows a constant-time implementation of the Montgomery modular
multiplication. Since n-bit P is an odd modulus, we can take R = 2n, which
results in an easy division by shifting. Montgomery multiplication requires the
number to be transformed into the Montgomery domain. However, the transfor-
mation is performed only once when used with many intermediate multiplica-
tions in the algorithm (e.g., ECPM).

Algorithm 3 Montgomery Multiplication.

Input: an odd modulus p of n-bits, R = 2n, gcd(R, p) = 1
M = − mod R,
A,B : A,B < p < R

Output: ABR−1 mod p

1: x← AB ▷ 1st multiplication
2: s← (x mod R)M mod R ▷ 2nd multiplication
3: t← (x+ sp)/R ▷ 3rd multiplication
4: u← t− p ▷ subtraction
5: if u < 0 then ▷ MSB of u
6: return t
7: else
8: return u

3 Proposed Architecture

This section presents the proposed generic hardware architecture for high-speed
ECC processors over GF (p). Since the performance of ECC processors mostly
depends on the underlying modular multiplication, our proposed architecture fo-
cuses on optimizing the modular multiplier module, mainly to reduce the latency
of multiplication as well as the number of multiplication for each Montgomery
ladder step. Moreover, for further optimization, we adopt the modular adder-
subtractor first introduced in [11], then modify it to support pipelining, which
yields even higher speed performance.
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First, to realize a generic ECC architecture, we employ the Montgomery mod-
ular multiplier, which does not require any special prime form. Although this
approach tends to be slower, it offers much greater flexibility when dealing with
various curve parameters. Montgomery multiplication does require the input
operands to be transformed into the Montgomery form. The conversions are
performed twice: at the beginning (i.e., before the multiplication), and at the
end to convert the number back to its original form. Nevertheless, the cost of
conversion is negligible compared to the advantage of the execution in the Mont-
gomery domain.

Furthermore, to achieve a high-performance ECC processor, we propose an
n-bit pipelined Montgomery Modular Multiplier (pMMM), which is essentially
constructed from n-bit pipelined multipliers and the corresponding Montgomery
reduction circuit. The calculation for Montgomery reduction is presented in Al-
gorithm 3, whereas the modular multiplication is performed via three multipli-
cations and one subtraction, executed in sequence while interleaved with other
pMMM threads. In our FPGA implementation, the n-bit pipelined multiplier-
accumulator is mainly constructed from DSP primitives as digit multipliers.

Consequently, to match the speed of pMMM when performing the point
multiplication (i.e., ECPM), we also propose a fully pipelined Modular Adder-
Subtractor (pMAS), which offers better flexibility in adjusting the performance
of the ECC processor (e.g., maximum frequency and latency).

We also implement the Montgomery ladder algorithm for ECPM by Ham-
burg [22], which is complete (i.e., works on any input point and scalar), and thus,
can work on generic Weierstrass curve over GF (p). Furthermore, to date, [22]
offers the most efficient computation among other existing algorithms. By uti-
lizing this algorithm, we can unify the construction for multiple curves into a
single-core ECC processor.

Furthermore, we managed to yield a slight improvement from [22] in our im-
plementation. Instead of utilizing six registers as presented in [22], our compact
and efficient scheduling reduces the need to only five, without any additional
temporary registers. This is achieved by interleaving four modular multiplica-
tions using pMMM and d-stage pMAS.

In terms of the field inversion, we employ Fermat’s little theorem to pre-
serve the SCA-resistant property by performing the inversion in constant time.
This approach also does not require a separate module because the inversion
computation, which essentially is exponentiation, is also carried out by pMMM.

3.1 Pipelined Montgomery Modular Multiplication (pMMM)

Overview of pMMM. Modular multiplication is the most extensive arith-
metic operation in an ECC processor, which heavily affects the performance
and the occupied area of the processor. Our proposed approach, namely the
pipelined Montgomery Modular Multiplication (pMMM), can process multiple
input operands. The pipelined architecture of pMMM enables the sequence of
multiplications to be executed concurrently, hence sharing the same resources.
Additionally, the heart of pMMM is a multiplier that supports pipelining as well,
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enabling a greater speed-up in the computation. In the following subsection, we
will first go into the detail of our proposed pipelined multiplier-accumulator
before discussing the general architecture of the pMMM.

Proposed Pipelined Multiplier-Accumulator. Our pipelined multiplier-
accumulator is essentially a combination of schoolbook long multiplication and
Karatsuba–Ofman multiplication algorithm [21]. Schoolbook long multiplication
is a näıve way to perform multiplication with n2 complexity, where n is the num-
ber of digits. Even though it has a relatively high complexity, all the digit multi-
plications can be executed in parallel. Furthermore, it supports high-performance
hardware implementation by adopting the divide-and-conquer method. On the
other hand, Karatsuba–Ofman multiplication offers lower complexity but with
the trade-off that it is difficult for parallelization due to its recursive approach
when dealing with higher bit length. We have managed to find a better ap-
proach by combining both algorithms to support multiplication in parallel while
retaining the small complexity.

ab =

m−1∑
i=0

m−1∑
j=0

aibjα
(i+j) (11)

=

m−1∑
k=0

akbkα
2k +

m−1∑
i=0

m−1∑
j=0,j ̸=i

aibjα
(i+j) (12)

=

m−1∑
k=0

akbkα
2k +

m−1∑
i=0

m−1∑
j=i+1

[aibj + ajbi]α
(i+j) (13)

=

m−1∑
k=0

akbkα
2k +

m−1∑
i=0

m−1∑
j=i+1

[(ai + aj)(bi + bj)− aibi − ajbj ]α
(i+j) (14)

The mathematical formulation for our algorithm is as presented in Equa-
tions (11)–(14). Let a and b be the two n-bit numbers to be multiplied, α be
the chosen radix, whereas i, j, and k be the indices. A general schoolbook long
multiplication (Equation (11)) can be split into two terms: by certain index k,
that is when j = i; and when j ̸= i, as shown in Equation (12). The derivation
to Equation (14) shows that the second term is, in fact, a Karatsuba–Ofman
multiplication method while the first term remains the schoolbook long mul-
tiplication formula. Utilizing the property of schoolbook long multiplication,
which can be run in parallel since there is no dependency to the previous nor
the succeeding computation, while also reducing the length of multiplication by
employing the Karatsuba–Ofman method, a significant gain in speed can be ac-
quired. To be exact, the time complexity is reduced to 1

2

(
n2 + n

)
from n2 in the

original schoolbook case. Compared to Karatsuba–Ofman, our algorithm indeed
is higher in complexity, but with the significant advantage of parallelization for
the hardware implementation.
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Fig. 1: Proposed pipelined multiplier-accumulator.

In terms of the hardware implementation, the speed increase in our approach
is mainly contributed by the digital signal processor (DSP) cores in the mod-
ern FPGA that function as digit multipliers. The proposed multiplier is fully
pipelined, in which new input can be processed for each cycle. The divide-
and-conquer method employed in the schoolbook long multiplication is adopted,
but each digit is optimized with Karatsuba-Ofman multiplication, which is later
assembled with the compression module, the Carry Save Adder Tree (CSAT).
All ripple-carry adders (RCAs) used in the multiplier module are implemented
using a fast carry chain in modern FPGA. This primitive works in conjunction
with Lookup Tables (LUTs) to construct the adders [31].

Equation (14) is implemented as an 8-stages pipeline, shown in Figure 1,
as described below.

– Stage-1: Two inputs A and B are split based on the radix (digit size), which
is into 16 bits in our design. Afterward, a parallel 16-bit RCA is used to
compute ai + aj and bj + bi. At the same time, parallel DSP cores are
utilized as 16-bit digit multipliers to compute akbk. As shown in Figure 2a, we
employ a two-stage pipeline for the DSP cores to achieve better performance,
as recommended in [32].

– Stage-2: We again utilize the DSP cores as a 17-bit Multiply-Accumulate
(MAC) function to compute the Karatsuba–Ofman multiplication, (ai +
aj)(bi + bj) − aibi. (ai + aj) and (bi + bj) are obtained from the output
of RCAs at the first stage, as shown in Figure 2b.

– Stage-3: The outputs of 16-bit multipliers akbk are routed to the input ac-
cumulator in the MAC modules as aibi.

– Stage-4: The final accumulation for Karatsuba–Ofman is computed by a 34-
bit RCA. The equation (ai + aj)(bi + bj) − aibi − ajbj results in a 33-bit
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length. At this stage, mul ocrdy is set when the CTL value is 3. It means
that the input mul ic is ready to be included in the CSAT at Stage 5 as the
final accumulation of the Montgomery reduction algorithm. The algorithm
itself is as presented in Algorithm 3.

– Stage-5: Before being processed by the CSAT, all intermediate values are
aligned to reduce the number of inputs in CSAT as well as the depth of the
tree. This is due to the additional bit length on each intermediate value,
i.e., 33-bit instead of 32-bit length. Figure 3 shows the example of the align-
ment process for four-input CSAT.

All aligned intermediate values, including the input mul ic, are assembled by
CSAT where the compressor components in the CSA use LUT6 2, a similar
3:2 compressor circuit proposed by [11]. However, while they use multiple
compressor circuits (e.g., a 4:2 compressor in [11]) to construct the multiplier,
we employ the homogeneous 3:2 compressor to achieve a balanced perfor-
mance, as illustrated on Figure 4.

– Stage-6 and 7: The sum and carry as the outputs of CSAT are then fed
to the carry-select adder to obtain the final product. Note that we use the
carry-select adder proposed by Nguyen et al. [33] due to its relatively short
delay propagation. In the carry-select adder by [33], both options for the
carry are computed. Subsequently, the carry is solved similarly to that of
the carry-lookahead adder (CLA). Lastly, the sum output is then generated
with the final carry for each bit [34].

– Stage-8: A register is used to hold the output mul or. The outputs o val and
o ctl are given with respect to the input values i val and i ctl, respectively,
which are shifted through the stages via a shift register.

a b

Fig. 2: Digital signal processor (DSP) utilization setup: (a) 16-bit multiplier; (b)
17-bit multiply-accumulate.

Montgomery Modular Multiplication Using pMMM. In our pMMM ar-
chitecture as shown in Figure 5, a single execution of Montgomery modular
multiplier consists of three steps of multiplications and one step of subtraction,
divided into four steps as follows:
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Fig. 3: Example of alignment for intermediate values in a 64-bit multiplier.

Fig. 4: Example of Carry Save Adder Tree (CSAT) for nine inputs.

1. The pMMM starts by multiplying the n-bit inputs pmmm ia and pmmm ib,
resulting in a 2n-bit product, which is then stored in the first-in, first-out
(FIFO) buffer. This product will be used later in the third multiplication.
Note that our FIFO buffer uses block RAM (BRAM) to reduce the required
number of registers, where the depth of the FIFO buffer depends on the
number of possible multiplication processes that can be executed concur-
rently.

2. The n-bit LSB product of Step 1 is multiplied with the precalculated constant
PARAM M .

3. Accordingly, the n-bit LSB product of Step 2 is multiplied by the modulus
PARAM P . In this multiplier, the product that was previously stored in
the FIFO at Stage 1 is used as the input mul ic to be included in CSAT in
the multiplier module. This gives the benefit that we do not need to make
additional 2n-bit adders. Instead, we include it in the CSAT.

4. The n-bit MSB of the third multiplication product is then evaluated and
corrected using the carry-select subtractor, so that the output of pMMM is
within the range [0, P ].

Since the multiplier can be pipelined, the input operand for pMMM can as
well be pipelined. In particular, we support up to eight pipelined multiplications,
in accordance with the number of pipeline stages of our multiplier. Each exe-
cution in a single pMMM operation is controlled by CTL, which is propagated
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Fig. 5: Proposed Pipelined Montgomery Modular Multiplier (pMMM).

during pMMM execution and incremented for each step. However, in our case,
Hamburg’s formula for Montgomery ladder, as previously discussed in Algorithm
1, can only be performed up to four multiplications concurrently. Therefore, we
adjust the FIFO depth to four, with a data width of 2n. Each pMMM operation
does not need to be executed in sequence next to each other in one cycle, yet
it can be performed even if there is a delay step between input operand. How-
ever, all sequences must fit in eight clock cycles and can be used again after the
first pMMM output is received. This is done to ensure that no internal steps
of pMMMs are in conflict. The full sequence of multiple inputs of pMMMs is
illustrated in Figure 6.

Fig. 6: Example of scheduling for four pipelined Montgomery Modular multiplier
(pMMM) processes.

3.2 Pipelined Modular Adder-Subtractor (pMAS)

Modular addition and subtraction operations also play a significant role in an
ECC architecture, which also affect the processor’s performance. The authors
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of [11] propose a unified 64-bit modular adder-subtractor that is designed to
work with redundant numbers. However, their design can not be pipelined and
uses a shift register to compute modular adder for higher bit length. In this
paper, in order to match the speed of our multiplier, we introduce the pipelined
version of the modular adder-subtractor in [11], which is also able to operate as a
modular adder or subtractor by specifying the input i op. Furthermore, instead
of fixing the radix to a 64-bit operand, the radix in our design can be adjusted by
specifying the number of stage d. Thus, the performance of our modular adder-
subtractor can be adjusted depending on the requirement and available hardware
resources. We refer to our architecture as the pipelined modular adder-subtractor
(pMAS).

Let d be the number of pipeline stages and m be the radix size. Each pipeline
stage takes m-bit input operand, as shown in (15). An m-bit ripple-carry adder-
subtractor is implemented on each stage as the building block of pMAS.

m =

⌊
n

d

⌋
(15)

Our pMAS is performed in constant time. As shown in Figure 7, computation
of both a ± b and a ± b ± p are performed simultaneously whenever arbitrary
input is received so that the secret values cannot be retrieved using power and
timing analysis.

Fig. 7: Proposed Modular adder-subtractor (pMAS).
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3.3 Modular Inversion Implementation

In order to be a fully constant-time ECPM, we use the modular inversion based
on Fermat’s little theorem rather than the binary extended Euclidean algorithm.
In summary, the theorem states that if p is a prime number and a is any number
not divisible by p, then it satisfies Equation (16) [35].

ap−1 ≡ 1(mod p) (16)

By multiplying both sides with a−1, we obtain Equation (17), which infers
that an inversion can be accomplished by utilizing exponentiation.

a−1 ≡ ap−2(mod p) (17)

Algorithm 4 Constant-time Field Inversion algorithm

Input: a and prime modulus p of n-bits, 0 ≤ a < p
Output: a−1 mod p

1: procedure FieldInverse(a, p)
2: e = p− 2
3: a1 = a, a2 = a2

4: for i = n− 2 to 0 do
5: if ei = 0 then
6: a2 = a1a2, a1 = a2

1

7: else
8: a1 = a1a2, a2 = a2

2

9: return a1

The inversion can be easily performed by using the Montgomery ladder
for exponentiation [29], which is also SCA-resistant due to its characteristic
of constant-time operation. However, many proposals refrain from leveraging
Fermat’s little theorem for modular inversion due to the extensive use of multi-
plications (i.e., 2n multiplications to achieve an exponentiation). Nevertheless,
in our case, the hardware implementation of Fermat’s little theorem still gives
a competitive advantage by incorporating pMMM, yielding a relatively fast im-
plementation via concurrent execution of two modular multiplications (i.e., a1a2
and a21 or a22 in Algorithm 4). Furthermore, no additional module for inversion
is required, which directly reduces the slice overhead.

3.4 Montgomery Ladder Scheduling

The improved Montgomery ladder formula by [22], as depicted in Algorithm 1,
incurs eleven multiplications and eight additions, and allows parallelization up
to four multiplications and three additions per bit scalar. To date, this latest
algorithm is considered the fastest for the Weierstrass curve. We adopt and
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optimize the scheduling of this algorithm by incorporating pMMM and pMAS
in the ladder update (Algorithm 1), as well as the ladder setup (Equations
(4)–(7)) and ladder final (Equations (8)–(10)), as presented in Figure 8. Up to
four modular multiplications and modular adder-subtractors can be pipelined,
making a compact scheduling process. Moreover, our proposed scheduling does
not require any additional registers, as opposed to the original approach in [22],
which requires a temporary register.
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Fig. 8: Proposed scheduling for Montgomery (a) ladder setup; (b) ladder update;
and (c) ladder final.

Note that a complete ECPM algorithm, as illustrated in Algorithm 2, in-
cludes ladder setup and ladder finish. Ladder update is the part that severely con-
tributes to the latency of the circuit since it is executed iteratively per bit scalar.
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3.5 Generic ECC Architecture

The main building blocks of ECC processors are pMMM and pMAS, which play
a major role in improving the speed of ECPM. The use of pMMM eliminates
the restriction of modulus to the special prime form, making our ECC architec-
ture generic for arbitrary prime modulus. The modular inversion uses Fermat’s
little theorem, which also exploits the use of pMMM, making the algorithm fast
even with an extensive number of multiplications. pMMM enables the modular
inversion implementation without any additional modules.

The proposed generic ECC architecture is shown in Figure 9. In addition to
the pMMM and pMAS module, True Dual Port (TDP) RAM is implemented
using BRAMs, which reduces the slice overhead. All operands and constants are
stored in the TDP RAM.

The Montgomery ladder, as illustrated in Algorithm 2, requires conditional
swap for XQP ↔ XRP and YQ ↔ YR depending on the scalar bit, which may
pose a security risk of a side-channel leakage. However, the benefit of using
BRAM is that it indirectly preserves side-channel resistance since the actual
swap is applied to the operand address instead of the operand values, which is a
few bits length. Thus, the ECPM with our proposed architecture is performed
in constant time and does not have any scalar-dependent branches.

Since both pMMM and pMAS use registers to hold the output values, the in-
termediate result can be fed back to its input instead of being stored in TDP
RAM, making the execution faster and allowing efficient utilization of the BRAM.
Additionally, the multiplexer is connected to each input operand so that it can
provide the input depending on the ladder scheduling.

Fig. 9: Proposed elliptic curve cryptography (ECC) architecture.

Unified Architecture. Our architecture also supports multi-curve parameters
in a single ECC processor. The architecture in Figure 9 can be transformed
into a unified architecture since pMMM and pMAS do not restrict to any mod-
ulus value or form. However, a few modifications are required in the pMMM
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modules. In particular, the input and output of the third multiplication in Al-
gorithm 3 require to be sliced, depending on the modulus size. This can be done
by implementing a multiplexer to both input and output of pMMM at Step 3.
Nevertheless, other components in the architecture remain the same. Addition-
ally, since the curve domain parameters are stored in the BRAM, extending the
support to different curve parameters will only increase the BRAM depth with-
out affecting other modules (e.g., pMMMs, pMASs). The address map is shown
in Figure 10.

Memory address

Variables

0x00

Curve Param d

Curve Param 2

Curve Param 1
0x08

0x0C

0x10

8 + 4*d

T0
T1
T2
T3
T4
Px
Py

RFU

𝑃
𝑎𝑅𝑚𝑜𝑑 𝑝
𝑅!𝑚𝑜𝑑 𝑝

𝑀

n-bit

Fig. 10: Address map.

4 Hardware Implementation Result and Discussion

Our proposed design has been described by SystemVerilog HDL. Synthesizing,
mapping, placing, and routing were carried out using Xilinx Vivado 2020, target-
ing three modern devices: Xilinx Virtex-7 (XC7VX690T), Kintex-7 (XC7K325T),
and Zynq (XC7Z020) FPGA, for a more comprehensive evaluation and a thor-
ough comparison with other recent works that use the 7-series FPGA.

4.1 Result and Analysis of Generic Implementation on
Weierstrass Curve

The result of our generic ECC implementation as well as several related pa-
pers on the Weierstrass curve are presented in Table 1. In our case, we achieve
the fastest speed among other proposals for 256-bit modulus size, with 0.139,
0.138, and 0.206 ms on Virtex-7, Kintex-7, and Zynq, respectively. Our fastest
implementation (Virtex-7) requires 6909 slices, while Kintex-7 and Zynq utilize
a slightly higher number of slices (7115 and 7077). On all of the three plat-
forms, we utilize 136 DSPs and 15 BRAMs. As can be inferred from the table,
our architecture yields the highest performance in terms of execution time com-
pared to other existing techniques. This can be achieved due to the fact that our
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implementation requires lower clock cycles. In detail, the performance of each
arithmetic and ladder operation for Kintex-7 is presented in Table 2.

Table 1: Performance comparison of the proposed generic ECC processor for
Weierstrass curve up to 256-bit modulus size.

Designs PlatformSlices DSPBRAM
Max.
freq.
(MHz)

Cycles
Time
(ms)

Time x
Areaa

Virtex-7 6909 136 15 232.3 0.139 0.96
This work Kintex-7 7115 136 15 234.1 32.3k 0.138 0.98

XC7Z020 7077 136 15 156.8 0.206 1.46
Roy et al. [11] XC7Z020 2223 40 9 208.3 95.5k 0.459 1.02
Bajard et al. [15] Kintex-7 1630 46 16 281.5 172.3k 0.612 1.00

Asif et al. [14] Virtex-7
18.8k
(LUT)

- - 86.6 63.2k 0.730 3.43b

Ma et al. [16] Virtex-5 1725 37 - 291 110.6k 0.380 0.66
Lai et al. [18] Virtex-5 3657 10 10 263 226.2k 0.860 3.15

Shah et al. [17] Virtex-6
44.3k
(LUT)

- - 221 143.7k 0.650 7.20b

Vliegen et al. [19]
Virtex-II
Pro

1947 7 9 68.17 1074.4k 15.760 30.68

Hu et al. [20] Virtex-4 9370 - - 20.44 609.9k 29.840 279.60

-1.5cm a TA = Slices x Time; b TA = LUTs/4 x Time (Assume 1 slice has 4 LUTs)

Prior to our work, the implementation with the fastest speed is the proposal
by Ma et al. [16] in 2014, which gives the execution time of 0.380 ms. It also
achieves a considerably high maximum frequency of 291 MHz and consumes a
relatively low resource of 1725 slices and 37 DSPs. The speed mainly comes from
their quotient pipelined Montgomery multiplier combined with a parallel array
design. However, since they run on an older platform (i.e., Virtex-5), it is not
comparable to our result.

To the best of our knowledge, the state-of-the-art generic ECC processor for
high-speed implementation in the 7-series FPGA is the method by Roy et al. [11].
Their technique is primarily intended for the Montgomery curve, but since their
proposed method focuses on implementing the Montgomery multiplier, they also
extend their implementation to short Weierstrass curves and provide the perfor-
mance analysis of their approach. In particular, they require eight dual multipli-
cations and three single additions to perform one Montgomery ladder iteration.

In comparison to the method in [11] for the same target device (i.e., XC7Z020
FPGA), our approach yields an execution time of 0.139 ms whereas [11] requires
0.459 ms for a single ECPM execution. In other words, our method is approx-
imately three times faster. However, readers may notice from Table 1 that in
terms of the maximum frequency, the implementation in [11] reaches a higher
value of 208.3 MHz while ours is 156.8 MHz. Nevertheless, since our method
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Table 2: Performance analysis of proposed generic ECC processor (256-bit)
on Kintex-7.

Operation Clock Cycles Latency @234.1 MHz (ns)

1 × Input Modular Addition 5 21.36
3 × Input Modular Addition 7 29.90
1 × Modular Multiplication 26 111.07
4 × Modular Multiplication 29 123.89
Modular Inverse 6911 29,523.79

Ladder Setup 131 559.63
One Step Ladder Update 97 414.38
Ladder Finish 7050 30,117.60

One ECC Scalar Multiplication 32,272 137,865.98

employs fewer clock cycles (i.e., 32.3k cycles as opposed to 95.5k), our overall
speed outperforms their proposed approach.

In terms of the area overhead, our implementation indeed requires a rel-
atively larger area compared to the existing proposed methods. It requires a
higher number of hard IPs (i.e., DSP and BRAM). However, from the time/area
efficiency perspective, as shown in Table 1, the cost of our method is relatively
similar to the existing 7-series implementations. Note that the time–area is cal-
culated from the occupied slices only. Furthermore, modern devices available
in the market (i.e., Virtex-7, Kintex-7) are generally equipped with a relatively
large resource. In fact, from the hardware utilization perspective, as presented
in Table 3, the overall architecture only utilizes below seven percent of the to-
tal area in the FPGA. Hence, our high-speed architecture would still be greatly
suited for services requiring low latency (speed-critical applications), such as for
runtime authentication in automated vehicles, web server certification, etc. [11].

Table 3: Resource consumption of proposed generic ECC architecture on Virtex-
7 field-programmable gate array (FPGA).

Resource Used Available Utilization %

LUT 22,736 433,200 5.25
FF 12,511 866,400 1.44
Slice 6909 108,300 6.38

DSP48E1 136 3600 3.78
BRAM 15 1470 1.02

Regarding other proposals in the 7-series FPGA implementation, Bajard et al. [15]
proposed a residue number system (RNS)-based ECC processor that utilizes
Cox–Rower architecture for fast parallel Montgomery multiplication, which was
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initially introduced by [36]. They introduce a new ALU design utilizing the
second level of Montgomery reduction within each RNS unit, increasing the
maximum working frequency compared to the original one. On Kintex-7, they
consume 1630 slices, 46 DSP cores, and 16 BRAMs, operating at 281.5 MHz
maximum frequency, with a latency of 0.612 ms for a 256-bit ECPM.

Asif et al. [14] proposed a residue number system (RNS)-based ECC processor
that utilizes a serial-parallel approach for its modular reduction to balance its
time and area performance. With the hardware utilization of 18.8k LUTs, their
method achieves 86.6 MHz maximum frequency and a relatively larger latency
compared to other recent approaches.

On the earlier platform, Shah et al. [17] proposed a redundant-signed-digit
(RSD)-based ECC processor leveraging Montgomery multiplier that uses paral-
lel computation technique operating in (X,Y)-only co-Z arithmetic. They also
provide a relatively comprehensive comparative analysis with other methods,
in which they evaluate their proposed method in Virtex-2 up to Virtex-6, with-
out using any DSPs and BRAMs. In their most recent platform (i.e., Virtex-6),
they consume 44.3k LUTs, operating at 221 MHz maximum frequency, and ac-
quire 0.650 ms execution time.

Previously, Lai et al. [18] in 2012 also utilized a pipelined Montgomery mul-
tiplier and performed their ECPM using the addition-and-subtraction method.
They also proposed three different types of operation scheduling, in which their
fastest approach (namely with their Type-III scheduling) was then compared to
other works for Virtex-2, Virtex-4, and Virtex-5 platform. The implementation
on their latest platform utilizes 3657 slices, 10 DSPs, and 10 BRAMs, which
yields 0.860 ms execution time and 263 MHz maximum frequency. Their result
is largely surpassed by Ma et al., whose latency is nearly half of that of [18].
Additionally, Vliegen et al. [19] and Hu et al. focused on developing low-area
implementation, in which [19] uses 1947 slices, 7 DSPs and 9 BRAMs (Virtex-II
Pro) for achieving 68.17 MHz maximum frequency and 15.760 ms execution time
while [20] only uses slices without any other components, topping at 9370 for a
maximum frequency and latency of 20.44 MHz and 29.840 ms, respectively.

4.2 Result and Analysis of Unified ECC Architecture

Besides high-speed, our method also supports multi-curve domain parameters.
For instance, different standards (e.g., P-256 from NIST [8], secp256k1 from
SECG [37], SCA-256 from SM2 [38], and Brainpool256 from the German Brain-
pool standard [39]) would be able to be implemented with just a single ECC
processor. Moreover, our processor does not incur any additional costs besides
BRAMs when adding support for different curves.

Currently, our implementation supports up to 256-bit modulus size. Never-
theless, it can be easily extended to the larger modulus size since our proposed
pipelined multiplier-accumulator, constructed based on Equation (14), is scal-
able due to the divide-and-conquer characteristics of the employed algorithm.
Table 4 presents the comparison of our method to the other two proposals on
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unified architecture. As shown, it can be inferred that our approach is notably
faster than other similar works of [40,41].

Table 4: Performance comparison of the proposed unified ECC processor for
Weierstrass curve up to 256-bit modulus size on Virtex-7 FPGA.

Designs Curve
Modulus
Size
(Bits)

Slices DSP BRAM
Max.
Freq.
(MHz)

Time
(ms)

192 0.119
This work Any 224 7281 136 15* 204.2 0.138

256 0.158

192 0.296
224 0.389

Wu et al. [41] NIST 256 8411 32 310 0.526
384 1.070
521 1.860

192 0.690

Amiet et al. [40] Any 256
6816
(LUT)

20 225 1.490

384 4.080
521 9.700

∗ Adding more curve parameters will only increase BRAM size without affecting num-
ber of Slices and DSPs

In [40], Amiet et al. focused on building a flexible ECC processor that ac-
commodates arbitrary curves in short Weierstrass form. Their design mainly
improves the Montgomery modular multiplier previously proposed by [42] to
support the pipeline and utilizes a different mechanism for treating the carry
result. They leverage DSP cores to parallelize point addition and point doubling
operations. Realized on Virtex-7 FPGA, their fastest implementation, which uses
a word size of 64, requires 6816 LUTs and 20 DSPs to yield in the maximum
frequency of 225 MHz and runtime speed of 0.69, 1.49, 4.08, and 9.7 ms for 192,
256, 384, and 512-bit modulus, respectively.

Wu et al. [41] proposed a word-based modular division and utilized parallel
point additions and doublings as well as pipelined scalable multiplications and
modular reductions to achieve a fast and unified ECC implementation for five
NIST primes. To support those primes, the authors employ a scalable multipli-
cation algorithm to deal with integers of different lengths. Employing 8411 slices
and 32 DSPs, this approach works in the frequency up to 310 MHz, achieving
0.296, 0.389, 0.526, 1.07, and 1.86 ms on NIST-192, 224, 256, 384, and 521-bit
modulus size, respectively.
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5 Conclusions

In this paper, we have proposed a high-speed and unified ECC processor that
works for generic Weierstrass curves overGF (p) on FPGA. The speed is obtained
by utilizing our fast pipelined Montgomery Modular multiplier (pMMM) for per-
forming ECPM, constructed from our n-bit pipelined multiplier-accumulator,
which combines schoolbook long and Karatsuba–Ofman multiplication, allowing
the multiplication to be performed in parallel while maintaining a low complex-
ity. Furthermore, digit multipliers are handled by DSPs, resulting in an even
faster execution time. Additionally, we also propose to modify certain compo-
nents to maximize the speed gain and the overall performance: employing our
unified and pipelined Modular Adder-Subtractor (pMAS) for the underlying field
arithmetic based on the work of [11], as well as implementing a more efficient yet
compact scheduling of Montgomery ladder algorithm previously proposed in [22].
Moreover, the generic architecture employed by our pMMM module enables a
unified ECC architecture that supports multi-curve parameters. The implemen-
tation in the 7-series FPGA: Virtex-7, Kintex-7, and XC7Z020, shows that our
technique executes in 0.139, 0.138, and 0.206 ms, respectively, which is the fastest
in literature for generic curves as far as we know. It is worth to mention that
our current approach is extensible to support more curve parameters for up
to 256-bit modulus size, by only incorporating additional BRAMs. Lastly, our
method is also resistant to side-channel attacks, making it suitable for applica-
tions requiring high speed and SCA-resistant characteristics, such as for the use
in autonomous vehicles.
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26. Güneysu, T.; Paar, C. Ultra High Performance ECC over NIST Primes on
Commercial FPGAs; In International Workshop on Cryptographic Hardware
and Embedded Systems; Springer: Berlin/Heidelberg, Germany, 2008; pp. 62-78.
doi:10.1007/978-3-540-85053-3˙5.

27. Fan, J.; Verbauwhede, I. An updated survey on secure ECC implementations:
Attacks, countermeasures and cost. In Cryptography and Security: From Theory
to Applications; Springer: Berlin/Heidelberg, Germany, 2012; pp. 265–282.

28. Galbally, J. A new Foe in biometrics: A narrative review of side-channel attacks.
Comput. Secur. 2020, 96, 101902.

29. Montgomery, P.L. Speeding the Pollard and elliptic curve methods of factoriza-
tion. Math. Comput. 1987, 48, 243–264.

30. Montgomery, P.L. Modular Multiplication Without Trial Division. Math. Com-
put. 1985, doi:10.2307/2007970.

31. Xilinx. UG953: Vivado Design Suite 7 Series FPGA and Zynq-7000 SoC Libraries
Guide. Available online: https://www.xilinx.com/support/documentation/sw_
manuals/xilinx2020_1/ug953-vivado-7series-libraries.pdf (accessed on 28
December 2020).

32. Xilinx. 7 Series DSP48E1 Slice User Guide, 2018. Available online:
https://www.xilinx.com/support/documentation/user_guides/ug479_

7Series_DSP48E1.pdf (accessed on 28 December 2020).
33. Nguyen, H.D.; Pasca, B.; Preußer, T.B. FPGA-specific arithmetic optimizations

of short-latency adders. In Proceedings of the 2011 21st International Conference
on Field Programmable Logic and Applications, Chania, Greece, 5–7 September
2011; pp. 232–237.

34. Massolino, P.M.C.; Longa, P.; Renes, J.; Batina, L. A Compact and Scalable
Hardware/Software Co-design of SIKE. IACR Trans. Cryptogr. Hardw. Embed.
Syst. 2020, doi:10.46586/tches.v2020.i2.245-271.

35. Liskov, M., Fermat’s Little Theorem. In Encyclopedia of Cryptography and Se-
curity; Springer: Boston, MA, USA, 2005; pp. 221–221, doi:10.1007/0-387-23483-
7˙161.

36. Kawamura, S.; Koike, M.; Sano, F.; Shimbo, A. Cox-rower architecture for fast
parallel montgomery multiplication. In Proceedings of the International Con-
ference on the Theory and Applications of Cryptographic Techniques, Bruges,
Belgium, 14–18 May 2000; pp. 523–538.

37. Qu, M. Sec 2: Recommended Elliptic Curve Domain Parameters; Tech. Rep.
SEC2-Ver-0.6; Certicom Res.: Mississauga, ON, Canada, 1999.

38. Hu, X.; Zheng, X.; Zhang, S.; Li, W.; Cai, S.; Xiong, X. A high-performance
elliptic curve cryptographic processor of SM2 over GF (p). Electronics 2019,
8, 431.

39. Lochter, M.; Merkle, J. Elliptic Curve Cryptography (ECC) Brainpool Standard-
Curves and Curve Generation; RFC 5639, IETF; 2010. Available online: https:
//tools.ietf.org/html/rfc5639 (accessed on 28 December 2020).

https://doi.org/10.1109/TCSI.2018.2878598
https://github.com/ZcashFoundation/zcash-fpga
https://github.com/ZcashFoundation/zcash-fpga
https://doi.org/10.1109/TVLSI.2013.2294649
https://doi.org/10.1007/978-3-540-85053-3_5
https://doi.org/10.2307/2007970
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2020_1/ug953-vivado-7series-libraries.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2020_1/ug953-vivado-7series-libraries.pdf
https://www.xilinx.com/support/documentation/user_guides/ug479_7Series_DSP48E1.pdf
https://www.xilinx.com/support/documentation/user_guides/ug479_7Series_DSP48E1.pdf
https://doi.org/10.46586/tches.v2020.i2.245-271
https://doi.org/10.1007/0-387-23483-7_161
https://doi.org/10.1007/0-387-23483-7_161
https://tools.ietf.org/html/rfc5639
https://tools.ietf.org/html/rfc5639


26 Awaludin et al.

40. Amiet, D.; Curiger, A.; Zbinden, P. Flexible FPGA-Based Architectures for Curve
Point Multiplication over GF(p). In Proceedings of the 19th Euromicro Con-
ference on Digital System Design, DSD 2016, Limassol, Cyprus, 31 August–2
September 2016, doi:10.1109/DSD.2016.70.

41. Wu, T.; Wang, R. Fast unified elliptic curve point multiplication for NIST prime
curves on FPGAs. J. Cryptogr. Eng. 2019, 9, 401–410.

42. Morales-Sandoval, M.; Diaz-Perez, A. Novel algorithms and hardware architec-
tures for Montgomery Multiplication over GF (p). IACR Cryptol. ePrint Arch.
2015, 2015, 696.

https://doi.org/10.1109/DSD.2016.70

	High-Speed and Unified ECC Processor for Generic Weierstrass Curves over GF(p) on FPGA

